
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Ba
ch

el
or

’s
th

es
is

Sindre Davidsen Schonhowd
Magnus Lekanger Voll
Øivind Wahlstrøm

Framework for secure data collection
and through integration with various
APIs

Bachelor’s thesis in Digital infrastruktur og cybersikkerhet
Supervisor: Muhammad Mudassar Yamin
May 2023

Sindre Davidsen Schonhowd
Magnus Lekanger Voll
Øivind Wahlstrøm

Framework for secure data collection
and through integration with various
APIs

Bachelor’s thesis in Digital infrastruktur og cybersikkerhet
Supervisor: Muhammad Mudassar Yamin
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

Tussa is a Norwegian company based on the west coast of Norway. Tussa’s vis-
ion is to create innovative and environmentally friendly solutions. They wanted
a better solution for data collection through Microsoft Intune, Cisco Secure En-
dpoint and Cisco Umbrella to their customers. Therefore this project builds on
the assignment of doing research and improve the procedures for SaaS service
integration using APIs. The solution should follow Best Practise security strategy
for managing scripts, code, API credentials and data. The goal of this project is to
develop a solution that collects this data via API calls and displays it in a readable
and understandable interface for Tussa’s customers.

The project will cover the entire process of developing the solution. All the way
from the planning process to implementation. The first couple of chapters cov-
ers relevant information needed to understand the solution and the technologies
used. Then the report moves over to the more technical part, covering how the
solution is built and the technical design with the different microservices. We also
conducted a risk assessment for the solution and the work related to the task.
Then the report moves over to evaluating and discussing different choices made
both on the technical part and how the work was conducted. Wrapping up the
report we made a conclusion and consideration for future implementation.

iii

Sammendrag

Tussa er ett norskt selskap lokalisert på vestlandet som arbeider for å skape fremt-
idsrettet og miljøvennlige løsninger. Tussa ønsket en forbedret løsning på datainnsam-
lingen fra sine kunder gjennom Microsoft Intune, Cisco Secure Endpoint og Cisco
Umbrella. Derfor vil dette prosjektet omhandle å undersøke og forbedre prosedyrene
for SaaS servicer med bruk av APIs. Denne løsningen skal følge Best Practise sik-
kerhetsstrategi når det kommer til behandlingen av script, kode, API credentials
og data. Målet med dette prosjektet er å utvikle en løsning som samler inn denne
informasjonen ved å bruke API calls, og samle det i en lesbar oversikt for kundene
til Tussa.

Oppgaven vil dekke hele prosessen med å utvikle denne applikasjonen. Helt fra
startfasen med planleggingsprosessen til implementasjon. De første kapitlene dek-
ker relevant informasjon både på selve løsningen men også ulike teknologier og
fagbegreper som er brukt i løsningen. Deretter går rapporten over i teknisk for-
ståelse av applikasjonen, hvor vi beskriver det tekniske designet og hvordan app-
likasjonen er bygd opp med ulike mikroservicer. Det er også gjennomført en risiko-
analyse av den nye løsningen, og arbeidet med dette. Videre går rapporten over
i en evaluering og diskusjonsdel hvor vi diskuterer ulike valg som er gjort under-
veis både med arbeidet og løsningen. Til slutt er en konklusjon av oppgaven samt
forslag til fremtidig utvikling.

v

Preface

We want to share our deepest gratitude to everyone who has been a part of this
project. During the entire project there has been multiple participants who has
both supported and helped us to get through.

First we would like to thank Md Mujahid Islam Peal and the CyberRange located
at NTNU Gjøvik for sharing knowledge about different technologies and providing
a highly valuable demonstration of how they work. This remarkable contribution
improved our perspective and understanding of available technologies and their
significant utility.

Secondly we would like to manifest our profounding appreciation to our super-
visor, Muhammad Mudassar Yamin. He has dedicated great effort in helping us
achieve a substantial product, and played a crucial role guiding us onto the right
path from the very beginning. He has expressed his dedication to our work, by
being available from morning to evening throughout the project. He as played a
key role by answered questions, providing feedback and helped us reviewing the
bachelor thesis to the very end. We truly valued having you as our advisor during
this project.

Finally, we would we like to express our gratitude towards our client Tussa, and
their hospitality for allowing us to visit them at Ørsta. We cherish the profes-
sional relationship we have evolved together. We thank Kjetil L. Sætre and Vigleik
Hustadne for their excellent guides, keeping us on track. We highlight a special
acknowledgement to Benjamin for providing excellent and persistence availab-
ility at all times by helping with technical issues and decisions. A special thank
you to Vigleik is also in place for his availability at all times as well answering
administrative questions.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xv
Tables . xvii
Code Listings . xix
Glossary . xxi
1 Introduction . 1

1.1 Tussa IKT - client . 1
1.2 Project Objective . 1
1.3 Goals and Frames . 2

1.3.1 Frames . 2
1.3.2 Result Goals . 2
1.3.3 Effect Goals . 2
1.3.4 Problem Delamination . 3

1.4 Group Background . 3
1.5 Organization . 3
1.6 Thesis Structure . 4

2 Background . 7
2.1 Solution Background . 7
2.2 Least Privilege Access Control Principle 8
2.3 Auditing and Logging . 8
2.4 Containers . 8
2.5 Docker Swarm vs Kubernetes . 9

2.5.1 Docker Secrets . 9
2.5.2 Overlay Network . 10

2.6 Azure . 10
2.6.1 Azure Key Vault . 10
2.6.2 Azure Container Registry . 11
2.6.3 Azure Application Registration 12
2.6.4 Service Principal . 12
2.6.5 Azure Groups . 12

2.7 Microservice Architecture vs Monolith Architecture 14

ix

x Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

2.7.1 Microservice Architecture . 14
2.7.2 Monolith Architecture . 15
2.7.3 Preferable Architecture . 16

2.8 Services . 16
2.8.1 Grafana . 16
2.8.2 ElasticSearch . 17
2.8.3 Node.js Running Cron Job For API Calls 17
2.8.4 Nginx . 17
2.8.5 Node.js . 17
2.8.6 Javascript . 17
2.8.7 NPM . 18

2.9 Related work . 18
2.9.1 ELK stack . 18
2.9.2 Splunk . 19

3 Requirements . 21
3.1 Functional Requirements . 21
3.2 Non-Functional Requirements . 22

4 Technical Design . 23
4.1 System Architecture . 23

4.1.1 Traffic Flow . 25
4.2 Azure . 27
4.3 API . 27
4.4 Elasticsearch . 28
4.5 Grafana . 28
4.6 Nginx . 29
4.7 Architecture Alternatives . 29

4.7.1 Silo . 30
4.7.2 Pooled With Silo . 31
4.7.3 Pulled and Partitioned with Separate microservices 32
4.7.4 Cost calculation . 33

4.8 Pricing Of Each Infrastructure . 33
4.9 Infrastructure Decision . 34

5 Development Process . 35
5.1 Development Model . 35
5.2 Routines . 36

5.2.1 Policies . 36
5.2.2 Communication . 37

5.3 Meetings . 37
5.3.1 Meetings With Tussa . 37
5.3.2 Meetings With Supervisor . 37
5.3.3 Internal Meetings . 38

5.4 Documentation . 38
5.4.1 Jira . 38
5.4.2 Thesis Writing . 38

Contents xi

5.4.3 Writing Code . 39
5.4.4 Time Tracking . 39
5.4.5 Other Documentation . 39

6 Implementation . 41
6.1 Repository . 41
6.2 Technical . 41
6.3 Tussa’s Guidelines . 43
6.4 Self Configured Node.js App . 43

6.4.1 Azure API . 43
6.4.2 Device APIs . 44
6.4.3 Pseudo code for retiving device information 45
6.4.4 Dockerfile . 45
6.4.5 File Structure . 46

6.5 Grafana . 47
6.5.1 Azure AD Authentication . 47
6.5.2 Break glass . 47
6.5.3 Pseudo Code For Configuring Grafana 48
6.5.4 Docker file . 48
6.5.5 File Structure . 49

6.6 Nginx . 50
6.6.1 Nginx.conf . 50
6.6.2 Default.conf . 50

6.7 Scripts . 51
6.8 Azure . 52

6.8.1 VM . 53
6.8.2 Azure Key Vault . 55
6.8.3 Azure Container Registry . 56
6.8.4 Azure App Registration . 57
6.8.5 Azure Groups . 59
6.8.6 Conditional Access Policies . 59

7 Deployment . 61
7.1 Prerequisites . 61

7.1.1 Azure . 62
7.2 Deployment-Process . 65
7.3 Routines . 71

7.3.1 Non-Disclosure Agreement . 71
7.3.2 Code / Scripts . 72
7.3.3 API Credentials And Passwords 72
7.3.4 Docker Secrets . 74
7.3.5 Azure . 74
7.3.6 Rotation Of Employees . 75

7.4 Scalability . 76
7.5 Final Solution With User Guide . 77

8 Security Testing . 83

xii Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

8.1 Testing Of The Web Application . 83
8.1.1 Nmap . 83
8.1.2 Dirb . 84
8.1.3 SQL Injections . 85
8.1.4 Brute Force . 86
8.1.5 OWASP ZAP . 88

8.2 Container Images . 90
8.2.1 Snyk . 90
8.2.2 Grafana-init . 90
8.2.3 Api-Cron . 91

9 Risk Assessment . 95
9.1 Risk Assessment of New Implementation 95

10 Evaluation . 101
10.1 Survey . 101

10.1.1 Results From The Survey . 101
10.2 Evaluation Of Requirements . 102

10.2.1 Functional Requirements . 102
10.2.2 Non-Functional Requirements 104

11 Discussion . 105
11.1 Limitations/Challenges . 105

11.1.1 Grafana . 105
11.1.2 Nginx . 107
11.1.3 Virtual Machine Access . 108

11.2 Assignment Interpretation . 109
11.3 Future Considerations . 109

11.3.1 Grafana Scalability . 109
11.3.2 Azure Virtual Network . 110
11.3.3 Load Balancer / Firewall . 111
11.3.4 Securing Data At Transit . 111
11.3.5 API Gateway . 112
11.3.6 VM Resources . 112
11.3.7 Azure AD Authentication Integration With GitHub 112
11.3.8 Security Tests And Patching Before Putting It In Production . 113

11.4 Why We Developed This Application 113
11.5 If we were to redo the project, what would we have done differently?114

11.5.1 Development . 114
11.5.2 Security Testing . 114
11.5.3 Reviewing Of The Task . 115
11.5.4 Planning . 115

12 Closing Remarks . 117
12.1 Learning outcome . 117

12.1.1 Project As A Whole . 117
12.1.2 Teamwork, Communication and Working process 117
12.1.3 Writing The Thesis . 118

Contents xiii

12.1.4 Developing . 118
12.2 Future Considerations . 119
12.3 Conclusion . 119
12.4 Final words . 120

Bibliography . 121
A Meeting minutes . 131
B Project plan . 155
C Time tracking . 169
D Project assignment . 171
E Agreements . 173
F Security testing results . 185
G User test results . 207
H Risk assessment for using local computers 211
I Tussa’s internal guidelines . 217
J Stage one of the infrastructure . 225
K Iterations . 229

Figures

2.1 Microservices . 14
2.2 Monolitchic . 15

4.1 Main infrastructure . 23
4.2 Traffic flow . 25
4.3 Silo infrastructure . 30
4.4 Pooled with Silo . 31
4.5 polled and partitioned with separate microservices infrastructure . 32

5.1 Jira figure . 38

6.1 api-cron microservice file structure . 46
6.2 Grafana microservice file structure . 49
6.3 Enabling disk encryption at host . 54
6.4 Inbound security rules . 54
6.5 Access policy for AKV storing APIs . 55
6.6 Access policy for AKV storing APIs . 56
6.7 Retrieve device information permissions 57
6.8 Admin role in Grafana . 58

7.1 What you see when visiting the portal 77
7.2 What you see when visiting the portal 78
7.3 MFA challenge . 78
7.4 The view after a successful authentication 79
7.5 Dashboard icon displaying which dashboard you can access 79
7.6 Dashboard icon displaying the endpoints inside the tenant 80
7.7 More of the current log fields that are being displayed 80
7.8 Filtered on non-compliant devices . 80
7.9 Filtered on compliant devices . 81
7.10 Where to sign out . 81

8.1 Print from executed Nmap command 84
8.2 What directories we found after running the dirb-command 85
8.3 Print from the Metrics directory displaying tenat-data 85
8.4 Print from sqlmap. Both codes gave the same output 86

xv

xvi Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

8.5 Our sign in page to Grafana . 86
8.6 Post capture when attempting to sign in 87
8.7 Output from first brute force attempt 87
8.8 Output from second brute force attempt 88
8.9 OWASP ZAP . 89
8.10 An attempt to curl the meta data . 89
8.11 Results of the scan of Grafana-init . 90
8.12 Results of the scan of api-cron . 93

Tables

4.1 Table showing the different prices . 33

9.1 Table showing the different measures 97

xvii

Code Listings

6.1 Building Docker Image from Node.js 46
6.2 Building Docker image for Grafana with additional functionality . . 49
6.3 Registrer feature of your subscription 53
6.4 Confirm action . 53

7.1 Initialise manager node . 62
7.2 Initialise worker nodes . 62
7.3 Clone Github repository . 63
7.4 Log into Azure . 63
7.5 Log into Container registry . 63
7.6 Create api-cron image . 63
7.7 Push api-cron image to repository . 63
7.8 Create Grafana image . 63
7.9 Push Grafana image to repository . 64
7.10 Set up Docker Service ’api-cron’ . 66
7.11 Adding service for running Elasticsearch 67
7.12 Deploying Grafana Service in Docker Swarm 68
7.13 Deploying Nginx Service in Docker Swarm 69
7.14 Defining the network, secrets, and volumes configuration for Docker

Swarm . 70
7.15 Launch/Redeploy the stack . 70

8.1 command for nmap scan . 83
8.2 command for dirb scan . 84
8.3 SQLmap of portal . 86
8.4 SQLmap of portal when signed in . 86
8.5 Command for brute force with most common passwords 87
8.6 Command for brute force with metasploit’s list 87

xix

Glossary

3-2-1 3-2-1 backup rule is a security measure for backup, where you want to do
3 copies of your data (the production data and 2 copies). 72

AKV AKV stands for Azure key vault. 72

API Application Programming Interface - Mechanism that enables two software
solutions to communicate. v, 1, 3, 12, 15, 17, 22, 71, 101, 104, 106

Azure Azure is a cloud platform that gives the user the opportunity to design
and manage infrastructure and data with over 200 different products and
services. 29

Best Practise Best practise is guidelines and standards that is known to produce
good and efficient outcomes. iii, v, 2, 71

Break Glass Expression for emergency access account in Azure AD. 47

ChatGPT ChatGPT is an AI chat robot that offers answers to your questions. 118

Compromised Means that something is made vulnerable by either unauthorized
access or exsposure.. 8

Container Image Container Image is a static file with executable code which can
create a container on a system.. 9, 90

Data At Transit Data at transit refers to the movement of digital information
across networks.. 111

DDOS Distributed Denial of Service - Is a cyberattack that aims to flood the net-
work with traffic so the network wont work properly.. 107

Dependencies dependencies are the name of libraries in JavaScript that an ap-
plication depend on.. 42

Discord Communication application. 37, 118

xxi

xxii Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

DMZ Demilitarized zone (DMZ) is an extra layer of protection on an internal
network. The zone restricts the access to sensitive data from external users..
110

GitHub Code hosting platform for collaboration and version control. 39

Horizontal Horizontal scaling is adding more servers so that the load is distrib-
uted across more nodes, making the load on a single node lighter.. 107

IPsec/ESP IPsec/ESP is short for Internet Protocol Security and Encapsulating
Security Payload. Network protocol that provides secure communication by
encrypting and authenictating data traffic.. 51

LaTeX Is a mark up language specially suited for scientific documents. 38

Libraries libraries are a set of pre-built code which are designed to execute spe-
cific tasks and functions.. 42

MFA Multi-Factor Authentication - Authentication method that requires the user
to use more than one verification ti gain access.. 26, 59, 72

Microservice Multiple services working together. 23, 24, 29

Middleware Middleware is a software between a application and the operating
system its running on. This is used as a translation layer to see the different
components and handle data.. 106

OSI model Open Source Interconnection - Is a standard for how protocols work
in a network and describes how data transfers between two machines.. 111

Overlay Network Overlay network is a simply a network built on top of another..
65, 70

Overleaf Online writing software. 38

Pseudo Code Pseudo code is a text based algorithms. The code is written as reg-
ulare text to make it more understandable.. 45, 48

Q&A Questions and Answers. 72

RDP Remote desktop protocl (RDP) is a protocol for using a desktop computer
remote. . 108

Reverse Proxy Reverse proxy is a security measure that is enabled in front of a
web server to forward client requests to those web servers. 17, 24

Tables xxiii

SaaS Software as a Service - Cloud based software that gives the end user access
to applications over the internet. 1, 2, 119

SSH Secure shell (SSH) is a protocol created for network communication.. 108

SSL Secure Sockets Layer - Technology used for keeping an internet connection
secure. 22, 103

SSO Single Sign On - Is a identification method that gives the user access to mul-
tiple applications with a single sign in.. 26

stateful Stateful means the state is saved on the same server.. 108, 109

Stateless Stateless means the state is saved on an external server.. 108

Sticky Session Sticky sessions is a method that makes it possible for a load balan-
cer to identify requests coming from a client and always send there requests
to the same server for the duration of a session.. 108

TLS Transport layer security (TLS) is a protection that encrypts data sent in trans-
port.. 108

Vlan Virtual local area network (vlan) is a virtualized connection which connects
devices and nodes from different LANs into one network.. 110

Volume Volume is a storage area with a single file system. 66, 70

Zero-Day zero-day is a security flaw in hardware, firmware or software that is
unknown to the responsible parties.. 109

Chapter 1

Introduction

This chapter provide an introduction to the project. Goals and frames as well as
the objective of the project. We are also covering the different participates and
what background we have to meet the different challenges in the project. The
introduction are also covering the problem delamination, meaning the different
aspects, carried out through the thesis. At the last stage of the introduction we
cover a short summary of each of the chapters.

1.1 Tussa IKT - client

Tussa IKT is a subsidiary of the Tussa Group in Norway. Tussa delivers manage-
ment IT as well as cloud and security services for different customers. To be able
to do this in an efficient way they run their own data center. They utilise a sub-
stantial amount of Software as a service (SaaS)- and communications suppliers
together with their own fiber network. Tussa IKT is ISO27001-certified [1], which
means that they have information security as a high priority.

This is important for us to take into consideration when executing our bach-
elor thesis. The problem area in our bachelor thesis lays between Tussa IKT and
their SaaS-services. Today the reporting between them is not efficient enough,
and Tussa wants us to come up with a better way to collect and display valuable
data to the customers without losing any security features. They want to be able
to give the customers a daily report with relevant information, and that the data
collected from different sources is going to be showed in one interface.

1.2 Project Objective

The objective of the assignment is to research and improve the procedures for
SaaS service integration using Application programming interface (API)s, with a
particular focus on risk assessment and securing the process around handling API
credentials [2].

1

2 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

The group is going to develop a better solution for reporting valuable data from the
SaaS-services. This data is being collected from Microsoft Intune, Cisco Umbrella
and Cisco Secure Endpoint and then given in a daily report, and displayed it in an
interface with built-in security features. We are also creating a risk assessment of
the different services and the implementation of the application.

1.3 Goals and Frames

1.3.1 Frames

The time frame we have to complete the project is from the 11th of January to
the 22th of May 2023. Both our solution and the report need to be finished by this
deadline.

1.3.2 Result Goals

• The bachelor group should come up with an efficient way to extract and
report relevant information from the SaaS-services.

• There should be some routines used in the development that follows Best
Practise, especially regarding API management.

• The reporting and storing of data need to be secure from possible cyber
threats.

• The customers should be able to get a daily report with all the relevant
information.

• The bachelor group is going to deliver a risk analysis of the new reporting
system to make sure that it keeps up with the security standards for both
Tussa and their customers.

1.3.3 Effect Goals

• Our solution should greatly increase the efficiency and reliability on the
documentation and reporting between Tussa and their clients.

• Our solutions should be secure in a way that the customers can rely on
that their information is stored in a secure manure and not in danger to
cyberthreats.

• The work we deliver should be modifiable at a later stage, either by Tussa
or another group. Meaning that others outside our group should be able to
expand, optimize and tweak our solutions at a later stage.

Chapter 1: Introduction 3

1.3.4 Problem Delamination

Regarding the Problem Delamination, the focus on development of a secure plat-
form that displays logs for dedicated endpoints to respective tenants. We are also
using open-source tools in our development. What log fields that are going to be
displayed, and how, is decided by the Client, however we are going to implement
a solution that gives room for customization for future use. The intention is to
make sure that the open-source tools we use are going to fulfill the security re-
quirements sat by Tussa. The group aims to make a risk analysis containing a risk
assessment of the different services and the implementation of the application. We
intend to also perform security testing of our solution when the product is done.

1.4 Group Background

The client of this project is Tussa IKT. Our main and technical point of contact
is Benjamin Yndestad. While Kjetil Sætre and Vigleik Hustadnes are in charge of
the administrative regadring this cases. Benjamin’s role is to answer questions re-
garding development, technical issues etc. Kjetil and Vigleik’s role is to define our
task, and answer the administrative questions regarding the project. Our super-
visor from the Norwegian University of Science and Technology (NTNU) in Gjøvik
is Muhammad Mudassar Yamin.

Our group consists of Magnus Lekanger Voll, Sindre Davidsen Schonhowd and
Øivind Wahlstrøm. We are following the study program Digital Infrastructure and
Cybersecurity at NTNU Gjøvik. We applied for this assignment based on our pre-
vious experiences in earlier courses such as DCSG2003 - Robust and scalable ser-
vices, where we learned about container-based infrastructure and orchestration
tools such as Docker Swarm and the course DCSG2005 - Risk Management where
we learned about risk management and how to perform a risk analysis. Øivind
also had an exchange year in Australia where he learned about APIs and cloud
computing.

We have no experience regarding multi-tenant environments, nor developing open-
source tools for log management so we have to research and learn how to utilize
it in a way that satisfies what is required for the task. Nevertheless do we feel that
this experience is highly relevant for the future job market.

1.5 Organization

The organizing of the different roles for our project was a part of our project
planning at the very start of the project. We specified roles and main responsibility
areas in the project plan. For more information regarding this, see Appendix B.

4 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

1.6 Thesis Structure

Chapter 1 - Introduction: This chapter provides an overview of the project, in-
cluding its background, objectives, and the individuals involved. It aims to give
the reader a clear understanding of the purpose and scope of the thesis.

Chapter 2 - Background: In this chapter, we dive into the technical details ne-
cessary to comprehend the solution. We discuss relevant concepts, technologies,
and essential information that lay the foundation for understanding the rest of
the thesis.

Chapter 3 - Requirements: This chapter outlines the specific functional and non-
functional requirements of the solution. We identify the desired features and func-
tionalities, as well as performance and usability criteria that need to be met.

Chapter 4 - Technical Design: This chapter provides a detailed explanation of the
technical design of our infrastructure and the microservices utilized to achieve
our goals. We describe the underlying architecture and how different components
interact with each other.

Chapter 5 - Development Process: In this chapter, we discuss the process of devel-
oping both the solution and the thesis itself. We cover the methodologies, tools,
and steps taken during the development.

Chapter 6 - Implementation: Here, we provide a detailed technical description
of how the infrastructure is implemented. We explain the coding, configurations,
and integration of various components to create a functioning system.

Chapter 7 - Deployment: This chapter focuses on the deployment of the solu-
tion into the client’s systems. We describe the necessary steps, configurations, and
maintenance routines required to successfully deploy and manage the solution in
a real-world environment.

Chapter 8 - Security Testing: Security is a critical aspect, and in this chapter, we
go through the security testing conducted. We discuss the methodologies, tools,
and techniques used to assess the solution’s security and present the findings.

Chapter 1: Introduction 5

Chapter 9 - Risk Assessment: Implementing any solution involves inherent risks.
In this chapter, we conduct a risk assessment specific to the customer’s context. We
identify potential risks, evaluate their impact, and propose mitigation strategies
both for the new solution and the development of it.

Chapter 10 - Discussion: Here, we engage in a discussion about the choices made
during the development process and the thesis writing. We analyze these choices,
provide reasoning behind them, and discuss their implications and potential al-
ternatives for future consideration.

Chapter 11 - Evaluation: This chapter focuses on evaluating the solution and the
project. We present the results of surveys or assessments conducted and evaluate
how well the solution aligns with the defined requirements.

Chapter 12 - Closing Remarks: Finally, in this concluding chapter, we summar-
ize the key learnings from the project. We provide suggestions for future work
and offer our overall conclusion and reflection on the journey undertaken.

Chapter 2

Background

This chapter aims to address two important aspects of the task. First we want to
address the importance and benefits of developing a solution like this. The second
is the introduction and description of key technologies and core concepts, which
is needed to be able to fully understand the product.

2.1 Solution Background

In this section we are going to address the benefits and importance of developing
a solution like this one. Tussa has addressed why they want a solution like this.
Right now they collect data from three separate products and merge them into
one report sheet to give their customers. The three products is Microsoft Intune,
Cisco Umbrella and Cisco Secure Endpoint. This is deemed as an inefficient solu-
tion, and is considered to be poor time and resource utilization, which could have
been delegated to more comprehensive due diligence which again could out put
more value. This solution is going to drastically reduce the time used making re-
ports for clients, and is also going to provide the opportunity for daily reports that
is visually more understandable.

The solution does not only offer more efficiency, but also looks more professional
for Tussa’s customers. Reputation is a key aspect in businesses like this, and the
professionalism provides better reputation. It gives both Tussa and their custom-
ers better overview of computers that might not be compliant or may not even be
in use. This might even reduce the cost, because they can take computers not in
use out of the system.

7

8 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

2.2 Least Privilege Access Control Principle

The Least privilege access control principle is a concept inside information security
which describes how an entity or user should only have access to specific inform-
ation or resources which are required to complete a task. By limiting access, the
attack surface and the risk of malware are being reduced significantly [3]. Imagine
if a user who had access to everything inside their organization got Compromised.
A potential adversary executing the attack would gain access to everything. With
the least privilege access control principle implemented, attackers are "only" going
to have access to specific information or resources.

2.3 Auditing and Logging

Audit and logging are two specific terms that are central in terms of dealing with
data. When talking about Information Security, auditing is the observation and
evaluation of an organizations IT infrastructure, policies, procedures, applications
and data management and usage. The goal of the audit is to evaluate if the inform-
ation technology assets ensure integrity and align with the organizations goals and
objectives [4].

Logging in Information Technology is the act of making a log of events that occur
in a computer system. Events can be errors, problems or maybe just information
on current operations. Events like this may occur in both operating systems or in
software [5].

2.4 Containers

Docker’s offical definition of a container are the folloiwng: "A container is a stand-
ard unit of software that packages up code and all its dependencies so the application
runs quickly and reliably from one computing environment to another."[6]. Although
the definition is short and straight to the point, it does lack explanation.

What it means is that you can deploy code and its dependencies inside a con-
tainer to run an application. They are designed to be portable, meaning that the
applications can run reliably across different environments. A physical container
is used for shipping and storing goods. They are standardized, meaning they are
built the same way for making it easier for transportation with ships, trains, trail-
ers etc.

Chapter 2: Background 9

The same way can be thought about software containers. They are standardized,
portable and can be transported around different environments. The name "con-
tainer" comes from the idea of a transportable package that can hold code and
its dependencies, just as the physical container can hold and deliver its content.
Containers are usually managed through container orchestration tools such as
Kubernetes and Docker Swarm, which is addressed later.

2.5 Docker Swarm vs Kubernetes

Docker Swarm and Kubernetes are container orchestration tools, which is a soft-
ware tool that automates administration of containerized applications such as de-
ployment, management, and scaling. You can manage multiple containers across
different hosts allowing you to do several changes in a scalable manner[7], [8].

When comparing these two, you find plenty of similarities as mentioned above,
but there are certainly some key differences: Kubernetes is more complex to set
up compared to Docker Swarm, and has a pretty steep learning curve if you have
no experience with it [9]. On the other hand, Kubernetes does provide more fea-
tures such as more advanced networking, storage options and support for more
container-providers. Docker Swarm on the other hand is mainly designed for
Docker containers.

When we decided what to use to develop our application, we based our choice on
prior experience from earlier subjects during our Bachelor. In the subject DCSG2003
- Robust and scalable services [10] did we learned about Docker Swarm and how
to use it. Since Kubernets has a steep learning curve for beginners, we rather want
to spend our time on developing our knowledge about Docker Swarm when de-
veloping our solution. Docker Swarm justifies the requirements for what is needed
to develop the application.

2.5.1 Docker Secrets

Docker Secrets is a security feature inside Docker Swarm that allows you to man-
age sensitive data such as passwords, and API keys. This feature allows you to
encrypt and store data classified as sensitive outside of a Container Image, or
source code. The data that is being encrypted is only available to the application
at runtime [11].

Since we are using Docker Swarm, we can also use Docker Secrets, which is used
to inject the data into the containers at runtime. This means that the secret data
are exposed to the application, and gets updated automatically when the secrets
are being rotated. With this feature, your application always have access to the
latest secrets.

10 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

2.5.2 Overlay Network

Overlay network in the context with containerization and Docker Swarm is a type
of network that enables communications between containers on different Docker
hosts. The idea behind an overlay network is that a virtual network is created on
top of the physical network, which allows containers to communicate as they were
on the same host, even though they might be running on different places. When
using Docker Swarm, an overlay network is being created which let you manage
a cluster of Docker host as a single host.

2.6 Azure

Azure is a cloud service platform owned by Microsoft, which offers more than 200
products and cloud services. Inside Azure can you utilize tools and frameworks of
your preferences to create, execute and manage applications across various clouds
[12]. We intend to walk through services inside Azure that has been relevant to
us for the development during the project.

2.6.1 Azure Key Vault

Azure Key Vault is a tool for securely storing and accessing secrets. Secrets is seen
as anything you want restricted access to, for example API keys, passwords, certi-
ficates, or cryptographic keys. It’s a cloud service that supports two types of con-
tainers, both vaults and managed hardware security module pools.

With centralized storage of secrets, you can use Azure Key Vault to control their
distribution easily. This also greatly reduces the chances of secrets being accident-
ally leaked. When using a key vault, you no longer need to store security informa-
tion in the application itself, and Azure Key Vault is a trusted and well recognized
tool. Its then easy for the application to access the Key Vault when it needs to use
for example a connection string [13].

The vault can be used to solve several problems such as secret management where
the Key Vault can be used for storing and controlling access to tokens, passwords,
API keys, certificates, and other secrets in a secure manner. It can also be used to
handle key management where the key vault can be used to manage the keys. This
can be used to easily create and control the encryption keys. At last can it also deal
with certificate management. This means that the key Vault can also be used to
manage and deploy both public and private Transport Layer security certificates
for use with Azure and the applications connected resources.

Chapter 2: Background 11

Azure Key Vault is one of the most known key vaults, and therefore it is seen as a
secure platform to store API keys. There are multiple layers of security to protect
the keys and other secrets [13]. Some of them are:

Role-Based Access Control: Azure Key Vault allows you to tune the access policies
for each key, giving you the power to limit who access and manages them.

Encryption at rest: All the keys stored are encrypted using algorithms.

Auditing and monitoring: Azure Key Vault log every access and usage of the
keys. This means it’s easier to detect and respond to suspicions activity.

Integration with other Azure services: Azure Key Vault integrates good with other
Azure services, which means it’s both easy to use and secure.

The Key Vault is designed to seamlessly integrate with other Azure services. This
means that it’s a secure and easy-to-use tool to use with other services made by
Azure. Overall, Azure Key Vault is a secure and good tool to use, especially when
using other Azure services. This makes a seamless integration that are built for
each other. Azure Key Vault is also compliant with different certifications like SOC
1, SOC 2 and ISO 27001, making it an excellent tool to use for firms relaying on
certifications.

Azure Key Vault provides activity logs that makes it easier to trace activity. All the
access and usages of the keys and secrets are stored in the activity log. You can
then use the Azure Portal to easily access these logs and trace unwanted activity.
This is a great tool for better security, and it’s easy to use because you can filter the
logs after your wanted criteria. Azure Key Vault also provides diagnostic logs. This
is a great tool to troubleshoot possible issues with the service, and it also provides
insights into service performance and usage. Both the logs and diagnostic logs can
be enabled through the Azure Portal.

2.6.2 Azure Container Registry

Azure Container Registry is a fully managed registry where you can manage con-
tainer images for deployment to different Azure services. With fully managed
means that Microsoft takes care of the underlying infrastructure to keep it up,
so we can fully focus developing and deploy our container-based application. The
registry provides a centralized location for management, and we can store our
container-based application safely [14].

12 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

2.6.3 Azure Application Registration

Azure Application Registration is the process where Azure Active Directory, also
named Azure AD, gets registered with the application in order to get access to
the Azure services and the APIs. With this feature can we enable features such
as multi-factor authentication and access control. Multi-factor authentication also
called MFA, is a second factor of authentication to verify their identity to access
the service they attempt.

Usually you sign in with username and password, and then get asked to verify
with something else to verify that it is you who is attempting to log in, such as a
code on either an email or a SMS on a phone. This process of registration gives us
access to configure the application’s permission and who can access what, which
makes the part as an important step for securing the applications running in Azure
[15].

2.6.4 Service Principal

Service principals within Azure are what we call security identities which can be
used to authorize and authenticate services or applications to access Azure. This
means that a Service Principal can be looked at as an identity which represents the
application or the service which need to access Azure resources. Such resources
can be storage accounts or Azure Key Vault [16].

It might look like that Azure Application Registration and Service Principal are
pretty much the same, but the difference is that the process of registering the
application with Azure AD, and configuring its policies when it comes to authen-
tication and authorization. Service Principal on the other hand is what that rep-
resents an application or services identity inside Azure AD, which can be used to
get access to Azure Resources.

2.6.5 Azure Groups

Azure Groups are a term that allows to you organize and enhance accesses man-
agement to resources inside Azure. The groups can be used as a management tool
to handle permissions and give access to groups instead of a single persons. By
using Azure Groups does it make it a lot easier to handle and manage large num-
bers of users inside Azure, because you give the permissions to a group instead of
a single person.

Chapter 2: Background 13

As people often changes jobs and roles inside an organization, it might be assumed
that they are not going to have the access to the same content as they used to, fol-
lowing the least privilege access control. Instead of spending a lot of time editing
the permissions and accesses of every single user that changes roles or jobs, you
can just edit the Azure Group by removing or adding them to a group [17].

14 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

2.7 Microservice Architecture vs Monolith Architecture

2.7.1 Microservice Architecture

Microservices architecture is also known as microservices. This architecture is built
with a series of independently deploy-able services. Each of these services have
their own database and business logic with a specific goal. Microservices makes
it easier to manage different services because the tasks are separated into smaller
processes. It does not reduce the complexity but makes it more visible and easier
to modify.
One major advantage with microservices is the opportunity to develop, update,
deploy and scale each service independently without affecting the other services.
You can perform software updates more frequently with improved reliability, up-
time, and performance. This is valuable for growing softwares and companies.
There can be some disadvantages of microservices. It can be very complex to set up
a microservices architecture. Especially when the architecture gets bigger, there
are more services in more places, which makes the whole process more complex.
This can again lead to development sprawl. It can also be difficult to see how
different components relate to each other [18].

Figure 2.1: This picture shows how Microservices work

Chapter 2: Background 15

2.7.2 Monolith Architecture

The more traditional architecture is the monolithic architecture. This architecture
is built as a unified unit which is self-contained. It is called monolithic because it’s
built as a singular, large computing network with one large code base that ties all
the business concerns together. Monolithic architecture has some great benefits,
for example that it is easy to deploy. When deployed its usually one executable
file or directory. One API can often perform the same function that numerous APIs
perform with microservices when it’s in a centralized code base or repository. It’s
also easier to perform end-to-end testing when all the code is in one place.

There are some disadvantages with a monolithic architecture. When the applica-
tion becomes too big, the development speed becomes slower. This is because the
development becomes more complex.
The reliability can also become a problem. If there is a problem with one module,
it could affect the entire applications availability. It can also become a problem in
development because a small change to the application requires the redeployment
of the entire monolith, which can be time consuming end expensive.
The flexibility is also greatly decreased, because the monolith is constrained by
the technologies currently used in the monolith [19].

Figure 2.2: This picture shows how Monolithic architecture work

16 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

2.7.3 Preferable Architecture

When it comes to our project, we have done research on both architectures to
find out what would suit us and our client best. Since our group consist of three
bachelor students with little to none experience from real life development, we
find the microservice architecture to be the most optimal for us.

There are several reasons to this, one of which is because of our lack of exper-
ience. By this we mean that we are most likely to make mistakes in the code at
some point. When we are going to fix these mistakes it’s easier to have each ser-
vice separated and not in one single code base.

Another reason for our choice is the continuous deployment. With microservices
we can have more frequent and faster release cycles. It’s easier to do updates to
a single service without effecting all the other services. We also want Tussa to be
able to develop the product after we are finished. They may want to develop to
newer technology in the future, and this is more doable with microservice. Mi-
croservices makes the deployment of new technologies easier, and with a higher
reliability.

2.8 Services

In Information Technology a service is referred to as an application a business uses
to help them in the creation, management and optimization of their information
and business processes. These services can be segmented into three segments;
design, build and run. In this section we cover the different services we use in the
application. What they are and how they work.

2.8.1 Grafana

Grafana is an open-source platform that is great for visualizing data. The data can
be visualised via charts and graphs which are unified into dashboard(s), allowing
a better understanding of the data [20]. As in our case, do we visualized log-fields
on respective endpoints. Grafana also allows you to filter the current log fields.

As an example, we do have a log-field named "Compliance" showing either non-
compliant or compliant. With the filter-method we can decide if we want to only
show the endpoints which is either non-compliant or compliant. Another great
feature inside Grafana is that we can configure it to be compliant with both Azure
and multi-tenancy [21], allowing us to meet the requirements from the client.

Chapter 2: Background 17

2.8.2 ElasticSearch

ElasticSearch is an open-source tool that is being used as a search and analytics
engine to handle large volume of data in real-time. Data, or in our case, logs
are being stored in a JSON-format, which was one of the requirements from the
client, for making it more easy to index and search through the data. This benefit
us greatly as Grafana update its information frequently by querying Elasticsearch
[22].

2.8.3 Node.js Running Cron Job For API Calls

A cron job is a scheduled job that runs automatically at a specified time. So when
talking about Node.js app running a cron job for API calls, we talk about a sched-
uled job where Node.js make the API-calls. Node.js is an open-source platform
that allows users to use JavaScript on server-side of web-applications [23]. It is a
widely adopted tool for building scale-able web applications and APIs.

