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Abstract

The multiple testing procedures of Bonferroni, Holm (1979), Hochberg (1988) and Hommel (1988)
are shown to have strong control of the family-wise error rate (FWER) at level α by combining the
global tests of Bonferroni and Simes (1986) with the closed testing procedure proposed by Marcus et
al. (1976). The procedures of Bonferroni and Holm are valid for all p-value dependency structures
and are thus conservative for all instances, except for the unrealistic “worst case” scenario. In
contrast, Hochberg and Hommel assume positive dependence through stochastic ordering (PDS),
allowing them to ignore the “worst case” dependency structure, resulting in less conservative
procedures. Finally, we apply the four procedures to independent, positive dependent and negative
dependent tests, and compare the empirical results with the theoretical conclusions.

Additionally, we discuss p-values, with a particular emphasis on the distribution of exact and
valid p-values associated with true one-sided hypotheses.
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1 Introduction

In many fields of study, researchers are often interested in testing multiple hypotheses simultan-
eously, or on the same data over time. A biologist may be interested in testing multiple genes
related to a specific phenotype, whereas a finance worker might want to investigate the relation-
ships between different economic variables and stock prices. Multiple testing had computational
limits before the computer, however, in the 21st century, with its super-fast computers and access
to large amounts of data, these limits are practically non-existent. This enables researchers to
conduct hundreds or thousands of tests within minutes. Consequently, the risk of rejecting a true
hypothesis, namely a false positive, has become an increasingly frequent problem. To address this
issue, multiple testing procedures have been developed to control the rate of false positives, while
simultaneously rejecting as many false hypotheses as possible. One such controlling mechanism
is the family-wise error rate (FWER), which refers to the probability of at least one false posit-
ive result. FWER controlling procedures aim to control the FWER at a predetermined level α,
allowing valid inferences to be made regarding the individual hypotheses. The study of FWER
controlling methods has been active for decades, and several procedures have been proposed. The
most well-known arguably being the procedures of Bonferroni, Holm (1979), Hochberg (1988) and
Hommel (1988).

The aim of this thesis is to provide a comparative study of these procedures. Specifically,
we demonstrate how the procedures control FWER both theoretically and empirically, and how
they differ in power. Relevant mathematical concepts, such as hypothesis testing, p-values, and
conservatism, are introduced, together with relevant inequalities and assumptions. In conclusion,
we discuss the strengths and weaknesses of FWER control in general and possible alternative
methods for controlling the rate of false positives.
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2 Theory

This thesis begins by introducing the fundamental theory of hypothesis testing. That involves
the mathematical structure of the null and alternative hypotheses, test statistic, and level of
significance. We then explore how these concepts can be extended to multiple testing, and the
challenges that arise. Additionally, we introduce the concept of global testing, and how it combined
with the closed testing procedure by Marcus et al. (1976) build a framework for the procedures of
Holm, Hochberg and Hommel.

2.1 Hypothesis testing

To test a hypothesis means to formulate a statement about a particular phenomenon, then collect-
ing and analyzing data in order to evaluate whether that statement is supported by the evidence.
Mathematically, we use statistical methods to determine the likelihood of observing a particular
result, or set of results, under a specific assumption. A hypothesis test involves a null hypothesis
H0 (as the specific assumption) and a alternative hypothesis H1, where we look to reject H0 in
favor of H1. We gather a random sample X from some distribution Pθ, where θ ∈ Ω is the para-
meter of interest, and Ω is the parameter space. We formulate our null hypothesis as H0 : θ ∈ ω
and the alternate hypothesis H1 : θ ∈ ωc, where ω ⊆ Ω, and ωc represent the complement of ω.
Further, a true hypothesis refers to the null hypothesis being true, while a false hypothesis refers
to the null hypothesis being false.

We primarily focus on simple one- and two-sided tests. A one-sided test checks if a parameter
is greater or less than a certain value, while a two-sided test checks if the parameter is not equal
to a certain value. Such tests can also be referred to as right-, left-, or two-tailed.

Example 1. Testing the average height of a population. We assume the dataX is height measured
in cm, extracted from a Gaussian distribution where the parameter of interest is the mean µ. We
set a null hypothesis H0 : µ ≤ 180 against the alternative hypothesis H1 : µ > 180. Using the above
notation this corresponds to the parameter of interest θ being µ, our parameter space Ω = R, and
ω = (−∞, 180]. This is an example of a simple one-sided test. For the test to be two-sided we can
reformulate to H0 : µ = 180 against H1 : µ ̸= 180, making ω = {180}.

To further evaluate a hypothesis, we need some statistical measurement to summarize the
difference between the data and what would be expected assuming the null hypothesis is true. The
statistic measure is referred to as a test statistic, and one such test statistic is the p-value. The
p-value most commonly represents the probability of a test result being at least as extreme as the
observed data, assuming the null hypothesis to be true. Note that this is not the same as the
probability that the null hypothesis is true, which is a common misinterpretation. “Extreme” is
defined in terms of the alternative hypothesis. For our height example, the p-value may represent
the probability of our observed average height or higher, assuming that the true average height is
180 cm. However, it is worth noting that the p-value does not necessarily represent a probability.
Casella & Berger (2002) define a valid p-value as in Definition 1.

Definition 1. A p-value p(X) is a test statistic satisfying 0 ≤ p(X) ≤ 1 for every sample point
x. Small values of p(X) give evidence that H1 is true. A p-value is valid if, for every θ ∈ ω and
every 0 ≤ α ≤ 1,

Pθ(p(X) ≤ α) ≤ α. (1)

When evaluating a hypothesis H0 there is a possibility of two main errors, type I or type II. A
type I error is rejecting a true hypothesis, and a type II error is failing to reject a false hypothesis.
Using a valid p-value p(X) we can construct a test that controls for the probability of a type I
error at a set level α. This test rejects H0 if and only if p(X) ≤ α, as the probability of rejecting
H0, assuming H0 is true, is equal to the probability of p(X) ≤ α, which from (1) is less than or
equal to α. We often refer to α as the level of significance, which represents an upper bound for
the probability of rejecting H0, assuming H0 is true. This is equivalent to the upper bound for the
probability of a type I error, which becomes highly relevant when testing multiple hypotheses.

2



2.2 Multiple hypothesis testing & FWER

In single hypothesis testing, controlling the probability of a type I error is straightforward. For
multiple hypotheses however, a problem quickly occurs. Assume that we simultaneously perform
m independent tests with associated valid p-values p1, . . . , pm associated with true hypotheses. We
set a significance level α, and let V denote the number of false positives. We then calculate the
probability of at least one false positive as

P (V > 0) = 1− P (V = 0) = 1− P (p1 > α ∩ · · · ∩ pm > α)
= 1− P (p1 > α) · · ·P (pm > α)
≤ 1− (1− α)m.

For m = 15 and α = 0.05, the probability of at least one false positive is P (V > 0) ≤ 1 − (1 −
0.05)15 = 0.537. Therefore, for only 15 tests, we have a 54% probability of rejecting at least one
true hypothesis. By increasing the number of tests to 100, we obtain a 99.4% probability. An
interesting question is then, how can we best control the probability of at least one false positive
at an assigned level α? This is a known problem in multiple testing, and will be the main objective
of the procedures introduced later.

We denote the hypotheses of interest by H = {H1, . . . ,Hm}, where m0 ≤ m of the hypotheses
in H are true. We formally define the probability of obtaining at least one false positive as
the family-wise error rate (FWER), which we wish to control at a level α, while simultaneously
rejecting as many false hypotheses as possible. The simplest example of FWER control is to set
α = 0. This would not reject any hypotheses, thus not obtaining any false positives. However,
allowing a number of false negatives. Therefore, for procedures controlling FWER, a concept
called conservatism is frequently discussed. A conservative method controls the FWER, but in a
strict sense, which in practice translates to it being harder than necessary to reject a individual
hypothesis. This is a problem because we want to reject as many false hypotheses as possible.
Moreover, regarding FWER, we discuss weak and strong control. A procedure is said to have
weak control if it controls the FWER when all the hypotheses in H are true, i.e., m0 = m.
Meanwhile, a method with strong control, controls the FWER under any combination of true and
false hypotheses. In practice, only strong control methods are used (Goeman & Solari, 2014).

