
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r I

KT
 o

g
re

al
fa

g

Ba
ch

el
or
op

pg
av

e

Edvardsen, Joakim
Molnes, Petter
Picheta, Mateusz
Sætre, Håkon

Voice Pluck Application

A mobile application for improving the workflow
of plucking items in a warehouse

Bacheloroppgave i Dataingeniør
Veileder: Tollefsen, Mikael
Mai 2023

Edvardsen, Joakim
Molnes, Petter
Picheta, Mateusz
Sætre, Håkon

Voice Pluck Application

A mobile application for improving the workflow of
plucking items in a warehouse

Bacheloroppgave i Dataingeniør
Veileder: Tollefsen, Mikael
Mai 2023

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for IKT og realfag

ABSTRACT

Solwr is an Ålesund-based software company that creates systems to optimize
trade logistics. They are responsible for the transportation-, sales-, and warehouse-
logistics for major grocery chains in Norway. One of their customers, Gjørtz, uses
a voice recognition system to fill pallets with the products ordered by customers.
Solwr wants to explore solutions to provide this system with more flexibility, ver-
satility, and without a paid third party for voice recognition. This thesis provides
insight into the approach for the research and development of a mobile- and smart-
watch application with both touch interface and voice recognition.

The main objective of the problem is to remove the need for third-party soft-
ware to handle voice recognition. However, Solwr also wants to make the system
easier to use, as there are certain tasks that cannot be easily done using voice com-
mands. Therefore, we are developing a mobile application and exploring possibili-
ties for a smartwatch application. We hope to make warehouse workers’ workflow
more efficient, and intuitive by combining the freedom of voice commands with a
touch interface for tasks not suited by voice commands.

We utilized the SCRUM methodology, meaning bi-weekly sprint reviews with
our employer and supervisor from NTNU, sprint planning, daily stand-ups, and
sprint retrospectives. This helped streamline the process of development while
getting useful feedback from our employer and supervisor. In addition, we visited
H.I. Giørtz at their warehouse to get feedback directly from our target group.

By creating this application, Solwr gets to use our product and research to cre-
ate their own product. Thus, Solwr can avoid pitfalls we uncover while developing
the application, and they will have a streamlined development process where the
necessary research has already been conducted.

i

ii

Solwr er en Ålesund-basert programvare bedrift, som lager system for å op-
timalisere handleslogistikk. De er ansvarlige for transport-, salg-, og varehuse-
logistikken for store dagligvarekjeder i Norge. En av deres kunder, H.I. Giørtz,
bruker et stemme-gjenkjenning system for å stable produktene kunder har bestilt
på paller. Solwr vil utforske løsninger for å gi dette systemet mer fleksibilitet,
allsidighet, og uten å bruke en betalt tredje-part for stemme-gjenkjenning. Denne
rapporten gir innsikt i tilnærmingen for forskningen og utviklingen av en mobil- og
smartklokke applikasjon med både berøringsskjermgrensesnitt og stemmegjenkjen-
ning.

Hovedmålet av problemet er å fjerne behovet for et tredje-part system for
å håndtere stemmegjenkjenning. I tillegg, vil Solwr også gjøre systemet lettere å
bruke, da noen av oppgavene er vanskelig å gjennomføre ved hjelp av stemmekom-
mandoer. Derfor utvikler vi en mobil-applikasjon og utforsker mulighetene for en
smartklokke-applikasjon. Vi håper å gjøre arbeidsflyten til lagerarbeidere mer ef-
fektiv, enklere, og intuitiv ved å kombinere friheten av stemmekommandoer med
et berøringsskjermgrensesnitt for oppgaver som ikke egner seg for stemmekom-
mandoer.

Vi har brukt SCRUM metodikken, noe som betyr sprintgjennomganger annen-
hver uke med arbeidsgiveren og veilederen fra NTNU, sprintplanlegging, daglige
stand-ups og sprintretrospektiv. Dette hjalp med å effektivisere utviklingspros-
essen vår, samtidig som vi fikk nyttig tilbakemelding fra arbeidsgiveren og veiled-
eren vår. I tillegg, besøkte vi og hadde samtaler med Gjørtz, for å få tilbakemelding
direkte fra målgruppen.

Ved å lage denne applikasjonen, får Solwr bruke produktet og forskningen
vår for å utvikle deres eget produkt. Som følge av dette, kan de unngå feilsteg
som vi har avdekt mens vi har utviklet applikasjonen, og de vil ha en effektiv
utviklingprosess hvor den nødvendige forskningen allerede har blitt gjort.

PREFACE

The project presented in this paper was made in close collaboration with Solwr
Software AS, especially our employer from Solwr, Reinhard Dietzel.

We chose this project, because we have a great relationship with the staff at
Solwr, and we enjoyed the course Mobile Applications from our fifth semester.
Additionally, Solwr wanted to research alternative approaches to their current
system, and we got to explore different technologies and develop for nontraditional
devices such as smartwatches.

We would like to express our gratitude to Reinhard for his involvement in this
project. His guidance and constructive feedback have been extremely valuable for
the outcome of this project. We would also like to thank our supervisor from the
Norwegian University of Science and Technology, Mikael Tollefsen. He has played
an important role in the completion of the project, by guiding us in the correct
direction.

Additionally, we strongly appreciate the staff at Gjørtz, who welcomed us with
open arms and let us test their current system and ask them for feedback.

iii

CONTENTS

Abstract i

Preface iii

Contents viii

List of Figures viii

Definitions xi

Abbreviations xii

1 Introduction 1
1.1 Motivation . 1
1.2 Project Description . 1

1.2.1 Existing Solution . 1
1.2.2 Problem Statement . 1
1.2.3 Scope . 3
1.2.4 Requirements . 3
1.2.5 Boundaries . 3
1.2.6 Long Term Effects . 3
1.2.7 Stakeholders . 4

2 Theory 5
2.1 Project Development Tools . 5
2.2 Work Methodology . 5

2.2.1 SCRUM . 5
2.2.2 Top Down . 7
2.2.3 Bottom Up . 8

2.3 Version Control . 8
2.3.1 Git Strategy . 8

2.4 Client-Server Communication . 8
2.4.1 REST API . 8
2.4.2 WebSocket API . 8
2.4.3 SMTP . 8

2.5 Authentication and Authorization 8
2.5.1 Role-Based Access . 9

iv

CONTENTS v

2.5.2 JSON Web Token . 9
2.5.3 Keycloak . 9

2.6 Frameworks and Tools . 9
2.6.1 Spring Boot . 9
2.6.2 Swift . 10
2.6.3 MidJourney . 10

2.7 Development Concepts . 10
2.7.1 Mapper . 10
2.7.2 Debounce . 10
2.7.3 Voice Recognition . 10
2.7.4 Text-to-Speech . 10
2.7.5 Feature Toggling . 10

2.8 Database Concepts . 11
2.8.1 Relational Database . 11
2.8.2 Database Migration . 11
2.8.3 Migration Tools . 11
2.8.4 Migration Strategies . 11

2.9 Testing Concepts . 11
2.9.1 Test Driven Development 11

2.10 Deployment Concepts . 11
2.10.1 Ubuntu . 11
2.10.2 Terraform . 12
2.10.3 Containers . 12
2.10.4 Docker . 12
2.10.5 Kubernetes . 12
2.10.6 GitLab Runner . 12
2.10.7 Reverse proxy . 12

3 Methods 13
3.1 Planning . 13

3.1.1 Research . 13
3.1.2 Understanding the Problem Domain 13

3.2 Project Structure . 15
3.2.1 Repository Structure . 15
3.2.2 Application Structure . 15
3.2.3 Design . 16

3.3 Workflow . 18
3.3.1 Top Down . 18
3.3.2 Git Strategy . 18
3.3.3 Priority . 18
3.3.4 Time log . 19
3.3.5 Branching . 19
3.3.6 Merge request . 19
3.3.7 Pipelines . 20

3.4 Testing . 20
3.4.1 Test Driven Development 22
3.4.2 Postman . 22
3.4.3 Testing Persistence Data . 22

vi CONTENTS

3.4.4 User Testing . 22
3.5 Technology Stack . 22

3.5.1 SwiftUI . 22
3.5.2 Spring Boot . 23
3.5.3 Keycloak . 24
3.5.4 SMTP . 24
3.5.5 Endpoint Documentation . 24

4 Results 25
4.1 Authentication Flow . 25

4.1.1 Architecture . 25
4.1.2 Features . 27

4.2 Spring Boot API . 27
4.2.1 Security Configuration . 28
4.2.2 Entity Relations . 28
4.2.3 SMTP . 28
4.2.4 Leaking Internals . 28
4.2.5 Error handling . 28
4.2.6 Documentation . 28

4.3 Deployment . 31
4.3.1 Diagram . 31

4.4 SwiftUI Application . 31
4.4.1 Application layout . 31
4.4.2 Speech Recognition . 33
4.4.3 Text to Speech . 36
4.4.4 Touch and Voice Concurrency 38
4.4.5 Warehouse Configuration . 39
4.4.6 Additional pages . 40
4.4.7 Keychain . 41
4.4.8 Communicating with API 41

4.5 Real Life Environment . 44
4.5.1 Pluck-flow Example . 44
4.5.2 Efficiency . 46
4.5.3 Removed Redundancy . 46
4.5.4 Bluetooth devices . 46

4.6 Android Implementation . 46
4.6.1 Implementing Voice-Pluck 46

4.7 Smart Watch Companion App . 47
4.7.1 Apple Smart Watch App . 47
4.7.2 Android Smart Watch App 47

5 Discussion 49
5.1 Project Structure And Architecture 49

5.1.1 Project Plan and Roadmap 49
5.1.2 Reflection on Project Structure Choice 49
5.1.3 Matching DTOs Between Applications 49
5.1.4 Shared Services . 50

5.2 Authentication . 50

CONTENTS vii

5.2.1 Firebase . 51
5.2.2 Tokens . 51

5.3 Choice of Front-end Framework . 51
5.3.1 Decision . 51
5.3.2 Reflecting on iOS Development 52

5.4 Text To Speech Alternatives . 52
5.4.1 Phonetic Alphabet . 52

5.5 Voice and Touch Concurrency Challenges 53
5.5.1 Alternative Approach . 53

5.6 Back-end . 53
5.6.1 REST API and WebSockets API 53
5.6.2 Reflection on Test Driven Development 53

5.7 Database Challenges . 55
5.7.1 Testing Persistence Data . 55
5.7.2 Migration . 55
5.7.3 Connection Pool . 56

6 Conclusions 57
6.1 Conclusion . 57
6.2 Future Work . 58

6.2.1 Apple Watch . 58
6.2.2 Truck Inspection . 58
6.2.3 Feature Toggling . 58
6.2.4 Landscape Mode . 58
6.2.5 Motion Detection . 58
6.2.6 Linked List Approach . 58

7 Social Impact 59

References 63

Appendices: 67

A Preliminary Project Plan 68

B GitLab repository 73
B.0.1 SwiftUI GitLab Repository Link 73
B.0.2 Spring Boot GitLab Repository Link 73
B.0.3 Iac GitLab Repository Link 73

C Pluck flow Example 74

D Research 75

Mobile Application Frameworks 75
D.1 React Native . 75

D.1.1 Native Support . 75
D.1.2 TypeScript Support . 75
D.1.3 Expo . 75
D.1.4 Styling . 76

viii CONTENTS

D.2 Flutter . 77
D.2.1 Null Safety . 77
D.2.2 Previous Experience . 77

D.3 Android . 77
D.3.1 Kotlin . 77
D.3.2 Jetpack Compose . 78

D.4 SwiftUI . 78
D.4.1 Styling . 78
D.4.2 Icons . 78
D.4.3 Speech to Text . 79

LIST OF FIGURES

1.2.1 The process flow that an employee must follow in order to fulfill a
pluck order . 2

2.2.1 Scrum workflow . 6

3.1.1 Group member testing out current system 14
3.2.1 Design guidelines . 17
3.3.1 Git strategies, Trunk (left), Flow (right) 18
3.3.2 Overview of time logged . 19
3.3.3 Pipelines . 20
3.3.4 SonarQube dashboard overview . 21
3.5.1 Example of repository implementation 23

4.1.1 Login Sequence Diagram . 26
4.1.2 Keycloak Admin Console . 27
4.2.1 Database Diagram . 29
4.2.2 Emails sent with SMTP . 30
4.2.3 Swagger-UI . 30
4.3.1 System Diagram . 32
4.4.1 Swift app flow diagram . 32
4.4.2 Authentication flow . 33
4.4.3 Prompt when logging into the application 34
4.4.4 Speech filtering implementation . 35
4.4.5 Code checking for connected devices 35
4.4.6 Mute options in the application header 36
4.4.7 Setting the Locale of the SpeechRecognizer 36
4.4.8 Speak function in TTSService . 37
4.4.9 Pluck steps - Code snippet . 38
4.4.10Detailed employee view. A leader can change employee role 39
4.4.11Warehouse config - Location Page - Update Location /w product

on location . 40
4.4.12Barcode scanner in the application 41
4.4.13Accountpage . 42
4.4.14Log page . 42
4.4.15Forgot password page . 43
4.4.16Post method exposed by the RequestService 43
4.4.17Example usage of RequestService 43

ix

x LIST OF FIGURES

4.5.1 Pluckflow Info/lobby . 44
4.5.2 Pluckflow product list success/error 45
4.5.3 Pluckflow pluck finish/finish page 45
4.7.1 Smart Watch Sketches . 48

5.5.1 Linked List Solution . 54

D.1.1Expo Go output in the terminal when running the application . . . 76

TERMINOLOGY

List of all definitions in alphabetic order:

asynchronous Tasks are executed independently of each other.

authentication Provider Service that verifies the identity of a user. It is re-
sponsible for authenticating user credentials and providing a secure method
for users to access the application or service.

back-end Software that runs on the server side.

cohesion Describes the degree to which elements within a module are related to
one another. High cohesion means they are closely related and focused on a
single task. Low cohesion means they are unrelated or have multiple tasks.

compile time The period of time when the program is converted to machine
code.

coupling Describes the level of dependency between modules. High coupling
means modules are closely connected, whilst low coupling means modules
are more or less independent.

data structure A format for organizing and storing related data.

framework A system on top of a programming language that helps structure and
reduce the complexity of an application.

front-end Software that runs on the client side.

HTTP request A request sent by a client using the HTTP protocol.

JSON Lightweight and readable way to store data in key-value pairs.

library A set of implemented functionalities.

pluck An action defining a product to be picked with associated metadata, like
the amount to be picked

pluck list A list of plucks defining an order that is to be delivered by a warehouse.

runtime The state of the program while it’s executing.

schema A definition that defines how data is organized in a relational database.

synchronous Code is executed in order, one after another.

xi

ABBREVIATIONS

List of all abbreviations in alphabetic order:

API Application Programming Interface

CLI Command-line Interface

CRUD Create, Read, Update, and Delete

DBMS Database Management System

DLL Doubly Linked List

DTO Data Transfer Object

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IaC Infrastructure as Code

IoC Inversion of Control

iOS iPhone Operating System

IP Internet Protocol

JPA Jakarta Persistence API

JSON JavaScript Object Notation

JWT JSON Web Token

ORM Object Relational Mapper

RBA Role-Based Access

REST Representational State Transfer

SDK Software Development Kit

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

xii

LIST OF FIGURES xiii

SSL Secure Socket Layer

TTS Text to Speech

VLAN Virtual Local Area Network

WMS Warehouse Management System

UI User Interface

UX User Experience

CHAPTER

ONE

INTRODUCTION

The following chapter will introduce the project this report is based upon. To bet-
ter understand our project, this chapter will include our motivation, description,
requirements, and boundaries for the project.