2.8.4 Nginx

Nginx is a powerful open-source software that offers an array of services which is
well known and widely used on the real world marked. Such services can be web
servers, Reverse Proxy and load balancers. What makes Nginx popular, is that it
can handle a high volume of simultaneous connections, and would still deliver
content to the site efficiently.

2.8.5 Node.js

Node.js is a great tool for developers to develop both front-end and back-end ap-
plications using Javascript. Node.js is open-source, which means the sourcecode
is available online and that people all over the world can contribute. It is also
cross-platform, which gives the users the opportunity to use Node.js on differ-
ent operating systems. Node.js can be executed outside a web browser because it
runs on Chrome’s V8 Javascript engine and it enables developers to make high-
performance and scalable web applications [24].

2.8.6 Javascript

Javascript is a programming language primarily used for building dynamic and in-
teractive web applications. The high-level language can be executed on both the
client-side and the server-side, making it versatile. Javascript is commonly used
by developers all over the world [25].

18 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

2.8.7 NPM

NPM (Node Package Manager) is a package manager used for Javascript and
Node.js applications. NPM gives developers the opportunity to discover, install
and manage dependencies easily. Such as libraries, frameworks and tools used
for their Javascript projects. NPM is a bundle with Node.js which allows you to
interact with the NPM registry with a command-line interface. The NPM registry
is a public repository hosting thousands of open-source Javascript packages [26].

2.9 Related work

As a part of our research, we looked at online solutions. The goal of this section
is to look at available solutions online to to get inspiration as well as explore how
our applications differs compared to the ones already existing. It is assumed that
there might be other solutions which are private that has the same purposes as
our application with parsing several log-files into one.

Our research showed that there are multiple solutions of how to display logs in
Grafana, such as Splunk and ELK Stack, but there were few to no solutions that
was exactly like ours. By that do we mean having multiple log-files from the same
endpoint, delivered from different vendors, parsed together into one log-file and
then display it in Grafana in a multi-tenancy solution. With that being said, it
does not mean that there are not other solutions, as there might be several that
are private. We used open source services that are free, and highly customizable
to your needs, which means there are likely to be something very similar.

As log fetching is very common, and often specialised to demands, are almost
every use case different but with the same purpose of fetching logs and visualize
it somehow. It seems that most of the solutions we find online is real time analyz-
ing the logs, while our application takes a snapshot of the current log fields from
the vendors, parses it and then displays it in Grafana. A common solution that we
mentioned earlier and is widely used and similar to ours is an ELK stack.

2.9.1 ELK stack

An ELK stack is a set of open-source tools such as Elasticsearch, Logstash, and
Kibana which are often used for log management:

Logstash: Receives, modifies and transmits the data to desirable location.

Elasticsearch: Indexes the data.

Kibana: Visualizes the data.

Each service provide different jobs that help to collect, store, search and visualize
huge amount of data [27].

Chapter 2: Background 19

This means we could have used an ELK stack for our development of our applica-
tion, however the client wanted to display logs in Grafana and not Kibana. Even
though the results could have been the same as both services support visualization
of logs, Grafana is more of a general-purpose tool that can visualize logs, but it
can not text query, which Kibana Supports [28].

2.9.2 Splunk

The other solution that we looked at was to use Splunk. Splunk is a management
platform that allows to collect, index and visualize logs . The platform does also
supports integration of visualizing the logs inside Grafana [29]. Based on their
documentation does it also seems you can customize it to parse the logs in to
one log file, as the client demands [30]. This means we could probably have used
Splunk to develop our solution.

An issue that led us to not choose to use this solution is the costs. When research-
ing the prices of Splunk on their website, they do not provide specific pricing
information. Instead, they request you to fill in your requirements, and later be
contacted by their team in order to obtain pricing details [31]. Splunk offers cus-
tomized pricing based on the specific needs.

With research, can we make an estimation of how much this are going to cost.
The source reports that a licence might start at 65 USD per host, per month [32].
Considering how many hosts/endpoints there are going to be collected logs from,
the cost, did we not see this as a viable solution. We knew we could develop a
solution with the same output for way less cost.

This means that you can use multiple services online to develop a solution that
produces the same result. It depends on what services you want to use, available
resources and requirements. As our solution is customized to the clients require-
ments, available resources and our knowledge of how to utilize the services it
makes it somewhat unique.

Chapter 3

Requirements

In this chapter we want to define the requirements for the application. We divide
the requirements in to functional and non-functional requirements which each
specify aspects of the application. Functional requirements are often defined as
something a system must do, and is often related to the technical details of a sys-
tem. This is the requirements the system needs to be able to operate properly. This
can often be reviewed through the systems input and output [33].

Non functional requirements is complementary to the functional requirements,
and can be defined as the requirements that describe how a system works. This
might sound like less important than the functional requirements, but this is plays
a huge part in how good a system operates. This means the non functional re-
quirements does not have an impact on the functionality but it does impacted the
performance. Non functional requirements can be seen as the systems usability
[33].

3.1 Functional Requirements

F-1: The solution should contain access control to ensure confidentiality.

Description: To ensure confidentiality for each of the clients, we need to use ac-
cess control. Access control is used to ensure that users only get the information
they need, and to ensure that no one access information without the proper au-
thorization.

F-2: The solution should be able to fetch information about devices from API
calls.

Description: One important aspect of the task is to be able to fetch information
from each clients devices. This information needs to be fetched from all three
products (Microsoft Intune, Cisco Secure Endpoint and Cisco Umbrella) and dis-
play all the important information in one place.

21

22 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

F-3: The solutions needs to use encryption to secure information.

Description: Another important aspect of the task is to deliver a solution that
uses encryption in a secure way. SSL is a great way to secure the internet connec-
tions.

F-4: The solutions needs to store the information for the devices.

Description: The data from the different devices needs to be stored in some way,
so the clients have access to their data, and not just in real time. This can be done
with something like Elasticsearch.

F-5: The solutions needs to securely store API credentials and passwords.

Description: The API credentials and passwords needs to be stored securely to
ensure confidentiality and as a security measure. This can be done through a ser-
vice like Azure Key Vault.

3.2 Non-Functional Requirements

N-1: The solution should be easy to use with minimal or no training.

Description: The solution should be so easy to use that it requires minimal or
no training for the users. Therefore its important to make a application that is
intuitive.

N-2: The solution should be easy to understand and interactive.

Description: The interface should be easy to understand for the customers and
Tussa, so they can use as little time possible on understanding the design.

Chapter 4

Technical Design

This chapter aims to explain the technical design of our infrastructure, and the Mi-
croservice utilized to achieve our goals. The microservices being Nginx, Grafana,
Node.js and Elasticsearch. It also explains the technologies used to deploy and run
the services, as well as explaining how it works.

4.1 System Architecture

The system architecture describes the solutions on how we have solved the prob-
lem that Tussa presented to us. To better understand the infrastructure, have cre-
ated an illustration, Figure 4.1 below. The yellow square represents Virtual ma-
chines (VM) and the microservices running within it are represented as the blue
squares. The blue frame surrounding the VMs aims to illustrate Azure, and the
VMs are running inside it.

Figure 4.1: Main infrastructure

23

24 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

The infrastructure is hosted on Azure’s Virtual machines. It contains several Mi-
croservice running inside containers manged by a docker swarm. All of the mi-
croservices share one virtual machine except Nginx. This is done because of the
role and features Nginx provides. The main purpose of the Nginx is to protect the
rest of the infrastructure, act as a Reverse Proxy, and to be a load balancer. This
is the most cost effective solution compared to the other options discussed in the
next chapter.

The API container, Elasticsearch container and Grafana container are all shar-
ing one virtual machine (VM). They each poses their specific role that is: gather
information, store information, visualize information respectively. Having indi-
vidual roles for each task makes it easier to manage, and to give the possibility to
change any of them in the future if deemed necessary, making it highly flexible.
The solution is builds upon an easy scaling integration for future implementations
i.e more VMs and container replicas can be added if needed, due to the nature of
the Nginx load balancer.

Chapter 4: Technical Design 25

4.1.1 Traffic Flow

To get a better understanding on how the traffic flow works within our application,
see Figure 4.2. The Figure tend to explain the communication flow for when our
service is deployed and when a user tries to log in to Grafana with their Azure AD
account, regardless if its an admin or a normal user. Each yellow box symbolise
Azure VMs with their respective microservices running on them, each of the nodes
are apart of the docker swarm. The blue square symbolise Azure and its services
used to power our application.

Figure 4.2: Traffic flow

26 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

• The first thing that happens when the application is deployed is that the
official Elasticsearch image gets bulled from the internet, and the Elastic-
search container gets created from it. Elasticsearch is the first image to be
pulled as it has no other services depending on it.

• Then the self made Node.js image is pulled. This image exist in the Azure
Container Registry in our Azure environment. The node js app only depends
on Elasticsearch to start before it. This is done so that node js app has some-
thing to send data to later on.

• Grafana also gets its image from Azure Container Registry. Azures Service
Principals are utilized to grant pull access for the manager VM, making it
able to pull the images from the Registry.

• The fourth thing to happen is that the official Nginx image gets pulled from
the internet. After this, all the microservices should be up and running if
there are no unexpected error.

• After all the microservices are deployed, the Node js service contacts Azure
to fetch all relevant groups. as well as the securely stored API credentials
used in the next step.

• Then it gets API credentials securely stored in Azure Key Vault.
• The Node js app start to fetch information about devices, from the three

security vendors. One API call is used per customer to retrieve data.
• After the proper information is collected and process internally in the Node

js app. It sends it to Elasticsearch container to be stored and indexed.
• Grafana gets configured based on groups it fetches from Azure.
• In step tenth Grafana pulls information from Elasticsearch for it to be presen-

ted for the user.
• After this is done, Grafana stores the password of the Admin user in Azure

Key Vault. Since the admin user is dedicated as a Break glass account and
not active.

• Over to the user login part. In step twelve, the user access the page through
our domain "Securityportal.tikt.no". He/she gets routed to our Nginx re-
verse proxy.

• It then gets redirected to the Grafana container where they are met with an
in login page.

• Regardless if a user is a normal user or an admin, an MFA policy is added
to the Single Sign On (SSO) to enhance security. MFA can prevent 99.9‰of
attacks to your account and is why this policy is forced for everyone [34].

• After a successful login the users gets redirected back through the Nginx
container.

• And than finally in step 16 they get redirected Grafana where the users can
view its dedicated information.

Chapter 4: Technical Design 27

The microservices is chosen for their specialised capabilities and efficiency. We
leverage these technologies as they are widely adopted and highly relevant in
today’s tech market. The technologies offers great flexibility as they adapt well
with a variety of other real world tools [35].

Instead of building every thing from scratch, do we utilising existing tools to op-
timizes our time and resource to develop an enhanced a product that both we and
Tussa benefits greatly from. By harnessing the interplay of these microservices ac-
curately, do we accomplish a more efficient solution in a shorter time frame. The
decision for each microservice is further described later in this chapter.

4.2 Azure

Choosing Azure came down to an easy decision as Tussa was already using the
cloud service provider. Both them and us have some prior knowledge about its
capabilities, how it works, and the cost that comes with it. Using Azure provide
us with a variety of services, which benefited our solution greatly as our whole
application is launched in Azure using their VMs. It provides a secure way of stor-
ing our images and credentials, as well as giving the flexibility to handle Tussa’s
customers in separate groups in collective place securely. Furthermore, Azure en-
ables us to manage access control for different services and users, to obtain the
principal of least privileged.

4.3 API

We decided to create an Node.js application from the ground up to ensure full con-
trol of the traffic when generating API calls. It also allows us to control the security
of the API credentials as well as how to structure the data before passing it onto
Elasticsearch. Having a self configured Node.js applications gives us a unique cap-
ability to construct information based on groups fetched from Azure. This makes
up the backbone of the structured data in our infrastructure and was why we
chose to do it this way.

Developing a custom solution gives us a fine grained control for the task men-
tioned above. It also builds upon the principal of high flexibility and ease of in-
tegration with other microservices. Having a self built Node.js app is also cost-
effective as it is free to use, compared to other options. An alternative to this is to
utilize third-party services like Azure, AWS or Google. Here Azure would be the
natural option since Tussa is already using the platform. Different Azure services
can be used to managing traffic, structuring data, and securing API credentials.

28 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

As mentioned, using Azure comes at a higher cost as it is a paid services. It can also
posses some personalized limitations. This could be difficult to manage and con-
trol an overview, since they provide a wide rage of services. Also choosing Azure as
a third party comes with a restrain for future work, where you lock yourself to one
vendor and might have to do substantial changes to change this. With this stated,
we do recognize the challenges with a self configured Node.js application. It re-
quire a enhanced development knowledge and more maintenance. Nevertheless,
we do consider the effects of the positive benefits to outweigh these cons.

4.4 Elasticsearch

There are several reason to why we chose to use Elasticsearch, and it comes with
several benefits that suits our solution. It offers a free open-source version which
is great for a student project. Additionally, generating less negotiates with the cus-
tomer regarding the budget. Elasticsearch is designed to handle large amounts of
data and do quick search queries. It also offers data to be accessed in real time
which benefits us greatly as Grafana update its information regularly by querying
Elasticsearch. It is a highly flexible tool which offers integration with a variety of
other tools such as Beats and Logstash [22].

A competitor to Elasticsearch is Apache Solr which is another search platform
that offers similar capabilities. We chose Elasticsearch over Solr due to the ease
of nature that Elasticsearch comes with. It uses a RESTful API that supports JSON
which integrates well with our Node.js app, while Solr primarily uses XML. Since
both Magnus and Øivind where familiar with Elasticsearch from their work place,
it was also easier to choose ES. Solr has slightly longer indexing time, making
Elasticsearch more suitable for real time applications [36].

4.5 Grafana

Elastic is the company that developed and create Elasticsearch. Even if Elastic has
their own visualization tool called Kibana, we chose to go with Grafana for visu-
alizing the data. This decision is mainly based on the request from Tussa, as they
wanted to use Grafana since its a program they already use and are familiar with.
We agreed to this decision, because Grafana is a powerful free open-source ana-
lytic and visualization tool. It is highly functional with management and segreg-
ation of organisations, teams, users, data sources, and dashboards. Furthermore,
Grafana offers great documentation which makes it easier to configure it to meet
the wanted visualisation goals. Grafana is also particularly relevant as it is a real
world industry tool.

Chapter 4: Technical Design 29

4.6 Nginx

Nginx is a powerful software that offers an array of services which is widely used
and highly appreciated on the real world marked. We therefore chose to use this
service, and implement it as one of our Microservices. The specific features that
truly captivated our interest were, reverse proxy, DDoS protection, HTTPS ter-
mination, Firewall, Load balancer, and API gateway. Harnessing the impeccable
advantages these elements present, improves the performance of our service. Fur-
thermore, they fortify a superior solution to provide Tussa, by ensuring enhanced
security, reliability and efficiency [37].

To have all these attributes in one place was a huge factor for choosing Nginx.
It allowed us to have a centralised place for configurations. Nginx provide a free
open-source version which also made it easier to decide to use it. It should be
mentioned that the free version comes with some limitation, which is addressed
later on. Nginx is a great tool for us since it is designed to handle a high volume
of requests simultaneously.

An alternative to Nginx is Apache HTTP Server which is also a widely used tool.
Nevertheless, Nginx is know for their high performance of a large amount of re-
quests, due to its event driven architecture. Compared to Apache using a process-
based, which may devour more resources [38]. Another factor that persuade our
decision is the easy and understandable syntax that Nginx offers, as non of us had
relations to it before starting to work with it.

4.7 Architecture Alternatives

When we knew what technologies to use. The next step was to figure out how
these would be utilized, to best suit Tussas requirements. We discussed multiple
ways to go when building the infrastructure of the application. There are pros
and cons with every solution, but it all narrows down to the customer’s needs
and demands. Some things to take into consideration is the cost of each service
and the security they provide. Another important aspect is the scalability of the
application. Tussa is a growing firm that aims to get more customers in the future.
Therefore, it’s important to keep in mind the possibility of expanding the applic-
ation to even more customers.

For the three alternative infrastructures presented below, we have done a cost
estimate. It is important to notice that these are just estimates, and the actual cost
depend on each services requirements when launched in a production environ-
ment with real data. We have used public information to find system requirements
for each Microservice, and then used Azure to find what does requirements cost.
This is further described later in this chapter.

30 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

4.7.1 Silo

The first option regarding infrastructure is a siloed infrastructure. A silo is defined
as an isolated point where some data is stored separated from the rest of the in-
frastructure[39]. We have made a visual picture of the siloed infrastructure seen
below. This infrastructure is built so that every customer has their own virtual
machine with all the microservices except Nginx. The microservices being API
container, Elasticsearch container and Grafana container.
The siloed infrastructure is heavy resource dependent, and do not optimize cost
in an efficient way considering to build the infrastructure. The cost is greatly in-
creased when the number of customers grow.
On the other hand, it’s a secure way to isolate every customer to have their vital
information stored separately from other customers. It’s also a more dependent
way to handle a lot of traffic since its separate machines for every customer.

Figure 4.3: Silo infrastructure

Chapter 4: Technical Design 31

4.7.2 Pooled With Silo

This infrastructure is built in a way so that every microservice has its own virtual
machine. Each of these microservices are the same as mentioned before, API con-
tainer, Elasticsearch container, Grafana container and Nginx container. This means
that each of the resources are isolated, but unlike the Silo infrastructure, here all
the customers share the resources on each VM. But even though they share VM’s,
each customer has their own container inside each machine. This also makes for
easier management and improved scalability. It’s also more cost efficient.
We have made a visualization of the infrastructure below, showing how all the
customers share VM’s. While this infrastructure is more cost efficient and has im-
proved scalability, it needs powerful VM’s that can handle a lot of traffic to work.

Figure 4.4: Pooled with Silo

32 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

4.7.3 Pulled and Partitioned with Separate microservices

This infrastructure is built in a way so that every microservice has its own vir-
tual machine. Each of these microservices are the same as mentioned before, API
container, Elasticsearch container, Grafana container and Nginx container. This
means that each of the resources are isolated, but unlike the Silo infrastructure,
here all the customers share the resources on each VM. The containers inside the
VM’s are scalable, meaning more containers can be made, if necessary, but all the
customers share the containers.
Below you can see a visualization of the infrastructure and how its built. This is a
more cost-efficient infrastructure, but it needs more powerful VM’s to be able to
handle the traffic.

Figure 4.5: polled and partitioned with separate microservices infrastructure

Chapter 4: Technical Design 33

4.7.4 Cost calculation

This section explains how the estimate pricing was calculated. We found the min-
imum system requirements using open-sources, and then matched it to the pricing
table of Azure [40].

Node js is set to have these basic requirements to run in a Ubuntu environment:
[41]

• 4 core CPU
• 4 GB RAM

Elasticsearch has the following system requirements: [42]

• Multi core CPU
• 32 GB RAM

Grafana’s requirements is as stated: [43]

• 1 core CPU
• 255 MB RAM

Nginx has these system requirements: [44]

• Dual core CPU
• 2 GB RAM

A manager node and a worker node in a docker swarm as the following require-
ments: [45]

• 4 core CPU
• 8 GB RAM

A worker node in a docker swarm as the following requirements: [45]

• 4 core CPU
• 4 GB RAM

4.8 Pricing Of Each Infrastructure

Table 4.1: Table showing the different prices

Infrastructure Monthly cost Yearly cost
Silo NOK 103 286 NOK 1 239 000
Pooled with Silo NOK 8 488 NOK 101 856
Pooled and Partitioned with Separate microservices NOK 4 588 NOK 55 056
Pooled and Partitioned with Shared microservices NOK 2 200 NOK 26 400

34 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

4.9 Infrastructure Decision

When making a choice of which infrastructure to use there are multiple things to
consider. For starters there is the cost of each of the infrastructures. As mentioned
before, the numbers above are just estimates, and can vary. On the other hand,
there is the security and redundancy. Some of the infrastructures demand a lot of
resources, which means a higher cost, but on the other hand, these infrastructures
are more reliable and possibly more secure.

These are ultimately things that the client needs to take into consideration and
decide on. We presented them with the different infrastructures, as well as the
pros and cons. Ultimately Tussa wanted to go with the most cost-efficient struc-
ture, the Pooled and portioned with shared microservices. If built correctly, this is
the best choice when you take into consideration the importance of uptime and
the extreme cost of some of the infrastructures, but this comes of course at the
expense of the benefits that isolation provides and what security concerns it can
posses.

Other security features were presented to make up for the lack of isolation which
is described later. Tussa also has the option to do horizontal scaling if they get
more customers that demands more traffic. Horizontal scaling can for example be
another virtual machine with the same attributes or a replicated container, and
then divide the customers upon available resources.

Chapter 5

Development Process

In this chapter are we going to to describe our development process and the meth-
ods we used while working on both our application and for writing the bachelor
thesis. In the Project Plan, in Appendix B, have we described how we wanted to
organize our work and what development model we wanted to use. This chapter
builds further on that plan. We also want to describe our working routines and
how we documented our work through the project.

5.1 Development Model

When we started this project we discussed back and forth which development
model would suit us best. This can be challenging, especially considering lack of
prior experience working with the magnitude of this project. We wanted a devel-
opment model that would allow us to work with one aspect of the project at a
time, preferably in sprints. As mentioned in the Project Plan, which can be found
in Appendix B, we went with the Scrum model, and there were several reasons
why we chose this model.

The Scrum framework offers flexibility and excellent overview of each task at all
times, making it a perfect fit for our project. The process starts off by listing all
tasks which are going to arise throughout the project. These tasks are then split
into different sprints, depending on which order they need to be finished. The
framework is divided into sprints, where we are able to focus on specific tasks.
We made five sprints and started implementing tasks we knew we had to do.
We also made iterations after every sprint. We did this iterations at our internal
meetings, where we discussed what we were happy with and what needed to be
improved for the next sprint. These iterations can be read in Appendix K.

35

36 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

What made the Scrum framework a great tool for us was the availability to have
control of which tasks were being worked on, which were done and which needed
to be started on. This gave us a great overview of the entire project at all times.
The system with sprints also worked great, because we had the opportunity to im-
prove our self after each sprint was finished. Scrum also offered us flexible roles,
which means we were not limited into a fixed role for the entire project. There
was one point that was quite challenging, and that was to be aware of every task
we needed when we started a new sprint. Often a new challenge would present
itself, and we solved it by simply adding it as a new task, either in the next sprint
or the current sprint.

When developing the proof of concept, we used a software development meth-
odology called Rapid Prototyping. This is an agile strategy used when developing
a product. The strategy builds on the concept of rapidly making prototypes of the
product to test and validate, as well as getting user feedback to improve the next
stage. This strategy amplifies an efficient workflow due to its nature, and reveal if
chosen build work or not. Ultimately saving yourself from a lot of extra work [46].

When we used this in the development, we ended up with four different stages.
After the first stage we generated an extensive document. This stage was presen-
ted to our client, to prove the proof of concept without the security measures. This
document can be seen in Appendix J.

• Stage 1: Our solution was made on a local environment and not as a cloud
solution.

• Stage 2: Deployed in the cloud on Azure virtual machines as a Docker
Swarm.

• Stage 3: Implementation Nginx in front of Grafana with its respective se-
curity measurements.

• Stage 4: Extensive Azure integration, such as Authentication and group
management.

5.2 Routines

5.2.1 Policies

In the Project Plan we set some expectations to each of the team members. We
wanted to have some clear policies on how we could conduct our work to optimize
efficiency and results. We conducted these ground rules together as fundamental
agreementfor future work. These ground rules can be seen in the Project Plan in
Appendix B. Our most important points were that every member should conduct
a minimum of 30 hours workload per week. Another important point we set was
to divide the workload fairly to ensure everyone’s contributions.

Chapter 5: Development Process 37

5.2.2 Communication

The communication within the group have gone according to plan even though
we had to add some improvements, acknowledged trough iteration reviews. As
Magnus and Øivind have jobs that require night-shifts we did implement a job-
log where we could get a better understanding of who worked on what. We were
in a unique situation because the three of us were good friends even before we
started the project. This has benefited us greatly because we know each other
strengths and weaknesses, and it was very easy for us to communicate. Since all
three of us values working at home where we have multiple screens to work with,
a lot of our communication happened with Discord. Regarding communication
with the supervisor and Tussa, we used mostly Microsoft Teams or regular email.

5.3 Meetings

In this section we want to describe how our meetings with both the supervisor,
our contact person i Tussa and the internal meetings were organized. The meet-
ings were usually no longer than 30 minutes. Sometimes they were shorter and
sometimes longer, depending on the topic of discussion. Every meeting we had
with both the supervisor and Tussa can be found in the meeting minutes in the
Appendix A. The purpose of the meeting minutes is to act as a summary for each
of the meetings, and to make it easier for us to go back and see what was discussed
and what feedback we got.

5.3.1 Meetings With Tussa

We had weekly meetings with our contact person from Tussa. This meeting was
scheduled every Monday at 9:30am. In this meeting we asked questions regard-
ing their wishes on the application, and gave a short status report regarding the
process. This meetings were a great tool to be able to adjust the application to
Tussa’s wishes. In addition to these meetings we had a couple of meetings with
additional people in Tussa to get their point of view on the project.

5.3.2 Meetings With Supervisor

Our meetings with our supervisor was weekly every Monday from 1pm to 1:30pm.
Here we would ask eventual questions and give the supervisor a status report on
the project process. This meeting were some times rescheduled, and some times
cancelled, if we did not have any questions or if either the group or the supervisor
was unavailable.

38 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

5.3.3 Internal Meetings

The bachelor group had a weekly internal meeting every Friday at 1pm. In this
meeting we made plans for the upcoming Monday meetings and also had a eval-
uation of the week. The internal meetings on Fridays is not the only time during
the week the bachelor group met to discuss or work on the project, but this was
the formal weekly meeting.

5.4 Documentation

5.4.1 Jira

We used Jira to create a board to keep track of every task that each of the members
worked on at what time. Since we used Scrum, the Jira software made it easy for
us to make boards to divide the tasks and keep track of tasks that needed to get
our attention. Jira is a software built by Atlassian to make seamless project plans.
We started by dividing the project into different sprints, giving each of them a
description and length. We then started sprint number 1 and began creating tasks.
When creating a new task it were automatically placed in the "To do" category. You
can then assign it to a team member and move it to the "In progress" category and
later to the "Done" category. The Jira board gave us a good overview of everything
we needed to work on, and what the other members were working on at any given
time. We attached a picture below, Figure 5.1, that shows the tasks in one of the
sprints to give a visual picture [47].

Figure 5.1: The picture shows how the different tasks can be labeled and divided.

5.4.2 Thesis Writing

When writing the thesis we used a software called Overleaf to write in LaTeX.
Overleaf gives us the opportunity to write the thesis collaboratively. Overleaf is
great for exactly this, because everyone is writing on the correct version of the
thesis at all times. Overleaf also ensures the typesetting and formatting is the
same through the entire document.
We used the template provided by NTNU, which was created by Community of
Practice for Computer Science Education (CoPCSE) [48].

Chapter 5: Development Process 39

5.4.3 Writing Code

Developing our solution meant we had to utilize a considerable amout of scripts
and code to make everything work. For this, we used GitHub. Here, we made a
private repository which only the team members had access to, to ensure con-
fidentiality. When developing code we used our private computers, despite some
possible security risks. A further consideration supporting this can be found in
Appendix H, which is a risk assessment regarding using private computers. While
using GitHub, we developed one stage and then pushed the code to our GitHub
repository [49].

5.4.4 Time Tracking

We wanted to track all the time used on the project for each of the team members.
In the Project Plan we agreed that everyone were going to track their hours worked
at the end of each week. For this we just used a simple excel sheet, which can be
viewed in Appendix C.

5.4.5 Other Documentation

We also did some other documentation when working on the project. Documents
such as status reports, notes, drafts and other documentation were stored in a
shared Onedrive folder. This folder was only accessible by the members of the
team. Regardless, we did not persist any sensitive information there due to secur-
ity reasons.

Chapter 6

Implementation

This chapter aims to give a deeper technical understanding of the solutions by
magnifying details regarding our implementations and underlying decisions. It
introduces repository utilise to persist code as we as overall technical aspects.
It emphasize Tussa’s guidelines, and how we have strived to integrate them in
our practise. Additionally It is address techniques utilise to implement our mi-
croservices, except Elasticsearch since we have not done any specific configuration
to it. Furthermore, Our script is presented and their use case. Finally, explaining
implementation performed in Azure and their utility.

6.1 Repository

The code share a unified repository for all the microservices. The code also share
the same branches to increase simplicity instead of having code for each mi-
croservice located separately. Scripts and stack files can also be found here. GitHub
is enabled with MFA, which a user needs to pass to access the code. The reposit-
ory is managed and controlled by the own, and is the one delegating access and
permissions. This person has an extensive responsibility to managed it correctly
to obtain integrity and confidentiality, so no unauthorised personnel can gain ac-
cess. Pushing code to git is a relative basic knowledge within the IT community,
and we are only going to provide a link with a thorough explanation on how this
is done: [50]. It should be mentioned that a temporary repository has been made
in GitHub for censorship and can be found at [49].

6.2 Technical

We utilised JavaScript as our main programming language. Our api-cron microservice
is entirely built using JavaScript. The self configured part of Grafana is also ac-
complished with using JavaScript. They both use Node.js as their run time envir-
onment.

41

42 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

As mentioned in the background chapter, Node.js is built on the V8 JavaScript
engine, which makes it high-performance and a great tool for handling a larger
number of connections efficiently, and makes it very scalable. Node.js also enables
full-stack development, meaning it allows the use of JavaScript both on server-side
and client-side development. This allows developers to share code between front-
end and back-end, which can result in increased productivity and code reuse [24].
JavaScript is also a great programming language for us to use because of its ver-
satility, meaning it can be used for both front-end and back-end. It’s also one of
the most used languages out there, making it easy to find information and tips
about it on the internet for developers [25].

Nevertheless, our adviser initially recommended us to program in Python as this is
another programming language which provides a great frameworks with several
benefits. It offers a lot of the same capabilities to achieve our goal as JavaScript.
Since each member had little to non experience in Python compared to JavaScript,
JavaScript came out on top as the favorite one when choosing which program lan-
guage to go for. JavaScript is also more similar to other languages like C++ and
C which we were familiar with from previous unites, this also helped tipping the
scale.

NPM is a great tool because of the large package registry. It provides access to
a vast collection of open-source libraries. NPM also makes it easy and convenient
to install libraries and manage their versions. It’s also seamless to use with Node.js
because of it’s tight integration, making it efficient to use together [26].

We utilised several Libraries through NPM. Our chosen libraries brought extens-
ive functionalities to our code. We ended up using a total of six libraries that
our JavaScript code depends on to function correctly. Each library has their own
unique functionality. We utilised the npm command line client to install them.
These are the following Dependencies:

• @azure/identity: Is used to authenticate with Azure services [51].
• @azure/keyvault-secrets: Allows for interaction with Azure key vault to

store and retrieve secrets [52].
• @elastic/elasticsearch: Is used to interact with Elasticsearch, and is used

to index information [53].
• axios: Is used to handle interaction request for APIs and function as a promise-

based HTTP client [54].
• cron: Enables scheduled task to be executed at a certain time [55].
• qs: Provides utility to format and parse complex nested queries into objects

and vice versa [56].

All these libraries play their own specific part and are crucial for our application
to function properly, as this is described below.

Chapter 6: Implementation 43

6.3 Tussa’s Guidelines

Tussa provided us with multiple guidelines in the beginning of this project which
is located in the Appendix I. These guidelines strive to give an understanding of
what Tussa expect regarding different protocols and procedures. The guidelines
addressed below explains Tussas mindset towards system development.

Code commenting is stated in Tussa’s guidelines regarding DevOps as an essen-
tial requirement. Its compulsory with sufficient details to enhance the clarity of
whats happening within the code and the intention behind the particular imple-
mentation. This procedure aid elicit the meaning about each piece of code and its
purpose. Additionally it is an adequate practise to include metadata in the code.
It is important to always address the date of code implementation and refer to
the author. This practise extends clarification and emphasize development history
tracking. We politely refer you to our GitHub repository for a better comprehen-
sion on how this is achieved [49].

In addition, the guideline addresses to strictly forbid storing password and API
credentials as clear text within the code. Following this security measurement is
an essential way of maintaining best practise. Detailed knowledge on how we
have achieved this important security safeguard is stated in the next sections. Fi-
nally, it is important to highlight that these requirements are universal, regardless
of whether developments is done by in-house teams or by outside contractors. We
have dedicated us to the best of our ability to comply with these guidelines.

6.4 Self Configured Node.js App

As mentioned did we completely developed our Node.js application from scratch.
For future references do we also mention this app by its given service name: api-
cron. Its first functionality is to retrieve information about devices from two differ-
ent vendors using three separate API calls. Its main purpose is to accumulate this
information into one data set. This is achieved through multiple functions which
is addressed further down. The composed data structure is so forth passed into
Elasticsearch, where it is stored for future use.

6.4.1 Azure API

The microservice is configured with system assigned managed identity in Azure,
which removes the need of any extra credentials to access Azure resources. This
means that access to retrieve and store secrets is configured in Azure as policies
instead of generating an additional API to do the same.

44 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

6.4.2 Device APIs

The APIs fetching information from three different products supplied by two vendors.
Early in the projected presented Tussa us with a method of using a communica-
tions service providers (CSP) in the future to enable shared API credentials per
product. Shared API credentials authorize information retrieved from all the ten-
ants together by only using one call. They stated this because it is so much easier
to managed, instead of having separate API credentials and API calls for each ten-
ant. Azure key vault is configured to simulate this concept. It consist of 3 Secrets
holding the credentials to each product for each tenant as a string.

It should be addressed that sharing API credentials across multiple tenants in-
troduces a new security risk and is not seen as best practise. It can potentially
increase the risk of a data breach as a single set of credentials can expose sensit-
ive information for all customers, not just one. It can also be more challenging to
monitor the use of each one and to ensure compliance of policies and regulations
[57]. From a strict security perspective it is considered to be a bad idea, but be-
cause of the specific use case scenario, Tussa does accept these risks. The factors
accepting this decision is presented below.

The three APIs is configured with least privilege. Meaning they can only read in-
formation necessary and nothing else. This gives a potential adversary limited ac-
cess in case of a breach where the credentials are compromised. Cisco’s APIs were
pre-configured by Tussa before our projected started, while Microsoft’s Graph API
giving access to Intune is configured by us. Microsoft provide great documentation
on which permissions is needed to delegate their APIs to contact right endpoints.
We are contacting the endpoint List devices to retrieve information about all
the devices. The necessary permissions to access this endpoint is Device.Read.All
and Directory.Read.All [58].

The Secrets stored in Azure follow the least privilege principal, and authorize
only people with right access. By default, each of the APIs is configured using
SSL/TLS over HTTPS, which adds on another security layer. The code also poses
proper error handling to maintain appropriate logging.
Tussa has around 60 different customers, so there would potentially be 60*3=180
APIs to handle. Managing a significant amount of APIs can be prone to errors, and
poses a security risk on its own. The complexity of managing is only get more chal-
lenging as Tussa gain customers, as well as the likelihood of human error.

Furthermore, proper resource delegation to managing this, be needed, which can
potentially take away time from other important tasks. It could lead to a ineffi-
cient workflow. It could also increase the attack surface as more APIs are exposed
to the world. Finally, since the APIs are located on the same device do a potential
breach of the VM, simultaneous is expose, regardless the approach.

Chapter 6: Implementation 45

6.4.3 Pseudo code for retiving device information

This Pseudo Code aims to explain what the code in the Node js application does.
For more reference go to our GitHub repository where the source code is located.

Algorithm 1 Retrieve device information

1: procedure PROCESSAPIS

2: groups← getIntuneGroups()
3: API credentials← getKeyVault()
4: for each group in groups do
5: Fetch devices from APIs
6: Format data into objects
7: Merge objects into a single array
8: Compar last sync data field from each vendor
9: Adds result found

10: Adds current date to the array as timefield
11: Displays the hole array in the console
12: procedure CREATEORUPDATEINDEX(array, groupName)
13: Creats elasticsearch client
14: Check if it was successful
15: Deletes old index
16: Create new index (groupName) with the new array data
17: end procedure
18: end for
19: Handle any errors
20: Run process immediately
21: Schedule process to run daily at 21:00 Oslo time
22: end procedure

6.4.4 Dockerfile

Our docker file contains the necessary commands to assemble our api-cron im-
age. It starts off by fetching the latest node image as its baseline structure. Next
is setting the work directory naming it /app. Next copies all the page files into
working directory. Then installs all necessary dependencies specified in the page
file. Later does it copy all the code into the working directory. Then it creates an
environment variable which tells node where to look for all the node modules. Fi-
nally its states which command to run when the container is running, and says to
wait 10 seconds before running the application. It waits 10 seconds to make sure
the container is running properly before running the script, as a safety measure
for errors. See Code listing 6.1 below for the Docker file.

46 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

Code listing 6.1: Building Docker Image from Node.js

FROM node:latest

Set working directory
WORKDIR /app

Copy package.json and package-lock.json files into the container
COPY package*.json ./

Install dependencies
RUN npm install

Copy the rest of the application code
COPY . .

Set the environment variable
ENV NODE_PATH=/app/node_modules

Start the application with a delay
CMD ["bash", "-c", "sleep␣10␣&&␣node␣index.js"]

6.4.5 File Structure

This is the file structure of the microservice. It is divided into separate files for
different purpose to create a better overview.

Figure 6.1: api-cron microservice file structure

Chapter 6: Implementation 47

6.5 Grafana

Grafana utilise a built in Node.js app in its image, to configure it. This scrip run and
configure Grafana each time the container is launched or restarted. This means
that Grafana gets configured each time the container launches. It uses Grafana’s
API to configure Users, Teams, data sources, Dashboards, and permissions. The
APIs uses basic authentication to authenticate towards Grafana.

6.5.1 Azure AD Authentication

Grafana is integrated with Azure AD authentication enabling users to access Grafana
through their Azure account. It allows only users that are part of certain groups
in Azure to access it. Synchronising Azure roles is disabled as all permissions is
configured using the APIs, except for the admin user. It is configured to allow ad-
min users specified in Azure to be admins in Grafana as well. All these properties
are stated in the stack file as environment variables to the Grafana service. An app
registration is needed in Azure to enable this which is further be addressed below
in the section about Azure.

