
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

G
ra

du
at

e
th

es
is

Susanne Skjold Edvardsen
Malin Foss
Philip Morud

Knowledge in App

Graduate thesis in Bachelor i Programmering (BPROG)
Supervisor: Frode Haug
May 2023

Susanne Skjold Edvardsen
Malin Foss
Philip Morud

Knowledge in App

Graduate thesis in Bachelor i Programmering (BPROG)
Supervisor: Frode Haug
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Summary of the Bachelor Thesis

Title: Knowledge in App

Date: 21 May 2023

Participants: Malin Foss, Philip Morud, Susanne Skjold Edvardsen

Mentors: Frode Haug and Tom Røise

Employer: Vitensenteret Innlandet

Keywords: Programming, mobile application, flutter, api

Number of pages: 86

Number of appendixes: 17

Availability: Open

Summary: Vitensenteret Innlandet, a high-profile science center, reached out to NTNU
with a wish to make some of their services available online. To do this, the group settled
on developing a mobile application together with an interface that can be accessed on
any computer. This mobile application houses a ticketing system, blog, and a collection
of some simple games. It focuses on a good user experience and in addition to this, the
web interface gives administrative options like publishing and managing the content of
the app, as well as managing tickets.

The solution is an application written in Flutter, in Android Studio, with a connection to
a database in Firebase. This database uses both storage options and a real-time database.
The application also uses a Stripe API for the payment solutions. The application has not
been made available online, however, little work is needed to publish it as it is.

During the development of this app, the group put a high priority on working profession-
ally. We used Scrum and Kanban as well as git issue boards to keep track of any tasks and
wrote summaries of all meetings the group attended.

1

Sammendrag av Bacheloroppgaven

Tittel: Viten i App

Dato: 21 Mai 2023

Deltakere: Malin Foss, Philip Morud, Susanne Skjold Edvardsen

Mentorer: Frode Haug og Tom Røise

Oppdragsgiver: Vitensenteret Innlandet

Nøkkelord: Programmering, Mobilapplikasjon, Flutter, API

Antall sider: 86

Antall vedlegg: 17

Tilgjengelighet: Åpen

Sammendrag: Vitensenteret Innlandet, et høyprofilert vitenskapssenter, tok kontakt med
NTNU med et ønske om å gjøre noen av deres tilbud tilgjengelig på nettet. For å gjen-
nomføre dette ble gruppen enig om å utvikle en mobilapplikasjon med et nettside grenses-
nitt som kan bli brukt på enhver datamaskin. Denne mobilapplikasjonen inneholder et
billettsystem, en blogg og en samling av noen enkle spill. Appen har fokus på en god
brukeropplevelse og i tillegg gir internett grensesnittet administrative muligheter, som
publisering og håndtering av innholdet i appen og behandling av billetter.

Løsningen er en applikasjon programmert i Flutter, i Android Studio, koblet til en data-
base i Firebase. Denne lagrer data i sanntid og håndterer filer spesifikt. I tillegg bruker
applikasjonen en Stripe API som betalingsløsning. Appen har ikke blitt gjort tilgjengelig
på nettet ennå, men lite arbeid må til for å publisere den slik den er.

I løpet av utviklingsprosessen for denne appen ble det satt stort fokus på et profesjonelt
arbeidsmiljø. Vi brukte Scrum, Kanban og Git ”issue boards” for å ha oversikt over alle
arbeidsoppgaver, og vi skrev sammendrag fra alle møtene gruppen holdt.

2

Preface

This Bachelor thesis was developed at NTNU by a group taking their bachelor in pro-
gramming. The members of this group was Malin Foss, Philip Morud and Susanne Skjold
Edvardsen.

We want to thank all those who made this thesis possible. Our Mentor Frode Haug always
had our backs and pushed us towards a well-made project. Tom Røyse, who we could
count on when difficult topics arose around the follow-through of the employer. We had
an educated translator, Daniel Johan Bauge, go over any parts translated from English
to Norwegian or vice versa, and we want to thank him. In addition to this, we want to
mention those who helped perform user tests and always provided feedback during the
development. And lastly, our employers at Vitensenteret, especially Gavin Robb, which
came up with the task and helped provide a real-life experience for the group.

Thank you.

3

Table of Contents

List of Figures vii

1 Introduction 1

1.1 Project Description . 1

1.1.1 Background . 1

1.1.2 Subject Area . 1

1.1.3 Delimitation . 2

1.1.4 Task Description . 2

1.2 Goals and Constraints . 3

1.2.1 Project goals . 3

1.2.2 Constraints . 4

1.3 Project Audience . 4

1.3.1 Users of the Mobile Application 4

1.3.2 Users of the Web Interface of the Application 4

1.3.3 Readers of this Thesis . 5

1.4 Project Organization . 5

1.4.1 Group Members and Academic Background 5

1.4.2 Roles . 5

1.5 Structure of the Report . 6

1.6 Terminology . 6

2 Theory 8

2.1 Subjects . 8

2.1.1 Design . 8

2.1.2 Database . 8

2.1.3 API . 8

i

2.2 Purpose . 8

2.3 Subjects . 9

2.3.1 Main Subjects . 9

2.3.2 Relevant Subjects . 9

3 Requirement Specifications 11

3.1 Requirements . 11

3.1.1 Front End . 11

3.1.2 Back End . 11

3.1.3 Operational Requirements . 11

3.1.4 Safety and Misuse Handling . 11

3.1.5 Storing Personal Data in Accordance with GDPR 12

3.1.6 Licensing . 14

3.1.7 Version updates . 14

3.1.8 Interface Requirements . 14

3.1.9 Testing . 15

3.2 Initial Design . 15

3.2.1 Low Fidelity Prototype for the Mobile Application 15

3.2.2 Low Fidelity Prototype for the Web Interface 16

3.3 Use Cases . 17

3.3.1 Use Case Diagram . 17

3.3.2 Use Case Descriptions . 19

3.4 Product Backlog . 22

3.5 Domain Model . 25

4 Developmental Progress 27

4.1 Methodolgy . 27

4.1.1 Choice of Software Development Methodology 27

ii

4.1.2 Sprint Meetings before the Hybrid Solution 28

4.1.3 Sprint/Kanban Meetings after the Hybrid Solution 29

4.2 Meetings . 29

4.2.1 Mentor Meetings . 29

4.2.2 Project Owner Meetings . 29

4.2.3 Internal Meetings . 29

5 User Interface 30

5.1 Blog Page . 30

5.2 Game Page . 31

5.2.1 Viten Ord . 31

5.2.2 Tower of Hanoi . 32

5.2.3 Viten Kode . 33

5.3 Authentication Page . 34

5.4 Ticket Page . 35

5.4.1 Customer Ticket Page . 35

5.4.2 Employee Ticket Page . 36

5.5 Settings Page . 37

6 Technical Design 39

6.1 Technology . 39

6.2 API . 40

6.3 System Architecture . 40

6.4 Data Storage . 41

6.4.1 Access and Security . 43

6.4.2 Limitations . 44

7 Implementation 46

iii

7.1 Database . 46

7.2 API . 51

7.2.1 Firebase Functions . 51

7.2.2 Stripe API . 52

7.3 Mobile Application . 52

7.3.1 Log in and Register Page . 52

7.3.2 Ticket Page . 54

7.3.3 Settings . 54

7.3.4 Blog . 55

7.3.5 Payment Page . 55

7.4 Web . 56

7.4.1 Ticket Page for Admins . 57

7.4.2 Blog Page for Admins . 60

7.5 Game Implementations . 61

7.5.1 Viten Ord . 61

7.5.2 Tower of Hanoi . 62

7.5.3 Viten Kode . 66

8 Testing 68

8.1 Unit Testing . 68

8.2 User Testing . 68

9 Code Quality 71

9.1 Database Best Practices . 71

9.2 Commenting Standards . 71

9.3 Naming Conventions . 72

9.4 Using Flutters Built-in Linter to Minimize Redundant Code 72

iv

10 Deployment 73

10.1 App Store for iPhone . 73

10.2 Google Play Store for Android . 73

10.3 Source Code . 73

10.4 Terms and Conditions . 73

11 Further Development 75

11.1 Deployment . 75

11.2 Further Polish of Interface . 75

11.3 Database . 75

11.4 Games . 76

11.4.1 Game Engines . 76

11.4.2 Further development of ”Viten Kode” 76

11.4.3 Adding a Scoreboard and Daily Rewards for Logged-in Users . . 77

11.5 Notification System . 77

11.6 Other Additions . 77

12 Discussion 78

12.1 Implementation and Follow Through . 78

12.1.1 Worked Hours . 78

12.1.2 Following the Gantt Chart . 81

12.2 Alternative Technology and The Choices We Made 83

12.2.1 Firebase Realtime Database vs. Firebase Firestore vs. SQL 83

12.2.2 Kotlin vs. Flutter vs .Net vs React Native 84

12.2.3 Payment system . 85

12.3 What Would We Have Done Different Today? 86

12.3.1 Database choice . 86

12.3.2 Payment system . 86

v

12.4 Evaluation of the Group Effort . 87

12.5 Conclusion . 87

13 Sources 88

Appendix 91

A Gantt 91

B Project plan 93

C Contract 112

D Status report 1 119

E Status report 2 122

F Status report 3 125

G Meting Minutes 128

H Time Chart 142

I Wishes from Employer 143

J User tests 143

K Group rules 151

L Requirements specification 154

M Translated summary 171

N Design Handbook for Vitensenteret Innlandet 173

O Assets 214

vi

P Backlog 216

Q User Manual 218

List of Figures

1 Paper model, low fidelity prototype. 16

2 Digital model of the Web interface, low fidelity prototype. 17

3 Model of the use cases . 18

4 In Depth Use Cases . 22

5 Model of the domain model. 25

6 Screenshot of issue 40. 28

7 Screenshot of a specific worked day in the time sheets. 28

8 Final design of web version of blog pages 30

9 Final design of web version of game pages 31

10 Screenshot of the game ”Viten Ord”. 32

11 Screenshot of the game ”Hanoi’s Tower”. 33

12 Screenshot of the game ”Viten Kode”. 34

13 Final design of web version of login and registration pages 35

14 Final design of phone ticket pages . 36

15 Final design of web version of admin ticket pages 37

16 Final design of web version of settings page 38

17 All technologies used in this project. 39

18 Model of the Database. 40

19 Model of the Database. 42

20 Rules for Firebase Realtime Database. 43

21 Rules for Firebase Storage . 44

22 Screenshot of registering a user in Firebase Authenticate. 46

vii

23 Screenshot of saving user data to Firebase Realtime Database. 46

24 Screenshot of ticket data class. 47

25 Screenshot of function for getting all tickets from a user. 48

26 Screenshot of function updating user email. 49

27 Screenshot of function deleting a user. 50

28 Screenshot of Firebase function . 51

29 Screenshot of Stripe API call . 52

30 Screenshot of email register field. 53

31 Screenshot of function for validating email formats. 53

32 Screenshot of page for editing email address. 54

33 Screenshot of the blog. 55

34 Screenshot of the payment page with and without the payment sheet . . . 56

35 Screenshot of the ticket page for Admin. 57

36 Screenshot of the search bar code. 58

37 Screenshot of the code that sorts users and tickets. 58

38 Screenshot of the code that includes or excludes expired tickets. 59

39 Screenshot of how the blog page looks for an admin. 60

40 Screenshot of the code handling correct letter guesses. 61

41 Screenshot of the code handling yellow cases and wrong letters. 62

42 Illustration of how the game board is set up in the Tower of Hanoi. 63

43 Code of DragTarget for Tower of Hanoi. 63

44 Code of Draggable with index 0 for Tower of Hanoi. 64

45 Code of function ”checkLegalMove” Tower of Hanoi. 65

46 Screenshot of the main widget for Viten Kode 66

47 The game Viten Kode . 67

48 Unit Tests, performed on all games. 68

49 User Test Results. 69

viii

50 Example of a function comment . 71

51 Time chart legend . 78

52 Time Chart Malin Foss . 79

53 Time Chart Philip Morud . 80

54 Time Chart Susanne Skjold Edvardsen 81

55 Gantt Chart . 82

56 Time Chart . 142

ix

1 Introduction

1.1 Project Description

1.1.1 Background

Vitensentrene is an association of many regional science centers around Norway [1].
These locations are open to visitors of all ages, and contain many exhibitions in which
the visitors can play around with science experiments and educate themselves on fun and
interesting topics. Vitensenteret Innlandet, VI, is one of these locations.

Entry to Vitensenteret Innlandet requires a ticket either purchased online and validated
upon entry or bought at the entrance. If the visitor wishes to purchase a ticket for a longer
duration they can also do so.

The current system is quite user unfriendly as the online purchase was actually just a gift
card that had to be redeemed at the entrance by the cashier, meaning you barely saved
time compared to just buying it at the entrance. In addition the cashier would have to
manually type the gift card code, manually subtract the cost of an annual ticket from the
balance of the gift card and then add the customers personal information as a ticket to the
system. This left a lot of room for human error from the cashier, it was also inefficient and
had a tendency to crash as inputs weren’t checked before being pushed to the database.

Vitensenteret Innlandet were in need for a new and better system, and in these times
where almost everyone is carrying their phone wherever they go, having an app was a
natural choice to make the process easier for both visitors and employees. In this context,
Vitensenteret contacted NTNU with a bachelor thesis topic, involving ticket purchase
through a mobile application, as a part of a solution to this problem.

Vitensenteret asked that we develop a mobile solution so that users have a way to purchase
and track tickets. Additionally, they also wished for a way to alert users of the app of
events, sales, or other important things through notifications. Lastly, they wanted an
interactive part of the app, a way to retain use of it even after a visit has been done.

1.1.2 Subject Area

A physical membership card is very common for members to gain entry to locations
where a ticket or membership is needed for entry. The use of such cards is becoming less
common in favor of phones. The reason for this may be the decrease in the use of a wallet,
or simply the costs of manufacturing the cards, card scanners, and equipment to support
this system [2].

Phones are already on a person at all times. This device holds many important apps like

1

social platforms, BankID, and games. Thus making an application for phones which will
contain all that is needed during a visit to Vitensenteret, like tickets and an overview of
events at the location, is a good way to solve this issue.

The subject of this project is the development of an application for mobile devices. This
application is able to run on both Android and iOS devices. The team has also developed
an interface for the web so that the employees at Vitensenteret have an easier time man-
aging the app. During the process of developing this app, we touched on many subject
areas, like intuitive design, databases and cloud technologies, game design and overall
working on software for a mobile device.

In addition to the above, this project has taught the group members how to work together
on a project of this scope. While the final product has an important role in the final
evaluation, one of the first limitations we employed as a group was to focus on the devel-
opmental process and documentation around the project. What this meant for the project
is that the wishes of the employer come second in regard to what we prioritized when
developing this app.

1.1.3 Delimitation

Instead of using the outdated systems at Vitensenteret, our group has developed a mobile
application that allows users to purchase tickets to gain entry to the location. In addition
to this, the users get updates about Vitensenteret in the app and are able to play brain
teaser games. The employees at Vitensenteret also have received an interface specific for
their use in managing news, users, games and tickets. This has been developed by the
group, with a focus on proper documentation and a solid workflow.

1.1.4 Task Description

• The group has made an application for mobile platforms with a web interface.
This application runs on both Android and iOS, as well as browsers such as Edge,
Chrome etc.

• This application communicates with a database in Firebase to administer the users
who have a valid ticket to enter. The database also contains information on blog
posts as well as containing task information for one of the games.

• The application allows users to pay for tickets through the app, through the API
Stripe.

• The app allows administrators to push blogs with content from Vitensenteret into a
feed that all users have available.

2

• The application was developed using design principles and has been adequately
secured to make sure that there are no security breaches.

• The application has a number of interactive games. These games are in line with
other functions of Vitensenteret and consist of some form of brain teasers.

1.2 Goals and Constraints

1.2.1 Project goals

Impact Goals: The main goal of this project was to develop an application for users of
Vitensenteret so that the users are not dependent on bringing anything other than their
phones to the locations. The application will bring the presence of Vitensenteret to those
who have the app, creating a familiarity with it. Vitensenteret has a goal to reach 50-60
000 visitors in 2023, and our goal is that 40% of those use the app before, during or after
their visit.

Project Goals: The main aspect that we aimed to develop is a way to showcase tickets
purchased, like a yearly one, as well as allow for purchasing these tickets through the app.
In addition to this, we wanted to develop a notification system where the administrators
of the app can post notifications so that normal users of the app are alerted to events or
sales at Vitensenteret. Safety is an important factor in all of this. We also planned that
if we reached our goals early, see our Gantt chart in the appendix [A] we would work on
developing some games for the application.

It was also imperative that we made the app a base for further development as Vitensenteret
has many plans for that.

Educational Goals: The goal of this task was to learn how to develop a bigger project
than what has been previously worked on throughout this education. With a focus on
the developmental process from day one, where proper documentation is vital, as well as
having a fluid grasp and accomplishment of the agile development method that the group
chose for this task. Up until this point, most, if not all, tasks that have been worked on
have been internal, while now that the group is working with a team outside of NTNU,
we knew we would experience and solve unique situations that the group members never
had have encountered before.

Additionally, we aimed to take many of the subjects we have had through our education
and combine them into this task. This encompasses everything from design, coding, task
writing, and ethics. All of it was done together in a structured group where each member
has shared and separate roles, for the educational plan on this subject from NTNU [3].

3

1.2.2 Constraints

• The app has to work on both Android and iOS. Target api 31 [4], and iOS 15 [5].

• The app has to be user-friendly, for kids and adults.

• We have to follow the Vitensenteret design handbook [N] when designing elements
of the app.

• The app should work with the existing database in Firebase.

• The code has to be well documented and made for future development.

• The app will have a user manual [Q] so employees at Vitensenteret can learn the
app.

1.3 Project Audience

1.3.1 Users of the Mobile Application

The mobile application is targeted toward those who travel to and visit Vitensenteret.
The main purpose of the application is to provide an overview of tickets and be able to
purchase them through the application. In addition to the tickets, we also focused on
developing a blog so that users could get news about Vitensenteret. The other functions
are add-ons to make the application feel better for the users and to make it so that the
app is more likely to be used, and maybe even make the users of the application visit
Vitensenteret more often.

Since any person can have a ticket in their name, the application is targeted at all audiences
who visit Vitensenteret. The application has some games that younger children will be
able to click around inside and use, as well as providing entertainment for adults.

1.3.2 Users of the Web Interface of the Application

The web interface is for those working at Vitensenteret. With different levels of admins,
there are different rights. Those at the main desk will be running it similar to a cashier,
where they can check tickets of attendees in the interface by searching for names and such.
Should the user have inputted any wrong information, it will also allow those employees
some editing of users. They also have some right to create tickets. Admins have the
unique ability to access the blogs and add content there.

4

1.3.3 Readers of this Thesis

This thesis is documentation on how we worked to solve this project and will include the
first project plans, and diagrams, as well as the final results. In addition to this, it will give
an insight into developmental methods and allow others who may be developing similar
projects to take inspiration from this.

This thesis is also for mentor, examiner and those at Vitensenteret who may wish to get
an insight into the full development of the final product.

1.4 Project Organization

1.4.1 Group Members and Academic Background

The members of this group are Malin Foss, Philip Morud, and Susanne Skjold Edvardsen.
All of the members of the group are attending NTNU completing the bachelor’s degree in
programming. We have had different elective courses so each member of the group has
the competence to develop what we need, with a multitude of additional knowledge to
draw from as well.

We have all coded in C++ and other object-oriented programming, so moving to Flutter,
which we used for this project, was no problem. We all have had previous experiences
with running bigger projects, however not in this scope. For this project, we were expected
to put around 75% of our work week into this project, whereas in previous subjects it was
around 25%.

1.4.2 Roles

The main roles we have for this project are project manager, research manager, and doc-
umentation manager. Malin Foss was the project manager, which includes having an
overview of what should be done, keeping an eye on the backlog, and paying attention to
deadlines. Malin also took on the responsibility of communications with our mentor and
employer, as well as any other outside communication. Philip Morud was responsible for
research, mostly in regard to the development of payment system. In addition to this, he
was also the Scrum master and hosted all the scrum-related meetings. Susanne Skjold
Edvardsen was responsible for all documentation. She made drafts of the documentation
and delegated where and what should be written. In addition to this, she made meeting
minutes of all gatherings the group attended.

5

1.5 Structure of the Report

The report is divided into the following document structure. The document is divided into
12 numbered chapters with the appendix at the end:

• 1. Introduction

• 2. Theory

• 3. Requirement Specifications

• 4. Developmental Progress

• 5. User Interface

• 6. Technical Design

• 7. Implementation

• 8. Testing

• 9. Code Quality

• 10. Deployment

• 11. Further Development

• 12. Discussion

Appendix

1.6 Terminology

API An API is a way for websites to open a specific page to gather information and use
it within your own software.

GDPR This is a rule set active in all of the EU which makes the storage of a person’s
personal data keep to strict rules.

I/O I/O stands for input and, or output.

Kanban Is a team-based agile development method centered around a continuous devel-
opmental cycle for developing software.

Scrum Is a team-based agile development method centered around sprints and designated
roles for developing software.

6

VI/Vitensenteret/Vitensenteret Innlandet/Project Owner These are synonymous and
all refer to the employer who created this bachelor.

UI User Interface is the interface or the view that the user is presented with when using
the application.

UX User Experience is the entire experience a user has when using the app. This encom-
passes everything from looks to functionality.

7

2 Theory

2.1 Subjects

Vitensenteret asked for a multi-platform solution, for the web, and for phones. This ap-
plication would also be connected to a database and an API. This required competence
within many different areas.

2.1.1 Design

First and foremost, creating a valid interface across a multi-platform application, with
changing screen sizes, sometimes even dynamically, required a keen attention to detail.
The application works on the smallest phones, to the web without loading specific ver-
sions of the application. We also made an emphasis on following the design specifications
given to the group by Vitensenteret, and this sample can be found in the appendix [N].

2.1.2 Database

Databases are used to persistently store data remotely. For us, this data was for the most
part user and ticket data, and especially ticket data was important to keep in a database.
For this purpose, we use Firebase Realtime Database and Firebase Storage. The database
also hosts a Google Cloud function responsible for initiating payments when a user buys
tickets.

2.1.3 API

The mobile part of the application makes use of a Stripe API which handles purchases
made in the app. The Stripe API allows for a test mode where developers can test their
app’s functionality without having to use actual funds.

2.2 Purpose

There are a couple of reasons why we chose this task for our bachelor’s thesis. During
the research phase and when the group first met, as we have not been in a group setting
before, we all went over subjects we liked and wished to pursue in this bachelor thesis.
One of these subjects was Mobile Programming. A subject where we learned mostly how
to create Android applications through an IDE called Android Studio. This was something
everyone in the group enjoyed, so we were mostly interested in tasks that could be solved

8

via a mobile application. In particular, one, where we could also develop for iOS as we
had no experience with that and wanted to learn.