1.1 Motivation

We applied for this project for several reasons. After taking the course IDATA2503
[1] we wanted to explore more about this topic. On top of that, we already had
an understanding of the problem domain, because three of our group members
already worked at Solwr part-time.

1.2 Project Description

This section describes the problem domain and why it needs to be solved. Addi-
tionally, we’ll go over the requirements, boundaries, and stakeholders.

1.2.1 Existing Solution

H.I. Giørtz uses a WMS delivered by Solwr to pluck products ordered by customers
onto Euro-pallets. This process is currently solved by wearing a headset that gives
employees instructions. The headset is equipped with a microphone which is used
to communicate with the system.

In figure 1.2.1 you can see a flow chart of the plucking process. The employee
is guided to a location and is asked to confirm the location with a set of numbers,
then specify the amount to pluck. This process is repeated until the employer has
plucked every product in an order. In the figure, squares represent the system’s
instructions, while the sloped boxes represent the action done by the user.

1.2.2 Problem Statement

The current system uses a third-party paid system; VoiceConnect, to handle voice
recognition. As mentioned in the abstract, Solwr wants to know if this system can
be replaced.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.2.1: The process flow that an employee must follow in order to fulfill a
pluck order

Additionally, some parts of the process aren’t optimally solved using voice
recognition. Therefore, Solwr wants a mobile application where the employees

CHAPTER 1. INTRODUCTION 3

can interact using their voice, and a touch interface for complex actions.

1.2.3 Scope

The scope of the project was somewhat vague. Solwr didn’t have an exact descrip-
tion of what the solution should include or what we should prioritize. Therefore
it was up to us to define the scope of the project and what direction we wanted
to go. To research this further we visited H.I. Giørtz to test their current system
and talk directly to the user group in order to establish the scope.

Originally, Solwr wanted us to create an application with the following require-
ments:

• A user should be able to sign up, join a warehouse or create a new one

• A warehouse should have a list of products and locations where the products
are located

• A leader of a warehouse should be able to add, remove, and edit members,
products, and locations of their warehouse

• A user should be able to complete a pluck round using their voice
and the touch interface concurrently

During the research phase, the group discovered additional requirements which
are further discussed in chapter 3.1.2.3.

Alongside the mobile application, we would also research the possibility to
create a smart-watch application.

1.2.4 Requirements

As the system will be used in a fast-paced and loud warehouse, there were minor
requirements with respect to noise. The system should not pick up voice com-
mands from other employees working in close proximity. Additionally, the system
will be used in large warehouses with industrial freezers and other obstacles where
the WiFi signal is easily lost. Because of that, it was important that the voice-
recognition part could work without an internet connection.

1.2.5 Boundaries

Solwr already delivers a WMS to H.I. Giørtz, which we could have integrated our
application with. However, there were a lot of database tables that we wouldn’t
need in our WMS. So, to avoid an unnecessary extension of privileges, and ensure
that we could work more independently, we would develop our own WMS with a
REST interface.

1.2.6 Long Term Effects

Our solution seeks to simplify and optimize the workflow of employees at H.I.
Giørtz. By introducing a touch interface to their workflow, employees can complete
longer and more complex tasks faster than using the voice-recognition interface
on its own.

4 CHAPTER 1. INTRODUCTION

1.2.7 Stakeholders

Solwr will use the results and the research of our project to evaluate the solution,
and potentially develop their own application based on our work. H.I. Giørtz has
been a great collaborator and will make use of any further development of our
solution.

However, our group owns the right to ownership of the results. This was
decided so that we can use and demonstrate our results freely as we want.

CHAPTER

TWO

THEORY

In this chapter, we will provide knowledge and background theory of methods,
technologies, and tools used throughout the project. Reading this will give a good
understanding of the tools and technologies discussed later on in the report.

2.1 Project Development Tools
This section contains theory about project development tools and terminology
used in our project.

2.2 Work Methodology

2.2.1 SCRUM

Scrum is an agile framework/methodology which enables teams and/or organiza-
tions to structure and govern their work through a set of values, principles, and
practices [2]. The methodology is often practiced during software development
as it is designed to help teams adapt and react as new problems occur with its
iterative workflow. Each sprint feeds back to the next, where you can learn and
adapt from previous experiences.

2.2.1.1 Sprints

When working with the SCRUM methodology, teams typically work in sprints,
which are time-bound iterations ranging between one and four weeks. The purpose
of sprints is to provide a defined time frame for the team to work towards a specific
goal while enabling them to manage their workload more efficiently [3]. At the
beginning of each sprint, a goal is set, which should be both challenging and
achievable. The goal serves as a guiding principle for the team’s effort during the
sprint, providing focus and direction.

2.2.1.2 Sprint Meetings

A sprint consists of meetings that facilitate communication, collaboration, and
transparency among team members and stakeholders. Each meeting serves a spe-

5

6 CHAPTER 2. THEORY

Figure 2.2.1: Scrum workflow

cific purpose in helping the team achieve its sprint goals.

2.2.1.3 Sprint Planning

Sprint planning is a meeting that occurs at the beginning of each sprint. Here the
team together with the stakeholder discuss and plan the goal for the upcoming
sprint. The participants of the meeting prioritize tasks from the backlog, taking
into consideration various factors such as their complexity and dependencies. It
is also recommended that each task should be assigned an estimated time to
complete. The goal of sprint planning is to select tasks that will enable the team
to achieve the sprint goal, which serves as a focal point for the team’s efforts
during the sprint.

2.2.1.4 Sprint Review

At the end of the sprint, the team meets up with the product owner to review
the progress that was made during the sprint. This meeting also provides an
opportunity for the team to demonstrate the features they’ve been working on.

2.2.1.5 Retrospective

The retrospective is an internal meeting for the team that takes place at the end
of each sprint. During this meeting, the team discuss and reflects on the sprint
they just completed. The goal is to identify aspects that went well or wrong,
what to continue or stop doing, and what to start doing differently. It’s a valuable
opportunity for the team to learn from previous experiences, enabling the team
to grow and work more efficiently. The insights gathered from the retrospective
inform the planning of the next sprint, ensuring the team can incorporate their
learnings and improve their performance.

CHAPTER 2. THEORY 7

2.2.1.6 Daily Stand-up

The daily stand-up is a brief internal meeting that takes place once a day. The
meeting should be kept short, lasting no more than 10 minutes. Its purpose is
to keep every team member up to date and to discover any obstacles, known as
blockers, that are hindering individual members. It’s important to note that if
any blockers are discovered during the daily stand-up, the team should not start
discussing how to address the issue. Instead, the meeting serves as an opportunity
to identify blockers and address them outside of the meeting.

2.2.1.7 Roles

There are three main roles; the product owner, the scrum master, and the devel-
opment team member [4]. The product owner’s responsibility is to prioritize the
tasks in the backlog based on the customer and business requirements. The scrum
master ensures that the team is following the SCRUM methodology and prompts
them when they deviate from its guidelines. The developer role is a bit more
complicated. With developers, it’s meant all people that help build the project,
not just the engineers. Their responsibility is to deliver the work they develop
during the sprints [4].

2.2.1.8 Issue Tracking

In Scrum, every task is separated into issues. Normally, there are three to four
different types of tasks depending on the scope; epics, stories, tasks, and subtasks.
The intent is to group certain tasks together and keep the project organized.

Epics are the highest level of tasks. An epic is a group of stories that all belong
together [5]. A story is an action a user should be able to do in the system. A
story should describe, who, what, and how a client can do a certain action. A
task is a single unit of work that a developer has to do in order to help complete
a story [6].

All of the tasks are placed in a backlog. It’s the product owner’s responsibility
to prioritize these tasks. When the development team is to start a new sprint, they
simply select as many issues as they think they can complete from the backlog.

2.2.1.9 Planning Poker

Planning Poker is a way to accurately estimate issues by having each team member
estimate it individually. When everyone has estimated the issue, they discuss
the reasons for their estimate. As each team member has a different domain of
knowledge, this will result in a more accurate estimation of issues.

2.2.2 Top Down

Top down strategy is an approach where development is started by creating UI
and defining the layers required based on the UI. Front-end is implemented first,
and the back-end with database relations is implemented as required.

8 CHAPTER 2. THEORY

2.2.3 Bottom Up

Bottom up is an approach where the database and underlying logic are typically
implemented first. Front-end is implemented based on the underlying logic.

2.3 Version Control

Version control is a system responsible for tracking and administrating changes to
a code base [7]. Git is one of the most used version control systems.

2.3.1 Git Strategy

Git offers various branching strategies that allow developers to work on different
features and changes simultaneously without interfering with each other’s work.
These are repository-specific guidelines on how developers should submit new code
to the codebase.

2.4 Client-Server Communication

2.4.1 REST API

REST API is an architecture for building web applications. It follows a stateless
communication between the client and server, meaning all the information need
to process a request is passed in the request [8]. This makes it easier for the
application, as it has no responsibility for storing data between requests made by
a client. Altogether, this allows the server to handle requests in a uniform and
scalable way, without relying on any client-specific state.

2.4.2 WebSocket API

Web sockets are advanced and open up the possibility for two-way communication
[9]. Whereas with REST API, the client has to "take the initiative" by sending a
request, a WebSocket API can send event-driven responses without the need for
the client to send a request.

2.4.3 SMTP

Simple mail transfer protocol is the most commonly used communication protocol
for email transmission. Mail servers and other message transfer applications use
SMTP to send and receive email messages. Many SMTP providers exist, and even
prominent corporations like Apple offer their own SMTP service.

2.5 Authentication and Authorization

Authentication and authorization are two important terms that are often used in
tandem, however, they have two separate meanings.

CHAPTER 2. THEORY 9

Authentication is the act of proving that something is true. In computer
systems and applications, this often refers to proving a user’s identity. This is im-
portant in case an application is storing sensitive user data or otherwise classified
data.

Authorization refers to granting user access and permissions to different files
and components in the system, based on their roles and responsibilities. An ex-
ample of authorization is assigning different access levels, such as leader or admin.
The authorization decides how much power and access a user has within the sys-
tem.

2.5.1 Role-Based Access

RBA revolves around the idea of assigning permissions to users based on their
roles. It’s a simple yet manageable approach that is less error-prone than assigning
permissions to each user individually. [10]

2.5.2 JSON Web Token

"JWT is an open standard that defines a compact and self-contained way for
securely transmitting information between parties as a JSON object" [11]. After
the user is logged in, each subsequent request contains the token, and it can be
decoded to retrieve information about the user.

2.5.3 Keycloak

Keycloak is an authentication provider that handles user authentication indepen-
dently. Users authenticate with Keycloak instead of with individual applications.
This lets you have features such as single-sign on.

2.6 Frameworks and Tools

2.6.1 Spring Boot

Spring boot is an open-source Java framework for micro-services and is often used
to create web applications or APIs [12].

2.6.1.1 Beans

Spring Boot heavily uses beans to manage components throughout the application
[12]. A bean is a component that is managed by the Spring Boot framework [13].

2.6.1.2 Swagger

Swagger is a tool for documenting API. Swagger is used to document endpoints
in an API, explaining what the endpoint expects in the request, and what it
returns [14]. This way, developers can read through the documentation to get an
understanding of what the API does, without having to look at the source code.

10 CHAPTER 2. THEORY

2.6.2 Swift

SwiftUI is a modern framework developed by Apple for building applications across
its operating systems, including iOS, iPadOS, macOS, watchOS, and tvOS [15].

2.6.3 MidJourney

MidJourney is an AI service that makes text-to-picture. You can make many types
of art with it, from real-looking to more creative styles. MidJourney creates very
high-quality, structured, and detailed images.

2.7 Development Concepts

2.7.1 Mapper

Mappers are utilized to transform objects from one type to another. In multilay-
ered applications, these are commonly used to map database entities to DTOs.
Thus minimizing the potential of disclosing sensitive information, such as database
id.

2.7.2 Debounce

Debounce is a technique where you ensure that a function is not called too fre-
quently [16]. For example, with a search input. Instead of searching for the value
of the input every time it changes, you can debounce the input making it only
search x milliseconds after the last key was pressed.

2.7.3 Voice Recognition

Voice recognition is a technology that allows machines to record and perform
actions based on inputs through voice [17].

2.7.3.1 On-device recognition

On-device speech recognition refers to the ability of a device to perform speech
recognition tasks locally, without requiring an internet connection.

2.7.4 Text-to-Speech

Text-to-speech is a technology that allows machines to output a string of text
to a spoken sound [18]. Modern tools allow the sound to be more realistic and
human-like.

2.7.5 Feature Toggling

Feature toggling is a concept that makes it possible to toggle features in runtime,
without the need for a manual deployment [19].

CHAPTER 2. THEORY 11

2.8 Database Concepts

2.8.1 Relational Database

A relational database is a set of data stored in tables with rows and columns. A
data point is stored as a row in a table with up to multiple columns representing
attributes about that entry. It’s called relational because tables can have relations
to each other via pointers [20].

2.8.1.1 In-memory Database

A database that is running in memory, meaning it will be generated every time
the application starts. On application exit, the database will be deleted and all
data will be lost.

2.8.2 Database Migration

Migration is a set of instructions to update one or more databases to one or more
target databases [21]. It can update the database schema, modify the data, and
more.

2.8.3 Migration Tools

Flyway [22] and Liquibase [23] are two migration tools commonly used with spring
boot. A migration tool is a service that performs migrations and helps version
control your migrations.

2.8.4 Migration Strategies

Simple updates to the database schema like adding a table is straight forward.
However, the more complex the change is the harder it will be to migrate the
data in the database. Migrations strategies are predefined solutions to common
problems related to migrating data.

2.9 Testing Concepts

2.9.1 Test Driven Development

Test-driven development involves implementing tests for new features and func-
tionality before the features are implemented themselves. Because of this, the test
will initially fail and the next step is to implement the actual features and make
the tests pass [24].

2.10 Deployment Concepts

2.10.1 Ubuntu

Ubuntu Server is a version of the Ubuntu operating system that is designed specifi-
cally for servers. It provides a stable and secure platform for running applications,

12 CHAPTER 2. THEORY

hosting websites, and managing data.

2.10.2 Terraform

Terraform is an IaC tool that enables the deployment and configuration of servers
with specific settings, such as the desired resources and IP address. This allows
for fast server configuration and management and makes it possible to deploy an
identical server anywhere in the cloud with one command.

2.10.3 Containers

Containers are lightweight virtual servers that can be easily deployed. They typ-
ically use a lightweight version of Ubuntu that comes with your application built
into the file system. This allows it to entirely contain all of the dependencies used
by the program and makes it deployable on any server without prior configuration.

2.10.4 Docker

Docker is a technology that enables containerization, allowing the creation of
lightweight, reusable containers that can hold an application. This enables fast
and efficient deployment. In addition, container deployment can be triggered from
the pipeline, which eliminates the need for human involvement.

2.10.5 Kubernetes

Kubernetes is a container orchestration platform that provides a powerful and
flexible way to manage containerized applications. It is a technology that builds
upon the concept of containerization and allows for load balancing, monitoring,
updating, and scaling up applications.

2.10.6 GitLab Runner

GitLab Runner is a feature provided by GitLab that involves installing a program
on a server that is responsible for executing the code used in your pipelines. That
server is then responsible for running code like building, testing, and deploying
the application on the server.