6.5.2 Break glass

The default admin user in Grafana is configured as a Break Glass account and is
only intended to utilised in case of emergencies. The admin account is not sup-
posed be used as a normal account since everyone has their own specific Azure
user. Its purpose is to prevent a complete lockout from Grafana in case something
is wrong with Azure. It creates a safety measure to always have an alternative
way of accessing Grafana for specific users. This was configured as it was one of
the requests from Tussa. It provides Tussa with the flexibility and backup to access
Grafana in case of an emergency. The code generates a random password consist-
ing of 25 characters, being lower and upper case, as well as including symbols.
The password is stored in Azure Key Vault after the admin account is updated with
it. An access policy is forced in the Azure Key Vault only letting members of the
group test-admin-GF have full access to it. An access policy is also created for the
application which sets the permission to "set". This mean it can only set a secret
in that specific key vault and nothing else.

48 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

6.5.3 Pseudo Code For Configuring Grafana

This Pseudo Code aims to explain what the code in the Grafana application does.
For more reference visit our GitHub repository where the source code is located.

Algorithm 2 Configuring Grafana

1: procedure ARROW FUNCTION

2: groups← getIntuneGroups()
3: for each group in groups do
4: Creat a team in Grafana
5: Get all group members
6: for each member in groupsMembers do
7: create user in Grafana
8: Add user to respective team
9: end for

10: Create data source in Grafana
11: Create dashboard in Grafana
12: Create dashboard permissions in Grafana
13: end for
14: procedure CHANGEADMINPWD

15: Generates a password consting of 25 random character
16: Updates the Grafana admin user with it
17: Store the newley created password in Azure Key Vault
18: end procedure
19: end procedure

6.5.4 Docker file

Docker uses Grafana image version 9.4.2 as the baseline of the image. It uses a
specific version through out the development face to achieve predictability and
consistency. It also offers stability because we know that the image works with
our code. Although, it should be mentioned that not utilising the latest version
can come as a security risk. Newer version commonly mitigates security vulnerab-
ilities that the prior version poses, as experienced in the chapter regarding security
testing. The Docker file sets the working directory as /app, and then copies all the
necessary files to it. It installs Node.js and NPM for it to work and runs the code
with a 10 second delay. It then makes sure to continue running the script.

Chapter 6: Implementation 49

Code listing 6.2: Building Docker image for Grafana with additional functionality

FROM grafana/grafana:9.4.2

#Set work directory
WORKDIR /app

Copy the package.json and package-lock.json files into the
container

COPY package*.json ./

Copy the node_modules folder into the container
COPY node_modules ./node_modules

Copy the azure-api.js into the container
COPY azure-api.js ./azure-api.js

Copy the grafana-setup.js file into the container
COPY grafana-setup.js ./grafana-setup.js

Install Node.js and npm
USER root
RUN apk add --update nodejs npm

Set the entrypoint to run the script
ENTRYPOINT ["sh", "-c", "/run.sh␣&␣sleep␣10␣&&␣node␣

/app/grafana-setup.js␣&&␣tail␣-f␣/dev/null"]

6.5.5 File Structure

Below is Figure 6.2 illustrating the file structure necessary to create our func-
tioning Grafana image. Main code is located in the grafana-setup.js, the code
connecting to Azure is located in azure-api-js.

Figure 6.2: Grafana microservice file structure

50 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

6.6 Nginx

Our Nginx service is configured with two files nginx.conf and default.conf.
nginx.conf is the main configuration file for Nginx. It specifies global configur-
ations which applies for everything in Nginx. default.conf is used to configure
the service side. It is configured as a reverse proxy with multiple security meas-
urements.

6.6.1 Nginx.conf

Here its configured with basic configuration for Nginx to work, as well as specify-
ing some DDOS protection. It is configured with a rate limit where its stated that
each client can make up to 10 requests per second, if a client exceeds this limit, a
503 error (Service Unavailable) is issued in return. It also specifies a limit of how
many simultaneous connection a single IP can make to the web side, here the limit
is 10. It also removes information for the header about which Nginx version that
are in place.

6.6.2 Default.conf

The default.conf files states that all HTTP (port 80) traffic shall be redirected to
HTTPS (443) as the site only is available through HTTPS. The application achieve
HTTPS through SSL certificates from OpenSSL and is valid for a total of 90 days.
It is configured to prohibit any traffic towards the /metrics path. This is done be-
cause it possessed a security flaw which is further address in the chapter about
security testing. It also possesses a IP access list stating it only allows Tussas IP
and denies everything else. It disables the browser for trying to guess the MIMI
type. It also prevents the page from being framed within another page, mitigat-
ing against clickjacking attacks. It specifies a Content Security Policiy, which helps
prevent against vulnerabilities like injection. The rate and access limit stated in
the nginx.conf is applied to the path of the web site.

SSL termination is applied and therefor decrypt the SSL/TLS traffic before the
reverse proxy passes it on to Grafana. We have decided to do so because of a
few reasons. It makes managing the SSL certificate simpler as it only needs to be
done on the reverse proxy. It also decreases the complexity as multiple nodes may
be added in the future for enhanced scalability and robustness. The traffic run-
ning between Nginx and Grafana is on a private docker overlay network which is
generally considered as secure.

Chapter 6: Implementation 51

The overlay network is configured with IPsec/ESP encryption, which encrypts all
network traffic between nodes at the network lay in OSI-model. We have enabled
encryption on the docker overlay network to enhance security and integrity, but
also to simplify SSL certificate management, as this needs to be done manually
as of this moment. However, this encryption does not apply for communication
between containers on the same VM, as this is consider to be private traffic, and
needs to be handled accordingly. Its also worthy to highlight that it does not
provide end to end encryption as the data is decrypted and re-encrypted on the
Nginx host.

6.7 Scripts

This section gives a deeper explanation of our two script we made through the
use of pseudo code.

The following pseudo code describes how newly created SSL Certificates are saved
as Docker Secrets.

Algorithm 3 Update SSL Certificates

1: procedure REMOVESECRETS

2: if Docker secrets exist then
3: Remove existing Docker secret (Public)
4: end if
5: if Docker secrets exist then
6: Remove existing Docker secret (Private)
7: end if
8: end procedure
9: procedure CREATESECRETS

10: Create new public key
11: Create new private key
12: end procedure
13: procedure REDEPLOY

14: Redeploy the stack
15: end procedure

52 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

The following pseudo code describes how a new Service principal is issued, and
how its credentials is stored as a docker secret for future use.

Algorithm 4 Update Service Principal

1: procedure INSTALL AZURE CLI
2: if Azure CLI already installed then
3: Azure CLI already exists
4: else
5: Install Azure CLI
6: end if
7: end procedure
8: Logging in to Azure
9: Userinput name of Container Registry

10: Store input in containerRegistry variable
11: Set the value of AcrName variable to the value of containerRegistry variable
12: Log out off Docker registry
13: Obtain the full registry ID
14: procedure DELETE EXISTING SERVICE PRINCIPAL

15: if Service principal already exists then
16: Delete already existing
17: end if
18: end procedure
19: Create service principal with the ServicePrincipalName variable
20: Retrive the appId and print the UserName and Password variables
21: Create a Json file with the Docker authentication
22: Delete excisting Docker secret file
23: Create new Docker secret file with the output from Json file
24: Remove the Json file
25: Docker Secret now created

6.8 Azure

This section aims to explain configurations done in Azure which is crucial for
the functionality of our application, as well as the security for it. We mostly link
configuration instructions to officials sites as we see no purpose of trying to create
a better instruction than whats already out there, and would consider it poor time
management. Nevertheless, we do instruct what is needed to be done, but the
specific method of procedure is found in the link. We also recognise that some of
these configuration are quite basic, and is known to Tussa since they are familiar
with Azure.

Chapter 6: Implementation 53

6.8.1 VM

As mentioned before, our application does consist of two virtual machines, one
dedicated as a reverse proxy where Nginx runs. The other one has the role as the
manager in the docker swarm and is where the rest of the microservices runs. The
chosen name of each VM is sensitive as if they are going to be changed, they need
to be changed in the stack file as well.

The VMs are both created in Azure within the same resource group, image (Ubuntu
Server 20.04 TLS - x64 Gen2) and Region (North Europe), but poses different sys-
tem configuration since they play different roles. The Nginx VM has the Standard
B1s size which comes with 1 vCPU and 1 GiB of memory. Manager VM on the
other hand require more processing power, and is fitted with the Standard B2s
size consisting of 2 vCPUs and 4 GiB memory. Standard B1s cost 80,71 kr/month
while Standard B2s cost 321,43 kr/month, making them quite affordable. This
may changed when launched in a production environment with real data as it is
described further in chapter about future considerations.

Each of these specifications needs to be configured when creating a virtual ma-
chine. Additionally do both bear their own asymmetric SSH key par for authen-
tication. Next step after this is to enable disk encryption, but before this can be
done, the feature needs to be switched on. It is done with the following steps:
In the Azure portal select the cloud Shell icon located on the top bar. This gen-
erates a separate shell window where you can write the following command to
registrar the feature for your subscription:

Code listing 6.3: Registrer feature of your subscription

Register-AzProviderFeature -FeatureName "EncryptionAtHost"
-ProviderNamespace "Microsoft.Compute"

Then do this command to confirm your acction:

Code listing 6.4: Confirm action

Get-AzProviderFeature -FeatureName "EncryptionAtHost"
-ProviderNamespace "Microsoft.Compute"

54 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

After this you can enable disk encryption at host, when creating a new VM. The
feature is located under the Disks section as shown below:

Figure 6.3: Enabling disk encryption at host

Enabling disk encryption on a host is a critical security aspect as data stored there
is encrypts at rest. This features adds an additional security measurement to se-
cure data at rest, which is one of the security requirements of Tussa.

Networking is another crucial security characteristic. It defines what kind of traffic
to allow by configuring network security groups. It allows for a fine grained con-
trol on what to allow onto the network, potentially reducing the attack surface.
This adds another layer of defence which can help against unauthorised access.
It accomplish this by specifying what source and destination IP, Port number and
Protocol to allow.

Below is a configuration on what we allow as inbound traffic, outbound is the
same except without the SSH rule, as you do not need to SSH from the VMs to
any place. The rule named "Dockerinn" is required to allow necessary traffic re-
lated to docker [59]. The three last rules are basic rules which are pre-configured.
They allow all traffic from and to virtual network, as well as from an Azure load
balancer, and denies everything that is not specified above. The Priority numbers
determine the order in which the access policies apply, where the smallest number
has the highest priority. It is important to mention that the SSH access should be
turned off when not in use to lower the risk of unauthorised access.

Figure 6.4: Inbound security rules

Chapter 6: Implementation 55

These configurations mentioned above are whats needed to deploy for each VM.
Some important software needs to be downloaded, after the creation of each VM.
Docker Engine and Azure CLI is needed to run docker swarm and connect to Azure
through the terminal. The procedure to best accomplish this can be found on their
web sites: Docker [60] - Azure CLI: [61]. Docker engine is needed on both VMs
as they are both part of the docker swarm, while Azure CLI is only needed on the
manager VM.

6.8.1.1 Access Control

System assigned managed identity is enabled on the manager VM to allow for
credential less authentication towards the code. It gives access to Azure resources
without the need of credentials. This feature allows us to store no credentials
in the code, making it more secure. How this is applied is further shown below
regarding Azure key vault.

6.8.2 Azure Key Vault

As mentioned does Azure Key Vault store our credentials. We have 4 different
vaults. 3 for API credentials, and 1 for Grafana admin password. Creating an Azure
Key Vault is fairly simple and can be done following this guide [62]. One thing to
mention is the sensitivity of the names, as if they are to be changed, so does the
code. Storing API credentials as secrets can be done following this instruction [63],
while Grafana stores the password in Azure Key Vault on its own. The credentials
stored each poses their own access policy. The access policy defines who may
access it. The access policy for the APIs are the same and is as follows:

Figure 6.5: Access policy for AKV storing APIs

56 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

The Policy states that member of the "test-admin-GF" group have full access to the
secrets as well as rotating privileges while the manager VM only has get and list
access. The policy is configured to comply with least privilege principal, where
people and services only have necessary access to function.

Access policy holding the Grafana break glass admin password is as follows:

Figure 6.6: Access policy for AKV storing APIs

Members of "test-admin-GF" also have full access to this secret, but they do not
have rotating access, since this is the job of the Grafana application. Grafana gets
and set the secret, as well as fully delete it using purge. The price of operating a
key vault is measured in number of transactions i.e. actions you take on the secret.
The price is 0.319 kr/10.000 transaction [64].

6.8.3 Azure Container Registry

Creating an Azure Container Registry can be done following these steps [65]. It
is important to specify that the resource group and location is the same in all
configurations. The name of the container registry is not sensitive. The container
registry comes in three different versions providing separate features. We have
chosen to go with the basic option as we need minimum storage. The premium
option provides Geo-replication, storing the images in multiple regions, in case of
regional outage.

Chapter 6: Implementation 57

We presented this to Tussa where they decided the cost benefits ratio was not
worth is since we store the code other places as well. It contains the two reposit-
ories holding the image for api-cron and Grafana application. Having the images
stored here allows for automation in the sense that our stack automatically up-
dates based on these images if there is a new version of them. This update can be
done while all service are running, and takes them down for a brief moment if it
can be updated. Azure automatically encrypts an image before storing it, and de-
crypts it on-the-fly, enhancing the security around data at rest requirement from
Tussa [66].
A service principal is created to authenticate and letting the application access the
container registry which is address in the next section.

6.8.4 Azure App Registration

App registration can be utilized to achieve a variety of different tasks and each
of our app registrations provide different functionalities. We have a total of 3 app
registrations, where one is used to configure the Intune API, another is servicing
as the authentication method towards Grafana, and the last one allows access to
our container registry as a service principal.

6.8.4.1 Intune API

This app registration allows for the code to retrieve information from Intune
through the use of Microsoft Graph API. The APIs are configured with a strict
read only access to necessary information complying with least privileged prin-
cipal. The permissions below illustrate the necessary permission to retrieve data
about devices in Intune.

Figure 6.7: Retrieve device information permissions

6.8.4.2 Azure AD OAuth2 Authentication

The app registration named "OAuth-grafana-test" is configured to enable Azure
AD OAuth2 authentication towards Grafana. It allows existing Azure AD users
to use their account to login to Grafana. This features eliminate the need of each
users to create a Grafana account and have an extra set of username and password
to manage. The app registration is configured with two redirect rules to enable
the user to get back to the application after a successful sign in. The redirect rule
contain the URL of the return address that the users gets redirected to. This URL
is also required to be HTTPS to enable a secure connection.

58 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

A predefined application role for Grafana can be configured under the "manifest"
section in the app registration. The admin role for Grafana is enabled here, mean-
ing that users assigned with this role is dedicated to become admins in Grafana.
This role is delegated to people that is part of the "test-admin-GF" group. To ac-
tivate this privilege for the group members, it is necessary to go to "Enterprise ap-
plications" in Azure, then search for the app registration in the search bar. Finally
under users and groups select "test-admin-GF". Below is the admin configuration
in the manifest to create the app role.

Figure 6.8: Admin role in Grafana

6.8.4.3 Azure Container Service Principal

An app registration is created as a Service Principal rule. The rule exist to allow
access to Azure key vault. The script update-ACR-auth is used to configure this
service principal to automatically generate a new service principal if it exist. This
is done to generate new credentials, in case of a breach or when a user quits. The
Service principal is configured to only give pull access to the container registry as
stated above in the "Script" section.

Chapter 6: Implementation 59

6.8.5 Azure Groups

Groups in Azure can be configured following this link [67]. Groups are configured
to be individual for each customer Tussa has i.e. one group per customer. Azure has
a feature named Azure B2B feature. This feature allows you to invite externals to
your organization [68]. Users who are delegated the privilege of inviting externals
are required specials roles in Azure to accomplish this task. This prerequisites can
be the Privileged Role Administrator. As groups are free of charge to create, do
they not poses any additional cost enabling Tussa no limits of creating groups. We
have also assigned an Azure Group for the admins who can configure rights and
implement changes in Grafana. This group is intended for key personal within
Tussa.

6.8.6 Conditional Access Policies

Conditional access is configured to enable MFA for all users. This is an easy best
practise rule to follow, especially considering the striking statistic is poses. Ac-
cording to Microsoft does MFA prevent 99.9% of identity attacks. Since every user
regardless if its a normal user or admin has access to sensitive information. There-
fore we see this mitigation as an absolute necessity. Additionally, Tussa states in
their guideline for identity and access management under section 4.2 authentica-
tion (Appendix I), that only using password as a authentication mechanism is not
considered as sufficient.

There are some prerequisites needed to create an conditional access policy to
enable MFA. The user configuration it is required to have either of these accounts:
"Conditional Access Administrator", "Security Administrator", or "Global Adminis-
trator privileges". For the MFA policy to apply is it demanded to attache it to the
app registration mentioned above about Azure AD OAuth authentication. Further
instruction on how to configured it can be found here: [69].

Chapter 7

Deployment

This chapter explains how our solution is going to be deployed within Tussas sys-
tem. It includes prerequisites needed and technical details on how to launch it to
a production environment from scratch. The chapter highlights the choices made
concerning maintains, routines, scalability and security.

7.1 Prerequisites

Before handling the deployment of the application we need to mention the pre-
requisite needed to achieve a smooth deployment. Implementation of these are
previously descried in the chapter about implementation. Nevertheless, we de-
scribe a short recap on how to deploy it in a production environment. This is due
to the fact that our application is now running in a test environment with fake
data, and everything needs to be moved and built up from scratch into a produc-
tion environment.

The first thing that needs to be configure is Azure, building the foundations of
our cloud based infrastructure. We utilise a variety of Azure features that are
mentioned below. The necessity for these features are important for the secur-
ity measures and access control they provide.
It is important to mention that the commands shown in this chapter are suited to
use for VS Codes terminal for Windows. This is because Tussa utilises VS Code as
their code editor and Windows is their primary operation system. Required tools:
Azure CLI, Git, and Docker, are all anticipated to be installed in advanced as it is
necessary for the commands to work.

61

62 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

7.1.1 Azure

Features that are utilized in Azure are mentioned below. All Azure configurations
should be done in Tussas own production tenant.

7.1.1.1 Virtual Machine

We intend to start off doing a more thorough walk through of the set-up of the
VMs as they are highly significant for the baseline of the infrastructure. First of is
to create the VMs in Azure. Follow the description given in the implementation-
chapter, in section 7.8.1 VM where comprehensive instructions can be found. As
mention in the implementation-chapter, do both VMs needs to have docker in-
stalled, in addition to az cli for the manager VM.

They also need to be initiated as a docker swarm. First decide which VM that is
going to be the manager. This is the node that is dedicated to control the Docker
swarm and have the following microservices: Node.js, Elasticsearch, and Grafana.
This is the command to initialise the manager node:

Code listing 7.1: Initialise manager node

sudo docker swarm init --advertise-addr <IP_ADDRESS_OF_VM>

In addition generates the command a second command that is used for worker
nodes to join the swarm. Copy this command and run it on the desired VM that’s
going to be the worker. In our case this is the VM where Nginx is going to run.
The command should look something like this:

Code listing 7.2: Initialise worker nodes

sudo docker swarm join --token <TOKEN>

Two scripts are also necessary to be executed. update-ACR-auth.sh and update-
SSL-Certificates.sh provides the right service principal delegation and SSL cer-
tificates respectively.

7.1.1.2 Azure Key Vault

Here API keys for each vendor needs to be stored. The Grafana admin password
is automatically persisted here when the services are deployed.

7.1.1.3 Azure Container Registry

Images used by the services needs to be stored here i.e. api-cron and Grafana
image. These needs to be pushed to the container registry before launching the
application. The following steps shows how it is possible to retrieve to code to a
local environment. Build the necessary images and push them to the container
registry.

Chapter 7: Deployment 63

The first thing that needs to be done is creating a container registry in Azure
as shown in the implementation-chapter. The name of the registry is optional.
Next step is to pull code from GitHub that docker uses to create an image. The
command is shown below. Follow the steps presented after running it to log in to
GitHub. After successful authentication and passing MFA, go into the directory of
the newly cloned repository.

Code listing 7.3: Clone Github repository

git clone <GitHub_REPO_URL>

It is required to log into Azure and its container registry to be able to communicate
with it. The following commands shows you have to do it, and are necessary for
completion of the final step:
Login to Azure, which takes you to a login page in the browser

Code listing 7.4: Log into Azure

az login

Login to the container registry.

Code listing 7.5: Log into Container registry

az acr login --name <ACR_NAME>

Final step is to push the images to the container registry. It is important to notice
that the names of the images can not be changed if it is not also changed in the
stack file. The following steps needs to be done in the directories where you have
the code for both the api-cron service and the Grafana service. Navigate to the
api-cron directory and create the api-cron image with necessary tag:

Code listing 7.6: Create api-cron image

docker build -t <ACR_NAME>.azurecr.io/api-cron:latest .

Push the image to the repository:

Code listing 7.7: Push api-cron image to repository

docker push <ACR_NAME>.azurecr.io/api-cron:latest

Navigate to the Grafana directory and create the Grafana image with necessary
tag:

Code listing 7.8: Create Grafana image

docker build -t <ACR_NAME>.azurecr.io/grafana:latest .

64 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

Push the image to the repository:

Code listing 7.9: Push Grafana image to repository

docker push <ACR_NAME>.azurecr.io/grafana:latest

7.1.1.4 Azure App Registration

Azure consists of several app registrations which are significant for the application.
As mentioned previously, app registration can consist of different functionalities.
In our case for Service principals, Azure authentication in Grafana, and two for
APIs. This is paragraph exist as a remainder of what app registrations that needs
to be configured. While the instructions on how to implement them can be found
in implementation-chapter. The app registrations is as follows:

• API to fetch information from Intune.
• API to fetch information about groups, and group members in Azure AD
• Enable Grafana authentication with Azure AD, and where to redirect the

user after a. Successful authentication.
• Service principal to allow the application to gain access to the Container

registry

7.1.1.5 Azure Groups

Configuring Azure groups is an important part for segregating tenants and man-
aging access control. Creating the groups require precise work to avoid giving the
wrong person unauthorised access by mistake. Each client that Tussa has poses
their own group where designated personnel is invited to. The invitation proceed
to give them necessary access for their correlating resources. Creating groups and
inviting people is explain previously in implementation-chapter.

7.1.1.6 Conditional Access Policies

How to implement conditional access is mentioned in the implementation-chapter.
The functionality of this feature is to enable MFA for users that are part of the
admin group as previously stated.

7.1.1.7 System Assigned Managed Identity

Configuring System assigned managed identity is described previously in the chapter
about implementation. As mentioned gives this feature the capabilities of allowing
resource access to the virtual machines.

Chapter 7: Deployment 65

7.2 Deployment-Process

After all the prerequisites are arrange the application is ready to be deployed.
Our goal was to find a way to automate the deployment process. In addition for
all the microservices to deploy together instead of manually starting one by one.
Docker swarm enables us to do just that through a stack file shown in the figures
below. We create a stack file that contains all the commands needed to start each
microservice. This features is one of the reason why we chose to use a container
orchestration tool like Docker swarm.

We are going to explain each service configured in the stack file step by step.
First line in the stack file explain which version we utilize. Then under services:
comes all the services. Tab-delimited-format is used to indicate blocks of code be-
longing together.
api-cron is the first service to be mentioned. image: is used to specify which im-
age the service is going to use. Here its specified to use api-cron:latest located
in Azure container registry. One replica is to be made an is dedicated to run on
the node named test-manager. If the container goes down unexpected under any
conditions, the container try to restart for a total of 3 times with a 5 second gap
between each attempt.

These specifications are universal for all the microservices. The services is also
part of an Overlay Network making all service capable of communicating with
each other across nodes. The purpose of the docker secret is further descried be-
low. Lastly it depends on the Elasticsearch service to start before it. This is because
Elasticsearch needs to be up and running before data can be sent to it from the
api-cron service.

66 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

Code listing 7.10: Set up Docker Service ’api-cron’

1 version: '3.7'
2 services:
3 api-cron:
4 image: testtussaacr.azurecr.io/api-cron:latest
5 deploy:
6 replicas: 1
7 placement:
8 constraints:
9 - node.hostname==test-manager

10 restart_policy:
11 condition: any
12 delay: 5s
13 max_attempts: 3
14 window: 120s
15 networks:
16 - tussa-network
17 secrets:
18 - acr-auth-config
19 depends_on:
20 - elasticsearch

The next service to be specified is Elasticsearch. The image is fetched from the
Elastic docker registry, and uses version 7.17 of Elasticsearch. An older version
is specified to rely on a fixed and tested version throughout the project. Newest
versions may introduce new security vulnerabilities, as well as changing some
key features used during the project. The default port Elasticsearch listens to is
9200 which is also stated in the stack file [70]. Environment variables added tells
Elasticsearch to name the node, only one instance is to be made, and disable auto
indexing. Line 42 and 43 shows that it has a Volume which allows it for inform-
ation to be persisted even if the container goes down. It has no dependencies
meaning it is the first one to start.

Chapter 7: Deployment 67

Code listing 7.11: Adding service for running Elasticsearch

1 elasticsearch:
2 image: docker.elastic.co/elasticsearch/elasticsearch:7.17.0
3 deploy:
4 replicas: 1
5 placement:
6 constraints:
7 - node.hostname==test-manager
8 restart_policy:
9 condition: any

10 delay: 5s
11 max_attempts: 3
12 window: 120s
13 ports:
14 - "9200:9200"
15 environment:
16 - node.name=elasticsearch
17 - discovery.type=single-node
18 - action.auto_create_index=false
19 networks:
20 - tussa-network
21 volumes:
22 - elasticsearch_data:/usr/share/elasticsearch/data

Grafana has a bit longer configuration, due to the Azure AD authentication con-
figurations is implemented here. Grafana also fetches its image from Azure con-
tainer registry. It listens on port 3000 as it is the default port of Grafana [71].
Grafana depends on both Elasticsearch and api-cron to be started, in order to
visualize the data. The environment variables Specified explains how the Azure
ad authentication is configured, further explanation about the configuration can
be found on Grafana’s official page [72]. Nevertheless is it important to notice the
GF_AUTH_AZUREAD_ALLOW_ASSIGN_GRAFANA_ADMIN: "true" field allowing Azure
AD users to be assigned Grafana admin role. Meaning if a certain Azure group
is assign the admin privileged, it is transferred to Grafana to be assigned the ad-
min role there as well.

68 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

Code listing 7.12: Deploying Grafana Service in Docker Swarm

1 grafana:
2 image: testtussaacr.azurecr.io/grafana:latest
3 deploy:
4 replicas: 1
5 placement:
6 constraints:
7 - node.hostname==test-manager
8 restart_policy:
9 condition: any

10 delay: 5s
11 max_attempts: 3
12 window: 120s
13 ports:
14 - "3000:3000"
15 networks:
16 - tussa-network
17 secrets:
18 - acr-auth-config
19 depends_on:
20 - elasticsearch
21 - api-cron
22 environment:
23 GF_AUTH_AZUREAD_NAME: "Azure␣AD"
24 GF_AUTH_AZUREAD_ENABLED: "true"
25 GF_AUTH_AZUREAD_ALLOW_SIGN_UP: "true"
26 GF_AUTH_AZUREAD_AUTO_LOGIN: "true"
27 GF_AUTH_AZUREAD_CLIENT_ID: "${GF_CLIENT_ID}"
28 GF_AUTH_AZUREAD_CLIENT_SECRET: "${GF_CLIENT_SECRET}"
29 GF_AUTH_AZUREAD_SCOPES: "openid␣email␣profile"
30 GF_AUTH_AZUREAD_AUTH_URL:
31 "https://login.microsoftonline.com/${TUSSA_AZURE_TENANT}
32 /oauth2/v2.0/authorize"
33 GF_AUTH_AZUREAD_TOKEN_URL:
34 "https://login.microsoftonline.com/${TUSSA_AZURE_TENANT}
35 /oauth2/v2.0/token"
36 GF_AUTH_AZUREAD_ALLOWED_GROUPS: "5e48474c-9f67-40d3-81e6-
37 f9ec6298aa1b,2bc480c5-4437-4463-849c-87cc2be788ec,c750cecf-
38 6be0-429b-93d3-1973b76945a7"
39 GF_AUTH_AZUREAD_ROLE_ATTRIBUTE_STRICT: "false"
40 GF_AUTH_AZUREAD_ALLOW_ASSIGN_GRAFANA_ADMIN: "true"
41 GF_AUTH_AZUREAD_SKIP_ORG_ROLE_SYNC: "true"
42 GF_SERVER_ROOT_URL: "https://securityportal.tikt.no"

Chapter 7: Deployment 69

Nginx utilize its stable version. It is a more tested in regards to compatibility,
security and stability. Find support for this version is also more likely because it is
more used. It expose port 80 and 433 witch is the normal ports for web traffic. The
two docker secrets is utilised on line 19 and 20 represents the SSL certificates. Two
configuration files are copied into the container to configure Nginx. Nginx rely on
Grafana to start, making it the last microservice to deploy.

Code listing 7.13: Deploying Nginx Service in Docker Swarm

1 nginx:
2 image: nginx:stable
3 deploy:
4 replicas: 1
5 placement:
6 constraints:
7 - node.hostname==test-ngnix
8 restart_policy:
9 condition: any

10 delay: 5s
11 max_attempts: 3
12 window: 120s
13 ports:
14 - "80:80"
15 - "443:443"
16 networks:
17 - tussa-network
18 secrets:
19 - fullchain_pem
20 - privkey_pem
21 volumes:
22 - /home/test-nginx/default.conf:/etc/nginx/conf.d/default.conf
23 - /home/test-nginx/nginx.conf:/etc/nginx/nginx.conf
24 depends_on:
25 - grafana

70 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

The last figure illustrates how the Overlay Network, docker secrets, and Volume
is created.

Code listing 7.14: Defining the network, secrets, and volumes configuration for
Docker Swarm

1 networks:
2 tussa-network:
3 driver: overlay
4 driver_opts:
5 encrypted: "true"
6

7 secrets:
8 acr-auth-config:
9 external: true

10 fullchain_pem:
11 external: true
12 privkey_pem:
13 external: true
14

15 volumes:
16 elasticsearch_data:
17 external: true

The services are simply deployed using the following command:

Code listing 7.15: Launch/Redeploy the stack

sudo docker stack deploy --with-registry-auth -c stack.yml tussa-app

This command is launched from the VM, which is the manager in the docker
swarm. This part is important to execute, because the manager node is the only
one that is allow to carry out this action. It is also noteworthy to specify that the
command needs to be typed in the same folder as the stack.yml file is located.
Different part of the command have their own aspect and necessity.

Chapter 7: Deployment 71

As mentioned, the command is all you need in order to deploy the application.
The command is built up by different parts. sudo enables the command to run as
a super user on the Ubuntu VM. docker stack deploy This is the command that
deploys a set of services. -with-registry-auth is needed to allow the services to
contact a private container registry to pull images from. -c stack.yml specifies
the which stack file to use and where to find it. tussa-app defines the name of the
stack, and can be optional in general. But in our case it needs to have this exact
value to correlate with whats specified in the code.
In short, the command tells docker to deploy a stack, based on the stack.yml file
containing the microservices specifications, and then calls the stack: "tussa-app".

7.3 Routines

The routines stated below explains how to maintain the application, why these
are important to follow, and what kind of benefit they provide. This are routines
based on Best Practise methods, so these routines can actually be used on all work
with integration and API.

Tussa has been clear throughout the project about the importance of proper routines
regarding sensitive information. This section aims to explain just that, what routines
are necessary, how to follow them and the importance of them. The routines are
based on Best Practise principals, and aims to create a guideline for Tussa to fol-
low. It is important to mention that even when implementing these best practise
routines, that they can not mitigate all the risk associated with this application.
In a changing society is there always some level of risk one have to accept.

7.3.1 Non-Disclosure Agreement

A basic routine that covers a broad aspect, allowing people to have access to
the sensitive information such as code and credentials opens up for a vulnerab-
ility where people can pass it on and share it with other people. It is difficult to
avoid this vulnerability, and to be completely secured against it. It is therefore
up most important that employees who has access to this information signs a
Non-Disclosure Agreements (NDA). The NDA should explicitly mention that em-
ployees are not allow to share sensitive information about this application with
unauthorized personnel. Its important to mention that this does not mitigate the
vulnerability completely, but helps on keeping it secure.

72 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

7.3.2 Code / Scripts

Developers who wants to edit the source code needs to pull the code to their
machine from GitHub, and push the newly updated code back to the Repository.
Because of this, users stores a copy of the code locally on the PC where they pulled
it to. No code should be stored anywhere else than on a work laptop where proper
security measurements have already been implemented [73]. Only using a work
laptop to edit code and scripts enables for a clear separation between work and
private activity, creating less likelihood of data leak or mixed data.

In combination of whats stated in the last two sections, we recommend an ac-
cess policy for devices as well. The purpose of the policy is to only grant access to
the code and let a user login, if they are doing it from a verified device. This is to
create a multi layer security strategy, thereby enhancing the safety of the scripts
and code.
It should be implement a routine to review code, to ensure code quality, and pro-
tect against potential vulnerabilities in the code. The policy should include what
is to be reviewed and by whom. It should be integrated as normal procedures in
the developing phase, i.e. in the form of Q&A before pushing the code to GitHub
and into production.

Storing the code in a second location in case of outage creates higher redundancy
and helps increases the availability of the code. We recommend using familiar
backup services and methods for Tussa. These services and methods, including
Veeam Backup, Azure, Locally and Tape, offers a variety of solutions which can
benefit Tussa against an outage, but also in case of a cyber-attack. Backup should
ideally be made after every change. For enhances security should the best practise
3-2-1 rule be followed. the 3-2-1 backup role takes the security one step further
with a total of 3 copies [74].

7.3.3 API Credentials And Passwords

All API credentials are always stored in Azure Key Vault and no place else. As
mentioned before, is it favorable to have them securely collected in one place. It
makes it easier to manage and to provide access control as well as monitoring the
credentials. The same goes for passwords stored there.

Only people in the designated admin group have full access to credentials stored
in Azure Key vault. implementing least privilege access for the application to gain
access to AKV is important to sustain the integrity. This means that the application
only have read access as it is all it needs. MFA policy should also be implemented
to ensure the validation of the user. Enabling MFA complies with Tussa’s guidelines
regarding access control.

Chapter 7: Deployment 73

A policy in Azure should also be implemented stating that only certain pre-validated
machines can access the key-vault. A designated person should be notified when
either a user logs-in or when the machine gets validated. This routine enhances
monitoring and adds an additional security measure to prevent unauthorised ac-
cess.

To preserve the integrity of the API credentials stored in Azure Key Vault it is
important to scheduled a rotation of them. This means that they are periodical
changed. It is recommended to rotate API credentials annually [75] [76]. API
credentials should also be rotated in case of a security incident and should be im-
plement in Tussa’s incident response plan. Rotating API credentials should also be
implement in the off boarding process of an employee.

Actions to automate the process of renewing API credentials is recommended to
be done to create minimal down time. Changing the API credentials should be
done in a different time slot of the one time a day when they are used i.e. 9 pm in
the evening. It can be easy to track older API credentials as it is possible to view
older secrets in Azure Key Vault if they are not deleted.
It should be added as a routine to implement regularly updates and security patch-
ing for the code. It can protect against know vulnerabilities [77].

Comprehensive security training should be compulsory for personnel managing
APIs, and integrate it as a duty for their role. Topics should consist of how they are
handled securely in code, understand ordinary API threats like broken object level
authorization and broken authentication, and how to prevent them with proper
mitigation.

An API rate limit should be implemented as it controls how frequently request
can be made by the application. This is configured and managed on the vendors
endpoint to allow how many times an API can be requested, to retrieve informa-
tion. Therefore, not directly affecting our application development. Regardless is
it a good practise to follow, and it can help prevent against DoS attack towards
the vendors. What it can do is increasing the data availability for Tussa in case API
credentials are compromised and this is being exploited.

Configuring an API gateway on Nginx is a native capability. Its recommended
to implement this as it can enhance the management of the API traffic flow. It
should be configured to sit in front of our api-cron microservice to restrict API
calls to only be allowed to pass through when they are scheduled to. A notifica-
tion to an administrator should be issued if an API request is made to one of the
endpoints outside the scheduled time frame. Implementing an API gateway and
its benefits is further described in future considerations.

74 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

7.3.4 Docker Secrets

As mentioned previously, one of the docker secrets stored in the docker swarm
contains the credentials to access the service principal, allowing the applications
to gain access to the Container registry. The other two is the private and public
SSL Certificates that Nginx uses to enable HTTPS. A great feature with docker
secret is that they are encrypted during transit and rest, which is a great option
considering its one of Tussas requirements.

7.3.4.1 Service Principal

The Service principal and its credentials does not have the same necessity as API
credentials to be rotated as frequent. As the APIs contains far more sensitive and
delicate information. The service principal only allow for pulling images from the
Container registry, while the APIs have full access to all the devices from the three
products. Therefore should it be sufficient to rotate the service principal and its
credentials primarily in case of a security incident or when an employee with
access resigns.
You can simply run the script "update-ACR-auth.sh" to renew the service principal
and its credentials when necessary. This script is made to automate and simplify
the process.

7.3.4.2 SSL Certificate

SSL certificates from Let’s Encrypt holds a relatively short life cycle of 90 days,
and tus they need to be changes accordingly. As described earlier Certbot does
not support an auto renewal DNS plugin for the DNS provider that Tussa use.
The certificates needs to be generated manually. You can the command: "certbot
–manual –preferred-challenges http-01 -d Securityportal.tikt.no". Follow so the
guidelines that are presented by certbot [78]. After this run the script "update-
SSL-Certificates.sh" to automatically deploy the application with the new SSL Cer-
tificates.
For further work we recommend creating a authentication hook script with the
"–manual-auth-hook" option added to command above to automatically update
SSL certificates [78].

7.3.5 Azure

It should be added to the off boarding process for when a user quits to revoke the
user of their Azure account, so that they no longer has the correlating access that
comes with it. This align well with Tussas existing guidelines.

Chapter 7: Deployment 75

It is essential to perform a compressing identity validation before granting per-
sonnel access to this group. This implies that any Azure account seeking to join
this group must undergo a detailed security review to safeguard any potential se-
curity breaches. It also essentials for personnel to manifest full control over their
respective account. Furthermore, it is indispensable for the personnel to conduct
necessary security training, making them eligible to handle sensitive information.
This route makes sure to follow Tussa’s guidelines regarding identity management.

We deemed it as important to inspect the Azure groups related to this applica-
tion periodically because of the resources they grant access to. We recommend
doing this annually at the same time as the API Credentials are rotated. A desig-
nated person from each customer should also be delegated the responsibility to
manage their own group. The person should control whom to invite and have the
overall authority of the participants.

Auditing user access should also be done in the same period, as employees might
accumulate extra access over time than needed to comply with the least privileged
principal.
It is considered a best practise in DevOps to Scan docker images stored in Azure
container registry for vulnerabilities [79]. It adds another layer of security which
helps ensure the integrity. It also help minimizing the risk of exploitation.

