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Sammendrag

Kreft er et samlebegrep for en rekke sykdomstilstander som kjennetegnes av unormal og

ukontrollert celledeling, og for̊arsakes av avvikende regulering av ulike cellulære signalveier

knyttet til cellevekst og celledød. Med Boolske nettverksmodeller kan en gi b̊ade en struk-

turell og dynamisk fremstilling av kreftsystemet p̊a molekylniv̊a, samt at de kan tilpasses

slik, at de gjengir den molekylære profilen og behandlingsresponsen som er observert i en

spesifikk kreftcellelinje eller kreftpasient.

Formålet med dette prosjektet var å identifisere en strategi som bedrer evnen en Boolsk

nettverksmodell har til b̊ade å representere den molekylære profilen til en kreftcelle og

gjengi kreftcellens respons til kombinasjoner av medikamenter med synergistisk effekt.

Forskningsgruppen NTNU DrugLogics har utviklet en pipeline som inkluderer en pro-

gramvaremodul for kalibrasjon av Boolske nettverksmodeller. Et kalibrasjonsdatasett gis

som input, og beskriver en måltilstand som den kalibrerte versjonen av inputmodellen skal

gjengi. Hypotesen, som dette prosjektet bygger p̊a, antar at det kun er måltilstanden til

et driversett med noder som er nødvendig å inkludere i kalibrasjonsdatasettet for å oppn̊a

en kalibrert modell som gjenspeiler den fullstendige måltilstanden, da tilstanden til et dri-

versett av noder er bestemmende for tilstanden til hele den Boolske nettverksmodellen.

Denne driver-orienterte kalibrasjonsstrategien ble i dette prosjektet anvendt p̊a tre Boolske

kreftmodeller, men synes ikke å garantere de kalibrerte modellenes evne til å gjenspeile

den molekylære profilen til en cellelinje. Resultatene indikerer at visse topologiske begren-

sninger, for̊arsaket av ulikheter i topologisk fleksibilitet, forhindrer modellene i å oppn̊a

en tilstand som er i overenstemmelse med m̊altilstanden.

Pipelinen inneholder ogs̊a en programvaremodul for in silico prediksjon av synergistiske

medikamentkombinasjoner. De kalibrerte modellene ble gitt som input til modulen for å

undersøke hvordan den driver-orienterte kalibrasjonsstrategien p̊avirker modellenes evne

til å riktig kunne gjengi hvilke kombinasjoner av kreftmedikamenter som har en syn-

ergistisk effekt og ikke. Strategien bedrer prediksjonsytelsen til én av de tre Boolske

kreftmodellene. Økt prediksjonsytelse er ikke observert hos de resterende to modellene,

og indikerer at modellenes nettverkstopologi ikke gjengir den synergistiske responsen til

kombinasjonene av medikamenter som er observert i cellelinjene. Større topologiske en-

dringer må gjøres i disse modellene, utover det som er mulig med den anvendte kali-

brasjonsmetoden, hvis en skal bedre prediksjonsytelsen.

i



Abstract

Cancer is a condition characterised by abnormal and uncontrolled proliferation of cells,

caused by a complex disease system, involving the dysregulation of a variety cellular

signalling pathways. A Boolean modelling framework is able to give both a structural

and dynamical representation of a cancer system, and can be adapted to represent the

specific molecular profile and treatment response observed in a cancer cell line or patient.

In this project, a strategy for improved computational calibration of Boolean cancer mod-

els and subsequent drug synergy predictions was investigated. Such a strategy could im-

prove the construction of cell line specific – or even personalised – Boolean cancer models,

as well as the identification of drug synergies for effective treatment of cancer.

The DrugLogics pipeline includes a software module for ensemble-wise calibration of

Boolean models, through the modification of logical rule. One of the pipeline’s main

inputs is a calibration dataset specifying an experimentally observed target state which

guides model calibration. It is hypothesised, that including the target state for a driver

set of nodes should be sufficient to obtain a calibrated model ensemble reflecting the tar-

get state, as a driver set of nodes is thought to determine the stable state of a Boolean

model.

This driver-based calibration strategy was applied for cell line specific calibration of one

Boolean cancer model, representing the AGS cell line, and two Boolean cancer models

representing Colorectal Cancer (CRC), with the goal of obtaining a set of calibrated

models representing the baseline activity of a selection of cell lines. The strategy did not

ensure calibrated model ensembles with stable states compliant with the target state, as

some stable state heterogeneity was observed across all calibrated models. The ability to

reach an overall baseline compliant state seems to be restricted by topological limitations

in the input Boolean models, caused by canalising logical functions and differences in

topological flexibility.

The DrugLogics pipeline further includes a software module for in silico combinatorial

drug perturbation simulations. All calibrated model ensembles were further given as input

to the synergy prediction module, in order to assess the ability to correctly predict a set

of experimentally verified gold standard synergies. A driver-based calibration strategy

did improve the predictive performance of the AGS model, but could not be generalised

across the CRC models.
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Chapter 1

Introduction

1.1 Systems Biology

Systems biology is both a conceptual understanding and a methodological approach to

biological investigation.

The theoretical concept of systems biology builds on the understanding that biological

entities, such as cells or organisms, are complex systems of interacting parts, and that

the behaviour of such a system is caused by emergent properties that arise from the

complex interplay between all system components. The development of systems biology

as a scientific field constitutes a paradigmatic shift, from a reductionist to a more holistic

approach to biological inquiry. In a systems view, a cell is not a mere collection of

genes, proteins, and metabolites, and cannot be fully understood by simply listing up all

these components. The phenotype of the cell is caused by a complex interplay between

different hierarchical levels of interaction, where genes, proteins, metabolites, the cell’s

own phenotype, as well as the phenotype of neighbouring cells, control and constrain each

other [73].

This conceptual understanding of biology is accompanied by a set of methodological prin-

ciples, integrating technological tools, mathematics, computer science and experimental

examination. The methodological paradigm of systems biology can be summarised by

four steps [58]:

(1) Measuring biological components : All relevant biological components included in a

biological system have to be identified and measured. Advances in high throughput

technologies enable us to measure the amount of DNA, RNA, proteins and metabolites

in a cell and its environment - so called omics data.

(2) Reconstruction of networks : The underlying interaction network, has to be recon-

structed, from prior knowledge and experimental observations of the in vivo system. This

provides a static representation of the complex interplay between all components in the

system.

1



(3) Mathematical modelling : Advances in computer science and information technology

provide tools for representing interaction networks in a mathematical format, as well as

converting them to computational models. Such models will be more than a static rep-

resentation of the components and interactions, and would make it possible to describe

system dynamics and how the represented system develops over time under various con-

ditions.

(4) Hypothesis-driven discovery : The mathematical model-representation of a biological

system constitutes a central step in an iterative hypothesis-driven cycle, comparing model

predictions and experimental observations. Such a model would represent the current

understanding of the system under investigation. New hypotheses about the behaviour

of the system can be tested by introducing perturbations to the model, and the validity

of the predicted behaviour can be further experimentally verified in the lab.

1.2 Representing Biological Systems as Networks

Building network models that represent biological systems is a central part of the systems

biology methodology.