Additionally, we separate between raw and adjusted p-values. A raw p-value is a p-value,
as stated in Section 2.1, which can be described as the smallest choice α that will reject the
hypothesis. Similarly, the adjusted p-value represents the smallest α level from which the multiple
testing procedure rejects a hypothesis. The adjusted p-value is thus dependent on the multiple
testing procedure used. The reader should be aware that the interpretation of the adjusted p-value
can differ between FWER controlling methods, and other methods for controlling the rate of false
positives, such as FDR (Goeman & Solari, 2014). Unless stated otherwise, the term “p-value”
refers to the raw p-value for further mentions.

2.3 p-values

Firstly, we note that the p-value itself is a random variable as it vary depending on the sample data.
Typically, assumptions made regarding p-values only consider p-values of the true hypotheses,
where we by Definition 1 have that a valid p-value from a true hypothesis is either uniformly
distributed between 0 and 1 or stochastically greater than uniform. Casella & Berger (2002)
introduces in Theorem 1, the most common way of defining a valid p-value.

Theorem 1. Let W (X) be a test statistic such that large values of W give evidence that H1 is
true. For each sample point x, define

p(x) = sup
θ∈ω

Pθ(W (X) ≥ W (x)). (2)

Then, p(X) is a valid p-value.

Proof. To test H0 : θ ∈ ω, we let X be the outcome and W (X) be the test statistic such that large
values of W provide evidence for rejecting H0. Fix θ ∈ ω, and let x be a realization. Using (2),

pθ(x) = Pθ(W (X) ≥ W (x)).

3



For a second realization x′ it follows that for pθ(x′) ≤ pθ(x) ⇐⇒ W (x′) ≥ W (x), which for a
random variable X implies that pθ(X) ≤ pθ(x) ⇐⇒ W (X) ≥ W (x). Consequently,

Pθ(pθ(X) ≤ pθ(x)) = Pθ(W (X) ≥ W (x)) = pθ(x).

Let 0 ≤ α ≤ 1, and α′ = sup{pθ(x) : pθ(x) ≤ α} (typically, α′ < α for discrete test statistics W ).
Then,

Pθ(pθ(X) ≤ α) = Pθ(pθ(X) ≤ α′) = α′ ≤ α.

As p(x) = supθ′ pθ′(x) ≥ pθ(x) for all sample points x,

Pθ(p(X) ≤ α) ≤ Pθ(pθ(X) ≤ α) ≤ α.

This is true for all θ ∈ ω, and every 0 ≤ α ≤ 1. Hence, p(X) is a valid p-value. ■

For instances in which (1) is an equality, we call p(X) an exact p-value. Note that exact
p-values based on a continuous test statistic W , have a uniform distribution between 0 and 1.
For strictly valid p-values gathered from true hypotheses, the distribution is stochastically greater
than uniform, i.e., skewed towards 1. For p-values gathered from the false hypotheses, we expect
a distribution skewed towards 0. These remarks are further emphasized in Section 5.1.

2.4 Dependency structures & probability inequalities

The dependency structure among p-values can significantly impact the performance of multiple
testing procedures. Fully utilizing the underlying structure of the tests can lead to significant
advantages, and result in less conservative methods. Therefore, FWER controlling procedures
usually rely on probability inequalities that make certain assumptions about the distribution of
p-values. Generally, stronger assumptions lead to more powerful procedures. Relevant for this
thesis are the probability inequalities of Bonferroni and Simes (1986). Let q1, . . . , qm0 denote the
m0 ≤ m p-values of the true hypotheses. The Bonferroni inequality states that

P

(
m0⋃
i=1

qi ≤
α

m0

)
≤ α (3)

(Goeman & Solari, 2014). Except for (1), the Bonferroni inequality makes no assumptions regard-
ing the p-values. This makes the inequality applicable in most instances. However, this also means
that the inequality includes unrealistic “worst case” scenarios, which occur when the inequality
is a equality. Often resulting in the inequality being strict. We can note the conservatism of the
Bonferroni inequality in its derivation, which is based on Boole’s inequality. Boole’s inequality
states that for events A1, . . . , Ak,

P

(
k⋃

i=1
Ai

)
≤

k∑
i=1

P (Ai). (4)

A proof can be found in Appendix A. We then derive the Bonferroni inequality,

P

(
m0⋃
i=1

qi ≤
α

m0

)
≤

m0∑
i=1

P

(
qi ≤

α

m0

)
≤ m0

α

m0
= α.

The “worst case” scenario occurs when (4) is an equality, which is when all events Ai are pairwise
disjoint. For the Bonferroni inequality, this translates to rejection of the null hypotheses being
pairwise disjoint, i.e, at most one null hypothesis can be rejected. This is an example of negative
dependency, which is unrealistic for real-life applications. Thus, the inequality is strict in most
cases, and methods based on the Bonferroni inequality can therefore be quite conservative.

To avoid considering “worst case”, we can make assumptions regarding the dependence structure
of the p-values. One such is positive dependence through stochastic ordering (PDS) introduced by
Block et al. (1985). In short, we assume positively dependent statistics, which allows us to exclude
the unrealistic “worst case” scenario. By assuming PDS and (1) we obtain the Simes inequality,
which for ordered p-values associated to true hypotheses, states that

P

(
m0⋃
i=1

q(i) ≤
iα

m0

)
≤ α (5)

4



(Goeman & Solari, 2014). The Simes inequality is also strict for many p-value distributions, but
improves on (3). The “worst case” is for exact independent p-values, which a proof can be found
in Appendix C. FWER controlling methods exploiting the Simes inequality need thus that the
PDS condition hold to validly control FWER at the assigned level α. However, Rødland (2006)
shows that the Simes inequality is “valid on average”, and instances where it fails are “somewhat
bizarre”. An example in which the inequality is reversed is presented in Section 5.4.

2.5 The global tests of Bonferroni & Simes

While multiple testing procedures aim to make inferences about the individual hypotheses in H,
global tests assess all the hypotheses in H simultaneously. Using the inequalities of Bonferroni and
Simes, we can construct such global hypothesis tests. For the set of hypotheses H we want to test
with FWER control level α, if all individual hypotheses are simultaneously true. That means to
test the null hypothesis H∩ = H1 ∩ . . . ∩ Hm against the alternative hypothesis stating that at
least one of H1, . . . ,Hm is false. Further, H∩ is referred to as a intersection hypothesis.

Using (3) we construct the Bonferroni global test. For the set H, with associated p-values
p1, p2, . . . , pm,

reject H∩ if pi ≤
α

m
for any i = 1, 2, . . . ,m,

where we have that by assuming H∩ is true, the probability of rejecting H∩ is by (3) less than or
equal to α. Thus, controlling the FWER at level α. Similarly, we construct the Simes global test
using (5). For ordered p-values,

reject H∩ if p(i) ≤
iα

m
for any i = 1, 2, . . . ,m.

Using the same argument as for the Bonferroni global test, Simes control FWER at level α. In
Section 4.1, we demonstrate that the Bonferroni inequality allows for strong FWER control when
making inferences about individual hypotheses. However, this is not the case for Simes, who only
provides weak control of the FWER, i.e., when m0 < m, the probability of a false positive can
exceed α (Example 2). Indicating that Simes is only appropriate as a global test.

Example 2. Consider a set of three independent hypotheses H1, H2, H3, of which H2 and H3 are
true with corresponding exact p-values p2 ≤ p3, based on continuous test statistics. Assume H1 to
be false with corresponding p-value p1 = 0. Set α = 0.05. Then,

FWER = P (V > 0) = 1− P

(
p2 >

2α
3 ∩ p3 > α

)
= 1− P

(
p2 >

2α
3

)
P (p3 > α).

By using the order statistics of a uniform distribution between 0 and 1 we find that P (p2 > 2α
3 ) =

841
900 and P (p3 > α) = 399

400 . Thus FWER = 1 −
( 841
900
) ( 399

400
)
= 0.0679, which is greater than α.