2.10.7 Reverse proxy

A reverse proxy allows us to route multiple domains and subdomains to different
hosts and ports. It also makes it possible to install SSL certificates to make the
communication between the front-end and the back-end secure.

CHAPTER

THREE

METHODS

In this chapter, we will discuss the method and tools used in the project, both at
the project management level and the development level.

3.1 Planning

We began our project work by creating a preliminary project plan. The plan
included a list of main activities and a roadmap with milestones to keep the group
on track. The details of this plan can be found as an attachment in Appendix A.

3.1.1 Research

After an extensive planning phase, the next step was to research the domain
and what technologies we could use. Each team member looked into different
mobile application frameworks with a key focus on native support provided by
the framework and the developer experience.

A simple application was developed in each of the frameworks to get a feel
of the core functionalities. Furthermore, more extensive research such as reading
posts and articles about the frameworks was documented and later discussed, both
in the team, but also with our supervisor and stakeholder.

For more detail about the research, read appendix D.

3.1.2 Understanding the Problem Domain

Before we could begin development it was crucial to get a better understanding of
the problem domain. Solwr arranged for us to visit H.I. Giørtz to get first-hand
experience with the current system. As well as getting a tour of the warehouse, we
got the opportunity to be an employee for a day. This really helped us understand
the system behind the process and further gave us a better understanding of what
Solwr wanted to develop.

Throughout the day, we worked alongside employees at the warehouse and
interviewed them about the current system. A recurring theme was that the
current voice-controlled system works really well for the most part. However, in
some situations, it lacked some functionality resulting in inefficiency. Most of the

13

14 CHAPTER 3. METHODS

Figure 3.1.1: Group member testing out current system

employees looked optimistic at the application we discussed with them, however,
some concerns were raised, which are discussed in chapter 3.1.2.2.

Some flaws and room for improvement were discovered with the current sys-
tem. These were noted and discussed later in the development process, further
improving our complete implementation of the system.

3.1.2.1 Problem With Current System

List of flaws with the current system:

• Heavy products should be placed at the bottom of a cargo carrier. Normally,
this is not a problem as the pluck list should be optimized for this. However,
on some occasions, it fails and the employees have to rearrange the pluck list
themselves. With voice only, there is no fast way of doing this operation.

• The headset was uncomfortable and fell off when you were to bend down to
pluck a product from the lower shelves.

• Some of the areas in the warehouse were loud resulting in a hard time un-
derstanding the commands given by the system.

• The current system had a hard time picking up the correct digits resulting
in employees having to repeat a command multiple times.

3.1.2.2 Concerns For The Application

Some of the employees at Giørtz also raised some concerns about the application:

• The application has to implement at least the same level of voice control
as the current system, as having both hands free for driving the truck and
picking up products is crucial.

CHAPTER 3. METHODS 15

• There exist strict policies for using mobile devices while on the truck. The
truck should be standing still if they were to use their personal phones.

3.1.2.3 Additional Requirements

With both the problems and the concerns in mind we extended the requirements
list with the following functionality:

• A user should be able to rearrange the plucks in a pluck list using the touch
interface

• A user should be able to use a connected headset with the application,
preferably earbuds.

• A user should be able to cancel the commands uttered by the device

3.2 Project Structure
When developing a program or a system, it’s important to keep your work orga-
nized. For developers, this means structuring your code base systematically and
logically.

3.2.1 Repository Structure

We have decided to implement a multi-repo approach for our project and have
split it into three repositories: an iOS front-end, a Spring Boot back-end, and an
Infrastructure as Code (IaC) repository for setting up our infrastructure. This
approach was chosen because these repositories operate independently of each
other, with the front-end relying solely on API calls to communicate with the
back-end. Adopting a multi-repo structure offers several advantages, including
increased flexibility, scalability, enhanced isolation, and simplified maintenance,
making it a more suitable solution for the long term in projects that use indepen-
dent technologies.

3.2.2 Application Structure

To help developers understand and maintain a code base, a well-organized and
structured project is required [25]. A good project structure will help with coupling
and cohesion which will further help developers refactor, improve, and add new
features to the system. This is especially important for our project, as developers
at Solwr might look into our code base if they decide to create a similar application
in the future.

We decided to go for a featured strategy where we encapsulate each feature in
its own package. Every component related to a feature is found in the respective
features package [26].

16 CHAPTER 3. METHODS

Here’s a snippet of the tree of structure in our API application:
voice-pick-backend

controllers

configs

dtos

exceptions

features

authentication

configs

controllers

dtos

models

repositories

services

utils

pluck

controllers

dtos

models

repositories

services

smtp

models

services

models

repositories

services

3.2.3 Design

Figma is a sketching tool to develop user interfaces and was used as our primary
design tool. The team’s previous experience with Figma was the main reason for

CHAPTER 3. METHODS 17

the use of this tool, together with its ease of use and collaboration features.
Our initial approach was to create a design guideline that would define colors,

fonts, and components used throughout the application. Since Solwr already has
systems in production, we followed their theme as reflected in the finished design
guidelines 3.2.1. The guideline was developed for both light and dark themes.
With this, we developed sketches for the application that all were uniform.

3.2.3.1 Following Principles

Design principles are a set of rules describing how to develop an effective and
attractive design. These were extensively used throughout the process, ensuring
a visually pleasing and accessible design.

3.2.3.2 Design Feedback

As the design developed, we had close communication with both our employer
and workers at H.I. Giørtz, ensuring that their adjustments and concerns were
addressed.

Figure 3.2.1: Design guidelines

18 CHAPTER 3. METHODS

3.3 Workflow

3.3.1 Top Down

Our team and advisor decided to use a top down approach for our project, as it
would make things simpler and help reduce unnecessary work. By creating the
UI of a feature first, we could implement our REST API with the least amount
of features for the front-end to work. By not creating the back-end first, we avoid
over-engineering our back-end by introducing more logic than necessary.

3.3.2 Git Strategy

Git allows for multiple branching strategies where the two most common are
Trunk-Based Development (TBD) and Gitflow [27].

In the Trunk-Based Development approach, developers work on their features
in a separate branch and merge their changes back into the master branch, also
known as the trunk. This approach best suits smaller teams working on projects
with short release cycles.

Gitflow is a more complex branching strategy that involves multiple long-lived
branches. It includes a "develop" branch where new features are integrated and a
"master" branch that contains only the stable releases. Developers create feature
branches off the develop branch to work on specific features, and when complete,
they merge these changes back into the develop branch.

Trunk-based git strategy was chosen, as it is more suited for small teams and
codebases that do not have closely integrated components, such as our Swift front-
end and Spring Boot back-end.

Figure 3.3.1: Git strategies, Trunk (left), Flow (right)

3.3.3 Priority

Jira was used as our main tool for prioritizing tasks. Our backlog was sorted
by priority based on feedback from both supervisor and employer as well as each

CHAPTER 3. METHODS 19

individual task was labeled with a priority ranging from lowest to highest. This
meant that for each sprint, we simply would select as many tasks as we thought we
could complete from the backlog. Using this method allowed us to be organized
and follow the goals set for each sprint.

3.3.4 Time log

Planning poker has been used during sprint planning to estimate the complexity
of issues. To keep track of how accurate the estimations are, we have used Jira’s
functionality to log hours spent on each individual issue. Throughout the process,
we realized that estimation is one of the harder parts of project management, as
you never know when you will encounter problems.

Time tracking has also been positive by providing a graphical overview dis-
playing that every team member is contributing to the project. Motivation is kept
as you feel like other members are equally active. Figure 3.3.2 shows the statistics
of the time spent toward the end of the project.

Figure 3.3.2: Overview of time logged

3.3.5 Branching

We have used a trunk-based branching approach in both our front-end and back-
end. Together with Jira where we have defined and organized issues, this makes it
easy to work only a single issue, one at a time. Jira offers integration with GitLab
which we have used to our advantage. To work on a feature, we simply opened
up the issue we were to work on in Jira. From the sidebar of the issue, we could
create a branch that would automatically be created in the repository. All work
related to the issue was developed in the respective branch.

3.3.6 Merge request

When a task was completed, a merge request was opened for review. In the
beginning, we simply merged the branch directly into the trunk branch. However,
later down the road, the team decided to incorporate merge reviews into our
workflow to enforce better code quality.

3.3.6.1 Restriction

To maintain high code quality, we had strict rules for submitting new code. All
merge requests had to be approved by another team member, and direct pushing

20 CHAPTER 3. METHODS

Figure 3.3.3: Pipelines

to the trunk was not allowed. This collaborative approach allows multiple team
members to review each other’s code, suggest improvements, and ensure that the
code meets the team’s standards. In addition, this ensured that all team members
fully understand the application.

3.3.6.2 Commit Naming Conventions

Since Jira was integrated with GitLab, we utilize a standard method of docu-
menting them using Jira issue numbers. This means starting a push or merge
request with the relevant Jira issue number, for example, VP-151. This clarified
the specific tasks that were implemented within the branch.

3.3.7 Pipelines

Gitlab has a function called pipelines, also called CI/CD. This feature lets us
automate actions each time we submit new code to our codebase.

Figure 3.3.3 displays our pipelines that is split into 3 stages; build, test, and
deploy. The deployment step deployed two versions of the API, a development
deployment, and a production deployment. The development deployment was
continuously deployed, which means it redeploys with the newest version each
time someone adds new code to the repository. The production deployment was
continuously delivered, which lets us deploy it with one click of a button, as this
should be a business decision rather than an automated process.

Before deploying any code, it must pass our test stage, which includes running
all unit tests and performing a SonarQube analysis. The analysis checks for addi-
tional requirements, such as having at least 60% test coverage, passing all tests,
and meeting code quality and security standards in all of SonarQube’s categories.
Additionally, SonarQube scans the repository, giving feedback on vulnerabilities
and code smells. With its dashboard, it gives a quick overview of the state of the
application as shown in figure 3.3.4.

3.4 Testing

Testing plays a large role during the development process. As the size of a project
scales up, the significance of robust testing increases, as it provides assurance that
the code is working correctly.

CHAPTER 3. METHODS 21

Figure 3.3.4: SonarQube dashboard overview

22 CHAPTER 3. METHODS

3.4.1 Test Driven Development

When implementing the API, we strived to follow the test-driven development
methodology. This is important because as the application grows a thorough test
coverage will help speed up the development process and eliminate future bugs.

3.4.2 Postman

Our initial approach was to utilize Postman. Postman is a tool for testing API and
makes it possible to send HTTP requests and validate the response. In Postman
you can create teams and invite members so multiple people can cooperate and
use the same test suit. However, Postman requires a subscription if your team is
larger than three members.

Postman tests can be implemented in a pipeline, although it’s simpler to run
maven tests defined in the application. As a result of this and the subscription
fee, we decided to drop Postman and instead rely on Spring Boot testing. This
way our tests are version controlled together with our API all in one place.

3.4.3 Testing Persistence Data

Our API utilizes Spring Boot’s in-memory database when executing the testing.
This is to make sure the database is in a consistent state before the tests are
executed, as a deployed database might change over time. In addition, our tests
strictly follow proper stages with setup, execution, validation, and clean-up, fur-
ther making sure the state of the application is consistent between each test.

3.4.4 User Testing

We’ve been having a close dialog with both our employer and workers at H.I.
Giørtz. They have given us insightful information about our UI/UX as well as the
features we’ve provided in our solution. We tested our final product in Solwr’s
warehouse since Giørtz was busy at the time. Additionally, we have provided them
with a recording of the workflow of the application, making it possible to get some
feedback. The link to the video can be found in Appendix C.

3.5 Technology Stack

In this section, we will give you an insight into what technologies our solution
uses, and why we chose these technologies.

3.5.1 SwiftUI

SwiftUI was utilized to create our mobile application. Native support was the
primary deciding factor, but other pros such as SwiftUI’s easy learning curve,
reusable components, and dynamic updates, further reinforced the decision. These
features allowed us to create efficient UI/UX designs for the complex system of
a warehouse. SwiftUI also offers theming, which allowed us to easily create both
light and dark modes as requested by the employer.

CHAPTER 3. METHODS 23

Figure 3.5.1: Example of repository implementation

When deciding on front-end framework, native support was the main factor.
However, the developer experience was also taken into consideration, although
not as crucial. The XCode editor provides multiple features that enhance the
developer experience. Some of them are; canvas, which allows for live preview of
UI changes. Documentation of predefined components directly in the editor, and
the opportunity to run the application both in emulators and physical devices.

3.5.2 Spring Boot

Spring Boot was our choice of back-end as all team members have previous expe-
rience with the framework. Further, it’s the primary framework used by Solwr.
Our Spring Boot is connected to a PostgreSQL instance. This is also a technology
used by Solwr that most of our team members were familiar with.

3.5.2.1 Split Level of Concern

The API uses a standard Spring Boot and REST API structure with controllers,
services, repositories, and entities. The entities define the tables in the database,
the repository has the responsibility to communicate with the database, the ser-
vices execute all the business logic, and finally, the controllers handle the requests,
map DTOs to the entities, and verify the outcome of the logic executed in the ser-
vices layer before sending responds respectively.

3.5.2.2 Communicating With Database

Our API communicates with PostgreSQL via the repository components. Each
entity has a repository component. These implement the JPA interface which
is the ORM used to translate Java to SQL used to query the database. The
JPA interface defines predefined queries as well as it allows for customization for
advanced queries.

3.5.2.3 Lombok

Utilizing Lombok in our spring boot project, provided us with annotations to
reduce repetitive code and simplify the Java development. It automates the gen-
eration of boilerplate code, such as getters, setters, constructors, toString, and
equals methods. This made it easier for us to focus more on the project logic
rather than writing getters and setters. The commonly used annotations in our
project are @Data, @Getter, @Setter, @NoArgeConstructor, @AllArgsConstruc-
tor, and @RequiredArgsConstructor.

24 CHAPTER 3. METHODS

3.5.3 Keycloak

We choose to use Keycloak as our authentication provider for several reasons.
Solwr already uses Keycloak for their system, so it was important for us to show
that we could take into account their existing choices of technologies. Addition-
ally, it was supposed to be quite straightforward using Keycloak’s graphical user
interface. It would relieve us of creating a sign-in/sign-up form, as Keycloak han-
dles all that in an in-app browser pop-up. This decision is discussed further in
chapter 5.2.

3.5.4 SMTP

SMTP was chosen as a means for sending emails because it’s a commonly used
protocol for exchanging email messages over the internet. We opted to utilize
Apple’s SMTP service and connected it with our Spring Boot application to enable
this functionality. Our application currently utilizes SMTP to send emails for
verification, password resetting, and warehouse invitations. The emails provide
templates where randomly generated codes are passed as a means of verification.

3.5.5 Endpoint Documentation

Swagger was used to document every endpoint exposed by the API. It gives
an organized overview of all available endpoints with additional information like
expected request metadata and response types.

CHAPTER

FOUR

RESULTS

In the following chapter, we will provide insight into the result of our research and
development process.

4.1 Authentication Flow

Although authentication was not a primary objective for our project, it was still re-
quired, as our application was directed toward a group of users with different roles
and authorities. Because of the complexity and similarities of such features, we
went with Keycloak as our authentication provider. This lets us use the Keycloak
Admin Console to set up roles, access token expiration time, and manage users.
Additionally, we use the Keycloak REST API to send requests to our Keycloak
instance.