Common for all biological networks is that biological entities are represented as nodes,

and interactions between entities are represented as edges. Edges can be directional, to

indicate how the information propagates through the network, and can be assigned as

either positive or negative, to represent the activating or inhibitory effect of one entity

on another [4]. In addition to nodes representing biomolecules, like genes and proteins,

output nodes representing possible phenotypic outcomes are also included, to enable an

interpretation of the global behaviour of the model [4]. Network models provide a way of

visualising the system under investigation, as well as a way of representing the available

information about system structure, using a format that can be further analysed both

mathematically and computationally.

Networks are not only applied in biology, they are also used to represent social interac-

tions between people, transportation systems, and power grids. Even though the nodes

and edges comprising these networks represent very different things, these networks share

some common organisational principles. An important consequence of this common or-

ganisation is the ability to apply general graph theoretical principles to analyse all these

different networks [11]. This provides us with a tool box of mathematical and statistical

concepts which we can use to identify essential network characteristics.

1.2.1 Static Network Measures Describe Network and Node

Characteristics

Graph theoretical concepts can be applied to define the general structure of a network,

unravel complex relationships between network components, and highlight network nodes
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with certain characteristics.

Characterising Individual Nodes

Individual nodes in a network can be ranked based on certain centrality measures, such as

degree centrality (number of edges), closeness centrality (the average shortest path length

from one node to all other nodes in the network) and betweenness centrality (to what

extent is a node located on the shortest path between all possible pairs of nodes in a

network ) [25,61]. Centrality measures can be considered individually or in combination,

to identify key nodes that act as central interaction points or communicators in the

network. In a biological sense, highly ranked nodes – based on centrality – might represent

key regulators of gene expression or signal amplification [78].

Characterising Dense Neighbourhoods

Graph theoretical analyses can and should extend beyond the characterisation of indi-

vidual nodes, as nodes form local neighbourhoods. Hartwell et al. actually argues that

biological systems are inherently modular and not nodular, as cellular functions are car-

ried out by groups and not individual components [32]. The clustering coefficient is used

to identify dense local neighbourhoods in a network [11]. The clustering coefficient of a

node i is calculated as the number of edges connecting the first neighbours of i, divided

by the possible number of edges between the first neighbours of i [61]. If the neighbours

of i form a closely connected neighbourhood, then i has a high clustering coefficient. A

clique is a group of nodes where all nodes are connected to each other and has the highest

possible clustering coefficient of 1.

Characterising the whole network

In addition to graph measures describing nodes or local node neighbourhoods, there are

measures used to describe the network as a whole.

One example is the degree distribution of a network. This measure is related to node

degree, but instead of only looking at the degree of an individual node, the distribution

of possible degree values in the network is considered [25]. The degree distribution can

be represented as a histogram or a dot plot with node degree values on the x-axis and

the number of nodes having a degree k on the y-axis. Most cellular networks are scale-

free, characterised by a power-law degree distribution with a negative exponent (λ) (Eq.

1.1) [11].

P (k) = k−λ (1.1)

The scale-freeness of these networks indicates that there is no ”typical” node with a

typical average degree. In a scale-free network there are a large number of low-degree

nodes connected to a few highly connected hubs [11].
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The clustering coefficient distribution is a different measure, used to characterise whole

networks. In addition to being scale-free, most cellular networks show hierarchical modu-

larity, where highly interconnected modules are regulated by sparsely distributed hubs [5].

In the clustering coefficient distribution, this is recognised by high degree hubs having a

low clustering coefficient, and low degree nodes having a high clustering coefficient. If

this is the case, then the clustering coefficient distribution will follow a power law with a

negative exponent (β) . (Eq. 1.2).

C(k) = k−β (1.2)

Due to the universality of graph theory, we are able to measure and quantify different

network properties at different levels of the network – from individual nodes, to local

neighbourhoods and the network as a whole. In a biological context, these measures can

be used to identifying important hub nodes representing biologically crucial proteins and

genes, or identifying node clusters representing protein complexes or tightly regulated

genes. However, these static measures do not provide any information on how the system

reacts to perturbations or other dynamic changes. At this stage, it is a static picture of

the system we are investigating, and to enable any dynamic simulations we need extend

from a static network representation to a dynamic model.

1.3 Dynamic Modelling of Biological Networks

The purpose of dynamic modelling of a network is to investigate how a system develops

over time or how it reacts to different types of perturbations. It adds a dynamic layer to

the static network representation of a biological system.

Modelling the dynamics of a network can be done using either a continuous or a discrete

approach. Continuous dynamic modelling requires information about specific parameters

– like reaction rates and initial concentrations of reactants – to be able to correctly

represent the temporal dynamics of all biomolecular reactions. Measuring or estimating

these parameters can be challenging and time consuming. Hence, continuous dynamical

modelling is usually applied for modelling smaller systems with a sufficient amount of

available kinetic data [4].

When modelling larger systems, a discrete and parameter-free dynamic modelling ap-

proach is preferred, enabling a dynamic representation of the system without the need

of any kinetic data [79]. An example of such an approach is the logical modelling frame-

work. In a logical model, each node is associated with a value representing the activity,

or the relative concentration, of the entity the node represents. In addition to being as-

sociated with an activity value, each node is associated with a logical rule describing how

the activity of the node is affected by the activity of its upstream regulators [1]. Even

though the discrete system representation applied in the logical modelling framework is

an approximation of the in vivo system, it has been successfully used to represent and
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model large complex biological systems, such as the activation and differentiation of T

lymphocytes and cell cycle control [1].

1.3.1 Boolean Modelling

Boolean modelling is a special case of logical modelling, where all network entities are

assigned a binary value representing its activity (active = 1, inactive = 0). This binary

state classification is of course an approximation, but it is in accordance with how biolo-

gists usually talk about genes being expressed or not, or signalling pathways being active

or suppressed [3]. Furthermore, in continuous dynamic modelling, gene regulation is mod-

elled by the Hill function, which can be approximated by a dichotomous step-function,

which also supports a binary interpretation [67].

As for general logical models, every node in a Boolean model is associated with a logical

rule, or a logical update function, determining how the activity of the network node

changes over the course of a series of time steps, based on the activity of its regulators.

Logical rules are expressed using the logical operators OR, AND an NOT in various

combinations [4]. For instance, if node C is activated by node A, and inactivated by node

B, the logical rule associated with node C would be:

C = A AND NOT B.

After each discrete time step (t = 1, 2, 3, 4, . . . , n) the state of each node in the network

is updated according to the logical rules. Over time, the state of the model will stabilise

in a certain attractor, which can be either a single stable state of a set of reoccurring states

(complex attractor) [4].

1.3.2 Attractor Calculation

The long term behaviour of a logical model is represented by an attractor state. Starting

from an initial state, the model transitions from one state to another according to the

logical transition rules, and after some time, the model will stabilise in an attractor state,

which represents the long-term behaviour of the system [79]. The transition dynamics of

a model can be represented by a State Transition Graph (STG), where nodes represent

model states, and edges represent possible transitions between states [4]. In some cases,

the system will end up in a single stable state, where all node states remain unchanged

after updating the system according to the logical rules. In other cases, the system will

reach a complex attractor where the system oscillated among a certain set of states. In

the STG a stable state will be represented by a state node without any outgoing edges,

and a complex attractor is recognised as a closed node cycle [1].

The structure of the STG is determined by the chosen updating scheme [4]. There are two

main updating schemes, the synchronous one and the asynchronous one. When applying

the synchronous updating scheme, all model components are updated simultaneously,

and each model state has only one possible successor state. However, in real biological
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systems, changes in the state of system components happen at different time points,

which the synchronous scheme is not able to represent. When following the asynchronous

updating scheme, on the other hand, each node is updated individually, and each model

state has several successor states. The order in which the nodes are updated can be either

random or guided by knowledge about the relative timescale observed for activation or

regulation of system components [4].