Showing that when using Simes inequality to make inferences on individual hypotheses for m0 less
than m, we are not guaranteed to control the FWER at the assigned level α.

2.6 The closed testing procedure

The closed testing procedure introduced by Marcus et al. (1976) is a method for multiple hypothesis
testing that strongly controls FWER. Consider the set of m hypotheses, H. The closed testing
procedure states that any Hi ∈ H is rejected under valid FWER level α control if all possible
intersection hypotheses involving Hi are rejected by a valid level α test, i.e.,

reject Hi if


Hi rejected by valid α test,
Hi ∩Hj rejected for all j ∈ {1, 2, . . . ,m}\{i} by valid α test,

...
Hi ∩H1 ∩ · · · ∩Hi−1 ∩Hi+1 ∩ · · · ∩Hm rejected by valid α test.

To illustrate how the closed testing procedure strongly controls FWER, we consider the set
HT ⊆ H of true hypotheses. To reject any of the true hypotheses, we must reject the intersection
hypotheses HT

∩ , which depends on a valid α test. Hence,

FWER = P (V > 0) ≤ P (reject HT
∩) ≤ α.

5



A valid level α test can for instance be the global tests of Bonferroni or Simes, and we will in
Section 4 show how the multiple testing procedures of Holm, Hochberg and Hommel are special
cases of the closed testing procedure. In the first place, using the closed testing procedure will be
a computationally heavy process. For m hypotheses the closed testing procedure would require
2m−1 individual tests to possibly reject one hypotheses. We will however see that the number of
tests can be easily reduced in the procedures for the mentioned special cases.
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3 Procedures for FWER Control

We present the multiple testing procedures of Bonferroni, Holm (1979), Hochberg (1988) and
Hommel (1988). Further derivations, analysis and comparisons will be discussed in Section 4. For
all procedures below we consider a set of m hypotheses H = {H1, . . . ,Hm} with associated p-values
p1, . . . , pm, where p(i) represent the i’th ordered p-value and H(i) its associated hypothesis.

3.1 The Bonferroni procedure

Reject all individual hypotheses for which

pi ≤
α

m
.

If no such pi exists for i = 1, 2, . . . ,m, no hypotheses are rejected.
The Bonferroni procedure has strong FWER control and is valid for all dependency structures,

with (1) as the only assumption. It is however conservative for most cases, especially for a large
proportion of false hypotheses, or when the p-values have positive associations.

3.2 The Holm procedure

For j = 1, 2, . . . ,m, if
p(j) ≤

α

m− (j − 1) ,

reject H(j) and continue with j + 1, otherwise stop. If p(1) is greater than α
m , no hypotheses are

rejected.
The Holm procedure has strong FWER control, and is valid for all dependency structures, with

(1) as the only assumption. The procedure rejects at least as many hypotheses as the Bonferroni
procedure and one expect the largest gain in power for a large proportion of false hypotheses.

3.3 The Hochberg procedure

Find the largest integer j ∈ {1, 2, . . . ,m} such that

p(j) ≤
α

m− (j − 1) .

Reject H(1), . . . ,H(j). If no such j exists, no hypotheses are rejected.
The Hochberg procedure has strong FWER control, and is valid under the PDS assumption

and (1). It rejects at least as many hypotheses as Holm, possibly more.

3.4 The Hommel procedure

Find the smallest integer j ∈ {1, 2, . . . ,m} such that

p(k) >
(k − (j − 1))α
m− (j − 1) for all k = j, . . . ,m.

Reject all hypotheses with corresponding p-value less than or equal to α
m−(j−1) . If no such j exists

all hypotheses are rejected, if j = 1 no hypotheses are rejected.
The Hommel procedure has strong FWER control, and is valid under the PDS assumption and

(1). The procedure is more powerful than Hochberg, but requires more computations.

7



4 Derivation and Comparison of the Procedures

The aim of the procedures in Section 3 is to control the FWER at level α, while simultaneously
rejecting as many false hypotheses as possible. Combining the closed testing procedure with the
global tests of Bonferroni and Simes presented in Section 2, we derive the procedures of Holm,
Hochberg and Hommel. The Bonferroni procedure can be derived directly from the Bonferroni
inequality. From its derivations, we can further compare and examine the procedures in terms of
their power and practical use.

Firstly, we introduce a “loop-hole” in the closed testing procedure when combined with the
global tests of Bonferroni or Simes. Let H = {H1, H2, . . . ,Hm} be a set of m hypotheses, where
p(i) is the i’th ordered p-value and H(i) its associated hypothesis. By the closed testing procedure
we reject a hypothesis Hi if all possible intersection hypotheses involving Hi are rejected. Using the
Bonferroni or Simes global tests it is however enough to reject intersection combinations involving
only the largest p-values. Hence,

reject Hi if



Hi rejected by valid α test,
Hi ∩H(m) rejected by valid α test,
Hi ∩H(m−1) ∩H(m) rejected by valid α test,

...
H(1) ∩ · · · ∩Hi ∩ · · · ∩H(m) rejected by valid α test.

This is due to the structure of the global tests of Bonferroni and Simes. Having rejected the
intersection combination with the largest p-values, rejection of other subsets of equally many
hypotheses automatically follow.

4.1 Bonferroni: The Bonferroni inequality

The Bonferroni procedure reject an individual hypothesis if the associated p-value is less than or
equal to α

m . To prove strong FWER control we use the same arguments as for when deriving
the Bonferroni inequality in Section 2.4. Let m0 ≤ m be the number of true hypotheses, and
q1, q2, . . . , qm0 their associated p-values. Then,

FWER = P (V > 0) = P

(
m0⋃
i=1

qi ≤
α

m

)
≤

m0∑
i=1

P
(
qi ≤

α

m

)
≤ m0

α

m
≤ α.

The above proof highlights the Bonferroni procedures conservatism. The first inequality (from
the left) is strict for all cases where the events qi ≤ α

m are not pairwise disjoint. The second
inequality, due to assuming (1), shows conservatism for strictly valid p-values, and the third in-
equality shows conservatism when the proportion of false hypotheses is large, i.e., m0 ≪ m. Hence,
the (unrealistic) scenario for which the procedure is not conservative is for pairwise disjoint events,
exact p-values, and all hypotheses in H are true. An example of this is shown in Section 5.4. One
can easily find the adjusted p-values by min(mpi, 1), where pi represent the raw p-value.

4.2 Holm: closed testing & the Bonferroni global test

By combining the closed testing procedure with the Bonferroni global test we can improve upon
the Bonferroni procedure. Considering H(1) ∈ H, we reject H(1) if we can reject all intersection
hypotheses involving H(1) using a valid level α test, i.e.,

reject H(1) if


H(1) rejected by valid α test,
H(1) ∩H(m) rejected by valid α test,

...
H(1) ∩ · · · ∩H(m) rejected by valid α test.

By using the Bonferroni global test as our valid α test, this translates to
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reject H(1) if


p(1) ≤ α,

p(1) ≤ α
2 or p(m) ≤ α

2 ,
...

p(1) ≤ α
m or p(2) ≤ α

m or . . . or p(m) ≤ α
m .

Thus, for p(1) less than or equal α
m , H(1) is surely rejected. If p(1) is greater than α

m no hypotheses
are rejected as the p-values are ordered. Assume we reject H(1), evaluating H(2), we use the same
arguments as for H(1). However, we do not need to assess intersection hypotheses involving H(1),
as these intersections are already rejected. Hence,

reject H(2) if


p(2) ≤ α,

p(2) ≤ α
2 or p(m) ≤ α

2 ,
...

p(2) ≤ α
m−1 or p(3) ≤ α

m−1 or . . . or p(m) ≤ α
m−1 .

Given that H(1) is rejected, having that p(2) is less than or equal to α
m−1 ensures rejection of

H(2). Continuing to H(3), and so on until the first instance where p(j) is greater than α
m−(j−1) , for

j = 1, 2, . . . ,m.
This results in the Holm procedure as stated in Section 3.2. The gain in power compared to the

Bonferroni procedure is clear. Bonferroni compare every p-value to α
m , while Holm compare the

j’th ordered p-value to α
m−(j−1) , ensuring the Holm procedure to reject at least as many hypotheses

as Bonferroni. We expect the greatest increase in power when the proportion of false hypotheses
is large. The procedure is based on the closed testing procedure using the Bonferroni global test,
and has thus strong FWER control for all p-value dependency structures, only assuming (1). A
alternative proof of the Holm procedures’ strong control of FWER can be found in Appendix B.