4.1.1 Architecture

In figure 4.1.1 you can see all the actions our system executes when a user logs in
through our mobile application. The mobile application will send all its requests
through our REST API, and the Spring Boot application will send a request to
the Keycloak instance and give a response to the user based on the result from
Keycloak. The purpose of this was to maintain the confidentiality and security of
the client secret required for communication with our Keycloak instance. By only
using the secret in our Spring Boot application, the risk of unauthorized access to
our authentication provider was minimized.

4.1.1.1 Keycloak

As mentioned above, Keycloak was used as an authentication provider for our
application. The setup of Keycloak realms was fairly straightforward with the
Keycloak Admin Console. For the project, we created two realms, one meant for
production and one that we as developers could use when testing the application.
Keycloak makes it easy to implement role-based authentication by adding custom
roles. Keycloak uses JWT where all information about the user and the session is
stored.

25

26 CHAPTER 4. RESULTS

Figure 4.1.1: Login Sequence Diagram

CHAPTER 4. RESULTS 27

Figure 4.1.2: Keycloak Admin Console

4.1.1.2 Tokens

The access tokens that the user receives after logging in are in JWT standard.
These tokens usually have an expiration date or time. As a result of authentication
not being the primary focus of our project, we decided to set the expiration time
to an arbitrarily high value. Due to this, we avoid having to implement a refresh-
token mechanism in our application. This decision is further discussed in 5.2.2.

4.1.2 Features

With our implementation of authentication, we have support for signing up, sign-
ing in, and other features such as resetting your password and email verification.
All these features use the architecture mentioned in subsection 4.1.1, where the
mobile application communicates with our REST API, which in turn communi-
cates with the Keycloak instance.

4.2 Spring Boot API

Developing an API has not been the primary scope of the project. However, to be
able to work more independently from Solwr’s already large and complex systems,
we were asked to develop our own API that would act as a dummy service for
the simulation of a warehouse system. In the beginning, the API provided the
front-end with dummy data, however later it was improved and does now function
as a standalone WMS where users can create new warehouses and configure them

28 CHAPTER 4. RESULTS

with locations, products, and members.

4.2.1 Security Configuration

As mentioned in 4.1, our application needed authentication. On the API level, this
was done by configuring Keycloak to our Spring Boot application. This way, every
request sent to the API goes through a filter chain validating the request. The API
can be configured to require certain levels of authorization for different endpoints
using roles. Only users with correct authority will be able to pass through the
filter chain, evidently getting access to the API.

4.2.2 Entity Relations

We spent a significant amount of time defining the models needed to simulate a
warehouse and constructing the relations between the models. Figure 4.2.1 shows
a diagram of all the entities with relations stored in the database.

4.2.3 SMTP

SMTP is used to forward emails. The SMTP is configured to be able to send
multiple types of email. It is used for password resets, verification, and invite
features. In figure 4.2.2 you can see the different emails provided by the back-end.
These consist of an invitation email, verification email, and reset password email.

4.2.4 Leaking Internals

In an application, it’s common to define entities that relate to entries in the
database. It’s bad practice to return these entities directly to the client upon
request as this can expose confidential data [28]. Instead, our API uses mappers
that map these entities into DTOs. The DTOs are specified to only contain data
that is required for the request. This results in a safer and cleaner codebase, by
having lower coupling and higher cohesion.

4.2.5 Error handling

The Spring Boot API returns different HTTP responses based on the outcome
of the request. When an error occurs, our API responds with meaningful HTTP
codes and messages. This allows clients to interpret these responses and display
correct error messages to the user accordingly.

4.2.6 Documentation

The API is documented using standard Java Docs, where methods are commented
about what it does and what type of parameters it expects. In addition, as men-
tioned in section 3.5.5, all API endpoints are documented using swagger. A com-
plete list of all endpoints can be found at https://api.bachelor.seq.re/swagger-
ui/index.html. The swagger docs give information about what the endpoint ex-
pects and what it returns. Figure 4.2.3 shows a simple endpoint.

https://api.bachelor.seq.re/swagger-ui/index.html
https://api.bachelor.seq.re/swagger-ui/index.html

CHAPTER 4. RESULTS 29

Figure 4.2.1: Database Diagram

30 CHAPTER 4. RESULTS

Figure 4.2.2: Emails sent with SMTP

Figure 4.2.3: Swagger-UI

CHAPTER 4. RESULTS 31

4.3 Deployment

Our backend is deployed within a Docker container, communicating with our Key-
cloak container and database.

We’ve used Terraform to create and configure our Azure resources, including
our VLAN, firewall, and virtual machine. Thanks to our containerization of the
application, integration with Solwr’s existing Kubernetes clusters is straightfor-
ward. And with our use of Keycloak, integrating with their preexisting deployment
becomes effortless.

We’ve also implemented a continuous deployment process by using GitLab
CI/CD pipelines. They run tests on our code and provide us with the option to
deploy the code manually. This makes sure that our code is tested before any
deployment, allowing us to maintain a high level of quality and reliability in our
software releases.

4.3.1 Diagram

In figure 4.3.1 you can see our system diagram. The keylocks represent HTTPS
connections our Nginx proxy enables. You can also see that GitLab is connected
with our GitLab runner, which continuously deploys pushed code to our devel-
opment API, and tests it in our SonarQube instance. In addition, most of our
services are containerized as shown by the dotted lines.

4.4 SwiftUI Application

As a result of our research and development, we have created a complete iOS
application, ready to be released on App Store. The application serves pages that
let any user download the app and set up a warehouse from scratch, or join an
existing one, and use our voice-plucking system to prepare pallets for delivery. In
this section, we provide a thorough description of our application.

4.4.1 Application layout

We have designed an application that consists of several pages as seen in figure
4.4.1. These pages include an authentication page, an email verification page, and
a page for joining or creating a warehouse, figure 4.4.2. Furthermore, the applica-
tion includes "pluck" pages for the pluck flow, and a warehouse configuration page
for managing locations, users, and products. Additionally, we added a "log page"
that displays messages from the recognized words by the user, and the uttered
words by the application. Finally, there is an account page where users can adjust
their settings and manage their accounts.

By implementing this diverse set of pages, we provide an application that can
be downloaded and used by anyone in need of a WMS. The combined features
of our front-end and back-end result in an efficient and user-friendly application
that can be used to prepare orders, and manage your warehouse.

32 CHAPTER 4. RESULTS

Figure 4.3.1: System Diagram

Figure 4.4.1: Swift app flow diagram

CHAPTER 4. RESULTS 33

Figure 4.4.2: Authentication flow

4.4.2 Speech Recognition

Since this project takes a considerable part in developing a voice interaction app
we need to talk about how we made it possible.

The Speech framework provides several different features for speech recogni-
tion, including speech-to-text conversion, language detection, and real-time tran-
scription. These features made it possible for us to create a powerful application
that allows users to interact with their devices using natural language commands.

4.4.2.1 Implementation

Implementing a speech recognition system involves several steps; requesting user
authorization, checking for an authorized microphone, managing audio input record-
ings, handling speech recognition, verifying and enabling on-device recognition,
and adding a custom vocabulary used for keyword detection. This is done through
an API provided by Swift called SFSpeechRecognizer [29].

When a user signs in for the first time, the application prompts the user to
allow the application to use the device’s built-in microphone, as seen in figure
4.4.3. This is a privacy precaution, as iOS applications are not allowed to use
microphones unless given access by the user. The application can be used without
access to speech recognition, however, the user will have to use the touch interface.

Employees at a warehouse should only be able to interact with the application
using a set of keywords. Our application implements this by defining a vocabulary
used by the SFSpeechRecognizer. When the recognizer picks up a recording,
it compiles a transcription. This transcription is then filtered to only look for
the keywords defined in the vocabulary. Examples of the keywords are; "help",

34 CHAPTER 4. RESULTS

Figure 4.4.3: Prompt when logging into the application

"repeat", and "next". While certain keywords remain applicable throughout the
entire plucking process, others are limited to specific stages and are only available
when the worker is working on those particular stages.

In addition to keywords, the speech recognizer also picks up any number. This
is used for the user to both confirm the correct control digits of a location as well
as for the user to select the amount they pluck. When prompting with a number
between zero and nine, the recognizer transcribes this as the string value. For
example, when saying 1, it’s recognized as one. However, when a number larger
than nine is recognized, it transcribes it as the actual number. E.g. saying 202,
results as 202. In our case, it was required to always transcribe the number value.
To overcome this, the application checks whether the transcript is a word between
zero and nine, if so, it converts the word to the number value.

At first, when saying a number, the recognizer started transcribing the result
before the user was finished saying the complete number. For example, when a
user said 245, the transcript would compile 2, 24, and 245. To make sure the
recognizer would wait for the user to finish we used a debounce technique, where
the recognizer only transcribes the result 500 milliseconds after the recording stops.
This implementation can be seen in figure 4.4.4. Using the debouncing technique
also helped solve the accuracy problem mentioned in 3.1.2.1.

4.4.2.2 Voice Requirements

As mentioned in chapter 3.1.2.3, a user should be able to use different inputs.
Our application allows this by checking for different inputs when the application
is launched, 4.4.5. For example, if AirPods are connected, the default microphone
will be set to the AirPods. If no other external microphone is detected, the

CHAPTER 4. RESULTS 35

Figure 4.4.4: Speech filtering implementation

Figure 4.4.5: Code checking for connected devices

application uses the default microphone of the device.

4.4.2.3 On-device Recognition

In our project, we implemented on-device recognition, 2.7.3.1. As a result of
this, our application demonstrated improved performance and efficiency, as it no
longer relied on internet connectivity or remote server processing for speech recog-
nition. This was a sought-after feature from our employer, due to poor connection
in the warehouse. While it is not as accurate as server-based recognition, the pre-
cision is good enough for our purposes and supports a wide variety of languages.

Additionally, the server-based recognition had some restrictions related to a
daily request limit and a maximum listening duration of 30 seconds. On-device
recognition solved these issues.

4.4.2.4 Toggling Speech Recognition

As workers at a warehouse sometimes need to communicate with one another,
the ability to toggle speech recognition was highly requested. As seen in figure
4.4.6, there is a microphone icon in the header that toggles speech recognition.
Furthermore, a user can say "mute" to mute the speech recognition. While in
"mute" mode, the recognition only responds to one keyword, "listen", which then
unmutes the microphone.

4.4.2.5 Languages

Our application uses English for speech recognition. SFSpeechRecognizer lets
you choose other languages too, however, English is slightly more accurate than
the others. With the SFSpeechRecognizer it is possible to change the language

36 CHAPTER 4. RESULTS

Figure 4.4.6: Mute options in the application header

Figure 4.4.7: Setting the Locale of the SpeechRecognizer

detection in runtime. A list of available languages can be exposed using the
supportedLocals() method. Together with a variable storing the currently se-
lected language, the SFSpeechRecognizer can be configured to use this variable
instead of a constant string as seen in figure 4.4.7.

4.4.3 Text to Speech

Apple’s TTS solution has enabled the conversion of hard-coded text into natural-
sounding spoken words in our project, thereby improving the user experience
during the plucking process.

Leveraging advanced algorithms and neural networks, Apple’s TTS technology
analyzes input text and generates speech that closely mimics human voices. In our
project, we have utilized this technology to better the user experience, providing
real-time updates and guidance through a natural-sounding voice [30].

4.4.3.1 Implementation

The TTS is configured the same way as speech recognition. It is initialized by
using the AVAudioSession API provided by Swift [31]. On application launch,
the application checks for any connected Bluetooth speakers. If there are no
available connected speakers, it falls back to the default built-in speaker in the
device.

By implementing a speak() function that takes in a string. The string is then
played through the speakers, 4.4.8. Any subsequent call to the speak() function,
before the first utterance is finished, will be placed in a queue and played when
the AVAudioSession is available.

In addition to the speak() function, we looked into the possibility to interrupt
the utterance. This feature was requested as warehouse workers do not always
want to listen to the whole utterance. The TTS API exposes a stopSpeaking()

CHAPTER 4. RESULTS 37

Figure 4.4.8: Speak function in TTSService

method which can be called to stop the utterance immediately. This also removes
any utterances stored in the queue.

4.4.3.2 Text to Speech Settings

With the implementation of TTS, a user has the option to change the utterance
volume and speed, making a more personalized experience. For workers at a
warehouse, this means they can configure the text-to-speech to fit their needs.

During the development phase, it was discovered that the application’s voice
output had a robotic quality which could have potentially been problematic and
irritating for employees working extended shifts. We identified methods to localize
the voices installed on the device and modify the voices accordingly. On the
application’s account page, there is a section where you can change the voice to
either Nathan or Evan, 4.4.13. If the voice select is not installed on the device,
the user is prompted with a message explaining how to install the voice on the
device. When the voice is installed, the application can make use of the voice for
utterance.

4.4.3.3 Voice looping

When played on a speaker, the speech recognition would sometimes recognize the
utterance played by the device, causing a feedback loop. The problem was not too
concerning as the employers would mainly use the application with a headset where
the microphone would not pick up sound from the headset speakers. However, it
was not desired as it removed the possibility of using the application in speaker
mode. At first, the group thought of disabling speech recognition as the device

38 CHAPTER 4. RESULTS

Figure 4.4.9: Pluck steps - Code snippet

was playing a sound. However, this would remove the feature of canceling the
utter, which is a very important feature for employers. Eventually, this was solved
by switching out the vocabulary of the speech recognizer as the device was playing
sounds. When playing sound, it only listens for the "cancel" command. When
the device is no longer playing a sound, the vocabulary is changed back making it
listen to all commands.

4.4.4 Touch and Voice Concurrency

As mentioned in 1.2.3, concurrency between voice and touch when performing a
pluck round was one of the most important aspects of our project. Our application
solves this using a PluckService class that keeps track of the current step of the
pluck round by using an enum as seen in figure 4.4.9. The service exposes a
method doAction(keyword: String) which is used whenever a keyword from
the voice recognizer is detected, or when the user performs an action through the
touch interface. The method will switch over the possible steps, and perform the
correct method based on the current step, as shown in figure 4.4.9. The respective
method will then switch over the possible keywords available for the current step
and perform the correct action based on the user input.

This solution lets us call the same method when the user does an action,
regardless of the user interacting with the voice interface or touch interface. An
alternative approach will be discussed in section 5.5.

CHAPTER 4. RESULTS 39

Figure 4.4.10: Detailed employee view. A leader can change employee role

4.4.5 Warehouse Configuration

To increase the application’s functionality and utility, we have implemented ware-
house configuration pages, allowing users to set up their own warehouse, 4.4.11.
As a result, the app can cater to multiple warehouses, rather than being lim-
ited to a single warehouse, broadening its scope and adaptability. With this, the
application is available for any business.

When registering a new account, the user has the option to either join or create
a warehouse. To join a warehouse, a leader must enter the email of the user to
invite. The user receives an email and enters the code into the application and
gains access to the warehouse.

For the configuration part, when you create a new warehouse, you are auto-
matically assigned a leadership role in that warehouse. Leaders of a warehouse
have the functionality to add, remove, and edit the locations, products, and users
in their warehouse. As a leader, you can also change the roles of other members
in your warehouse, 4.4.10.

The user, location, and product pages have the same styling and the same
CRUD operations. Entering the pages, the user sees a list of the locations, prod-
ucts, or users in the warehouse. When updating, adding, or removing entities,
there are loading indicators and banners showing success or error status. By
pressing on a list item, a detailed view is opened of the specific entity, where the
user can edit its properties. We have implemented great error handling, responses
and confirm dialogs. This is especially important for actions such as removing a
member from your warehouse, to prevent accidental removals.