The attractor identified using either the synchronous or the asynchronous updating scheme

usually represents a cellular phenotype. Taking a closer look at the activity of each node

defined in the attractor can reveal some of the cellular mechanisms driving the phenotypic

outcome, and measuring attractor changes due to component knock-outs or knock-ins can

determine critical system components, and how the system reacts to perturbations [4].

1.4 Driver Nodes Control the Dynamics of a Network

Model

Network control has become a hot topic in the field of biological network modelling, as it

reflects the desire to not only understand the dynamics of a system, but also to control

and predict its outcome [82]. Network control of logical models involves finding and

applying a control strategy that will steer the temporal dynamics of the model into a

desired attractor. It is usually not necessary to control all nodes in a logical network

model to drive the system into a target state, as the dynamics of a complex network

model is determined by a subset of driver nodes [46]. It is sufficient to steer each node in

the driver set to its target state for the whole model to reach the target attractor [34].

Different measures have been proposed to identify network nodes that constitute a set of

driver nodes. Simple static graph measures, such as the aforementioned degree centrality

and closeness centrality, as well as variations or combinations of these measures, have been

used to identify driver nodes [45]. Some measures used to identify driver nodes also take

into account model features specific for a certain modelling approach. An example is the

measure called Determinative Power, which is used to identify driver nodes in Boolean

models, by taking into account the logical rules of the nodes [81].

1.5 The Heterogeneous Nature of Cancer

The term “cancer” covers a variety of different diseases, with some common characteristics,

such as uncontrolled cell growth and invasion of healthy tissue [31]. These hallmarks are

caused by dysregulation of signalling pathways related to cell division, cell growth, and

cell death, involving a variety of different biomolecules.

Cancerous cells and tissue develop from genetically altered cells in the body of a patient.

Genetic alterations due to inherited defects, or mutations caused by exposure to carcino-

gens, cause an accumulation of genetic damage [64]. The accumulation of such genetic
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damage can reduce the ability of a cell to respond to external signals. If this unrespon-

siveness causes an increase in cell division, then the cell will replicate uncontrollably and

develop into a mass of malignant cells [14].

Not all genetic mutations cause cells to develop into cancer. There are two main groups

of genes, which are related to cancer development, namely the oncogenes and the tumour

suppressor genes [14]. Proto-oncogenes – which are the normal versions of the cancer

causing oncogenes – encode proteins which promote cell division. Proto-oncogenes become

cancer driving oncogenes when so-called gain-of-function mutations cause an increase in

activation. Tumour suppressor genes, on the other hand, encode proteins which inhibit

cell replication and division. The loss of tumour suppressor genes, due to loss-of-function

mutations, are also related to an increased risk of cancer [64].

The development of cancer can happen in different areas of the body, and cancers are usu-

ally classified by the tissue where the tumour arises. Even though different types of cancer

show similar phenotypic properties – including hallmarks like sustained proliferative sig-

nalling, evasion of growth suppressors, and resistance to cell death – individual cancer

types rarely share the same genetic mutations [57]. Genetic differences are observed across

patients with the same type of cancer, and there are even significant intercellular varia-

tions between cells in the same tumour [31]. The heterogeneous nature of cancer poses a

challenge to the development of effective cancer treatment, as one kind of treatment will

not necessarily be effective for all patients or cancer sub-types.

1.6 Precision Cancer Medicine

Tailoring treatment to individual cancer patients goes under the notion of precision cancer

medicine and is thought to be a necessary approach to improve the treatment of cancer

[57]. This paradigmatic change in cancer therapy is characterised by a shift from a tumour-

type centred to a gene centred focus. Cancer patients have usually been classified based

on the type of tumour and the tissue-specific location of the cancer cells. However, due

to major advances in high throughput technologies and systems medicine approaches,

researchers and clinicians are able to look deeper into the genetic and proteomic profile

of each individual patient, and use this knowledge to apply more specific treatment. This

shift coincides with the development of targeted therapies directed at specific molecular

targets [37]. Examples of successful targeted therapies are trastuzumab in patients with

HER2 -positive breast cancer and vemurafenib and dabrafenib in patients with advanced-

stage melanoma with BRAF -mutations [53].

Developing a patient specific treatment involves analysing the genetic and proteomic

information of the tumour, and selecting a drug or a combination of drugs that will

target the patient’s genetic or proteomic alterations, which cause the disease [57]. We

are developing from a one-size-fits-all cytotoxic chemotherapy approach to a more specific

approach targeting specific genes which drive cancer development [2]. Understanding
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the variation of driver mutations between patient subgroups and individuals will lead us

towards a more personalised treatment of cancer.

1.7 Drug Synergies

Several genes or pathways are usually altered in a cancer cell. Hence, in terms of treat-

ment, it might be more effective to target more than one gene to increase the therapeutic

effect. Drug combinations which have an overall larger effect than the sum of the effects

of each drug independently, are considered synergistic drug combinations [44]. The ad-

vantage of using synergistic drug combinations in cancer treatment is that one can lower

the drug dosage, while still maintaining the same therapeutic effect. The rationale for

wanting to reduce the drug dosage is that it could avoid the toxic side effects of the drug

treatment, and minimise the development of drug resistance [44].

Experimental identification and validation of synergistic drug combinations has some lim-

itations. First, it is limited by the combinatorial explosion of possible drug combinations

that have to be tested. Secondly, the molecular mechanisms causing the synergistic effects

are not easily characterised [15]. Network-based modelling approaches offer a promising

framework for synergy prediction, as they are able to overcome these limitations. The

computational efficiency accelerates the analysis, and the underlying biomolecular net-

work structure is able to reveal possible synergy mechanisms [15]. Hence, network-based

synergy prediction can be used to identify the most promising drug combinations and

guide further experimental validation.

1.8 Project Aim and Motivation

The motivation behind this project has been to contribute to the improvement of Boolean

model calibration and in silico prediction of cell line specific drug synergies, using Boolean

cancer models and the NTNU DrugLogics pipeline.

Two main functionalities are executed by the DrugLogics pipeline: model calibration and

drug synergy predictions. The aim of model calibration is to modify the logical rules of

a Boolean cancer model to obtain a calibrated model with a stable state, matching the

observed baseline state of a cancer cell. The calibrated model is further used to predict

synergistic combinations of targeted cancer drugs.

The experimentally observed baseline state of the cancer cell, which serves as an objective

for model calibration, is defined in the input calibration dataset. The overall aim of this

project was to investigate how the content of this calibration dataset affects initial model

calibration and subsequent synergy predictions. The hope was to identify a principle which

could guide calibration dataset construction, and thereby improve model performance.
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1.9 Main Objective

The main objective of this work has been to investigate if Boolean model calibration –

using the DrugLogics pipeline – can be improved, and if it would result in better drug

synergy predictions through selection of specific subsets of calibration data. It has been

hypothesised, that including the cell line specific baseline activity for a driver set of nodes

in the calibration dataset, will ensure a calibrated model reflecting both the experimentally

verified baseline activity and synergistic drug response observed in a cell line.