Allowing SSH traffic in network security groups should be turn off, when direct
access to the VMs is not necessary. This precaution can reduce the attack surface
by minimizing when access is authorized. Configuring a bastion as authentication
to access the virtual machines can be implemented to avoiding this cumbersome
method of turning on and off SSH. further explanation about this is addressed in
further considerations.

7.3.6 Rotation Of Employees

We repeat the steps for when a person quits, as this was important for Tussa. We
have created an easy highlight process to follow: • Run Update script to update
service principal to gain access to ACR • Update / renew SSL certificates • Update
SSH keys • Restart Grafana service to generate a new admin break glass password.

76 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

7.4 Scalability

The application has no functioning auto scaling as this was not stated in the as-
signment as a requirement. Nevertheless are scalability crucial functionality for a
modern web application due to several reason.

There are two different types of scaling, Vertical and Horizontal scaling. Vertical
scaling involves increasing the resources on the already existing resource e.g. in-
creasing the CPU power. This approach is simple, but can come with some limita-
tions to the resource capacity on the machine. Horizontal scaling involves adding
more services of the same service to the infrastructure to increased the load cap-
abilities. i.e. add one more containers running Grafana, running alongside the
already existing one. Horizontal scaling is more complex since it also require a
load balancing mechanism, but in return offer far greater flexibility, and possess
no limitation but cost [80].

A web application should be able to handle different kind of load during the
day. The web site may slow down or even crash, creating a reduced user experi-
ence, if its not designed to handle increased load. A more redundant application
is achieved by having multiple instances of the services. This increase the availab-
ility of the application, ensuring it is accessible when needed. It also prevent the
service from going down if something one of the instances are having problems or
are hijacked. Scalability also allows for reduced cost as you only pay for resources
used.

Due to these reasons, is scaling options further addressed in the chapter regarding
future considerations. Here it is discussed how Tussa can achieve auto scaling for
the application.

Chapter 7: Deployment 77

7.5 Final Solution With User Guide

This section aims to display the final solution and how a user with access can
access the dashboard.

1. Accessing the domain

• Description: Visit https://securityportal.tikt.no/ which redirect you to
https://securityportal.tikt.no/login which display the login page of the
portal.

Figure 7.1: What you see when visiting the portal

78 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

2. Signing in with Azure AD

• Description: As you see on Figure 7.1 there is a button that displays
"Sign in with Azure AD". Click on the button to start the process of
authenticating to access the dashboard.

Figure 7.2: What you see when visiting the portal

• MFA is required after single sign in is succeeded. In this case of the user
case was mobile phone registered as MFA-method. Other methods can
be added.

Figure 7.3: MFA challenge

Chapter 7: Deployment 79

3. Visit your respective dashboard

• Description: You get access to your respective dashboard according
your tenant, after a successful authentication.

Figure 7.4: The view after a successful authentication

• Later you have to click on the corresponding icon to Figure 7.5 in the
left menu:

Figure 7.5: Dashboard icon displaying which dashboard you can access

• "Test-tussa-tenant1" represent a customer/tenant. To progress further
click on the "Dashboard for <tenant> as displayed in Figure 7.5.

80 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

Figure 7.6: Dashboard icon displaying the endpoints inside the tenant

Figure 7.7: More of the current log fields that are being displayed

• The current data that are being displayed in the current dashboard
are the endpoints inside the tenant and the log fields that have been
requested by the client. It is easy to change the present, and might be
changed in the future if the client want so in the future. To make sure
we got the required functionality, has a non-compliant endpoint been
added to make sure we can filter.

4. Filter on log fields

• Description: If you want to filter on the current log fields are the mul-
tiple ways to do it. The easiest method is to click on the log field where
you get the option to filter on that respective field.

Figure 7.8: Filtered on non-compliant devices

Chapter 7: Deployment 81

Figure 7.9: Filtered on compliant devices

5. Sign out

• Description: After a finish session inside the portal can you sign out .

Figure 7.10: Where to sign out

Chapter 8

Security Testing

One of the security requirements from the client was to perform security testing.
Sindre and Magnus have followed the course IIK3100 - Ethical Hacking and Pen-
etration Testing, where we were introduced to ethical hacking and security of IT
systems by trying to find and exploit security vulnerabilities [81]. This chapter
descries how we did it, and what we found.

8.1 Testing Of The Web Application

For security testing of the web application, Kali Linux was used, and the tools
that follows this system. Kali Linux is an open-source distribution of the operating
system Linux, which aims at security testing with more. The system contains over
600 tools which can be used to perform testing [82].

8.1.1 Nmap

Nmap is short for Network mapper and is a tool used for performing reconnais-
sance scanning to explore networks, open ports and discover information about
services running [83]. A nmap scan with the following command was ran:

Code listing 8.1: command for nmap scan

nmap -A securityportal.tikt.no

When running this command the option -A was included. This option includes
several other options which includes operating system detection, if a host is up or
down, and can enables a default scan which enables users to execute pre-define
scripts. The following was information was gathered:

83

84 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

Figure 8.1: Print from executed Nmap command

As we can see, we get information regarding which ports thats open, and what
services that are running on the ports. What’s interesting is what we see on port
22 regarding SSH. We can see the ssh-hostkeys. The ssh-hostkey is a crypto-key
used SSH-protocol for authentication. The hostkey is being presented when a SSh
connection establishes as a verification, however by walking through nmap’s doc-
umentation, it does seem like the script only collects the fingerprint of a public
key [84]. As it is public by default does information like this serve no vulnerability
or threat.

8.1.2 Dirb

Dirb is a tool inside Kali that allows to scan for directories with a predefined list of
domains [85]. Kali does also contain a word list of the most common directories.
By using predefined wordlist named big.txt which contains 20458 names which
is further used in searching for directories. We ran the following command:

Code listing 8.2: command for dirb scan

dirb https://securityportal.tikt.no
/usr/share/dirb/wordlists/big.txt

Chapter 8: Security Testing 85

Figure 8.2: What directories we found after running the dirb-command

Code 302 tells that it found a domain, but gets redirected. After checking all code
302 domains, do you get redirected to the home page where you can login. After
also checking the code 200 domains we did find a critical finding which needs to
be fixed instant. By checking the metrics directory we did find the following:

Figure 8.3: Print from the Metrics directory displaying tenat-data

It can be hard to read, but what is listed are several customer names.When work-
ing with test data, the customers have been called test<customer>1 and test<customer>2.
Whats more interesting about this observation is that you do not even have to be
signed in to access this data. This is a pretty bad information leakage and should
be fixed instantly. The solution to this was to edit the configuration file for the
reverse proxy, where a block rule had to be added for the /metrics domain.

8.1.3 SQL Injections

SQL injection is a common hacking technique that allows a threat actor to send
queries to a database, with intentions to either view more data than they are
supposed to or destroy the database [86]. In our case is the focus on SQLmap.
SQLmap is a tool where the goal is to detect SQL injection vulnerabilities inside the
application [87]. We ran the following commands below. What these commands
do is to search for databases and extract them to check if I can dump them later. As
Figure 8.4 displays, we did not manage to find any databases with the SQLmap.

86 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

Code listing 8.3: SQLmap of portal

sudo sqlmap -u "https://securityportal.tikt.no/login" --dbs

Code listing 8.4: SQLmap of portal when signed in

sudo sqlmap -u "https://securityportal.tikt.no/?orgId=1" --dbs

Figure 8.4: Print from sqlmap. Both codes gave the same output

8.1.4 Brute Force

Even though the web application is designed to be authenticated through Azure
AD with the button below in Gigure 8.5 with the “Sign in with Azure AD”. A brute
force attack is when an attacker sends multiple login-requests for a user hoping
that one the requests authenticates. The test aims to get access through username
and password-fields.

Figure 8.5: Our sign in page to Grafana

To do this did we used Burp Suite to capture packets to identify the name of the
fields we are supposed to brute force. Displayed in the picture below you can see
two fields named user and password. This is the post request we send by trying
to login to the page. We tried to sign it with test as username and password.

Chapter 8: Security Testing 87

Figure 8.6: Post capture when attempting to sign in

Hydra is a tool inside Kali that allows the user to perform several attacks regarding
login cracking [88]. After performing open-source intelligence, we found that the
default user that is being created has the username “admin” [89]. Therefore is the
"admin"-user our target. We ran the following command

Code listing 8.5: Command for brute force with most common passwords

hydra -l admin -P pass.lst securityportal.tikt.no http-post-form
"/login:user=^USER^&password=^PASS^:incorrect"

In the first command we did use a list containing the 1000 most common pass-
words according to open source intelligence [90], and named the list pass.lst. Pay
attention to that we define the user and password to match the following fields
above. We received 0 hits on this try.

Figure 8.7: Output from first brute force attempt

To get a wider range of attempting to brute force, we did also try the unix pass-
wordlist from Metasploit [91], which also gave 0 hits.

Code listing 8.6: Command for brute force with metasploit’s list

hydra -l admin -P
/usr/share/wordlists/metasploit/unix_passwords.txt
securityportal.tikt.no http-post-form
"/login:user=^USER^&password=^PASS^:incorrect"

88 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

Figure 8.8: Output from second brute force attempt

8.1.5 OWASP ZAP

To perform more advanced scanning, OWASP ZAP has been used, which is an
open-source web scanner, that identifies potential vulnerabilities inside the applic-
ation [92]. This tool do we also find inside Kali [93]. When starting an automated
scan of our web link the following happened:

Target Discovery: Identifies domain which are going to be scanned. In this case
do we enter it by our self.

Spidering: The tool manages to use spidering process to crawl through the ap-
plication to check of the links and mapping. It crawls through what it finds,
which is for to identify and map the pages.

Passive scanning: Goes through the requests and responses to look for security
vulnerabilities in the background without sending any payloads, making it
harder to detect.

Active scanning: Opposite of the passive. Crafted requests are being sent to the
application and analyzes the response to identify vulnerabilities. It has a
predefined set of checks that simulate various type of attacks and aims to
discover weaknesses that require interaction with the application.

Generate a report: Gives the option to make a report to give a summary of scan
and the findings. Our report of the scan is added as an attachment.

Chapter 8: Security Testing 89

Figure 8.9: OWASP ZAP

A short summary of the report is that it found a total of 13 alerts. Where they are
divided into 4 levels informational, low, medium and high. We had only 1 high
alert, and it was regarding cloud meta data. The description of the alerts says that
the meta data maintained by cloud service could be reachable for attackers. By
reading how to exploit this vulnerability on their documentation [94], and testing
our self, we were not vulnerable (see Figure 8.10). As mentioned is the full report
be attached as an Appendix F.

Figure 8.10: An attempt to curl the meta data

90 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

8.2 Container Images

8.2.1 Snyk

We also want to scan the Container Images. To do so a tool named Snyk was
used. Snyk is an open-source platform that provides tools to help developers find
vulnerabilities inside their code. Snyk first scans, and then analyzes the code. Later
it identify known vulnerabilities and advices of how it can be patched. The tool can
be added as extension in Docker desktop, which is a desktop version for Docker
that allows you keep track of volumes, images and containers [95]. We have two
images named api-cron and Grafana-init which is going to be scanned.

8.2.2 Grafana-init

As figure 8.11 displays below, were there two vulnerabilities found inside this
image. Both of these vulnerabilities were regarding improper certificate validation
in OpenSSL, which could lead to a Denial-of-service on affected systems [96].
Snyk reports that a minor upgrade would be to upgrade the base image from
the current Grafana/Grafana:9.4.2 to Grafana/Grafana:9.4.10, which is a newer
version of the base image.

Figure 8.11: Results of the scan of Grafana-init

Chapter 8: Security Testing 91

8.2.3 Api-Cron

As Figure 8.12 displays below, did this image contain more vulnerabilities. It coun-
ted 243 vulnerabilities where 4 were categorized as critical and 3 as high. Multiple
of those vulnerabilities are found inside the same library. The libraries that are re-
peated are aom/libaom0 and curl/libcurl3-gnutls. The following critical and high
vulnerabilities were found inside aom/libaom0:

1. Name: Release of Invalid Pointer or Reference

• Vulnerability Level: Critical
• Reference: CVE-2021-30473
• Description: This vulnerability describes memory that has not been

allocated to the heap, which can allow attackers to cause memory-
related problems [97].

2. Name: Use After Free

• Vulnerability Level: Critical
• Reference: CVE-2021-30474
• Description: This vulnerability is a "use-after-free", which describes

memory that has been freed, the software still references to it. At-
tackers who exploits this vulnerability can potenically cause memory-
related problems and security breaches such as running arbitrary code
execution or information disclosure [98].

3. Name: Buffer Overflow

• Vulnerability Level: Critical
• Reference: CVE-2021-30475
• Description: This vulnerability is classified as a buffer overflow vul-

nerability, which could allows an attacker to write beyond the set limit
of a buffer which could cause memory corruption or crashes [99].

4. Name: Out-of-bounds Write

• Vulnerability Level: High
• Reference: CVE-2020-0478
• Description: This vulnerability is found inside the Android operating

system. Attackers to obtain elevated privileges on affected system due
the vulnerability allows for an out of bounds write because of a missing
bounds check [100].

92 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

The following critical and high vulnerabilities were found inside curl/libcurl3-
gnutls:

1. Name: Cleartext Transmission of Sensitive Information

• Vulnerability Level: Critical
• Reference: CVE-2023-23914
• Description: This vulnerability is about clear text transmission of data

classified as sensitive. An error that might occur is when multiple URLs
are requested serially, and the HTTP Strict transportation also named
HSTS might fail. HSTS is a function forcing the use of HTTPS instead
of HTTP, so when the HSTS fails, data can be transferred over HTTP
instead [101].

2. Name: Cleartext Transmission of Sensitive Information

• Vulnerability Level: High
• Reference: CVE-2022-42916
• Description: This vulnerability is also about bypassing the HSTS check.

The mechanism can be bypassed when a host named in the URL con-
tains Internationalized Domain Name (IDN) characters that are re-
placed with ASCII during IDN conversion [102].

3. Name: Cleartext Transmission of Sensitive Information

• Vulnerability Level: High
• Reference: CVE-2022-43551
• Description: This vulnerability is also about bypassing the HSTS check

with the usage of IDN. The mechanism is being bypassed when the
stored information is encoded in IDN, while the HSTS check are being
done with decoded information allowing it to be bypassed [103].

Chapter 8: Security Testing 93

An alternative upgrade that Snyk refers to is to upgrade the base image to node:20.2-
bullseye-slim which contains "only" 48 vulnerabilities classified as low compared
to the current solution which is node:20.2.0-bullseye. As the security testing was
performed at the very end of the project, we simply did not have time to patch all
of the vulnerabilities. We managed to patch the threats we found inside the web
platform, however the vulnerabilities we found inside the containers was simply
no time to patch and re-test.

Figure 8.12: Results of the scan of api-cron

Chapter 9

Risk Assessment

9.1 Risk Assessment of New Implementation

One important part of the assignment from Tussa was to actively use risk assess-
ment to secure the process around our work and the solution. This is also some-
thing they told us during the weekly meetings. Tussa wanted us to use a template
they usually use when conducting a risk assessment. This template was not so easy
to implement into latex, and therefore we had to split up the tables into different
pages.

Following each risk there is a short description and an initial consequence and
probability. The risk level of the consequence and probability also had to be justi-
fied in a short description.
We then came up with some measures that can help lower the risk levels of the dif-
ferent risks. These measures are specified in another page. Then the table moves
over to the expected risk levels after measures, before the table ends with the cur-
rent risk levels. Current meaning the risk level currently, and not effected by some
of the measures that might not have been set into action yet.

The assessment of each risk builds upon the matrix seen below. This matrix di-
vides the risk levels into:

High - High risk that can cause severe damage to both Tussa’s systems and their
reputation to their clients.

Serious - Serious risk that may cause damage to both Tussa’s system and their
reputation.

Medium - Medium risk that is notable and may cause damage in some way.

Low - Low risk that is insignificant and can be easily dealt with. The likelihood is
low and the impact does not cause severe damage.

95

H
ig
h

Medium Seroius High High

Se
ri
ou

s
Low Medium Seroius High

M
ed
iu
m

Low Low Medium Seroius

Lo
w Low Low Low Medium

Low Medium Serious High

Pr
ob

ab
ili
ty

Consequence

Chapter 9: Risk Assessment 97

Table 9.1: Table showing the different measures

Measure ID Description Status
1 Secure network (VPN or Proxy) Planned
2 Private Github for sharing scripts Established
3 Use a secure API manager Established
4 Test everything with testdata before implementing Established
5 Password manager for everything connected to the project Suggestion
6 Enrolled into SOC overwatch Suggestion
7 Induvidual API keys for every customer Established

8
Continually testing scripts after updates
and changes before implemented into vital networks

Established

This is a table with the different measures we have conducted. The measures are
in some way made to be able to tackle the different risks in the best way possible
with the resources available. Most of the measures are established, but both SOC
overwatch and password manager is just a suggestion. To use a secure network
(VPN or Proxy) was initially planned but was not used.
As you can see on the matrix maps on page 100, we have made some of the risks
go down from the higher risk levels. We used our knowledge from 3 years at NTNU
to come up with good measures to handle the risks.

Assessment of new implementation First assessment date: 07.03.2023

ID NR

Risk description
Bullet points about:
(1) Initial event(s)
(2) Informationsecurity breach
(3) The unwanted consequences that can happen Justification for consequence assessment In

iti
al

co
ns

eq
ue

nc
e

In
iti

al
pr

ob
ab

ili
ty

Justification for assessment of probability In
iti

al
ris

kle
ve

l

Handling - specified on new page:
Measures Ex

pe
ct

ed
 co

ns
eq

ue
nc

e a
fte

r

m
ea

su
re

s
Ex

pe
ct

ed
 pr

ob
ab

ili
ty

 af
te

r

m
ea

su
re

s
Pl

an
ed

 ri
sk

le
ve

l

Ri
sik

 re
sp

on
sib

le

Cu
rre

nt
 co

ns
eq

ue
nc

e

Cu
rre

nt
 pr

ob
ab

ili
ty

Cu
rre

nt
 ri

sk

R1 1

1. The students still have access to scripts and data after the
delivery of the task
2. The students still possess valuable information regarding
scripts and company data that can be exploited
3. Scripts and valuable data can end up in the hands of
attackers and make it easy for them to see how the
arcitechture is built

The probability that these students will use their
information to exploit anything is very small. They
have also signed a disclosure agreement.

Medium High

It is very probable that the students will still have
knowledge and access to scripts they built when
they developed the system. Even though they
wont have access to the live structured used by
Tussa, they will still have information on how they
made the scripts

R2 2

1. The students share information or scripts regarding the
task on unsecure platforms
2. Information and scripts can be easily exploited from
attackers if shared on unsecure platforms
3. Attackers gain access to vulnerable information that can be
used to exploit Tussa and their customers

In a worst case scenario, the scripts and information
can be exploited through the unsecure plaforms and
used by attackers to gain critical information

Serious Low

The students are cyber security students on their
last year of a bachelor. They have good
knowledge on how to store and share data and
sensitive information in a secure way

R3 3

1. API credentials gets compromised
2. Attackers gain access to API credentials because of lack in
security when storing the credentials
3. When attackers have access to API's, they can attack a
service and it will be logged as if the developer were
responsible. They can also be used to access sensitive
information

In a worst case scenario, attackers can gain access to
the API keys and then use that information to make
API calls on your behaf, meaning it wil be logged as if
the developer were responsible. The attacerks will also
be able to access sensitive information. In addition can
a adversary use this as leverage for extortion of
money or other forms of goods from Tussa or there
costumers.

High Low
The students are using Microsoft Azure key vault
to store credentials, which is a secure and trusted
way to store and manage API keys.

R4 4

1. There is a fault in one of the scripts
2. Fault in scripts can be vital for the services delivered
3. Customer A can get information regarding customer B and
vice versa. This is critical because each customer expects
privacy regarding their own devices and services. Fault in
scripts can also lead to that the services does not work
propely, which is critical for the different customers.

A fault or error in one of the scripts would be vital for
the security of each customer. If one customer got
information regarding another customer, this would be
a critical breach of the customers privacy and GDPR.
This can also cause reputation damange for Tussa,
which can lead to a sequence of consequences for the
future of the company.

High Low

The chances that there will be any fault in the
scripts are very small. This is because the scripts
are tested on testdata before being implemented
into the network. Therefore we would find errors
and faults before they are implemented to real
data.

R5 5

1. Limited avaliability to application and downtime due to
restricted resources
2. The application doesn't work because of the restricted
resorces, meaning that customers wont be able to use the
application to the full advantage
3. Customers won't be able to use the application the way
they want, and worst case they expierience downtime

In a worst case scenario, the customer wont be able to
use the application due to downtime. This can cause
trouble because important information wont be
available when desired. The security information can
be retrived from the original source, i.e. the vendors
however, but will take extra unnecessary time.

Low Low
It is probable that the application won't be able to
work properly, due to lack of resources, and
properly managed infrastructure.

R6 6

1. Every customer share one API key
2. Makes it easier for an attacker to gain access to every
customer
3. If an attacker gets hold of one API key, they have access to
every customer and all their data. It only takes one security
breach for all of the customer data to be compromised

If an attacker gets hold of one API key, they then have
access to every customer Tussa got, which is 50+
customers.
The attacker can then make API calls on your behalf
and gain access to sensitive information.
They can also use this sensitive information as
leverage for extortion of money both from Tussa and
their customers.

High Low

Since we use Microsoft Azure Key Vault to store
the credentials, it is not realy probable that there
will be a breach. Azure Key Vault is a trusted and
secure way to store credentials, and is used by big
companies all over the world.

R7 7

1. Multi tenant is configured wrong
2. Fault in configuration can breach the GDPR and confidential
agreements Tussa has with their customers
3. Configuration fault can end up giving one customer
information or even access to other customers data

If one customers gets hold of another customers data,
we would have a serious GDPR breach, and the
agreements between Tussa and their customers would
be broken.
Therefore the consequences from a fault in the Multi
tenant service is vital for the customers.

High Medium

Multi tenant can be a complex to set up and run.
It is important to use multiple tests before
implementing the solution with live customer
data.

R8 8

1. Multi tenant is configured wrong
2. Fault in configuration can breach the GDPR and confidential
agreements Tussa has with their customers
3. Configuration fault can end up giving one customer
information or even access to other customers data

If one customers gets hold of another customers data,
we would have a serious GDPR breach, and the
agreements between Tussa and their customers would
be broken.
Therefore the consequences from a fault in the Multi
tenant service is vital for the customers.

High Medium

Multi tenant can be a complex to set up and run.
It is important to use multiple tests before
implementing the solution with live customer
data.

Updated date: 08.05.2023

In
iti

al
co

ns
eq

ue
nc

e

In
iti

al
pr

ob
ab

ili
ty

ID In
iti

al
ris

kle
ve

l

Handling - specified on new page:
Measures Ex

pe
ct

ed
 co

ns
eq

ue
nc

e a
fte

r

m
ea

su
re

s
Ex

pe
ct

ed
 pr

ob
ab

ili
ty

 af
te

r

m
ea

su
re

s
Pl

an
ed

 ri
sk

le
ve

l

Ri
sik

 re
sp

on
sib

le

Cu
rre

nt
 co

ns
eq

ue
nc

e

Cu
rre

nt
 pr

ob
ab

ili
ty

Cu
rre

nt
 ri

sk

R1 Seroius 5 Medium Serious Medium Medium Serious Medium

R2 Low 1, 2 Medium Low Low Medium Low Low

R3 Medium 3, 6 Serious Low Low High Low Medium

R4 Medium 4, 8 Serious Low Low Serious Low Low

R5 Low 4, 8 Low Low Low Low Low Low

R6 Medium 6, 7 Medium Low Low High Low Medium

R7 Seroius 4, 7, 8 Medium Low Low Medium Low Low

R8 Seroius 4, 7, 8 Medium Low Low Medium Low Low

Initial risk

H
ig
h

R1

Se
ri
ou

s
M
ed
iu
m

R7,R8

Lo
w R5 R2 R3,R4,R6

Low Medium Serious High

Planned risk
1 2 3 4

H
ig
h

Se
ri
ou

s

R1

M
ed
iu
m

Lo
w R5 R2,R6,R7,R8 R3,R4

Low Medium Serious High

Current risk
1 2 3 4

H
ig
h

Se
ri
ou

s

R1

M
ed
iu
m

Lo
w R5 R2,R7,R8 R4 R3,R6

Low Medium Serious High

Pr
ob

ab
ili
ty

Consequence

Pr
ob

ab
ili
ty

Consequence

Pr
ob

ab
ili
ty

Consequence

Chapter 10

Evaluation

In this chapter, we discuss and walk through the survey and its results. Finally,
we evaluate our performance regarding requirements that was defined in the
requirements-chapter. This chapter focus on presenting an evaluation of our effort
considering this project.

10.1 Survey

As a part of the project, and a quality control, we conducted a survey to the client
to assess the outcome of the project as a whole, and the product it self. We sent
the survey in our common Microsoft Teams channel with our client, and told the
client to distribute the survey to colleagues who were familiar with the project.
The survey included a set of questions to help us evaluate the outcome of the
project, and the value of the product it self. The goal is to see if we met the clients
requirements and if the product we made has been helpful, and something they
want set in production.

10.1.1 Results From The Survey

Throughout the project, we have mainly been in contact with two persons, which
also resulted in a corresponding number of responses on our survey. It is a little
unfortunate, but also understandable as it is most likely those from the client side
who has designed the task who participated in the survey. The results of the sur-
vey showed that the customer is very satisfied.

The first question we asked was how satisfied the client are with the final outcome
of the project. One user reporting very satisfied, and another reporting somewhat
satisfied with the following comment: "Looking for some specific recommenda-
tions on risk mitigation when using APIs, to improve our procedures and developer
training". When receiving this, we took action to add specific recommendations
written in the deployment-chapter.

101

102 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

The next questions we asked was if the solution would be usable in the client’s
production environment, and if they knew any challenges regarding putting in it
in production. The following question was if the solution would need any user
training when it is in production. Based on the answers, did One of user report
that this be usable in production, and another is unsure. The same patterns fol-
lows for if user training is needed. One of the comments was "Don’t know of any
big challenges, of course we must do some adaption work", which means there
are possibilities for taking the solution in action. To help with the user training
did we create a user guide the final work section in the deployment-chapter.

The last questions that we asked was if the client had any feedback regarding
what we could improve, if we met their initial goal and requirements they sat for
the project and for last and if they any last comments. As there were no com-
ments for improvements, and we met their goal and requirements does it seems
that they are satisfied with the current solution and the project as a whole. The
last comment was the following: "It seems to me that the students are skilled, well
organized and hard-working.", which is also a satisfying comment to receive from
the client. For a more visual version, see Appendix G.

10.2 Evaluation Of Requirements

In the requirement-chapter, we sat some requirements, and in this section do we
evaluate our application to see if we managed to meet the requirements sat.

10.2.1 Functional Requirements

F-1: "The solution should contain access control to ensure confidentiality."

Description: To ensure confidentiality for each of the clients, we need to use ac-
cess control. Access control is used to ensure that users only get the information
they need, and to ensure that no one access information without the proper au-
thorization.

Evaluation: To ensure confidentiality for each of the clients have we implemented
Azure Groups to ensure confidentiality and access control. We have also enabled
several security mechanisms such as Nginx and MFA to ensure the confidential-
ity. Our solution satisfies the current requirements. By dividing the client’s sub-
customers in Groups, ensuring the logs that are being displayed only is available
for the respective group. Another featured that was added to ensure the confiden-
tiality was to enable MFA for authentication, minimizing the chances of unwanted
access.

Chapter 10: Evaluation 103

F-2: "The solution should be able to fetch information about devices from API
calls."

Description: One important aspect of the task is to be able to fetch information
from each clients devices. This information needs to be fetched from all three
products (Microsoft Intune, Cisco Secure Endpoint and Cisco Umbrella) and dis-
play all the important information in one place.

Evaluation: The solution fetches the relevant information from the products with
API calls. The Node.js application fetches information with API calls and sends
that information to Elasticsearch. Grafana then pulls the information from Elast-
icsearch for visualization. One API call is used per customer to retrieve data. The
API calls fetches a lot of information, and the interface can be changed to display
what is relevant for the customer. Therefore the solution satisfies the current re-
quirement.

F-3: "The solutions needs to use encryption to secure information."

Description: Another important aspect of the task is to deliver a solution that
uses encryption in a secure way. SSL is a great way to secure the internet connec-
tions.

Evaluation: The internet connection coming from the client to Nginx is encrypted
with SSL which gives the clients and information some security when connecting.
Another valuable information that is encrypted is both the API credentials and the
admin passwords in Azure.

F-4: "The solutions needs to store the information for the devices."

Description: The data from the different devices needs to be stored in some way,
so the clients have access to their data, and not just in real time. This can be done
with something like Elasticsearch.

Evaluation: Partially. Device information are being collected from different vendors
and acquire a persistent data solution before visualized in Grafana which replaces
the current data inside Grafana. This means that the old data does not get stored,
but only poses the newest data available. This is how the client wanted it. As this
does not quite meet the requirement we sat, does it meets the requirement from
Tussa.

104 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

F-5: "The solutions needs to securely store API credentials and passwords."

Description: The API credentials and passwords needs to be stored securely to
ensure confidentiality and as a security measure. This can be done through a ser-
vice like Azure Key Vault.

Evaluation: The solution uses Azure Key Vault to store the API credentials, which
is a trusted and reliable way to store them. Also the admin passwords are stored
in Azure Key Vault. This means that the solution satisfies the current requirement.

10.2.2 Non-Functional Requirements

N-1: The solution should be easy to use with minimal or no training."

Description: The solution should be so easy to use that it requires minimal or
no training for the users. Therefore its important to make a application that is
intuitive.

Evaluation: The solution is easy to use and requires no directly training to use.
To be able to understand how everything works, you might need some form of
instructions or training, but overall the solution meets the current requirement.

N-2: "The solution should be easy to understand and interactive."

Description: The interface should be easy to understand for the customers and
Tussa, so they can use as little time possible on understanding the design.

Evaluation: The solution is easy to understand and requires very little techno-
logy background. Therefore the current requirement is fulfilled.

Chapter 11

Discussion

This chapter aims to describe the aspects of the project as a whole, walk through
what challenges and limitations we encountered along the project and what choices
we had to make based on this. We further discuss future consideration Tussa may
consider which we mean is going to enhance and evolve the product. Finally do
we address the possibility of being presented with the opportunity to redo the
project, and what we could have done differently?

11.1 Limitations/Challenges

Challenging decisions done during our development face brought some limita-
tions to our application. This section aims to explain these limitations, as well
as discussing what could have been handled differently. We present limitations
around our chosen Grafana solution and an alternative we viewed as relevant at
a certain point. We also discuss restriction our Nginx service poses. In addition do
we address limitations regarding managing access control for the VMs. Finally do
we debate our interpretation of the assignment and its correlating limitations.

11.1.1 Grafana

As mentioned previously does Grafana integrate well with Azure AD. Our inten-
tion was to take advantage of Grafana’s built in Azure AD Authentication to au-
thenticate users and let their Azure groups automatically be integrated in Grafana.
Unfortunately this feature is only offered by Grafana Enterprise which is a paid
version of Grafana. The feature automatically synchronize teams i.e. groups in
Azure AD is also going be teams in Grafana, which is exactly the capability re-
quired by our service.

105

106 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

This solutions comes with great management utility as users are created by first
time they sign-in and are delegated to their respective teams also named tenant.
Additionally combining this with pre-configured data sources and dashboards util-
izing Grafana APIs does this streamline the onboarding process. It also ensure dy-
namic user management and scaling. This can help Tussa in the potential scenario
if they expands their business.

Anticipating Tussas potential hesitation to bear additional cost of upgrading to
Enterprise. We conceptualized alternative solutions to work around this issue to
present Tussa.

We began the process of developing an individual Node.js authentication service
that where to be hosted along side Nginx at the same VM. The idea was to utilize
Microsoft Azure AD Passport.js Plug-in as a Middleware to handle the authentic-
ation since Passport.js is designed to be a highly flexible and modular tool [104].
Azure provides an authentication token upon successful authentication.

The token is exchanged by the Node.js application for an ID Token and access
token. The It Token contains information about the Azure user [105]. Appropri-
ate configurations in Grafana can be made by leveraging this information. The
application could utilize Grafana APIs to manage their Permissions. Additionally
can users be assigned to their respective teams. This streamline the process of in-
tegrating Azure groups with Grafana teams.

Another feature passport.js poses is their approach to handle sessions data. Cook-
ies are normally this data, making it vulnerable to Cross-site scripting (XSS) [106].
Passport.js store session data on the server side in session and not in the browser,
reducing the probability of potential adversaries levering this vulnerability [107].

An alternative solution was to configure Grafana completely through APIs, dis-
regarding the team functionality Grafana Enterprise offers. This method requires
to pre-configure every element to meet our desired functionalities when the ser-
vice is launched. A consequence is limiting Grafana’s dynamism, as the service
needs to be relaunched when a new user or group is added in Azure.

Chapter 11: Discussion 107

After spending two weeks developing and individual Nods.js authentication with
slow progress and confusing errors. Errors were related handling session inform-
ation interplay with Nginx, as all traffic where to go through Nginx. We consulted
our advisor with how to proceed, knowing the deadline was closing up. We talked
about these three paths to our solutions where we concluded to present them to
Tussa and tell them about their up and down side. Letting them make a decision
about it, instead of us. We highlighted that Grafana would poses an additional
cost. Prioritising an individual Node.js authentication would take additional time
at the cost of other security measurements, where there were some uncertainty
if we would be able to finish it. Finally pre-configure Grafana, having dynamic
limitations.

The meeting with Tussa concluded in proceeding with a pre-configured Grafana,
eliminating Grafana enterprise and passport.js. Going with this presented more
benefits, as it freed up time to develop other security features with a lower cost.

Reflecting on this experience made it clear for everyone in the group, that com-
munication at an early stage is vital in a time sensitive project. It also shows how
crucial it is to be clear about a decisions before engaging in development. Ac-
complishing this properly, result in improved efficiency, less confusion and miss
delegation of resources.

11.1.2 Nginx

This section describe why Nginx open-source (free version) was chosen instead
of the paid Nginx plus version and its limitations that follows by using the free
version. Tussa stated they wanted DDOS protection, which Nginx provides several
features to improve protection against. This was also descried earlier in the im-
plementation chapter.

The feature GeoIP2 dynamic module in Nginx restricts access to a certain geo-
graphical location, as an additional method to mitigate DDOS threats. This feature
is only available in Nginx plus version [108]. By presenting this for Tussa with this
capability and the staggering price of $2500 a year, they concluded that the cost
outweighed the benefit [109].

Close to the end of the development process did we plan to make the applica-
tion more scalable. We thought of creating more replicas of the Grafana-image
to improve performance and redundancy. If we were to scale Grafana Horizontal,
Nginx needed to work as a load balancer which is an embedded feature. Never-
theless, we stumbled upon some problems achieving this.

108 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

After a user successfully authenticate they get redirected back to Grafana through
Nginx. For Nginx to know which Grafana container that originally initiated the
authentication and to send the user back to the same container, a Sticky Session
needs to be enabled. This is needed due to Grafana is stateful and not Stateless,
meaning the state of the session is stored on the container. Sticky session, also
know as session affinity and session persistence are features only available for
Nginx plus subscription.

Since we already had disregarded Nginx plus as an option, a different solution
needed to be developed to work around this limitation. Having a centralised per-
sistence solution to store the state of Grafana, making it Stateless could solve this
issue. By the time we figured this out, sufficient amount of time to develop this was
not to our disposal. This is therefore further descried in the next section regarding
future considerations.

11.1.3 Virtual Machine Access

The group deemed it necessary to handle access to each VM different then the cur-
rent traditional way. The conventional method of assigning each user with their
own unique key par, can potentially entail some challenges. As the required num-
ber of peoples access is increased, so does the complexity of managing individual
key pairs. This not only makes it cumbersome to handle access management. It
also poses a security risk if overview of access control is impaired.

In the scenario where user access should be revoked, its manually required to
remove their respective public key from each virtual machine. This method leaves
an absent of a centralized control mechanism for managing access to VMs. A cer-
tificate authority (CA) can address the centralized limitation associated with tra-
ditional key pair. It issues and revoke signed certificates to enable SSH access. It
stream lines the managing process as it does not need every public key configured
on each VM.

Furthermore can a certificate be implemented with an expiry date, ensuring that
access is revoked automatically after a certain period of time. This feature helps
mitigate the problem of stolen or lost keys [110]. Such solution were attempted
to be constructed, but did not succeed before the development face was due.

Discussing this limitation in the aftermath of the development face with the client,
we concluded that a their solution would suit a bastions server to play the role as a
centralised and secure way of managing user access to VMs. Bastion enables RDP
and SSH directly in the Azure portal eliminating the necessity for a key pair. The
session is secured using TLS on port 443. It also dismantle the need of a public
IP-address, making it more secure.

Chapter 11: Discussion 109

Additional information about the extended features bastion provide like protec-
tion against Zero-Day exploits can be found on: [111]. Since bastion has an ex-
pensive operational cost of 3.081 kr per hour, only activating the service when
necessary to optimize financial expenses were desired by Tussa [112].

11.2 Assignment Interpretation

This section presents our retrospective interpretation of the assignment. Our as-
signment introduced diverse and complex security requirements for enhancing
procedures for SaaS services with a particular focus on risk assessment and se-
cure API management. The assignment presented a vast majority of security com-
ponents to meet the specific details of the project. Each component has their own
comprehensive and unique entanglement, meaning pro founded knowledge is ne-
cessary to utilise their full capacity. Given the comprehensive nature of this assign-
ment we felt that we lacked the time to explore the entirety of each topic in its
complete aspect.

Our philosophy is that there is always room for improvement. Recognizing that
the security landscape is dynamic and in constant change. Due to these factors
have we prioritised to follow best practice and widely adopted solutions over spe-
cialized approaches. This has lead to some limitations along the way such as the
security testing revealed. Our application poses several security flaws that would
take extensive time, resources and knowledge to mitigate. some of these threats
where discovered during the development process revealing the importance of
keeping up to date with pro founding knowledge about our technologies.

11.3 Future Considerations

11.3.1 Grafana Scalability

As mentioned previously is Grafana configured as a stateful application, present-
ing some challenges if we were to replicate Grafana. Specially when a user gets
redirected back to a separate Grafana instance after a successful authentication.
There are multiple techniques of changing Grafana to a stateless architecture,
solving this issue. A stateless solution allows for individual request handling, mak-
ing them more scalable and robust. One approach could be to create an external
database where the state is stored. This would allow Grafana to maintain the state
externally making it stateless.