4.3 Hochberg: closed testing & the Simes global test

To obtain the Hochberg procedure we use the same idea as for Holm, but instead of using the
Bonferroni global test, we use Simes. We consider a hypothesis H(i) ∈ H,

reject H(i) if


p(i) ≤ α,

p(i) ≤ α
2 or p(m) ≤ α,

...
p(1) ≤ α

m or p(2) ≤ 2α
m or . . . or p(i) ≤ iα

m or . . . or p(m) ≤ α.

We observe directly that if p(i) is less than or equal to α
m−(i−1) intersection hypotheses of up to

m− (i− 1) hypotheses are rejected, since

p(i) ≤
α

m− (i− 1) < · · · < α

3 <
α

2 < α.

For intersection hypotheses of more than m− (i−1) hypotheses, p(i) will be compared to kα
m−(i−k) ,

for k = 1, . . . , i, where we have that

p(i) ≤
α

m− (i− 1) = 2α
2(m− (i− 1)) ≤ 2α

m− (i− 2) ≤ kα

m− (i− k) .

Hence, if p(i) is less than or equal to α
m−(i−1) we rejectH(i). It follows that hypothesesH(1), . . . ,H(i−1)

are rejected. This is because p(1) ≤ · · · ≤ p(i) ≤ α
m−(i−1) , rejecting intersection hypotheses of up to

m−(i−1) hypotheses. And intersection hypotheses of more than m−(i−1) hypotheses are rejected
as p(i) is less than or equal to α

m−(i−1) . Hence, by finding the largest integer j ∈ {1, 2, . . . ,m} such
that

p(j) ≤
α

m− (j − 1) ,

we reject hypotheses H(1), . . . ,H(j), which is the Hochberg procedure as stated in Section 3.3.
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Comparing Hochberg to Holm it is clear that Hochberg has greater power. Holm finds the first
instance where p(j) is greater than α

m−(j−1) and rejects hypothesesH(1), . . . ,H(j−1), while Hochberg
find the largest j′ such that p(j′) is less than or equal to α

m−(j′−1) , rejecting H(1), . . . ,H(j′), where
j′ ≥ j − 1. The Hochberg procedure is valid by closed testing and Simes global test, thus ensuring
strong FWER control assuming PDS and (1).

Example 3. Let H = {H1, H2, H3, H4, H5} with associated ordered p-values. Using Hochberg’s
definition of j, assume j = 3. This gives that p3 ≤ α

3 , while p4 > α
2 and p5 > α. For the closed

testing procedure combined with Simes’ global test,

reject H3 if



p3 ≤ α,

p3 ≤ α
2 or p5 ≤ α,

p3 ≤ α
3 or p4 ≤ 2α

3 or p5 ≤ α,

p2 ≤ α
4 or p3 ≤ 2α

4 or p4 ≤ 3α
4 or p5 ≤ α,

p1 ≤ α
5 or p2 ≤ 2α

5 or p3 ≤ 3α
5 or p4 ≤ 4α

5 or p5 ≤ α.

Observe directly that H3 will be rejected, as

p3 ≤ α

3 ≤ α

2 = 2α
4 ≤ 3α

5 ≤ α.

Moreover, H1 and H2 will be rejected since p1 ≤ p2 ≤ p3. Intersection hypotheses of up to three
hypotheses will obviously be rejected, while intersections of four and five hypotheses will compare
p3 to the same values as for when rejecting H3. This shows that by finding j = 3, we can with
FWER control level α reject H1, H2 and H3 by the Hochberg procedure. To reject the same
number of hypotheses using the Bonferroni or Holm procedures, we need additional requirements
for the p-values, namely that p1 ≤ p2 ≤ p3 ≤ α

5 for Bonferroni, and p1 ≤ α
5 and p2 ≤ α

4 for Holm.

4.4 Hommel: closed testing & the Simes global test

As for Hochberg, we use closed testing and Simes global test as our framework. For a hypothesis
H(i) ∈ H,

reject H(i) if


p(i) ≤ α,

p(i) ≤ α
2 or p(m) ≤ α,

...
p(1) ≤ α

m or p(2) ≤ 2α
m or . . . or p(i) ≤ iα

m or . . . or p(m) ≤ α.

For obtaining the Hochberg procedure in Section 4.3 we focused on how we directly can reject a
hypothesis. For Hommel, our focus shifts to identifying the hypotheses that cannot be rejected.
We do this be finding the smallest integer j ∈ {1, 2, . . . ,m} such that

p(k) >
(k − (j − 1))α
m− (j − 1) for all k = j, . . . ,m.

By finding this value j, we will not be able to reject the intersection hypothesis H(j) ∩ H(j+1) ∩
· · · ∩ H(m). Consequently, by the closed testing procedure, we are not able to reject any of
H(j), H(j+1), . . . ,H(m). Moreover, we know from the definition of j that the largest indexed inter-
section hypotheses of more than m− (j − 1) hypotheses will be rejected, since

p(k) <
(k − (j′ − 1))α
m− (j′ − 1) for at least one k = j′, . . . ,m

must be true for j′ = 1, 2, . . . , j − 1. Therefore, the remaining hypotheses for possible rejection
are H(1), . . . ,H(j−1), where we only need to evaluate intersection hypotheses of up to m− (j − 1)
hypotheses. Thus, for i ∈ {1, 2, . . . , j − 1},

reject H(i) if


p(i) ≤ α,

p(i) ≤ α
2 or p(m) ≤ α,

...
p(i) ≤ α

m−(j−1) or p(j+1) ≤ 2α
m−(j−1) or . . . or p(m) ≤ α.
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We then reject all hypotheses with corresponding p-value less than or equal to α
m−(j−1) , which

results in the Hommel procedure as stated in Section 3.4; find the smallest integer j ∈ {1, 2, . . . ,m}
such that

p(k) >
(k − (j − 1))α
m− (j − 1) for all k = j, . . . ,m.

Then, all hypotheses with a corresponding p-value less than or equal to α
m−(j−1) are rejected.

The Hommel procedure automatically rejects all hypotheses that would have been rejected using
closed testing combined with Simes, which is not the case for Hochberg. As a result, the Hommel
procedure rejects at least as many hypotheses as Hochberg and should be the preferred option.
The largest gain in power is expected for a large proportion of false hypotheses or for positive
associations between the p-values. In Section 4.5, the gain in power compared with Hochberg
become more apparent. The procedure is based on closed testing and Simes, which provide strong
FWER control, assuming PDS and (1).

Example 4. Let H = {H1, H2, H3, H4, H5} with associated ordered p-values. Using Hommel’s
definition of j, assume j = 3. This gives us that p3 > α

3 , p4 > 2α
3 and p5 > α, which is equivalent

to us not being able to reject H3 ∩ H4 ∩ H5 by Simes. We are thus not able to reject any of
H3, H4 or H5 by closed testing. Moreover, from j = 3 we know that H2 ∩ H3 ∩ H4 ∩ H5 and
H1 ∩H2 ∩H3 ∩H4 ∩H5 will be rejected by Simes. Hence, when evaluating H1 and H2 with closed
testing, we only need to consider intersection hypotheses of up to three hypotheses. In fact, we
only need to reject the largest indexed intersection hypothesis that involves three hypotheses, i.e.,

Hi ∩H4 ∩H5, where i = 1, 2.

As we know that p4 > 2α
3 and p5 > α, the intersection hypotheses is rejected if and only if pi is

less than or equal to α
3 , which consequently ensures rejection of intersection hypotheses of one and

two hypotheses. Using Hommel it is enough for p1 and p2 to be less than α
3 to reject H1 and H2.

For Hochberg however, we additionally demand that p2 is less than or equal to α
4 .