From network theory we know that some nodes drive the dynamics of a network model,

and are able to control the target stable state of the model. Hence, if a model is calibrated

with respect to the baseline activity of such a driver set, the calibrated model will be driven

towards a baseline-compliant stable state. A calibrated model with a baseline-compliant

stable state reflects the baseline activity of the cancer cell, and should also reflect how

the cancer cell responds to drugs. Hence, such a baseline-compliant model should also be

able to correctly predict synergistic drug combinations.

Three node measures, degree Z-score, Determinative Power and a near-minimal Feedback

Vertex Set, are used to identify possible driver sets of nodes in three different Boolean

cancer models. Calibration datasets, including cell line specific baseline data, are con-

structed based on these node measures, and provided as input for model calibration and

synergy predictions.

Resulting analyses focus on two main questions:

• Effect of calibration data subsetting on calibrated model stable state: Does a cali-

bration dataset, including the baseline activity of a driver set of nodes, ensure a

calibrated model, whose stable state reflects the baseline activity of the cell line?

• Effect of calibration data subsetting on synergy predictions: Does a calibration

dataset, including the baseline activity of a driver set of nodes, ensure a calibrated

model, which is able to correctly predict cell line specific drug synergies?
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Chapter 2

Materials and Methods

2.1 Workflow

The following steps of model and data retrieval, calibration dataset construction, and

pipeline output analysis, were performed to investigate if calibration of a Boolean cancer

model – with respect to a driver set of nodes – improves the ability to correctly represent

a cell line specific baseline state, and make cell line specific synergy predictions.

• Identification of Boolean cancer models from the literature

• Collection of cell line specific baseline activity profiles and gold standard synergies

from experimental data

• Identification of possible driver sets of nodes based on degree Z-score, DP, and a

near-minimal FVS

• Construction of calibration datasets based on driver sets

• Running DrugLogics pipeline simulations with driver-based calibration datasets

• Investigating the effect of a driver-based calibration strategy on stable state of cal-

ibrated models

• Investigating the effect of a driver-based calibration strategy on synergy predictions

2.2 Code and Data Availability

All scripts and necessary files to reproduce the analyses of this project, are provided in a

GitHub repository: https://github.com/theahettasch/calibration_data_subsetting.

The pipeline input and output data was processed an visualised using R 3.6.3 and RStudio

Version 2022.02.0+443.

Three R Markdown files are included in the GitHub repository and provide the following

scripts:
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• calibration dataset construction.Rmd : Calculation of degree Z-score and DP, con-

struction of calibration datasets, and bash-file construction

• stable state analysis.Rmd : Visualisation of stable states in heatmaps and calculation

of baseline compliance

• predictive performance analysis.Rmd : AUC ROC calculation and visualisation in

boxplots

2.3 The NTNU DrugLogics Pipeline

The NTNU DrugLogics pipeline served as the core tool in this project. The pipeline

includes four software modules: Aomics, Atopo, Gitsbe and Drabme (Figure 2.1). The

research conducted in this report only involves the application of Gitsbe and Drabme

modules. Gitsbe and Drabme execute two of the main pipeline functionalities: Boolean

model calibration and combinatorial perturbation experiments. In this project these

modules have been applied to calibrate Boolean cancer models to cell line specific baseline

data and perform drug synergy predictions.

Figure 2.1. An overview of the DrugLogics pipeline including four different software modules:

Aomics, Atopo, Gitsbe and Drabme. The figure is retrieved from the website of the DrugLogics

initiative https: // druglogics. eu/ projects/ colosys/

2.3.1 Model Calibration with Gitsbe

The aim of model calibration with Gitsbe is to obtain a model that is able to reflect

a desired behaviour, such as an experimentally observed state or an experimentally ob-

served response to perturbations. A Genetic Algorithm (GA) is applied to parameterise

the topology or the logical rules of a Boolean network model, and thereby improve the

compliance between model behaviour and the experimentally observed behaviour.

GA is considered a machine learning strategy, and is able to identify optimal solutions
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in a large search space by modifying certain structures or parameters [26]. The approach

is called a genetic algorithm, because it is based on how genetic material is combined

between individuals during evolution, to increase the fitness of the offspring [18]. A parent

generation of data structures or chromosomes is selected, and the parent generation’s

ability to solve a specific problem – the fitness – is calculated. Those structures with

the highest fitness are selected for crossover, meaning that their features are combined

into new offspring structures. In addition to the crossover, mutations are introduced to

the new offspring generation. These mutations are usually introduced by inverting some

of the chromosome features [38], hence, chromosome features should be binary, having

two possible outcomes. The fitness of the offspring generation is calculated and a new

crossover and mutation procedure is performed [38]. This will eventually lead to a set of

data structures with high fitness and an optimal ability so solve a specific target problem.

The input of the Gitsbe module is a Boolean input model and a target state, defined in

a calibration dataset. Based on the input model, a first generation of Boolean models

is generated by introducing a number of random mutations to the logical rules of the

model. A fitness score is calculated for each model based on the resemblance between the

stable state of the model and the target state defined in the calibration dataset. A high

fitness score means that the stable state reached by the Boolean model corresponds to the

target state. Based on this fitness score, a set of the best performing models are selected

for the next generation. Logical equations are exchanged between the best performing

models, and new mutations are introduced to the logical rules before fitness calculation

and model selection is repeated. The model calibration process is halted when a defined

fitness threshold, or a defined upper number of generations, is reached. The output of

the Gitsbe module is an ensemble of the top performing models based on fitness. All

top performing models are described in a model summary file where model fitness values,

model stable states and the logical rules of the parameterised models are defined.

In this project, the Gitsbe module was applied to calibrate a set of Boolean cancer models,

representing gastric and colorectal cancer, to reflect the observed baseline activity of genes

and proteins in a selection of gastric and colorectal cancer cell lines. Calibrated model

ensembles were further used as input for prediction of cell line specific synergies with

Drabme.

2.3.2 Synergy Predictions with Drabme

The main functionality of the Drabme module is to perform combinatorial perturbation

simulations on calibrated models generated by Gitsbe. In this project, the functionality

of Drabme is used to predict synergistic drug combinations in gastric and colorectal can-

cer cell lines. Given a panel of drugs and their molecular targets, the drug response is

simulated for both single drug and drug combination perturbations. Based on simulated

drug responses, drug synergies are identified.

Drabme provides both model-wise and ensemble-wise outputs. As the name suggests,
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the model-wise output provides synergy results for each individual Gitsbe model, while

the ensemble-wise output provides synergy results averaged across the model ensemble.

Synergy prediction results are provided as response excess values for each drug combi-

nation tested. The response excess value indicates the response difference between the

additive and the combination effect of each drug combination across the model ensemble,

given a certain synergy calculation method (HSA or Bliss). Ensemble-wise synergy pre-

dictions were considered the main outputs in this project and were compared against cell

line specific and experimentally verified gold standard synergies, to assess the predictive

performance of the calibrated models.

Synergy calculation methods

Different methodologies have been proposed to assess and determine the synergistic

effect of a drug combination. These methodologies differ in the way they determine

the additive effect, and provide different ways of calculating the Combination Index

(CI), which indicates a combination effect greater than (CI >1), lesser than (CI <1)

or similar to (CI = 1) the expected additive effect [23].

Bliss Independence: According to the Bliss Independence model a drug combina-

tion is considered a synergy if the combination effect (EAB) is larger than the additive

effect given by the common formula for probabilistic independence:

EA + EB(1− EA) = EA + EB − EAEB

The CI can be calculated as:

CI =
EA + EB − EAEB

EAB

Highest Single Agent (HSA): According to HSA, a drug combination is consid-

ered a synergy if the combination effect (EAB) is larger than the maximal effect of

each drug individually: max(EA, EB).