Furthermore, there was a wish to connect to some other resource, like an API or a data-
base. We reasoned that the apps developed in the subject Mobile Programming, were
standalone applications, and therefore wanted to create something with systems outside
of ”just a standalone app”.

There was also a push to make something creative, so when all the different employers
presented their tasks, we were especially interested in this one. When we talked with
Gavin Rob, the contact person at Vitensenteret, we discussed some ideas back and forth
and discovered that undertaking this project would align well with what we already knew,
with an excellent opportunity to build on that knowledge and learn more.

2.3 Subjects

The structure of the study can be found here [6]. Under is a selection of subjects that were
particularly relevant to this thesis.

2.3.1 Main Subjects

PROG2007 - Mobile Programming was the central subject that we wanted to further our
knowledge around. This served as the basis for the bachelor thesis. With the knowledge
here we had a basic application that we could further develop with the knowledge gained
through this project.

IDG1362 - Introduction to user-centered design was very relevant to create an interface
that felt natural for the user. This subject helped put a focus on a well-designed applica-
tion, where you can easily navigate exactly where you want to go.

PROG2005 - Cloud Technologies were relevant for connecting the application to an API.
The connection of the application to the API we use for the payment systems was done
through our knowledge gained in this subject.

IDATG2204 - Data modeling and database systems were a subject about creating data-
bases and using them. We had good use of this as we created our own database, and fetch
information from it in the app.

2.3.2 Relevant Subjects

PROG2052 - The integration project was a subject where we created a software program
on our own entirely from scratch. This was a way to do the entire process from start to

9

finish before the bachelor thesis and it helped us prepare for ”the real thing”.

IIKG1001 - Cybersecurity and computer networks as well as IIKG2001 - Software Se-
curity both helped in how we handled communication with the database and the API. It
also affected how we stored user information.

IDATG2102 - Algorithmic methods and IMT3603 - Game Programming were two sub-
jects centered around maths and fun. These two subjects were central in the brain teaser
games developed inside the application.

10

3 Requirement Specifications

3.1 Requirements

3.1.1 Front End

To use this application we have developed an application that can be downloaded for
phones, both Android and Apple devices. Additionally, we have an interface that is com-
patible with a desktop so that those who are working at Vitensenteret can use their com-
puters to gain access to the application, as well as the more administrative parts of the
page.

3.1.2 Back End

The application is connected to a database in Firebase and has general updates through
this system. Flutterfire [7] is the interface between Flutter, the programming language
that the group used to develop the app, and Firebase. We have some functionality in our
database using Google Cloud. In addition to this, we have utilized the Stripe API for the
payment solution.

3.1.3 Operational Requirements

The app was developed for both Android and iOS. For Android the target API is 31, the
current standard target API for Android apps [4]. For iOS we aim for iOS 15, which is
currently the version in use by 89% of all iOS devices on the App Store [5]. We will
also develop the administrative part of the application for web, only used by employees
at Vitensenteret Innlandet. The database in use is a Firebase database, which keeps user
data, game data, blog data as well as ticket data.

3.1.4 Safety and Misuse Handling

Since the app will be handling sensitive user data it has to follow standards and laws
around that, like GDPR [8]. We are using Firebase Authentication [9], which handles the
safety surrounding the connection and the handling of passwords. This will ensure that
the users and their tickets are safe. Tickets and gift codes are unique and only able to
exist in one place at a time, otherwise, duplication and theft can happen. It is not possible
to use someone else’s ticket to gain access to Vitensenteret. This is ensured by security
rules in both the database, and check done in the code. When buying tickets we also use
existing systems to ensure that it is safe.

11

To ensure the integrity of the app, access to features is restricted by security levels. There
are four security levels that are necessary; unregistered user, registered user, employee,
and admin. This is also reflected in the use case diagram which can be found in ”3.3 Use
Cases”.

Unregistered user can only view the blog and individual blog posts, as well as play games.
For anything else they have to log in. Registered users will be able to buy tickets, change
their own user data or delete their own account along with what an unregistered user can.
Employees can add tickets to users, change basic user data and see all users and all tickets,
as well as all the tings registered users can. Admins can do everything employees do, as
well as appoint new employees or admins, and publish, change or delete blog posts.

We store some data both locally and in the database. Data stored locally is mostly for
speed, and accessibility within the app. Even if this data were to be changed by something
or someone, it would quickly be overwritten by the data in the database, as we fetch
this regularly. Data in transit is encrypted by Firebase, and all the services we use from
Firebase also encrypt their data at rest [10].

3.1.5 Storing Personal Data in Accordance with GDPR

In 2018, the European Data Protection Regulation was applicable to all of the members
of the European Union [8]. This General data Protection Regulation, GDPR for short,
ensures that the data stored on individual people is not in any way used for malicious
intents.

In the app that is being developed by us for Vitensenteret, it is a necessity to store certain
details about its members to obtain some functions of the app. Most of the app can be
accessed without the application storing anything about the user. What is stored about the
user, with the user not being a member of the app, and signed in, are as follows:

If the app is idle, then the app will store in its cache what page the user was most recently
using, before leaving the app in its idle mode. It will also store progress made in the
games, for as long as they are not exited.

In relation to the definitions specified by the GDPR, personal data is the following: “‘per-
sonal data’ means any information relating to an identified or identifiable natural person
(‘data subject’); an identifiable natural person is one who can be identified, directly or
indirectly, in particular by reference to an identifier such as a name, an identification
number, location data, an online identifier or to one or more factors specific to the phys-
ical, physiological, genetic, mental, economic, cultural or social identity of that natural
person; “ [[8], Art. 4].

Abstracting from this, we can say that the data stored about unregistered users are not
personal data, as the data cannot by any means recreate the persona they originated from.

12

Therefore this data can be stored without consideration of the GDPR.

However, in the instance where a user will need to log into the account to gain access to
the other functionalities of the application, we will need to store the following about the
user:

• Name of the user.

• Email of the user.

• Phone number of the user.

• Image of the user.

• Password of the user.

The reason why the app needs to store this data, is because the app will provide a paid
service, and to ensure that only the user who paid for their ticket is using it, we need to
store this information about the user. And as by the definition by the GDPR above, this
clearly qualifies as personal data. This data, by the rules of the GDPR needs to be the
following:

• The user will be made aware that by creating an account they consent to having this
data stored about themselves.

• The user will be made aware that by deleting an account their personal data will be
wiped from the databases, and is unrecoverable.

• The data will be stored in secure locations, and sensitive data, like the password,
will be hashed.

• The data will not be processed in any other way than to ensure that the user is who
they claim to be.

Other principles in regards to the GDPR can be read following the sources of the regula-
tion, however, the points listed above are those that have a concrete and important factor
in the development of this app. In addition, we want to mention that in order to conduct
the payment methods, we are outsourcing the handling of the information the user inputs
to buy tickets. This happens through the Stripe API, which then is the party responsible
for handling said data in accordance with the GDPR.

13

3.1.6 Licensing

The product was developed by us, the student group at NTNU as a bachelor’s thesis. The
contract that we signed with Vitensenteret [C] states that we retain no rights to ownership
of the final product, and can only use the content that we created as a way to show our
skills to potential future employers. This means that Vitensenteret has the rights to the
software that we develop during this course, for this thesis.

3.1.7 Version updates

At the point in which we deliver our product and software to Vitensenteret, we are no
longer responsible for the upkeep of this software. Since the ownership is transferred to
Vitensenteret, they are now responsible for updating the software and keeping it relevant
for the users at Vitensenteret.

To make this task easier for Vitensenteret the code is written in modular steps which
makes it easy for other developers to continue work on the software. Our design choices
reflect this as well, as we created a manageable file system with an easy-to-understand
structure.

We have also written the code with this in mind, and as such it has been commented and
explained at crucial points in the code, what the different sections do. In addition to this,
Vitensenteret will gain access to all our developmental documents, like the domain model,
use case diagrams, and furthermore can expand on these as they see fit.

3.1.8 Interface Requirements

The design of the application will follow the design conventions as stated by Vitensenteret
themselves [N]. In the early development of the application, the group received a pamphlet
with these design conventions, which can be found in the appendix.

The app itself has been designed for the most common use cases of the app, buying
tickets, seeing the blog, and playing games. Other functionalities lay easily accessible in
the menu. All these functionalities are placed in a bar on the bottom of the screen for
ease and reach. The design follows the common “Z” pattern [11], with an attention grab
at the top, a scan of the middle, and ending up at the easily accessible lower bar. For
the blog itself, we utilized the “F” pattern [12] instead, as that is better suited for a more
text-centralized design.

14

3.1.9 Testing

After each issue was completed, it was comprehensively tested by the one who imple-
mented the solution. Each developer worked on their own branch for any major tasks,
and before it was pushed to the main source it was tested by them. In meetings, the group
went over what has been implemented, to ensure a clean working tree at all times.

In addition to this, we created unit tests for many functions, more in this later in the
chapter ”Testing”. We decided against using implementation tests as it would require a
complicated setup and routine to work with Android Studio, and the scope of such was
a little outside of the project. As a solution to this, we resolved to perform user tests
at the end of the developmental period to weed out anything that we may not have seen
ourselves, as well as find more for possible future development to work with.

3.2 Initial Design

3.2.1 Low Fidelity Prototype for the Mobile Application

The original proposition for the app can be seen in Figure: 1. Here the group sketched out
a paper model for what we envisioned Vitensenteret would want. The model includes a
news page as the main page, with a game tab leading to an example sudoku game, as well
as a ticket tab that leads to the ticket page. Additionally, there is an image of the user,
which when clicked leads to the settings page. The final application is not so different
from this original proposition.

15

Figure 1: Paper model, low fidelity prototype.

3.2.2 Low Fidelity Prototype for the Web Interface

We also had to create a web interface for the application. We created these low-fidelity
charts online, to showcase which functionality we may need. While most of the function-
ality was implemented, the final designs have deviated quite a bit from the first prototype.

16

Figure 2: Digital model of the Web interface, low fidelity prototype.

3.3 Use Cases

3.3.1 Use Case Diagram

Figure: 3 shows the use cases for the application. There are a variety of users, all of which
inherit rights, whereas the admin has all the rights of the user types underneath it.

17

Figure 3: Model of the use cases

18

3.3.2 Use Case Descriptions

19

20

21

Figure 4: In Depth Use Cases

3.4 Product Backlog

We created our backlog on a reMarkable, which is a tablet that functions similarly to
a notebook but enables the notes to be digital and be uploaded directly to the internet
without scanning the notes. We wanted to do it like this to have a natural and intuitive
way to figure out what to work with. This is also why it was created in a mix of Norwegian
and English. This backlog can be found in its original entirety in appendix [P].

22

This backlog is divided into three main parts: administrative, app, and other. The tasks
finished have been crossed out with a line passing through it, and those not finished are
left. Tasks that were discarded have an x next to them. This is what the backlog looked
like in pure text form:

Administrative:

• Kravspek

• Statusrapport x3 til Frode

• Endelig rapport

• Manual for admins

• GDPR

• Vipps

• Stripe

App

• Login

• Registration

• Create blog entries

• Delete blog entries

• Payment system/ duell vipps

• Gift code input

• Bottom bar

• Profile page

• Settings

• Game page + other game

• Fix issues with web from login and registration

• Display Tickets

• Bytte språk

23

• Riktige farger

• Edit blog

• Viten Ord

• Hanois tårn

• Viten Kode

• Delete user

Other

• Connect to database

• Backend connection to database

• GitLab CL pipeline

• Gain access to duell API

• Access vipps

• Tests

• Confirm email

24

3.5 Domain Model

Figure 5: Model of the domain model.

This domain model was created to show how everything is connected in the application.
The entry point used in this brief explanation will be the unregistered user. We see that
this kind of user has no information stored, and this is meant to represent users who may
only use the application to read blogs, play the games, or receive news. The unregistered
user can then register their information and become a registered user, which inherits all
possible actions from the unregistered user. This user also unlocks the ability to purchase
tickets in their name. Furthermore, there are two additional users, this is the employee

25

and the admin. Employees can see the contents of the database, like tickets purchased,
and their owners, but admins have the ability to manage this database. Admins have the
ability to manage tickets that have been purchased, this includes removing a ticket from a
user or giving them one, for instance in the case where a user may have accidentally used
an activation code on themselves instead of gifting it. The admin is also able to upload
publications which is a blogs. The interactive game is a feature any user has access to. It
will connect to the database to pull any relevant data needed for the games.

26

4 Developmental Progress

4.1 Methodolgy

4.1.1 Choice of Software Development Methodology

We originally used the agile method of Scrum. We chose this because we wanted to be
able to adapt our product to the product owner as we went, and this is best achieved by
using an agile method. Scrum allowed us to keep a lot of structure to the development but
also allows for changes to long-term plans easily.

Later on, as the schedules of the group became more jumbled as the planning phase was
finished, we swapped over to a combination of Scrum and Kanban, which worked much
better for our group. We chose to keep the role delegation from Scrum and the back-
log, but instead of organizing implementation in sprints, we swapped over to the Kanban
board. We utilized one of the functions of GitLab to create an issue board and used la-
bels to keep track of the progression of each individual issue or task. We keep a weekly
physical meeting, akin to a scrum retrospect, where we explained what we had worked
on, and what we had finished, and occasionally we would here work together to resolve
issues that required more attention.

This proved to be an excellent choice as we had to undergo changes to the application as
we went, and our original Gantt chart schedule was essentially flipped so those things we
had planned to do later were done early, while the earlier things were solved later.

We used Scrum with weekly sprints when we started out, and when we moved to our
hybrid method, this length stayed for the status meetings. Our backlog always made
it easy to see what should be made room for and we used the issue board on GitLab
to show which tasks each individual on the group was working on. These issues had
four categories ”open, in development, testing, and important”. Open acted as the sprint
backlog, in development was for started tasks, testing for finished tasks that need review.
Important was reserved for any tasks that need to be resolved quickly or in the case of
a bottleneck. These issues were tracked in the commit messages, as well as in the time
charts in Appendix [H]. For instance, we had an issue revolving around making content
for the report, like this:

27

Figure 6: Screenshot of issue 40.

And this was reflected in the time sheets we had, here we commented on what we worked
on that day, color coordinated with the most fitting category, and added in hours worked.
For this example, we can see that it’s green, which means the work day was mostly related
to documentation. The hours spent working that day was 8.

Figure 7: Screenshot of a specific worked day in the time sheets.

4.1.2 Sprint Meetings before the Hybrid Solution

Sprint planning meeting Sprint start was every Tuesday from 11.30-13.00 as we had
week-long sprints. Here we worked out what the focus of the coming sprint would be, and
pulled tasks from the backlog. We also identified any issues that needed to be classified
as important, or if any issue required several people to be worked on.

Sprint review meeting Sprint review meetings were held Tuesdays from 10.00-11.30.
The goal of these meetings were to review our work in the past sprint, especially to
identify potential problems. We also used what we learned to better plan ahead and create
a better product. If anyone learned something useful during the sprint, this was an arena
to share that.

Sprint retrospective meeting Sprint retrospective meetings were held every other sprint
before sprint reviews. The focus of the meeting was to review the sprints, to see if the
length will need to be changed, or if issues are too big or small. It was during one such
meeting that the group decided to swap to a hybrid Kanban solution.

28

4.1.3 Sprint/Kanban Meetings after the Hybrid Solution

Progress Meeting This meeting was held Tuesdays from 10.00-13.00. The goal of these
meetings was to showcase the work done so far and discuss further development and
delegations.

4.2 Meetings

4.2.1 Mentor Meetings

We had weekly meetings with our mentor Frode Haug. These meetings were primarily
used as a forum to discuss methods, report writing, and anything else we need someone
else to spar with. On the occasion when we had little or nothing to report, these meetings
were dropped.

4.2.2 Project Owner Meetings

It was important for us to keep an open and continuous dialogue with the project owner.
We aimed to have meetings with Vitensenteret every other week. This way we could
show progress made, and get pointers as to whether we were heading in the right direction
product-wise. We were also able to catch potential issues, problems, or misunderstandings
during these meetings.

4.2.3 Internal Meetings

All our meetings were held in accordance with our schedules, and in the case where
one person was absent, the other group members sent a summary of what each meeting
entailed. The group also wrote meeting minutes for anytime we converged and they can
be found in the appendix [G]. From there, you can see we tracked progress, as well as the
development of the app. This documentation keeps track of all major decisions we made,
and any grievances we had during development.

29

5 User Interface

User interface is a big part of this application. The user can navigate through four major
categories: ”Vitensenteret”, ”Spill”, ”Billett” and ”Innstillinger”, using the navigation bar
in the application. As the application is meant to be useable on both PC and mobile, the
application bar will move based on your screen size. Bottom for phones and left for larger
screens.

5.1 Blog Page

The first category ”Vitensenteret” we refer to as the blog page. The blog page contains
a list of articles that employees at Vitensenteret have written. Clicking on an entry will
expand the card and show the full image and text of the entry. If the user is logged in as
an employee of Vitensenteret they can see a top bar to enter the admin part of the page.
On the admin page the user has access to create, edit and delete blog entries.

Figure 8: Final design of web version of blog pages

30

5.2 Game Page

The game page contains the brain teasers of the application. Clicking on one of the large
buttons will bring you to the individual game pages.

Figure 9: Final design of web version of game pages

5.2.1 Viten Ord

Viten Ord works similarly to a game called Mastermind[13]. This game is about guessing
a pattern of colors, and while doing so, being given hints of whether the pieces you placed
are the correct color and the correct placement. Instead of using colors, this game uses
letters. The app fetches a random word and lets the user guess it. If the user guesses the
wrong letter, it will turn dark blue. If the user guesses the right letter, but places it at the
wrong location, it turns yellow. And lastly, if the user guesses the right letter in the right
location it turns green. Below is a screenshot of the game in action.

31

Figure 10: Screenshot of the game ”Viten Ord”.

5.2.2 Tower of Hanoi

In addition to this game, we created a replication of Hanoi’s Tower[14]. This game
presents the player with three rods. On the rod to the left are four pieces in ascending
sizes. The player has to move the pieces to the rightmost rod. There are two rules, you
cannot place a bigger piece on top of a smaller piece, and you cannot move a piece that is
underneath another piece.

32

Figure 11: Screenshot of the game ”Hanoi’s Tower”.

5.2.3 Viten Kode

This game takes inspiration from the Lego-Mindstorms coding block ideas[15]. Where
you can string different coding blocks together as a sort of primitive way to code. How-
ever, developing a proper game like this would be outside the scope, and time set aside
for these games, and a smaller version was created, where a task would be presented, and
the user could slide the block so that the code produced the relevant result. The tasks are
fetched from Firebase, however by the time of delivery we had not received any data for
this game, and thus only the example task can be played. More on this in the chapter
”Discussion and Further Development”.

33

Figure 12: Screenshot of the game ”Viten Kode”.

5.3 Authentication Page

When a unauthenticated user tries to open the ticket or settings page they will be met
with a login page, as both of these pages require user information to function. The login
page allows the user to input a username and password to login. If the user enters valid
information they will be brought to the page they were trying to access. If the user doesn’t
have an account they can click ”Registrer bruker” to be brought to the registration page.
In the registration page the user enters their first name, last name, email, phone number,
date of birth and password. Password has to be repeated to ensure the user didn’t mistype
it. The user also has to add a picture from their device to help with identification.

34

After registering a new account the user will be brought to the login page again where the
user can use their newly created account to log in.

Figure 13: Final design of web version of login and registration pages

5.4 Ticket Page

The ticket page is divided into two parts, the customer part and the employee part. As the
phone application is meant for visitors and the web application is meant for employees.
Both parts have only been designed with their respective devices in mind. The user will
automatically be brought to the correct part based on their device type.

5.4.1 Customer Ticket Page

The customer ticket page gives the user an overview of their purchased tickets, both valid
and expired and the remaining duration of them. This page is created with the purpose of
being something you can show to the employee working at Vitensenteret when you arrive
to prove you have bought a ticket.

A customer can get more tickets by pressing the large plus sign in the bottom right corner,
they will then be brought to a page where they can choose between buying tickets or
activating a gift card code. Choosing code will give a popup that prompts the user for a

35

code.

Choosing to buy a ticket will open a different page where the user chooses the ticket
type, amount and ticket activation date. The total price will be displayed in the bottom.
Payment is initialized by pressing the ”Kjøp” button, this will cause the app give a Stripe
popup that prompts the user for all necessary payment information.

Figure 14: Final design of phone ticket pages

5.4.2 Employee Ticket Page

When employees open the ticket page they will get a list over all the accounts in the
system. Every account shows information like name, phone number, email, date of birth
and profile picture which can be sorted either alphabetically or by date of birth. From this
page the employee can create a new account for people and add tickets to their accounts
if they buy them in person. The employee can search for users by name, phone number
or email.

There is also a tab with a list of all tickets. The list gives an overview of all the necessary
information like: ticket type, date the ticket was bought, date of activation and expiration
date, ticket buyer, who activated the ticket and in the cases where the ticket has yet to
be activated, its gift card code. In this tab the employee can also search for a customer’s
tickets to validate their entry using buyer name, gift card code, activation date.

36

Figure 15: Final design of web version of admin ticket pages

5.5 Settings Page

The settings page gives an easy access for a user to modify personal information when
needed. The user can change their profile picture, email, phone number and password.
The user can also log out and delete their account.

37

Figure 16: Final design of web version of settings page

As can be seen, the original paper model has been expanded on and some minor changes
have happened. When adding a new ticket you get moved to a new page where you get
the option to purchase or add a code to activate a ticket. We also made it so the settings
are found under a gear icon instead of the profile image of the user, and clicking it leads
to a new page instead of an overlay.

38

6 Technical Design

6.1 Technology

To make the flow of work easy we have a list of technology we use in addition to the
software we used to create the application. The following chart illustrates this technology
and the general gist of what it was used for.

Figure 17: All technologies used in this project.

We used Discord for internal communication within the group, and outlook, email, for any
communication with any outside actors, like Vitensenteret or mentor. For documentation
we used Google drive to organize all the smaller documents and charts, while we used
LATEXfor the final report as its much larger with many appendixes. We used reMarkable to
keep track of notes during meetings, and it also hosted our backlog. For version control
we used GitLab, with its branches it was easy to keep track of any versions and which
functionality was added where. For any chart made, or asset created, we used draw.io
which is easy to create diagrams. For the Gantt chart, we specifically used a webpage
called teamgantt, and for creating assets we used Clip Studio Paint. For creating the
software, we used a cross platform coding framework called flutter, and we used the IDE
android studio to code. We used Firebase as the database for this project, as well as
Firestore functions through google cloud. Stripe was used as the API for the payment
solution.

39

6.2 API

The API consists of two connected parts, Google Cloud Functions in Firebase and Stripe’s
payment API. The Firebase Functions create a payment intent, which is a collection of
information a payment requires to be initialized: amount, client secret, customer id, and
currency in addition to storing the status of the current payment [16]. If the user has
bought something before, the function will securely fetch payment information from the
previous transactions so you don’t have to input your card again. After the customer
has given a valid payment method in the app, the rest of the necessary API calls to the
Stripe API are handled by the Stripe Payment Sheet UI extension, so if your card requires
additional authorization it will automatically prompt the customer and return the result.
Authentication between the UI and backend is done using a shared secret [17].