4.5 Comparing Hochberg & Hommel

The improvements of Holm over Bonferroni, and Hochberg over Holm, are relatively straightfor-
ward, but comparing Hochberg and Hommel requires a more in-depth analysis. We write the
Hommel procedure as finding the smallest j ∈ {1, 2, . . . ,m} such that

p(k) >
(k − (j − 1))α
m− (j − 1) for all k = j, . . . ,m,

where we reject all hypotheses with a corresponding p-value less than or equal to α
m−(j−1) . Hoch-

berg finds the largest j′ ∈ {1, 2, . . . ,m} such that

p(j′) ≤
α

m− (j′ − 1) ,

rejecting all hypotheses with corresponding p-value less than or equal to α
m−(j′−1) . The more

powerful procedure will thus have the largest value of j (or j′ ). Assuming both j and j′ exists, it
is clear that j′ can be less than j, and that they can not be equal. For which Hommel will be the
more powerful procedure. Thus, what is left to check for is j′ to be larger than j. Equivalent to
Hochberg being the more powerful procedure. Let j′ = j + r for any r = 1, 2, . . . ,m− j. From the
definition of j we know that

p(j) >
α

m− (j − 1) ∩ p(j+1) >
2α

m− (j − 1) ∩ · · · ∩ p(j+r) >
(r + 1)α

m− (j − 1) ∩ · · · ∩ p(m) > α.

And from the definition of j′ we have that

p(j′) = p(j+r) ≤
α

m− ((j + r)− 1) = (r + 1)α
(r + 1)(m− ((j + r)− 1) ≤ (r + 1)α

m− (j − 1) < p(j+r),

which is a contradiction. Hence, instances where j′ ≥ j do not exist, making the Hommel procedure
the more powerful procedure. Special cases for instances where j′ = m, then j do not exist and both
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procedures reject all hypotheses in H. If j′ do not exist, Hochberg will not reject any hypotheses,
while Hommel will have j less than or equal to m− 1, i.e., still capable of rejecting hypotheses.

Since Hochberg is more powerful than both the Bonferroni and Holm procedures, the above
result shows that Hommel is also more powerful than Bonferroni and Holm. Note however that
even though the procedures of Hochberg and Hommel have successfully extended Simes global test
to make inferences on individual hypotheses, the procedures are conservative. That means there
are instances where the Simes global test is rejected but the procedures of Hochberg and Hommel
do not reject any individual hypotheses.

Example 5. We illustrate how the procedures of Hochberg and Hommel can be conservative by
assuming a set of three hypotheses H1, H2 and H3 with associated ordered p-values. We assume
that for a significance level α,

α

2 < p1 ≤ p2 <
2α
3 and p3 > α.

The Simes global test is rejected as p2 is less than 2α
3 . For Hochberg, no hypotheses are rejected

since p1 > α
3 , p2 > α

2 and p3 > α. And for Hommel we get j = 2, thus no rejections since p1 is
greater than α

2 . Showing that the Simes global test is rejected, but Hochberg and Hommel are not
able to reject any individual hypotheses.

Calculating the adjusted p-values for the Holm and Hochberg procedures can be performed
using a simple algorithm, however, not shown here. Hommel encounter greater complexity when
calculating this value. The reader is advised to refer to Goeman & Solari (2014). However, an
interesting note regarding the adjusted p-values is their possibility of being equal, even though
the raw p-values were not, often resulting in long lists of identical values. Most often from true
hypotheses, being equal to one.
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5 Simulations & Examples

To demonstrate the differences in behavior between the presented procedures, we apply them to
data and compare the empirical results to the theoretical conclusions made earlier. Specifically,
we test the procedures using high and low proportions of false hypotheses, as well as independent,
positively dependent, and negatively dependent tests. All of the data are simulated using R and
code can be found in Appendix D.

5.1 Distribution of exact & valid p-values

Continuing on Example 1, we have the null hypothesis H0 : µ ≤ 180 and the alternative hypothesis
H1 : µ > 180. We perform the hypothesis test 10 000 times for independent random samples,
calculating the 10 000 associated p-values. We simulate for two instances. First, we simulate for
true values of µ < 180. Second, we simulate for µ = 180. Both instances will thus produce p-values
associated to true hypotheses. We let σ = 3 (known) and n = 100 be the number of observations
in each sample.

For each sample we collect height observations x = (x1, x2, . . . , x100), where x̄ denote the mean
of the 100 observations. Using (2) to define a valid p-value we set the mean as our continuous
test statistic W . Hence, p(x) = supµ∈ω Pµ(X̄ ≥ x̄). The supremum argument for p(x) will
clearly be for µ = 180 for all sample points x, as this gives the highest expected value for X̄.
From the proof in Section 2.3 we know that Pµ(pµ(X) ≤ α) = α for all µ ∈ ω. Therefore
p(x) = pµ(x) give exact p-values, which for our case happens when µ = 180, i.e., H0 : µ = 180
is true. Consequently, for instances where µ < 180, we have p(x) > pµ(x), giving strictly valid
p-values, as Pµ(p(X) ≤ α) < Pµ(pµ(X) ≤ α) = α.

For the first instance, we simulated the samples using true mean value µ = 179. We obtain 10000
p-values from true hypotheses and expect a skewed distribution towards 1, as these correspond to
strictly valid p-values. The resulting p-value distribution is illustrated in Figure 1. As expected,
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Figure 1: Histogram of p-values from testing H0 : µ ≤ 180 for 10 000 independent samples. Each
sample consist of 100 height values simulated using true µ = 179 and constant (known) variance
σ2 = 32.

the p-values are skewed towards 1, empirically showing that P (p(X) ≤ α) < α.
For the second case we simulated observations using true mean µ = 180. This gives 10 000

p-values from true null hypotheses, expected to be uniformly distributed between 0 and 1. The
resulting p-value distribution is illustrated in Figure 2. From the histogram, we observe an approx-
imately uniform distribution, which agrees with the theory of exact p-values presented previously.

Hence, in addition to theory we have empirical results showing that, if H0 : µ ∈ ω is true, where
µ corresponds to the supremum argument in (2), we expect a uniform distribution of p-values

13



P−values from true hypotheses

P−value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

Figure 2: Histogram of p-values from testing H0 : µ ≤ 180 for 10 000 independent samples. Each
sample consist of 100 height values simulated using true µ = 180 and constant (known) variance
σ2 = 32.

between 0 and 1. Otherwise, if H0 : µ′ ∈ ω \ {µ} is true, we expect a distribution skewed towards
1. Note that for a simple two-sided test (|ω| = 1) with a continuous test statistic, we expect a
uniform distribution of p-values for all the true hypotheses. Whether or not a p-value is exact or
valid can influence the conservatism of a multiple testing method. E.g., the second inequality in
the Bonferroni derivation in Section 4.1, will be an equality for exact p-values.

Additionally, we show the distribution of p-values corresponding to false hypotheses. We sim-
ulated samples for different true mean values µ ∈ (180, 182], giving 10 000 p-values from false
hypotheses. The resulting p-value distribution is presented in Figure 3. We observe a p-value
distribution skewed towards 0, which corresponds to P (p(X) ≤ α) > α. This is consistent with
theory. Let X be a random variable corresponding to true µ = 180, and X ′ is a random variable
corresponding to true µ > 180. Testing the null hypotheses H0 : µ ≤ 180 for both variables we
expect W (x) < W (x′) for observations x and x′. This in turn give that p(x) > p(x′). Since p(X)
is exact, then Pµ(p(X ′) ≤ α) > Pµ(p(X) ≤ α) = α.