40 CHAPTER 4. RESULTS

Figure 4.4.11: Warehouse config - Location Page - Update Location /w product
on location

4.4.5.1 iOS Scanner

One of the discussions with our employer was to implement a barcode scanner that
could scan the bar codes of products to automatically add or register products.
Figure 4.4.12 shows the implemented barcode scanner using a scanner package
available for iOS devices running iOS 13.0 or later [32]. The scanner was im-
plemented with the thought of replacing the current scanner which is a separate
system. Our implementation is not necessarily more efficient, however, it helps
keep all tools needed for the employees at a warehouse in one place, further en-
hancing the application experience.

4.4.6 Additional pages

4.4.6.1 Log page

As the user communicates with the application through voice, all commands, both
spoken to and uttered by the application are saved and can be viewed in a log.
The log is displayed like a chat, with the spoken commands on one side and the
uttered commands on the other, figure 4.4.14. This makes it clear to the user
what has transpired.

4.4.6.2 Account page

As mentioned earlier, the user can change the settings on the account page, 4.4.13.
Additionally, there is the option for deleting the user, leaving the warehouse,
resetting the password, and logging out. The account page also provides the

CHAPTER 4. RESULTS 41

Figure 4.4.12: Barcode scanner in the application

option for selecting profile pictures for the user account where you can select from
a list of predefined pictures. These pictures were generated using MidJourney.
We have also implemented a fun ranking system for the workers where they get
ranked based on how many pluck lists they have completed. For example, if you
complete 10 000 pluck lists you achieve the title "Ekspert plukker".

4.4.7 Keychain

Keychain is a tool available in Swift and allows storing data securely in the ap-
plication [33]. This is incorporated into the application to securely store sensitive
user data like access tokens. Due to this, data is encrypted and persisted when
the application is closed.

4.4.8 Communicating with API

The SwiftUI application directly communicates with the API using the HTTPS
protocol. In the application, a RequestService() can be initialized. This service
exposes GET, POST, PATCH, and DELETE methods, 4.4.16. In addition, the service
exposes a published field, isLoading, for checking if the request has been processed
or not. This field is then used to display loading indicators in the application,
giving the user feedback that something is being processed. Upon an error from
the API, the application checks the error status and prompts the user with error
messages accordingly. Figure 4.4.17 shows how the exposed methods can be used.

42 CHAPTER 4. RESULTS

Figure 4.4.13: Accountpage

Figure 4.4.14: Log page

CHAPTER 4. RESULTS 43

Figure 4.4.15: Forgot password page

Figure 4.4.16: Post method exposed by the RequestService

Figure 4.4.17: Example usage of RequestService

44 CHAPTER 4. RESULTS

Figure 4.5.1: Pluckflow Info/lobby

4.5 Real Life Environment

4.5.1 Pluck-flow Example

Upon logging into the app, users are directed to a page where they can initiate
the plucking workflow. This workflow can be executed using voice, touch, or
a combination of both. By either pressing the "Start" button or using voice
commands to say "Start," a pluck list is retrieved from the database, as seen in
figure 4.5.1.

After starting a pluck, you are directed to a page displaying information about
the pluck. Here, you must choose which cargo type to use, either using your voice
or the drop-down menu, 4.5.1. Once you choose a cargo type, press or say "next"
to move on to the stage where the plucking begins. This is when you enter control
digits and the number of items you need to pluck, 4.5.2. When all of the plucks are
done, you have to drop off the cargo at the correct location 4.5.3. All instructions
are uttered by the speaker, which lets the user complete the pluck round without
having to interact with the touch interface.

At the beginning of each pluck round, a user may choose to rearrange the
plucks in a better-suited order. Users can manually rearrange the products in
their desired plucking order by utilizing the implemented drag-and-drop feature.
A user can complete all other actions in a pluck round using just their voice.

We recommend watching the YouTube video linked in Appendix C, where a
user completes a pluck round using our application. It depicts our application
used in a real-life environment and can help better understand the use case of our
solution.

CHAPTER 4. RESULTS 45

Figure 4.5.2: Pluckflow product list success/error

Figure 4.5.3: Pluckflow pluck finish/finish page

46 CHAPTER 4. RESULTS

4.5.2 Efficiency

The fact that users can choose between voice and touch as desired helps increase
efficiency. Normally, workers prefer to use voice as this makes both hands available
for driving the truck as well as plucking products from shelves. However, some
actions are more complex and the addition of a user interface that can be interacted
with touch will help streamline these actions.

4.5.3 Removed Redundancy

Simplifying the app and streamlining the required data were among our top pri-
orities during development. We aimed to create an application that is simple and
efficient for users. While the app may appear straightforward on the surface, a sig-
nificant amount of time and effort was invested in achieving this level of simplicity.
A storage facility contains a lot of data, including various locations, products, and
users, which the application efficiently handles while maintaining its user-friendly
interface.

4.5.4 Bluetooth devices

We have thought closely about how the application would work in a facility with
lots of noise and other workers. Bluetooth devices have therefore been tested to
see if noise and other voices can interrupt another user’s system. As a result of
this, we figured out that an option for this is the use of Bluetooth devices or
bidirectional microphones.

4.6 Android Implementation

As a result of our research and dialogue with Solwr mentioned in subsection 5.3.1,
we used Swift and SwiftUI, thus creating an iOS only application. However,
Solwr is also interested in knowing if the application can be created for Android
applications as well. In this section, we will walk you through the result of our
research on implementing an Android solution.

4.6.1 Implementing Voice-Pluck

Our implementation of voice and touch concurrency mentioned in 4.4.4 is imple-
mented in a way that different choices of voice and/or utter libraries should not
affect the concurrency. Therefore, we have mostly conducted research on the best
libraries to use for speech recognition and text-to-speech in Android applications.

4.6.1.1 Speech Recognition

As mentioned earlier, we used SFSpeechRecognizer for iOS [29]. For Android
devices, we found a class for speech recognition similar to SFSpeechRecognizer,
[34]. It contains a lot of the same features that SFSpeechRecognizer does, such as
on-device recognition.

CHAPTER 4. RESULTS 47

Additionally, there are obvious choices such as Google’s Speech to Text service.
The aforementioned option is undeniably better than other open-source alterna-
tives. However, Solwr wants to take a step away from paid services, so we have
looked at other alternatives such as PocketSphinx [35] and Kaldi [36].

Unlike Android class [34] which is maintained and created by Android, these
alternatives are maintained by independent institutions and authors. As a con-
sequence, you cannot be sure whether these libraries will keep being maintained.
Therefore, we would highly recommend using Android’s built-in classes, as they
provide a reliable set of features.

4.6.1.2 Text To Speech

Concerning text-to-speech, we found another class developed and maintained by
Android [37]. The class can be utilized the same way we utilized Apple’s Speech
Synthesis class. It is possible to find third-party options as well. However, we
still recommend choosing built-in classes as they are more reliable and likely to be
maintained.

4.7 Smart Watch Companion App

A part of our project was to research the possibilities of creating an app for
different devices, such as smartwatches. Early in the process, we created sketches
for smartwatches, seen in figure 4.7.1. The sketches depict how you can show a
round of plucks, with the functionality to complete it through a touch interface.

Later in the process, we concluded that a potential smartwatch application
should be a companion app. Having it as a standalone application would propose
several issues related to performance and support.

4.7.1 Apple Smart Watch App

We used Apple’s tutorial [38] to get a quick introduction to Apple Smart Watch
applications.

Apple’s SFSpeechRecognizer class that we use for recognizing words is only
supported on iOS. Therefore, we concluded that with our approach, it is not
possible to create a standalone smartwatch application. Despite this, it is still
feasible to create a companion WatchOS app that increases efficiency. The ap-
plication does not need to support speech recognition and utterance, but could
rather serve as an accessible touch interface while the phone is mounted on the
forklift. Implementing two-way communication between the iOS app and its paired
watchOS app is easily done through Apple’s Watch Connectivity framework [39].

4.7.2 Android Smart Watch App

Our group focused on iOS development. However, Solwr develops for Android
as well, so we have researched the possibility to create an Android Smart Watch
application.

48 CHAPTER 4. RESULTS

Figure 4.7.1: Smart Watch Sketches

Unlike Apple’s speech recognizer class, Android’s speech recognizer class [34]
works with smartwatches as well. Naturally, this is contingent on the smartwatch
having the proper hardware, so the performance can vary from model to model.

We concluded that it is possible to create a standalone smartwatch application
for Android watches. However, several problems related to performance could
surface. Various models will not have sufficient hardware to run the application
efficiently. Therefore, we recommend the approach in the aforementioned subsec-
tion, 4.7.1.

CHAPTER

FIVE

DISCUSSION

In this chapter, we will discuss the choices in technology and the troubles we
overcame.

5.1 Project Structure And Architecture

While developing, we ran into some difficulties related to project structure and
architecture.

5.1.1 Project Plan and Roadmap

As mentioned in chapter 3 we started with an extensive planning phase, where we
created a roadmap for our project. This roadmap can be seen in Appendix A. After
several sprint meetings, we were advised to focus on creating a finished mobile
application, instead of creating the smart watch application as well. Because of
this, the roadmap has changed a bit over the course of the project. This was
expected and with the workflow discussed in section 2.2, it was easy to adapt to
other priorities.

5.1.2 Reflection on Project Structure Choice

Our choice of project structure is well-suited for large projects. However, some
team members were not familiar with the structure and found it more confusing
rather than organized. On the other hand, the application might be developed
further, justifying the choice and helping feature extraction as the application
grows.

5.1.3 Matching DTOs Between Applications

As mentioned in subsection 4.2.4, we used DTOs to transfer data between our
applications. However, combining this with our top down approach caused a lot
of time-consuming debugging. Whenever there was a small difference between a
DTO in the back-end and the same DTO in the front-end, the front-end would fail
to decode the response from the API to the proper object. This could, for example,

49

50 CHAPTER 5. DISCUSSION

be a field called ’firstName’ in our back-end and ’firstname’ in our front-end, where
the only difference was capitalization.

Had we utilized a bottom-up approach, developing our entire API from the
beginning, we would not encounter this problem as often. This could potentially
have saved us some time that could have been better spent.

5.1.4 Shared Services

In our front-end application, we created several services, such as an authentication
service. The service was responsible for storing access tokens and user information.
Initially, we instantiated this service several places in our application. Obviously,
this caused issues as our application would contain multiple objects of the same
service, with different values.

To circumvent this issue, we made our service conform to ObservableObject,
which were instantiated once at the top level they were required and passed around
as EnvironmentalObjects. ObservableObject works by "emitting the changed
value before any of its @Published properties change" [40]. This was a better
solution than creating them as singleton classes, as the @Published fields in the
ObservableObject would automatically update the views listening to changes.

5.2 Authentication

As mentioned in section 4.1 authentication was not a primary focus of our project,
but it was still required. Due to it not being a primary focus, we spent time
researching the easiest and best way to implement it.

5.2.0.1 Keycloak Problems

As it turned out, it was not straightforward to use Keycloak’s graphical user
interface. To use it with iOS you have to use an adapter, such as AppAuth [41].
The existing adapters were initially built to support the old standard for creating
UIs in Swift; UIKit [42]. However, we are using SwiftUI to build UIs. Finding an
adapter that was easily integrated with SwiftUI was difficult.

The Keycloak Admin API dependency [43], exposes methods that simplify
actions like adding roles to users, etc. Unfortunately, this dependency did not yet
support Spring Boot 3. This resulted in us having to send HTTPS requests to the
Keycloak API from our Spring Boot instance.

Due to the reasons mentioned above, we had to use the Keycloak REST API,
thus having to do a lot of manual development for the authentication features.
As mentioned earlier, this was undesirable as authentication was not the primary
focus of our project. It took away valuable time we could have spent perfecting
our application’s voice-plucking part.

Additionally, deploying Keycloak was not as straightforward as we hoped.
There was little information on which docker containers were official and main-
tained. Additionally, all of them had their own unique way of setting up HTTPS
which made it difficult to work with.

CHAPTER 5. DISCUSSION 51

5.2.1 Firebase

Keycloak turned out to be more work than we anticipated. Therefore, we decided
to test FirebaseAuth since we had already used it in the course, IDATA2503 [1].
FirebaseAuth has an Admin SDK dependency that exposes methods to easily
interact with your database through privileged environments [44].

Unfortunately, we stumbled into problems where Spring Boot wouldn’t decode
JWT tokens returned from Firebase properly. It was unclear if this was because
of our existing code. As a consequence, we continued with Keycloak as our au-
thentication provider.

5.2.2 Tokens

To authenticate users, we attach access tokens in the JWT standard for every
request after signing in. Normally, these tokens are short-lived, and the user has
a refresh token to refresh the access token.

We had already spent a lot of time implementing authentication features.
Therefore, we decided to put the token expiration time to an arbitrarily high
value. This lets us avoid having to implement a refresh mechanism for our tokens.

This is not the most secure way to use tokens. In a production environment
with real customer data, it would be more secure to have a short-lived access token
and use refresh tokens to refresh it continually. However, we are not using any
real data. Additionally, if Solwr decides to scale this project, they will use their
own API and Keycloak instances. This benefited us, as we could shift our focus to
the voice-recognition, and it eased the developer experiences for us, by not having
to think about expiration time on tokens as much.

5.3 Choice of Front-end Framework

Each framework considered was thoroughly researched with article readings as
well as tested by creating some simple applications. A detailed description of the
research can be found in the appendix D.

Before development, we considered if we could create the application as a
responsive web app. However, we came to the conclusion that the native support
for voice recognition and utterance in mobile applications was too important. In
addition, we considered creating an Admin-Panel web application, but due to time
restrictions, we focused on the primary objective; voice-plucking with the mobile
application.

5.3.1 Decision

The application to be developed heavily relies on native support from the devices.
Because of this, both Flutter and React were omitted by the group despite, three
out of the four group members already having experience with Flutter.

Solwr already has applications in production using the old Android standard.
This is a bit outdated and we instead looked into JetPack Compose, the new
way of writing Android applications. JetPack Compose was only in beta at the
beginning of the project. Because of this, we were afraid that large updates could

52 CHAPTER 5. DISCUSSION

cause implications later down the road. After close communication with Solwr,
our team decided to go with SwiftUI as the front-end technology, despite the group
wanting to use Solwr’s original technology stack

5.3.2 Reflecting on iOS Development

During the development process, we experienced several pros and cons of iOS
development. The clean syntax and easy learning curve of Swift and SwiftUI
allowed us to quickly build visually appealing views.

The most significant challenge we faced with iOS development was the project
file. When new files were added to the project, the project file would update
accordingly. Whenever two team members did this simultaneously, it would result
in a merge conflict that could not be easily solved. We spent a lot of time resolving
conflicts because of this file. After doing research, it seemed like there were no
convenient ways of solving these conflicts.

Additionally, SwiftUI is relatively new and is therefore only supported on de-
vices running iOS 13 or newer. This could exclude potential users. However, our
applications require up-to-date hardware, making older devices inapt.

Related to SwiftUI being relatively new, it was quite hard to find third-party
resources and articles. This resulted in us having to turn to official documentation
a lot. However, it would be nice to have had more examples from articles and other
sites.

Another possible disadvantage of developing in Xcode is its performance. Xcode’s
indexing and building can be slow, and its performance is not entirely flawless.