6.3 System Architecture

The core of the application is the software we developed in Flutter. This runs many
functionalities that are not dependent on any other source. In addition to this, we also
connect to the Firebase database and use the Stripe API. Our structure then looks like
this.

Figure 18: Model of the Database.

40

This structure shows how everything is connected. The admin is connected to the data-
base through the computer interface, and so is the employee, however, the admin has the
option to change the content in the database. In addition to this, they both have access
to the database through the settings page where they can change and edit their own user
information.

The user is using the interface created for the phone, and this application is also connected
to the database through the games, the blog, and the ticket page, all fetching information
from the database. The ticket page for the users is also connected to the API stripe which
handles the payment. This page then receives the callback from the API and updated the
database with the relevant information. The user, like the admin, also has access to the
setting page where they can update their own user data.

6.4 Data Storage

For the storage of data, we used Firebase. This is the diagram for the structure of the
data, on how they connect and interact. Firebase Realtime Database uses nodes and json-
formatting for data [18]. This means that you have to define some top level nodes, that
then in turn holds other nodes. Firebase also suggests that the best way to design a data-
base in Realtime Database is by keeping the number of nested nodes to a minimum, and
to keep data as close to top level as possible [19]. As the image below shows, we chose
to section the top level of into four main categories: posts, tickets, users, and vitenkode.

41

Figure 19: Model of the Database.

Posts keep track of all blog posts, they are assigned a random ID by Firebase and contain
all data needed for a blog posts. For each blog post we save the author, title, image,
content, publication date, and whether or not to notify users of the app. The content is
saved as a string directly in the database, instead of using a separate file and storing it in
Firebase Storage. This was done for simplicity since the blog posts are not supposed to
be longer that what the strings are capable of holding.

Tickets holds all tickets. Each ticket has a randomly assigned ID from Firebase. The tick-
ets have three different dates, the end date tells when the ticket will expire, the purchase
date is for when the ticket was purchased, and the activation date is for gift cards and
tickets that has to be activated for a later date. In the case that the ticket is bought and to
be used the same day, all these dates will be the same. Each tickets also holds the name
of who bought the ticket, and the name of who activated it, as well as potential gift codes
and what type of ticket it is.

42

For users the method for finding unique IDs is a bit different. If the user is created through
the app using email and password they get assigned a unique ID in Firebase Authentica-
tion, this ID is then used in the Realtime Database as that users ID. If the user is created
via the admin page, and therefore does not have a Authentication profile, a randomly as-
signed ID by Realtime Database is used. Some data about the user is also stored here,
mostly for the purpose of making sure that tickets are not being used by others than the
owners. There are also flags for whether or not the user is an employee and/or admin.
Lastly a list of ticket IDs, this makes the process of getting a single users tickets easier.

The vitenkode portion of the database is dedicated to a game within the application, with
a task description and the five options that have to be arranged in the correct order in the
game. In the database these are correctly ordered and acts as the solution.

6.4.1 Access and Security

One of the main ways we keep the data in the database available only to those that should
see it, is by using rules. Both Firebase Storage and Firebase Realtime Database use rules,
albeit in different formats, to regulate who has access to certain data, and what can be
done with the data. For example, a user should have access to their own data, but no one
else’s. At the same time, employees need to able to add tickets to users, and in some cases
be able to edit certain user data. Admins should be able to appoint users to be employees
or admins in the system.

Figure 20: Rules for Firebase Realtime Database.

Anyone who has logged in can see and edit any of the tickets or vitenkode, the code

43

further limits who can change what tickets and only admins can change vitenkode. To
read or write to a node of user data the user has to be logged in with a user having a
matching ID, or be authenticated with an email address from Vitensenteret. To access all
users at once the user has to be authenticated with an email address from Vitensenteret.
Blog posts can be read by anyone, even non-authenticated users, but can only be edited
by users authenticated with an email address from Vitensenteret.

Figure 21: Rules for Firebase Storage

Rules for Firebase Storage follows a different pattern. As the image above shows, the rules
follow the same logic as with the Realtime Database. Users can access their own images,
or any blog content whenever, but only users authenticated with a mail address from
Vitensenteret can access all. Unlike Realtime Database that compare strings, Storage uses
regular expressions to match email addresses. These rules are broad and are only meant
as an assurance that no one has accidental access to data they shouldn’t, the application
code covers more specialized cases.

As mentioned we use Firebase Authentication to authenticate out users via email and pass-
word. By using a service already provided by Firebase we don’t have to secure passwords
ourselves, and can rest assured that they remain safe. This also allows us to use certain
functionalities within the codes itself, for example to check if a user is authenticated, or
to re-authenticate easier when that is needed.

6.4.2 Limitations

When fetching data from Firebase Realtime Database we can only get all data under a
specific path, but there is no way of sorting this data. This means that there is no way to

44

get all users born on in a year, without getting all users and then picking out the correct
ones in the code. Some choices made in the database design, like the duplication of data,
and in the code are made to limit how much data we download to the devices.

Another limitation that changes how the database is set up and how the code has to be
structured, is the fact that all fields have to be present when fetching data, or the program
crashes. Due to this some fields in some nodes exist, but contain just an empty string.

45

7 Implementation

7.1 Database

All calls to the database are done from the front end, and because of this we try to keep
the number of calls down.

Figure 22: Screenshot of registering a user in Firebase Authenticate.

Figure 23: Screenshot of saving user data to Firebase Realtime Database.

46

When registering a user a lot has to happen, the order of these operations are important.
First the username (email address) and password is registered with Firebase Authentica-
tion. Figure 23 shows the code that is executed right after this registering is done. Here
the returned user ID from the first function is used to upload user data to Firebase Real-
time Database. The first thing it does is upload the user image to Firebase Storage, and
retrieving the download URL. Then all user data is pushed to a new node under users in
Firebase Realtime Database, using the user ID as identifier.

Figure 24: Screenshot of ticket data class.

47

Figure 24 is an example of how data that frequently move between front end and database
is stored. Some data is required, this is the data that comes from the node in Firebase
Realtime Database. In the case of the users, only the ID is not required, as this is the
name of the node, and not technically part of the user data. It is therefore never pushed
or changed in the database, and fetched differently from other user data. There is also
functions for marshalling and unmarshalling to and from json, as this is how the data is
saved in the database.

Figure 25: Screenshot of function for getting all tickets from a user.

Here we fetch all tickets that belong to a specific user. First we ensure that the user exists
in the database, then we fetch that users list of tickets. The list is saved as a comma sep-
arated list in a single string, so it needs to be split up before we retrieve the tickets. The
tickets are fetched one by one from the database and saved to a local list, there is no way
to our knowledge to get several specific nodes in one call.

48

Figure 26: Screenshot of function updating user email.

Here we have the code needed for updating a users email address, this is the most com-
plicated function when it comes to updating data as several changes in several places
needs to be done. Before user data can be updated, the user has to be logged in again and
re-authenticated. Then the log in information, stored in Firebase Authentication, has to
be updated with the new email. After that the data stored in Realtime Database has to be
updated. And lastly the locally saved user data, this step is not strictly necessary, but is a
nice addition temporarily before all user data is fetched from the database again.

49

Figure 27: Screenshot of function deleting a user.

Deleting a user is quite easy, but still requires three calls to the database. The first call is
to delete the profile image stored in Firebase Storage, the second to delete user data from
Firebase Realtime Database, the third deletes authentication data. When authentication
data is deleted, the user is sent back out to the log in screen automatically.

50

7.2 API

7.2.1 Firebase Functions

Figure 28: Screenshot of Firebase function

The Firebase function takes a post request with a body containing the customer email
and transaction cost. First the function gets the email from the body and checks if the
email is in the list of previous customers. If it’s a new customer the function will add
them to the list instead. Next, the function creates an ephemeral key for the transaction.
The function then creates the payment intent using the amount from the body of the post
request. Lastly the function returns status 200 with the secret keys, customerId and the
success of the initialization. In the case where the function fails it will instead return
status 404, that the initialization didn’t succeed and the error message.

51

7.2.2 Stripe API

Figure 29: Screenshot of Stripe API call

The stripe API is mostly handled by the Stripe payment sheet UI extension. The first
lines of code are simply gathering information to initiate the payment through the Fire-
base function. Then using the generated intent it creates a payment sheet and presents it.
Calling the API is done in a try-catch block which means that as long as the sheet doesn’t
return an error the payment has succeeded.

7.3 Mobile Application

7.3.1 Log in and Register Page

Both logging in and registering uses forms to validate the input fields. For logging in it
simply checks if both fields, email and password, are filled in before calling a function that
attempts to log the user in. If the user is successfully authenticated, they get redirected to
the appropriate page. Registering is a lengthier process, and requires a good portion more
information, but uses the same basic steps. The fields needed were a requirement placed
by Vitensenteret. A field in the form looks like this is the code:

52

Figure 30: Screenshot of email register field.

Where the validator gets triggered by pressing the ’Registrer’ button. For the email field
there are two things that can be wrong, either the field is empty or the email does not
follow the email format. The email format is checked with a function that uses regular
expressions for this purpose

Figure 31: Screenshot of function for validating email formats.

When the register button is pushed it validates all fields before calling the two functions
needed to authenticate and save all user data. More on that in the section about the data-
base.

53

7.3.2 Ticket Page

This page shows the profile picture and name of the logged-in user, as well as all their
tickets. The page is designed to function as a users ticket to Vitensenteret Innlandet, and
the tickets, therefore, feature expiration date, type, and bar showing a count down to the
ticket expires. There is also a button that redirects the user to the payment page, which is
where they can purchase new tickets.

7.3.3 Settings

The settings page allows a user to edit user information, delete their user or log out. The
user can change their profile picture, here we use the same image picker as we do for
registering a user. For all other fields that a user can change, the values act as buttons and
when clicked opens a pop-up dialog. For example will the field for changing email contain
two fields, and a button for saving. The fields contain the new email and the current
password. The password is needed for re-authentication. Once the button is pressed, a
function is called that saves this data to the database.

Figure 32: Screenshot of page for editing email address.

54

7.3.4 Blog

The blog is a very simple scrollable list containing unique members. The blog pulls down
data from Firebase, and organizes it by date to display the most recent blog post on the
top of the page. Each blog post is summarized with a title and the beginning of the blog
contents, while clicking on this summary will expand the widget, showing all the contents
of the post. If the user is logged in as an admin, an app bar will appear at the top, with a
button to take them to the admin page for the blog.

Figure 33: Screenshot of the blog.

7.3.5 Payment Page

The payment page consists of a simple list of the different types of tickets where the
customer can freely choose how many they want of each ticket. Then the customer picks
the date they want the tickets to activate on with the default being the current day. The total
sum is updated as the customer adds the tickets. Once the customer is happy with their
choice they press the ”Kjøp” button which will cause the app to initialize the payment.

55

Figure 34: Screenshot of the payment page with and without the payment sheet

With the payment initialized the customer gets a Stripe payment sheet popup. In this
sheet they enter the required information for the payment and if necessary, authenticates
the payment. If the customer wishes they can save their card for future purchases. If
the customer chooses to do so, the next time they initiate a purchase they will first be
prompted if they want to use one of their stored cards.

7.4 Web

The web interface is solely for employees at Vitensenteret Innlandet, and the focus is
therefore on functionality over looks. We make use of a bool that Flutter makes avail-
able with the project, called kIsWeb, to figure out whether someone is using the web
interface or the mobile interface. There is primarily two pages that are only available
on the web interface, to access them the user also has to have been authenticated with a
@vitensenteret.no mail address, as a secondary precaution.

56

7.4.1 Ticket Page for Admins

Figure 35: Screenshot of the ticket page for Admin.

This page is first and foremost meant as a tool for employees during visiting hours at
Vitensenteret. The page shows all users and all tickets in the system, and lets the user
search, sort, include/exclude expired tickets, add users, add tickets and edit basic inform-
ation about a user. When fetching code from the database it is saved in two lists, one for
users and one for tickets. In the admin ticket page there is two additional lists, both used
to keep temporary lists of users and tickets when the user searches or sorts the lists.

57

Figure 36: Screenshot of the search bar code.

The search bar allows employees to find specific users or tickets. It is possible to search
for names both on users and who activated or purchased a ticket, emails, phone numbers
and gift codes. Above is the code that runs every time the search bar is changed. When
the search bar is emptied, the temporary lists holding users and tickets are set back to hold
all users and tickets. When something is typed in the search bar it empties the temporary
lists, before looking through all users and tickets and adding them to the lists if they match
the criteria. Here we make sure to user lower case for everything, so the search is not case
sensitive. Doing it this way also renders the search result in real time as the user is typing.

Figure 37: Screenshot of the code that sorts users and tickets.

This is part makes use of existing sort functions in Dart, and sorts the temporary lists by

58

either date or alphabetically.

Figure 38: Screenshot of the code that includes or excludes expired tickets.

To include or exclude expired tickets from the ticket overview page we use a switch.
The code accounts for three different situations, and excludes a fourth. If the user is not
searching for something at the moment, and turns the switch of, then the temporary tickets
lists becomes identical to the list from the database. If the user is again not searching for
anything, but turns the switch on, all tickets that have an older date than today is excluded.
Tickets without an end date is included here as well. If a users in searching the switch
only works one way, turning it on. When searching and excluding expired tickets, the
code will do the same as when not searching and excluding expired. There is no way no
then include all tickets again if the user is searching for something, in that case they have

59

to end the search and start again.

7.4.2 Blog Page for Admins

So that news can be uploaded to the app without manually adding it into the database, we
created an admin page for handling blogs. This page is reachable with a button on the
blog page, and this button is only visible if the user logged in is an admin.

Figure 39: Screenshot of how the blog page looks for an admin.

Clicking this leads to the admin blog page, where the admin can manage blogs. There
are three functionalities here, upload a blog, edit an existing blog, and delete a blog. Up-
loading a blog takes the user to a form where they fill in the contents of the post. Here
they create a title and content, and choose if they want to upload an image. Information
about date and author gets added automatically. There is also an option to create a noti-
fication when the blog is uploaded, but the functionality for the notification system was
not completed for this thesis. More on this in ”Further Development”.

Editing and deleting blogs both function similarly, as when the admin clicks either of
these options they are taken to a page where they will have to search for the blog post
they want to affect. They search by title name, and in the case of edit is taken to editing
page for that post. In the case of deletion there will be a popup asking if the admin really
wants to delete this blog post, to make sure no posts are accidentally deleted.

60

7.5 Game Implementations

One of the ways to retain users in the app was to create a collection of brain teaser games.
Vitensenteret specifically requested the three games described in the Requirement Spe-
cification. As a way to learn the language, we elected to follow a tutorial[20] to both learn
Flutter and get some help to create the game as we were all new to Flutter at this time.
Later on, we developed all the games without any assistance.

7.5.1 Viten Ord

While much of the code for this game was written following the tutorial, the game de-
veloped in that tutorial had a lacking algorithm to check the solution and compare the
inputted letters. That is why we improved it. How it works is that the code essentially has
a list with the solution, and when it checks to see what the user has inputted it, compares
that list to the solution, one letter at a time. The first thing the algorithm does is to check
if a letter is both correct as well as in the correct position Figure: 40.

Figure 40: Screenshot of the code handling correct letter guesses.

It then flips it, changing the color to green on both the game screen, as well as the key-
board. The next part of the algorithm checks if the letter is part of the solution, which will
mark it as yellow. However, it is more complicated than that. Because while the solutions
never contain a double instance of a letter, the user may guess repetitive lettering, to figure
out where the letter will be. To handle this, we created an algorithm that will only make
the letter that is close to the location of the right placement yellow.

61

Figure 41: Screenshot of the code handling yellow cases and wrong letters.

The code loops through both the current list of letters that the user guessed, and the
solution list, it then makes sure that the user has not guessed this letter before, and that it
is not a green letter. For instance, if the word is ”viten” and the user has guessed ”eplet”,
then the first ”e” should not be marked as yellow, because the user guessed correctly with
the last ”e”. Then it checks the user-made list if it matched the current letter, and if it
does, then it marks the index as the latest index.

After this, if it has not been guessed right at another time, and the index matches the last
seen instance of this letter, then it flips the letter to yellow.

The code under this checks if the letter is in the word, and if it isn’t, it flips it to dark blue.

7.5.2 Tower of Hanoi

Now this game is the most complex out of them all. This game is based on three rods
where you move bricks from the leftmost rod to the rightmost one. To pull this off, the
entire playable area needs to consist of a ”grid” where you can place down game pieces.
The game board is also stored in a list of strings, keeping track of the placement of the
game pieces. The grid consists of rods, which are placed at the bottom of a stack. On
top of this rod is a game object. This game object will only be shown when there is a
game piece resting on the rod. To know that, the game checks the list containing the game
board and activates the game pieces according to the list. The pieces store information
like color, image, and last location.

62

Figure 42: Illustration of how the game board is set up in the Tower of Hanoi.

The different objects have different conditions. The rods are a container which is called
a ”dragTarget”. This is a target where you can drop objects. Before an object is dropped
there are some rules to allow object to be dropped:

Figure 43: Code of DragTarget for Tower of Hanoi.

The dragTarget will only accept a piece if it can be considered a legal move. To check this
the function ”checkLegalMove” needs to return true. More on this function later. After the
piece is allowed to be placed, OnAccept will run, which updates the gameboard to remove
the game piece where it came from and activate it on top of the current dragTarget.

63

Figure 44: Code of Draggable with index 0 for Tower of Hanoi.

The game piece has rules similar to this. It is called a Draggable in the code, and it
holds the information specified earlier. It displays as an image of the game piece. When
the game piece is being picked up by the user, onDragStarted gets called, which sets the
lastIndex to be the index of the current rod, which in the example is 0, it also gets the
lastPiece from this location, to know which piece is being moved. These variables as
stored locally so that the game knows where the piece came from, and which piece it is.
When the user drops the draggable onto the dragTarget, and if the dragTarget allows the
piece to be dropped, then onDragCompleted gets run, which adds to the number of moves
used so far, and also checks to see if the game has been won. The win condition is easily
checked by comparing the list of the game board to a list that contains the solution to the
game board, and if they match, the user has won the game.

64

Figure 45: Code of function ”checkLegalMove” Tower of Hanoi.

Now back to the function checkLegalMove. The first thing happening here is that it
checks if the piece can be moved at all. This is done with the function ”checkIfPieceCan-
BeMoved”. This function takes the game board, the current game piece, and the relevant
index. It then makes sure that the game piece is moved to a new index because if it is
dropped onto the place it came from, no change is needed to make. Now that we know
the location we are moving to is different from the one we originated from, we have to
check if the piece is allowed to move from its current location. We check the game board
if there is another game piece resting on top of the relevant game piece, and if that is not
the case, the game piece is allowed to move.

After we know that we are allowed to move, we now check to see if where we want to
move is allowed. There are some edge cases, as you can always play a game piece at the
bottom of a rod. This is illustrated in the code from lines 37 to 43. This also ends the
function, and updates the game piece.

Now if it is not an edge case, we need to run some more checks, first on line 46 we check
if the relevant placement is empty, meaning there is currently nothing there. If it’s empty
we continue on. Now to simulate gravity and the feel of the pieces dropping down, it was
important that users could simply drag a game piece over to a rod, and it would ”drop” to
the first available spot. To pull this off the function ”indexOfNextAvailableSpace” counts
the number of dragTargets under the current index. It returns the number of spaces that
the piece will drop. Now finally, we check if the piece can be placed with the function
”canPieceBePlaced”. This function checks what’s ”under” the location where you want

65

to drop the piece. As one of the rules is that you can only place a smaller piece on top of a
bigger one, and not the other way around, this function checks if the piece under is bigger
than the active game piece. It returns true if the game piece can be placed. And after all
these checks the game piece gets its last index updated, and the function returns true.

7.5.3 Viten Kode

Added on by Vitensenteret after the other two games were finished was the game called
Viten Kode. This game was supposed to be a way for younger people to learn coding
without having any experience with it. As a way to create a game Vitensenteret suggested
a game where you place blocks and get different outcomes out of this, however, due to
time limitations we elected to create a game where you put the blocks in the right order
to produce the expected result.

The game has a list in which you can reorder the blocks to be in the right order. The code
for this is relatively simpler, as it is by far the smallest game implemented. First, since
this game is connected to the database, it checks if the information is downloaded from
there, and if it isn’t, it will fetch it. Once it has fetched it, it will display the game. The
main aspect of the game is the reorderable list:

Figure 46: Screenshot of the main widget for Viten Kode

At the bottom of this code, the child calls reorder which is a widget containing the logic
behind the moving boxes. This simply deletes the old instance of the box, and inserts it
where the user dropped it.

66

Figure 47: The game Viten Kode

The rest of the logic happens when the user presses the available buttons. ”Regler” dis-
plays the rules, ”Hopp Over” skips the question and pulls a new random one from the
database, and ”Sjekk” compares the current list that the user has worked on, to the solution
list that it fetched from the database. If they match, then a victory message is displayed
to the screen.

67

8 Testing

8.1 Unit Testing

As mentioned earlier we created unit tests for the functionality of the games. These tests
were checking any function that does not revolve around I/O, that is connected to the
games. These tests all succeeded. These tests checked functions that calculated outputs,
that their outputs were correct, and that the format it get and returns are as expected.

Figure 48: Unit Tests, performed on all games.

8.2 User Testing

In addition to the unit tests we also performed user tests. The full documentation for
this can be found in [J]. To conduct these tests we asked different people with different
backgrounds to perform the tests. Overall we have five testers, and while two have a
similar profession, we made sure to also ask those well versed with IT, and those not so
much.

68

Figure 49: User Test Results.

This chart shows the time in minutes it took the users to familiarize themselves with the
app and the time it took for them to solve the tasks given during the testing. As can be
seen, there are some pretty high numbers in the first category: Time to familiarize Regular.
This is because those three, yellow, blue, and green all found the games included in the
app and spent time playing these games. We can also notice that the younger testers did
incredibly well on the tasks, both using under a minute to perform all the tasks. The older
generation was slower, albeit everyone managed to solve the tasks. In addition to making
them perform some tasks, we asked them some questions:

• Was the application easy to navigate? Was there at any point a time where you did
not know where to go?

• Did you find something in the application that you did not expect to find? Did you
notice or try any of the games?

• Do you feel the admin pages flow naturally and have any functionality that may be
needed?

• Would you download this app if you were a frequent user of Vitensenteret? And
if you would only download it for the ticket system, do you feel that the games
included in the app makes it more likely for you to keep the app?

69

• Anything else you would like to add?