110 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

Another strategy to accomplish this is to utilize Redis. Redis is cache mechan-
ism known for its utility to be low latency, due to its persistence solution, storing
information in memory. A possible draw back from this, is the significant consum-
mation of RAM it absorbs. This naturally depends on how many sessions it needs
to handle and store at the same time. An attempt was made to utilize Redis for this
purpose, and Redis was chosen due to its specialized capabilities and efficiency.

Redis is also a highly relevant and frequently used tool in to days real worlds
marked [113]. It solves the state limitation issue without further cost since its
open-source, compared to Nginx plus. One of the group members were familiar
with the service from a previous unit which also helped persuade the decision. Un-
fortunately in this case as well, was there not sufficient amount of time to finish
developing this and integrate it with our current solution for it to work. Never-
theless do we highly recommend considering this for future implementations.

11.3.2 Azure Virtual Network

While we utilise an overlay network in docker for node communication, We only
utilize the default Vlan virtual network created in Azure for our VMs. Applying a
better virtual network strategy in Azure, could resolve in numerous benefits. Pla-
cing Nginx in a DMZ facing the internet could help protecting the microservices
located outside of it. If the Server is comprised can a potential adversary not gain
direct access to whats outside of the DMZ.

Segregating the network into separate Vlans could also increase the security. It
is an additional security measurement that creates a clear separation between
services. it has the same functionality as the DMZ i.e. to not gain access of dif-
ferent parts of a network if one is compromised. creating clear separations in our
network is fundamental principal of achieving defence in depth. It would help
protect against lateral moment in case of a security breach as it is more challen-
ging to move across the network.

This improvement was brought to light upon reviewing our solution and was dis-
cussed internally in the group. Each member agreed upon the value these con-
figurations brings, but also acknowledges the limited time to fully research these
implementations. We therefore recommend future investigation on how this can
be executed to add the most value.

Chapter 11: Discussion 111

11.3.3 Load Balancer / Firewall

We disregarded to possibility of adding an Azures application Gateway with Web
application firewall (WAF) in front of Nginx during our development face, as a ad-
ditional security measurements. This oversight heavily relied on keeping the cost
within the original budget given by Tussa, as each services exceeded the initial
financial plan of their own. This causing us to overlook the possibilities of imple-
menting these payed services. By looking back we realised that we missed out on
this opportunity. Tussa expressed excitement towards this solution and were will-
ing to bear the additional cost after this proposal were presented. However was
the development face concluded, when this was brought to light, making it to late
to implement.

The benefits of these two services bring for a potential future implementation.
Application gateway is a web traffic load balancer that operates at the applica-
tion level of the OSI model i.e. layer 7. As normal load balancers operate on the
transport layer i.e. layer 4. This makes it do decisions based on additional attrib-
utes of an HTTP request, making it capable of URL-based routing [114]. Azure
application gateway v2 also provide WAF capabilities. It comes with autoscaling
which can automate resource utilize by demand, ensuring Tussa only pay for re-
sources used. It also makes it highly flexible as it dynamically matches the demand
of the website. It also enhances the protection against common web exploits and
vulnerabilities. Additional information can be found on Microsoft web site [115].

11.3.4 Securing Data At Transit

Securing Data At Transit was a part of the assignment which was not fulfilled to its
full potential. Data Moving between Node.js, Elasticsearch and Grafana are not
encrypted. This requirement was neglected throughout the developing process.
As the assignment states " Outline a solution that secures the data during transit".
This does not mean that everyone can access the data by any mean. The Traffic
takes place with in a closed environment as it runs inside a single VM on a desig-
nated docker network.

We have implemented security features such as SSH which means they need the
right set of key pairs to be able to access. Access to the manager VM is need to even
attempt to sniff out the communication flow between the microservices, to fetch
the sensitive data. As we see the current solution to be sufficient, is layered secur-
ity always be recommended. Enabling encryption for data in transit also follows
the best practise principal.

112 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

With this statement do we mean that having more layers of security gives a wider
depth of protection against several types of threats and attacks. Multiple layers of
security can lower the chances of multiple breaches, if a breach first would occur.
This means that if an unauthorized actor first gains foothold on the manager VM,
extended measures would be needed to be able to capture the traffic in transit.

11.3.5 API Gateway

Open source version of Nginx offers a capability called API gateway. This capability
was involved in deciding to use Nginx. However did we not poses adequate time
to develop it. We prioritised enabling HTTPS to our domain instead. This decision
was made because our APIs already constitute the capability of encrypted traffic.
We recommend implementing an API Gateway in the feature as it offers several
advantages. It simplify management by creating a centralized point of entry for all
APIs. This unified entry can be configured to consist of several security measure-
ments like IP filtering, rate limit and authentication checks, instead of each API
is configured with their own specifications. It can also enable scalability for the
Node.js container as it can work as a load balancer.

Playing the devils advocate could this implementation also offer some negative
effects. Latency cloud be increased is the network traffic gains an additional hop.
We view this as acceptable since reducing information from APIs is not time sens-
itive, and is scheduled to be done at nine in the evening. It also introduce a single
point of failure if the Nginx instance were to fail.

11.3.6 VM Resources

Its hard to predict the actual VM resources needed in a production environment
as the virtual machines only have been tested with fake data. When launching
the VM with real data we recommend doing a thorough testing and monitoring
of hardware used to optimize resource utilisation. Doing this properly ensure ef-
ficient use of resources as well as cost. The advisor recommendation feature in
Azure can help with this process. The feature gives advice on how to optimize the
VM [116].

11.3.7 Azure AD Authentication Integration With GitHub

We recommend looking at the possibilities to integrate Azure AD authentication
with GitHub to allow access control based on groups and roles in Azure. This en-
sure a secure and easy way of managing access to the source code and scripts.
These users is also required to pass a MFA to gain access, this is done to improve
the security. Having GitHub integrated with Azure AD authentication allows for
a centralised place to manage access control, and giving better overview over the
access list.

Chapter 11: Discussion 113

Allowing people to already use their existing Azure AD account for authentica-
tion towards GitHub, eliminates the need to create an additional GitHub account
where more credentials needs to be handled. Having Azure Ad integrated auto-
mates the process of allowing already configured groups in Azure to be created
in GitHub and let their access be controlled based on that. Azure also enables a
centralised place to view login activity regarding the application.

11.3.8 Security Tests And Patching Before Putting It In Production

As mentioned in security testing-chapter, did we conduct our testing at the very
end of the project due to time spent on developing, which caused too little time
for patching and re-testing. Based on the results from our scan of the web applic-
ation did we find only a few leakages that we were able to patch, but regarding
the container images did it turn out to be multiple vulnerabilities regarding one
of the images which should be patched before putting in in production. As we
also have less experience with deep security testing do we recommend to con-
duct more scanning of both web application and the current images and patch
the vulnerabilities making it more secure before putting it out in a production en-
vironment. This is going to make the entire platform more secure and minimize
the risk of unauthorized access or information leakage.

11.4 Why We Developed This Application

When we initially got the task from Tussa we soon found out that the ground prin-
ciples of the solution was fairly easy to develop. Making an application that collects
the data from three different products into one interface was not the biggest task
in the world. When we dug deeper into the proof of concept, we soon found out
that the hardest part of the task was to implement all the security measures. The
first stage of the solution is an application that does the basics, but is misses some
key security and automation features. These features were later implemented into
the solution. Some of these features is no hardcoded credentials and groups. Im-
ages are saved in the cloud, and Nginx is used as a reverse proxy. These are all
features making the solution more robust and secure against possible attackers.

For Tussa a solution like this can help them optimize their workflow and lower
time used making reports for customers. The application also give them a more
professional look to their customers, which is a important aspect in maintain-
ing them as customers and possibly gain new ones. As mentioned earlier in the
thesis, there is also an important aspect that Tussa gets better overview of com-
pliant computers. The computers that are not compliant can also be taken out of
the system. All in all this is a great solution which optimize the time usage and
security handling of customer information.

114 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

11.5 If we were to redo the project, what would we have
done differently?

The review of the chapter has so far been linked to challenges, limitations and
future considerations, but not what we would have done differently if we were
going to conduct the project again. This section aims to discuss and reflect what we
would a done differently. The topics we want to cover are development, security
testing, planning and reviewing the task.

11.5.1 Development

The development phase has been a steep learning curve with a lot of new material
to learn in a short amount of time. Knowing which tools and services to use and
how to utilize them was very challenging, but still rewarding and enjoyable to see
how they functioned in practice. We managed to develop a solution that met our
requirements, but the journey was not easy.

In terms of what we would have done differently, is to gather more fundamental
information before attempting to develop it in the solution. When testing with
different solutions did we face several limitations which caused the either signi-
ficant amount of time was lost in attempting to develop something that did not fit
or function properly according to our solution. We would have wanted to sketch
out the desired final version of the solution before starting the development pro-
cess.

11.5.2 Security Testing

The security testing was conducted at the very end of the project, which resulted
in us having slightly less time than we planned to complete the testing and patch
the vulnerabilities with re-testing. Upon discovering numerous vulnerabilities as-
sociated with one of the container images, we would have preferred to patch as
many of them as possible before delivering the code to the client.

In terms of what we would have done differently, would we likely have initiated
the testing phase and related work a bit earlier. This would probably have allowed
us to allocate more time to identify vulnerabilities and patch them, ultimately
making the solution more secure. This phase does heavily rely on being happy
with one of the current solution allowing it to be tested at a earlier stage.

Chapter 11: Discussion 115

11.5.3 Reviewing Of The Task

Throughout our weekly meetings with our advisor, client, and internally, there was
a strong emphasis on the development aspect. As a result, a significant amount
of time was dedicated to developing a solution that met the client’s needs, which
resulted in overshadowing the theoretical aspects defined in the assignment. This
led to an interpretation of the task where a significant emphasis was placed on
the overall solution and its associated mechanisms.

In terms of what we would have done differently, we should have allocated more
time regularly to read through and understand the task better as a part of its heav-
ily focused on researching solutions that are not a part of the development process.
We managed to do so, and based survey described in the evaluation-chapter did it
seem that the client was satisfied. As a retrospective assessment, we should have
discussed the theoretical aspects of the task in a earlier stage.

11.5.4 Planning

We sat a plan early in the project on how we want to work throughout the project.
As we learned in the Military, you got to have a plan and be able to adapt the plan
to the current circumstances. We made our best effort to adhere to our plan, but
we realized early on, that changes had to be made along the way. That is why we
divided the work into sprints to assess what worked and did not work at the end
of each sprint.

In terms of what we would have done differently is to be aware of the amount of
work each part requires, before planning. It was very easy to underestimate the
amount of work actually required, which led to incorrect time estimations such as
the entire development phase. We learned along the way that unfortunately, we
could not implement everything we wanted, and this was something we had to
accept.

Chapter 12

Closing Remarks

12.1 Learning outcome

In this section, we are going to walk through the Learning Outcome during the
project. It is going to address the project as a hole. Additionally, our communic-
ation and work process is shortly summarized afterwords. Finally, we present a
highlight about writing the thesis.

12.1.1 Project As A Whole

Throughout the project we have managed to develop our experience and know-
ledge of project work as a team. We have received a better understanding of the
importance of planning, prioritizing, and communication between all participants
inside the project. We have also gained a better understanding of how we got to
limit our scope to manage to finish what we plan, even though we naturally wish
for additional time to develop the product.

12.1.2 Teamwork, Communication and Working process

As a group, we are satisfied with how the project has been conduct from the be-
ginning to the final result. As mentioned in the development process-chapter, the
group already got to know each other in the early stages of education for the
bachelor’s degree, as well as collaborating in several projects throughout the edu-
cation. Magnus and Øivind also share an apartment, meaning there was a short
way to reach each other when necessary.

117

118 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

We constructed a plan early in the project on how desired communication was to
be conducted. After each iteration, we gathered to discuss what went well and
what could be improved. Through out the project there were an issue stated re-
garding miscommunication. It was a mutual acknowledgement that each indi-
vidual lacked an overview about their piers work and what they where doing.
A dedicated text channel in Discord was implemented to address this subject. Is
was an important learning outcome, as it demonstrated our ability to adapt to an
unforeseen challenge in the middle of the project and thrive with a solution that
worked well.

As mentioned above did we divided the length of the project into iterations. After
each iteration we did walk through the iteration addressing what we think went
well and what we could improve for future iterations. By doing this, did we achieve
a continuous adoption to unexpected topic, as well as boosting moral by highlight-
ing what we did well.

12.1.3 Writing The Thesis

None of the group members had prior experience and knowledge working with
Overleaf. Our advisor recommended and challenged us to proceed with this tool
for writing the thesis. We deemed it as a quite different from office as we normally
use, which lead to some time being spent on getting comfortable with it. After
making use of NTNU’s template which contained a fairly good explanation on
how to write this report, did we sense accomplishment towards this challenge.

12.1.4 Developing

During the development face we learned to utilise several services we had no
prior experience with. It was challenging for us to figure out where to begin and
how. ChatGPT as a searching tool combined with the discussion with our advisor
played a central part to get specific answers to our question of where to begin.
Consulting with our advisor in combination with ChatGPT was a decisive factor
in the early stages of development as well throughout the project where we came
across comprehensive decision on which path to take. When we had things up and
running, we could start customizing it to the customer’s needs.

Chapter 12: Closing Remarks 119

12.2 Future Considerations

Although we have created a solid service that meets the expectation of our client,
there are several improvements we see fit to enhance and optimize the result
derived from our solution. The bullet points below describe a summary of what
has been discussed in the discussion-chapter.

• Make Grafana scalable, enabling it to handle different load.
• Enhance Azure virtual Network
• Consider implement an application gateway with WAF to create autoscaling

and protection against know web vulnerabilities and exploits.
• Implement a bastion in Azure, to improve the access management to VMs

as well as security.
• Encryption during transit internally
• API Gateway
• Fine tune VM resources
• Azure AD Authentication Integration With GitHub
• Security Tests And Patching Before Putting It In Production

12.3 Conclusion

In conclusion, the bachelor group has committed effort into achieving their sat
goals and requirements stated in the beginning of the report. The group has man-
aged to fulfil their goal upon creating a sufficient and secure reporting system
through a SaaS-Service for Tussa’s Customers. The service updates and informs
clients about critical device status utilizing API integration. Adhering best prac-
tice for guidelines and development as been spotlighted, attempting to withstand
potential cyber threats. Constructing a risk assessments also provides enhanced
focus on mitigating security risks, in addition to improving the overall security
awareness.

Ultimately, by delivering updated reports from multiple sources do we greatly help
Tussa in achieving efficient and reliable documentation and reporting to their cli-
ents. Furthermore, the group recognize improvements necessary to the product,
to enhance scalability, reliability and security. Implementing these considerations
can improve a long term success of delivering consistent information to Tussa’s
consumers with amplified security.

120 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

12.4 Final words

In retrospective of the project, we recognize a steep learning curve offering invalu-
able knowledge to be particularly rewarding. We feel we have gained remarkable
and relevant experience in team work, development and security testing in a lar-
ger project. We deem the competence and experience acquired during this journey
to be highly appropriate for further studies and occupations. As final words for this
bachelor thesis do we truly hope this project can be useful for our client and as
a whole do we wish to express our comprehensive appreciation towards all who
have helped us accomplish this thesis.

Bibliography

[1] Standard. ‘Ledelsessystemer for informasjonssikkerhet – iso/iec 27001.’
(), [Online]. Available: https://www.standard.no/fagomrader/ikt/it-
sikkerhet/isoiec-27001/. (accessed: 18.05.2023).

[2] IBM. ‘What is an api?’ (), [Online]. Available: https://www.ibm.com/
topics/api. (accessed: 18.05.2023).

[3] P. A. Networks. ‘What is the principle of least privilege?’ (), [Online]. Avail-
able: https://www.paloaltonetworks.com/cyberpedia/what-is-the-
principle-of-least-privilege. (accessed: 05.05.2023).

[4] Harvard. ‘Risk management audit services.’ (), [Online]. Available: https:
//rmas.fad.harvard.edu/faq/what- does- information- systems-
audit-entail. (accessed: 13.05.2023).

[5] B. Figureau. ‘Logging best practices.’ (), [Online]. Available: https://
www.dataset.com/blog/the- 10- commandments- of- logging/. (ac-
cessed: 13.05.2023).

[6] Docker. ‘Use containers to build, share and run your applications.’ (), [On-
line]. Available: https://www.docker.com/resources/what-container/.
(accessed: 04.04.2023).

[7] Kubernetes. ‘Kubernetes.’ (), [Online]. Available: https://kubernetes.
io/. (accessed: 09.04.2023).

[8] Docker. ‘Swarm mode overview.’ (), [Online]. Available: https://nodejs.
org/en/about. (accessed: 08.05.2023).

[9] Z. Hira. ‘Kubernetes.’ (12th Jul. 2022), [Online]. Available: https://
www.freecodecamp.org/news/kubernetes-vs-docker-swarm-what-is-
the-difference/. (accessed: 09.04.2023).

[10] NTNU. ‘Dcsg2003 - robuste og skalerbare tjenester.’ (), [Online]. Avail-
able: https://www.ntnu.no/studier/emner/DCSG2003/2021#tab=
omEmnet/. (accessed: 01.04.2023).

[11] D. Docs. ‘Manage sensitive data with docker secrets.’ (), [Online]. Avail-
able: https://docs.docker.com/engine/swarm/secrets/. (accessed:
04.04.2023).

121

https://www.standard.no/fagomrader/ikt/it-sikkerhet/isoiec-27001/
https://www.standard.no/fagomrader/ikt/it-sikkerhet/isoiec-27001/
https://www.ibm.com/topics/api
https://www.ibm.com/topics/api
https://www.paloaltonetworks.com/cyberpedia/what-is-the-principle-of-least-privilege
https://www.paloaltonetworks.com/cyberpedia/what-is-the-principle-of-least-privilege
https://rmas.fad.harvard.edu/faq/what-does-information-systems-audit-entail
https://rmas.fad.harvard.edu/faq/what-does-information-systems-audit-entail
https://rmas.fad.harvard.edu/faq/what-does-information-systems-audit-entail
https://www.dataset.com/blog/the-10-commandments-of-logging/
https://www.dataset.com/blog/the-10-commandments-of-logging/
https://www.docker.com/resources/what-container/
https://kubernetes.io/
https://kubernetes.io/
https://nodejs.org/en/about
https://nodejs.org/en/about
https://www.freecodecamp.org/news/kubernetes-vs-docker-swarm-what-is-the-difference/
https://www.freecodecamp.org/news/kubernetes-vs-docker-swarm-what-is-the-difference/
https://www.freecodecamp.org/news/kubernetes-vs-docker-swarm-what-is-the-difference/
https://www.ntnu.no/studier/emner/DCSG2003/2021#tab=omEmnet/
https://www.ntnu.no/studier/emner/DCSG2003/2021#tab=omEmnet/
https://docs.docker.com/engine/swarm/secrets/

122 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

[12] P. A. Netowrks. ‘What is azure?’ (), [Online]. Available: https://azure.
microsoft.com/en- us/resources/cloud- computing- dictionary/
what-is-azure/. (accessed: 01.04.2023).

[13] Microsoft. ‘About azure key vault.’ (1st Mar. 2023), [Online]. Available:
https://learn.microsoft.com/en-us/azure/key-vault/general/
overview. (accessed: 03.04.2023).

[14] Microsoft. ‘Azure container registry.’ (), [Online]. Available: https://
azure.microsoft.com/en- us/products/container- registry. (ac-
cessed: 05.04.2023).

[15] Microsoft. ‘Quickstart: Register an application with the microsoft identity
platform.’ (), [Online]. Available: https://learn.microsoft.com/en-
us/azure/active- directory/develop/quickstart- register- app.
(accessed: 05.04.2023).

[16] Microsoft. ‘Application and service principal objects in azure active dir-
ectory.’ (), [Online]. Available: https://learn.microsoft.com/en-
us/azure/active-directory/develop/app-objects-and-service-
principals. (accessed: 06.04.2023).

[17] Microsoft. ‘Manage azure active directory groups and group membership.’
(), [Online]. Available: https://learn.microsoft.com/en-us/azure/
active-directory/fundamentals/how-to-manage-groups. (accessed:
06.04.2023).

[18] C. Harris. ‘Microservices vs. monolithic architecture.’ (), [Online]. Avail-
able: https://www.atlassian.com/microservices/microservices-
architecture/microservices-vs-monolith. (accessed: 20.04.2023).

[19] raman257. ‘Microservices vs. monolithic architecture.’ (), [Online]. Avail-
able: https://www.geeksforgeeks.org/monolithic-vs-microservices-
architecture. (accessed: 17.04.2023).

[20] RedHat. ‘What is grafana?’ (13th May 2022), [Online]. Available: https:
//www.redhat.com/en/topics/data- services/what- is- grafana.
(accessed: 05.05.2023).

[21] Microsoft. ‘Azure managed grafana.’ (), [Online]. Available: https://
azure.microsoft.com/en-us/products/managed-grafana. (accessed:
05.05.2023).

[22] Elastic. ‘What is elasticsearch?’ (), [Online]. Available: https://www.
elastic.co/what-is/elasticsearch. (accessed: 04.05.2023).

[23] NodeJs. ‘About node.js.’ (), [Online]. Available: https://nodejs.org/
en/about. (accessed: 08.05.2023).

[24] B. Semah. ‘What exactly is node.js? explained for beginners.’ (), [Online].
Available: https://www.freecodecamp.org/news/what-is-node-js/.
(accessed: 16.05.2023).

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://learn.microsoft.com/en-us/azure/key-vault/general/overview
https://learn.microsoft.com/en-us/azure/key-vault/general/overview
https://azure.microsoft.com/en-us/products/container-registry
https://azure.microsoft.com/en-us/products/container-registry
https://learn.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://learn.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://learn.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://learn.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://learn.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/how-to-manage-groups
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/how-to-manage-groups
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.geeksforgeeks.org/monolithic-vs-microservices-architecture
https://www.geeksforgeeks.org/monolithic-vs-microservices-architecture
https://www.redhat.com/en/topics/data-services/what-is-grafana
https://www.redhat.com/en/topics/data-services/what-is-grafana
https://azure.microsoft.com/en-us/products/managed-grafana
https://azure.microsoft.com/en-us/products/managed-grafana
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://nodejs.org/en/about
https://nodejs.org/en/about
https://www.freecodecamp.org/news/what-is-node-js/

Bibliography 123

[25] M. Contributers. ‘What is javascript?’ (), [Online]. Available: https://
developer . mozilla . org / en - US / docs / Learn / JavaScript / First _
steps/What_is_JavaScript. (accessed: 16.05.2023).

[26] Uxpin. ‘What is npm?’ (), [Online]. Available: https://www.uxpin.com/
studio/blog/what-is-npm/. (accessed: 16.05.2023).

[27] Amazon. ‘What is the elk stack?’ (), [Online]. Available: https://aws.
amazon.com/what-is/elk-stack/. (accessed: 02.04.2023).

[28] S. Knight. ‘Grafana vs kibana vs knowi: Battle royale 2022.’ (12th Apr.
2022), [Online]. Available: https://www.knowi.com/blog/grafana-vs-
kibana/. (accessed: 02.04.2023).

[29] Grafana. ‘Visualize splunk easily with grafana.’ (), [Online]. Available:
https://grafana.com/solutions/splunk/visualize/. (accessed:04.04.2023.)

[30] Splunk. ‘Managing indexers and clusters of indexers.’ (), [Online]. Avail-
able: https://docs.splunk.com/Documentation/Splunk/9.0.4/
Indexer/Howindexingworks/. (accessed:04.04.2023.)

[31] Splunk. ‘Pricing.’ (), [Online]. Available: https://www.splunk.com/en_
us/products/pricing.html/. (accessed:04.04.2023.)

[32] KinneyGroup. ‘Splunk licenses: What size do you need? here’s how to es-
timate it.’ (22nd Mar. 2023), [Online]. Available: https://kinneygroup.
com/blog/splunk-license-estimations/. (accessed:04.04.2023.)

[33] P. Gorbachenko. ‘What are functional and non-functional requirements
and how to document these.’ (), [Online]. Available: https://enkonix.
com/blog/functional-requirements-vs-non-functional/. (accessed:
08.05.2023).

[34] M. Maynes. ‘One simple action you can take to prevent 99.9 percent of at-
tacks on your accounts.’ (20th Aug. 2019), [Online]. Available: https://
www.microsoft.com/en-us/security/blog/2019/08/20/one-simple-
action- you- can- take- to- prevent- 99- 9- percent- of- account-
attacks/. (accessed: 14.03.2023).

[35] Amazon. ‘Microservices.’ (), [Online]. Available: https://aws.amazon.
com/microservices/. (accessed:22.05.2023.)

[36] R. KUĆ. ‘Solr vs elasticsearch: Performance differences more. how to de-
cide which one is best for you.’ (), [Online]. Available: https://sematext.
com/blog/solr-vs-elasticsearch-differences/. (accessed: 13.03.2023).

[37] apiconnection. ‘How to understand your nginx server configuration.’ (),
[Online]. Available: https://apiconnections.co/blog/2022-05-31-
nginx-super-user-config/. (accessed:22.05.2023.)

[38] Calomel. ‘Nginx secure web server.’ (), [Online]. Available: https://
calomel.org/nginx.html. (accessed: 04.05.2023).

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://www.uxpin.com/studio/blog/what-is-npm/
https://www.uxpin.com/studio/blog/what-is-npm/
https://aws.amazon.com/what-is/elk-stack/
https://aws.amazon.com/what-is/elk-stack/
https://www.knowi.com/blog/grafana-vs-kibana/
https://www.knowi.com/blog/grafana-vs-kibana/
https://grafana.com/solutions/splunk/visualize/
https://docs.splunk.com/Documentation/Splunk/9.0.4/Indexer/Howindexingworks/
https://docs.splunk.com/Documentation/Splunk/9.0.4/Indexer/Howindexingworks/
https://www.splunk.com/en_us/products/pricing.html/
https://www.splunk.com/en_us/products/pricing.html/
https://kinneygroup.com/blog/splunk-license-estimations/
https://kinneygroup.com/blog/splunk-license-estimations/
https://enkonix.com/blog/functional-requirements-vs-non-functional/
https://enkonix.com/blog/functional-requirements-vs-non-functional/
https://www.microsoft.com/en-us/security/blog/2019/08/20/one-simple-action-you-can-take-to-prevent-99-9-percent-of-account-attacks/
https://www.microsoft.com/en-us/security/blog/2019/08/20/one-simple-action-you-can-take-to-prevent-99-9-percent-of-account-attacks/
https://www.microsoft.com/en-us/security/blog/2019/08/20/one-simple-action-you-can-take-to-prevent-99-9-percent-of-account-attacks/
https://www.microsoft.com/en-us/security/blog/2019/08/20/one-simple-action-you-can-take-to-prevent-99-9-percent-of-account-attacks/
https://aws.amazon.com/microservices/
https://aws.amazon.com/microservices/
https://sematext.com/blog/solr-vs-elasticsearch-differences/
https://sematext.com/blog/solr-vs-elasticsearch-differences/
https://apiconnections.co/blog/2022-05-31-nginx-super-user-config/
https://apiconnections.co/blog/2022-05-31-nginx-super-user-config/
https://calomel.org/nginx.html
https://calomel.org/nginx.html

124 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

[39] Velosimo. ‘What is siloed infrastructure?’ (), [Online]. Available: https://
www.velosimo.com/blog/what-is-siloed-infrastructure. (accessed:
17.04.2023).

[40] Microsoft. ‘Linux virtual machines pricing.’ (), [Online]. Available: https:
//azure.microsoft.com/en-us/pricing/details/virtual-machines/
linux/?ef_id=_k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_
9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&OCID=AIDcmmbnk3rt9z_
SEM__k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-
Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&gclid=Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_
9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB#pricing. (accessed:
06.05.2023).

[41] Virtuozzo. ‘Hardware node requirements.’ (), [Online]. Available: https:
//www.knowledgehut.com/blog/web-development/install-nodejs-
on-ubuntu#prerequisites. (accessed: 06.05.2023).

[42] J. Loisel. ‘Elasticsearch: Optimization guide.’ (), [Online]. Available: https:
/ / octoperf . com / blog / 2018 / 09 / 21 / optimizing - elasticsearch /
#server-hardware. (accessed: 04.05.2023).

[43] G. Labs. ‘Install grafana.’ (), [Online]. Available: https://grafana.com/
docs/grafana/latest/setup-grafana/installation/. (accessed: 04.05.2023).

[44] Trendmicro. ‘Setting the reverse-proxy server of safesync for enterprise
(ssfe) 2.1.’ (), [Online]. Available: https://success.trendmicro.com/
dcx/s/solution/1103620-setting-the-reverse-proxy-server-of-
safesync-for-enterprise-ssfe-2-1?language=en_US&sfdcIFrameOrigin=
null. (accessed: 04.05.2023).

[45] D. docs. ‘Ucp system requirements.’ (), [Online]. Available: https://
docs.docker.com.zh.xy2401.com/v17.09/datacenter/ucp/2.2/
guides/admin/install/system-requirements/. (accessed: 06.05.2023).

[46] ProductPlan. ‘Rapid prototyping.’ (), [Online]. Available: https://www.
productplan.com/glossary/rapid-prototyping/. (accessed: 20.05.2023).

[47] Jira. ‘Jira software.’ (), [Online]. Available: https://www.atlassian.
com/software/jira. (accessed:31.01.2023.)

[48] SimonMcCallum. ‘Thesis-ntnu.’ (), [Online]. Available: https://github.
com/COPCSE-NTNU/thesis-NTNU. (accessed: 10.04.2023).

[49] Ø. Wahlstrøm. ‘Bachelorprosjekt2023.’ (21st May 2023), [Online]. Avail-
able: https://github.com/Oivindwa/Bachelor_Tussa. (accessed:21.05.2023.)

[50] github. ‘Adding locally hosted code to github.’ (23rd Dec. 2022), [Online].
Available: https://docs.github.com/en/migrations/importing-
source-code/using-the-command-line-to-import-source-code/
adding-locally-hosted-code-to-github. (accessed: 19.05.2023).

[51] npm. ‘Azure identity client library for javascript.’ (), [Online]. Available:
https://www.npmjs.com/package/@azure/identity. (accessed: 16.05.2023).

https://www.velosimo.com/blog/what-is-siloed-infrastructure
https://www.velosimo.com/blog/what-is-siloed-infrastructure
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/?ef_id=_k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&OCID=AIDcmmbnk3rt9z_SEM__k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&gclid=Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB#pricing
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/?ef_id=_k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&OCID=AIDcmmbnk3rt9z_SEM__k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&gclid=Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB#pricing
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/?ef_id=_k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&OCID=AIDcmmbnk3rt9z_SEM__k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&gclid=Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB#pricing
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/?ef_id=_k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&OCID=AIDcmmbnk3rt9z_SEM__k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&gclid=Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB#pricing
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/?ef_id=_k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&OCID=AIDcmmbnk3rt9z_SEM__k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&gclid=Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB#pricing
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/?ef_id=_k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&OCID=AIDcmmbnk3rt9z_SEM__k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&gclid=Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB#pricing
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/?ef_id=_k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&OCID=AIDcmmbnk3rt9z_SEM__k_Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB_k_&gclid=Cj0KCQjw9deiBhC1ARIsAHLjR2Ai375Ok40SgEeCQbVCwX_9T9Jm-Kh0trYOq-giqHixISqGuIwMfWQaAoEyEALw_wcB#pricing
https://www.knowledgehut.com/blog/web-development/install-nodejs-on-ubuntu#prerequisites
https://www.knowledgehut.com/blog/web-development/install-nodejs-on-ubuntu#prerequisites
https://www.knowledgehut.com/blog/web-development/install-nodejs-on-ubuntu#prerequisites
https://octoperf.com/blog/2018/09/21/optimizing-elasticsearch/#server-hardware
https://octoperf.com/blog/2018/09/21/optimizing-elasticsearch/#server-hardware
https://octoperf.com/blog/2018/09/21/optimizing-elasticsearch/#server-hardware
https://grafana.com/docs/grafana/latest/setup-grafana/installation/
https://grafana.com/docs/grafana/latest/setup-grafana/installation/
https://success.trendmicro.com/dcx/s/solution/1103620-setting-the-reverse-proxy-server-of-safesync-for-enterprise-ssfe-2-1?language=en_US&sfdcIFrameOrigin=null
https://success.trendmicro.com/dcx/s/solution/1103620-setting-the-reverse-proxy-server-of-safesync-for-enterprise-ssfe-2-1?language=en_US&sfdcIFrameOrigin=null
https://success.trendmicro.com/dcx/s/solution/1103620-setting-the-reverse-proxy-server-of-safesync-for-enterprise-ssfe-2-1?language=en_US&sfdcIFrameOrigin=null
https://success.trendmicro.com/dcx/s/solution/1103620-setting-the-reverse-proxy-server-of-safesync-for-enterprise-ssfe-2-1?language=en_US&sfdcIFrameOrigin=null
https://docs.docker.com.zh.xy2401.com/v17.09/datacenter/ucp/2.2/guides/admin/install/system-requirements/
https://docs.docker.com.zh.xy2401.com/v17.09/datacenter/ucp/2.2/guides/admin/install/system-requirements/
https://docs.docker.com.zh.xy2401.com/v17.09/datacenter/ucp/2.2/guides/admin/install/system-requirements/
https://www.productplan.com/glossary/rapid-prototyping/
https://www.productplan.com/glossary/rapid-prototyping/
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://github.com/COPCSE-NTNU/thesis-NTNU
https://github.com/COPCSE-NTNU/thesis-NTNU
https://github.com/Oivindwa/Bachelor_Tussa
https://docs.github.com/en/migrations/importing-source-code/using-the-command-line-to-import-source-code/adding-locally-hosted-code-to-github
https://docs.github.com/en/migrations/importing-source-code/using-the-command-line-to-import-source-code/adding-locally-hosted-code-to-github
https://docs.github.com/en/migrations/importing-source-code/using-the-command-line-to-import-source-code/adding-locally-hosted-code-to-github
https://www.npmjs.com/package/@azure/identity

Bibliography 125

[52] npm. ‘Azure key vault secret client library for javascript.’ (), [Online].
Available: https://www.npmjs.com/package/@azure/keyvault-secrets.
(accessed: 16.05.2023).

[53] npm. ‘Elasticsearch node.js client.’ (), [Online]. Available: https://www.
npmjs.com/package/@elastic/elasticsearch. (accessed: 16.05.2023).

[54] npm. ‘Axios.’ (), [Online]. Available: https://www.npmjs.com/package/
axios. (accessed: 16.05.2023).

[55] npm. ‘Node-cron.’ (), [Online]. Available: https://www.npmjs.com/
package/cron. (accessed: 16.05.2023).

[56] npm. ‘Qs.’ (), [Online]. Available: https://www.npmjs.com/package/qs.
(accessed: 16.05.2023).

[57] E. D. Hardt. ‘The oauth 2.0 authorization framework.’ (), [Online]. Avail-
able: https://www.rfc- editor.org/rfc/rfc6749.html. (accessed:
20.03.2023).

[58] Microsoft. ‘List devices.’ (10th Mar. 2023), [Online]. Available: https:
//learn.microsoft.com/en-us/graph/api/device-list?view=graph-
rest-1.0&tabs=http. (accessed: 18.05.2023).

[59] Docker. ‘Getting started with swarm mode.’ (), [Online]. Available: https:
//docs.docker.com/engine/swarm/swarm-tutorial/. (accessed: 19.05.2023).

[60] Docker. ‘Install docker engine on ubuntu.’ (), [Online]. Available: https:
//docs.docker.com/engine/install/ubuntu/. (accessed: 19.05.2023).

[61] Microsoft. ‘Install the azure cli on linux.’ (), [Online]. Available: https:
//learn.microsoft.com/en- us/cli/azure/install- azure- cli-
linux?pivots=apt. (accessed: 19.05.2023).

[62] Microsoft. ‘Quickstart: Create a key vault using the azure portal.’ (), [On-
line]. Available: https://learn.microsoft.com/en-us/azure/key-
vault/general/quick-create-portal. (accessed: 19.05.2023).

[63] Microsoft. ‘Quickstart: Set and retrieve a secret from azure key vault us-
ing the azure portal.’ (), [Online]. Available: https://learn.microsoft.
com/en-us/azure/key-vault/secrets/quick-create-portal. (ac-
cessed: 19.05.2023).

[64] Microsoft. ‘Key vault pricing.’ (), [Online]. Available: https://azure.
microsoft.com/en-us/pricing/details/key-vault/. (accessed: 19.05.2023).

[65] Microsoft. ‘Quickstart: Create an azure container registry using the azure
portal.’ (), [Online]. Available: https://learn.microsoft.com/en-
us/azure/container-registry/container-registry-get-started-
portal?tabs=azure-cli. (accessed: 19.05.2023).

[66] Microsoft. ‘Container image storage in azure container registry.’ (), [On-
line]. Available: https://learn.microsoft.com/en-us/azure/container-
registry/container-registry-storage. (accessed: 19.05.2023).

https://www.npmjs.com/package/@azure/keyvault-secrets
https://www.npmjs.com/package/@elastic/elasticsearch
https://www.npmjs.com/package/@elastic/elasticsearch
https://www.npmjs.com/package/axios
https://www.npmjs.com/package/axios
https://www.npmjs.com/package/cron
https://www.npmjs.com/package/cron
https://www.npmjs.com/package/qs
https://www.rfc-editor.org/rfc/rfc6749.html
https://learn.microsoft.com/en-us/graph/api/device-list?view=graph-rest-1.0&tabs=http
https://learn.microsoft.com/en-us/graph/api/device-list?view=graph-rest-1.0&tabs=http
https://learn.microsoft.com/en-us/graph/api/device-list?view=graph-rest-1.0&tabs=http
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-linux?pivots=apt
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-linux?pivots=apt
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-linux?pivots=apt
https://learn.microsoft.com/en-us/azure/key-vault/general/quick-create-portal
https://learn.microsoft.com/en-us/azure/key-vault/general/quick-create-portal
https://learn.microsoft.com/en-us/azure/key-vault/secrets/quick-create-portal
https://learn.microsoft.com/en-us/azure/key-vault/secrets/quick-create-portal
https://azure.microsoft.com/en-us/pricing/details/key-vault/
https://azure.microsoft.com/en-us/pricing/details/key-vault/
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-storage
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-storage

126 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

[67] Microsoft. ‘Create a role-assignable group in azure active directory.’ (),
[Online]. Available: https://learn.microsoft.com/en- us/azure/
active-directory/roles/groups-create-eligible?tabs=ms-powershell.
(accessed: 19.05.2023).