Developing iOS applications using Swift, SwiftUI, and Xcode offered an easy
learning curve and clean syntax. Despite the limitations mentioned in this sub-
section, the benefits outweighed the drawbacks we experienced underways.

5.4 Text To Speech Alternatives

The application utilizes TTS voices available on iOS devices. This works well as
Apple offers high-quality voice models that sound like real-life humans. In addition
to the voices available by Apple, the team discussed other alternatives with the
employers. These alternatives were; pre-recorded audio files or using AI models
due to the rapid advancement of quality. However, the high-quality voices Apple
offers are good enough for our purpose. Our implementation can also be extended
to support a broader set of these voices, providing more customizability for the
end user.

5.4.1 Phonetic Alphabet

Letters can sometimes be difficult to distinguish from each other. Especially letters
like M and N. It is not currently implemented in the application, however, the team
thought of using the phonetic alphabet as a solution. Ideally, this should be a user-
based setting allowing the workers to choose their preferences. It would further
improve the quality of our voice interface, but it was not a priority as our solution
was adequate.

CHAPTER 5. DISCUSSION 53

5.5 Voice and Touch Concurrency Challenges

As we mentioned earlier in 1.2.3, voice and touch concurrency was one of the
most important features of our application. Our solution works incredibly well.
However, since it was such a big part of our project, we have thought about other
approaches to solve it.

5.5.1 Alternative Approach

Instead of our current solution explained in 4.4.4, we thought about a solution
using a doubly linked list 5.5.1. A DLL is a data structure where each node in the
list points to the next and previous node, the last node only points to the previous
node, and the first node only points to the next node. A Task (step in the pluck
flow), contains a map with keywords as keys, and a function as the value. This
implementation would circumvent one of the current switch cases, as we could
look up the correct function based on the entered keyword, instead of switching
over possible keywords in each function.

The biggest advantage of the DLL approach is that it would allow us to add
keyword-function pairs at runtime without having to modify the logic of our code.
This flexibility would allow us to implement a feature where the user could de-
cide their own keywords, further increasing customizability. However, the DLL
approach would also increase the complexity of our code.

Even though the DLL solution would provide our application with a broader
set of features, user-selected keywords were not a part of our scope. In addition,
we were already far along with our first solution when we thought of the DLL
approach.

5.6 Back-end

5.6.1 REST API and WebSockets API

While recognizing the benefits of using Websockets for event-driven push notifica-
tions, we still decided to use REST architecture for our API. REST has proven
to be effective for a wide range of use and offers a simpler approach to our current
application requirements.

It is worth noting that the addition of WebSockets could provide advantages in
terms of bidirectional communication between the client and server. This would
give a more responsive user experience, but also reduce the server load.

5.6.2 Reflection on Test Driven Development

Since test-driven development has been a focus throughout the project, the team
has gotten some key insight into the workflow. In the beginning, it can be a bit
frustrating and tedious as the outcome of testing is not as transparent. Neverthe-
less, as the project expands, the significance of a comprehensive test suite becomes
increasingly valuable.

One of the key problems was that the team started writing tests without fol-
lowing the correct stages; arrange, act, assert, and tear-down. The team had to

54 CHAPTER 5. DISCUSSION

Figure 5.5.1: Linked List Solution

CHAPTER 5. DISCUSSION 55

examine each test and use a lot of time rewriting them to follow the proper stages.
After the rewriting, the tests gave a much higher value to the project.

The top-down approach followed throughout the project has also caused some
issues with the testing. Mainly when features would be extended, the test would
also have to be rewritten to take into account the addition. There might be
solutions to overcome this challenge, however, the team’s limited experience with
this approach resulted in a significant amount of time being spent on rewriting
the tests.

On the contrary, when adding new features, the testing has helped ensure that
the previously added features still work as intended. This gave us confidence that
new features did not brake the old ones.

TDD is an effective and efficient workflow if implemented correctly. However, if
it’s poorly executed it can inflict more harm than it provides assistance. Therefore,
it’s worth investing time in learning about TDD, ensuring that you do not fall into
the same pitfalls as we have experienced.

5.7 Database Challenges

5.7.1 Testing Persistence Data

Testing persistence data was a challenge in the early stage of the project as most of
the tests did not follow a proper structure. Spring Boot allows for ordering tests,
making sure they are executed in a specific order every time. This was utilized to
fix the original problem. However, we quickly discovered that in our use case, it
was an antipattern. Each test should be independent and therefore not need to
be executed in a specific order. Instead, refactoring every test to follow a proper
structure with arrange, act, assert, and tear-down was a more optimal way of
solving the problem.

5.7.2 Migration

As mentioned in chapter 3.3.1, we wanted to develop the project using a top-
down approach. When adding or updating features, we often had to update the
schema of the database. This has caused some issues along the way as nobody on
the team knew exactly how to tackle this problem. After we realized this was a
recurring problem, we started looking into database migration as this seemed to
be the solution to our problem.

Spring Boot hibernate has an option called spring.jpa.hibernate.ddl-auto
that can be set to update. This will enable hibernate to update the schema of the
database based on the entities defined in the application. Our original approach
was to use this feature, however, this is considered bad practice as you do not have
full control over how hibernate will migrate the database. In production, this can
cause data inconsistency and loss of data. This option should be set to none and
updating the database schema should be done via migration scripts.

It’s common to define the schema of the database in SQL scripts. As the
database change, the migration scripts is the single source of truth. In migration
scripts, it can be defined exactly how the database should be migrated resulting
in the developers having full control of the database schema at all times.

56 CHAPTER 5. DISCUSSION

5.7.3 Connection Pool

During the development, we had some challenges regarding overstepping the de-
fault connection pool size. We hosted our own database with two schemas. One for
production and one for development. Because we all connected to the dev schema
when developing, this caused a lot of connections as a default Spring Boot appli-
cation normally creates ten connections to its data source. To address this issue,
we changed the default lifespan of a connection, evidently fixing the problem.

CHAPTER

SIX

CONCLUSIONS

6.1 Conclusion

The main objective of our assignment was to remove the need for a third-party
paid service for voice recognition and utterance. Additionally, it was important to
solve the problems with the current system, such as rearranging the pluck order.

We have developed a fully functional production-ready voice and touch-controlled
system to assist warehouse workers with plucking. Additionally, the back-end
WMS was built from scratch using the same technologies as Solwr, to assist with
future integration and merging. With this, our API supports features for role-
based authentication, user management, email transfer, and general CRUD oper-
ations for warehouse entities, making it a complete WMS.

The mobile application utilizes our WMS. Our application supports a com-
plete set of WMS features. These features include joining/creating a warehouse,
and adding, removing, and editing products, locations, and members of a ware-
house. Above all, our application supports plucking orders using both voice and
touch concurrently, without the use of a paid library, solving the main objective
of our assignment. The addition of the touch interface solves problems such as
rearranging the pluck order and managing your warehouse. In addition, this so-
lution is designed to be reusable and easily configurable, allowing any company
to adapt it to its specific warehouse layout. By prioritizing user-friendliness and
intuitiveness, we have created an application that is accessible to a wide range of
users, regardless of their technical expertise.

The group has reflected on alternative solutions to our problem and given
extensive arguments for both sides. Furthermore, we have conducted valuable
research on possible implementation for an Android mobile application, a watchOS
application, and an Android Smart Watch application.

We have received positive feedback from our employer during our development
process. All desired features are implemented and other approaches, along with
future work have been discussed.

57

58 CHAPTER 6. CONCLUSIONS

6.2 Future Work
The application has been designed with the potential for further additions in
mind. The following section will outline some ideas that can be expanded upon
to enhance its functionality.

6.2.1 Apple Watch

Currently our application is designed and tested specifically for iOS. The code
can be easily reused to make a companion Apple Watch application as discussed
in 4.7.1

6.2.2 Truck Inspection

The warehouse workers perform a mandatory daily truck inspection in order to
check that the trucks have enough battery, and battery acid and are overall safe
to operate. They then have to fill out a paper sheet documenting this inspection.
This documentation process could be implemented in our app.

6.2.3 Feature Toggling

As more and more features are implemented, the application and warehouse busi-
nesses might benefit from feature toggling, like disabling truck inspection or other
features. Further improving the tailored experience, by allowing them to only
select the features necessary, thus reducing any overhead that might cause confu-
sion.

6.2.4 Landscape Mode

As some of the warehouse workers might want to use the application strapped
onto their wrists, they might benefit from a layout that is designed specifically for
landscape. Currently, nothing stops users from using the application in landscape
mode, however, the currently implemented layout is not designed for this use case.

6.2.5 Motion Detection

Since the warehouse workers are prohibited from using their mobile phones while
driving the forklifts. The application would benefit from using motion detection
to decide when the user can use the touch interface. This would increase the safety
and enforce the company’s health, environment, and safety rules on the workers.

6.2.6 Linked List Approach

The application could benefit from the approach discussed in 5.5.1. It would
enhance the user experience by introducing even more customizability.

CHAPTER

SEVEN

SOCIAL IMPACT

Ethical aspects

Accessibility

The introduction of a touch interface makes the application more accessible. In
addition, the application introduces personal options for voice such as speed and
volume further enhancing the accessibility aspect.

Privacy

Our application asks for permission to use the device’s speaker and microphone.
The user can decide if they want to use these features, as the application is still
usable without these permissions, but at the cost of the features.

Additionally, sending voice recordings across servers to be processed raises
concerns about privacy. In our application we have utilized on-device recognition,
removing the need for sending the recordings between servers. This ensures that
the user does not have to worry about privacy, as the voice recordings never leave
the device.

Security

Our system’s communication is encrypted, all APIs and sites deployed use HTTPS.
Endpoints are secured and require authentication so that no unauthorized user can
access them without the required privileges. The system is deployed on its own
personal VLAN and does not expose any unnecessary ports to further increase
security. In addition, personal devices store sensitive data in a keychain where
everything is encrypted. Finally, user passwords are encrypted and stored in
Keycloak, ensuring that passwords are securely stored, minimizing the risk of
attacks.

59

60 CHAPTER 7. SOCIAL IMPACT

Economic effects

Productivity and Efficiency

Combining touch and voice will help streamline the process of preparing orders
from grocery stores. This will help increase the productivity and efficiency within
the warehouse. With the combination, the workers can work in a way that suits
them best, helping speed up the process for each individual pluck order. Ware-
houses can expect to use less time to prepare each order, therefore having the
capacity to prepare more orders.

Cost Savings

If Solwr replaced the current system with our system, they would save a signifi-
cant amount of money that they use for the VoiceConnect voice recognition ser-
vice. End users, such as H.I. Giørtz would also save costs because our application
increases productivity and efficiency at the warehouse.

Quality Control

The application gives an overview of entities in a warehouse. This overview can
help reduce errors in warehouse inventory management. With fewer errors, there
will be spent less time to fix the errors, enabling workers to focus on preparing
orders.

The Application’s Contribution to the UN’s Sus-
tainable Development Goals

9. Build Resilient Infrastructure, Promote Inclusive and Sus-
tainable Industrialization and Foster Innovation

In goal 9, the UN explains how the world needs to develop its infrastructure to
support substantial economic development and quality of life [45]. The logistics
behind trade of goods have a significant impact on the world. Our application
helps streamline a small part of the overall logistics process. However, small
improvements can lead to significant impact as actions are repeated multiple times,
and the cumulative effect of streamlining can be substantial. Furthermore, the
extension of a touch interface makes our application more inclusive, enabling more
people the opportunity to work in a warehouse.

12. Ensure Sustainable Consumption and Production Pat-
terns

The UN explains their 12. goal by stating that the world needs to achieve more
with fewer resources [46]. A grocery warehouse is an example of an area where our
application can be used. Since food items have a relatively short expiration time, a
comprehensive warehouse management system that provides a good overview can

CHAPTER 7. SOCIAL IMPACT 61

reduce waste. By effectively managing inventory and ensuring rotation of goods,
our application can contribute to minimizing waste in the food industry.

62 CHAPTER 7. SOCIAL IMPACT

REFERENCES

[1] NTNU. Emne - Mobile applikasjoner - IDATA2503 - NTNU. url: https:
//www.ntnu.no/studier/emner/IDATA2503#tab=omEmnet (visited on
04/27/2023).

[2] Claire Drumond. Scrum. 2023. url: https://www.atlassian.com/agile/
scrum (visited on 03/01/2023).

[3] What is a Sprint in Scrum? url: https://www.scrum.org/resources/
what-is-a-sprint-in-scrum (visited on 03/01/2023).

[4] Dave West. Agile scrum roles and responsibilities. Atlassian. url: https:
//www.atlassian.com/agile/scrum/roles (visited on 04/02/2023).

[5] Deepti Sinha. What is an Epic in Agile? examples and Differences. knowl-
edgehut. url: https://www.knowledgehut.com/blog/agile/what-is-
an-epic-agile (visited on 04/02/2023).

[6] Task. Agile Academy. url: https://www.agile-academy.com/en/agile-
dictionary/task/ (visited on 04/02/2023).

[7] What is version control? Atlassian. url: https://www.atlassian.com/
git/tutorials/what-is-version-control (visited on 05/01/2023).

[8] What is a REST API? Red Hat. May 2020. url: https://www.redhat.
com/en/topics/api/what-is-a-rest-api (visited on 04/24/2023).

[9] The WebSocket API (WebSockets). mdn web docs. Mar. 2023. url: https:
//developer.mozilla.org/en- US/docs/Web/API/WebSockets_API
(visited on 04/23/2023).

[10] Auth0. Role-Based Access Control. 2022. url: https://auth0.com/docs/
manage-users/access-control/rbac (visited on 04/25/2023).

[11] JWT.IO - JSON Web Tokens Introduction. url: https://jwt.io/introduction
(visited on 04/25/2023).

[12] Spring Boot - Introduction. Tutorialspoint.com. 2019. url: https://www.
tutorialspoint.com/spring_boot/spring_boot_introduction.htm
(visited on 04/24/2023).

[13] Core Technologies. Spring. url: https : / / docs . spring . io / spring -
framework/docs/current/reference/html/core.html#beans-introduction
(visited on 04/24/2023).

[14] Swagger tutorial. Java T Point. url: https://www.javatpoint.com/
swagger (visited on 04/24/2023).

63

https://www.ntnu.no/studier/emner/IDATA2503#tab=omEmnet
https://www.ntnu.no/studier/emner/IDATA2503#tab=omEmnet
https://www.atlassian.com/agile/scrum
https://www.atlassian.com/agile/scrum
https://www.scrum.org/resources/what-is-a-sprint-in-scrum
https://www.scrum.org/resources/what-is-a-sprint-in-scrum
https://www.atlassian.com/agile/scrum/roles
https://www.atlassian.com/agile/scrum/roles
https://www.knowledgehut.com/blog/agile/what-is-an-epic-agile
https://www.knowledgehut.com/blog/agile/what-is-an-epic-agile
https://www.agile-academy.com/en/agile-dictionary/task/
https://www.agile-academy.com/en/agile-dictionary/task/
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://auth0.com/docs/manage-users/access-control/rbac
https://auth0.com/docs/manage-users/access-control/rbac
https://jwt.io/introduction
https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm
https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#beans-introduction
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#beans-introduction
https://www.javatpoint.com/swagger
https://www.javatpoint.com/swagger

64 REFERENCES

[15] Fatima Junaid. What is SwiftUI? educative. url: https://www.educative.
io/answers/what-is-swiftui (visited on 04/24/2023).

[16] Jamis Charles. What is Debouncing? Medium. url: https : / / medium .
com / @jamischarles / what - is - debouncing - 2505c0648ff1 (visited on
05/15/2023).