Generally, everyone found that the app was easy to learn and intuitive to use. We got
some constructive feedback towards the admin pages, specifically the admin blog page,
as this one requires some more polish to be able to use more intuitively. The most notable
feedback in this regard was to make it easier to access the admin blog page, with a bigger
button or something akin to that. In addition, some felt that the return button should be in
the top left corner, similar to the games.

In regards to unexpected things, the users all mentioned the games. They were all pleas-
antly surprised to find them, some even to the degree that they forgot they were perform-
ing a user test, and that affected their time to familiarize themselves with the app as they
were simply playing games and enjoying themselves. Everyone liked the games and they
felt it was a nice addition, some mentioned that simply having ad-free games on the app
could mean more people download the app. They did however remark that it was difficult
to understand how to solve them, so to make this better we should add more rules and
information in the info box that they can bring up when playing.

Most of the testers would download the app, most seemed excited about having it, and
feel it adds to the experience at Vitensenteret. However, the youngest tester was incredibly
skeptical, stating that they don’t download apps to their phone that they don’t need. As
all the functions of the app can be accessed at the physical location, save the games, this
app is not a ”forced” download to gain access to Vitensenteret, and therefore this person
would not download it.

Most of our testers really liked the app and stated that they think it will benefit Vitensenteret
greatly to have such an app. It allows the user to have their tickets, maybe even for the
entire family, and with the news it’s easy to see if something is happening at Vitensenteret.

70

9 Code Quality

9.1 Database Best Practices

When designing the database it was important to follow best practices as laid out by
Firebase [19]. These best practices include keeping a flat data structure and designing the
database to scale well. The first practice we hold by dividing our data in categories, and
ensuring that we don’t go deeper than two levels. The second practice is visible in tickets
and users, where the name on the ticket is the name of a user, and each user has a list of
tickets. This means that whenever this data is changed, it has to be changed in two places,
but this is how Firebase encourages the data to be stored, and it simplifies data fetching.

Additionally when we fetch from the database, or push to the database we try to keep the
number of calls to a minimum. This is the lower the chances of something going wrong.

9.2 Commenting Standards

As we are new to flutter we decided to take inspiration from the official dart document-
ation standards [21]. When it comes to commenting functions, dart suggests something
quite different than most languages which we are familiar with. To our recollection, all
languages we have used until now have a standard format for commenting where you first
write a summary of what a function does, then orderly list all input variables and their
meaning/purpose and lastly the return values. Dart, however, suggests to write all docu-
mentation as sentences where you refer to in-scope identifiers in square brackets (Figure:
50).

For general comments in the text we resorted to comment as much as we could for each
visible part of the application, meaning every visible unique item should be commented
to make it easier to see a connection between items in the app and what you are looking
at in the code. It should be specified that by item we are not referring to a widget but
rather a group of widgets that together perform one task i.e. a text button widget and it’s
text widget. This means individual widgets are not commented but rather groups and their
purpose.

Figure 50: Example of a function comment

71

9.3 Naming Conventions

We followed the naming conventions that Dart suggests on variable names, class names,
function names and file names [22]. Dart suggests using upper camelcase for classes, this
means that each word in the name starts with an upper case letter, no spaces, underscores,
or dashes. For filenames it is suggested to use snakecase, which is full lowercase with
underscores for spaces.For other names it is suggested to use lower camelcase, all words
in the name starts with a capital letter, except the first word, no spaces, underscores, or
dashes.

9.4 Using Flutters Built-in Linter to Minimize Redundant Code

When coding the built in linter would alert us about redundant code, places were some-
thing should be a constant, and other smaller and larger issues. We made ample use of
this feature, and the code has come out cleaner because of it.

We also took a round towards the end of the project where we went over all the code,
using the linter actively. The purpose of this round was to make the code faster, cleaner
and better for future review and development.

72

10 Deployment

While the app won’t be deployed to the market, it is still in a state where it’s very close to
being able to be uploaded. What remains are mostly the legal terms, to be able to upload
the application to the Internet, as well as some tweaks to the design. The app is fully
functional despite its security risks, but will simply be given as it is to Vitensenteret, and
they will be responsible for any further development or upload to any app store they may
see fit.

The code is ready to be uploaded and is configured to work on all platforms, most com-
puters with a connection to the Internet can run it through their chosen browser, and it
runs on most phones as well.

10.1 App Store for iPhone

To release an app to App Store, a device capable of running Xcode is needed, and a
developer account on the App Store. To see more about the process for releasing an app
on App Store, see this site: https://docs.flutter.dev/deployment/ios [23].

10.2 Google Play Store for Android

To deploy on Google Play Store a developer account is needed, the process of getting
a developer account also costs money. The app has to be signed before it can be up-
loaded. For more information on how to deploy an app to Google Play Store, see this site:
https://docs.flutter.dev/deployment/android [24].

10.3 Source Code

The source code is available online for any who has access to the link to the repository.
The code is located in a GitLab repo with a proper structure. Navigating the file tree
to look into relevant files, and following the README.md to be able to download and
run it locally. The source of this repository is https://gitlab.com/hirkasa/billettapp-for-
vitensenteret/ [25].

10.4 Terms and Conditions

On all platforms where the app will be downloadable, there will be a section including
the terms and conditions. The user has to agree to these in order to download the app.

73

These terms will encompass the GDPR rules mentioned in ”3.1.5 Storing Personal Data
in Accordance with GDPR.”

74

11 Further Development

11.1 Deployment

Unfortunately, we were not able to upload this app anywhere, except for leaving the code
online for those with the link. This was a difficult decision because everyone on the group
wanted to produce a finished result, however, with the time constraints and final polish
not being completed we elected to leave the deployment for Vitensenteret, which means
they may decide to upload the app as it is or hire someone to work out the last few things,
which for the most part are not integral to the app itself.

11.2 Further Polish of Interface

As our user tests uncovered, there is still some polish left to do on the admin pages.
This involves creating a better way to access the admin page for the blog and making
the design easier to use, perhaps drawing some more inspiration from the admin ticket
page by displaying all blogs, or perhaps not having a button leading to the admin page,
but having a similar solution to the ticket page, where if you navigate to that tab you are
simply in the admin page.

In addition to this, we would make more feedback for the user, for instance, one tester
commented that if you tried to log in with the wrong credentials, there was no message
explaining why it didn’t work. And when you upload or work with the blogs, there is no
message that the work was successful, save for the page going back to default.

11.3 Database

The most important thing that has to be done next is transferring the real data that Vitensenteret
has in their database, into the same format as our database use. Then their database can
be set as the database of the app.

There are not many things that can be improved in the Firebase Realtime Database as of
today, not because it is ideal, but because it is not meant for complicated data storage
and transfer. For future development, it is recommended to switch to Firestore, as this
database has more functionality and more customization.

Currently, all blog posts are saved as a single string in Realtime Database, it would be
better if they could be stored as text files in Firebase Storage, we did however not find the
time to do that in this project.

Currently a lot of functionality between the database and app is dependent on continuous

75

connection, as several operations require more than one call to the database. Using Fire-
base Functions to do these operations would improve the security of the app significantly.
Then a single call to the server, with an independent answer would be all that is needed.

With Firebase Authentication user data is very safe. However, there is currently no way
to check if someone tries to make a user with a fake email. Implementing email verifica-
tion is therefore highly recommended, as well as a few other functionalities that Firebase
allows for, like password change verification and warnings.

11.4 Games

11.4.1 Game Engines

When we started out creating the games, we did not imagine they would be as big and
complicated as they turned out to be. Especially towers of Hanoi and Viten Ord which
both have complicated structures and algorithms. As a way to optimize and further im-
prove these games, one could instead of using vanilla Flutter, use a Flutter-based game
engine called Flame[26]. This one would create the engine for you as well as make hand-
ling movable objects much easier. While Viten Ord is a game that flows neatly, the Tower
of Hanoi would greatly benefit from using this system.

It may also be possible to use other game engines like Unity or Unreal, or perhaps even
Godot to create a better framework for the games. This would likely enable the games to
run smoother and have higher complexity, but it would also make the app much larger to
install.

11.4.2 Further development of ”Viten Kode”

As seen in the implementation, the game Viten Kode is much smaller than the other two
implemented games. This was mostly a time limitation, and therefore given more time,
this game could be revamped to be more in line with Vitensenteret’s original idea. A way
to solve this could be to look at some of the code of the other game, Tower of Hanoi, as
this utilizes movable pieces. One could use these pieces and assign them functionality,
and create a game where players could organize the blocks to create unique functions.
However, the scope of creating a game like this, if it is done thoroughly would be a
massive undertaking.

Say there are 5 blocks that you can put in any order, and all of them work together. Say
you can put any repeating numbers as well, That allows for a massive amount of possible
ways the code can work. Creating this game could be in its entirety a whole bachelor
thesis.

76

A simple way to easily improve the current implementation could be to just add some
more tasks into the database. Originally the game was supposed to pull tasks from our
storage in Firebase, however, due to some misunderstandings between the group and
Vitensenteret, we did not receive any tasks to put in there, and thus the only playable
task is a placeholder.

11.4.3 Adding a Scoreboard and Daily Rewards for Logged-in Users

Another way to create more interest in the games, and perhaps even a community could
be to create a user board with a score amongst the best players. Perhaps even sponsored
with prices from Vitensenteret to give an incentive. There could be a daily word inside
Viten Ord, or perhaps keeping a daily streak increases the number of points you get.

This could be linked to games or attractions at Vitensenteret. There could be QR codes
you scan to get more information about a display, and doing so rewards some points.
There are many ways to further the development of the games and make them even more
enticing.

11.5 Notification System

One of the things Vitensenteret originally requested was a notification system. That way
they could create news about events or discounted tickets and so on. We have laid some
of the framework down for this, as when you create a blog post, you can select for it to
create a notification. To make this system we would have to create webhooks as well as
add to the existing database.

To create a notification system we would have had to prep each version of the application,
and the process is different on iPhone, Android, and Web apps. Furthermore, we would
have needed a plugin called FCM, this plugin is what allows us to send messages to
clients. Firebase has detailed instructions on how to set this up [27]. Though the process
is simple enough, by the time we had blog functionality we were already at the end of the
project period and decided there was not sufficient time to develop it.

11.6 Other Additions

When we had our first meeting with Vitensenteret, they gave us a list of anything they
could think of, that could be added into the app. Some of it was not as relevant as others.
The full list can be found in Appendix [I] source. However, we picked out some points
that the group thinks have potential.

77

• QR-Code to scan and get more information about the displays.

• A game which connects to the astronomy room which displays stars with Augmen-
ted Reality.

• A way to find information about food and parking. Perhaps even a way to order in
the app.

In addition to this, we should also factor in the user test, and what can be improved
around the application from those. These are mostly comments surrounding the admin
pages, where they occasionally struggled the first time to locate some buttons. While this
may be circumvented by having the admins read the user manual, the design should still
be improved. In addition to this, there should be more rules and information on how to
play the games.

12 Discussion

12.1 Implementation and Follow Through

12.1.1 Worked Hours

The following figure is a chart of all the hours tracked in relation to this bachelor thesis.
The figure is color coded with general topics, however, also links directly to issues or
topics that that individual worked on. We had some categories with the general workload
that day, and we color-coded accordingly, where we used the color of the activity we spent
the majority of the time doing that day. These primary topics were as follows:

Figure 51: Time chart legend

Here are the worked hours for all group members. The name is top left, and each day has
a number of hours followed by more specifics on what was done that day. Each member
also has listed the hours worked on each specific topic.

78

Figure 52: Time Chart Malin Foss

Malin was, in general, responsible for the flow of the project, being the project manager.
She spent the majority of the time coding, but quite a bit on research as well to help find
the technology. Some time was also spent on communications with the project owner
and mentor. The majority of the time coding was spent on the authentications pages, the
settings page, and the admin ticket page, and especially the admin ticket page ended up
taking a lot of time and effort. While writing this thesis she also had two extra courses and
a TA-job, both of which took considerably more time than anticipated. The unavailable
days are for the Easter holiday.

79

Figure 53: Time Chart Philip Morud

Philip was responsible for research. He spent around 25% of the time researching valid
technology, and he was the one who did all the research around the payment systems
which came out to be quite a bit of work due to the back and forth with Vitensenteret.
He mostly focused on research and coding, but always helped out with any relevant doc-
umentation. While writing the thesis, he also had three other subjects; Advanced Pro-
gramming, Cloud Technologies, and IØ2000. Philip was the one with the least amount of
unavailable days despite this.

80

Figure 54: Time Chart Susanne Skjold Edvardsen

Susanne was responsible for the documentation. This is reflected by the time being spent
on documentation totaling around 40% of the total hours for this project. A fraction more
than what was spent coding. She created the games as well as the blog and admin blog.
She also took the main responsibility for the testing. She had two part-time jobs while
undertaking her bachelor, in addition, had a close family death during the project. Despite
this was able to dedicate a lot of time to this project.

12.1.2 Following the Gantt Chart

It was the original Gantt chart that we created at the start of the project. This was divided
into four sections, planning, production, testing, and report. Additionally, we marked the
dates where our mentor requested we send in statuses so that we had a nice organized
view of all deadlines.

81

Figure 55: Gantt Chart

The planning phase went how we expected it to go. We planned pretty much everything
in this phase, only changing and adding minor things at later stages.

Our production part was not followed as closely. While we managed to set up the project
within the allotted time frame and connect with the database, we quickly ran into a prob-
lem with the payment systems. Because Vitensenteret has an existing payment solution,
we had to confer with them about how to solve this. This resulted in a long back and forth
where Vitensenteret was in between systems and had yet to decide which to actually use.
As a way to still manage our time effectively, we started to work on the games, which were

82

supposed to be added on if we saw that we had time. We also started work on the blog
implementation. With the database came a lot of functionality that was added throughout
the app, and we continually worked on the user experience. Eventually, we managed to
get the payment systems up and running, however, due to all the issues around that topic,
we did not have time to implement push notifications.

For testing, we continually tested everything we did and worked on different branches
inside of git. We created unit tests, however, we were not able to perform the user tests
until the last month of the project due to some missing features. Security has been in focus
since we started production, and it was something we always considered when working.

The report was also in line, continually being worked on and documentation was added
throughout the course of the allotted time. And with the status reports also being written,
it always felt like we had a good grasp of our project.

While we have not spent as much time as we wished on the project, we are still happy
with the outcome and know that we did not have more to give.

12.2 Alternative Technology and The Choices We Made

12.2.1 Firebase Realtime Database vs. Firebase Firestore vs. SQL

When deciding what database to use we looked at a few different things that were import-
ant to the project.

• Our previous knowledge

• Ease of use

• Familiarity for Vitensenteret

• Future use

We have used MySQL as a Database in previous courses, and that meant all team members
were familiar with the process behind design and use. We had no way of hosting such
a database, other than locally on our own machines, which would be quite impractical
for this project. This was also quite far from the database Vitensenteret already used,
and would need additional setup were they to use it after we were done developing the
application.

Firebase Realtime Database was new to us, and we were therefore a little unsure at
first. The documentation for this database is pretty comprehensive, which made the fa-
miliarization process easier. Because both the database and the framework is made by
Google, there were no huge barriers to connecting the two. This was also the database

83

Vitensenteret used for their current solution for yearly memberships and would be easier
for them to take control of after the development process.

Firebase Firestore is like Firebase Realtime Database a no-sql database and was therefore
also new to us. From the documentation we could see that this had a different, and more
comprehensive structure, which would probably benefit us. Since this is still part of Fire-
base, it would not have been difficult for Vitensenteret to get to know it. It would also
have been easy to hand the database to them after development.

MySQL Realtime Database Firestore
Previous knowledge High Low Low

Ease of use Low Medium Medium
Familiarity for Vitensenteret Low High Medium

Future use Low High High

Table 1: Table of database choices

This all meant that for us Firebase Realtime Database became the best choice for this
project.

12.2.2 Kotlin vs. Flutter vs .Net vs React Native

When it came to choosing a framework and language for the project, we had a few options.
It was important to us that:

• Cross-platform

• Documentation

• Future development

• Whether we like the language

• Size of the finished application

Kotlin was something the whole group had experience in. However, it is solely for devel-
opment for Android Phones. This meant that Kotlin was not a viable option for us.

Flutter is a framework developed by Google, and uses Dart as its programming language
[28]. It allows for development for Android, iOS, macOS, Windows, Linux, and the Web.
When looking around, we found a good amount of documentation, and there was also
quite a lot of user-submitted documentation. The framework is fairly new, being released
in 2017, and is in continuous development.

84

Xamarin.forms and .NET MAUI are the platforms offered by the Microsoft .NET frame-
work, both of which use C# as their programming language. Xamarin is the older platform
and was deprecated by Microsoft in 2021 in favor of MAUI , the newer platform[29]. As
the switch was quite recent it meant Xamarin had a lot of documentation online while
MAUI had very little. Both Xamarin and MAUI allow for development in Android, iOS,
macOS, Windows, and the Web. However, MAUI doesn’t support Linux which was a
major issue.

React Native is another popular framework for developing cross-platform apps, it uses
JavaScript [30]. React has the largest following of all the frameworks and thus a lot of
documentation, released in 2015 [31], it is among others used by Facebook, Outlook,
and Discord. React Native allows for development in Android, iOS, macOS, windows,
and the web. But just like MAUI, doesn’t support Linux without additional plugins. In
addition, we also wanted to avoid JavaScript as none of the members of the group were
fans of the language.

In the end, we decided to consult one of our programming teachers, Mariusz Nowostawski
whom we knew had experience with a lot of different programming languages and frame-
works. We asked him if he had any tips or preferences when it came to the Cross-Platform
frameworks .NET MAUI and Flutter. He told us that he had used Flutter and liked it but
not MAUI which he was more skeptical of. He gave us the tip of writing some simple
”Hello World” programs in both frameworks and comparing the process and results. We
followed his advice and found that Flutter was very satisfying to program in and decided
to use it for the project.

Kotlin Flutter Xamarin.Forms .NET MAUI React Native
Cross-platform Low High High Medium Medium
Documentation High High High Low High

Future development Low High Deprecated High High
Likeability of language Medium High High High Low

Application size Low High High High Low

Table 2: Table of frameworks

12.2.3 Payment system

The payment system was one of the biggest dilemmas we had during the project duration.
The choice was up to Vitensenteret with us only giving tips at solutions. Initially, we
had recommended and agreed with our contact at Vitensenteret to use Vipps. Vipps is a
natural choice of payment system in Norway as approximately 75% of Norwegians use
the service [32]. We started research into what we needed and how to implement Vipps
payment into our application.

85

A few weeks later we got the message from Vitensenteret that they no longer wished
to have a payment system in the app, as Vipps required manual input into their current
accounting system. We responded that a payment system was an integral part of the
bachelor as it was presented, and asked if they had some other payment solution they
would rather have us look into and eventually disable for release. We were then told they
were considering a payment system called Duell [33] for their checkout system and we
started looking into how to implement that into our application to match. Not long after
we were told that Duell was off the table and returned to looking into Vipps. Then after
another few weeks, we were given another solution to look into, Stripe. Easter had just
ended and at this point, we told them we wouldn’t have time to look into other payment
solutions if they decided to change their minds again.

Although Stripe was a sort of last-minute solution we quickly got it to work with its
large amount of support and documentation. Especially helpful were the premade Stripe
widgets for Flutter.

12.3 What Would We Have Done Different Today?

12.3.1 Database choice

While choosing to work with Firebase was a good choice, if we were to choose again we
would go with Firestore. Firestore uses a different way of organizing data, in documents
and collections rather than nodes and levels. It also allows for a different way to fetch
data, including querying for specific data, which is something the product needs. Per
today fetching data is inefficient and tedious, much of this could be solved by switching
to Firestore.

12.3.2 Payment system

One of the main things that we wished turned out differently was the payment system.
We spent way too much time looking at different payment systems that we ended up
not using. If we could have agreed on a payment system and stuck with it, we could
have it implemented a lot earlier in the development process. In the end, this hurt the
final product, while the payment system is functional in the app, it’s far from ready to
be deployed in its current state. While payment works it lacks the security and polish
you expect from something so important. The largest issue is the fact that major parts of
buying tickets are handled client-side which means there’s a decent chance for something
to go wrong. As it stands the user’s device has to check if a payment succeeds and then
add the tickets itself, but ideally Stripe should tell the Firebase functions that the payment
succeeded and have the function add the tickets. This would avoid a niche situation where

86

you pay for a ticket but the ticket is never added to Firebase because the phone can’t
communicate with it.

12.4 Evaluation of the Group Effort

The group members have different experiences and interests, and this has made the group
dynamic really good. When it came to dividing up responsibilities, there were never any
disagreements on who should do what. Each of us has wanted to work on different things
within the project, but this has not taken away from the end goal. The group has worked
as well as we could, and made the best of the circumstances we were under. We would
have loved to dedicate even more time to this project, but due to other commitments, we
were unable to do that. Apart from a couple of misunderstandings and back-and-forths
from the project owner, there have been no real issues.

12.5 Conclusion

For this app, we developed a multi-platform interface that can be used on almost any
device. We connected to a database and an API, and we used both technologies we were
familiar with, as well as learned new technology for this project.

We have learned a lot from this bachelor project, and are thankful for the opportunity that
Vitensenteret Innlandet has given us.