[68] Microsoft. ‘B2b collaboration overview.’ (10th Mar. 2023), [Online]. Avail-
able: https://learn.microsoft.com/en-us/azure/active-directory/
external-identities/what-is-b2/. (accessed: 13.05.2023).

[69] Microsoft. ‘Tutorial: Secure user sign-in events with azure ad multi-factor
authentication.’ (), [Online]. Available: https://learn.microsoft.com/
en-us/azure/active-directory/authentication/tutorial-enable-
azure-mfa. (accessed: 19.05.2023).

[70] M. Walkom. ‘What are ports 9200 and 9300 used for?’ (12th Apr. 2022),
[Online]. Available: https://discuss.elastic.co/t/what-are-ports-
9200-and-9300-used-for/238578. (accessed: 02.04.2023).

[71] G. Labs. ‘Configure grafana.’ (12th Apr. 2022), [Online]. Available: https:
//grafana.com/docs/grafana/latest/setup-grafana/configure-
grafana/. (accessed: 02.04.2023).

[72] G. Labs. ‘Configure azure ad oauth2 authentication.’ (12th Apr. 2022),
[Online]. Available: https://grafana.com/docs/grafana/latest/
setup- grafana/configure- security/configure - authentication/
azuread/. (accessed: 02.04.2023).

[73] D. Maksutenko. ‘Loaning laptops to employees: Best practices and pit-
falls to consider.’ (), [Online]. Available: https://www.worktime.com/
loaning-laptops-to-employees-best-practices-and-pitfalls-to-
consider#A1. (accessed: 09.05.2023).

[74] R. Vanover. ‘What is the 3-2-1 backup rule?’ (), [Online]. Available: https:
//www.veeam.com/blog/321-backup-rule.html. (accessed: 10.04.2023).

[75] J. Duhamel. ‘Api key best practices.’ (), [Online]. Available: https://
support.nmi.com/hc/en-gb/articles/360002813697-API-Key-Best-
Practices. (accessed: 21.04.2023).

[76] M. Abaakouk. ‘On api keys best practices.’ (), [Online]. Available: https:
//blog.mergify.com/api-keys-best-practice/. (accessed: 21.04.2023).

[77] G. Wrenn. ‘How to patch vulnerabilities and keep them sealed.’ (), [On-
line]. Available: https://www.techtarget.com/searchsecurity/tip/
How-to-patch-vulnerabilities-and-keep-them-sealed. (accessed:
10.04.2023).

[78] Certbot. ‘User guide.’ (), [Online]. Available: https://eff- certbot.
readthedocs.io/en/stable/using.html#manual. (accessed: 15.04.2023).

https://learn.microsoft.com/en-us/azure/active-directory/roles/groups-create-eligible?tabs=ms-powershell
https://learn.microsoft.com/en-us/azure/active-directory/roles/groups-create-eligible?tabs=ms-powershell
https://learn.microsoft.com/en-us/azure/active-directory/external-identities/what-is-b2/
https://learn.microsoft.com/en-us/azure/active-directory/external-identities/what-is-b2/
https://learn.microsoft.com/en-us/azure/active-directory/authentication/tutorial-enable-azure-mfa
https://learn.microsoft.com/en-us/azure/active-directory/authentication/tutorial-enable-azure-mfa
https://learn.microsoft.com/en-us/azure/active-directory/authentication/tutorial-enable-azure-mfa
https://discuss.elastic.co/t/what-are-ports-9200-and-9300-used-for/238578
https://discuss.elastic.co/t/what-are-ports-9200-and-9300-used-for/238578
https://grafana.com/docs/grafana/latest/setup-grafana/configure-grafana/
https://grafana.com/docs/grafana/latest/setup-grafana/configure-grafana/
https://grafana.com/docs/grafana/latest/setup-grafana/configure-grafana/
https://grafana.com/docs/grafana/latest/setup-grafana/configure-security/configure-authentication/azuread/
https://grafana.com/docs/grafana/latest/setup-grafana/configure-security/configure-authentication/azuread/
https://grafana.com/docs/grafana/latest/setup-grafana/configure-security/configure-authentication/azuread/
https://www.worktime.com/loaning-laptops-to-employees-best-practices-and-pitfalls-to-consider#A1
https://www.worktime.com/loaning-laptops-to-employees-best-practices-and-pitfalls-to-consider#A1
https://www.worktime.com/loaning-laptops-to-employees-best-practices-and-pitfalls-to-consider#A1
https://www.veeam.com/blog/321-backup-rule.html
https://www.veeam.com/blog/321-backup-rule.html
https://support.nmi.com/hc/en-gb/articles/360002813697-API-Key-Best-Practices
https://support.nmi.com/hc/en-gb/articles/360002813697-API-Key-Best-Practices
https://support.nmi.com/hc/en-gb/articles/360002813697-API-Key-Best-Practices
https://blog.mergify.com/api-keys-best-practice/
https://blog.mergify.com/api-keys-best-practice/
https://www.techtarget.com/searchsecurity/tip/How-to-patch-vulnerabilities-and-keep-them-sealed
https://www.techtarget.com/searchsecurity/tip/How-to-patch-vulnerabilities-and-keep-them-sealed
https://eff-certbot.readthedocs.io/en/stable/using.html#manual
https://eff-certbot.readthedocs.io/en/stable/using.html#manual

Bibliography 127

[79] E. MÍNGUEZ. ‘Container image scanning for azure pipelines with sys-
dig.’ (), [Online]. Available: https://sysdig.com/blog/container-
image - scanning - for - azure - pipelines - with - sysdig/. (accessed:
10.04.2023).

[80] C. Team. ‘Horizontal vs. vertical scaling: How do they compare?’ (), [On-
line]. Available: https://www.cloudzero.com/blog/horizontal-vs-
vertical-scaling. (accessed: 10.04.2023).

[81] NTNU. ‘Iik3100 - etisk hacking og penetrasjonstesting.’ (), [Online]. Avail-
able: https://www.ntnu.no/studier/emner/IIK3100#tab=omEmnet/.
(accessed: 18.05.2023).

[82] Kali. ‘What is kali linux?’ (), [Online]. Available: https://www.kali.org/
docs/introduction/what-is-kali-linux/. (accessed: 18.05.2023).

[83] Nmap. ‘Nmap: Discover your network.’ (), [Online]. Available: https:
//nmap.org/. (accessed: 18.05.2023).

[84] Nmap. ‘Script ssh-hostkey.’ (), [Online]. Available: https://nmap.org/
nsedoc/scripts/ssh-hostkey.html/. (accessed: 18.05.2023).

[85] Kali. ‘Dirb.’ (), [Online]. Available: https://www.kali.org/tools/dirb/.
(accessed: 18.05.2023).

[86] w3schools. ‘Sql injection.’ (), [Online]. Available: https://www.w3schools.
com/sql/sql_injection.asp/. (accessed: 18.05.2023).

[87] Kali. ‘Sqlmap.’ (), [Online]. Available: https://www.kali.org/tools/
sqlmap/. (accessed: 18.05.2023).

[88] Kali. ‘Hydra.’ (), [Online]. Available: https://www.kali.org/tools/
hydra/. (accessed: 18.05.2023).

[89] Stackoverflow. ‘What is the default username and password for grafana
login page?’ (), [Online]. Available: https://stackoverflow.com/questions/
54039604/what-is-the-default-username-and-password-for-grafana-
login-page/. (accessed: 18.05.2023).

[90] D. Wittman. ‘1000-most-common-passwords.’ (), [Online]. Available: https:
//github.com/DavidWittman/wpxmlrpcbrute/blob/master/wordlists/
1000-most-common-passwords.txt/. (accessed: 18.05.2023).

[91] Metasploit. ‘Unix passwords.’ (), [Online]. Available: https://github.
com/rapid7/metasploit-framework/blob/master/data/wordlists/
unix_passwords.txt/. (accessed: 18.05.2023).

[92] Zaproxy. ‘Owasp zap - getting started.’ (), [Online]. Available: https:
//www.zaproxy.org/getting-started/. (accessed: 18.05.2023).

[93] Kali. ‘Zaproxy.’ (), [Online]. Available: https://www.kali.org/tools/
zaproxy/. (accessed: 18.05.2023).

https://sysdig.com/blog/container-image-scanning-for-azure-pipelines-with-sysdig/
https://sysdig.com/blog/container-image-scanning-for-azure-pipelines-with-sysdig/
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling
https://www.ntnu.no/studier/emner/IIK3100#tab=omEmnet/
https://www.kali.org/docs/introduction/what-is-kali-linux/
https://www.kali.org/docs/introduction/what-is-kali-linux/
https://nmap.org/
https://nmap.org/
https://nmap.org/nsedoc/scripts/ssh-hostkey.html/
https://nmap.org/nsedoc/scripts/ssh-hostkey.html/
https://www.kali.org/tools/dirb/
https://www.w3schools.com/sql/sql_injection.asp/
https://www.w3schools.com/sql/sql_injection.asp/
https://www.kali.org/tools/sqlmap/
https://www.kali.org/tools/sqlmap/
https://www.kali.org/tools/hydra/
https://www.kali.org/tools/hydra/
https://stackoverflow.com/questions/54039604/what-is-the-default-username-and-password-for-grafana-login-page/
https://stackoverflow.com/questions/54039604/what-is-the-default-username-and-password-for-grafana-login-page/
https://stackoverflow.com/questions/54039604/what-is-the-default-username-and-password-for-grafana-login-page/
https://github.com/DavidWittman/wpxmlrpcbrute/blob/master/wordlists/1000-most-common-passwords.txt/
https://github.com/DavidWittman/wpxmlrpcbrute/blob/master/wordlists/1000-most-common-passwords.txt/
https://github.com/DavidWittman/wpxmlrpcbrute/blob/master/wordlists/1000-most-common-passwords.txt/
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/unix_passwords.txt/
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/unix_passwords.txt/
https://github.com/rapid7/metasploit-framework/blob/master/data/wordlists/unix_passwords.txt/
https://www.zaproxy.org/getting-started/
https://www.zaproxy.org/getting-started/
https://www.kali.org/tools/zaproxy/
https://www.kali.org/tools/zaproxy/

128 Schonhowd, Voll, Wahlstrøm: Framework for secure data collection

[94] O. Garrett. ‘Trust no one: The perils of trusting user input.’ (), [Online].
Available: https://www.nginx.com/blog/trust-no-one-perils-of-
trusting-user-input/. (accessed: 19.05.2023).

[95] Snyk. ‘What is snyk?’ (), [Online]. Available: https://snyk.io/product/.
(accessed: 19.05.2023).

[96] CVE-2023-0464. ‘Openssl.’ (22nd Mar. 2023), [Online]. Available: https:
//www.cve.org/CVERecord?id=CVE-2023-0464. (accessed: 19.05.2023).

[97] Snyk. ‘Release of invalid pointer or reference.’ (7th May 2021), [Online].
Available: https://security.snyk.io/vuln/SNYK- DEBIAN11- AOM-
1290331. (accessed: 19.05.2023).

[98] Snyk. ‘Use after free.’ (3rd Jun. 2021), [Online]. Available: https://
security.snyk.io/vuln/SNYK- DEBIAN11- AOM- 1298721/. (accessed:
19.05.2023).

[99] Snyk. ‘Buffer overflow.’ (5th Jun. 2021), [Online]. Available: https://
security.snyk.io/vuln/SNYK- DEBIAN11- AOM- 1300249/. (accessed:
19.05.2023).

[100] Snyk. ‘Out-of-bounds write.’ (16th Mar. 2021), [Online]. Available: https:
//security.snyk.io/vuln/SNYK-DEBIAN11-AOM-1085722/. (accessed:
19.05.2023).

[101] Snyk. ‘Cleartext transmission of sensitive information.’ (15th Feb. 2023),
[Online]. Available: https://security.snyk.io/vuln/SNYK-DEBIAN11-
CURL-3320493/. (accessed: 19.05.2023).

[102] Snyk. ‘Cleartext transmission of sensitive information.’ (29th Aug. 2022),
[Online]. Available: https://security.snyk.io/vuln/SNYK-DEBIAN11-
AOM-1085722/. (accessed: 19.05.2023).

[103] Snyk. ‘Cleartext transmission of sensitive information.’ (23rd Dec. 2022),
[Online]. Available: https://security.snyk.io/vuln/SNYK-DEBIAN11-
CURL-3179181/. (accessed: 19.05.2023).

[104] passportjs. ‘Passport.’ (), [Online]. Available: http://www.passportjs.
org/. (accessed: 08.03.2023).

[105] Microsoft. ‘Microsoft identity platform id tokens.’ (5th Feb. 2023), [On-
line]. Available: https://learn.microsoft.com/en-us/azure/active-
directory/develop/id-tokens. (accessed: 08.03.2023).

[106] mdn web docs. ‘Using http cookies.’ (), [Online]. Available: https://
developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#security.
(accessed: 09.03.2023).

[107] passportjs. ‘Microsoft azure active directory passport.js plug-in.’ (), [On-
line]. Available: http://www.passportjs.org/packages/passport-
azure-ad/. (accessed: 08.03.2023).

https://www.nginx.com/blog/trust-no-one-perils-of-trusting-user-input/
https://www.nginx.com/blog/trust-no-one-perils-of-trusting-user-input/
https://snyk.io/product/
https://www.cve.org/CVERecord?id=CVE-2023-0464
https://www.cve.org/CVERecord?id=CVE-2023-0464
https://security.snyk.io/vuln/SNYK-DEBIAN11-AOM-1290331
https://security.snyk.io/vuln/SNYK-DEBIAN11-AOM-1290331
https://security.snyk.io/vuln/SNYK-DEBIAN11-AOM-1298721/
https://security.snyk.io/vuln/SNYK-DEBIAN11-AOM-1298721/
https://security.snyk.io/vuln/SNYK-DEBIAN11-AOM-1300249/
https://security.snyk.io/vuln/SNYK-DEBIAN11-AOM-1300249/
https://security.snyk.io/vuln/SNYK-DEBIAN11-AOM-1085722/
https://security.snyk.io/vuln/SNYK-DEBIAN11-AOM-1085722/
https://security.snyk.io/vuln/SNYK-DEBIAN11-CURL-3320493/
https://security.snyk.io/vuln/SNYK-DEBIAN11-CURL-3320493/
https://security.snyk.io/vuln/SNYK-DEBIAN11-AOM-1085722/
https://security.snyk.io/vuln/SNYK-DEBIAN11-AOM-1085722/
https://security.snyk.io/vuln/SNYK-DEBIAN11-CURL-3179181/
https://security.snyk.io/vuln/SNYK-DEBIAN11-CURL-3179181/
http://www.passportjs.org/
http://www.passportjs.org/
https://learn.microsoft.com/en-us/azure/active-directory/develop/id-tokens
https://learn.microsoft.com/en-us/azure/active-directory/develop/id-tokens
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#security
http://www.passportjs.org/packages/passport-azure-ad/
http://www.passportjs.org/packages/passport-azure-ad/

Bibliography 129

[108] Nginx. ‘Restricting access by geographical location.’ (), [Online]. Avail-
able: https://docs.nginx.com/nginx/admin-guide/security-controls/
controlling-access-by-geoip/. (accessed: 13.05.2023).

[109] G2. ‘F5 nginx pricing.’ (), [Online]. Available: https://www.g2.com/
products/f5-nginx/pricing. (accessed: 13.05.2023).

[110] S. S. Team. ‘What is a certificate authority (ca)?’ (), [Online]. Available:
https://www.ssl.com/faqs/what-is-a-certificate-authority/.
(accessed: 13.05.2023).

[111] Microsoft. ‘What is azure bastion?’ (), [Online]. Available: https://learn.
microsoft.com/en-us/azure/bastion/bastion-overview. (accessed:
13.05.2023).

[112] Microsoft. ‘Azure bastion pricing.’ (), [Online]. Available: https://azure.
microsoft.com/en-us/pricing/details/azure-bastion/. (accessed:
13.05.2023).

[113] Redis. ‘Core capabilities.’ (), [Online]. Available: https://redis.io/.
(accessed: 13.05.2023).

[114] Microsoft. ‘What is azure application gateway?’ (), [Online]. Available:
https://learn.microsoft.com/en-us/azure/application-gateway/
overview. (accessed: 13.05.2023).

[115] Microsoft. ‘What is azure application gateway v2?’ (), [Online]. Available:
https://learn.microsoft.com/en-us/azure/application-gateway/
overview-v2. (accessed: 13.05.2023).

[116] Microsoft. ‘Reduce service costs by using azure advisor.’ (), [Online]. Avail-
able: https://learn.microsoft.com/en-us/azure/advisor/advisor-
cost-recommendations. (accessed: 19.05.2023).

https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-access-by-geoip/
https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-access-by-geoip/
https://www.g2.com/products/f5-nginx/pricing
https://www.g2.com/products/f5-nginx/pricing
https://www.ssl.com/faqs/what-is-a-certificate-authority/
https://learn.microsoft.com/en-us/azure/bastion/bastion-overview
https://learn.microsoft.com/en-us/azure/bastion/bastion-overview
https://azure.microsoft.com/en-us/pricing/details/azure-bastion/
https://azure.microsoft.com/en-us/pricing/details/azure-bastion/
https://redis.io/
https://learn.microsoft.com/en-us/azure/application-gateway/overview
https://learn.microsoft.com/en-us/azure/application-gateway/overview
https://learn.microsoft.com/en-us/azure/application-gateway/overview-v2
https://learn.microsoft.com/en-us/azure/application-gateway/overview-v2
https://learn.microsoft.com/en-us/azure/advisor/advisor-cost-recommendations
https://learn.microsoft.com/en-us/azure/advisor/advisor-cost-recommendations

Appendix A

Meeting minutes

131

Meeting minutes

2023-01-12

1 Participants

Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre Davidsen Schonhowd

2 Matters

• Decide the different group roles

• Discuss the work ahead

3 Notes on each matter

• Øivind is the group leader and communication manager, Magnus is quality
control manager and Sindre is documentation responsible.

• The group have delegated the work towards the next meeting

4 Next meeting

Friday 13/01 11:00

1

Meeting minutes

2023-01-13

1 Participants

Benjamin Yndestad Aam, Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre
Davidsen Schonhowd

2 Matters

• The bachelor group have some questions for Tussa:

– Log sources

– Lab environment

– Does Tussa only use Microsoft azure?

– What security criteria does Tussa demand

• General status report

3 Notes on each matter

• The task from Tussa is seen as a task with two parts. The first part is not
technical, but rather a risk analysis and procedure.

• The log sources are coming. Benjamin is not sure what information they
want to display to customers yet, but will come back with this information
after talking with Vigleik.

• The Lab environment is coming soon. Most likely VM’s in Tussas own
datacenter.

• Tussa uses only Microsoft Azure

1

• Tussa will finish the issue setting, and then set more specific security
critera. (ISM best practise and NSM)

• Both parties agree that a periodic portal that generates a daily report is
the best solution.

4 Next meeting

Monday 16/01-23 13:00

2

Meeting minutes

2023-01-16

1 Participants

Muhammad Mudassar Yamin, Magnus Lekanger Voll, Øivind Wahlstrøm, Sin-
dre Davidsen Schonhowd

2 Matters

• The bachelor group have some questions for bachelor thesis:

– Doing backups of our writing

– Open source Threat Intelligence and sharing platforms

• General status report

3 Notes on each matter

• The group have decided together with the thesis to do weekly backup
every Monday. The documentation responsible is responsible for this.

• Stix and Misp are open source tools we can use for cyber threats.

• The group have decided to use Jira as a planning framework through the
bachelor.

4 Next meeting

Monday 23/01-23 09:30

1

Meeting minutes

2023-01-23

1 Participants

Benjamin Yndestad Aam, Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre
Davidsen Schonhowd

2 Matters

• Discuss the lab environment delivered by Tussa

• Examples of APIs the group will use

• General status report

3 Notes on each matter

• Benjamin will have a demo of the lab environment next meeting.

• Benjamin will get examples of APIs used, so the group will get baseline
knowledge about the APIs used

• Vigleik will post documentation on PDF-export and organization chart

4 Next meeting

Monday 23/01-23 13:00

1

Meeting minutes

2023-01-23

1 Participants

Muhammad Mudassar Yamin, Magnus Lekanger Voll, Øivind Wahlstrøm, Sin-
dre Davidsen Schonhowd

2 Matters

• The bachelor group have some questions for bachelor thesis:

– Defining the problem statement

– Where to go from here

• General status report

3 Notes on each matter

• Muhammad have some suggestions on how to define the problem state-
ment, but this is something the group needs to decide on together.

• Start working on the report. Begin with explaining the problem and how
we are going to solve it according to plan.

• The group can also start playing around with fetching logs with APIs.

• Notes: IDA IPA cluster deployment, Wazuh SIEM, Cismon formating log.

1

4 Next meeting

Monday 30/01-23 09:30

2

Meeting minutes

2023-01-30

1 Participants

Muhammad Mudassar Yamin, Benjamin Yndestad Aam, Magnus Lekanger Voll,
Øivind Wahlstrøm, Sindre Davidsen Schonhowd

2 Matters

• Discuss the lab environment delivered by Tussa

• What logs does Tussa need to be pulled

• General status report

3 Notes on each matter

• The lab environment is nearly ready. The only thing missing is the external
network traffic, and this will be in place over the next few days.

• The task is to pull logs from the APIs, which is in JSON format.

• The group presented Elastic as a possible way to pull logs. Tussa agrees
this is a good way to go, with the availability to pull for a live update.

4 Next meeting

Monday 06/02-23 13:00

1

Meeting minutes

2023-02-06

1 Participants

Benjamin Yndestad Aam, Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre
Davidsen Schonhowd

2 Matters

• Discuss the lab environment delivered by Tussa

• General status report

3 Notes on each matter

• The lab environment is ready. The group have recived the information
needed and will get the lab up and running soon.

• Benjamin will collect a JSON file with relevant information that the group
will pull.

• The goup have decided to use elastic searched.

4 Next meeting

Monday 13/02-23 13:00

1

Meeting minutes

2023-02-13

1 Participants

Benjamin Yndestad Aam, Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre
Davidsen Schonhowd

2 Matters

• Docker on VM

• Risk analysis about private PC

• storing API credentials

3 Notes on each matter

• Benjamin will examen the possability to enable virtulazation in BIOS on
the VM

• Will finalise the Risk analysis today

• Research about how to store API crednetials.

4 Next meeting

Monday 13/02-23 13:00

1

Meeting minutes

2023-02-20

1 Participants

Benjamin Yndestad Aam, Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre
Davidsen Schonhowd

2 Matters

• The bachelor group will show some of their test data so far.

• General status report

3 Notes on each matter

• The data looks good, but one device can be in more than one endpoint.

• The only match of data on all the endpoints are ”hostname”

4 Next meeting

Monday 27/02-23 09:30

1

Meeting minutes

2023-02-27

1 Participants

Benjamin Yndestad Aam, Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre
Davidsen Schonhowd

2 Matters

• The Bachelor group show what we have done so far regarding elastic.
Made a docker cluster.

• The group have an error ”bad gateway” with using Elasticsearch in Grafana.

• General status report

3 Notes on each matter

• The plan from here is to get Kafka up and running. Elasticseach are going
to send to Kafka and then to Grafana.

• The Bachelor group is on track with the project.

4 Next meeting

Monday 27/02-23 13:00

1

Meeting minutes

2023-03-06

1 Participants

Benjamin Yndestad Aam, Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre
Davidsen Schonhowd

2 Matters

• The Bachelor group show the scripts they have made so far and how they
work.

• The goup show their work regarding the risk analysis and have some ques-
tions regarding the template.

• General status report

3 Notes on each matter

• The scripts looks good so far, but the students have some errors running
a crone job.

• The Bachelor group is on track with the project.

4 Next meeting

Monday 13/02-23 13:00

1

Meeting minutes

2023-03-16

1 Participants

Benjamin Yndestad Aam, Vigleik Hustadnes, Magnus Lekanger Voll, Øivind
Wahlstrøm, Sindre Davidsen Schonhowd

2 Matters

• Short demo of the application so far

• Tussa’s feedback on our work so far

• Discuss the next steps (Multi-tenant)

• The bachelor groups visit to Ørsta

3 Notes on each matter

• The bachelor group showed their work in grafana, with the tables and how
it will look. Tussa had some feedback:

– They want last sync from all three of the systems

– They want one table where it is checked if all the syncs are on the
same date, if not there is an error

– Another table with ”is active”

• We discussed if it is possible to have one API key for all of the customers.
This is going to be part of the risk analysis

• The bachelor group does not need to give any thought to history and
saving old data

1

• Discussed the different architectures. Didn’t do a final conclusion.

• All in all, Tussa is happy with what we have done so far, but want us to
also focus on the risk of the application, wand not just development

4 Next meeting

Monday 20/03-23 09:30

2

Meeting minutes

2023-03-20

1 Participants

Benjamin Yndestad Aam, Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre
Davidsen Schonhowd

2 Matters

• Discussion about the API keys

• General status report

3 Notes on each matter

• Secure Endpoint only gives the opportunity to change API keys to ”Read
only” or ”Read and Write”

• Umbrella and Intune can make more changes, meaning they can share API
keys across customers

• Tussa want one shared keyvault for every customer

• Every time the VM restarts, Grafana resets. Could possibly make a script
that sets up Grafana again every time the VM restarts

4 Next meeting

Monday 27/03-23 09:30

1

Meeting minutes

2023-04-03

1 Participants

Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre Davidsen Schonhowd

2 Matters

• Status report on the solution

• Status report on the report

• Close the last sprint

3 Notes on each matter

• The status on the solution is that there are still some components that
needs development. It is uploaded to Azure, but we still have hard coded
API keys.

• We have set a deadline for the solution on 01/05. From that date we need
to focus on the report.

• The status on the report is that we have started implementing things
already written, but there are still a lot of things that needs to we written.

• We have set a deadline for the report on 15/05, from that date we want
to be finished writing so we can control-check everything.

1

4 Next meeting

Tuesday 11/04-23 09:00

2

Meeting minutes

2023-04-11

1 Participants

Benjamin Yndestad Aam, Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre
Davidsen Schonhowd

2 Matters

• Show the work done through the easter break

• Ørsta visit

• General status report

3 Notes on each matter

• The change to Azure container registry was harder than expected, and
will take some more time

• Keep focusing on the solution, but the group cant forget the report as
well. Benjamin makes it clear that he understands that we have to focus
on the report at some point.

4 Next meeting

Monday 17/04-23 09:30

1

Meeting minutes

2023-04-17

1 Participants

Benjamin Yndestad Aam, Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre
Davidsen Schonhowd

2 Matters

• Azure AD

• Ørsta visit

• General status report

3 Notes on each matter

• Azure AD authentication is harder than expected. But the group will find
a solution together with the advisor.

• Ørsta visit plans are in order and the AirBnB is booked.

• Benjamin will ask someone in Tussa about the subdomain to be used.

4 Next meeting

Friday 21/04-23 10:00

1

Meeting minutes

2023-04-24

1 Participants

Benjamin Yndestad Aam, Magnus Lekanger Voll, Øivind Wahlstrøm, Sindre
Davidsen Schonhowd

2 Matters

• New subdomain

• General status report

3 Notes on each matter

• We need a new subdomain because the old one was deleted by a mistake.
Benjamin will get a new one.

• The solution is almost finished, but need some fine tuning.

• Benjamin reminds us that we also need to focus on the report, and under-
stands if not everything is finished in the solution.

4 Next meeting

Monday 01/05-23 09:30

1

Meeting minutes

2023-05-02

1 Participants

Muhammad Mudassar Yamin, Magnus Lekanger Voll, Øivind Wahlstrøm, Sin-
dre Davidsen Schonhowd

2 Matters

• Questions from the bachelor group:

– Assessment criteria

– How to we refer to sources

– What kind of testing should be do

– Where in the thesis should we put the risk assesment

• General status report

3 Notes on each matter

• There is not any directly assessment criteria since a lot of the thesis are
so different

• Risk analysis can be a seperate chapter

• Use Zap Proxy for testing + user feedback from Tussa

• The thesis should contain a description on how to deploy the solution

1

4 Next meeting

Monday 08/05-23 09:30

2

Appendix B

Project plan

155

Project plan

Magnus Voll, Øivind Wahlstrøm and Sindre Schonhowd

Spring 2023

1

Contents

1 Goals and framework 3
1.1 Background . 3
1.2 Project goal . 3

1.2.1 Result goals . 3
1.2.2 Effect goals . 3

1.3 Frames . 4
1.3.1 Time frames . 4
1.3.2 Language frames . 4

2 scope 4
2.1 issue area (Problemområde) . 4
2.2 issue limitations (Problemavgrensning) 4
2.3 Task From the Client . 4
2.4 Problem statement . 5

3 Project organising 6
3.1 Roles . 6
3.2 Responsibilities . 6
3.3 Routines . 7
3.4 Group rules . 7

4 Planing, follow-up and reporting 8
4.1 Main division of the project . 8
4.2 Plan for status meetings and decisions 9

4.2.1 Status meeting . 9
4.2.2 Decision basis . 9

5 Organise quality assurance 10
5.1 Documentation and Standards . 10
5.2 Plan for inspection and testing . 10
5.3 Risk analysis . 11
5.4 Action Required to handle the risk . 11

6 Plan for implementation 13
6.1 Gantt-scheme / Project activities . 13

2

1 Goals and framework

This section will explain the background for our project and what we will accomplish
over the next 17 weeks, and we will explain the limitations to our project.

1.1 Background

Tussa has expressed that they have a need and a desire to build a platform to cen-
tralize security information for them to present to their customers. Tussa has stated
that going to different applications to find the proper security information regarding
their customers is cumbersome and inefficient way of working. Giving individual re-
ports from each security platform/vendor to their customers has also been a thing
that has been seen as a lack of optimizations of giving the full picture. Due to these
reasons Tussa contacted NTNU to see if their Bachelor graduate students could de-
velop a solution to this problem.

1.2 Project goal

1.2.1 Result goals

• The bachelor group should come up with an effective way to extract and report
relevant information for the SaaS-suppliers.

• The reporting and storing of data need to be secure from possible cyber threats.

• The customers should be able to get a daily report with all their relevant infor-
mation.

• The bachelor group will deliver a risk analysis of the new reporting system to
make sure that it keeps up with the security standards for both Tussa and their
customers.

1.2.2 Effect goals

• Our solution should greatly increase the efficiency and reliability on the doc-
umentation and reporting between Tussa and their SaaS-supplier.

• Our solution should be secure in a way that the customers can rely on that
their information are stored in a secure manure and not in danger to cyber
threats.

• The work we deliver should be modifiable at a later stage, either by Tussa or
another group. Meaning that others outside our bachelor group should be
able to expand, optimize and tweak our solutions at a later stage.

3

1.3 Frames

1.3.1 Time frames

• The project plan needs to be finished by 1th of February 2023

• The group have a given time frame to consider when completing the project.
Our project began 11th of January and the deadline is 22th of May 2023. Both
our solution and our report needs to be finished by the given deadline

1.3.2 Language frames

Even though this is a Norwegian study, our group have decided that we are going to
be writing in English. The main reason is that a lot of technical terms are in English,
and the report will be easier to understand when written in English. Another reason
is that our supervisor is more fluent in English than Norwegian.

2 scope

This sections elaborate the scope of the project. it will give a feature explanation of
the different aspect this task faces.

2.1 issue area (Problemområde)

Tussa IKT is a company under the Tussa group. The company delivers management
IT, sky and security services for different companies in Norway. To manage this they
have control their own data centers, a lot of SaaS- and communications suppliers
together with their own fiber network. Tussa IKT is also ISO27001-certified MSP and
ISP, which means that they have information security as a high priority.
The issue area lays between Tussa and their SaaS-suppliers. Tussa want the report-
ing and communications to run more smoothly. Up until now they collect their data
from three different platforms and want all of the relevant data to be showed in the
same interface.

2.2 issue limitations (Problemavgrensning)

As developers, will we develop a solution that makes it possible to extract specific
information from various log sources from different vendors related to their cus-
tomers and then store it safely in one place. It is Tussa IKT that decides what is to be
extracted from the logs, and how they want to present it. We will listen to and rely
on Tussa IKT’s ideas and develop after that.

2.3 Task From the Client

The objective of the assignment is to research and improve the procedures for SaaS
services integration using APIs, with a particular focus on risk assessment and secur-
ing the process around handling API credentials. Outline a solution that secures the

4

data during transit, at rest, and define a best practice security strategy for managing
access to scripts, code, API credentials and data in a multi-tenant environment. API
credential vaults, test environments and SIEM are available.

Security requirements:

• Encryption

• Access control

• Least privilege access control principle

• Auditing and logging

• Compliance with the customer’s security policies/ISMS

• Security testing

Proof of Concept:

• Build a prototype of the proposed solution that implements the key features
and security requirements identified in the research and development phase.

• Test the prototype with a dataset from Microsoft Intune, Cisco Secure End-
point and Cisco Umbrella to demonstrate how the solution could be used in a
production environment

• Organize and compile data from the dataset into a structured format, such as
a database or JSON file, for easy access and reference in future use.

• Evaluate and identify the result of the prototype and procedures, and suggest
potential enhancements or limitations for future considerations

2.4 Problem statement

Based on the following needs from the customer, have we set our problem statement
to be: How can be develop an application which furfills the current demands of the
customer?

5

3 Project organising

3.1 Roles

• Leader - Øivind

• Documentation responsible - Sindre

• Quality control manager/supervisor/officer/responsible - Magnus

• Communication supervisor/officer/responsible - Øivind

3.2 Responsibilities

Everyone: The group members will have a common responsibility to do their best
effort in order to achieve the project goals. They will also do their best to work con-
sistently and to encourage the other members to do the same. Each member will
also need to record and implement their workhouses in a common excel sheet. It is
also important to do a correct documentation of which sources that has been uti-
lized. Everyone will make decisions together as a team, and their voice will weigh
equally, but if a disagreement cant be solved, the team leader will have the final say.

Leader: The leader responsibilities includes certainty that progress are accomplished
during the project, as well as ensuring that the deadline will be met on the 22th of
May. The leader will also be liable for de-escalate any conflict that may occur, and
try to find the best diplomatic solution for every part. He will have the overall re-
sponsibility for the project.

Document responsible: The document responsible will be the one in charge to en-
sure a clear control of documents relevant to the project. This role will create meet-
ing minutes for every meeting that’s being held for the duration of this project. He
will also be the one to maintain a clear structure on the groups main file sharing
platform i.e. Overleaf.

Quality control manager: This role will ensure that what is being produced by the
group meet the proper qualification and requirements expected of them. This in-
cludes finalising blocks of the project as well as do a finale check of every document
before completion. This role will also secure a coherent structure throughout the
report.

Communication Officer: The Communication officer will be responsible to achieve
a satisfactory level of communication between all relevant parts during the project.
This role will be the one to organize necessary meetings and will be the one to man-
age them. He will also relay information from his communication lines to the rest of
the group members in a best possible manner.

6

3.3 Routines

The group thinks it is important to have routines both on meetings, workloads and
internal problem solving. When we have set routines that makes the working more
efficient and it makes sure that every team members knows whats expected of them.
It also keeps the members on their toes and makes sure that we keep on schedule.

• Each member will fill out their part of the timetable at the end of each week.

• Every individual is to conduct a minimum of 30 hour workload per week.

• Being honest about dissatisfaction or problems is important to deal with and
to solve as quickly as possible.

• We will conduct a meeting with our supervisor every Monday at 13:00. This
meeting will have the opportunity to be both physical and digital, depending
on what’s most suitable. This is done to establish a high level of flexibility.

• The group will have an additional meeting every Friday at 12:00 to revise the
week and to plan ahead for the upcoming Monday meetings.

• The group will also have a meeting with Tussa every Monday at 09:30 where
the group can ask additional questions and keep everyone up to speed on how
the project are going.

• Our workflow will consist of 25 minutes work sessions with a 5 minutes break.
Between every fourth session there will be a longer break consisting of 15 min-
utes. Our lunch break will differ between 30-45 minutes.

3.4 Group rules

• Each member is obligated to be on time for meetings, and report absence, a
minimum of 30 minutes before meetings with a respectively reason.

• Tasks will be completed on time, or it will be mention in advance, if delays are
inevitable.

• The workload will be divided fairly to ensure that everyone contributes equally.

• We will have hundred percent focus when designated work hours are in play.

• All group members are equal and their voice is weigh the same, but the team
leader will have the final say, if a disagreement occur.

7

4 Planing, follow-up and reporting

4.1 Main division of the project

The group has decided to use the scrum framework, for our method of working
throughout the project. It is a well tested framework that suits our way of work-
ing in many ways, especially considering how agile it is[1]. Underneath will describe
why we picked this framework and how it will benefit us.

The Scrum framework starts off by listing every task needed to be done through-
out the project in something called the backlog. It is Never the less important to
note that the overall backlog is editable throughout the project, We highlight this to
emphasis our focus on flexibility and adaptability towards new and unknown chal-
lenges that may occur.

Scrum offers us to work in sprints where we have focus on specific tasks. We will
utilize these sprints to deliver incremental products to the client for us to revise to-
gether. We find it important to be able to make changes based on feedback we get
from our advisor and our client, which the sprints provide. This lets us prioritise the
task, and focus on the task that are of most significance first. We also get to chose
the different length of each sprint to make it as adaptable as possible, depending on
the task.

The scrum framework provides a feature called sprint retrospective which is con-
ducted after each sprint. This feature lets us improve our self for the next sprint
trough discussing what went well, and what we need to improve. It also makes room
to plan for the next sprint. Having this ability integrated into the framework was one
of the main reasons for our decision to choose Scrum.

We also chose this framework based on that we can have tasks which are known,
but don’t know how to complete. Never the less, having them listed up so they are
known will gives us a better overview of the overall workload we need to complete
within the deadline.

We also chose this structure of working because of the floating roles it offers. We
are not limited by a fix role only one person can accomplish, but one person can do
multiple tasks which makes us cross-functional. This means that if one person is
absent, the work dose not stop, because another group member will just fill his role
for the duration of his absent.

The scrum framework also offers a scrum board which will give the overview to al-
ways see our progress and to see what’s needs to be done. It’s a simple setup of every
task that we have and what state it is. The different states are as follows: To Do, In
Progress, To Verify, and Done.

Finally we will have a Scrum master ensuring that progress are being made, that

8

the group stay on time to deliver according to the the schedule. In our case, will the
group leader be the Scrum master.

4.2 Plan for status meetings and decisions

4.2.1 Status meeting

We have made the decision to implement a status meeting every Friday 12:00 to
do a recap of the week, and prepare for our Monday meetings with our client and
supervisor. Here we will discuss what has gone well, and what we improve to the
following week.

4.2.2 Decision basis

The biggest decisions we will comprehend will take place after near the end of each
iteration, to prepare for the next one. We will also make decisions a long the way as
we work to impose a dynamic work method, and to be adaptable toward changes.
We have planed to be available for daily conversation in case a decision is needed.