The CI is calculated using the following formula:

CI =
max(EA, EB)

EAB

The threshold for considering a drug combination as synergistic is usually lower when

using HSA compared to Bliss (Figure 2.2).
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Figure 2.2. Illustration of two different synergy calculation methods. A) Bliss Independence and

B) Highest Single Agent. EA = 30, EB = 20 and EAB = 65. Adapted from Foucquier J, Guedj

M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect.

2015 Jun;3(3):e00149. doi: 10.1002/prp2.149.

2.3.3 Pipeline Configurations

The pipeline configuration file includes global, Gitsbe-specific, and Drabme-specific pa-

rameter specifications. Configuration parameters were specified to perform analyses sup-

porting the project objective. During model calibration with Gitsbe, only balance muta-

tions, changing the link operators (AND, OR), were allowed, to avoid large topological

changes to the models.

The BioLQM tool was applied for calculation of model stable states [54].

The synergy calculation method was set to either HSA or Bliss depending on the synergy

calculation method applied in the in vitro synergy screens used to provide gold standard

synergies. A complete list of all configuration parameters is provided in Appendix A.

2.4 Model and Data Collection

Three Boolean cancer models were retrieved from literature to serve as input models for

model calibration and synergy prediction analyses. In addition, cell line specific baseline

activity profiles and gold standard synergies were collected.

2.4.1 Model Selection, Modification, and Characterisation

A Boolean model, named CASCADE 1.0, representing the AGS cell line of gastric cancer,

was retrieved from Flobak et al. [20]. In addition, two Boolean models representing

Colorectal Cancer (CRC) were obtained from Lu et al. and Park et al. respectively [47,60].

Some model modifications were performed for the models to fit some common require-

ments. Firstly, all models should be self-contained to avoid the need to set any initial

input conditions [20]. Secondly, the analysis was restricted to models mainly including

nodes representing intracellular components in cancer related pathways. Hence, addi-
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tional extracellular nodes were removed. The removal of nodes could have great impact

on model dynamics, hence, each node removal was followed by a stable state calculation

with Gitsbe. If no stable state was reached after node removal, the node was retained.

Finally, all models should include two common output nodes representing antisurvival

and prosurvival to obtain a common way of interpreting drug response. The combined

antisurvival and prosurvival response is interpreted as a certain level of cell growth and

is defined as the global output of a model and serves as a way of calculating the model

response to perturbations. All nearest neighbours inhibiting the antisurvival node or ac-

tivating the prosurvival node increase the level of growth (+1) and all nearest neighbours

inhibiting the prosurvival node or activating the antisurvival node decrease the level of

growth (-1). In the case of only one nearest neighbour, the second nearest neighbours

were considered. Adding all values together gives a multi-levelled global growth output.

To assess the effect of model modifications on the network structure, the degree distribution

and average clustering coefficient distribution was inspected statistically and graphically,

both before and after model modifications, using the NetworkAnalyzer tool in Cytoscape

(v.9.7) [69]. Large changes in degree- and clustering coefficient distribution would sug-

gest that the original structure of the network was scrambled due to the applied model

modifications.

2.4.2 Selection of Cell Lines

This project aimed to enhance cell line specific model calibration and synergy predictions.

Since CASCADE 1.0 is an AGS cell line specific model, AGS was the only cell line used

to calibrate CASCADE 1.0. The Lu- and Park-models, on the other hand, are specific for

the CRC cancer type, allowing testing across different CRC cell lines. Information about

the selection of cell lines used to perform cell line specific analyses is found in table 2.1.

Table 2.1. Overview of all gastric and CRC cell lines applied in this project. The origin of the

sample is also provided.

Cell line Disease Sample origin

AGS Gastric carcinoma Stomach

COLO 205 Colorectal cancer Derived from metastatic site: ascitic fluid

HCT 116 Colorectal cancer Large intestine

SW 48 Colorectal cancer Large intestine

SW 620 Colorectal cancer Derived from metastatic site: lymph nodes

2.4.3 Cell Line Specific Baseline Activity Profiles

Baseline activity profiles were created for all cell lines and describes the experimentally

observed activity of genes and proteins in the cell line. These profiles were further filtered

for genes and proteins included in the selected Boolean models.
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A binary baseline activity profile for the AGS cell line was retrieved from Niederdorfer

et al. [56]. A subset of the AGS baseline activity profile had previously been collected

from literature, by Flobak et al. [20]. Niederdorfer et al. completed the profile from cell

line copy number variations and gene expression data data, using the pathway inference

algorithm PARADIGM [77]. The AGS baseline activity profile was filtered for nodes

included in the CASCADE 1.0 model.

For the CRC cell lines, baseline activity profiles were obtained by normalising gene ex-

pression data measurements. A gene expression dataset (rnaseq fpkm 20191101.csv) was

downloaded from the Sanger Cell Model Passport portal [74]. The dataset was filtered for

the selected CRC cell lines, and expression values for all genes included in the Boolean

CRC models were retrieved. All genes in the expression dataset are identified by their

HGNC symbol [65], hence, a translation file was constructed for each Boolean model,

mapping the name of each node to the corresponding HGNC symbol. All translation files

are provided in the GitHub repository: translation files .

For each CRC cell line, gene expression values for all model specific genes, were normalised

using the normalisation section of the PROFILE framework [12]. All normalised gene

expression values were subsequently binarised to fit the binary nature of the Boolean

model framework. Normalised values below 0.5 were considered as 0 and normalised

values above 0.5 were considered as 1. All normalised expression values equal to 0.5 were

not binarised, due to their ambiguity.

2.4.4 Cell Line Specific Gold Standard Synergies

Cell line specific synergies from in vitro experiments were identified and used as gold

standards against in silico predictions. Cell line specific gold standard synergies, for the

AGS cell line, were obtained from Flobak et al. [20]. For the selected CRC cell lines, gold

standard synergies were retrieved from a synergy screen performed by Jaaks et al. [35].

Jaaks et al. provide synergy data for breast, colon and pancreatic cancer, so the data was

filtered for the four project relevant CRC cell lines. In addition, only synergies involving

drugs targeting genes included in the applied CRC Boolean models were selected. Drugs

with multiple targets were included if at least one target corresponded to a model node.

In the synergy screen performed by Jaaks et al., they use an anchored approach where one

drug is considered the anchor drug, and the other one is considered the library drug [35].

For each combination, the anchor drug is tested at two fixed concentrations, while the

library drug is tested at 7 different concentrations. Due to this screening method, each

drug combination is tested twice, with drug A acting as the anchor drug in one screen,

and drug B in the other. However, when doing synergy predictions using the DrugLogics

pipeline, it is not possible to distinguish between these two combination orders. Hence,

as long as one combination order was reported as synergistic in the screen, it was added

as a gold standard synergy for comparison against in silico predictions.
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2.5 Calculation of Degree Z-score, Determinative Power,

and a Near-minimal Feedback Vertex Set

Degree Z-score, Determinative Power (DP) and a near-minimal Feedback Vertex Set

(FVS) are all suggested as a possible basis for identification of driver sets of nodes in

network models [55, 81]. In this project, these measures were used to identify possible

driver sets guiding the construction of calibration datasets from cell line specific baseline

activity profiles. Degree Z-score and DP was calculated for all nodes included in the

Boolean models. In addition, a near-minimal FVS was identified for each Boolean model.