87

13 Sources

Bibliography

1. Vitensenterforeningen. Vitensenterforeningen. Available from: https://www.vitensenter.
no/om-foreningen/ [Accessed on: 2023 May 21]

2. GlueUp. 5 Benefits to Using Digital Membership Cards. Available from: https :
//www.glueup.com/blog/digital-membership-cards [Accessed on: 2023 Jan
17]

3. NTNU. PROG2900 - Bacheloroppgave. Available from: https : / /www.ntnu.no/
studier/emner/PROG2900/#tab=omEmnet [Accessed on: 2023 Jan 16]

4. Google. Target API level requirements for Google Play apps. Available from: https:
//support.google.com/googleplay/android-developer/answer/11926878?hl=
en [Accessed on: 2023 Jan 24]

5. Apple. App Store. Available from: https://developer.apple.com/support/app-
store/ [Accessed on: 2023 Jan 24]

6. NTNU. Studieplan. Available from: https://www.ntnu.no/studier/studieplan#
programmeCode=BPROG&year=2019 [Accessed on: 2023 Apr 16]

7. FlutterFire. Flutterfire. Available from: https://firebase.flutter.dev/ [Accessed on:
2023 May 21]

8. Consulting I. General Data Protection Regulation GDPR. Available from: https :
//developer.apple.com/support/app-store/ [Accessed on: 2023 Feb 7]

9. Google. Firebase Authentication. Available from: https://firebase.google.com/
docs/auth [Accessed on: 2023 Feb 9]

10. Firebase. Privacy and Security. Available from: https : / / firebase.google . com/
support/privacy%5C#data%5C encryption [Accessed on: 2023 May 16]

11. Babich N. Z-Shaped Pattern For Reading Web Content. Available from: https : / /
uxplanet . org / z - shaped - pattern - for - reading - web - content - ce1135f92f1c
[Accessed on: 2023 Jan 31]

12. Babich N. F-Shaped Pattern for Reading Content. Available from: https://uxplanet.
org/f-shaped-pattern-for-reading-content-80af79cd3394 [Accessed on: 2023
Jan 31]

13. Wikipedia. Mastermind (board game). Available from: https://en.wikipedia.org/
wiki/Mastermind%5C (board%5C game) [Accessed on: 2023 May 16]

14. Wikipedia. Tower of Hanoi. Available from: https : / / en . wikipedia . org / wiki /
Tower%5C of%5C Hanoi [Accessed on: 2023 Apr 16]

88

https://www.vitensenter.no/om-foreningen/
https://www.vitensenter.no/om-foreningen/
https://www.glueup.com/blog/digital-membership-cards
https://www.glueup.com/blog/digital-membership-cards
https://www.ntnu.no/studier/emner/PROG2900/#tab=omEmnet
https://www.ntnu.no/studier/emner/PROG2900/#tab=omEmnet
https://support.google.com/googleplay/android-developer/answer/11926878?hl=en
https://support.google.com/googleplay/android-developer/answer/11926878?hl=en
https://support.google.com/googleplay/android-developer/answer/11926878?hl=en
https://developer.apple.com/support/app-store/
https://developer.apple.com/support/app-store/
https://www.ntnu.no/studier/studieplan#programmeCode=BPROG&year=2019
https://www.ntnu.no/studier/studieplan#programmeCode=BPROG&year=2019
https://firebase.flutter.dev/
https://developer.apple.com/support/app-store/
https://developer.apple.com/support/app-store/
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/auth
https://firebase.google.com/support/privacy%5C#data%5C_encryption
https://firebase.google.com/support/privacy%5C#data%5C_encryption
https://uxplanet.org/z-shaped-pattern-for-reading-web-content-ce1135f92f1c
https://uxplanet.org/z-shaped-pattern-for-reading-web-content-ce1135f92f1c
https://uxplanet.org/f-shaped-pattern-for-reading-content-80af79cd3394
https://uxplanet.org/f-shaped-pattern-for-reading-content-80af79cd3394
https://en.wikipedia.org/wiki/Mastermind%5C_(board%5C_game)
https://en.wikipedia.org/wiki/Mastermind%5C_(board%5C_game)
https://en.wikipedia.org/wiki/Tower%5C_of%5C_Hanoi
https://en.wikipedia.org/wiki/Tower%5C_of%5C_Hanoi

15. Lego. Learn to Program. Available from: https://www.lego.com/en-us/themes/
mindstorms/learntoprogram [Accessed on: 2023 May 16]

16. Stripe. PaymentIntents. Available from: https://stripe.com/docs/api/payment
intents [Accessed on: 2023 May 20]

17. Stripe. How Stripe Apps work. Available from: https://stripe.com/docs/stripe-
apps/how-stripe-apps-work [Accessed on: 2023 May 20]

18. Firebase. Firebase Realtime Database. Available from: https:/ /firebase.google.
com/docs/database [Accessed on: 2023 May 20]

19. Firebase. Structure your database. Available from: https://firebase.google.com/
docs/database/web/structure-data [Accessed on: 2023 May 18]

20. Ng M. Flutter Wordle Clone Mobile/Web/Desktop Tutorial — Apps From Scratch.
Available from: https : / / www. youtube . com / watch ? v = %5C W0RN % 5C
Cqhpg%5C&ab%5C channel=MarcusNg [Accessed on: 2023 Feb 25]

21. Dart. Effective Dart: Documentation. Available from: https: / /dart .dev/guides/
language/effective-dart/documentation [Accessed on: 2023 May 20]

22. Dart. Effective Dart: Style. Available from: https://dart.dev/guides/language/
effective-dart/style [Accessed on: 2023 May 20]

23. FLutter. Build and release an iOS app. Available from: https://docs.flutter.dev/
deployment/ios [Accessed on: 2023 May 19]

24. Flutter. Build and release an Android App. Available from: https://docs.flutter.
dev/deployment/android [Accessed on: 2023 May 19]

25. Malin Foss Philip Morud SSE. GitLab Repository. Available from: https://gitlab.
com/hirkasa/billettapp-for-vitensenteret/ [Accessed on: 2023 Jan 23]

26. team BF. flame 1.7.3. Available from: https://pub.dev/packages/flame [Accessed
on: 2023 May 15]

27. Firebase. Set up a Firebase Cloud Messaging client app on Flutter. Available from:
https://firebase.google.com/docs/cloud-messaging/flutter/client [Accessed
on: 2023 May 20]

28. TheManInTheBlackHat. Flutter (software). Available from: https://en.wikipedia.
org/wiki/Flutter%5Ctextunderscore(software) [Accessed on: 2023 May 19]

29. Ortinau D. Introducing .NET MAUI – One Codebase, Many Platforms. Available
from: https://devblogs.microsoft.com/dotnet/introducing-dotnet-maui-one-
codebase-many-platforms/ [Accessed on: 2023 May 20]

30. Native R. React Native. Available from: https://reactnative.dev/ [Accessed on:
2023 May 19]

31. Reamgoxer. React Native. Available from: https://en.wikipedia.org/wiki/React%
5C Native [Accessed on: 2023 May 19]

89

https://www.lego.com/en-us/themes/mindstorms/learntoprogram
https://www.lego.com/en-us/themes/mindstorms/learntoprogram
https://stripe.com/docs/api/payment_intents
https://stripe.com/docs/api/payment_intents
https://stripe.com/docs/stripe-apps/how-stripe-apps-work
https://stripe.com/docs/stripe-apps/how-stripe-apps-work
https://firebase.google.com/docs/database
https://firebase.google.com/docs/database
https://firebase.google.com/docs/database/web/structure-data
https://firebase.google.com/docs/database/web/structure-data
https://www.youtube.com/watch?v=%5C_W0RN%5C_Cqhpg%5C&ab%5C_channel=MarcusNg
https://www.youtube.com/watch?v=%5C_W0RN%5C_Cqhpg%5C&ab%5C_channel=MarcusNg
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/documentation
https://dart.dev/guides/language/effective-dart/style
https://dart.dev/guides/language/effective-dart/style
https://docs.flutter.dev/deployment/ios
https://docs.flutter.dev/deployment/ios
https://docs.flutter.dev/deployment/android
https://docs.flutter.dev/deployment/android
https://gitlab.com/hirkasa/billettapp-for-vitensenteret/
https://gitlab.com/hirkasa/billettapp-for-vitensenteret/
https://pub.dev/packages/flame
https://firebase.google.com/docs/cloud-messaging/flutter/client
https://en.wikipedia.org/wiki/Flutter%5Ctextunderscore(software)
https://en.wikipedia.org/wiki/Flutter%5Ctextunderscore(software)
https://devblogs.microsoft.com/dotnet/introducing-dotnet-maui-one-codebase-many-platforms/
https://devblogs.microsoft.com/dotnet/introducing-dotnet-maui-one-codebase-many-platforms/
https://reactnative.dev/
https://en.wikipedia.org/wiki/React%5C_Native
https://en.wikipedia.org/wiki/React%5C_Native

32. Vipps. Vipps i tall. Available from: https://www.vipps.no/om-oss/vipps- i- tall/
[Accessed on: 2023 May 20]

33. Duell. Duell. Available from: https://www.kasseservice.no/ [Accessed on: 2023
May 20]

34. Firebase. Main page. Available from: https://firebase.google.com/ [Accessed on:
2023 May 17]

35. AnomieBOT. .NET framework. Available from: https://en.wikipedia.org/wiki/
.NET%5C Framework [Accessed on: 2023 May 19]

90

https://www.vipps.no/om-oss/vipps-i-tall/
https://www.kasseservice.no/
https://firebase.google.com/
https://en.wikipedia.org/wiki/.NET%5C_Framework
https://en.wikipedia.org/wiki/.NET%5C_Framework

Appendix

A Gantt

91

B Project plan

93

‘App and ticketing system for

Vitensenteret Innlandet’

Project Plan
Malin Foss

Philip Morud

Susanne Skjold Edvardsen

1. Scope 3
1.1. Background 3
1.2. Subject area 3
1.3. Delimitation 4
1.4. Task description 4

2.Goals and constraints 5
2.1. Project goals 5
2.2. Constraints 6

3. Project organization 6
3.1. Responsibility and roles 6
3.2. Routines and group rules 7

4. Development Process 8
4.1. Development Model 8
4.2. Meetings 8

5. Organizing and quality assurance 9
5.1. Documentation, standards, configuration management, tools … 9
5.2. Plan for Inspections and Testing 10
5.3. Project level risk assessment 11

6. Plan for execution 13
6.1 Gantt 13

7. Sources 14

Attachment A 15

1. Scope

1.1. Background

Vitensenteret is a larger organization that has many locations around Norway. These

locations are open to visitors in possession of a ticket, and contain many exhibitions

in which the visitors can play around with science and educate themselves on fun

topics. Vitensenteret Innlandet (VI) is one of these locations.

Entry to Vitensenteret requires a ticket that is validated through a database in

Firebase (Firebase, 2012). However, in these times where more and more people

carry around their phones first and foremost(FinTech, Unknown) and in most cases

exchanging their wallet for it, having a person carry a membership card is getting

more and more difficult. In this context, Vitensenteret contacted NTNU with a

bachelor thesis topic, asking for a solution to this problem.

Vitensenterert has asked that we develop a mobile solution so that users have a way

to purchase, and track tickets purchased for entering Vitensenteret Innlandet.

Additionally they also want a way to alert users of the app of events, sales or other

important things through notifications. Lastly they want an interactive part of the app,

a way to retain use of it even after a visit has been done.

1.2. Subject area

A physical membership card is very common for members to gain entry to the

locations. As mentioned above, the use of such cards are becoming less common.

The reason for this may be the decrease in use of a wallet, or simply the costs in

manufacturing the cards, cardscanners and equipment to support this system.

(GlueUp, 2023).

Phones are already on a person at all times. This device holds many important apps,

like social platforms, BankID, or games. Making an application for phones which will

contain all that is needed during a visit to Vitensenteret, like tickets and an overview

over events at the location.

The subject for this project is the development of an application for a mobile device.

This application should be able to run on both android phones as well as iOS

devices. The process of developing an app involves a list of areas. This list includes

designing the app so that the application feels good to use. The use of databases

and cloud technologies, gamedesign, developing software for the phone in general.

In addition to the above, this project will teach the group members how to work

together on a project of this scope, and while the final product has an important role

in the final evaluation, one of the first limitations we employ as a group is to focus on

the developmental process and documentation around the project. What this means

for the project is that the wishes of the employer comes second in regards to what

we wish to accomplish in relation to the finished project plan.

1.3. Delimitation

Instead of using the outdated systems at Vitensenteret, our group will develop a

mobile application which will allow users to purchase tickets to gain entry to the

location. In addition to this, the users will get updates about Vitensenteret in the app,

and be able to play a brain teaser game. This will all be developed by the group, with

a focus on proper documentation and solid workflow.

1.4. Task Description
● The group will make an application for the mobile platform. This application

will run on both Android and iOS.

● This application will communicate with a premade database in Firebase to

administer the users who have a valid ticket to enter locations. This database

was made by Vitensenteret.

● The application shall allow for users to pay for tickets through the app, for

example via Vipps (Vipps, 2015) or some other method.

● The app will also use cloud technologies to have a notification system, where

administrators can create alerts and send it out as push notifications to

general users.

● The app will allow administrators to push blogs with content from

Vitensenteret into a feed which all users have available. This feed should also

contain notifications that users received through push notifications.

● The application will be developed using design principles and will need to be

adequately secured to make sure that there are no security breaches.

● Should there be time to develop an additional function to the application, this

will be an interactive game. This game will be in line with other functions of

Vitensenteret, and will consist of some form of brainteasers.

2.Goals and constraints

2.1. Project goals

Impact Goals: (Effektmål)
The main goal of this project is to develop an application for users of Vitensenteret

so that the users are not dependent on bringing anything other than their phones to

the locations. The application will bring the presence of Vitensenteret to those who

have the app, creating a familiarity with it. Vitensenteret has a goal to reach 50-60

000 visitors in 2023, our goal is that 40% of those use the app before, during or after

their visit.

Project Goals: (Resultatmål)
The main aspects that we aim to develop is a way to showcase tickets purchased,

like a yearly one, as well as allow for purchasing these tickets through the app. In

addition to this we will develop a notification system where the administrators of the

app can post notifications so that normal users of the app are alerted to events or

sales at Vitensenteret. Safety is an important factor in all of this. If the development

of these functions reach a point where a person in the group is able to focus on

another part of the project, this person will develop an interactive game for the

application.

It is also imperative that we make the app a base for further development as

Vitensenteret has many plans for further development.

Educational Goals: (Læringsmål)
The goal with this task is to learn how to develop a bigger project than what has

been previously worked on throughout this education. With a focus on the

developmental process from day one, where proper documentation is vital, as well

as having a fluid grasp and accomplishment of the agile development method that

the group chose for this task, which is Scrum. In addition to this, we will learn to work

with an associate outside of NTNU. Up until this point, most, if not all, tasks that have

been worked on have been internal, while now that the group is working with a team

outside of the organization, we will get to experience and solve unique situations that

the group members may not have encountered before.

Additionally we aim to take many of the subjects we have had through our education,

and combine it into this task. This encompasses everything from design, coding to

task writing and ethics. All shall be done together in a structured group where each

member has shared and separate roles. For the educational plan on this subject

from NTNU (NTNU studies, Unknown).

2.2. Constraints

● The app has to work on both Android and iOS. Target api 31 (Google,

Unknown), and iOS 15 (Apple, Unknown).

● The app has to be user friendly, for kids and adults.

● We have to follow the Vitensenteret design handbook when designing certain

elements of the app.

● The app must work with the existing database in Firebase.

● The code has to be well documented and made for future development.

3. Project organization

3.1. Responsibility and roles

● Project manager: Malin Foss

○ Keep an overview of project progress

○ Responsible for all outgoing communication

● Documentation manager: Susanne Skjold Edvardsen

○ Makes sure there are notes taken from all meetings

○ Has main responsibility for all documentation

● Scrum master: Philip Morud

○ Responsible for all sprint related meetings

3.2. Routines and group rules

See attachment A for a signed copy of the group rules.

● Each member of the group should aim to work for approximately 30 hours per
week. In the case where the total is repetitively below 30 hours, a meeting will
be held amongst the group members to discuss causes and solutions.

● The group will host one physical meeting each week where it is expected that
all members are present. Should a member be unable to attend this meeting,
they should notify the other members of the reason in advance. (If all the
group members agree, the meetings can be scheduled less often, for instance
biweekly).

● All the hours spent working towards this project should be written down.
These time logs should be available in the final delivery.

● Each member is responsible for showing up to scheduled meetings with the
group, the mentor and the employer.

● Group members are obligated to warn the group if they believe themselves,
another group member, or the group as a whole is starting to fall behind so
measures can be taken to avoid losing too much time overall.

● In the case of disagreements within the group there are three levels of
measures to be taken. All positives and negatives are to be weighed together
in a discussion, if no decision is reached the mentor can be involved to get
some outside perspective. Last resort is putting it to a vote.

● If a group member breaks several rules or repeatedly breaks rules it has to be
brought up and escalated in the following order:

○ Discussion with the entire group
○ Written warning with cause, measures to fix the issue(s) and potential

consequences
○ Conversation with mentor and the entire group
○ Written exclusion from the group (no later than four weeks before the

delivery date)

4. Development Process

4.1. Development Model

We are planning to use the agile method Scrum. We want to be able to adapt our

product to the product owner as we go, and this is best achieved by using an agile

method. Scrum allows us to keep a lot of structure to the development, but also

allows for changes to long term plans easily.

The project has a few technological challenges and uncertainties that might require

us to change our approach, with Scrum we remain able to make these decisions

along the way.

We will use Scrum with week long sprints in the beginning, and then an evaluation

later on might change the sprint length to two weeks. We will be using a backlog with

all long term goals and future features. In addition we will be using an issue board

where tasks for each week will be posted in the four categories open, in

development, testing, and important. Open will act as the sprint backlog, in

development is for started tasks, testing for finished tasks that need review.

Important is reserved for any tasks that need to be resolved quickly and/or is a

bottleneck.

4.2. Meetings

Sprint planning meeting
Sprint start is every Tuesday 11.30-13.00 as we have week long sprints, if we

increase the sprint length sprint start will be every other Tuesday. Here we will figure

out what the focus of the coming sprint is going to be, and pull tasks from the

backlog, modify them and put them in the sprint backlog. We will also identify if any

issues should be classified as important, or if any issue requires several people to

work on.

Sprint review meeting
Sprint review meetings will be held Tuesdays 10.00-11.30. The goal of these

meetings are to review our work in the past sprint, especially to identify potential

problems. We will also use what we learned to better plan ahead, and to create a

better product. If anyone has learned something useful during the sprint, this is an

arena to share that.

Sprint retrospective meeting (?)
Sprint retrospective meetings will be held every other sprint before sprint reviews.

The focus of the meeting will be to review the sprints, to see if the length will need to

be changed, or if issues are too big or small.

Mentor meetings
We will have weekly meetings with our mentor Frode Haug. These meetings will

primarily be used as a forum to discuss methods, report writing and anything else we

need someone else to spar with.

Project owner meetings
It is important to us to keep an open and continuous dialog with the project owner.

We will aim to have meetings with Vitensenteret every other week. This way we can

show of progres, and get pointers as to whether we are heading in the right direction

product wise. We will also be able to catch potential issues, problems or

misunderstandings during these meetings, and be able to work on it in the coming

sprint.

5. Organizing and quality assurance

5.1. Documentation, standards, configuration management, tools …

We should discuss this.

Technology:

Name: Purpose:

Discord Communication in group

Email Communication outside group

Google Docs Writing and managing documents

Draw.IO Creating diagrams

Overleaf LaTex Writing large documents

Gantt Managing Gantt Chart

Firebase Managing the Database and requests

Remarkable Managing backlog

GitLab Repository for code, as well as version

control.

Flutter Cross-platform coding framework

5.2. Plan for Inspections and Testing

All group members are responsible for making sure their code works as expected

before pushing to the repository, and to test for edge cases before merging to the

main branch.

For all functions that return something or change something should be tested with

unit testing. We are not using test driven development, so tests can be written after

the fact.

We plan to setup and use a CI/CD pipeline on GitLab, this pipeline will compile and

run some basic testing. Due to the restrictions of a free account this will only be done

when merging branches.

User testing will be done regularly during our meetings with Vitensenteret. We will

start with a simple wireframe demo on paper, and evolve from there.

Since this app will deal with user data it is important that these data are safe, we

should test with this in mind.

5.3. Project level risk assessment

Number Risk Probability Impact Measures

1 A group member gets sick Very likely High Yes

2 The group disagrees Very likely Medium Yes

3 Technology is/becomes

unavailable

Likely High Yes

4 The project is too small Unlikely Medium Yes

5 Unable to finish product Likely High Yes

6 Product already exists Very unlikely High No

Number Risk Probability Impact Measures

7 A competing product is

created

Likely Low No

9 Product no longer

wanted/useful

Very unlikely High No

9 Product owner goes

bankrupt

Very unlikely High No

10 Product is not safe enough Likely High Yes

Measures

Number Measure After measure

1 We will be working together on most parts of the

project, and during sprint review meetings we will

catch each other up on what we have worked on.

This way we avoid that someone being absent from

the group will have

Low impact

2 The issue will be brought up with the entire group

and positives and negatives will be discussed. If an

agreement is not reached the mentor can be

involved for advice. The next measure is taking it to

a vote.

Low impact

3 We will explore different technologies for each

choice we make. If one becomes unavailable, there

will likely be alternatives, even if they might be less

suitable.

Medium impact

4 The project owner has presented us with a list of

wanted/possible features of the app. If we run out

Low impact

Number Measure After measure

of things to do, there is more on that list to pick

from.

5 During the development process we have placed

milestones as a way of checking the progress, and

to make sure we don’t fall behind. Every member is

responsible for telling the group if they believe the

project is falling behind. All parts of the project are

put in order of priority, if we are in danger of not

being able to finish everything we know what to cut.

Unlikely with

medium impact

10 We will be testing for safety along the way to

ensure that the product we are developing is safe

enough.

Low impact

6. Plan for execution

6.1 Gantt

Chart made with (TeamGantt, Unknown)

This is our gantt diagram. It was constructed with a light start where everyone is

focused on planning and organizing the project. This period will last until 13.

February, at this point all the planning should be finished, as well as some parts of

the project started.

The production is set to start February 1st. This includes setting up the project and

coding the contents, like communications with the database and making the blog. In

addition to this we have the game programming in its own color to signify that it has

a lower priority.

Testing starts a week after the production starts, although measures have been

taken during the planning stages. In the testing phase, we have an emphasis on unit

tests, and user tests.

The writing of the final report is initiated already in february, and it is meant to be on

the backburner until more of the production is underway. The final report is set to be

done the Friday before the delivery date, the following monday.

7. Sources

Vitensenteret (Unknown). Fetched from:

https://vitensenteret.no/ (Date: 16.01.2023)

FireBase (2012). Fetched from:

https://firebase.google.com/ (Date 17.01.2023)

FinTech (Unknown). Fetched from:

https://fintechmagazine.com/digital-payments/75-of-consumers-now-using-mobile-wallets-su

rvey (Date 16.01.2023)

NTNU (Unknown). Fetched from:

https://www.ntnu.no/ (Date 16.01.2023)

NTNU Studies (Unknown). Fetched from:

https://www.ntnu.no/studier/emner/PROG2900/#tab=omEmnet (Date 16.01.2023)

Vipps (2015). Fetched from:

https://vipps.no/ (Date 16.01.2023)

Teamgantt (Unknown). Fetched from:

https://app.teamgantt.com/ (Date. 18.01.2023)

Google (Unknown). Fetched from:

https://support.google.com/googleplay/android-developer/answer/11926878?hl=en (Date

24.01.23)

Apple (Unknown). Fetched from:

https://developer.apple.com/support/app-store/ (Date 24.01.23)

GlueUp (2023) Fetched from:

https://www.glueup.com/blog/digital-membership-cards (Date 01.02.23)

Attachment A

C Contract

112

D Status report 1

119

Status 15.February 2023

What is finished, what is currently being worked on?

Finished Working on

Project Plan Requirement Specification

Setup Project Implement Databases

Decide on (most) of the Technology Implement Blog Solution

Designed (most) of the Infrastructure. Implement Wordle and Hannoys Tower

Payment solutions

Anything that is taking longer to do?

Everything is going according to plan. Following the gantt chart created, every task that is
supposed to be finished by now, has been finished. As well, any task that should have been
started, has been started. In fact, we are ahead of schedule and have started other parts of
the project ahead of time, namely implementing the blog functionality as well as the game
functionality. This feels natural because it lends itself that everyone on the team then has a
programming task, without overlapping with each other.