9

5 Organise quality assurance

5.1 Documentation and Standards

The vast majority of our documentation will be stored and maintained in Overleaf,
where our advisor and our client will have access. The documentation here will con-
sist of the Project plan, Tasks to do, Report, Meeting minutes... Furthermore will a
weekly copy of our most important documents, i.e. the Project plan and the bachelor
thesis to be stored in OneDrive as a safety measure to prevent data loss. Additionally
will the group store documents of less significant value in the a different sub-folder
in OneDrive. Here among other things you will find the Timetable and email drafts
there.

All code written, will be maintain to meet the criteria of professional standards. Suit-
able comments will also be added to the code where necessary. we will use GitHub
for a secure and common platform to store our code, where every member has ac-
cess to. We chose GitHub because it’s an easy to use platform, that everyone is fa-
miliar with, from previous projects.

We will be using Jira to manage our sprint schedule, as well as our to do list. We
looked at different kinds of platform to manage our planing schedule, but we con-
cluded that Jira was the best fit for us since it has a built in scrum framework, and of
Magnus and Øivind’s previous experience with it. it also provides a road-map which
visualize the time frame for each sprint in a calendar. Jira is a great tool to keep
track of what need to be done, what is currently being worked on and what as been
completed.

5.2 Plan for inspection and testing

Our advisor will inspect our work prior to our Monday meeting and will gives us
feedback on our progress. In addition will an inspection with Tussa take place ev-
ery Monday later in the day. Although it should be mentioned that these meetings
can be decreased to only one meeting every second week, depending on what we
perceive to be necessary. As mentioned earlier, offers the scrum framework an in-
spection on what has been done after every sprint. Here it’s discussed the things
that went well, and what needs to me improved for the next sprint. Furthermore,
will we revise our work from the current week in our internal Friday meetings as
well as looking at the Gantt-timetable to see if we are on schedule to meet our goals.

We will conduct the testing of our application in a designated could environment
provided by Tussa. This will be a secure environment where all features to do a
proper testing will be available for us. Tussa will be responsible to set this up and
maintain it so we can utilize it.

10

5.3 Risk analysis

The table showcases different risks related to the project, as well as the probability
of the event occurs with consequences related to it. The probability is divided in
to unlikely, likely, and very likely. Consequences are divided in to critical, moderate,
minor, and negligible. In the table below have we identified the following risk events:

Number Risk Probabilty Consequence Action required

1

We do not manage to finish
the project within the deadline.
There are plenty of reason why
something can be delayed,
such as technical issues,
miscalculation of time,
miscommunication,loss of backup, etc.

Unlikely Critcal Yes

2
Big changes in the requirement
from the customer regarding
the task during the period.

Likely Minor Yes

3
One of the participants of our group gets
sick over a longer period, or has
to quit the project.

Unlikely Critical Yes

4 Loss of report or work related to
the development of the product.

Unlikely Critical Yes

5
Other companies develop similar solutions

Very likely Negligible No

6 Tussa IKT decides to cancel the project Unlikely Critical No

7
Problems with the communication
between the product we have developed
and the information it is
supposed to fetch.

Likely Moderate Yes

8

Some of the demands to the functionality
might not be possible to implement due to
technical limitations

Unlikely Moderate yes

5.4 Action Required to handle the risk

Based on the risk analysis in 5.3, have we chosen several risk events where it is dis-
cussed several measures to implement to reduce the negative consequences if the
risk event occurs. This are the measures which reduces the probability of negative
consequences if an event occurs:

11

Number Action required

1

in the initial phase of the project, we create a GANTT chart where we allocate
planned time use. As this is dynamic work, some changes might occur, but if we
detect that the product we are going to deliver gets delayed do we have to inform
Tussa. A viable solution might be to change the functionality. To reduce the
probability of delay, do we have to make sure that we are on schedule with the project.
If we experience that something is delayed, is this something that require action
immediate. A good plan for how to work to stay on schedule is required
according to our project plan.

2

Communication between the group and Tussa IKT of which functionality are
required for the product are important for both parts so we share the same
understanding. During the project, is it important that we meet with Tussa IKT
often, so we tell how we are doing and status. Sharing the same knowledge and
meeting often will make it easier for Tussa IKT to share their requirements and
wishes, and easier for us to implement the changes.

3

To reduce the consequence if someone gets sick, or something unexpected happends
which means they will be away from the project for a longer time, or has to quit
the project do we meet often to discuss what we have done. We will teach each other
what is required for progress. This will minimize the risk of progress if some of the
participants either has to quit or stays away for a longer period

4
To prevent the risk of loss of any work, do we save the report in ShareLatex
and locally in our OneDrive provided by NTNU. We have also set up a
GitLab-repository where we put the source code for the product as well as
saving this locally as well.

7

It is important to find out early how the systems log their information,
and later identify how the technology regarding fetching information works.
With the understanding can we start testing to fetch the required information.
As we are going to fetch log-information from multiple vendors might some of
the templates/reports change in the future, so we have to create something
that is easy to develop further for future changes.

8
We have to make sure that the demand from Tussa IKT is something
realistic within the technical knowledge from us and limitation of the technical
and security aspect of it. Communication and meeting often is key
for realistic development.

12

6 Plan for implementation

6.1 Gantt-scheme / Project activities

13

Appendix C

Time tracking

169

Uke 2 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt Navn Totale timer
Sindre 3 4 3 10 Sindre 588
Magnus 3 2 5 Magnus 591 Totalt samlet 1835,5
Øivind 5 4,5 4,5 14 Øivind 656,5

Uke 3 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 5 8 5 4 5 4 31
Magnus 6 4 7 5 7 3 32
Øivind 6 1 5 7 4 7 1 31

Uke 4 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 6 5 3 7 5 3 29
Magnus 5 6 4 6 2 6 29
Øivind 6 7 4 5 7 3 32

Uke 5 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 4 4 8 3 8 4 1 32
Magnus 7 5 8 1 6 5 1 33
Øivind 5 8 8 2 6 4 1 34

Uke 6 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 6 6 7 5 5 3 32
Magnus 6 8 5 5 6 2 32
Øivind 8 8 8 8 1 33

Uke 7 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 8 5 6 7 4 1 2 33
Magnus 6 8 5 5 4 3 1 32
Øivind 8 8 2 6 6 1 1 32

Uke 8 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 6 7 6 6 4 3 32
Magnus 5 8 4 5 4 5 1 32
Øivind 7 7 4 5 6 3 32

Uke 9 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 8 8 4 6 6 2 34
Magnus 6 6 7 6 5 3 33
Øivind 12 4 6 8 3 4 37

Uke 10 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 5 5 7 5 4 6 1 33
Magnus 4 5 7 7 4 5 32
Øivind 6 6 7 6 4 1 9 39

Uke 11 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 8 6 9 5 5 2 35
Magnus 7 5 5 8 7 2 34
Øivind 11 10 10 4 7 42

Uke 12 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 6 6 8 5 5 3 33
Magnus 8 8 6 7 5 1 35
Øivind 5 12 13 9,5 39,5

Uke 13 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 6 6 7 6 7 3 35
Magnus 6 5 8 8 4 3 34
Øivind 13 11 4 7 3 38

Uke 14 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 7 7 8 4 1 6 33
Magnus 8 8 7 5 1 5 34
Øivind 4 7 8 8 1 6 34

Uke 15 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 5 4 6 3 1 6 25
Magnus 5 4 6 5 1 4 25
Øivind 8 8 8 6 1 5 36

Uke 16 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 4 4 8 9 5 2 32
Magnus 8 7 7 6 4 3 35
Øivind 6 7 4 7 4 2 30

Uke 17 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 7 7 6 5 2 1 28
Magnus 7 7 8 4 2 28
Øivind 7 7 6 6 2 4 32

Uke 18 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 6 7 6 8 8 35
Magnus 5 6 6 7 3 5 32
Øivind 4 6 8 7 5 5 35

Uke 19 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 5 6 5 4 4 1 3 28
Magnus 5 7 5 5 7 1 3 33
Øivind 8 7 8 8 3 1 3 38

Uke 20 Mandag Tirsdag Onsdag Torsdag Fredag Lørdag Søndag Totalt
Sindre 6 7 7 6 5 4 3 38
Magnus 6 7 8 8 7 3 2 41
Øivind 9 9 9 7 5 6 3 48

Appendix D

Project assignment

171

Bachelor thesis for Digital Infrastructure and cyber security

Working title: Framework for secure data collection and through integration with

various APIs

Client
Tussa IKT is a company in the Tussa group. We deliver managed ICT, cloud services, and security

services mostly to companies based in Norway. Services are based on various SaaS and

communication providers in addition to our own data centers and our own regional fiber network.

We are an ISO27001 certified MSP and ISP with head offices in Ørsta and office locations in Ålesund,

Åndalsnes and Stryn.

Tussa IKT AS, Langemyra 6, 6160 Hovdebygda
Contact:
Kjetil Sætre, tel 90012640, kjetil.satre@tussa.no
Vigleik Hustadnes, tel 48118820, vigleik.hustadnes@tussa.no

Technical contact:
Benjamin Yndestad Aam, tel 97525789, benjamin.yndestad.aam@tussa.no

Assignment
The objective of the assignment is to research and improve the procedures for SaaS services

integration using APIs, with a particular focus on risk assessment and securing the process around

handling API credentials. Outline a solution that secures the data during transit, at rest, and define a

best practice security strategy for managing access to scripts, code, API credentials and data in a

multi-tenant environment. API credential vaults, test environments and SIEM are available.

Security requirements
• Encryption

• Access control

• Least privilege access control principle

• Auditing and logging

• Compliance with the customer’s security policies/ISMS

• Security testing

Proof of Concept:
• Build a prototype of the proposed solution that implements the key features and security

requirements identified in the research and development phase.

• Test the prototype with a dataset from Microsoft Intune, Cisco Secure Endpoint and Cisco

Umbrella to demonstrate how the solution could be used in a production environment.

• Organize and compile data from the dataset into a structured format, such as a database or

JSON file, for easy access and reference in future use.

• Evaluate and identify the result of the prototype and procedures, and suggest potential

enhancements or limitations for future considerations.

Appendix E

Agreements

173

Electronic signature

Signed by

Yamin, Muhammad Mudassar
(Identity verified with BankID (NO))

Date and time (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

12.01.2023 11.57.27
Date of birth

1992-03-24
Signature method

BankID (NO)

Signed by

Voll, Magnus Lekanger
(Name entered manually by the signer)

This document was signed with a SMS one-time password, sent to
+4795526004

Date and time (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

14.01.2023 19.06.23
Signature method

SMS OTP

Signed by

Schonhowd , Sindre Davidsen
(Name entered manually by the signer)

This document was signed with a SMS one-time password, sent to
+4748252086

Date and time (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

12.01.2023 12.27.33
Signature method

SMS OTP

Signed by

Wahlstrøm, Øivind
(Identity verified with BankID (NO))

Date and time (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

13.01.2023 10.44.36
Date of birth

1999-10-04
Signature method

BankID (NO)

Signed by

Kalstad, Nils
(Identity verified with BankID (NO))

Date and time (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

20.01.2023 08.30.09
Date of birth

1978-07-16
Signature method

BankID (NO)

Signed by

Driveklepp, Ivar

Date and time (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

12.01.2023 10.37.42
Date of birth

(Identity verified with BankID (NO)) 1968-06-28
Signature method

BankID (NO)

1 NTNU 10.12.2020

Norges teknisk-naturvitenskapelige universitet

Fastsatt av prorektor for utdanning 10.12.2020

STANDARDAVTALE

om utføring av studentoppgave i samarbeid med ekstern virksomhet

Avtalen er ufravikelig for studentoppgaver (heretter oppgave) ved NTNU som utføres i
samarbeid med ekstern virksomhet.

Forklaring av begrep

Opphavsrett
Er den rett som den som skaper et åndsverk har til å fremstille eksemplar av åndsverket og
gjøre det tilgjengelig for allmennheten. Et åndsverk kan være et litterært, vitenskapelig eller
kunstnerisk verk. En studentoppgave vil være et åndsverk.

Eiendomsrett til resultater
Betyr at den som eier resultatene bestemmer over disse. Utgangspunktet er at studenten
eier resultatene fra sitt studentarbeid. Studenten kan også overføre eiendomsretten til den
eksterne virksomheten.

Bruksrett til resultater
Den som eier resultatene kan gi andre en rett til å bruke resultatene, f.eks. at studenten gir
NTNU og den eksterne virksomheten rett til å bruke resultatene fra studentoppgaven i deres
virksomhet.

Prosjektbakgrunn
Det partene i avtalen har med seg inn i prosjektet, dvs. som vedkommende eier eller har
rettigheter til fra før og som brukes i det videre arbeidet med studentoppgaven. Dette kan
også være materiale som tredjepersoner (som ikke er part i avtalen) har rettigheter til.

Utsatt offentliggjøring
Betyr at oppgaven ikke blir tilgjengelig for allmennheten før etter en viss tid, f.eks. før etter
tre år. Da vil det kun være veileder ved NTNU, sensorene og den eksterne virksomheten som
har tilgang til studentarbeidet de tre første årene etter at studentarbeidet er innlevert.

2 NTNU 10.12.2020

1. Avtaleparter

Norges teknisk-naturvitenskapelige universitet (NTNU)

Institutt for informasjonssikkerheit og kommunikasjonsteknologi

Veileder ved NTNU: Muhammad Mudassar Yamin
 muhammad.m.yamin@ntnu.no 96999968
Ekstern virksomhet: Tussa IKT AS
Ekstern virksomhet sin kontaktperson, e-post og tlf.:
Vigleik Hustadnes vigleik.hustadnes@tussa.no 48118820
Kjetil Sætre kjetil.satre@tussa.no 90012640

Teknisk kontaktperson:
Benjamin Yndestad Aam benjamin.yndestad.aam@tussa.no 97525789

Student: Magnus Lekanger Voll magnuslv@stud.ntnu.no 955 26 004
Fødselsdato: 31.03.1997

Student: Sindre Davidsen Schonhowd sindreds@stud.ntnu.no 482 52 086
Fødselsdato: 19.05.1999

Student: Øivind Wahlstrøm oivindwa@stud.ntnu.no 948 09 046
Fødselsdato: 04.10.1999

Partene har ansvar for å klarere eventuelle immaterielle rettigheter som studenten, NTNU,
den eksterne eller tredjeperson (som ikke er part i avtalen) har til prosjektbakgrunn før bruk
i forbindelse med utførelse av oppgaven. Eierskap til prosjektbakgrunn skal fremgå av eget
vedlegg til avtalen der dette kan ha betydning for utførelse av oppgaven.

2. Utførelse av oppgave
Studenten skal utføre: (sett kryss)

Masteroppgave

Bacheloroppgave X

Prosjektoppgave

Annen oppgave

Startdato: 5.1.2022

Sluttdato: 22.5.2022

Oppgavens arbeidstittel er:

 Rammeverk for sikker datainnsamling og rapportering i ein sosioteknisk kontekst gjennom

integrasjon mot ulike API

3 NTNU 10.12.2020

Ansvarlig veileder ved NTNU har det overordnede faglige ansvaret for utforming og
godkjenning av prosjektbeskrivelse og studentens læring.

3. Ekstern virksomhet sine plikter
Ekstern virksomhet skal stille med en kontaktperson som har nødvendig faglig kompetanse
til å gi studenten tilstrekkelig veiledning i samarbeid med veileder ved NTNU. Ekstern
kontaktperson fremgår i punkt 1.

Formålet med oppgaven er studentarbeid. Oppgaven utføres som ledd i studiet. Studenten
skal ikke motta lønn eller lignende godtgjørelse fra den eksterne for studentarbeidet.
Utgifter knyttet til gjennomføring av oppgaven skal dekkes av den eksterne. Aktuelle
utgifter kan for eksempel være reiser, materialer for bygging av prototyp, innkjøp av prøver,
tester på lab, kjemikalier. Studenten skal klarere dekning av utgifter med ekstern virksomhet
på forhånd.

Ekstern virksomhet skal dekke følgende utgifter til utførelse av oppgaven:
Reise og opphald etter behov og avtale

Dekning av utgifter til annet enn det som er oppført her avgjøres av den eksterne underveis
i arbeidet.

4. Studentens rettigheter
Studenten har opphavsrett til oppgaven1. Alle resultater av oppgaven, skapt av studenten
alene gjennom arbeidet med oppgaven, eies av studenten med de begrensninger som følger
av punkt 5, 6 og 7 nedenfor. Eiendomsretten til resultatene overføres til ekstern virksomhet
hvis punkt 5 b er avkrysset eller for tilfelle som i punkt 6 (overføring ved patenterbare
oppfinnelser).

I henhold til lov om opphavsrett til åndsverk beholder alltid studenten de ideelle rettigheter
til eget åndsverk, dvs. retten til navngivelse og vern mot krenkende bruk.

Studenten har rett til å inngå egen avtale med NTNU om publisering av sin oppgave i NTNUs
institusjonelle arkiv på Internett (NTNU Open). Studenten har også rett til å publisere
oppgaven eller deler av den i andre sammenhenger dersom det ikke i denne avtalen er
avtalt begrensninger i adgangen til å publisere, jf. punkt 8.

5. Den eksterne virksomheten sine rettigheter
Der oppgaven bygger på, eller videreutvikler materiale og/eller metoder (prosjektbakgrunn)
som eies av den eksterne, eies prosjektbakgrunnen fortsatt av den eksterne. Hvis studenten

1 Jf. Lov om opphavsrett til åndsverk mv. av 15.06.2018 § 1

4 NTNU 10.12.2020

skal utnytte resultater som inkluderer den eksterne sin prosjektbakgrunn, forutsetter dette
at det er inngått egen avtale om dette mellom studenten og den eksterne virksomheten.

Alternativ a) (sett kryss) Hovedregel

X Ekstern virksomhet skal ha bruksrett til resultatene av oppgaven

Dette innebærer at ekstern virksomhet skal ha rett til å benytte resultatene av oppgaven i
egen virksomhet. Retten er ikke-eksklusiv.

Alternativ b) (sett kryss) Unntak

 Ekstern virksomhet skal ha eiendomsretten til resultatene av oppgaven og
studentens bidrag i ekstern virksomhet sitt prosjekt

Begrunnelse for at ekstern virksomhet har behov for å få overført eiendomsrett til
resultatene:

6. Godtgjøring ved patenterbare oppfinnelser
Dersom studenten i forbindelse med utførelsen av oppgaven har nådd frem til en
patenterbar oppfinnelse, enten alene eller sammen med andre, kan den eksterne kreve
retten til oppfinnelsen overført til seg. Dette forutsetter at utnyttelsen av oppfinnelsen
faller inn under den eksterne sitt virksomhetsområde. I så fall har studenten krav på rimelig
godtgjøring. Godtgjøringen skal fastsettes i samsvar med arbeidstakeroppfinnelsesloven § 7.
Fristbestemmelsene i § 7 gis tilsvarende anvendelse.

7. NTNU sine rettigheter
De innleverte filer av oppgaven med vedlegg, som er nødvendig for sensur og arkivering ved
NTNU, tilhører NTNU. NTNU får en vederlagsfri bruksrett til resultatene av oppgaven,
inkludert vedlegg til denne, og kan benytte dette til undervisnings- og forskningsformål med
de eventuelle begrensninger som fremgår i punkt 8.

8. Utsatt offentliggjøring
Hovedregelen er at studentoppgaver skal være offentlige.

Sett kryss

X Oppgaven skal være offentlig

5 NTNU 10.12.2020

I særlige tilfeller kan partene bli enige om at hele eller deler av oppgaven skal være
undergitt utsatt offentliggjøring i maksimalt tre år. Hvis oppgaven unntas fra
offentliggjøring, vil den kun være tilgjengelig for student, ekstern virksomhet og veileder i
denne perioden. Sensurkomiteen vil ha tilgang til oppgaven i forbindelse med sensur.
Student, veileder og sensorer har taushetsplikt om innhold som er unntatt offentliggjøring.

Oppgaven skal være underlagt utsatt offentliggjøring i (sett kryss hvis dette er aktuelt):

Sett kryss Sett dato

 ett år

 to år

 tre år

Behovet for utsatt offentliggjøring er begrunnet ut fra følgende:

Dersom partene, etter at oppgaven er ferdig, blir enig om at det ikke er behov for utsatt
offentliggjøring, kan dette endres. I så fall skal dette avtales skriftlig.

Vedlegg til oppgaven kan unntas ut over tre år etter forespørsel fra ekstern virksomhet.
NTNU (ved instituttet) og student skal godta dette hvis den eksterne har saklig grunn for å
be om at et eller flere vedlegg unntas. Ekstern virksomhet må sende forespørsel før
oppgaven leveres.

De delene av oppgaven som ikke er undergitt utsatt offentliggjøring, kan publiseres i NTNUs
institusjonelle arkiv, jf. punkt 4, siste avsnitt. Selv om oppgaven er undergitt utsatt
offentliggjøring, skal ekstern virksomhet legge til rette for at studenten kan benytte hele
eller deler av oppgaven i forbindelse med jobbsøknader samt videreføring i et master- eller
doktorgradsarbeid.

9. Generelt
Denne avtalen skal ha gyldighet foran andre avtaler som er eller blir opprettet mellom to av
partene som er nevnt ovenfor. Dersom student og ekstern virksomhet skal inngå avtale om
konfidensialitet om det som studenten får kjennskap til i eller gjennom den eksterne
virksomheten, kan NTNUs standardmal for konfidensialitetsavtale benyttes.

Den eksterne sin egen konfidensialitetsavtale, eventuell konfidensialitetsavtale den
eksterne har inngått i samarbeidprosjekter, kan også brukes forutsatt at den ikke inneholder
punkter i motstrid med denne avtalen (om rettigheter, offentliggjøring mm). Dersom det
likevel viser seg at det er motstrid, skal NTNUs standardavtale om utføring av
studentoppgave gå foran. Eventuell avtale om konfidensialitet skal vedlegges denne avtalen.

6 NTNU 10.12.2020

Eventuell uenighet som følge av denne avtalen skal søkes løst ved forhandlinger. Hvis dette
ikke fører frem, er partene enige om at tvisten avgjøres ved voldgift i henhold til norsk lov.
Tvisten avgjøres av sorenskriveren ved Sør-Trøndelag tingrett eller den han/hun oppnevner.

Denne avtale er signert i fire eksemplarer hvor partene skal ha hvert sitt eksemplar. Avtalen
er gyldig når den er underskrevet av NTNU v/instituttleder.

Signaturer – digital signering

Instituttleder: Nils Kalstad nils.kalstad@ntnu.no tlf 45492425

Veileder ved NTNU: Muhammad Mudassar Yamin tlf 96999968

Ekstern virksomhet: Ivar Driveklepp ivar.driveklepp@tussa.no

Studenter: Magnus Voll, Sindre Schonhowd og Øivind Wahlstrøm

Electronic signature

Signed by

Yamin, Muhammad Mudassar
(Identity verified with BankID (NO))

Date and time (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

12.01.2023 11.58.19
Date of birth

1992-03-24
Signature method

BankID (NO)

Signed by

Lekanger Voll, Magnus
(Name entered manually by the signer)

This document was signed with a SMS one-time password, sent to
+4795526004

Date and time (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

12.01.2023 14.24.15
Signature method

SMS OTP

Signed by

Schonhowd, Sindre Davidsen
(Name entered manually by the signer)

This document was signed with a SMS one-time password, sent to
+4748252086

Date and time (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

12.01.2023 12.36.06
Signature method

SMS OTP

Signed by

Wahlstrøm, Øivind
(Identity verified with BankID (NO))

Date and time (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

13.01.2023 10.48.31
Date of birth

1999-10-04
Signature method

BankID (NO)

Version 5.01 10.01.2023

Brukaransvar for informasjonsverdiar
eigd eller forvalta av Tussa IKT

Mottakarar:

Muhammad Mudassar Yamin

Magnus Lekanger Voll
Sindre Davidsen Schonhowd
Øivind Wahlstrøm Organisasjon: NTNU Gjøvik

Oppdragsgjevar: Tussa IKT Kontaktperson: Vigleik Hustadnes

Mottakar får tilgang til:

Passord, API-nøklar, rutinar, prosessar og annan info i kategoriane Begrensa og Konfidensielt.

Føremål:

Arbeid med bacheloroppgåve som skal publiserast offentleg.

Varigheit/tidsavgrensing for oppdraget:

Januar-mai 2023

OBS Teieplikta gjeld også etter at oppdraget er utført

Ved å ta i bruk tilgangen/informasjonen aksepterer du følgjande ansvar:
✓ Informasjonen kan berre vidareformidlast etter avtale med Oppdragsgjevar
✓ Du skal sikre informasjonen mot tilgang for uvedkomande ved hjelp av gode rutinar, kontroll over

alle kopiar av informasjonen og tilstrekkelege tekniske sikringstiltak som t.d. kryptert overføring og
lagring

✓ At alle som får tilgang til informasjonen skal vere informerte om sitt ansvar og teieplikt etter denne
avtalen og eventuell databehandlaravtale for personopplysningar, samt relevante lover

✓ Å slette alle kopiar av informasjonen når avtalen eller føremålet opphøyrer

Ved pålogging til system eller tenester gjeld også følgjande:
✓ Tildelt brukarkonto er personleg og skal ikkje formidlast til andre
✓ Om kollegaer eller tredjepart treng tilgang, skal dette godkjennast av oppdragsgjevar og deretter

tildelast av Tussa IKT
✓ Du skal ikkje søke informasjon som ikkje er nødvendig for det konkrete oppdraget som skal utførast
✓ Du skal rapportere alt utført arbeid til oppdragsgjevar
✓ Endeutstyret skal vere oppdatert og tilstrekkeleg sikra med tiltak mot vondsinna programvare

(malware)
✓ Når du ikkje lenger har bruk for tilgang, skal du informere oppdragsgjevar om dette, slik at tilgangen

kan fjernast

Ved systemutvikling/integrasjon:

✓ Utviklarane skal sikre systema mot ”CWE Top 25 Most Dangerous Software Weaknesses”

(https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html)

Appendix F

Security testing results

185

 ZAP Scanning Report Of Our Web-
application

A security scan of the login-portal.

Site: https://securityportal.tikt.no

Generated on Thu, 18 May 2023 13:35:15

Summary of Alerts

Risk Level Number of Alerts

High 1

Medium 6

Low 3

Informational 3

Alerts

Name Risk Level
Number of
Instances

Cloud Metadata Potentially Exposed High 1

CSP: Wildcard Directive Medium 4

CSP: script-src unsafe-eval Medium 4

CSP: script-src unsafe-inline Medium 4

CSP: style-src unsafe-inline Medium 4

Hidden File Found Medium 4

Multiple X-Frame-Options Header Entries Medium 2

Server Leaks Version Information via "Server"
HTTP Response Header Field

Low 16

Strict-Transport-Security Header Not Set Low 14

Timestamp Disclosure - Unix Low 6

Information Disclosure - Suspicious Comments Informational 24

Re-examine Cache-control Directives Informational 4

User Agent Fuzzer Informational 72

Alert Detail

High Cloud Metadata Potentially Exposed

Description

The Cloud Metadata Attack attempts to abuse a misconfigured NGINX server in order to
access the instance metadata maintained by cloud service providers such as AWS, GCP
and Azure.

All of these providers provide metadata via an internal unroutable IP address
'169.254.169.254' - this can be exposed by incorrectly configured NGINX servers and
accessed by using this IP address in the Host header field.

URL https://securityportal.tikt.no/latest/meta-data/

Method GET

Attack 169.254.169.254

Evidence

Instances 1

Solution Do not trust any user data in NGINX configs. In this case it is probably the use of the $host
variable which is set from the 'Host' header and can be controlled by an attacker.

Reference https://www.nginx.com/blog/trust-no-one-perils-of-trusting-user-input/

CWE Id

WASC Id

Plugin Id 90034

Medium CSP: Wildcard Directive

Description

Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate
certain types of attacks. Including (but not limited to) Cross Site Scripting (XSS), and data
injection attacks. These attacks are used for everything from data theft to site defacement
or distribution of malware. CSP provides a set of standard HTTP headers that allow website
owners to declare approved sources of content that browsers should be allowed to load on
that page — covered types are JavaScript, CSS, HTML frames, fonts, images and
embeddable objects such as Java applets, ActiveX, audio and video files.

URL https://securityportal.tikt.no

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/login

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

Instances 4

Solution Ensure that your web server, application server, load balancer, etc. is properly configured to
set the Content-Security-Policy header.

Reference

 http://www.w3.org/TR/CSP2/
 http://www.w3.org/TR/CSP/

 http://caniuse.com/#search=content+security+policy
 http://content-security-policy.com/

 https://github.com/shapesecurity/salvation
https://developers.google.com/web/fundamentals/security
/csp#policy_applies_to_a_wide_variety_of_resources

CWE Id 693

WASC Id 15

Plugin Id 10055

Medium CSP: script-src unsafe-eval

Description

Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate
certain types of attacks. Including (but not limited to) Cross Site Scripting (XSS), and data
injection attacks. These attacks are used for everything from data theft to site defacement
or distribution of malware. CSP provides a set of standard HTTP headers that allow website
owners to declare approved sources of content that browsers should be allowed to load on
that page — covered types are JavaScript, CSS, HTML frames, fonts, images and
embeddable objects such as Java applets, ActiveX, audio and video files.

URL https://securityportal.tikt.no

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/login

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

Instances 4

Solution Ensure that your web server, application server, load balancer, etc. is properly configured to
set the Content-Security-Policy header.

Reference

 http://www.w3.org/TR/CSP2/
 http://www.w3.org/TR/CSP/

 http://caniuse.com/#search=content+security+policy
 http://content-security-policy.com/

 https://github.com/shapesecurity/salvation
https://developers.google.com/web/fundamentals/security
/csp#policy_applies_to_a_wide_variety_of_resources

CWE Id 693

WASC Id 15

Plugin Id 10055

Medium CSP: script-src unsafe-inline

Description

Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate
certain types of attacks. Including (but not limited to) Cross Site Scripting (XSS), and data
injection attacks. These attacks are used for everything from data theft to site defacement
or distribution of malware. CSP provides a set of standard HTTP headers that allow website

owners to declare approved sources of content that browsers should be allowed to load on
that page — covered types are JavaScript, CSS, HTML frames, fonts, images and
embeddable objects such as Java applets, ActiveX, audio and video files.

URL https://securityportal.tikt.no

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/login

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

Instances 4

Solution Ensure that your web server, application server, load balancer, etc. is properly configured to
set the Content-Security-Policy header.

Reference

 http://www.w3.org/TR/CSP2/
 http://www.w3.org/TR/CSP/

 http://caniuse.com/#search=content+security+policy
 http://content-security-policy.com/

 https://github.com/shapesecurity/salvation
https://developers.google.com/web/fundamentals/security
/csp#policy_applies_to_a_wide_variety_of_resources

CWE Id 693

WASC Id 15

Plugin Id 10055

Medium CSP: style-src unsafe-inline

Description

Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate
certain types of attacks. Including (but not limited to) Cross Site Scripting (XSS), and data
injection attacks. These attacks are used for everything from data theft to site defacement
or distribution of malware. CSP provides a set of standard HTTP headers that allow website
owners to declare approved sources of content that browsers should be allowed to load on
that page — covered types are JavaScript, CSS, HTML frames, fonts, images and
embeddable objects such as Java applets, ActiveX, audio and video files.

URL https://securityportal.tikt.no

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/login

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack

Evidence default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src 'self' 'unsafe-inline';
img-src 'self' data:;

Instances 4

Solution Ensure that your web server, application server, load balancer, etc. is properly configured to
set the Content-Security-Policy header.

Reference

 http://www.w3.org/TR/CSP2/
 http://www.w3.org/TR/CSP/

 http://caniuse.com/#search=content+security+policy
 http://content-security-policy.com/

 https://github.com/shapesecurity/salvation
https://developers.google.com/web/fundamentals/security
/csp#policy_applies_to_a_wide_variety_of_resources

CWE Id 693

WASC Id 15

Plugin Id 10055

Medium Hidden File Found

Description
A sensitive file was identified as accessible or available. This may leak administrative,
configuration, or credential information which can be leveraged by a malicious individual to
further attack the system or conduct social engineering efforts.

URL https://securityportal.tikt.no/._darcs

Method GET

Attack

Evidence HTTP/1.1 302 Found

URL https://securityportal.tikt.no/.bzr

Method GET

Attack

Evidence HTTP/1.1 302 Found

URL https://securityportal.tikt.no/.hg

Method GET

Attack

Evidence HTTP/1.1 302 Found

URL https://securityportal.tikt.no/BitKeeper

Method GET

Attack

Evidence HTTP/1.1 302 Found

Instances 4

Solution
Consider whether or not the component is actually required in production, if it isn't then
disable it. If it is then ensure access to it requires appropriate authentication and
authorization, or limit exposure to internal systems or specific source IPs, etc.

Reference https://blog.hboeck.de/archives/892-Introducing-Snallygaster-a-Tool-to-Scan-for-Secrets-on-
Web-Servers.html

CWE Id 538

WASC Id 13

Plugin Id 40035

Medium Multiple X-Frame-Options Header Entries

Description X-Frame-Options (XFO) headers were found, a response with multiple XFO header entries
may not be predictably treated by all user-agents.

URL https://securityportal.tikt.no

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/login

Method GET

Attack

Evidence

Instances 2

Solution Ensure only a single X-Frame-Options header is present in the response.

Reference https://tools.ietf.org/html/rfc7034

CWE Id 1021

WASC Id 15

Plugin Id 10020

Low Server Leaks Version Information via "Server" HTTP Response Header Field

Description
The web/application server is leaking version information via the "Server" HTTP response
header. Access to such information may facilitate attackers identifying other vulnerabilities
your web/application server is subject to.

URL https://securityportal.tikt.no

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/login

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/public/build/6291.cb5ce8837ec621d8b6a1.js

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/public/build/8683.9259ad853ca27103e2cc.js

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/public/build/app.c52aa5cf53b2693cadba.js

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/public/build/grafana.dark.922c73a268c5f56fe5fe.css

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/public/build/runtime.2434a49086cee1380c4e.js

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/public/img/apple-touch-icon.png

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/public/img/browserconfig.xml

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/public/img/fav32.png

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/public/img/grafana_mask_icon.svg

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/robots.txt

Method GET

Attack

Evidence nginx/1.24.0

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack

Evidence nginx/1.24.0

Instances 16

Solution Ensure that your web server, application server, load balancer, etc. is configured to
suppress the "Server" header or provide generic details.

Reference

 http://httpd.apache.org/docs/current/mod/core.html#servertokens
 http://msdn.microsoft.com/en-us/library/ff648552.aspx#ht_urlscan_007

http://blogs.msdn.com/b/varunm/archive/2013/04/23/remove-unwanted-http-response-
 headers.aspx

http://www.troyhunt.com/2012/02/shhh-dont-let-your-response-headers.html

CWE Id 200

WASC Id 13

Plugin Id 10036

Low Strict-Transport-Security Header Not Set

Description

HTTP Strict Transport Security (HSTS) is a web security policy mechanism whereby a web
server declares that complying user agents (such as a web browser) are to interact with it
using only secure HTTPS connections (i.e. HTTP layered over TLS/SSL). HSTS is an IETF
standards track protocol and is specified in RFC 6797.

URL https://securityportal.tikt.no

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/login

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/public/build/6291.cb5ce8837ec621d8b6a1.js

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/public/build/8683.9259ad853ca27103e2cc.js

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/public/build/app.c52aa5cf53b2693cadba.js

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/public/build/grafana.dark.922c73a268c5f56fe5fe.css

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/public/build/runtime.2434a49086cee1380c4e.js

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/public/img/apple-touch-icon.png

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/public/img/browserconfig.xml

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/public/img/fav32.png

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/public/img/grafana_mask_icon.svg

Method GET

Attack

Evidence

URL https://securityportal.tikt.no/robots.txt

Method GET

Attack

Evidence

Instances 14

Solution Ensure that your web server, application server, load balancer, etc. is configured to enforce
Strict-Transport-Security.

Reference

https://cheatsheetseries.owasp.org/cheatsheets
 /HTTP_Strict_Transport_Security_Cheat_Sheet.html
 https://owasp.org/www-community/Security_Headers

 http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
 http://caniuse.com/stricttransportsecurity

http://tools.ietf.org/html/rfc6797

CWE Id 319

WASC Id 15

Plugin Id 10035

Low Timestamp Disclosure - Unix

Description A timestamp was disclosed by the application/web server - Unix

URL https://securityportal.tikt.no

Method GET

Attack

Evidence 1682353621

URL https://securityportal.tikt.no/login

Method GET

Attack

Evidence 1682353621

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence 1431655765

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence 1494410783

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence 1494410983

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence 1540483477

Instances 6

Solution Manually confirm that the timestamp data is not sensitive, and that the data cannot be
aggregated to disclose exploitable patterns.

Reference http://projects.webappsec.org/w/page/13246936/Information%20Leakage

CWE Id 200

WASC Id 13

Plugin Id 10096

Informational Information Disclosure - Suspicious Comments

Description The response appears to contain suspicious comments which may help an attacker. Note:
Matches made within script blocks or files are against the entire content not only comments.

URL https://securityportal.tikt.no

Method GET

Attack

Evidence TODO

URL https://securityportal.tikt.no/login

Method GET

Attack

Evidence TODO

URL https://securityportal.tikt.no/public/build/6291.cb5ce8837ec621d8b6a1.js

Method GET

Attack

Evidence Query

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence admin

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence administrator

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence bug

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence Db

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence from

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence query

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence select

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence TODO

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence User

URL https://securityportal.tikt.no/public/build/6749.32f81d7fa137df51b539.js

Method GET

Attack

Evidence where

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence bug

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence db

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence from

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence QUERY

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence select

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence user

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence username

URL https://securityportal.tikt.no/public/build/7490.cf2da2a42f577bdb1843.js

Method GET

Attack

Evidence WHERE

URL https://securityportal.tikt.no/public/build/8683.9259ad853ca27103e2cc.js

Method GET

Attack

Evidence bug

URL https://securityportal.tikt.no/public/build/8683.9259ad853ca27103e2cc.js

Method GET

Attack

Evidence from

URL https://securityportal.tikt.no/public/build/runtime.2434a49086cee1380c4e.js

Method GET

Attack

Evidence query

Instances 24

Solution Remove all comments that return information that may help an attacker and fix any
underlying problems they refer to.

Reference

CWE Id 200

WASC Id 13

Plugin Id 10027

Informational Re-examine Cache-control Directives

Description

The cache-control header has not been set properly or is missing, allowing the browser and
proxies to cache content. For static assets like css, js, or image files this might be intended,
however, the resources should be reviewed to ensure that no sensitive content will be
cached.