5.2 FWER control of independent tests

The presented procedures are all valid for independent tests, hence, we construct 10 000 inde-
pendent tests to compare their performances. We start by considering a scenario with a high
proportion of true hypotheses, 7 000 true and 3 000 false. We assume the data is Gaussian with a
known variance σ2 = 1. Testing the null hypothesis

H0 : µ = 0 against the alternative hypothesis H1 : µ ̸= 0,

for 10 000 independent random samples. For the 7 000 true hypotheses, we simulated observations
from N (0, 1). For the 3 000 false hypotheses, 1 500 observations are simulated from N (4, 1) and
1 500 from N (−4, 1). We find the p-value for each test using (2) and set α = 0.05. We perform
the Bonferroni, Holm, Hochberg, and Hommel procedures on the 10 000 p-values and report the
number of rejected hypotheses, as well as the number of false positives. We also compare to
not performing any multiple testing correction at all, i.e., simply rejecting a hypothesis if the
corresponding p-value is less than or equal to α. We repeated this task 100 times, and Table 1
shows the mean number of rejected hypotheses for the procedures.
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Figure 3: Histogram of p-values from testing H0 : µ ≤ 180 for 10 000 independent samples. Each
sample consist of 100 height values simulated using true µ ∈ (180, 182] and constant (known)
variance σ2 = 32.

No correction Bonferroni Holm Hochberg Hommel

True hypotheses rejected 347.4 0.03 0.03 0.03 0.03

False hypotheses rejected 2937.56 858.09 878.21 878.21 911.42

Total 3284.96 858.12 878.24 878.24 911.45

Table 1: The mean number of rejected hypotheses among 10 000 independent tests, of which 7 000
true, and 3 000 false.

From Table 1 we read that the multiple testing procedures gave a false positive finding on
three different occasions, which corresponds to FWER = P (V > 0) = 0.03, hence, controlling the
FWER (strictly) at level α. With no multiple testing correction at all, there were false positives in
each of the 100 repetitions, giving FWER = P (V > 0) = 1. The difference in power between the
procedures is however minimal. The least conservative option (Hommel) rejected on average 53.33
more hypotheses than the most conservative option (Bonferroni). However, Hommel still failed to
reject 2088.58 false hypotheses on average.

Repeating the simulations, only now for a larger proportion of false hypotheses, namely 7 000
false and 3 000 true. Simulated from the same Gaussian distributions. The results are shown in
Table 2.

No correction Bonferroni Holm Hochberg Hommel

True hypotheses rejected 150.24 0.01 0.02 0.02 0.05

False hypotheses rejected 6855.85 1997.68 2117.4 2117.42 2460.57

Total 7006.09 1997.69 2117.42 2117.44 2460.62

Table 2: The mean number of rejected hypotheses among 10 000 independent tests, of which 3 000
true, and 7 000 false.

The results in Table 2 illustrate that Bonferroni had one instance of a false positive, Holm and
Hochberg had two instances, while Hommel had five. Each false positive in a different simulation.
Hence, all procedures control FWER at level α, however Bonferroni conservatively compared to
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Holm and Hochberg, and Holm and Hochberg conservatively compared to Hommel. This is co-
herent with the theoretical conclusions when having a large proportion of false hypothesis. The
least conservative option (Hommel) rejected on average 462.93 more hypotheses than the most
conservative option (Bonferroni), which is a great increase in power compared to when having a
large proportion of true hypotheses. Hommel still failed to reject about 4540 false hypotheses, but
rejected a higher proportion; 0.35 compared to 0.3 in Table 1.

5.3 FWER control of positive dependent tests

For positive dependent tests we expect especially Bonferroni to be conservative compared to the
other procedures. We construct 10 011 tests by comparing 142 groups from Gaussian distributions
with mean values µ1, µ2, . . . , µ142 and common (known) variance σ2 = 32. Our null hypotheses are

H0 : µi = µj against the alternative hypotheses H1 : µi ̸= µj ,

for i, j = 1, 2, . . . , 142 and i ̸= j. These tests are positively dependent as the p-values will exhibit a
positive correlation between each other. We constructed the 142 groups by having 30 groups with
true mean µ = 15, 50 groups with true mean µ = 40, 25 groups with true mean µ = 60, 30 groups
with true mean µ = −5 and seven groups with true mean µ = 30. This give in total 7 595 false
hypotheses. As in Section 5.2, we simulated the process 100 times, looking at the mean number of
rejected hypotheses for each procedure. The results are shown in Table 3.

No correction Bonferroni Holm Hochberg Hommel

True hypotheses rejected 121.08 0.01 0.04 0.04 0.04

False hypotheses rejected 7449.67 5994.45 6227.37 6227.37 6282.34

Total 7570.75 5994.46 6227.41 6227.41 6282.38

Table 3: The mean number of rejected hypotheses among 10011 positive dependent tests, of which
2 416 true, and 7 595 false.

Firstly, we observe from Table 3 that a greater proportion of false hypotheses are rejected by
the procedures. This is however influenced by a number of factors, most notably the power of each
individual test. In terms of power between the procedures, there are not much separating them.
Holm, Hochberg and Hommel performed relatively similar (Hommel rejected more but not by
much), while Bonferroni performed the worst. Bonferroni have allowed one false positive finding,
while the other procedures have allowed a total of four. Empirically showing again how Bonferroni
controls FWER at a stricter level than α. One should note that two of the four false positives
found in Holm, Hochberg and Hommel happened simultaneously. This is however according to the
definition of FWER, as we control P (V > 0), not P (V = 1). Consequently, giving an empirical
estimate of FWER at 0.03.

5.4 The Simes global tests for negatively dependent tests

As mentioned in Section 2.3, instances where the Simes inequality fail are “somewhat bizarre”.
Nonetheless, they exist. Block et al. (2008) show a negative dependence concept where the Simes
inequality is reversed. Let W1,W2, . . . ,Wm have a multivariate normal distribution with means 0,
variances 1, and negative correlations. Assume W1,W2, . . . ,Wm to be the m test statistics for the
one-sided hypotheses (H0 : µ ≤ 0 against the alternative hypothesis H1 : µ > 0) H1, H2, . . . ,Hm,
with associated p-values p1, . . . , pm. Then,

P

(
m⋃
i=1

p(i) ≤
iα

m

)
≥ α.

Note that all the null hypotheses H1, H2, . . . ,Hm are true. To simulate an example we set m = 6,
with correlation ρ = −0.16 between all test statistics W1,W2, . . . ,W6. We performed the Simes-
and Bonferroni global tests on the resulting p-values. Repeating this procedure multiple times we
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calculate an empirical estimate of the probability of a false positive for the two tests. We tested
for different significance levels α. The results are shown in Table 4.

α αB αS

0.01 0.0098 0.0098

0.02 0.0203 0.0203

0.05 0.0497 0.0501

0.10 0.098 0.10

0.15 0.1476 0.1526

0.20 0.1936 0.204

Table 4: Estimated probabilities of a false positive for the Bonferroni global test (αB), and the
Simes global test (αS). For negatively correlated test statistics.

Table 4 illustrate that the probability of a false positive is nearly the same for Bonferroni and
Simes. The simulation of αS indicates that the Simes inequality (5) is reversed, but the effect is
minimal and hardly noticeable. As we have pairwise disjoint events, exact p-values and all null
hypotheses are true, the Bonferroni inequality (3), as mentioned in Section 4.1, is an equality. This
is supported by the estimated probabilities αB which lies very close to α.
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6 Discussion

In this thesis, we illustrated how the FWER controlling procedures of Bonferroni, Holm, Hochberg
and Hommel are powerful tools for controlling the rate of false positives for multiple hypotheses
testing. Based on the derivations of the procedures, we concluded that Hommel is the least
conservative of the four and should be the preferred option, as instances where its assumptions
fail are fairly unrealistic. Further, we have identified the potential of the general framework upon
which the procedures are based, namely closed testing with local level α tests. The framework can
derive less conservative procedures by having more powerful global tests (likely involving stronger
assumptions) or equally powerful procedures, but with fewer assumptions. One would imagine
that the former is of greater practical interest.

Goeman & Solari (2014) mention a few additional ways of enhancing the performance of FWER
controlling procedures, namely by either selection or aggregation (or both). FWER controlling pro-
cedures are more powerful for a small number of hypotheses. Therefore, discarding hypotheses prior
to testing can potentially lead to more rejections amongst the remaining hypotheses. Naturally,
one should be considerate before discarding, as there is a risk of discarding hypotheses that may be
significant. Therefore, discarded hypotheses should be selected based on either their lack of interest
or their low power. An alternative method to lower the number of test is prior aggregation. Either
on the basis of the data, or field knowledge. A researcher can cluster hypotheses prior to testing,
the global hypothesis for a cluster is then rejected before testing the individual hypotheses using an
FWER controlling procedure. Permutation-based FWER controlling procedures also exist, such as
Westfall & Young (1993), which do not make any assumptions regarding the dependency structure
of the p-values, thus removing the associated conservatism found in the probability inequalities of
Bonferroni and Simes.