Planning:

Planning flows naturally, and work is implemented according to schedule. The only thing that
is hindering progress a little is the implementation of payment systems. We want to use
Vipps as it offers both mobile and debit solutions, but as different payment solutions/options
have different commission fees we need to make sure our employer agrees with this.
Therefore, before moving on with this implementation the group needs to meet with
Vitensenteret to discuss if they still want Vipps (and which Vipps option), or if they want
another solution.

Organizing the group work and responsibilities:

Roles fall naturally, and everyone is doing their part. Documentation, coding, research,
everything is being worked on according to the responsibilities in the group.

Requirement specification

A version of this was sent in, and edits are being made to the document. After this, it will be
sent in once again for reevaluation.

Report writing

The report has been started in Overleaf/LaTeX and content is being generated and updated.
Among other things we have written summaries of all meetings, documentation for choices
of technology, research documentation for instance in regards to GDPR.

Status in regard to the points above:

The work is ahead of the projected calculations for progression.

Opportunities or problems:

With being ahead of schedule we may be able to add some more incentive reasons for users
to download the app, like more games and blog functionality, however nothing will be
promised until the development reaches a point in which we can confidently add more
content.

Motivation:
Teamwork, work environment and organization: Team works excellent together. No problems
so far.

Relationship statuses: Everyone works together, no bad vibes or experiences in the work.

Contact with employer and mentor:
We have close contact with both, and do not have any problems around communications
beyond the rescheduled meetings with Vitensenteret. When meetings were rescheduled, we
were always able to meet with them, to discuss what we wanted to.

E Status report 2

122

Status 30.March 2023

What is finished, what is currently being worked on?

Finished Working on

Project Plan Payment solutions

Setup Project Better ID Sytems for tickets and blog posts

Decide on (most) of the Technology Blog Solution

Designed (most) of the Infrastructure. Settings Page

Requirement Specification Ticket Page

Basic Application Final Report

Basic Database with connection to App

Implemented Wordle and Hanois Tower

Anything that is taking longer to do?

In regards to the gantt chart that was delivered in the project plan, we are taking the time we
planned to do the planned tasks, but due to the problems surrounding the payment systems
we have had to shuffle our tasks around. That means pushing game programming, user
handling, blogs and ticket systems forward while we start with the heavy focus on payment
systems from easter.

Planning:

Again, the planning and execution of the tasks are going fine. We are as mentioned a little
behind on payment solutions and ahead in regards to other systems. We have decided and
gotten the go ahead to use Vipps after much back and forth between the group and the
management at Vitensenteret.

Organizing the group work and responsibilities:

The group work is still being equally divided, and all members work on their parts with
communications to all members with each sprint start and review.

Report writing

We are continuing to update the documents and the report in overleaf. Documentation is
going well, coding is well commented.

Status in regard to the points above:

The work is on track for the projection, however it is difficult to say if we are slightly ahead or
slightly behind due to the change in our projected plan due to the payment systems being
moved.

Opportunities or problems:

Since we have finished with the game implementations, Vitensenteret expressed a want for
an additional game, and this will be added into the implementation.

Motivation:
Teamwork, work environment and organization: Team works excellent together. No problems
so far.

Relationship statuses: Everyone works together, no bad vibes or experiences in the work.

Contact with employer and mentor:
Contact and communication with mentor is going great.

Contact with Vitensenteret is good as well, however there has been some
miscommunications and delays in regards to the task description being altered by
Vitensenteret. This issue is still being worked on being completely resolved, however we are
on track to having it figured out and are currently looking into vipps solutions as the payment
systems.

F Status report 3

125

Status 27.April 2023

What is finished, what is currently being worked on?

Finished Working on

Project Plan Payment solutions

Setup Project Better ID Sytems for tickets and blog posts

Decide on of the Technology Admin Blog Page (Almost done)

Designed of the Infrastructure. Ticket Page(Almost done, waiting for
payment sysems)

Requirement Specification Final Report

Basic Application Coloration/Themes

Basic Database with connection to App Notifications

Implemented Wordle and Hanois Tower

Blog Page

Settings Page

Anything that is taking longer to do?

Due to the issues around payment solutions, we are not following the gantt chart, and have
moved things around. The blog solution is close to done, and is expected to be finished once
the admin page is done. Notifications should be connected to the blog, but due to an
oversight we are not sure we will be able to finish it. The ticket page, the page showing
purchased tickets is working, and up and running, however due to the payment
implementation being unfinished at this date, the page is not at a whole finished. The games
are done, save for some minor tweaking, and the themes and colors we were given by
Vitensenteret is slowly being applied to the application.

Planning:

The planning is once again fine, after even more back and forth with Vitensenteret we have
settled on using Stripe for the payment systems. Due to all the issues around this the blog is
not where we would want it, and we have delegated resources to get it caught up. The status
when writing this report, is that the blog has the main functionality down, only missing the
admin page and notification system.

Organizing the group work and responsibilities:

The group work is still being equally divided, and all members work on their parts with
communications to all members with each sprint start and review.

Report writing

We are continuing to update the documents and the report in overleaf. Documentation is
going well, coding is well commented. We have a base down with quite a bit of the earlier
documentation like requirement specifications have been added.

Status in regard to the points above:

We think the effort in writing and making a base for the final report was a good idea, because
now, while we are working to get all the code finished for our soft deadline the 1.may we are
having doubts we will be entirely done with the coding. This means we will have to take
some of the time estimated to work on the rapport, but since we are so well started with that
at the time, the group is overall not concerned with time.

Opportunities or problems:

After finishing the last requested programming game and requesting tasks from
Vitensenteret to use for the game, we were meet with some minor confusion, as they are
unable to provide tasks in the wanted format for our firebase solution. Therefore the game
will be left without any additional tasks to be solved, but have the functinalyty to add this data
at a later time when Vitensenteret has time to make these tasks fit the format in firebase.

Motivation:

Teamwork, work environment and organization: Team works excellent together. No problems
so far.

Relationship statuses: Everyone works together, no bad vibes or experiences in the work.

Contact with employer and mentor:

Contact and communication with mentor is going great.

Contact with Vitensenteret is good as well, there have been some miscommunication and
waiting on them gathering information, which has slowed the projects progress somewhat,
but overall it has been good. And when communication first is established, it is good.

G Meting Minutes

128

29.11.2022 Meeting with employer
Team Members present: All

Topic: Get a feel for the task
Summary: The group met with Gavin and discussed expectations around the task.
The group was led around the area and got a private tour of the center.

12.01.2023 Internal planning meeting
Team Members present: All

Topic: Planning
Summary: The group agreement and rules were constructed as well as an overview
of the schedule which the group will follow through the semester. The group decided
to use the Scrum development method. In addition the timesheet was constructed
and explained to all members.

17.01.2023 - 25.01.2023 Code Framework
Team Members present: All

Topic: Planning
Summary:
Flutter (Dart):
adv: Google, performance, Hot Reload, backwards and forwards compatibility,
documentation
disadv: ui not as good as native apps, new(some functions are in early stages of
development), apps are “large”, learn a new programming language

Xamarin (.NET):
adv: microsoft supported, fast testing performance, good UI customization, near
native, good documentation
disadv: “large” apps, overhead, deprecated
MAUI (.NET):
adv: evolution of Xamarin,
disadv: new (less documentation), unstable with larger applications, no Linux
applications

React Native:
adv: largest community, small app sizes,
disadv: html

Consulted Mariusz about whether to use Flutter or MAUI. His response was that he
had used Flutter, which he liked but not MAUI which he seemed more skeptical of.
He recommended that we create simple hello world applications in both frameworks
and compare them.

We created some simple applications using both frameworks and found that flutter
was easier to use than we expected while MAUI was a lot like using kotlin to develop
a native android app. Unfortunately due to the lack of Linux support meant that it
would be a lot slower to test the app for those in the group who use Linux as their
operating system meant they would have to emulate the app on an android device.

Malin liked flutter.

Sources relevant for this meeting:
https://devathon.com/blog/flutter-vs-or-and-xamarin/
https://www.trio.dev/blog/xamarin-vs-react-native

17.01.2023 Meeting with Mentor
Team Members present: All
Meeting with: Frode Haug

Topic: First meeting, and expectations for the project
Summary: An introductory meeting where Frode presented a couple documents for
the group to fill, like the group rules, requirement specifications etc. In addition,
expectations were discussed on the role Frode will occupy as our mentor and guide
for the process first and foremost.

18.01.2023 Work Session
Team Members present: All

Topic: Work on project plan
Summary: Further discussions on which technology to use for the development of
the mobile app. Gantt chart was constructed. Worked on a project plan.

20.01.2023 Meeting with Vitensenteret
Team members present: Philip and Malin
Meeting with: Gavin Robb (Vitensenteret)

Topic: Setting constraints and expectations, access to tools
Summary: Contract signed, no NDA needed. Discussed impact goals, and the
constraints we had around the scope of the project. They would prefer the app to
have interactive games. Establish a meeting schedule of every two weeks, precise
dates and times will be discussed over mail. Access to the database and code from
the previous ticket solution will be sent by mail. The general timeline of the
development was talked about, as well as our choices of technologies.

24.01.2023 Meeting with Mentor
Team Members present: All
Meeting with: Frode Haug

Topic: Status Meeting
Summary: Got the signature from Frode on important documents.

24.01.2023 Work Session
Team Members present: All

Topic: Planning
Summary: Polished project plan. Made the first iteration of use case diagram as well
as the domain model.

25.01.2023 Work Session
Team Members present: All

Topic: Planning
Summary: Delivered project plan. Worked on requirement documentation. Finished
use cases as well as domain model. Decided on the use of Flutter over Net.Maui.

26.01.2023 Work Session
Team Members present: All

Topic: Planning & Setup
Summary: Received project plan from Mentor with some comments, discussed
briefly in the group about them. Decided to improve the project plan after the next
scheduled meeting with the mentor. Looked into the database that Vitensenteret has
on Firebase, but was not able to gain access due to two factor authentication.

31.01.2023 Work Session
Team Members present: All

Topic: Planning & Setup
Summary: Setting up a work environment on all computers, however having some
issues with one of the laptops. Worked on the contents for the requirement
specification.

31.01.2023 Meeting with Mentor
Team Members present: All
Meeting with: Frode Haug

Topic: Receive feedback on project plan and wireframes

Summary: Received feedback on project plan, as well as wireframes. Feedback was
generally good. Discussed use of flutter over other methods.

01.02.2023 Work Session
Team Members present: All

Topic: Planning & Setup
Summary: All temembers have flutter running on their computers. Git has been
established as well as branches for testing. A physical wireframe is prepared for the
meeting with the employer. Overleaf/Latex was set up for the final report, and a
simple template was made. Rewrote project plan in accordance with the feedback
given. Worked on requirement specification.

02.02.2023 Meeting with Vitensenteret
Team members present: All
Meeting with: Gavin Robb and associates (Vitensenteret)

Topic: Showcase wireframe and current application design. Gain access to the
database.
Summary: In summary, Vitensenteret was mostly happy with the application. they
had the following points to say:

● Want more languages than norwegian. Support should be developed for the
English language.

● No need to develop the ticket system for anything other than a yearly card.
Other options have a button which links to their webpage.

● The user needs to upload a picture of themselves when creating a profile.
(Our original idea was to allow them some default avatars to choose from).

● The page where the user shows their valid tickets needs some form of
animation so that it cannot simply be screenshot and edited to be used by
another person.

● Instead of simply an admin, split it in two admin classes, an employee and an
admin. Employees can see the database and generate codes for gift cards,
but only admins can change the contents of the database.

● Instead of names, use icons. They want the blog to not be named blog.
Suggestions: “Viten, Vitenbrev, Nyhetsbrev”.

● Wish for more focus on games, although the group developing was adamant
that the development of game functionality will not be prioritized over the
ticket system. They suggested adding the following games: “Hanoys tårn,
tangram, daglig sudoku”.

02.02.2023 Work Session
Team Members present: All

Topic: Planning & Setup
Summary: After the meeting with Vitensenteret, and all members have gained
access to the database, we discussed how to add the functionality needed to this
database. Charts will be developed next week.

07.02.2023 Brief Update Meeting
Team Members present: All

Topic: Planning & Setup
Summary: Sprint start, issues added are making the charts for the database, doing
some GDPR research, and generally use of flutter and attaching it to the database.

09.02.2023 Brief Update Meeting
Team Members present: All

Topic: Planning & Setup
Summary: Finished database design as well as requirement specifications.
Connected the application to the database in firebase.

14.02.2023 Meeting with Mentor
Team Members present: All
Meeting with: Frode Haug

Topic: Receive feedback on requirement specification
Summary: Received feedback on requirement specification, generally good, but
some reformatting was needed, as well as some additional content.

14.02.2023 Brief Update Meeting
Team Members present: All

Topic: Setup
Summary: Made connection to database for login for users as well as creating users.
Research made on payment solutions. Wordle game basic functionality made.

15.02.2023 Work Session
Team Members present: All

Topic: Working
Summary: Delivered status rapport, started working on editing req spec.

21.02.2023 Work Session
Team Members present: All

Topic: Working
Summary: Working on editing req spec. Make a ticket for sessions after the user logs
in. Continued work on blog functionality. Testing to get the app on a physical phone.

21.02.2023 Meeting with Mentor
Team Members present: All
Meeting with: Frode Haug

Topic: Status Meeting
Summary: The group got some feedback in regards to the statusrapport, and
updated mentor on current standings.

27.02.2023 Emergency Group Meeting
Team Members present: All

Topic: Changing requirements from what was agreed upon with Vitensenteret
Summary: After receiving an email from our employer at Vitensenteret, detailing the
situation, we were informed that they do not require payment systems in the
application. However, removing this from the workload means that the workload will
be substantially lessened, and the group is worried that the grade may suffer if we
remove the plans to implement the payment systems. Additionally. Since the
message from Vitensenteret was given so late, changing the design of the
application to implement something with the same workload as the payment
systems, would be too much work, since we would not only need to program it, but
also design new systems, have a new research phase and so on. Our plan so far is
to discuss this problem with our Mentor, and then have a meeting with Vitensenteret
this coming Thursday.

28.02.2023 Mentor meeting
Team members present: Philip and Malin
Topic: Changing requirements from what was agreed upon with Vitensenteret

Summary: Continue status quo
Mentor suggests that moving forward with the original idea will be the best move. At
this point in time removing this much will have a significant impact on the finished
product, and it is too late to begin on something new. Frode will also speak with Tom
since he has more to do with communication with task givers, we will get feedback
on this conversation on Thursday. For now we resume work as usual.

02.03.2023 Meeting with Vitensenteret
Team members present: Philip, Malin and Gavin
Topic: Changing requirements from what was agreed upon with Vitensenteret

Summary: While the representative, Gavin, was understanding that removing the
ticket purchasing system would lead to a much smaller bachelor thesis, he also
stated that there are a couple problems with the proposed solution that we had
gotten approved by him. During this meeting we were shown the ticket purchase
system in action and came to learn that the accountant was working on gathering all
these systems into one solution, and by adding our phone application solution to this,
we would again be adding to the numbers of payment systems.

Additionally the use of Vipps in the solution was not wanted, as that would add a lot
of work to keep track of all expenses and income. A followup with Vitensenteret was
scheduled next week.

07.03.2023 Work Session
Team members present: All
Topic: Get everyone updated on each other's work

Summary: Briefly showed off work that has been done and the progress made.
Furthermore the group discussed last week's issues around Vitensenteret changing
the requirements for the application. After this work commenced on each of the
assigned tasks for each member.

07.03.2023 Meeting with Mentor
Team members present: All
Topic: Followup up on last week’s issues

Summary: We brought our mentor up to speed and discussed the future of the
bachelor task. Furthermore we discussed that if more issues presented themselves,
to contact and discuss the issues with Tom, but we also came to the conclusion that
it seems we are working things out with Vitensenteret.

09.03.2023 Meeting with Vitensenteret
Team members present: All as well as Gavin and Hanne, Accountant, from
Vitensenteret.
Topic: Discuss payment solutions

Summary: We discussed our grief with the loss of implementing a payment system,
and were able to be updated on what platforms Vitensenteret is currently using, as
well as how they are planning on using the payment systems in the future as they
are currently in the act of gathering their various payment systems. They are
primarily using something called duell, and when we did some brief research we

discovered that duell has an api that it's possible for us to use to connect to,
therefore fulfilling the groups want to integrate a payment system, and also
Vitensenteret wish to keep what they have.

16.03.2023 Work Session
Team members present: All
Topic: Work session

Summary: We continued work on our designated tasks. Progress was made on the
game. pair programming was utilized for working on the ticket page for the app.

21.03.2023 Work Session
Team members present: All
Topic: Work session

Summary: We continued work on our designated tasks. The gamelogic is finished for
hanoi's tower, continued pair programming on the ticket page for the app.

21.03.2023 Meeting with Mentor
Team members present: All and Frode
Topic: Followup up on last week’s issues

Summary: We went over the discussion we had with Vitensenteret about the
payment systems, and the following online communication we have had with them.
We gave updates on our designated issues.

22.03.2023 Work Session
Team members present: All
Topic: Work session

Summary: We continued work on our designated tasks. Working on fetching the blog
posts from the database and the UI for the ticket page as well as the hanoi's tower
game.

28.03.2023 Work Session
Team members present: All
Topic: Work session

Summary: We continued work on our designated tasks. We pushed Hanoi's Tower
game to the main branch and merged that in, as well as working on payment
solutions and cleanup.

21.03.2023 Meeting with Mentor
Team members present: Maling, Philip and Frode

Topic: General update

Summary: Again this meeting was spent going over recent developments and
showcasing further work.

30.03.2023 Meeting with VI
Team members present: All and Gavin.
Topic: Discuss payment systems and showcase progress

Summary:This meeting we showcased our progress to Gavin. At this stage we have
the functionality down in many areas, like the profile, tickets and games, as well as
rudimentary blogs. We asked for some resources, mostly in regards to gaining
access to Vitensenteret account at Vipps, as well as some assets for the games, like
questions and solutions they want present in the games.

30.03.2023 Work Session
Team members present: All
Topic: Work session

Summary: We sent the required information to Vitensenteret to gain access to their
Vipps account. Malin continued working on the admin page for the tickets, Philip
worked on Vipps, and Susanne is writing documentation.

12.04.2023 Work Session
Team members present: All
Topic: Work session

Summary: Reprioritized some tasks and discussed our change of developmental
methods.

18.04.2023 Work Session
Team members present: All
Topic: Work session

Summary: The games on the app are nearly finished, and we worked on attaching
them to firebase.

18.04.2023 Meeting with mentor
Team members present: All and Frode
Topic: Update

Summary: We updated him on the current development with payment systems,
where Vitensenteret asked us to use Stripe. In addition to this we showcased our
games, which at this point are functionally done and had him test them.

20.04.2023 Work Session
Team members present: All
Topic: Work session

Summary: Started deploying in code testing, and developed payment systems for
the app with a minor breakthrough in being able to call it to the phone.

25.04.2023 Work Session
Team members present: All
Topic: Work session

Summary: Working on blog functionality and admin pages. Still continuing
development on payment systems.

25.04.2023 Meeting with Mentor
Team members present: All & Frode
Topic: Status meeting

Summary: Presented current progress and told mentor that it is unlikely we will get to
publish the application due to a couple reasons, such as the indicicieness of
vitensenteret.

27.04.2023 Meeting with VI
Team members present: All & Gavin
Topic:Update on current application

Summary: The group presented the application to Gavin as it is and gave some
insight to development. We agreed to leave the programming game as it is, and
discussed the development of a user manual for the application such that any users
of the application, in particular those who work at Vitensenteret will have an easy
time looking anything up in the scenario in which they would need to.

We also went over how we will not be publishing this application, but offered further
development options for Vitensenteret and they seemed pleased at this. Furthermore
this documentation on the further development will be added into the project as one
of the final chapters, as per the report requirements.

02.05.2023 Work Session
Team members present: All
Topic: Status meeting

Summary: We picked up some of the remaining code, aiming to finish it off. We
managed to finish the blog and are very close with the rest of the code. We also

decided not to develop the notification systems, as it will be too much to set
ourselves into, after our soft deadline to finish coding.

02.05.2023 Meeting with Mentor
Team members present: All & Frode
Topic: Status meeting

Summary: We showed the process since the last meeting, the blog functionality is
working, and discussed the fact that we dropped notification systems. In truth we
have added more than originally planned so the group feels secure in the amount of
work done.

04.05.2023 Meeting with VI
Team members present: Malin, Philip and Gavin
Topic: Showcase App

Summary: We showed the application as it is now. The application was done, and no
issues were found.Gavin tried out different functionalities and the flow in which he
navigated was smooth without much issues. The application proved intuitive to use,
and we received much positive feedback from Gavin.

10.05.2023 Internal Status Meeting
Team members present: All
Topic: Status meeting

Summary: We went over what code is still not finished and made a plan to finish
what is needed. In addition to this we went over the progress of the rapport at this
moment. Most of the structure is done, with the earlier segments fleshed out. As it
stands we are about halfway with content, however we have quite a bit of text written
elsewhere, so a bit of the work is simply putting the pre-written texts and snippets
where they fit into the final rapport. We are aiming to have a more substantial piece
by Friday so that we can send it to our mentor to have him review it.

12.05.2023 Work Session
Team members present: All
Topic: Work Session

Summary: Continued development to get those final small things together, as well as
catching everyone up on the report so far.

15.05.2023 Meeting with Mentor
Team members present: All & Frode
Topic:Feedback on report at this time

Summary: We delivered our report as it is at this time and got some feedback on
how to improve it. Most of it was structure wise.

15.05.2023 Work Session
Team members present: All
Topic: Work on Report

Summary: We worked on finalizing the code, making it more readable.In addition to
this we worked on the report.

19.05.2023 Work Session
Team members present: All
Topic: Work on Final Report

Summary: Today we worked through our to-do list and went over everything that is
still unfinished, at this time we are on route to be done. Most of the content is done,
although, some is still missing. We agreed to have a meeting on Sunday to go over
the thesis together before we deliver.

21.05.2023 Work Session
Team members present: All
Topic: Delivery

Summary: We read over the report and made some final edits. After this we
compiled everything together using the resources NTNU specified to fit the title
screen etc and uploaded it to inspera.

141

H Time Chart

Figure 56: Time Chart

142

I Wishes from Employer

Følgende er listen med ønsker som vi fikk fra bedriften i november da vi besøkte dem.