[17] Alexander S. Gillis. Voice Recognition (Speaker Recognition). url: https://
www.techtarget.com/searchcustomerexperience/definition/voice-
recognition-speaker-recognition (visited on 04/28/2023).

[18] Waht is text to speech? url: https://www.naturalreaders.com/online/
(visited on 04/28/2023).

[19] Ian Buchannan. Feature flags. Atlassian. url: https://www.atlassian.
com/continuous-delivery/principles/feature-flags (visited on 04/28/2023).

[20] What is a relational database? Google. url: https://cloud.google.com/
learn/what-is-a-relational-database (visited on 04/11/2023).

[21] Database migration: Concepts and principles (Part 1). Google. Oct. 2022.
url: https://cloud.google.com/architecture/database-migration-
concepts-principles-part-1 (visited on 04/11/2023).

[22] Flyway. Flyway. url: https://flywaydb.org/ (visited on 04/11/2023).

[23] Welcome to the Liquibase Community. Liquibase. url: https : / / www .
liquibase.org/ (visited on 04/11/2023).

[24] Thomas Hamilton. What is Test Drive Development? 2023. url: https://
www.guru99.com/test-driven-development.html (visited on 03/17/2023).

[25] Martin Sandin. Four Strategires for Organizing Code. Feb. 2016. url: https:
//medium.com/@msandin/strategies-for-organizing-code-2c9d690b6f33
(visited on 04/01/2023).

[26] Web Dev Simplified. Junior vs Senior React Folder Structure - How To
Organize React Projects. Youtube. July 2022. url: https://www.youtube.
com/watch?v=UUga4-z7b6s&t=581s (visited on 04/01/2023).

[27] Rowan Haddad. Git branching strategies. Flagship. Mar. 2022. url: https:
//www.flagship.io/git-branching-strategies/ (visited on 04/24/2023).

[28] Amigoscode. 10 Spring and Spring Boot Common Mistakes You Need To
STOP. Apr. 2023. url: https://youtu.be/CT8dbbe783s?t=22 (visited on
04/24/2023).

[29] Apple Developer Documentation. url: https://developer.apple.com/
documentation/speech/sfspeechrecognizer (visited on 04/28/2023).

[30] Apples Machine learning research. On-device Neural Speech Synthesis. url:
https://machinelearning.apple.com/research/on-device-neural-
speech (visited on 05/12/2023).

[31] AVAudioSession. url: https://developer.apple.com/documentation/
avfaudio/avaudiosession (visited on 05/16/2023).

[32] Paul Hudson. Scanner. url: https://github.com/twostraws/CodeScanner
(visited on 04/27/2023).

https://www.educative.io/answers/what-is-swiftui
https://www.educative.io/answers/what-is-swiftui
https://medium.com/@jamischarles/what-is-debouncing-2505c0648ff1
https://medium.com/@jamischarles/what-is-debouncing-2505c0648ff1
https://www.techtarget.com/searchcustomerexperience/definition/voice-recognition-speaker-recognition
https://www.techtarget.com/searchcustomerexperience/definition/voice-recognition-speaker-recognition
https://www.techtarget.com/searchcustomerexperience/definition/voice-recognition-speaker-recognition
https://www.naturalreaders.com/online/
https://www.atlassian.com/continuous-delivery/principles/feature-flags
https://www.atlassian.com/continuous-delivery/principles/feature-flags
https://cloud.google.com/learn/what-is-a-relational-database
https://cloud.google.com/learn/what-is-a-relational-database
https://cloud.google.com/architecture/database-migration-concepts-principles-part-1
https://cloud.google.com/architecture/database-migration-concepts-principles-part-1
https://flywaydb.org/
https://www.liquibase.org/
https://www.liquibase.org/
https://www.guru99.com/test-driven-development.html
https://www.guru99.com/test-driven-development.html
https://medium.com/@msandin/strategies-for-organizing-code-2c9d690b6f33
https://medium.com/@msandin/strategies-for-organizing-code-2c9d690b6f33
https://www.youtube.com/watch?v=UUga4-z7b6s&t=581s
https://www.youtube.com/watch?v=UUga4-z7b6s&t=581s
https://www.flagship.io/git-branching-strategies/
https://www.flagship.io/git-branching-strategies/
https://youtu.be/CT8dbbe783s?t=22
https://developer.apple.com/documentation/speech/sfspeechrecognizer
https://developer.apple.com/documentation/speech/sfspeechrecognizer
https://machinelearning.apple.com/research/on-device-neural-speech
https://machinelearning.apple.com/research/on-device-neural-speech
https://developer.apple.com/documentation/avfaudio/avaudiosession
https://developer.apple.com/documentation/avfaudio/avaudiosession
https://github.com/twostraws/CodeScanner

REFERENCES 65

[33] Bill Morefield. How To Secure iOS User Data: Keychain Services and Bio-
metrics with SwiftUI. Aug. 2020. url: https://www.kodeco.com/11496196-
how-to-secure-ios-user-data-keychain-services-and-biometrics-
with-swiftui (visited on 05/01/2023).

[34] SpeechRecognizer | Android Developers. 2019. url: https://developer.
android.com/reference/android/speech/SpeechRecognizer (visited on
04/28/2023).

[35] cmusphinx/pocketsphinx. url: https://github.com/cmusphinx/pocketsphinx
(visited on 04/28/2023).

[36] Kaldi Speech Recognition Toolkit. Feb. 2023. url: https://github.com/
kaldi-asr/kaldi (visited on 04/28/2023).

[37] TextToSpeech | Android Developers. 2019. url: https://developer.android.
com/reference/android/speech/tts/TextToSpeech (visited on 04/28/2023).

[38] Apple Developer Documentation. url: https://developer.apple.com/
tutorials/swiftui/creating-a-watchos-app (visited on 04/30/2023).

[39] Watch Connectivity. url: https://developer.apple.com/documentation/
watchconnectivity (visited on 04/30/2023).

[40] ObservableObject. url: https://developer.apple.com/documentation/
combine/observableobject (visited on 05/01/2023).

[41] OpenID. openid/AppAuth-iOS. 2023. url: https://github.com/openid/
AppAuth-iOS (visited on 04/26/2023).

[42] Apple. UIKIT | Apple Developer Documentation. 2020. url: https : / /
developer.apple.com/documentation/uikit (visited on 04/26/2023).

[43] Set up Keycloak in Spring Boot using the Keycloak Admin API. url: https:
//gauthier-cassany.com/posts/spring-boot-keycloak-admin-api
(visited on 04/27/2023).

[44] Firebase. Add the Firebase Admin SDK to your server. url: https : / /
firebase.google.com/docs/admin/setup (visited on 04/27/2023).

[45] 9 innovasjon og infrastrukut. UN. url: https://unric.org/no/mal-9/
(visited on 05/20/2023).

[46] 12 ansvarlig forbruk og produksjon. UN. url: https://www.fn.no/om-
fn/fns-baerekraftsmaal/ansvarlig-forbruk-og-produksjon (visited
on 05/20/2023).

[47] React Native. 2023. url: https://reactnative.dev/ (visited on 03/29/2023).

[48] Maksym Churylov. Pros and cons of React Native for cross-platofmr app
development. url: https://www.mindk.com/blog/react-native-pros-
and-cons/ (visited on 03/28/2023).

[49] Make any app. Run it everywhere. url: https://expo.dev/ (visited on
03/28/2023).

[50] What are the different kinds of cases? Jan. 2022. url: https://stackoverflow.
com/questions/17326185/what-are-the-different-kinds-of-cases
(visited on 03/28/2023).

https://www.kodeco.com/11496196-how-to-secure-ios-user-data-keychain-services-and-biometrics-with-swiftui
https://www.kodeco.com/11496196-how-to-secure-ios-user-data-keychain-services-and-biometrics-with-swiftui
https://www.kodeco.com/11496196-how-to-secure-ios-user-data-keychain-services-and-biometrics-with-swiftui
https://developer.android.com/reference/android/speech/SpeechRecognizer
https://developer.android.com/reference/android/speech/SpeechRecognizer
https://github.com/cmusphinx/pocketsphinx
https://github.com/kaldi-asr/kaldi
https://github.com/kaldi-asr/kaldi
https://developer.android.com/reference/android/speech/tts/TextToSpeech
https://developer.android.com/reference/android/speech/tts/TextToSpeech
https://developer.apple.com/tutorials/swiftui/creating-a-watchos-app
https://developer.apple.com/tutorials/swiftui/creating-a-watchos-app
https://developer.apple.com/documentation/watchconnectivity
https://developer.apple.com/documentation/watchconnectivity
https://developer.apple.com/documentation/combine/observableobject
https://developer.apple.com/documentation/combine/observableobject
https://github.com/openid/AppAuth-iOS
https://github.com/openid/AppAuth-iOS
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit
https://gauthier-cassany.com/posts/spring-boot-keycloak-admin-api
https://gauthier-cassany.com/posts/spring-boot-keycloak-admin-api
https://firebase.google.com/docs/admin/setup
https://firebase.google.com/docs/admin/setup
https://unric.org/no/mal-9/
https://www.fn.no/om-fn/fns-baerekraftsmaal/ansvarlig-forbruk-og-produksjon
https://www.fn.no/om-fn/fns-baerekraftsmaal/ansvarlig-forbruk-og-produksjon
https://reactnative.dev/
https://www.mindk.com/blog/react-native-pros-and-cons/
https://www.mindk.com/blog/react-native-pros-and-cons/
https://expo.dev/
https://stackoverflow.com/questions/17326185/what-are-the-different-kinds-of-cases
https://stackoverflow.com/questions/17326185/what-are-the-different-kinds-of-cases

66 REFERENCES

[51] Rapidly build modern websites without ever leaving your HTML. url: https:
//tailwindcss.com/ (visited on 03/28/2023).

[52] Amazon. What is flutter? url: https://aws.amazon.com/what- is/
flutter/ (visited on 04/25/2023).

[53] Null Safety Support for Flutter and Dart. Section. Oct. 2021. url: https:
//www.section.io/engineering-education/null-safety-support-
for-flutter-and-dart/ (visited on 04/27/2023).

[54] Kotlin. Multiplatform. url: https://kotlinlang.org/lp/mobile/ (visited
on 04/25/2023).

[55] Android. Jetpack Compose. url: https : / / developer . android . com /
jetpack/compose (visited on 04/25/2023).

https://tailwindcss.com/
https://tailwindcss.com/
https://aws.amazon.com/what-is/flutter/
https://aws.amazon.com/what-is/flutter/
https://www.section.io/engineering-education/null-safety-support-for-flutter-and-dart/
https://www.section.io/engineering-education/null-safety-support-for-flutter-and-dart/
https://www.section.io/engineering-education/null-safety-support-for-flutter-and-dart/
https://kotlinlang.org/lp/mobile/
https://developer.android.com/jetpack/compose
https://developer.android.com/jetpack/compose

APPENDICES

67

APPENDIX

A

PRELIMINARY PROJECT PLAN

68

Preliminary Project Plan

eDate Version Descriptions Author

11.01 0.1 Template version @ Joakim Edvardsen

18.01 0.2 Goals & Boundaries @ Håkon Sætre

19.01 1.0 Report first version @ Petter Molnes

@ Håkon Sætre

@ Joakim Edvardsen

20.01 1.1 Cleanup, remove duplicates @ Mateusz Picheta

@ Petter Molnes

Goals & Boundaries

1.1 Overview

We knew that Solwr would supply NTNU with a couple of Bachelor Assignments since three of the members in this group work there. We
expressed our wish in getting one of their assignments. There were several reasons for this: 3 of our group members had the course Mobile-
Development during our 5th semester, and all of us found the course and the work intriguing. Additionally, all of us got excellent grades and
feedback. Furthermore, the three of us who work at Solwr have a great relationship and experience working for them. We all wanted to learn
more about Mobile-Applications and work more with Solwr, so, therefore, we applied for this assignment as our first choice.

1.2 Problem statement / Project description and results goals

Help Solwr develop a mobile application improving the process of picking products in large warehouses. Currently, Solwr has a voice pick system
controlled by employees using their voice together with a headset. They want to develop a mobile application, keeping the benefits of their
current implementation with voice pick and the flexibility of a touch screen on a touch device.

We will use this as an opportunity to explore and develop a solution with technologies that Solwr currently does not have the resources to look
into. For example, integration with smart watches, scanners and/or sensors, or even smart glasses. Ultimately helping Solwr explore technologies
that can help improve the process of picking products in large warehouses.

The result goal we strive for is to create an accessible application that fits in well with Solwr’s ecosystem of software and applications. It should
not stand out from their other software and work on a wide range of devices. Aswell as do its main task, voice picking effectively.

1.3 Effect goals

Our group’s goal with this project is to enhance our knowledge of Mobile-Applications and develop in a team with SCRUM methodology. Also, the
project gives us the opportunity to explore technologies that we haven’t used before, such as Swift, React Native, Kotlin, voice-recognition, Smart
Watches, etc.

Our prototype will be used by Solwr to look at the possibility to implement this on a wider scale as a marketable product. By utilizing the result of
our project, Solwr can increase its productivity if they decide to further develop this idea. They can look at what we did well, and what could have
been better so that they don’t make the same mistakes that we might do. Currently, the user of the existing pick system can only use their voice
to interact with the system they are using now. If Solwr decided to further develop this prototype, their customers will have a more effective and
flexible workflow. Ideally, the customer would be able to use their voice through their iPhone or Apple Watch to interact with the application,
additionally, they will have the possibility to use the on-screen interface to adjust picking-order, and mark items as complete. Furthermore, the
employer at warehouses would not have to buy as many devices, as the employees would be able to use their own devices.

In conclusion, this will be a research-driven project that Solwr can decide to further develop to make a marketable product that increases the
productivity and effectivity at warehouses, and decreases the upfront cost for physical devices.

1.4 Boundaries

For this project, we don’t have much need for money or any equipment. What we need is a cloud server to run our back-end. The cloud server
will be provided by either Solwr or NTNU. If publishing the app to App Store is a priority, Solwr will provide Apple Developer Accounts for us so
that we can go through that process.

Our employer at Solwr will meet with us every two weeks at the end of our sprints, to have a review with us. Mainly we will be seated at NTNU
when we work on our project, but if we want or need to sit at Solwr’s office, they have the possibility to assign us some desks.

Additionally, we have requested a tour of the warehouse where the application would be used. This is so that we as a group can have a better
understanding of the workflow and take that into account when we develop the application. Gjørtz agreed that we can come over and get an
introduction to how they work and try it ourselves.

2. Organizing

Project manager:

Our coordinator and project manager are Mikael Tollefsen from NTNU, which is going to ensure that the bachelor structure and content are on
track.

Development team:

Our bachelor group consists of Joakim Edvardsen, Petter Molnes, Mateusz Picheta, and Håkon Sætre. We are the ones that are responsible for
designing, building, and testing the application.

End users:

Our target is companies that need an efficient way to have control over their products. The target for our product is Gjørtz, which is the leading
logistics firm in Ålesund.

Quality assurance team:

Gjørtz, we want to have good communication with our customers and make sure they test our product for further improvements. Testing will also
be continually done by our group and Solwr. Mikael Tollefsen as our NTNU supervisor will also supervise our work-process and report-writing.

3. Implementation

3.1 Main activities

Listing of main activities.

Our project will be separated into several phases of activities.