2.5.1 Calculation of Degree Z-score

Degree Z-score is a variation of the degree centrality measure which gives the absolute

number of interactions with neighbouring nodes. The degree Z-score, on the other hand,

provides the number of interactions relative to the average degree of all network nodes [81].

To calculate the degree Z-score of a node i (Zi), the average degree of all network nodes

(k) is subtracted from the degree of node i (ki) and divided by the standard deviation of

node degrees in the network(σ) (Equation 2.1).

Zi =
ki − k

σ
(2.1)

The degree Z-score was calculated for all model nodes using an R-script provided by

Weidner et al. [81]. The only necessary input is a text file including all logical rules

included in the Boolean model. The script for calculating Z-score is provided in this R

Markdown file: Script for calculating Z-score

2.5.2 Calculation of Determinative Power

Determinative Power (DP) is a measure used to identify driver nodes in logical models

and is dependent on the logical rules of the model nodes [81]. A high DP indicates that

the knowledge about the state of a node i yields a high level of information about the

state of its output nodes [62].

Following the definition presented in Pentzien et al. [62], the sum of the information gained

from knowing the state of node j, over all output nodes of nodes j, also called the DP of

node j, is calculated as follows:

DP (j) =
n∑

i=1

MI(fi(X); (Xj) (2.2)

Mutual Information (MI) is a measure of the information gained about the state of all

output nodes X = {X1, X2 ..., Xn}, given the logical equation of node Xi (fi) and the
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knowledge about the state of Xj. The calculation of DP is illustrated using an example

from Pentzien et al. [62] in Appendix B.

The DP was calculated for all model nodes adapting an R-script provided by Weidner

et al. [81]. The only necessary input is a text file including all logical rules included in

the model. The script for calculating DP is provided in this R Markdown file: Script for

calculating DP .

2.5.3 Identification of a Near-minimal Feedback Vertex Set

A Feedback Vertex Set (FVS) is a subset of network nodes including one node in each

network cycle [55]. Fixing the state of a node in each cycle will cause acyclic behaviour

and drive the network to a target state defined by the nodes in the FVS, as the ability to

reach a variety of stable states is caused by the presence of cycles.

A minimal FVS is the smallest possible FVS in a network and is not necessarily a unique

subset. Newby et al. provide a python code for identifying subsets of a near-minimal

FVS given a network in graphml format and a specified subset size [55]. A near-minimal

FVS was identified for all three Boolean cancer models, using the Newby et al. script.

Each network model was converted into a graphml format, and given as input to the

FindBestSubsets() function. To identify the complete minimal FVS, the subset size

(numNodes) was set to 1 and all one-node FVS subsets combined were considered a com-

plete near-minimal FVS.

2.6 Calibration Dataset Construction

Possible driver sets identified based on Z-score, DP and a near-minimal FVS were used to

construct calibration datasets from cell line specific baseline activity profiles. In addition,

a collection of random sample calibration datasets were constructed as comparison against

guided construction. A script for calibration dataset construction is provided in the

following R Markdown file: Script for calibration dataset construction.

All calibration dataset are constructed using the format illustrated in Figure 2.3. This

format can be used to defined model calibration both with respect to an experimentally

observed target state (Figure 2.3b) and an experimentally observed perturbation response

(Figure 2.3a).

In this project, Boolean cancer models were calibrated to reflect an unperturbed cell line

specific cancerous state. The driver set or random sample of baseline data was defined as

the target Response. The empty Condition translates to an unperturbed model, and the

Weight indicates, that this is the only condition-response pair that has to be considered

during model calibration and fitness calculation.
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(a) Unperturbed

target state.

(b) Perturbed

response

Figure 2.3. Example of calibration dataset format. The Condition defines if the model is per-

turbed or unperturbed and an experimentally observed target state is defined as a Response.

In the case of several condition-response pairs, the Weight is used to calculate the weighted

average fitness of a model across the selection of condition-response pairs. (a) Calibration data

defining unperturbed target state. Translated to: Unperturbed model reaches stable state with

NodeA inactive, NodeB active and NodeC active. (b) Calibration data defining perturbed re-

sponse. Translates to: Knockout of NodeA gives a response state with NodeB active and NodeC

active.

2.6.1 Calibration Dataset Construction Guided by Z-score, DP,

and a Near-minimal FVS

A collection of calibration datasets, including possible driver sets, were constructed based

on Z-score, DP, and a near-minimal FVS. A near-minimal FVS constitutes a single possible

driver set, hence the baseline activity of the near-minimal FVS was included in a single

calibration dataset. Since Z-score and DP are continuous measures, several possible driver

sets were selected and included in the collection of calibration datasets. All network nodes

were subsequently ranked based on DP and Z-score, and the baseline activity for the top

∼10%, ∼20%, ∼30%, ..., ∼100% of all nodes were selected and included in 10 respective

calibration datasets.

2.6.2 Random Sample Calibration Dataset Construction

A variety of random sample calibration datasets were constructed by randomly selecting

a subset of data from the cell line specific baseline activity profiles.

First, the cell line specific baseline activity profile was imported as a dataframe in R.

Random samples, of varying sample size (∼10, ∼20, ... ∼100%), were drawn from the

baseline profile, using the sample() function. For each sample size, 20 random sample

replicates were drawn. Every random sample was included in an individual calibration

dataset.
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2.7 Automation of DrugLogics Pipeline Simulations

All driver-based and random calibration datasets were sequentially given as input to the

DrugLogics pipeline.

To automate the process of running the DrugLogics pipeline with different calibration

datasets, bash scripts were created to initiate simulations and change the input calibration

dataset between each run. Bash is the standard shell program for UNIX-based operating

systems, such as Linux and Ubuntu. A bash script can be initiated from the terminal,

and will execute all commands in the script [24]. A script for constructing bash-scripts i

provided in this R Markdown file: Script for constructing bash-scripts .

A dedicated server was used to run the large number of sequential pipeline simulations.

All necessary files for launching the pipeline, including bash scripts, were imported to the

dedicated server and executed.

2.8 Stable State Analysis of Calibrated Models

The stable state of calibrated models were investigated in terms of visual inspection of

stable state consistency and calculation of baseline compliance. Stable state consistency

indicates to what extent all calibrated models in the ensemble reach the same stable

state. The baseline compliance, on the other hand, indicates to what extent the stable

state of the calibrated model is consistent with the state defined in the baseline activ-

ity profile. The following R Markdown file provides a script for stable state analyses:

stable state analysis.Rmd .

2.8.1 Stable State Heatmaps

Stable state heatmaps were constructed to visually inspect the stable state homogeneity

across one or several calibrated model ensembles.

A common ensemble-wise heatmap was constructed for all models calibrated to differ-

ent possible Z-score or DP based driver-sets of baseline activity data. The stable state

of each model, in the model ensemble, was extracted using the get_stable_state_

from_models_dir() function from the emba (V0.1.8) R package. The average stable

state across each calibrated ensemble was calculated and visualised together in a single

heatmap.

A toy example is provided in Figure 2.4. Each column corresponds to the average stable

state of a model ensemble calibrated to possible driver set and each row corresponds to

the stable state activity of a certain model node. A graded colour scheme between blue

(0) and red (1) indicates the average stable state activity of a node. A column with only

blue and red cells indicates a consistent stable state across the ensemble, as is the case for

the latter two columns in the figure. A row annotation indicating the baseline activity of

each node was added as comparison against stable states. Hierarchical clustering – using
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Euclidean distance as the distance metric – was applied to the heatmap row, grouping

nodes with similar stable state activity.