VI App

Innhold

-Info -Vitenskapelig prinsipper relatert til utstillingene -Spill - tankenøtter, kan makecode
legges i? Lage egne spill? Gjør appen gøy å ha/bruke for voksne og små. -”Hva skjer”
- push varsling. Eventer og rabatterte dager osv. . . Vi må ha mulighet til å sende de ut.
-Årskort - mulighet for å ha det i appen. Bilde av personen. Må være mulig å vise det på
en pc, f.eks. ved glemt telefon. Utgåtte årskort må være synliggjort. -Bluetooth beacons
/ QR koder på senteret?? Forklaring av installasjonene. Kan det brukes for å ha flere
språk på appen for utenlandske besøkende? -Forhåndskjøp av billetter? Visit Innlandet. . .
Kjøpr av årskort? Kjøp av årskort som gave. Hvordan løses det? Kan vi produsere QR
koder som kan gis i kort som kan trigge et ferdig betalt innlogging til årskort løsningen?
-Astronomi? Hvilke stjerner, planeter er synlige nå? -Bestilling av pizza(Pizzabakeren)
Gjennom appen? -Parkering(Easypark) gjennom appen? -Sjekkliste? Har du fått med deg
alle utstillingene ved å skanne QR koden? -Designhåndbok for Vitensenteret

Fremdrift/Sikkerhet

-Det må utarbeides en fremdrifts plan med tanke på å vedlikeholde appen. Hvem gjør
det? Sikkerhet? Oppdateringer? -Sikre databasen. Bruke Firebase?

J User tests

143

User Tests

The following is a user test designed to test the application that has been developed by our
team. The application was developed as such following a walkthrough of a paper model with
the employer at Vitensenteret, and the feedback from there has been taken into account
when creating the application that this user test will test.

Testers:
Firstly about our testers. All testers were contacted by the group and consist of a variety of
people, including boomers and employed IT personel. They were all informed that answering
and performing this tests will let us store their age and occupation. Made up names have
been used to comply with the GDPR.

The tests and questions:
Start up the application and turn it to the user, to begin with, no user will be signed in, and
they will have the basic knowledge that the application they are testing is developed for
Vitensenteret, and you can get news as well as the ability to purchase tickets for entry.

Allow the tester to familiarize themselves with the application before giving them any
questions. The user desides when they are ready to commence.

Ask the user to see what the most recent news are in relation to vitensenteret.
Ask the user to see what tickets they have (at this point they will discover they need
to log in, in which the questionnaire will provide credentials).

At this point, we will make the user an administrator. Let them familiarize themselves if they
wish before commencing.

Ask the user to make a blog post.
Ask the user to find a specific person by the name of Tone.

At this point, functionality has been tested, the following questions are in regards to the feel
of the application and ease of its use.

1. Was the application easy to navigate? Was there at any point a time where you did
not know where to go?

2. Did you find something in the application that you did not expect to find? Did you
notice or try any of the games?

3. Do you feel the admin pages flow naturally and have any functionality that may be
needed?

4. Would you download this app if you were a frequent user of Vitensenteret? And if you
would only download it for the ticket system, do you feel that the games included in
the app makes it more likely for you to keep the app?

5. Anything else you would like to add?

Tester: Askeladden

Name: Askeladden
Age: 58
Occupation: CEO of own company

Time to familiarize themselves: 16.45 minutes
Time to perform normal tasks: 36 seconds
Time to familiarize themselves with the admin page: 2.12 minutes
Time to perform admin tasks: 4.07 minutes

Answers to questions:

1. The app was easy to navigate. Although a manual or something akin to it would be
nice for the admin tasks.

2. Nothing out of the ordinary. I played all the games, but they were very difficult, more
hints would be appreciated.

3. Could not see if a ticket was added despite there being a very obvious ticket adding
button.

4. The games added some flavor, but the tickets would hav ebeen enough to keep the
app downloaded.

5. The games were fun, especially once you understood how to play them.

Any other comments about the performance of the tester:

The tester took a long while to familiarize themselves with the test to begin with, including
playing all the games and trying multiple of the “tasks” that they were intended to perform
later. This made their time faster than anticipated, however it shows how easy the app is to
use, once it has been learned.

Tester: Gulli

Name: Gulli
Age: 61
Occupation: Senior advisor.

Time to familiarize themselves: 1.22 minutes
Time to perform normal tasks: 1,05 minutes
Time to familiarize themselves with the admin page: 1 second
Time to perform admin tasks: 2,27minutes

Answers to questions:

1. There was a bit of a disconnect between what the tester expected to do when
undergoing the task, as they expected to purchase a ticket and not perform any of
the admin tasks.

2. The wording of the tasks were a little confusing in regards to the word “blog” as the
tester was confused to how they could make such a publication. The tester did enter
one of the games, but swiftly left, and did not think much around it. But in reflections
mentioned that the games are a nice add-on.

3. The admin pages were nice.
4. The tester would download the app.
5. It was very neat and the overview is very nice. If you are not sure if you want to go to

vitensenteret, downloading the app might convince you to travel and experience
vitensenteret. You could change your profile and such.

Any other comments about the performance of the tester:

The tester was swift at their tasks, however got a little stuck trying to make a blog post, could
not find the button as it is partially hidden behind a debug banner.

Tester: Hjorten

Name: Hjorten
Age: 65
Occupation: Advicer

Time to familiarize themselves: 15,56 minutes
Time to perform normal tasks: 1,32 minutes
Time to familiarize themselves with the admin page: 1 second
Time to perform admin tasks: 3.44 minutes

Answers to questions:

1. The app was easy to navigate.
2. The games were there. They were fun.
3. The admin pages flowed naturally.
4. The tester would download the app.
5. The applikation is nice to have so that you get a connection to the location through

the app. It is possible that you would visit the location more often because of the app.
Maybe through new games or blog posts.

Any other comments about the performance of the tester:

The tester took their sweet time learning the application before venturing on with the tasks.
This led to them discovering and playing the games, as well as getting a good feel for the
application. Later on when they were performing the tasks, the tester got caught up with the
specifics of what to write in the blog post and spent some time on that.

Tester: PkmnFan

Name:PkmnFan
Age: 30
Occupation: part time student, part time employed.

Time to familiarize themselves: 8.12 minutes
Time to perform normal tasks: 35 seconds
Time to familiarize themselves with the admin page: 4.26 minutes
Time to perform admin tasks: 40 seconds.

Answers to questions:
1. Overall the app was allright to navigate but the usage of red for the admin pages for

the back button was not the right choice. Should instead have a back button top left.
It should be more apparent how to get to the admin blog page.

2. Didnt expect to find games and were plecantly surprised. It can be an incentive to
download the app, especially since there wont be any adds ruining the game
experience.

3. The buttons on the admin blog page were not nice to look at. Very easy to make a
mistake when handling tickets.

4. Yes. Especially for buying tickets, so you dont have to interact with anyone.
5. Perhaps check whats in in regards to style, and update the app accordingly.

Any other comments about the performance of the tester: The etster took some time getting
to know the app, and when doing the tasks did them very fast. They platey through the
games, and created tickets, users and blog posts.

Tester: FlyingEagle10000

Name:FlyingEagle10000
Age: 24
Occupation: part time IT student, part time employed as IT support.

Time to familiarize themselves:1.22 minutes
Time to perform normal tasks: 15 seconds
Time to familiarize themselves with the admin page: 36 seconds
Time to perform admin tasks: 50 seconds

Answers to questions:
1. Due to the letters being small, it was hard to make out details in the blog posts. They

remarked finding the button to click to get to the admin page was difficult.
2. No, errormessage when logging in, if credentials are wrong. Expresses devestation

that they didn't try the games.
3. Intuitive to use, however the tester has a background in administrative IT.
4. No, they dont bother to download apps often. They don’t want to be distracted by

games on the phone.
5. Fine.

Any other comments about the performance of the tester: The tester focust on doing it as
fast as possible, and missed out on some of the details, But their speed showed that the app
was intuitive to navigate and learn for someone who has never used it before. In addition to
this, this tester has poor eyesight and struggled to see some of the letters in the blog post,
which they commented upon above.

Chart based on performance, with age as the defining feature.

K Group rules

151

Rules of the Group

● Each member of the group should aim to work for approximately 30 hours per
week. In the case where the total is repetitively below 30 hours, a meeting will
be held amongst the group members to discuss causes and solutions.

● The group will host one physical meeting each week where it is expected that
all members are present. Should a member be unable to attend this meeting,
they should notify the other members of the reason in advance. (If all the
group members agree, the meetings can be scheduled less often, for instance
biweekly).

● All the hours spent working towards this project should be written down.
These time logs should be available in the final delivery.

● Each member is responsible for showing up to scheduled meetings with the
group, the mentor and the employer.

● Group members are obligated to warn the group if they believe themselves,
another group member, or the group as a whole is starting to fall behind so
measures can be taken to avoid losing too much time overall.

● In the case of disagreements within the group there are three levels of
measures to be taken. All positives and negatives are to be weighed together
in a discussion, if no decision is reached the mentor can be involved to get
some outside perspective. Last resort is putting it to a vote.

● If a group member breaks several rules or repeatedly breaks rules it has to be
brought up and escalated in the following order:

○ Discussion with the entire group
○ Written warning with cause, measures to fix the issue(s) and potential

consequences
○ Conversation with mentor and the entire group
○ Written exclusion from the group (no later than four weeks before the

delivery date)

Date:

__

Signed:

__
Malin Foss

__
Philip Morud

__
Susanne Skjold Edvardsen

L Requirements specification

154

Requirement Specifications

Functional requirements:
- Buy annual pass (Admins can manage these)

- Read info about Vitensenteret

- Register/log in

- Play a game

Summary:

The main purpose of the app is to serve as a ticket purchasing system, the user

should be able to purchase yearly memberships. For this to be possible users should

also be able to create a user and log in to view their tickets. With or without logging

in users should be able to read news from Vitensenteret in a blog format, play brain

teaser games, receive notifications from the app and change app settings. An admin

user should be able to do all this, with the addition of being able to make blog posts

and notifications. In addition to this, an admin shall be able to manage purchased

tickets from other members, like removing, adding or assigning them.

Frontend:

To use this application we are developing an application that can be downloaded for

phones, both android and apple devices. Additionally we are making an interface

that is compatible with a desktop so that those who are working at Vitensenteret can

use their computers to gain access to the application, as well as the more

administrative parts of the page.

Backend:

The application will be connected to a database in firebase, as well as having

general updates and push notifications through this system. Flutterfier is the

interface between flutter, the programming language that the group is utlizing to

develop the app, and firebase.

Use Cases:

Use Case Descriptions:

Action: Post blog

Actor: Admin

Goal: Make a publication in the form of a blog

Description: The admin navigates to their profile icon, and taps it. This will

open an additional menu, where options, tickets etc are

available. On this menu there is an option to create a blog post,

which the admin can press. They will then be presented with a

simple blog creation page, where they input the tittle, content,

and potentially image with the blog. Additionally there is an

option to create a notification at the publication of the blog,

which the admin can cross off on a yes or no based on the

situation.

Action: Manage Database Contents

Actor: Admin

Goal: Remove Post from database

Description: The admin will be on the desktop version of the app. They will

navigate to the button with posts “Innlegg”. Here they will be

presented with the option to search for the post they wish to

remove. After searching they are presented with a list of posts

that match the search criteria. Selecting the post that is the

target, the admin is prompted to hide it from the public, or

outright delete it. The admin deletes the post.

Action: Make account

Actor: Unregistered User

Goal: Create a new account with personal identification

Prerequisite: The user does not already have an account.

Aftermath: The user has made an account.

Description,

normal flow:

The user clicks on the “register user” button and is brought to a

page where they are prompted to input a profile picture, name,

email and password. If the input is invalid the user will be

prompted again. When the user has entered valid data, a new

user is created in the database and the user is automatically

logged in.

Description,

alternative flow:

In the case where the user is logged into an account they dont

want to have, they will navigate to their usertab on the right.

This will open the profile of the user, where there is a button to

log out. After this is completed, the user can follow the normal

flow description.

Error situations: Errors that may happen, or stop the progression is if the user

has entered credentials that is registered to another user, or if

they mistype something. This includes the likes of: email,

name, password, or picture is the wrong format.

Another error that may stop this is if the user has a poor

connection to the database.

Action: Log in

Actor: Registered User

Goal: Log in on the registered account

Prerequisite: The user has an account registered to them already.

Aftermath: The user has logged into the app with their credentials.

Description,

normal flow:

The user clicks a “Login” button and is brought to a page where

they are prompted for email and password. If either email or

password are invalid the user will be informed of such, and will

have to reenter valid information. After they have logged in they

are brought to the blog and the icon showcasing the profile will

be updated with their profile image.

Description,

alternative flow:

If the user does not have an account, they will have to create

one, following the use case example: Make account.

Error situations: Errors that may happen, or stop the progression is if the user

has entered credentials that is registered to another user, or if

they mistype something. This includes the likes of: email,

name, password, or picture is the wrong format.

Another error that may stop this is if the user has a poor

connection to the database.

Action: Receive push notification

Actor: All Users have access to this action

Goal: Receive an update from Vitensenteret

Prerequisite: Their phone is turned on, connected to some sort of internett

and has the app downloaded.

Aftermath: The user has a notification on their phone from the app.

Description,

normal flow:

While the user is not actively using the application they receive

a notification from the app, which may prompt them to open the

app to gain access to more information through the blog.

Description,

alternative flow:

In the cae where a notification is not present on the phone, the

only way to receive the update is to go into the app, and go to

the blog page, this page is also the homepage. Here the

notification will be displayed as a blog post.

Error situations: The notification does not appear, or the content of the

notification is wrong. Another error that may stop this is if the

user has a poor connection to the database.

Action: Buy Ticket

Actor: Registered User

Goal: Purchase a yearly ticket

Prerequisite: The user is logged in, and has some way or means to

purchase the ticket.

Aftermath: The user now has a yearly ticket in their name, on their phone.

Description,

normal flow:

The user navigates to the ticket button. They will then be taken

to a page which showcases any purchased tickets, if there is

any to showcase. There is then a plus icon they can press next

to the tickets. Pressing this button slides up a new menu with

the options “Buy Ticket” or “Use Code”. In this case the user

navigates to “Buy Ticket” and is sent to another page. They are

prompted with the option of “day ticket” or “Yearly Ticket” and

select the later option. The price will be displayed and

underneath the price will be an option to make this ticket a gift.

Without pressing the gift button the user navigates down to see

that there are multiple payment options, they choose Vipps,

and are then forwarded to that application to finish the

payment. Once that has been processed the ticket page will

show the updated yearly ticket that was purchased.

Description,

alternative flow:

The user goes to buy a ticket by pressing the ticket button only

to discover they already have one. So they dont need to buy

another.

Error situations: The user chooses the wrong kind of ticket, or the wrong kind of

payment method and has to contact Vitensenteret to get it

resolved.

The user chooses the ticket to be a gift, even tho it isnt one.

The payment handing was flawed and the payment was not

processed.

Error with the connection to the database, or lacking internett.

Sequence diagram:

Product backlog:
The product backlog is presented physically at all the scrum sessions. This backlog

is created and maintained on a reMarkable.

On this reMarkable, the group notes down all elements on the backlog and updates it

accordingly on each scrum. All the tasks that are relevant for the coding aspects of

the project, for instance developing registration or working with databases are

subdivided and added into the GitLab as Issues to be referenced with each commit

to the repository.

This is the content of the backlog as of 01.02.23:

Administrative:
- Requirement specification

- Status report x3 to mentor

- Final report

- Licence for publishing to App Store and Google Play Store

App:
- Login

- Registration

- Create blog entry

- Display blog entries

- Delete blog entries

- Payment system

- Vipps

- Visa

- Gift code input

- Bottom bar

- Profile page

- Settings

- Game page

Other:
- Gain access to database

- Backend connection to database

- GitLab CI pipeline

Domain model:

This domain model was created to show how everything is connected in the

application. The entrypoint used in this brief explanation will be the unregistered

user. We see that this kind of user has no information stored on themselves, and this

is meant to represent users who may only use the application to read blogs, play the

game, or receive notifications. The unregistered user can then register their

information and become the registered user, which inherits all possible actions from

the unregistered user. This user also unlocks the ability to purchase tickets in their

name. Furthermore there are two additional users, this is the employee and the

admin. Employees can see the contents of the database, like tickets purchased, and

their owners, but admins have the ability to manage this database. Admins have the

ability to manage tickets that have been purchased, this includes removing a ticket

from a user, or giving them one, for instance in the case where a user may have

accidentally used an activation code on themselves instead of gifting it. The admin is

also able to upload publications, which can either be a simple notification or a blog.

In some cases the creation of a blog may also create a notification.

Operational requirements:
- Android API level 31

- iOS 15

- Windows 10

- macOS Catalina

- Firebase

The app is being developed for both Android and iOS. For Android the target API is

31, the current standard target API for Android apps (Google, Unknown). For iOS we

aim for iOS 15, which is currently the version in use by 89% of all iOS devices on the

App Store (Apple, Unknown). We will also develop the administrative part of the

application for desktops only used by employees at Vitensenteret Innlandet. For this

we will use a minimum of Windows 10 and macOS Catalina (10.15). The database in

use will be the existing Firebase database, which will keep user data as well as ticket

data.

Safety and misuse handling:
- User data has to be safely stored

- Safe to buy a ticket

- Hashing and encrypting

- Tickets can only be used by the owner or gift receiver

- Different security levels for users and employees at Vitensenteret

Since the app will be handling sensitive user data it has to follow standards and laws

around that, like GDPR. All passwords have to be properly hashed and

communications with the database encrypted. This will ensure that the users and

their tickets are safe. Tickets and gift codes should be unique and only able to exist

one place at a time, otherwise duplication and theft can happen. It should not be

possible to use someone else's ticket to gain access to Vitensenteret. Buying tickets

should be safe, and we will use existing systems for this. To ensure the integrity of

the app, access to features will be restricted by security levels. At least four security

levels are necessary; unregistered user, registered user, employee, and admin.

Testing
After each issue is completed, it is comprehensively tested by the one who

implemented the solution. Each developer has their own branch on the git repository,

and each scrum review, the group gets together to go over what has been

implemented and then push the changes to the main branch.

In addition to this there are some testing pipelines. TBA malin.foss00@gmail.com

Licensing
The product will be developed by us, the student group at NTNU as a bachelor's

thesis. The contract that we signed with Vitensenteret (Add which appendix the
contract is) states that we retain no rights to ownership of the final product, and can
only use the content that we created as a way to show our skills to potential future

employers. This means that Vitensenteret has all rights to the software that we

develop during this course, for this thesis.

Version updates
At the point in which we deliver our product and software to Vitensenteret and launch

it, we will no longer be responsible for the updrift of this software. Therein lies the

ownership transfer to Vitensenteret at the core of the agreement as with it comes the

responsibility to update the software and keep it relevant for the users at

Vitensenteret.

To make this task easier for Vitensenteret the code is written in modular steps which

makes it easy for other developers to continue work on the software. Our design

choices reflect this as well, as we deigned to have most other options like settings,

profile and such in another more expandable menu.

We have also written the code with this in mind, and as such it has been commented

and explained at crucial points in the code, what the different sections do. In addition

to this, Vitensenteret will gain access to all our developmental documents, like the

domain model, use case diagrams and furthermore can expand on these as they see

fit.

Storing personal data in accordance with GDPR

In the year 2018, the European Data Protection Regulation was applicable to all of
the members of the European Union (Intersoft Consulting, 2018). This General data
Protection Regulation, GDPR for short, ensures that the data stored on individual
people is not in any way used for malicious intents.

In the app that is being developed by us for Vitensenteret, it is a necessity to store
certain details about its members to obtain some functions of the app. Most of the
app can be accessed without the application storing anything about the user. What is
stored about the user, with the user not being a member of the app, and signed in,
are as follows:

● Progression or streak in the games app.
● If the app is idle, then the app will store in its cache what page the user was

most recently using, before leaving the app in its idle mode.

In relation to the definitions specified by the GDPR, personal data is the following:
“‘personal data’ means any information relating to an identified or identifiable natural
person (‘data subject’); an identifiable natural person is one who can be identified,
directly or indirectly, in particular by reference to an identifier such as a name, an
identification number, location data, an online identifier or to one or more factors
specific to the physical, physiological, genetic, mental, economic, cultural or social
identity of that natural person; “ (Intersoft Consulting, 2018, Art. 4).

Abstracting from this, we can say that the data stored about unregistered users are
not personal data, as the data cannot in any means recreate the persona they
originated from. Therefore this data can be stored without consideration to the
GDPR.

However, in the instance where a user will need to log into the account to gain
access to the other functionalities of the application, we will need to store the
following about the user:

● Name of the user.
● Email of the user.
● Password of the user.

The reason why the app needs to store this data, is because the app will provide a
paid service, and to ensure that only the user who paid for their ticket is using it, we

need to store this information about the user. And as by the definition by the GDPR
above, this clearly qualifies as personal data. This data, by the rules of the GDPR
needs to be the following:

● The user will be made aware that by creating an account they consent to
having this data stored about themselves.

● The user will be made aware that by deleting an account their personal data
will be wiped from the databases, and is unrecoverable.

● The data will be stored in secure locations, and sensitive data, like the
password, will be hashed.

● The data will not be processed in any other way than to ensure that the user
is who they claim to be.

Other principles in regards to the GDPR can be read following the sources to the
Regulation, however, the points listed above are those that have a concrete and
important factor in the development of this app.

Interface requirements:
- Easy to navigate, even for younger users

- Has to follow the design guide from VI

- Tickets should appear both for user and in the database

The design of the application will follow the design conventions as stated by

Vitensenteret themselves. In the early development of the application, the group

received a pamphlet with these design conventions, and it can be found in the

appendix.

The app itself has been designed for the most common use cases of the app, buying

tickets, seeing the blog and playing the little game. Other functionalities lay easily

accessible in a slide out menu. All these functionalities are placed in a bar on the

bottom of the screen for ease and reach. The design follows the common “Z”

pattern(Nick Babich, 2017), with an attention grab at the top, a scan of the middle,

and ending up at the easily accessible lower bar. For the blog itself, we utilised the

“F” pattern (Nick Babich, 2017) instead, as that is better suited for a more text

centralised design.

Sources(For the requirement specification):

Google (Unknown). Fetched from:

https://support.google.com/googleplay/android-developer/answer/11926878?hl=en (Date

24.01.23)

Apple (Unknown). Fetched from:

https://developer.apple.com/support/app-store/ (Date 24.01.23)

Nick Babich (Jun 16, 2017) Z-Shaped Pattern For Reading Web Content. Fetched from:

https://uxplanet.org/z-shaped-pattern-for-reading-web-content-ce1135f92f1c (Date 31.01.23)

Nick Babich (Apr 5, 2017) F-Shaped Pattern for Reading Content. Fetched from:

https://uxplanet.org/f-shaped-pattern-for-reading-content-80af79cd3394 (Date 31.01.23)

Intersoft Consulting (2018) General Data Protection Regulation GDPR Fetched from:
https://gdpr-info.eu/ (07.02.2023)

M Translated summary

171

Tittel: Viten i App /Knowledge in App / Knowledge in an App

Dato: TBA

Deltakere: Malin Foss, Philip Morud, Susanne Skjold Edvardsen

Mentorer: Tom Røise og Frode Haug

Oppdragsgiver: Vitensenteret Gjøvik

Nøkkelord: Programmering, mobilapplikasjon, Flutter, API

Antall sider: TBA

Antall vedlegg: TBA

Tilgjengelighet: Åpen

Sammendrag: Vitensenteret i Gjøvik, et høyprofilert vitenskapssenter, tok kontakt med NTNU med et

ønske om å gjøre noen av deres tilbud tilgjengelig på nettet. For å gjennomføre dette ble gruppen

enig om å utvikle en mobilapplikasjon sammen med et grensesnitt som kan bli brukt på enhver

datamaskin. Denne mobilapplikasjonen inneholder et billettsystem, en blogg og en samling av noen

enkle spill. Appen har fokus på en god brukeropplevelse og i tillegg gir internett

grensesnittet/grensesnittet administrative muligheter, som publisering og håndtering av innholdet i

appen og administrering/behandling av billetter.