Preparation - we will spend our first week having a kick-off meeting with Solwr to get an understanding of our working relationship during this
project. As well as signing off on contracts between our group, and also with Solwr. Furthermore we will spend time setting up Jira and proper
documentation for our project. This is done so that we have a streamlined process where every group member knows where to find
information.
Planning - afterwards, we will analyze the problem domain and create epics, user-stories and tasks based on what is written in the project
proposal. Have a meeting with Solwr where we get feedback on this and what should be prioritised.

Plan our sprints so that we have a clear view of when we need to start and finish our main activities.

The group members will plan the architecture and infrastructure of our system and document this properly. Furthermore we need to design
how the app will look and feel for our end-users, with input from Solwr.

By doing this, we hope to achieve a more effective and easier process when we develop our application.
Research - before beginning development, the group members need to look into what tools we need to use based on the feedback from
Solwr. We need to look into the different technologies that we consider using and what suits our needs the best. This is done so that all our
group members will be familiar with the different choices we have, and become comfortable with the technologies that we end up using.
Development - after having researched, and decided which route we want to go, we will go into the longest phase of this project,
development. In this phase, every group member will be responsible to make sure we can deliver a product on time, which will satisfy the
needs of our employeer.
Report writing - this will also be done concurrently with all the other phases, since it is the most important aspect of our Bachelor. However,
we will use the last phase to finalize and fine tune our report. We will get some feedback from our supervisor at NTNU before we hand it in.

Every part of the process should be documented on our Confluence and Jira page, so that we have all the necessary information we need, when
we write our project report.

3.2 Milestones

Preliminary project plan - 28. January
Poster - 28. mars
MVP in middle of April.
Oral presentation (English) - week 13 (date TBD)
Documentation of work process (Status reports, meeting notices, meeting notes, log) - 20. May
Oral presentation of final product - 27. May

4. Follow-up and quality assurance

4.1 Quality assurance

To ensure good quality of our project we will have good sprint reports to make sure that everything is done and everyone is working on the task
they have been assigned. We as a group want to set clear guidelines for the project and will ensure that everyone in the group, our employer,
and our supervisor understands what is expected of them and us to provide good quality.

Having good communication is crucial for ensuring quality. To regularly have good communication with our customers and get feedback on what
has been done and what needs to be done. By continuous evaluation and improvement of the process, we will make sure that the project is
moving in the right direction.

Documentation of the whole process will make sure that every party is aware of the guidelines and will make it easy to identify errors in the
process.

4.2 Reporting

We will work in two-week sprints. Each sprint consists of some internal meetings with only team members, some meetings with the supervisor,
and some meetings with the employer.

In internal meetings, we will discuss daily stand-up, sprint planning, and spring retrospective. During daily stand-ups, we will report if there is a
problem with any issues or if some of the estimations have to be adjusted. Sprint planning will happen once every spring when the sprint starts.
During the sprint planning, we will plan the next sprint, what the goal is and what tasks we should work on during the spring. Lastly, at the end of
each sprint, we will have a sprint retrospective meeting to discuss what went well, and what can be done better.

At the end of each sprint, we will also have a sprint review with the employer where we discuss what we have done during the sprint. Also, get
feedback from the employer and input on what should be priorities. Sprint review will be combined with status rapport since the supervisor will
always be present. A meeting notice should be sent to both supervisor and employer to notify specific time and date, with the relevant agenda.

5. Risk assessment

Risk analysis that assesses vulnerabilities in the project (event, probability, consequence, and measures)

In this project, we have some points that could potentially affect the project negatively. if one of our members for some reason can't attend or is
sick, it might impact the project by not having all of the necessary parts correct or on time. The probability of this happening is low, cause most of
our tasks can be done remotely except for spring and group meetings. If this happens and someone in our group is very sick, we would need
good communication to probably split up the task for others to do.

When it comes to risk assessing the application. We need to make sure the application is secure, that all our APIs are secured and function as
expected. Make sure the application is compatible with various devices as well as making sure the application is performant.

Another risk is the time we have, we need to plan out our schedule to make sure we achieve all our goals before the deadline. Lastly, we have to
make sure not to overreach with the scope of the project. We do not want to end up with a too wide scope where we haven’t actually solved
anything.

6. Attachments

The following documents are delivered as separate files when submitted in Blackboard in January (mandatory work requirement), but not in the
final delivery of the main report on 20 May!

6.1 Schedule

Here is the first iteration of our roadmap. This could of course change over the course of the project.

6.2 Agreement documents

6.3 Work contract for bachelor group

This is a link to our group contract in Confluence, if you don’t have access, look for pdf attached to the hand-in.

Group contract signed

3-party agreement

This is a link to our Standard Agreement in Confluence, if you don’t have access, look for pdf attached to the hand-in.

Standard Agreement

APPENDIX

B

GITLAB REPOSITORY

All code developed during the project are included in the GitLab repositories
linked below. Further explanations are given in the readme-file.

B.0.1 SwiftUI GitLab Repository Link

• https://gitlab.com/IDATA-2900-Group-1/voice-pick-frontend

B.0.2 Spring Boot GitLab Repository Link

• https://gitlab.com/IDATA-2900-Group-1/voice-pick-backend

B.0.3 Iac GitLab Repository Link

• https://gitlab.com/IDATA-2900-Group-1/voice-pick-iac

73

https://gitlab.com/IDATA-2900-Group-1/voice-pick-frontend
https://gitlab.com/IDATA-2900-Group-1/voice-pick-backend
https://gitlab.com/IDATA-2900-Group-1/voice-pick-iac

APPENDIX

C

PLUCK FLOW EXAMPLE

In this appendix, you will find a youtube link with a video of one of our developers
testing out our application for completing a pluck round.

• https://www.youtube.com/watch?v=ldt2QxZ4jbU

74

https://www.youtube.com/watch?v=ldt2QxZ4jbU

APPENDIX

D

RESEARCH

D.1 React Native

React Native is a cross-platform framework developed by Meta that allows for
the creation of mobile applications. The framework utilizes a write-once, run-
anywhere strategy, enabling developers to create applications that can be deployed
on multiple mobile platforms, such as iOS and Android [47].

The framework is written in JavaScript, which allows for similarities with other
frameworks commonly used for web development [47]. The React Native compiler
converts the JavaScript code written by the developers into native code, thus
enabling the use of the same native platform APIs as other applications.

D.1.1 Native Support

React Native, while offering cross-platform compatibility, still experiences limited
compatibility with native APIs. Due to the framework’s JavaScript-based archi-
tecture, some native features may require the use of third-party libraries or custom
modules. This can result in longer development time as well as increased mainte-
nance costs. Additionally, compatibility with newer versions of native platforms
may also be limited and require additional updates to the framework or its associ-
ated libraries [48]. These limitations may hinder the ability of developers to utilize
certain native functionalities, potentially impacting the overall user experience of
the application.

D.1.2 TypeScript Support

In addition to its core functionality, React Native also offers support for Type-
Script, a typed superset of JavaScript that provides additional features such as
type-checking and auto-completion. This feature furthers the development expe-
rience, allowing for more efficient application creation.

D.1.3 Expo

Expo Go is a framework that facilitates the development of React Native appli-
cations by providing a set of tools and services for the developer to utilize [49].

75

The framework offers an alternative approach to the traditional React Native CLI,
providing a more user-friendly and streamlined development experience.

After creating an application with Expo Go, developers can run the applica-
tion and receive a QR code in the terminal. This code can be scanned using the
Expo Go app, available on both the App Store and Google Play, to open the ap-
plication on any mobile device. The application will automatically hot reload and
reflect any changes made to the code, providing a smooth developer experience.
Additionally, developers can share the QR code with others to receive feedback on
the application.

Figure D.1.1: Expo Go output in the terminal when running the application

D.1.4 Styling

As mentioned above, React Native is a JavaScript framework, meaning it’s quite
similar to other front-end frameworks used to develop websites. This compatibility
can benefit teams who have expertise in these JavaScript frameworks. Another
familiarity React Native shares with web development is how the structure and
layout of the application are designed as well as how each individual component
is structured. By default, React Native offers a language almost the same as CSS
used in web development. The main difference is CSS uses a kebab case scheme
for its naming conventions, whereas the CSS offered by React Native changes this
to a camel case scheme [50].

76

Furthermore, Tailwind can easily be integrated into a React Native app, just
like any other web development framework. Tailwind is a vast library that com-
prises utility classes, which can simplify the application development process [51].
Since only the utilized classes are included in the final application during com-
pilation, the application size is kept to a minimum, eliminating any concerns of
overload.

D.2 Flutter

Flutter is a framework developed by Google, that is used for creating modern
frontend and full-stack application user interfaces. Being cross-platform, Flutter
can compile to multiple different devices using a single codebase. Flutter uses the
programming language Dart, which Google also developed. With the use of dart
and flutters widgets, you can create visually appealing user interfaces. In Flutter,
widgets are the main components for building UI layouts, meaning that everything
visible in the app is made out of widgets. [52]

D.2.1 Null Safety

One of the best addition to Flutter is null safety. With null safety, the compiler
forces the developers to avoid null values in variables [53]. This feature is supported
in multiple languages and the implementation in Flutter enhances the development
experience.

D.2.2 Previous Experience

Flutter is a framework some of us have used before. It’s great for making cross-
platform apps and has a nice UI with many customizable widgets and a modern
design. While Flutter performs quickly, it does have limited library choices and
lacks native support.

For our project, we will not be using Flutter. The cons of Flutter outweigh
the pros. We need good native support for our voice commands, and performance
is really important for our customers since they want to be able to do their job
as effectively as possible. Also, the focus of our project isn’t really to have an
application for both iOS and Android but streamline the workflow for our users
with both a touch interface and a voice interface.

D.3 Android

D.3.1 Kotlin

Kotlin is a framework developed by Android. It is designed for creating cross-
platform applications. Kotlin is trusted by many of the world’s leading companies
and used by over 60% professional Android developers. It reduces the time spent
writing and maintaining the same code for different platforms while retaining
flexible native programming [54].

77

D.3.2 Jetpack Compose

Jetpack Compose, is a modern toolkit for building native UI. Jetpack Compose
makes it possible to make appealing applications with less code and is therefore
simple and easy to maintain. The code is written only in Kotlin, rather than
having it split between Koltin and XML, offering a more unified development
experience. [55]

D.4 SwiftUI

SwiftUI is a modern framework developed by Apple for building user interfaces
across its operating system ecosystem, including iOS, iPadOS, macOS, watchOS,
and tvOS. The framework provides a simple and intuitive syntax for constructing
user interfaces, making it easier for developers to create visually appealing and
functional apps. It uses the powerful features of the Swift programming language
to offer automatic support for critical elements like accessibility, localization, and
dynamic type. SwiftUI is designed to work seamlessly with other Apple tech-
nologies, including Core Data, Combine, and Xcode, providing a comprehensive
solution for app development. With its unified tools and APIs, SwiftUI allows
developers to create apps for all Apple platforms using a single codebase, stream-
lining the development process. [15]

D.4.1 Styling

SwiftUI has a powerful styling system that lets developers make their user in-
terfaces look good. The system uses ViewModifiers, which are small pieces that
can be put together to create different UI elements. SwiftUI has many built-in
ViewModifiers for buttons, text, and images. Developers can also make their own
custom ViewModifiers.

Consistency with styles is easy to maintain with SwiftUI. Like changing style to
text, font, color, and other features. Swift supports themes, which are collections
of styling that can be applied throughout the whole app.

Automatic support for dark mode, so the app can switch to a dark look when
the user sets their device too dark mode. With all these tools, SwiftUI helps
developers make their apps look great and work well. Dark mode was highly
requested by our employer as well.

D.4.2 Icons

The framework provides a wide range of built-in icons, including system icons and
customizable icons, that can be used to improve visual interests.

Developers can also create custom icons, either by creating them from scratch
or by using third-party libraries. SwiftUI makes it easy to use custom icons like
built-in icons, making it simple to add a unique touch to an application’s user
interface.

78

D.4.3 Speech to Text

With SwiftUI applications can make use of APIs and libraries to add functionality
with SST. The speech framework provides access to the device´s STT engine,
allowing developers to convert spoken words into text.

79

	Abstract
	Preface
	Contents
	List of Figures
	Definitions
	Abbreviations
	Introduction
	Motivation
	Project Description
	Existing Solution
	Problem Statement
	Scope
	Requirements
	Boundaries
	Long Term Effects
	Stakeholders

	Theory
	Project Development Tools
	Work Methodology
	SCRUM
	Top Down
	Bottom Up

	Version Control
	Git Strategy

	Client-Server Communication
	REST API
	WebSocket API
	SMTP

	Authentication and Authorization
	Role-Based Access
	JSON Web Token
	Keycloak

	Frameworks and Tools
	Spring Boot
	Swift
	MidJourney

	Development Concepts
	Mapper
	Debounce
	Voice Recognition
	Text-to-Speech
	Feature Toggling

	Database Concepts
	Relational Database
	Database Migration
	Migration Tools
	Migration Strategies

	Testing Concepts
	Test Driven Development

	Deployment Concepts
	Ubuntu
	Terraform
	Containers
	Docker
	Kubernetes
	GitLab Runner
	Reverse proxy

	Methods
	Planning
	Research
	Understanding the Problem Domain

	Project Structure
	Repository Structure
	Application Structure
	Design

	Workflow
	Top Down
	Git Strategy
	Priority
	Time log
	Branching
	Merge request
	Pipelines

	Testing
	Test Driven Development
	Postman
	Testing Persistence Data
	User Testing

	Technology Stack
	SwiftUI
	Spring Boot
	Keycloak
	SMTP
	Endpoint Documentation

	Results
	Authentication Flow
	Architecture
	Features

	Spring Boot API
	Security Configuration
	Entity Relations
	SMTP
	Leaking Internals
	Error handling
	Documentation

	Deployment
	Diagram

	SwiftUI Application
	Application layout
	Speech Recognition
	Text to Speech
	Touch and Voice Concurrency
	Warehouse Configuration
	Additional pages
	Keychain
	Communicating with API

	Real Life Environment
	Pluck-flow Example
	Efficiency
	Removed Redundancy
	Bluetooth devices

	Android Implementation
	Implementing Voice-Pluck

	Smart Watch Companion App
	Apple Smart Watch App
	Android Smart Watch App

	Discussion
	Project Structure And Architecture
	Project Plan and Roadmap
	Reflection on Project Structure Choice
	Matching DTOs Between Applications
	Shared Services

	Authentication
	Firebase
	Tokens

	Choice of Front-end Framework
	Decision
	Reflecting on iOS Development

	Text To Speech Alternatives
	Phonetic Alphabet

	Voice and Touch Concurrency Challenges
	Alternative Approach

	Back-end
	REST API and WebSockets API
	Reflection on Test Driven Development

	Database Challenges
	Testing Persistence Data
	Migration
	Connection Pool

	Conclusions
	Conclusion
	Future Work
	Apple Watch
	Truck Inspection
	Feature Toggling
	Landscape Mode
	Motion Detection
	Linked List Approach

	Social Impact
	References
	Appendices:
	Preliminary Project Plan
	GitLab repository
	SwiftUI GitLab Repository Link
	Spring Boot GitLab Repository Link
	Iac GitLab Repository Link

	Pluck flow Example
	Research
	Mobile Application Frameworks
	React Native
	Native Support
	TypeScript Support
	Expo
	Styling

	Flutter
	Null Safety
	Previous Experience

	Android
	Kotlin
	Jetpack Compose

	SwiftUI
	Styling
	Icons
	Speech to Text