URL https://securityportal.tikt.no

Method GET

Attack

Evidence no-store

URL https://securityportal.tikt.no/login

Method GET

Attack

Evidence no-store

URL https://securityportal.tikt.no/public/img/browserconfig.xml

Method GET

Attack

Evidence public, max-age=3600

URL https://securityportal.tikt.no/robots.txt

Method GET

Attack

Evidence public, max-age=3600

Instances 4

Solution
For secure content, ensure the cache-control HTTP header is set with "no-cache, no-store,
must-revalidate". If an asset should be cached consider setting the directives "public, max-
age, immutable".

Reference

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.
 html#web-content-caching

 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://grayduck.mn/2021/09/13/cache-control-recommendations/

CWE Id 525

WASC Id 13

Plugin Id 10015

Informational User Agent Fuzzer

Description
Check for differences in response based on fuzzed User Agent (eg. mobile sites, access as
a Search Engine Crawler). Compares the response statuscode and the hashcode of the
response body with the original response.

URL https://securityportal.tikt.no

Method GET

Attack Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Evidence

URL https://securityportal.tikt.no

Method GET

Attack Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)

Evidence

URL https://securityportal.tikt.no

Method GET

Attack Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1)

Evidence

URL https://securityportal.tikt.no

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Trident/7.0; rv:11.0) like Gecko

Evidence

URL https://securityportal.tikt.no

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/75.0.3739.0 Safari/537.36 Edg/75.0.109.0

Evidence

URL https://securityportal.tikt.no

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/91.0.4472.124 Safari/537.36

Evidence

URL https://securityportal.tikt.no

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:93.0) Gecko/20100101 Firefox/91.0

Evidence

URL https://securityportal.tikt.no

Method GET

Attack Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Evidence

URL https://securityportal.tikt.no

Method GET

Attack Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)

Evidence

URL https://securityportal.tikt.no

Method GET

Attack Mozilla/5.0 (iPhone; CPU iPhone OS 8_0_2 like Mac OS X) AppleWebKit/600.1.4 (KHTML,
like Gecko) Version/8.0 Mobile/12A366 Safari/600.1.4

Evidence

URL https://securityportal.tikt.no

Method GET

Attack Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_0 like Mac OS X; en-us) AppleWebKit/528.18
(KHTML, like Gecko) Version/4.0 Mobile/7A341 Safari/528.16

Evidence

URL https://securityportal.tikt.no

Method GET

Attack msnbot/1.1 (+http://search.msn.com/msnbot.htm)

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1)

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Trident/7.0; rv:11.0) like Gecko

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/75.0.3739.0 Safari/537.36 Edg/75.0.109.0

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/91.0.4472.124 Safari/537.36

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:93.0) Gecko/20100101 Firefox/91.0

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack Mozilla/5.0 (iPhone; CPU iPhone OS 8_0_2 like Mac OS X) AppleWebKit/600.1.4 (KHTML,
like Gecko) Version/8.0 Mobile/12A366 Safari/600.1.4

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_0 like Mac OS X; en-us) AppleWebKit/528.18
(KHTML, like Gecko) Version/4.0 Mobile/7A341 Safari/528.16

Evidence

URL https://securityportal.tikt.no/

Method GET

Attack msnbot/1.1 (+http://search.msn.com/msnbot.htm)

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1)

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Trident/7.0; rv:11.0) like Gecko

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/75.0.3739.0 Safari/537.36 Edg/75.0.109.0

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/91.0.4472.124 Safari/537.36

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:93.0) Gecko/20100101 Firefox/91.0

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack Mozilla/5.0 (iPhone; CPU iPhone OS 8_0_2 like Mac OS X) AppleWebKit/600.1.4 (KHTML,
like Gecko) Version/8.0 Mobile/12A366 Safari/600.1.4

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_0 like Mac OS X; en-us) AppleWebKit/528.18
(KHTML, like Gecko) Version/4.0 Mobile/7A341 Safari/528.16

Evidence

URL https://securityportal.tikt.no/public

Method GET

Attack msnbot/1.1 (+http://search.msn.com/msnbot.htm)

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Attack Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Attack Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Attack Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1)

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Trident/7.0; rv:11.0) like Gecko

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/75.0.3739.0 Safari/537.36 Edg/75.0.109.0

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/91.0.4472.124 Safari/537.36

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:93.0) Gecko/20100101 Firefox/91.0

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Attack Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Attack Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Mozilla/5.0 (iPhone; CPU iPhone OS 8_0_2 like Mac OS X) AppleWebKit/600.1.4 (KHTML,

Attack like Gecko) Version/8.0 Mobile/12A366 Safari/600.1.4

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Attack Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_0 like Mac OS X; en-us) AppleWebKit/528.18
(KHTML, like Gecko) Version/4.0 Mobile/7A341 Safari/528.16

Evidence

URL https://securityportal.tikt.no/public/build

Method GET

Attack msnbot/1.1 (+http://search.msn.com/msnbot.htm)

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1)

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Trident/7.0; rv:11.0) like Gecko

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/75.0.3739.0 Safari/537.36 Edg/75.0.109.0

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/91.0.4472.124 Safari/537.36

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:93.0) Gecko/20100101 Firefox/91.0

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack Mozilla/5.0 (iPhone; CPU iPhone OS 8_0_2 like Mac OS X) AppleWebKit/600.1.4 (KHTML,
like Gecko) Version/8.0 Mobile/12A366 Safari/600.1.4

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_0 like Mac OS X; en-us) AppleWebKit/528.18
(KHTML, like Gecko) Version/4.0 Mobile/7A341 Safari/528.16

Evidence

URL https://securityportal.tikt.no/public/img

Method GET

Attack msnbot/1.1 (+http://search.msn.com/msnbot.htm)

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1)

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Trident/7.0; rv:11.0) like Gecko

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/75.0.3739.0 Safari/537.36 Edg/75.0.109.0

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/91.0.4472.124 Safari/537.36

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:93.0) Gecko/20100101 Firefox/91.0

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack Mozilla/5.0 (iPhone; CPU iPhone OS 8_0_2 like Mac OS X) AppleWebKit/600.1.4 (KHTML,
like Gecko) Version/8.0 Mobile/12A366 Safari/600.1.4

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_0 like Mac OS X; en-us) AppleWebKit/528.18
(KHTML, like Gecko) Version/4.0 Mobile/7A341 Safari/528.16

Evidence

URL https://securityportal.tikt.no/sitemap.xml

Method GET

Attack msnbot/1.1 (+http://search.msn.com/msnbot.htm)

Evidence

Instances 72

Solution

Reference https://owasp.org/wstg

CWE Id

WASC Id

Plugin Id 10104

Appendix G

User test results

207

Appendix H

Risk assessment for using local
computers

211

Risk-assessment of private PC in work environment Første vurdering dato: 15.02.2023 Oppdatert dato:

ID NR

Risikobeskrivelse
Stikkord om:
(1) innledende hendelse(r)
(2) informasjonssikkerhetsbruddet
(3) de uønskede konsekvensene som kan oppstå Begrunnelse for konsekvensvurdering In

iti
el

l K
on

se
kv

en
s

In
iti

el
l s

an
ns

yn
lig

he
t

Begrunnelse for vurdering av tilhørende
sannsynlighet In

iti
el

t r
isi

ko
ni

vå

Handtering - spesifiser på arkfane
Tiltak Fo

rv
en

ta
 ko

ns
ek

ve
ns

 et
te

r

til
ta

k

Fo
rv

en
ta

 sa
nn

sy
nl

igh
et

 et
te

r

til
ta

k

Pl
an

lag
t r

isi
ko

ni
vå

Ri
sik

oe
ie

r

Gj
el

de
nd

e k
on

se
kv

en
s

Gj
el

de
nd

e s
an

ns
yn

lig
he

t
Gj

el
de

nd
e r

es
tri

sik
o

R1 1

1. increased risk of data breach, viruses, malware and other cyber-
attacks 2. Company owned computers usually have a higher level
of security features implemented than a privet PC. 3. infection of
other workpace PCs and/or create a backdoor into the company.
Steal API credentials

Exfiltrate, Alter and view data without detection from
Tussas workspace. Spread more malicious code into
their internal network. steal API credentials to access
information.

Stor Svært liten

It is not public information that we collaborate,
which makes it hard to find working connection
between bachelor writers and Tussa. We are
cybersecurity students and have security culture
integrated in our daily life. Only connection to
Tussa workspace is through the VM which is
seperated onto an isolted VLAN. API crendetials
are only used to generate test data.

R2 2
1. Poor password management and encryption. 2. Unwanted persons
gain access to API credentials. 3. Gain access to the data
they can retrive.

Only test data Svært liten Svært liten
API crendetials are only used to generate test.
General cybersecurity knowledge of how to store
API credentials.

R3 3
1. No surveillance or managed control of a private PC. 2. Harder to
discover security breach as well as when a breach has occurred. 3.
Advisories go undetected

Stealing API credentials, or data without detection.
Can't control the PC and isolate it in case of breach.

Stor Liten

API crendetials are only used to generate test.
General cybersecurity knowledge of how to store
API credentials. Private PC does not have access
to any importantinformation related to Tussa.

R4 4
1. Access control 2. Tussa has little to no control of whom may have
access to the private PC 3.An unauthorasied person can gain access
to restricted information.

Someone steals the PC or someone may know the
password to the PC. Multiple users share same files on
PC.

Liten Svært liten
We see the most likely scenario is that someone
steals the PC, But we consider that as very
unlikely.

R5 5

1. Compliance Violations 2. Personal computers might be excluded
from rules and guidelines that apply to company-owned computers 3.
raising the possibility of privacy, security, and other compliance rules
being broken.

worst case: breach GDPR rules. Svært liten Liten

We have recived severel docuements related
guidelines different topics. These guidelines
should not be broken, but might happend due to
an accident.

In
iti

el
l K

on
se

kv
en

s

In
iti

el
l s

an
ns

yn
lig

he
t

Begrunnelse for vurdering av tilhørende
sannsynlighet In

iti
el

t r
isi

ko
ni

vå

Handtering - spesifiser på arkfane
Tiltak Fo

rv
en

ta
 ko

ns
ek

ve
ns

 et
te

r

til
ta

k

Fo
rv

en
ta

 sa
nn

sy
nl

igh
et

 et
te

r

til
ta

k

Pl
an

lag
t r

isi
ko

ni
vå

Ri
sik

oe
ie

r

Gj
el

de
nd

e k
on

se
kv

en
s

Gj
el

de
nd

e s
an

ns
yn

lig
he

t
Gj

el
de

nd
e r

es
tri

sik
o

Svært liten 1, 2, 4, 5, and 6 Liten Svært liten Svært liten Stor Svært liten Svært liten

Svært liten 1, 2, 4, 5, and 6 Svært liten Svært liten Svært liten Svært liten Svært liten Svært liten

Liten 1, 2, 4, 5, and 6 Svært liten Svært liten Svært liten Stor Liten Liten

Svært liten 1, 3, and 5 Svært liten Svært liten Svært liten Liten Svært liten Svært liten

Svært liten 4 Liten Svært liten Svært liten Svært liten Stor Svært liten

Initiell risiko

Sv
æ

rt
 st

or
St

or
Li

te
n

R5 R3

Sv
æ

rt
 li

te
n

R2 R4 R1

Svært liten Liten Stor Svært stor

Forventa/planlagt risiko
1 2 3 4

Sv
æ

rt
 st

or
St

or
Li

te
n

Sv
æ

rt
 li

te
n

R2,R3,R4 R1,R5

Svært liten Liten Stor Svært stor

Gjeldande oppdatert risiko
1 2 3 4

Sv
æ

rt
 st

or
St

or
Li

te
n

R5 R3

Sv
æ

rt
 li

te
n

R2 R4 R1

Svært liten Liten Stor Svært stor

Sa
nn

sy
nl
ig
he

t

Konsekvens

Sa
nn

sy
nl
ig
he

t

Konsekvens

Sa
nn

sy
nl
ig
he

t

Konsekvens

Tiltak ID eller change nr Beskrivelse Status
1 Password manager Forslag
2 store API credentials in a secure place with encryption Forslag
3 Encrypted hardisk Forslag
4 Enrolled into SOC overwatch (intune, umbrella or amp) Forslag
5 MFA to logg onto private PC Forslag
6 secure network (VPN or Proxy) Forslag

Appendix I

Tussa’s internal guidelines

217

1.
2.

a.
b.
c.
d.

3.
a.

Systemutvikling - integrasjon - script- DevOps
Ansvar for oppdatering : Vigleik Hustadnes

Kapittel i ISO27002:

A.14.1.1 Behovsanalyse og beskrivelse av krav til informasjonssikkerhet

A.14.2.7 Utkontraktert utvikling

Overordna krav

Retningslinjer for sikkerheit i digitalisering

Retningslinjer for identitets- og tilgangskontroll

DevOps

Script/kode som er en sentral del av en driftkritisk prosess skal være dokumentert/beskrevet i dokumentasjonen for den gjeldende prosessen. Legg gjerne
inn en kopi av scriptet/koden der du dokumenterer dette, forklar også hvordan dette blir kjørt. (eks, manuelt, scheduled task o.l.)

Det skal som standard ikke lagres passord eller API nøkler i klartekst, dette gjelder også for script. I noen tilfeller er det selvsagt ikke mulig å komme
videre uten å lagre passord i klartekst, det kan være f.eks et programmeringsspråk som ikke støtter kryptering av passord, i disse tilfellene skal DevOps
teamet diskutere og avgjøre sammen med sikkerhetsavdelingen hvordan vi løser dette på en best mulig måte som vi kan godta som "sikker nok".

Det skal alltid brukes kommentarer når vi skriver kode, beskriv så godt du kan hva som blir gjort og hvorfor. Legg også gjerne inn informasjon om dato,
funksjon og forfatter i toppen av scriptet ditt slik at den neste som skal se på dette får mest mulig info.

Eksempel på kommentar for en PowerShell funksjon

PowerShell

For PowerShell alle passord og nøkler lagres som en slik at denne kan importeres og benyttes videre for autentisering på en sikker skal SecureString
måte.

Det skal også benyttes nyeste versjon av PowerShell der det er mulig, PowerShell versjon 2.0 skal avinstalleres.

PowerShell - SecretManagement

PowerShell signering av script - Code sign

Tradisjonell systemutvikling

Desse krava gjeld ved systemutvikling uavhengig av om det blir gjort av interne eller innleigde ressursar.

Sjå også om avtale med leverandørenRutiner for bruk av leverandørar og partnarar for Tussa IKT

Utarbeiding av kravspesifikasjon

Beskriv funksjonalitetskrav
Vurder konsekvensar ved potensielle uønska hendingar, bruk t.d. desse spørsmåla

Kva kategoriar og mengder av informasjon og personopplysningar skal handterast i systemet
Konsekvensar om uvedkomande får tilgang til informasjonen/systemet
Kva om brukarane ikkje får tilgang til systemet, eller om det blir ustabilt
Kva om informasjonen ikkje vert oppdatert eller synkronisert med master-data, om gamle data blir liggande i årevis, eller om det er store
feil i informasjonen

Angrepsflate

3.
a.
b.

4.
a.
b.
c.
d.

Eksponering for angrep frå uvedkomande/uautoriserte brukarar
Kva skade kan autentiserte brukarar i systemet gjere.

Beskriv sikkerheitskrav og vurder minimum dette
Kva kan og skal gjerast for å redusere eller unngå risikoane under pkt 2 og 3
Autentisering: Om SSO og MFA ikkje kan brukast, skal gode grunnar for dette og evt kompenserande tiltak dokumenterast
Autorisering: Trengst det ulike roller og tilgangsstyring i systemet (admin og ulike brukarroller) ?
Integrasjon/kommunikasjon med andre system skal sikrast tilfredsstillande, inkludert passord/nøklar og muligheit for misbruk av desse

Systemarkitektur og design

Skal dokumenterast og godkjennast opp mot kravspesifikasjonen før implementeringsarbeidet startar.

Følgjande skal brukast i denne fasen, der det er relevant:

http://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
Secure Application Model framework ved integrasjon mot O365

Akseptansekriterier og behov for testing

Skal dokumenterast før implementeringsarbeidet startar, kan utvidast i implementasjonsfasen

Implementering, testing og dokumentasjon

Før systemet går i produksjon skal følgjande dokumenterast

Beskrivelse av risikoar og implementerte sikringstiltak inkludert

sikkerheitskrava i kravspesifikasjonen
Mitigering av i den grad dei er relevantehttp://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
Testresultat og samsvar med kravspesifikasjon og akseptansekrav
Plan for systemvedlikehald, support og sikkerheitspatching

 Dato: 20220822

 1

Retningslinjer for identitets- og tilgangsstyring

Tussa IKT

Innhald

1. Dokumentforvalting .. 2

2. Føremål med retningslinjene .. 2

3. Krav til identitetsstyring .. 2

4. Krav til tilgangsstyring ... 3

5. Tilgang til nettverk og nettverkstenester ... 3

6. Privilegert tilgang .. 4

7. Tilgangsstyring i system og applikasjonar ... 4

8. Fysisk tilgangsstyring .. 5

9. Oppfølging og revisjon .. 5

 Dato: 20220822

 2

1. Dokumentforvalting

Målgruppe: Alle leiarar i Tussa IKT, systemeigarar og systemansvarlege

Innhald: Krav til styring av brukaridentitet og tilgang til IT-system og informasjonsverdiar i Tussa IKT

Konfidensialitet: Begrensa, jfr «Retningslinjer for lagring og deling av informasjon»

Godkjent: 22.08.2022 Ivar Driveklepp

1.1 Endringslogg

Dato Endringar

20220822 Header: Lagt til dato. Kap 1: Nytt avsnitt med endringslogg.

2. Føremål med retningslinjene

Kontroll på identiteten til brukarar samt korrekt tildeling av brukarane sine tilgangsrettigheiter skal sikre

autorisert tilgang til Tussa IKT sine informasjonsverdiar. Dette dokumentet regulerer både fysisk og logisk

tilgang til alle typar informasjonsverdiar i alle deler av organisasjonen. Tilgang for leverandørar og

partnerar er også omfatta av desse retningslinjene. Følgjande hovudprinsipp skal leggast til grunn:

• Det skal til ei kvar tid vere korrekt identifisert person som er registrert og gitt tilgang til Tussa IKT

sine informasjonsverdiar.

• Det skal sikrast god styring av tilgang til informasjonsverdiar med korrekte rettigheiter basert på

behov.

• All bruk av Tussa IKT sine informasjonsverdiar skal kunne førast tilbake til eit individ

• Tilgang som ikkje kan tildelast i samsvar med krava i dette dokumentet skal berre brukast

unntaksvis, og skal alltid dokumenterast og godkjennast av nærmaste leiar

3. Krav til identitetsstyring

3.1 Handtering av brukaridentitetar

Identiteten til brukarane skal kontrollerast før dei får tilgang til Tussa IKT sine informasjonsverdiar.

Det skal dokumenterast ein prosess for registrering og fjerning av interne og eksterne brukarar. Tilgang for

innleigde og midlertidige brukarar skal vere tidsavgrensa. Prosessen skal inkludere rutinar for tildeling og

utlevering av autentiserings-informasjon (som passord m.m.) til brukarane. Prosessen skal også inkludere

administrative eller tekniske tiltak for å unngå misbruk av roller. Dette kan vere fordeling av ansvar når det

er hensiktsmessig, eller andre kompenserande tiltak.

Autoritativt system for brukarar skal definerast og brukast som grunnlag for identitets-styring.

Alle som får utlevert påloggingsinformasjon og/eller adgangskort, skal først signere teieplikterklæring og

arbeidsavtale eller tilsvarande. Dei skal også oppfylle krava i datadisiplinerklæringa, som skal inkludere

krav til handtering av personleg påloggingsinformasjon.

 Dato: 20220822

 3

Alle tilsette som skal ha tilgang til Tussa IKT sine informasjonsverdiar skal gjennomføre obligatorisk

opplæring i informasjonssikkerheit. Nærmaste leiar er ansvarleg for at slik opplæring blir gitt.

Systemeigar for det enkelte system skal sørge for sikker styring av påloggingsinformasjon til brukarar, jfr

rollebeskrivelsen i «Retningslinjer for styring av informasjonssikkerheit». Det skal dokumenterast kva tiltak

applikasjonen/systemet brukar for å ivareta sikker pålogging.

Ved etablering av nye system, skal støtte for single-sign-on vere eit kriterium som blir vektlagt.

4. Krav til tilgangsstyring

4.1 Autorisering

Tilgang til Tussa IKT sine informasjonsverdiar skal definerast på grunnlag av den enkelte si rolle og

tilhøyring til Tussa IKT. Den enkelte leiar skal sikre rett tildeling av tilgangsrettigheiter for tilsette som

han/ho har ansvar for.

Dei som godkjenner tilgang, skal ta omsyn til relevante lover, kundekrav, klassifisering og andre

sikkerheitskrav som gjeld for den enkelte applikasjonen/systemet, og for informasjonsverdiar som er

tilgjengelege igjennom applikasjonen/systemet.

Prinsippet for behovsstyrt tilgang gjeld både fysisk adgangskontroll, tilgang til applikasjonar og

informasjon, og nettverkstilgang.

Systemeigar skal definere rutine for bestilling, godkjenning og tildeling av tilgang i sine system. Når ikkje

anna er avtalt og dokumentert, skal nærmaste leiar godkjenne tildeling av tilgang for sine tilsette.

Brukarrettigheiter for leverandørar/forretningspartnarar skal tildelast i samsvar med den gjeldande

avtalen. Eigaren av avtalen skal sikre rett spesifisering av tilgangsrettigheiter i avtalen.

Bestemmelsar for medlemskap i tilgangsgrupper skal dokumenterast.

4.2 Autentisering

Val av autentiseringsmekanismer skal tilpassast sikringsnivået som gjeld for informasjonsverdien som skal

beskyttast, og i samsvar med «Retningslinjer for lagring og deling av informasjon». For eksempel er

passord i dei fleste tilfelle utilstrekkeleg som autentiseringsmekanisme for informasjon som er tilgjengeleg

frå internett.

Datadisiplinerklæringa skal inkludere retningslinjer for passordkvalitet.

5. Tilgang til nettverk og nettverkstenester

Brukarar skal berre få tilgang til dei deler av nettverk og nettverkstenester som dei har bruk for og er

autorisert til å bruke. Dette gjeld både LAN, WLAN og VPN-tilgang. Sjå kapittel 4.1 om autorisering.

 Dato: 20220822

 4

5.1 Styring, sikring og kontroll av nettverk

Ansvar for dei ulike nettverks-tenestene som Tussa IKT brukar, og tilhøyrande sikringsmekanismar, skal

plasserast. Som minimum skal tenestene oppfylle følgjande krav:

• Rutinar for drift og overvaking skal dokumenterast.

• Kabla og trådlaust klientnettverk og VPN-tilgang skal sikrast med autentisering av brukarar eller

utstyr. Når intern informasjon blir overført over internett eller trådlaust nett skal den krypterast

med robuste algoritmar.

• Nettverks-segment med muligheit for administrasjon av infrastruktur skal vere skilt frå nettverk for

vanleg brukartilgang, og skal sikrast med strengare tiltak.

• Segmentering av nettverk skal brukast for å hindre innsyn på tvers av ulike kundar, når det er

relevant, og i den grad det er nødvendig for å oppfylle avtalefesta krav frå kundar.

• Nettverkskommunikasjon mellom interne nett og eksterne partnerar skal filtrerast i brannmur

• Logging i samsvar med kap. 9.1

6. Privilegert tilgang

Brukarar med privilegerte rettigheiter omfattar brukarar med rot- eller administratorrettigheiter

(«administratorar») og brukarar med spesielle rettigheiter i applikasjonar, system og tenester

(«superbrukarar»). Kontroll over denne typen brukarar er særleg viktig. Systemeigar skal dokumentere og

følgje opp ei rutine for provisjonering, bruk og kontroll i det enkelte system eller grupper av system.

Følgjande krav skal gjelde rutinane:

• Tildeling av privilegerte rettigheiter skal avgrensast til dei som treng det, jfr kap 4.1 Autorisering

• «Servicekontoar» skal ikkje brukast for fysiske personar

• Felles brukarnamn skal unngåast så langt det er råd. Ved unntak frå denne regelen skal

systemeigar sørge for rutinemessig skifte av passord og sikring av dette.

• Bruk av privilegerte rettigheiter skal alltid kunne sporast tilbake til eit individ.

• Logging og rapportering i samsvar med kap. 9

Ved dagleg arbeid som ikkje krev utvida rettigheiter, skal det brukast ein standard brukarkonto. Pålogging

med privilegerte brukarkontoar skal berre gjerast når det er nødvendig.

7. Tilgangsstyring i system og applikasjonar

Kapittel 4.1 om autorisering gjeld også for tilgang til applikasjonar og system, og differensiering av tilgang

for brukarane i applikasjonen. Det er systemeigar som har ansvaret for å oppfylle krava i dette dokumentet

og i «Retningslinjer for styring av informasjonssikkerheit» med vedlegg, for sitt system. Systemansvarleg

sitt ansvar inkluderer å velge sikringstiltak som påloggingsprosedyrer, passordstyring, kontroll med

privilegerte hjelpeprogram og sikring av API for applikasjonen.

 Dato: 20220822

 5

8. Fysisk tilgangsstyring

Informasjonsverdiar og fasilitetar skal sikrast med fysiske tiltak. Fysiske sikkerheitssoner skal definerast, og

sonene skal sikrast med relevante sikkerheitstiltak som inkluderer behovsbasert tilgangskontroll,

overvaking og logging. Ansvaret for soneinndeling og for sikkerheitstiltaka skal plasserast i samsvar med

«Retningslinjer for styring av informasjonssikkerheit» med vedlegg.

9. Oppfølging og revisjon

Det skal etablerast tiltak for å oppdage uautorisert tilgang eller forsøk på tilgang til Tussa IKT sine

informasjonsverdiar. Dersom det vert oppdaga at det har skjedd ein uautorisert tilgang, skal dette

handterast som eit avvik.

9.1 Krav til logging

Aktivitet relatert til vanlege brukarkontoar og kontoar med privilegerte rettigheiter skal loggast og

oppbevarast i samsvar med gjeldande lover. Dette gjeld brukaraktivitet som er relevant for sikkerheit, og

endring av påloggingsinformasjon. Det er systemeigar sitt ansvar å vurdere kva som må loggast og korleis

loggane skal handterast, basert på risiko.

Viktige sikkerheitsloggar inkludert bruk av privilegerte kontoar skal lagrast og vernast mot uautorisert

tilgang i samsvar med prinsippet om fordeling av ansvar.

Historiske opplysningar om brukaridentitetar, tilgangsrettigheiter og autentisering skal oppbevarast i

samsvar med krav frå kundar, styresmakter og konsern.

Metodar for systematisk gjennomgang og analyse av sikkerheitsloggar skal implementerast, for å avdekke

uønskt aktivitet.

9.2 Revisjon

Når det gjeld fjerning/endring og avvikling av tilgangsrettigheiter skal følgjande krav gjelde:

• Systemeigar er ansvarleg for at rutine for fjerning, endring og avvikling av tilgang for den aktuelle

applikasjon eller system vert dokumentert og følgt.

• Når det er føremålstenleg, skal tilgangsgrupper som gir tilgang til Tussa IKT sine

informasjonsverdiar ha ein ansvarleg eigar som periodisk reviderer kven som skal vere medlem i

gruppa.

• Tildelte tilgangsrettigheiter skal gjennomgåast minst årleg, og gjennomgangen skal loggførast.

Privilegerte tilgangsrettigheiter skal gjennomgåast minst kvart halvår. Tilgangen skal fjernast når

brukarane ikkje lenger har bruk for den i arbeidet.

Appendix J

Stage one of the infrastructure

225

Stage one of the infrastructure
Working throughout the project, the group has concluded to call the following achieved
architecture for stage one. Stage one represents an elementary solution to the task provided
by the client, Tussa. It fulfils the basic requirements, and the main task which is to collect
unique information about devices from different vendors and display it as a collective
information on a single platform.

Fig x.x, The picture displays stage on of the infrastructure

The infrastructure consists of three main parts, all running in a single environment, i.e. on a
single virtual machine. Each part runs as a container with a volume attached to it for
persistence purposes, which will be described further below.

Containers
containerizing our applications present numerous benefits, which is why we have
determined to utilize it. Containers are standalone executable packages which consist of
everything needed to run an application, like libraries, configuration files, binary code, and
executables. Containers do not persist of an operating system image, unlike machine or
server virtualization. This makes them lightweight and appropriate for transport.

Applications running as a container has the abilities to easily be deployed onto multiple
different environments, without the concern of configuration issues and dependencies. This
trait can prove useful for Tussa in the future, as they don’t have to think about which system
they need to utilize for further development, if they decide to do so later. This technology is
also suitable for us as the group work with two different operating systems. This makes
building and deploying the application across the group versatile.

Containerizing application additionally offers to isolate each of the applications to its own
environment while running on the same machine. This enhances the ability to manage each
of the applications individually, as well as ensuring that they will not interfere with each other
in an unwanted manner[1].

Here is a short description of the three containers, see figure x.x above. The first container
marked in yellow represents the Node.js API app. This container holds the code that utilize
APIs to fetch the required security data about devices from each vendor. It also sorts this
information into a single data structure which is sent to the Elasticsearch container. The
Elasticsearch container coloured in green is responsible for storing data it got from the
Node.js API app in an index it in a JSON format. The last container marked in orange is running
Grafana. Grafana is used to fetch the data stored in the Elasticsearch container and display it
to the user in a dashboard. Separating the responsibilities of data collection, storage, and
visualization, into tree individual entities make the system more flexible and modular, that
can be managed independently.

[1] NetApp. Required: (09.03.2023). What are
containers? https://www.netapp.com/devops-solutions/what-are-containers/

Volume
This section will explain why we have attached a volume to each of the containers, and what
it is used for. It is important to highlight that connection a volume to the containers will make
each of the containers stateful rather than stateless. Stateful and stateless are different
approaches which offers individual capabilities and features.

Statefulness means that the container will store everything that is done on it, which means
storing the state of the container. A deeper understanding on how this will profit our solution
is described in the next paragraph. Statefulness also amplifies the speed of the information
flow. A stateless container will do the opposite, and not store any information on it. A
stateless approach offers the benefits of enhanced horizontal scaling capabilities. For the
program to be able to store information and be stateless, the implementation of a different
persistent service is needed e.g. a database[1]. This approach will be discussed later in the
thesis for future development.

A stateful container will prevent data loss from occurring in case a container goes down
unintentionally. Attaching a volume to the containers will store the state of the container
before it goes down and reload it when it is running again. The container will be unavailable
for the duration it is down but will fully function as before once it is back up again due to the
volume. In other words, a volume is a way to persistent data for containers, and to share it
between them. They are independent form containers which gives them the ability to save
data even if the container goes down. This means that the data is stored outside of the
container. Although we highlight the importance of adding the field “restart: always” in the
docker compose file as shown beneath on line 6. See fig x.x. Reason for this is to enable the
containers to restart again automatically if it goes down. Without this field, you would have
to restart them manually for it to be restored to the old state. Line 8 also shows the path of
the volume.

Fig x.x, The picture displays our docker-compose file.

The Node.js API app does not store any information, but it utilizes a container to store its
node modules which is crucial for it to function.
The Elasticsearch container only receive data from the Node.js API container once a day, due
to the implementation of the cron job in the Node.js API app. Therefore, if the container does
not have a volume attached to it and it goes down it will have no date to forward to Grafana
before the Node.js API container sends new data to it. The potential outcome could be that
Grafana has no date to display for almost an entire day.
Grafana container uses a volume to store its User interface (UI) design, which is configured
with Graphical User Interface (GUI) after the container is deployed. Meaning that the
dashboards configured to display data in a certain way will not disappear if the container goes
down.

The disadvantage utilizing a docker compose file is that it is impossible to roll out image
updates without down time. If you have a new version of an image you want to implement,
you need to first bring the containers down, then change out the image with the new one,
and then start the containers again. The reason for this is that docker compose was never
designed for the concept of always uptime. A way of fixing this problem is to use a mulit-
server orchestration tool like docker swarm and Kubernetes. These solutions will be
compared and presented later on[2]

 [1] BasuMallick. 20.09.2022. Stateful vs. Stateless: Understanding the key differences.
https://www.spiceworks.com/tech/cloud/articles/stateful-vs-stateless/
[2] Bert Fisher. 27.02.2019. Docker compose or swarm for a single server. Docker Compose
or Swarm For A Single Server

Appendix K

Iterations

229

Iterations retrospective
Iteration one

a. What went well?
• Started early with planning and working on the application.
• Establishing common understanding of the task ahead with all parties. i.e.,
Advisory, Client (Tussa), and the group.

b. What didn’t go well?
• Misunderstanding between the parties concerning the goal of the
assignment.
• Confusion regarding where to start and get an overview of what needs to be
done in such a huge assignment.

c. What can be improved?
• Better communication between the Client and Advisor. The bachelor group
should have set up a meeting earlier with all the parties, so everyone understood
the project better.
• More frequent meetings in the beginning to get and overview of what needs
to be done.

Iteration two
a. What went well?

• Planning the infrastructure to get an overview of how the application will be
built.
• Communication with the parties has gone well, with a clear communication
line.

b. What didn’t go well?
• Communication within the bachelor group could have been better for
everyone to understand how the application works.
• Dividing of work assignment and its workload. Some tasks are unequally
distributed.
• All the team members could be better to take initiative.

c. What can be improved?
• Communication within the group. Update each other frequently of what they
are working on to keep everyone in the loop.
• Use Jira more actively, even for smaller tasks that might be added at a later
stage.

Iteration three
a. What went well?

• The internal communication worked better, and the Jira-solution worked well
to always keep everyone up to speed.
• Good communication with the client with regular weekly meetings.
• The work on the solution went well, and the team have done a lot of
developing on the solution.

b. What didn’t go well?
• For a period of time we lacked some enhanced communication with our
advisor as he canceled three weeks with meeting in a row due to travel. This led
to impaired communication as it lacked verbal exchange, which is often easier
when asking more complex questions.
• The bachelor group could be better on digging into answers from the
advisor.

c. What can be improved?
• Our willingness to ask multiple questions to get the right answers from our
advisor. Meaning that we don’t just take his first answer as a final answer.
• The whole group needs to keep a better focus when working on the project.
Be dedicated to the task when working on it.

Iteration four
a. What went well?

• The problems regarding the communication with the advisor have been a lot
better.

• The team has done a lot of development, and the application is really
starting to take shape.

a. What didn’t go well?
• The team need to focus more on the thesis. We have set a deadline for the

development of the application (01/05). From that point we need all the
focus on the thesis.

a. What can be improved?
• The communication within the group is somewhat lacking. We need to get

better at asking each other for help if we are stuck on a problem.

Iteration five
a. What went well?

• Every member worked hard the last couple of weeks.
• Kept to the deadlines we sat for our self, regarding development.
• Optimized our time usage.

a. What didn’t go well?
• The members always find something that could be better and are never truly

satisfied with the work.
a. What can be improved?

• Everyone could be more satisfied with their work, and not always focus on
what could be better.

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Glossary
	Introduction
	Tussa IKT - client
	Project Objective
	Goals and Frames
	Frames
	Result Goals
	Effect Goals
	Problem Delamination

	Group Background
	Organization
	Thesis Structure

	Background
	Solution Background
	Least Privilege Access Control Principle
	Auditing and Logging
	Containers
	Docker Swarm vs Kubernetes
	Docker Secrets
	Overlay Network

	Azure
	Azure Key Vault
	Azure Container Registry
	Azure Application Registration
	Service Principal
	Azure Groups

	Microservice Architecture vs Monolith Architecture
	Microservice Architecture
	Monolith Architecture
	Preferable Architecture

	Services
	Grafana
	ElasticSearch
	Node.js Running Cron Job For API Calls
	Nginx
	Node.js
	Javascript
	NPM

	Related work
	ELK stack
	Splunk

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Technical Design
	System Architecture
	Traffic Flow

	Azure
	API
	Elasticsearch
	Grafana
	Nginx
	Architecture Alternatives
	Silo
	Pooled With Silo
	Pulled and Partitioned with Separate microservices
	Cost calculation

	Pricing Of Each Infrastructure
	Infrastructure Decision

	Development Process
	Development Model
	Routines
	Policies
	Communication

	Meetings
	Meetings With Tussa
	Meetings With Supervisor
	Internal Meetings

	Documentation
	Jira
	Thesis Writing
	Writing Code
	Time Tracking
	Other Documentation

	Implementation
	Repository
	Technical
	Tussa's Guidelines
	Self Configured Node.js App
	Azure API
	Device APIs
	Pseudo code for retiving device information
	Dockerfile
	File Structure

	Grafana
	Azure AD Authentication
	Break glass
	Pseudo Code For Configuring Grafana
	Docker file
	File Structure

	Nginx
	Nginx.conf
	Default.conf

	Scripts
	Azure
	VM
	Azure Key Vault
	Azure Container Registry
	Azure App Registration
	Azure Groups
	Conditional Access Policies

	Deployment
	Prerequisites
	Azure

	Deployment-Process
	Routines
	Non-Disclosure Agreement
	Code / Scripts
	API Credentials And Passwords
	Docker Secrets
	Azure
	Rotation Of Employees

	Scalability
	Final Solution With User Guide

	Security Testing
	Testing Of The Web Application
	Nmap
	Dirb
	SQL Injections
	Brute Force
	OWASP ZAP

	Container Images
	Snyk
	Grafana-init
	Api-Cron

	Risk Assessment
	Risk Assessment of New Implementation

	Evaluation
	Survey
	Results From The Survey

	Evaluation Of Requirements
	Functional Requirements
	Non-Functional Requirements

	Discussion
	Limitations/Challenges
	Grafana
	Nginx
	Virtual Machine Access

	Assignment Interpretation
	Future Considerations
	Grafana Scalability
	Azure Virtual Network
	Load Balancer / Firewall
	Securing Data At Transit
	API Gateway
	VM Resources
	Azure AD Authentication Integration With GitHub
	Security Tests And Patching Before Putting It In Production

	Why We Developed This Application
	If we were to redo the project, what would we have done differently?
	Development
	Security Testing
	Reviewing Of The Task
	Planning

	Closing Remarks
	Learning outcome
	Project As A Whole
	Teamwork, Communication and Working process
	Writing The Thesis
	Developing

	Future Considerations
	Conclusion
	Final words

	Bibliography
	Meeting minutes
	Project plan
	Time tracking
	Project assignment
	Agreements
	Security testing results
	User test results
	Risk assessment for using local computers
	Tussa's internal guidelines
	Stage one of the infrastructure
	Iterations