Løsningen er en applikasjon skrevet/programmert i Flutter, i Android Studio, koblet til en database i

Firebase. Denne databasen bruker både lagringsmuligheter og en database for lagring/datalagring i

sanntid. I tillegg bruker applikasjonen en API som betalingsløsning. Appen har ikke blitt gjort

tilgjengelig på nettet ennå, men lite arbeid må til for å publisere den slik den er.

I løpet av utviklingsprosessen for denne appen ble det satt stort fokus på et profesjonelt arbeidsmiljø.

Vi brukte Scrum, Kanban og Git «issue boards» for å ha oversikt over alle arbeidsoppgaver, og vi skrev

sammendrag fra alle møtene gruppen deltok på/holdt.

Kilder for termer:

Interface – grensesnitt: https://www.termportalen.no/NOT/Grensesnitt_-281-29

N Design Handbook for Vitensenteret Innlandet

173

VITENSENTERET INNLANDET
DESIGNHÅNDBOK
MAI 2021

BAKGRUNN1

BAKGRUNN
Våren 2021 meislet Vitensenteret Innlandet ut en ny strategi og staket
ut en ny kurs fram mot 2024. Strategien ble oversatt visuelt, i form
av en ny visuell identitet som på en tydelig og enhetlig måte skal vise
hvem de er og hva de står for.

VISJON
Vi skaper moro med mening!

VERDIER
Leken, inspirerende og alltid aktuell

HOVEDMÅL
Hovedmålet for Vitensenteret Innlandet er å styrke realfagkompetansen
i hele Innlandet og vise at realfag er praktisk hverdagskunnskap
og en nøkkel til bærekraftig samfunnsutvikling.

VITENSENTERET
INNLANDET

LOGO2

VITENSENTERET
HOVEDLOGO

Logoen består av tre grunnformer, trekant, sirkel
og rektangel, som tilsammen danner ordet “VI”.
VI er forkortelsen for Vitensenteret Innlandet, som kan
føles stivt og noe tungt å kommunisere ut i sin helhet.
Formene er avrundet for å skape et nært og lekent
uttrykk.

Vitensenteret Innlandet er bevisst lagt vertikalt for
å skape energi og bevegelse, selv når logoen
presenteres i sin mest seriøse form. Fokus på merket
fremfor tekst, opprettholdes og forsterkes ved
å gi ordene likevekt.

VITENSENTERET
LOGO

Logoen kan benyttes med horisontal tekst.
Størrelsesforholdene beholdes fra den vertikale
hovedlogoen.

Teksten er plassert slik at den flukter med I´en
for å opprettholde bevegelsen og lekentheten
i logoen.

VITENSENTERET
STØRRELSER OG AVSTANDER

Det er laget et beskyttelsesområde rundt logoen
slik at den får den plassen den behøver for god
synlighet. Logoen til Vitensenteret Innlandet skal
alltid skaleres proporsjonalt.

Proporsjoner eller størrelsesforhold
kan ikke endres.

VITENSENTERET
HOVEDLOGO

Dette er hovedlogoen og det skal etterstrebes
å benytte denne varianten.

VITENSENTERET
HOVEDLOGO NEGATIV

VITENSENTERET
MERKE

Merket kan benyttes alene og i hele profilens
fargepalett.

TYPOGR AFI3

VITENSENTERET
FONTBRUK

OPEN SANS
Lorem ipsum dolor sit amet, consec-
tetuer adipiscing el i t , sed diam
nonummy nibh euismod t incidunt ut
laoreet dolore magna al iquam erat
volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tat ion
ul lamcorper suscipit lobortis nisl ut
al iquip ex ea commodo consequat.

L UC K I E ST G UY
R EG U L A R

Enkel, godt lesbar og tidløs. Nær og leken

VITENSENTERET
FONTBRUK

Lorem ipsum dolor sit amet, consectetuer
adipiscing el i t , sed diam nonummy nibh euismod
t incidunt ut laoreet dolore magna al iquam erat

V I E R A ST RO NAU T E R

FARGEPALETT4

VITENSENTERET
FARGEPALLETT

En glad og jordnær fargepalett til bruk på ulike områder, som snakker sammen.

PANTONE: 2227 U

CMYK: 40 / 0 / 20 / 0

RGB: 150 / 213 / 210

#96D5D2

PANTONE: 329 U

CMYK: 60 / 60 / 70 / 0

RGB: 31 / 85 / 59

#1F553B

PANTONE: 604 U

CMYK: 5 / 5 / 80 / 5

RGB: 233 / 215 / 79

#E9D74F

PANTONE: 20% Yellow U

CMYK: 0 / 0 / 20 / 0

RGB: 255 / 252 / 213

#FFFCD5

PANTONE: 2051 U

CMYK: 9 / 25 / 20 / 0

RGB: 228 / 193 / 187

#E4C1BB

PANTONE: 7627 U

CMYK: 10 / 80 / 80 / 10

RGB: 200 / 81 / 60

#C8513C

PANTONE: 322 U

CMYK: 80 / 40 / 50 / 30

RGB: 44 / 98 / 99

#2C6263

PANTONE: 614 U

CMYK: 9 / 0 / 20 / 0

RGB: 232 / 242 / 212

#E8F2D4

PANTONE: 577 U

CMYK: 30 / 0 / 60 / 10

RGB: 168 / 198 / 126

#F26F21

PANTONE: 3165 U

CMYK: 80 / 50 / 50 / 50

RGB: 35 / 68 / 73

#234449

PANTONE: 412 U

CMYK: 70 / 60 / 70 / 40

RGB: 68 / 71 / 62

#44473E

PANTONE: 7625 U

CMYK: 0 / 70 / 70 / 0

RGB: 243 / 112 / 83

#F37053

DEKORELEMENTER5

VITENSENTERET
DEKORELEMENTER
NATUR

VITENSENTERET
DEKORELEMENTER
TEKNOLOGI

VITENSENTERET
DEKORELEMENTER
MATEMATIKK

VITENSENTERET
DEKORELEMENTER
ENERGI

VITENSENTERET
DEKORELEMENTER
ASTRONOMI

SL AGORD6

V I S K A P E R MO RO M E D M E N I N G !

BILDEFILOSOFI7

VITENSENTERET
BILDEFILOSOFI
Bilder av glade barn og unge som skaper moro med mening.
Støyfilter for å skape litt “avstand” og opprettholde nysggjerrighet.
Varme og mindre metning. Bilder kan benyttes som entone-foto i respektive fargepalett.

IKONER8

VITENSENTERET
IKONER

DET ANBEFALES Å VIDEREFØRE STILEN SOM ER I BRUK OG UTVIKLE NYE ETTER BEHOV.

MATERIALBRUK9

VITENSENTERET
MATERIALBRUK

Det er mye farger og mange malte flater i Vitensenteret.
Bruk av ulike materialer til interiør og kulisser anbefales.
På denne måten vil også de fargerike flatene komme tydeligere fram.
Merke og dekorelementer kan benyttes som sjablon.

BRUK10

VITENSENTERET
EKSEMPLER PÅ BRUK
POSTALE TRYKKSAKER

Vitensenteret Innlandet
Brennerigata 1
2815 Gjøvik

vitensenteret.no

Are Bekkelund
Daglig leder

post@vitensenteret.no
+47 95 90 11 11

VITENSENTERET
INNLANDET

Vitensenteret Innlandet | Brennerigata 1, 2815 Gjøvik
vitensenteret.no

VITENSENTERET
EKSEMPLER PÅ BRUK
MAILSIGNATUR

Hei!

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam
erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate
velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis
at vero eros et accumsan et iusto odio dignissim qui blandit praesent
luptatum zzril delenit augue duis dolore te feu.

Med vennlig hilsen

Are Bekkelund
Daglig leder

are@vitensenteret.no
+47 416 71 137
vitensenteret.no

VITENSENTERET
INNLANDET

VITENSENTERET
EKSEMPLER PÅ BRUK
GENERELLE PLAKATER

MO RO M E D M E N I N G
Lorem ipsum dolor sit amet, consectetuer
adipiscing el i t , sed diam nonummy nibh euismod
t incidunt ut laoreet dolore magna al iquam erat

MO RO M E D M E N I N G
Lorem ipsum dolor sit amet, consectetuer

adipiscing el i t , sed diam nonummy nibh euismod
t incidunt ut laoreet dolore magna al iquam erat

VITENSENTERET
EKSEMPLER PÅ BRUK
DIVERSE GENERELLE ARTIKLER

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

MO RO M E D M E N I N G
Hos Vitensenteret Innlandet er det
meningen at al le eksperimentene skal
tas på og utforskes. Her kan du spi l le,
smarabeide, oppleve og undres over
sammenhenger og fenomener.
vitensenteret.no

J U N I
p l a n e ta r i e t

VITENSENTERET
EKSEMPLER PÅ BRUK
FACEBOOK

MO RO M E D M E N I N G

H VA S K J E R ?

B U R S D DAG S F E I R I N G

A P R I L
L A N D B R U K E T

MA R S
KO D E K L U B B

J U N I
p l a n e ta r i e t

LES MER ›› LES MER ›› LES MER ››

Har dere lyst på en aktiv og
engasjerende bursdagsfeir ing?
Bursdagsfeir ingene inkluderer mat og
drikke, is , gave t i l bursdagsbarnet og
fel lesopplegg med vår vitenvert.

BESTILL

VITENSENTERET
EKSEMPLER PÅ BRUK
WEB

VITENSENTERET
EKSEMPLER PÅ BRUK
INSTAGRAM

VITENSENTERET
INNLANDET

V I h a r
ko d e k l u b b

VITENSENTERET
EKSEMPLER PÅ BRUK
SPESIFIKKE PLAKATER

V I S E R PÅ DY R
Lorem ipsum dolor sit amet, consectetuer

adipiscing el i t , sed diam nonummy nibh euismod
t incidunt ut laoreet dolore magna al iquam erat

V I h a r ko d e k l u b b
Lorem ipsum dolor sit amet, consectetuer

adipiscing el i t , sed diam nonummy nibh euismod
t incidunt ut laoreet dolore magna al iquam erat

V I h a r E N E R G I !
Lorem ipsum dolor sit amet, consectetuer

adipiscing el i t , sed diam nonummy nibh euismod
t incidunt ut laoreet dolore magna al iquam erat

vitensenteret.no

V I E R A ST RO NAU T E R
Lorem ipsum dolor sit amet, consectetuer

adipiscing el i t , sed diam nonummy nibh euismod
t incidunt ut laoreet dolore magna al iquam erat Lorem ipsum dolor sit amet, consectetuer

adipiscing el i t , sed diam nonummy nibh euismod
t incidunt ut laoreet dolore magna al iquam erat

V I S E R PÅ fo r m e r

VITENSENTERET
EKSEMPLER PÅ BRUK
ANIMASJON OG LEK MED FARGEPALETT

VITENSENTERET
INNLANDET

VITENSENTERET
INNLANDET

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

vitensenteret.no

MO RO M E D M E N I N G

vitensenteret.no

aredesign.no

O Assets

214

P Backlog

216

Q User Manual

218

Brukermanual for Vitensenter Appen

__

Den følgende manualen er ment å gi en innføring i hvordan bruke Vitensenter-appen
som en ansatt ved Vitensenteret. Denne manualen forutsetter at programvaren er

installert og klar til bruk.

Introduksjon:
Denne appen er laget primært for brukere av vitensenteret, for at de lett skal ha en
oversikt over nyheter relevant til Vitensenteret. Den har også billettene for brukeren
her, samt noen spill. Vitensenter-appen har også unike muligheter for deg som er
ansatt. Denne manualen går først gjennom grunnfunksjoner som er tilgjengelig uten
å logge inn som ansatt, deretter går manualen over alle admin muligheter.

Blogg:
Bloggen er det første du ser når du åpner appen. Den ser slik ut:

For å navigere denne siden kan du enkelt scrolle opp eller ned, ved tilfeller hvor
blogginnleggene fyller siden. Blogginnleggene er presentert med en minimal
forhåndsvisning. Du kan utvide blogginnlegget ved å trykke på den lille pilen ved
siden av datoen til høyre:

Dersom du vil lukke den utvidede bloggen trykker du på samme sted.

Navigasjon:

På siden til venstre er det en navigasjonsbar. Denne ser slik ut:

Denne viser de fire hovedsidene i appen. Bloggen er det som er kalt “Vitensenteret”.
I eksempelet vist, er den nåværende siden blogg. Dersom du navigerer til en ny side
ved å klikke her, viser det nye siden valget ved å skifte farge på navigeringsmenyen:

Spill:
Spillene kan bli funnet under spillfanen i navigerings menyen. Den har en hovedside
som leder til hver sine spill. Den ser slik ut:

De tre spillene: “Viten Ord”, “Viten Kode” og “Hanois Tårn” kan spilles om du trykker i
den hvite boksen, eller på bildet til spillene.

Billett:
Om du navigerer til billett fanen får du denne siden:

Dette er siden som inneholder informasjon om brukere. Om du logger inn med din
bruker, får du tilgang til siden. Dersom du logger inn som en ikke-ansatt, får du ikke
tilgang til ansattressursene. Siden til en ikke-ansatt ser slik ut:

Hvor billetter blir listet i den hvite boksen. For å kjøpe eller legge til billetter via en
kode kan en ikke-ansatt navigere til pluss ikonet. Siden for ansatte blir gått igjennom
i den admin spesifikke delen av manualen.

Innstillinger:
Siden for innstillinger ser slik ut, om du ikke er logget inn:

Klikker du knappen, logger inn og skriver inn din innloggingsinformasjon kommer du
til denne siden:

Her kan du endre informasjon, potensielt noe som kanskje ble skrevet feil, eller
oppdatere noe informasjon som har forandret seg. For å gjøre dette trykker du på
den informasjonen du ønsker å endre. Om du trykker “logg ut” blir du logget ut. Om
du trykker “Slett bruker” blur brukeren slettet.

Bruk av produktet som ansatt:

Som ansatt ved Vitensenteret kan du legge ut nye innlegg på bloggsiden og redigere
dem som allerede er der. Du har også oversikt over alle brukerne av appen, i tillegg
til alle billettene, både aktive og utgåtte. Resten av manualen går over bruk av disse
funksjonalitetene.

Bruk av blogg som ansatt:
Når du er innlogget som ansatt ved Vitensenteret ser blog siden slik ut:

Hovedforandringen er den mørke baren på toppen av siden med teksten “Trykk her
for Admin siden for Blog” Om du da trykker på blyanten til høyre, kommer du til
admin-siden. Denne figuren er dessverre bak debug banneret, men den ser slik at:

Etter å ha trykket på dette ikonet, kommer du til følgende side:

Her kan du opprette innlegg, redigere dem, eller slette dem. Om du trykker på den
røde knappen helt nederst kalt “Blogg oversikt” kommer du tilbake til bloggen. Om du
trykker på “Opprett innlegg” kommer du til denne siden:

Her kan du legge inn informasjon om innlegget. Her er et eksempel på et innlegg
med fylt ut informasjon før det blir lastet opp:

Du kan til ethvert tidspunkt trykke på den røde knappen “Admin blogg side” for å
returnere til admin siden uten å legge til et innlegg. Du kan også trykke av i boksen
for å lage en notifikasjon ved opplastning. Dessverre er ikke dette koblet til noe
videre funksjonalitet, så en notifikasjon blir ikke sendt ut selv om du markerer for det.
Forfatter og dato blir automatisk lagt til. Om du trykker på “Last opp” blir
blogginnlegget lastet opp, og kan nå finnes i blogg oversikten:

Dersom du på admin blog siden i stedet velger “Rediger innlegg” knappen kommer
du til denne siden:

Her kan du skrive inn tittelen på det innlegget som du ønsker å redigere. Du trykker
på knappen “Finn Blogg Innlegg” for å søke. Om den ikke finner innlegget kommer
denne meldingen opp:

Om den finner innlegget kommer du til denne siden, hvor du kan redigere innhold
eller tittel:

Om du da trykker på “Oppdater” blir bloggen oppdatert og den kan bli funnet i blogg
oversikten:

Tilbake på admin siden, dersom du trykker på “Slett innlegg” kommer du til denne
siden, som lar deg søke etter det blogginnlegget som du ønsker å slette:

Her skriver du inn tittelen på innlegget du ønsker å slette. Deretter trykker du på
“Slett blogg innlegg”. Om du skriver inn et innlegg som ikke eksisterer får du denne
meldingen:

Dersom innlegget du ønsker å slette eksisterer får du denne nye knappen:

Dersom du nå trykker på “Slett Blogg. Kan ikke angres!” slettes innlegget. Du kan
også søke etter et annet innlegg om dette var feil, eller angre deg ved å trykke
“Admin blogg side”, som tar deg tilbake til adminsiden.

Bruk av oversiktsside for brukere og billetter

Denne siden er ment som et verktøy hovedsakelig for ansatte som jobber i kassen.
Her ser man fullstendig oversikt over alle brukere, og alle billetter.

Øverst er det en del verktøy som kan brukes til forskjellige ting. Fra venstre:
søkelinje, sorter etter meny, opprett ny bruker-knapp og bryter for å inkludere eller
ekskludere utgåtte billetter.

Søkelinjen kan brukes til å søke etter navn på bruker, eller navn på billetteier. Man
kan søke etter e-postadresse, mobilnummer og gavekortkoder. Søkeresultatet vises
underveis når man skriver, og om ingenting matcher vil bruker- og billettfanene være
tomme.

Menyen for å sortere brukere og billetter lar deg sortere etter en av to ting: dato eller
alfabetisk. For billetter vil den da sortere etter kjøpsdato eller alfabetisk på hvem som
kjøpte billetten. For brukere sorterer den etter fødselsdag eller navn. Merk at begge
listene starter usortert når man åpner appen.

Når man skal opprette en ny bruker bli man møtt av denne dialogen:

Her må man skrive inn informasjon om den nye brukeren, og deretter trykke
registrer. Merk at dette vil ikke la denne brukeren logge inn i appen, da må det
opprettes en ny bruker via appen.

Bryteren for å inkludere utgåtte billetter kan aktiveres når det er nødvendig å se alle
billetter. Det anbefales å bruke denne sammen med søkelinjen, da det fort kan bli
mange billetter å se gjennom om man ser etter noe spesielt.

Lenger ned på siden ser man de to fanene som holder oversikten over alle brukere
og alle billetter. La oss ta for oss fanen med billetter først:

Her ser man all informasjon om hver enkelt billett. Hvis det finnes årskort som er
utgått, vil disse ha en ekstra knapp. Denne knappen starter årskortet igjen, fra dags
dato til et år frem i tid. Dette er ikke reversibelt.

I fanen med brukere ser man all relevant brukerinformasjon om alle brukere i
systemet.

Her kan man også gå inn å redigere brukerinformasjon, merk at dersom epost
endres vil dette ikke påvirke eposten som brukes til å logge inn i appen med. Om
den skal endres må det gjøres i appen.

Man kan også legge til billetter til brukere, dette gjøres via ‘Legg til Billett’-knappen.
Deretter skriver man inn all informasjon som trengs, og trykker Legg til. Billetten er
nå registrert i system, og vil vises både i app og i fanen for billetter. Det kan hende at
siden må lastes inn på nytt før den vises.

Lykke til!

	List of Figures
	Introduction
	Project Description
	Background
	Subject Area
	Delimitation
	Task Description

	Goals and Constraints
	Project goals
	Constraints

	Project Audience
	Users of the Mobile Application
	Users of the Web Interface of the Application
	Readers of this Thesis

	Project Organization
	Group Members and Academic Background
	Roles

	Structure of the Report
	Terminology

	Theory
	Subjects
	Design
	Database
	API

	Purpose
	Subjects
	Main Subjects
	Relevant Subjects

	Requirement Specifications
	Requirements
	Front End
	Back End
	Operational Requirements
	Safety and Misuse Handling
	Storing Personal Data in Accordance with GDPR
	Licensing
	Version updates
	Interface Requirements
	Testing

	Initial Design
	Low Fidelity Prototype for the Mobile Application
	Low Fidelity Prototype for the Web Interface

	Use Cases
	Use Case Diagram
	Use Case Descriptions

	Product Backlog
	Domain Model

	Developmental Progress
	Methodolgy
	Choice of Software Development Methodology
	Sprint Meetings before the Hybrid Solution
	Sprint/Kanban Meetings after the Hybrid Solution

	Meetings
	Mentor Meetings
	Project Owner Meetings
	Internal Meetings

	User Interface
	Blog Page
	Game Page
	Viten Ord
	Tower of Hanoi
	Viten Kode

	Authentication Page
	Ticket Page
	Customer Ticket Page
	Employee Ticket Page

	Settings Page

	Technical Design
	Technology
	API
	System Architecture
	Data Storage
	Access and Security
	Limitations

	Implementation
	Database
	API
	Firebase Functions
	Stripe API

	Mobile Application
	Log in and Register Page
	Ticket Page
	Settings
	Blog
	Payment Page

	Web
	Ticket Page for Admins
	Blog Page for Admins

	Game Implementations
	Viten Ord
	Tower of Hanoi
	Viten Kode

	Testing
	Unit Testing
	User Testing

	Code Quality
	Database Best Practices
	Commenting Standards
	Naming Conventions
	Using Flutters Built-in Linter to Minimize Redundant Code

	Deployment
	App Store for iPhone
	Google Play Store for Android
	Source Code
	Terms and Conditions

	Further Development
	Deployment
	Further Polish of Interface
	Database
	Games
	Game Engines
	Further development of "Viten Kode"
	Adding a Scoreboard and Daily Rewards for Logged-in Users

	Notification System
	Other Additions

	Discussion
	Implementation and Follow Through
	Worked Hours
	Following the Gantt Chart

	Alternative Technology and The Choices We Made
	Firebase Realtime Database vs. Firebase Firestore vs. SQL
	Kotlin vs. Flutter vs .Net vs React Native
	Payment system

	What Would We Have Done Different Today?
	Database choice
	Payment system

	Evaluation of the Group Effort
	Conclusion

	Sources
	Appendix
	Gantt
	Project plan
	Contract
	Status report 1
	Status report 2
	Status report 3
	Meting Minutes
	Time Chart
	Wishes from Employer
	User tests
	Group rules
	Requirements specification
	Translated summary
	Design Handbook for Vitensenteret Innlandet
	Assets
	Backlog
	User Manual