However, FWER controlling procedures are generally quite conservative for many data sets.
The procedures focuses primarily on avoiding false positives and consequently allow for a large
number of false negatives. All hypotheses rejected by an FWER controlling procedure is however
individually reliable, i.e., a 100(1−α)% confidence that every rejection is correct, which is sufficient
for many experiments. The rate of false negatives can however not be overlooked. Missing out on
potentially significant discoveries due to a conservative procedure can result in a waste of resources
and frustration when another researcher later receives credit for the findings.

One alternative for controlling the rate of false positives is FDR-based methods. These methods
aim to find a trade-off between false positives and false negatives. Let R be the number of rejected
hypotheses and V be the number of false positives from a multiple testing procedure. We define

Q =
{
V/R , if R > 0,
0 , otherwise

as the false discovery proportion (FDP), and E(Q) as the false discovery rate (FDR). Therefore,
while FWER focuses on the probability of any error among the rejections, FDR focuses on the
expected proportion of error. Further, we have that E(Q) ≤ P (Q > 0) = P (V > 0) = FWER,
which implies that any FWER controlling procedure is naturally an FDR controlling procedure,
but easier to control at a set level α. Consequently, one expects FDR-based procedures to be more
powerful than FWER-based, particularly for a large proportion of false hypotheses (Goeman &
Solari, 2014).
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Appendix

A Proof: Boole’s inequality

For events A1, . . . , An,

P

(
n⋃

i=1
Ai

)
≤

n∑
i=1

P (Ai).

Proof. One can prove Boole’s inequality for a finite collection of events A1, . . . , An by induction.
For the simplest case, when n = 1, it is trivially true that

P (A1) ≤ P (A1).

Assuming the inequality hold for n = k,

P

(
k⋃

i=1
Ai

)
≤

k∑
i=1

P (Ai),

we will show that it holds for n = k+1. Further, we know that P (A∪B) = P (A)+P (B)−P (A∩B),
where P (A ∩B) ≥ 0. As the union operation is associative

P

(
k⋃

i=1
Ai ∪Ak+1

)
= P

(
k⋃

i=1
Ai

)
+ P (Ak+1)− P

(
k⋃

i=1
Ai ∩Ak+1

)
≤ P

(
k⋃

i=1
Ai

)
+ P (Ak+1),

which give that

P

(
k+1⋃
i=1

Ai

)
= P

(
k⋃

i=1
Ai ∪Ak+1

)
≤

k∑
i=1

P (Ai) + P (Ak+1) =
k+1∑
i=1

P (Ai).

■

B Proof: The Holm procedure control FWER at level α

For a set of hypotheses H = {H1, H2, . . . ,Hm} with associated p-values p1, . . . , pm, the Holm
procedure has strong FWER control at level α.

Proof. By the Holm procedure as stated in Section 3.2, let k be minimal such that H(k) is a
false positive, and let m0 ≤ m be the number of true hypotheses in H. This in turn gives that
H(1), H(2), . . . ,H(k−1) are rejected false hypotheses, and

k − 1 ≤ m−m0,

since m−m0 is the true number of false hypotheses. Further,

m0 ≤ m− (k − 1) ⇐⇒ 1
m− (k − 1) ≤ 1

m0
.

As H(k) was rejected by Holm, p(k) ≤ α
m−(k−1) ≤

α
m0

. Therefore, to obtain at least one false posit-
ive, the first instance must have a associated p-value less than or equal to α

m0
. Let q1, q2, . . . , qm0

denote the p-values of the true hypotheses. Thus by Boole’s inequality and (1),

FWER = P (V > 0) = P

(
m0⋃
i=1

qi ≤
α

m0

)
≤

m0∑
i=1

P (qi ≤
α

m0
) ≤ m0

α

m0
= α.

■
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C Proof: The Simes inequality

For m independent hypotheses with associated exact p-values p1, . . . , pm based on continuous test
statistics, we have for a significance level 0 ≤ α ≤ 1,

P

(
m⋃
i=1

p(i) ≤
iα

m

)
= α,

where p(i) represent the i’th ordered p-value.

Proof. Note that p(i) is the i’th order statistic of m iid U(0, 1). Let Am(α) = P
( ⋃m

i=1 p(i) ≤
iα
m

)
.

We will by induction show that Am(α) = α for all m = 1, 2, . . .. For m = 1 it is trivially true that
A1(α) = P (p(1) ≤ α) = α. Further, for m > 1 we divide p(1), p(2), . . . , p(m−1) by p(m). This gives
the order statistics of (m−1) iid U(0, 1) random variables p(1)

p(m)
≤ p(2)

p(m)
≤ · · · ≤ p(m−1)

p(m)
, independent

of p(m). Let α < p ≤ 1, then

P

(
m−1⋃
i=1

p(i) ≤
iα

m
| p(m) = p

)
= P

(
m−1⋃
i=1

p(i)

p
≤ iα

pm

(
m− 1
m− 1

)
| p(m) = p

)

= P

 m−1⋃
i=1

p(i) ≤
iα(m−1)

pm

m− 1


= Am−1

(
α(m− 1)

pm

)
.

If p(m) ≤ α, then clearly Am(α) = 1 for all m. We assume Am(α) = α for m = k − 1, so we want
to check for m = k. We write

Ak(α) =
∫ 1

α

P

(
k−1⋃
i=1

p(i) ≤
iα

k
| p(k) = p

)
P (p(k) = p) dp +

∫ α

0
P (p(k) = p) dp,

by the law of total probability. As p(k) is the k’th order statistic of k iid U(0, 1) random variables,
it’s density function is f(p) = kpk−1 for 0 ≤ p ≤ 1. This gives

Ak(α) =
∫ 1

α

α(k − 1)
pk

kpk−1 dp +
∫ α

0
kpk−1 dp

= α(k − 1)
∫ 1

α

pk−2 dp + k

∫ α

0
pk−1 dp

= α− αk + αk

= α.

Thus, proven by induction, Am(α) = α for all m = 1, 2, . . ..
■

The above proof hold for Simes’ original assumptions, namely independent tests with uniformly
distributed p-values. These assumptions have however been proven more tolerant since Simes
original paper in 1986. Later publications by Hochberg & Rom (1995), Sarkar (1998) and Block
et al. (2013) have generalized Simes inequality to hold for positively dependent statistics, but it
may be reversed for negatively dependent statistics.
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D R code used in simulations

D.1 Distribution of p-values (Section 5.1)

set.seed(100)
p.val_case1 <- c()
p.val_case2 <- c()
p.val_case3 <- c()
for (i in 1:10000) {

#First instance
pop.heights <- rnorm(100,179,3)
test.stat <- (mean(pop.heights)-180)/(3)*sqrt(100)
p.val_case1 <- c(p.val_case1,pnorm(test.stat,0,1, F))

#Second instance
pop.heights <- rnorm(100,180,3)
test.stat <- (mean(pop.heights)-180)/(3)*sqrt(100)
p.val_case2 <- c(p.val_case2,pnorm(test.stat,0,1, F))

#Third instance
mean <- runif(1,180.0001,182)
pop.heights <- rnorm(100,mean,3)
test.stat <- (mean(pop.heights)-180)/(3)*sqrt(100)
p.val_case3 <- c(p.val_case3,pnorm(test.stat,0,1, F))

}

breaks <- seq(0,1, by = 0.04)
hist(p.val_case1, breaks, col = "lightblue", main = "P-values from true hypotheses",

xlab = "P-value")
hist(p.val_case2, breaks, col = "lightblue", main = "P-values from true hypotheses",

xlab = "P-value")
hist(p.val_case3, breaks, col = "lightblue", main = "P-values from false hypotheses",

xlab = "P-value")

D.2 Independent tests (Section 5.2)