Figure 2.4. Toy example of an ensemble-wise, visually representing the stable state across models

calibrated to possible driver sets. Each column corresponds to the average stable state of a

calibrated model ensemble and each row represents the stable state activity of each node. Graded

colouring from 0 (blue) to 1 (red) is applied and an annotation row with baseline activity is

added.

Model-wise stable state heatmaps were constructed to visually inspect the stable state

of models calibrated to a single driver set, based on a near-minimal FVS. The stable

state of each model, in the model ensemble, was extracted using the get_stable_state_

from_models_dir() function from the emba (V0.1.8) R package and visualised in a

heatmap.

A toy example is provided in Figure 2.4. Each column corresponds to the stable state

of a model in the model ensemble, and each row corresponds to the activity of a certain

node. The baseline activity was added as an annotation row to the heatmap. Hierarchical

clustering, using Euclidean distance as the distance metric, was applied to both rows and

columns, grouping similar models and nodes together. If all models have the same stable

state, then the stable state of the model ensemble is considered consistent, as in Figure

2.5b.
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(a) Inconsistent stable states across model ensem-

ble.

(b) Consistent stable state across model ensemble

Figure 2.5. Toy example of a model-wise stable state heatmap. Every column corresponds to the

stable state of a single model in a model ensemble, and every row corresponds to the activity of

a node

2.8.2 Compliance Between Stable State and Baseline Activity

Profile

The similarity between the average stable state of a calibrated model ensemble and the

baseline activity profile was assessed in terms of compliance.

For every node Xij, where i is the number of nodes and j is the number of models in the

ensemble, the average node activity across the model ensemble (Xi) was calculated (eq.

2.3).

Xi =
Σj

n=1Xin

j
(2.3)

The absolute value of the difference between every average node valueX i = {X1, X2, ..., X i}
and the node value defined in the baseline activity profile Gi = {G1, G2, ..., Gi} was further
calculated (eq. 2.4).

Yi = |Gi −Xi| (2.4)

Finally, the compliance of a model ensemble was obtained by finding the average difference

between the model ensemble and the baseline activity profile (eq. 2.5).

compliance =
Σi

n=1Yn

i
(2.5)

Compliance was calculated for all model ensembles calibrated to a possible driver set.
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2.9 Synergy Prediction Analysis of Calibrated Mod-

els

The ability to correctly predict a set of cell line specific gold standard synergies was

assessed for all calibrated models in terms of the Area Under the Curve (AUC) of the

Receiver Operating Characteristic (ROC) curve. An R Markdown file is provided with

necessary code for analysis of predictive performance:

predictive performance analysis.Rmd .

2.9.1 AUC ROC

AUC ROC is a performance metric for binary classification approaches [13]. Identifying

drug combinations as either synergistic or non-synergistic is considered a binary classifi-

cation problem. Hence, AUC ROC is applicable for assessing the ability of a calibrated

model to correctly predict synergistic drug combinations.

Drabme provides an ensemble-wise response excess output for each drug combination. In

this list of response excess values, there is no absolute decision boundary between which

drug combinations are classified as synergies and non-synergies. The response excess value

is a continuous measure, and synergy classification is dependent on the threshold we set as

the decision boundary. The validity of the drug synergy prediction is compared to a set of

experimentally confirmed gold standard synergies. Given the gold standard, the synergy

classification output can be divided into four different categories: True Positives (TP),

True Negatives (TN), False Positives (FP), and False Negatives (FN). The ROC curve is

a graphical representation of the trade-off between the True Positive Rate (TPR), which

translates to the test sensitivity (the ability to recognise true positives), and the False

Positive Rate (FPR), which translated to 1 - test specificity (the probability of classifying

false positives), across different classification measure thresholds [42] (eq. 2.6, 2.7).

TPR (test sensitivity) =
TP

TP + FN
(2.6)

FPR (1 - test specificity) =
FP

FP + TN
(2.7)

AUC is a way of quantifying the performance of the binary classifier given the ROC

curve (Figure 2.6). AUC = 1 is the upper performance limit, and indicates that no FN

or FP classifications are made by the classifier (Figure 2.6b). The diagonal line going

from the coordinates (0,0) to (1,1) in the ROC plot, is called the Random Chance Line

(RCL) [13]. If predictive performance follows this line, the AUC ROC value is equal to

0.5 and performance is no better than pure chance.
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(a) ROC curve with AUC = 0.839 (b) ROC curve with AUC = 1

Figure 2.6. Illustration of ROC curve as a graphical representation of the trade off between the

TPR and the FPR. The dashed line indicates the random chance line (RCL). A ROC curve

above the RCL is considered better than random.

AUC ROC calculations were performed in R implementing the get_roc_stats() function

from the usefun (V0.4.8) R package [83,84].

2.9.2 Adjusting Synergy Predictions to Augment the Effect of

Calibration Data

The topology of the input Boolean model alone carries some information about the dy-

namic response to perturbations [21]. Hence, some synergies can be predicted by an

uncalibrated model. To augment the effect of model calibration on synergy predictions,

the drug response of the calibrated model is normalised to the drug response of an uncal-

ibrated model:

AUCnormalised = AUCcalibrated − AUCuncalibrated

Drug combinations that are reported as more synergistic by the calibrated model – com-

pared to the uncalibrated one – are considered as cell line specific synergies. It is reported,

that this normalisation strategy was able to improve synergy predictions for the AGS cell

line with CASCADE 1.0 [21]. For the Park- and Lu-models, this normalisation strategy

will amplify the effect of calibration data as the same Boolean input model is used to

predict synergies for different cell lines.

The normalisation strategy was implemented as a step in the calculation of AUC ROC.

The normalised AUC ROC was calculated for each calibrated model and used in further

analyses of predictive performance.
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2.9.3 Visualisation of Predictive Performance in Boxplots

The predictive performance of models calibrated to random samples of baseline data was

visualised in boxplots with jitter. The AUC ROC of each calibrated model was plotted

against the size of the random sample included in the calibration dataset. This ran-

dom sample boxplot served as a basis for comparison against the predictive performance

obtained with driver-based calibration. The distribution of predictive performance asso-

ciated with each random sample size is described in a boxplot by an Interquartile Range

(IQR) and an upper and lower whisker (Figure 2.7).

Figure 2.7. Illustration of a boxplot where the interquartile range (IQR) and the upper and lower

whiskers are indicated.

The AUC ROC values of all calibrated models obtained by driver-based calibration were

added as data points to the random sample boxplots. All driver-based calibrated models,

having an AUC ROC value above the interquartile range of the random sample results,

were considered an improvement of predictive performance.
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Chapter 3

Results and Discussion

3.1 Modification and Characterisation of Boolean Can-

cer Models

Three Boolean cancer models were retrieved from the literature, and applied as input

models for model calibration and synergy predictions with the DrugLogics pipeline. A

summary of the selected Boolean models is given in table 3.1. All network interaction

files and logical rules are provided in the GitHub repository: model data

Table 3.1. Summary of Boolean cancer models used in project analyses.