#Low proportion of false hypotheses
numb_reject_nc = c()
numb_reject_bonf = c()
numb_reject_holm = c()
numb_reject_hochberg = c()
numb_reject_hommel = c()
nc_fp <- c()
bonf_fp <- c()
holm_fp <- c()
hochberg_fp <- c()
hommel_fp <- c()

for (i in 1:100) {
#Constructing the p-values
obs = c(rnorm(7000,0,1),rnorm(1500,4,1),rnorm(1500,-4,1))
p_val = 2 * pnorm(-abs(obs))

#Performing the procedures
bonf = p.adjust(p_val, method = "bonferroni", n = length(p_val))
holm = p.adjust(p_val, method = "holm", n = length(p_val))
hochberg = p.adjust(p_val, method = "hochberg", n = length(p_val))
hommel = p.adjust(p_val, method = "hommel", n = length(p_val))
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#Finding the number of rejections
numb_reject_nc <- c(numb_reject_nc, length(which(p_val < 0.05)))
numb_reject_bonf = c(numb_reject_bonf, length(which(bonf < 0.05)))
numb_reject_holm = c(numb_reject_holm, length(which(holm < 0.05)))
numb_reject_hochberg = c(numb_reject_hochberg, length(which(hochberg < 0.05)))
numb_reject_hommel = c(numb_reject_hommel, length(which(hommel < 0.05)))

nc_fp <- c(nc_fp, length(which(p_val[1:7000] < 0.05)))
bonf_fp <- c(bonf_fp,length(which(bonf[1:7000] < 0.05)))
holm_fp <- c(holm_fp,length(which(holm[1:7000] < 0.05)))
hochberg_fp <- c(hochberg_fp,length(which(hochberg[1:7000] < 0.05)))
hommel_fp <- c(hommel_fp,length(which(hommel[1:7000] < 0.05)))

}

mean(numb_reject_nc)
mean(numb_reject_bonf)
mean(numb_reject_holm)
mean(numb_reject_hochberg)
mean(numb_reject_hommel)

mean(nc_fp)
mean(bonf_fp)
mean(holm_fp)
mean(hochberg_fp)
mean(hommel_fp)

#Large proportion of false hypotheses
numb_reject_nc = c()
numb_reject_bonf = c()
numb_reject_holm = c()
numb_reject_hochberg = c()
numb_reject_hommel = c()
nc_fp <- c()
bonf_fp <- c()
holm_fp <- c()
hochberg_fp <- c()
hommel_fp <- c()

for (i in 1:100) {

#Constructing the p-values
obs = c(rnorm(3000,0,1),rnorm(3500,4,1),rnorm(3500,-4,1))
p_val = 2 * pnorm(-abs(obs))

#Performing the procedures
bonf = p.adjust(p_val, method = "bonferroni", n = length(p_val))
holm = p.adjust(p_val, method = "holm", n = length(p_val))
hochberg = p.adjust(p_val, method = "hochberg", n = length(p_val))
hommel = p.adjust(p_val, method = "hommel", n = length(p_val))

#Finding the number of rejections
numb_reject_nc <- c(numb_reject_nc, length(which(p_val < 0.05)))
numb_reject_bonf = c(numb_reject_bonf, length(which(bonf < 0.05)))
numb_reject_holm = c(numb_reject_holm, length(which(holm < 0.05)))
numb_reject_hochberg = c(numb_reject_hochberg, length(which(hochberg < 0.05)))
numb_reject_hommel = c(numb_reject_hommel, length(which(hommel < 0.05)))
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nc_fp <- c(nc_fp, length(which(p_val[1:3000] < 0.05)))
bonf_fp <- c(bonf_fp,length(which(bonf[1:3000] < 0.05)))
holm_fp <- c(holm_fp,length(which(holm[1:3000] < 0.05)))
hochberg_fp <- c(hochberg_fp,length(which(hochberg[1:3000] < 0.05)))
hommel_fp <- c(hommel_fp,length(which(hommel[1:3000] < 0.05)))

}

mean(numb_reject_nc)
mean(numb_reject_bonf)
mean(numb_reject_holm)
mean(numb_reject_hochberg)
mean(numb_reject_hommel)

mean(nc_fp)
mean(bonf_fp)
mean(holm_fp)
mean(hochberg_fp)
mean(hommel_fp)

D.3 Positive dependent tests (Section 5.3)

numb_reject_nc = c()
numb_reject_bonf = c()
numb_reject_holm = c()
numb_reject_hochberg = c()
numb_reject_hommel = c()
nc_fp <- c()
bonf_fp <- c()
holm_fp <- c()
hochberg_fp <- c()
hommel_fp <- c()

for (i in 1:100) {

#Constructing the p-values
g1 <- rnorm(30,15,3)
g2 <- rnorm(50,40,3)
g3 <- rnorm(25,60,3)
g4 <- rnorm(30,-5,3)
g5 <- rnorm(7,30,3)
obs <- c(g1,g2,g3,g4,g5)

p_val <- c()
for (i in 1:(length(obs)-1)) {

for (j in (i+1):length(obs)) {
Z = (obs[i]-obs[j])/(sqrt(18))
p_val <- c(p_val, 2*pnorm(-abs(Z)))

}
}

#Performing the procedures
bonf = p.adjust(p_val, method = "bonferroni", n = length(p_val))
holm = p.adjust(p_val, method = "holm", n = length(p_val))
hochberg = p.adjust(p_val, method = "hochberg", n = length(p_val))
hommel = p.adjust(p_val, method = "hommel", n = length(p_val))

#Finding the number of rejections
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numb_reject_nc <- c(numb_reject_nc, length(which(p_val < 0.05)))
numb_reject_bonf = c(numb_reject_bonf, length(which(bonf < 0.05)))
numb_reject_holm = c(numb_reject_holm, length(which(holm < 0.05)))
numb_reject_hochberg = c(numb_reject_hochberg, length(which(hochberg < 0.05)))
numb_reject_hommel = c(numb_reject_hommel, length(which(hommel < 0.05)))

nc_fp <- c(nc_fp, length(which(p_val[true] < 0.05)))
bonf_fp <- c(bonf_fp,length(which(bonf[true] < 0.05)))
holm_fp <- c(holm_fp,length(which(holm[true] < 0.05)))
hochberg_fp <- c(hochberg_fp,length(which(hochberg[true] < 0.05)))
hommel_fp <- c(hommel_fp,length(which(hommel[true] < 0.05)))

}

mean(numb_reject_nc)
mean(numb_reject_bonf)
mean(numb_reject_holm)
mean(numb_reject_hochberg)
mean(numb_reject_hommel)

mean(nc_fp)
mean(bonf_fp)
mean(holm_fp)
mean(hochberg_fp)
mean(hommel_fp)

D.4 Negatively dependent tests (Section 5.4)

#Creating mean vector and covariance matrix.
n <- 6
var_matrix <- diag(1, n, n)
corr <- -0.16
var_matrix[lower.tri(var_matrix)] <- corr
var_matrix[upper.tri(var_matrix)] <- corr
Sigma <- var_matrix
mu <- rep(0, times = n)

#Function for calculating the average proportion of false positives using
#Bonferroni and Simes global test.

falsePositive <- function(Sigma, mu, alpha) {
false_pos.s <- c()
false_pos.b <- c()
for (i in 1:500) {

false.s <- c()
false.b <- c()
for (i in 1:1000) {

fp.s = 0
fp.b = 0
tests <- mvrnorm(1,mu,Sigma)
p.val <- pnorm(tests,0,1, F)
p.val <- sort(p.val)
for (i in 1:6) {

if (p.val[i] < (i*alpha)/6) {
fp.s = 1
break

}
}
if (p.val[1] < alpha/6) {
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fp.b = 1
}

false.s <- c(false.s, fp.s)
false.b <- c(false.b, fp.b)

}

false_pos.s <- c(false_pos.s,length(which(false.s == 1)))
false_pos.b <- c(false_pos.b, length(which(false.b == 1)))

}

c(mean(false_pos.b)/1000, mean(false_pos.s)/1000)

}

#Use for different levels of alpha (here alpha = 0.05).
falsePositive(Sigma, mu, 0.05)
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