Model name Cancer system represented by model Source

CASCADE 1.0 AGS cell line, gastric cancer Flobak et al. [20]

Park-model Colorectal cancer Park et al. [60]

Lu-model Colitis associated colorectal cancer Lu et al. [47]

Model modifications were performed to ensure that the models fulfilled some common

criteria. Input nodes were removed to avoid the need for any input specifications, only

intracellular model components involved in cancer signalling pathways were retained, and

two nodes representing prosurvival and antisurvival were considered the main model out-

puts. The degree- and average clustering coefficient distribution was calculated before

and after model modifications, in order to characterise the change in scale-freeness and

hierarchical structure. Both a scale-free and a hierarchical structure is recognised by

a degree- and average clustering coefficient distribution, following a power-law with a

negative exponent.

CASCADE 1.0 already fulfills all model requirements. It is self-contained without any

input nodes, includes nodes representing intracellular biomolecules related to cancer, and

has two output nodes representing prosurvival and antisurvival (Figure 3.1). Hence, no

model modifications were performed on CASCADE 1.0.
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Figure 3.1. Graphical representation of the CASCADE 1.0 model, with 77 nodes and 149 directed

edges. Square nodes represent the phenotypic outputs Antisurvival and Prosurvival. Red arrows

represent inhibiting interactions, while blue arrows represent activating interactions.

A power-law was fitted to the degree distribution of CASCADE 1.0 with the following

equation: P (k) = 156.71k−2.089, R2 = 0.917(Figure 3.2). The negative exponent of the

power-law and the R2 value being close to 1, suggests that CASCADE 1.0 is scale-free.

Figure 3.2. Degree distribution of CASCADE 1.0 on a log log scale. A power-law (red line) is

fitted with the following equation: P (k) = 156.71k−2.089, R2 = 0.917.

A power-law was fitted to the average clustering coefficient distribution of CASCADE

1.0 with the following equation: C(k) = 0.046k0.151, R2 = 0.012. Based both on visual
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inspection of the plot and the R2 value, the relationship between degree and clustering

average clustering coefficient does not seem to follow a power-law.

Figure 3.3. Average clustering coefficient distribution of CASCADE 1.0 on a log log scale. A

power-law (red line) is fitted with the following equation: C(k) = 0.046k0.151, R2 = 0.012

.

Some model modifications were performed on the Park-model. It mainly includes compo-

nents representing the intracellular signalling network of CRC. However, four input nodes

representing extracellular signalling molecules are included and were removed from the

model. In addition, the phenotypic output nodes named Apoptosis and Proliferation were

substituted by the output nodes Antisurvival and Prosurvival (Figure 3.4).
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(a) Park-model before model modifications includ-

ing 97 nodes and 343 directed edges.

(b) Park-model after model modifications including

91 nodes and 326 directed edges.

Figure 3.4. Park-model (a) before and (b) after model modifications. Square nodes represent the

phenotypic outputs Antisurvival and Prosurvival. Red arrows represent inhibiting interactions,

while blue arrows represent activating interactions.

A power-law was fitted to the degree distribution of the original and modified Park-model

with the following equations:

Original model: P (k) = 14.33k−0.697, R2 = 0.388

Modified model: P (k) = 14.385k−0.674, R2 = 0.414

Only minor differences are observed between the fitted power-law of the degree distribution

of the original and modified Park-models. The R2 values indicate a poor fit and do not

suggest a scale-free behaviour for the original nor the modified version of the Park-model.

However, if the degree distribution plots are inspected visually, the poor fit seems to

be caused by an underrepresentation of low-degree nodes (Figure 3.5). The graphical

representation of the degree distribution indicates a scale-free behaviour, but the fitted

power-law is offset by some outliers.
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(a) Degree distribution of Park-model before model

modifications. A power-law (red line) is fitted with

the following equation: (a) P (k) = 14.33k−0.697,

R2 = 0.388

(b) Degree distribution of Park-model after model

modifications. A power-law (red line) is fitted with

the following equation: P (k) = 14.385k−0.674, R2

= 0.414

Figure 3.5. The degree distribution of the (a) original and the (b) modified version of the Park-

model on a log log scale.

A power-law was fitted to the average clustering coefficient distribution of the original

and modified Park-model with the following equations (Figure 3.6):

Original model: C(k) = 0.356k−0.268, R2 = 0.329

Modified model: C(k) = 0.439k−0.341, R2 = 0.424

The power-law equation does suggest a negative relationship between the node degree and

the average clustering coefficient, indicating a possible hierarchical structure. However,

the R2 values do not indicate a perfect fit.

(a) Average clustering coefficient distribution of

Park-model before model modifications. A power-

law (red line) is fitted with the following equation:

C(k) = 0.356k−0.268, R2 = 0.329

(b) Average clustering coefficient distribution of

Park-model after model modifications. A power-

law (red line) is fitted with the following equation:

C(k) = 0.439k−0.341, R2 = 0.424

Figure 3.6. The clustering coefficient distribution of the (a) original and the (b) modified version

of the Park-model on a log log scale.

Larger structural changes were performed on the Lu-model. The original model can be
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divided into two main parts, one part representing the extracellular tumour microenviron-

ment and the other part representing intracellular pathways in CRC (Figure 3.7a) [47].

The subpart representing the extracellular tumour microenvironment was removed to

obtain a model representing only intracellular pathways. All nodes related to the mi-

croenvironment were removed, except IL6. The removal of IL6 prevented the model from

reaching a stable state and was therefore kept in the modified model. In addition, the out-

put nodes Apoptosis and Proliferation were substituted by the output nodes Antisurvival

and Prosurvival respectively (Figure 3.7b).

(a) Lu-model before model modifications including

70 nodes and 151 directed edges.

(b) Lu-model after model modifications including

49 nodes and 99 directed edges.

Figure 3.7. Lu-model (a) before and (b) after model modifications. Green nodes represent the

extracellular microenvironment part of the model. Square nodes represent the phenotypic outputs

Antisurvival and Prosurvival. Red arrows represent inhibiting interactions, while blue arrows

represent activating interactions.

A power-law was fitted to the degree distribution of the original and modified Lu-model

with the following equations (Figure 3.8):

Original model: P (k) = 9.736k−0.502, R2 = 0.116

Modified model: P (k) = 7.462k−0.406, R2 = 0.121

Neither the fitted power-law of the original, nor the modified Lu-model indicate a scale-

free characteristic. Visual inspection of the degree distribution rather suggests that it

follows a Poisson distribution, which is one of the hallmarks of random network models,

suggesting that most nodes have an average degree [11].
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(a) Degree distribution of Lu-model before model

modifications. A power-law (red line) is fitted with

the following equation: P (k) = 9.736k−0.502, R2 =

0.116.

(b) Degree distribution of Lu-model after model

modifications. A power-law (red line) is fitted with

the following equation: P (k) = 7.462k−0.406, R2 =

0.121.

Figure 3.8. The degree distribution of the (a) original and the (b) modified version of the Lu-

model on a log log scale.

A power-law was fitted to the average clustering coefficient distribution of the original

and modified Lu-model with the following equations (Figure 3.9):

Original model: C(k) = 0.099k−0.088, R2 = 0.016

Modified model: C(k) = 0.191k−0.298, R2 = 0.085

No obvious hierarchical behaviour is observed for the original, nor the modified version of

the Lu-model. Based on exponent decrease and the increase in R2 value, one might argue

that the hierarchical structure of the Lu-model is actually somewhat improved by model

modifications.

(a) Average clustering coefficient distribution of

Lu-model before model modifications. A power-

law (red line) is fitted with the following equation:

C(k) = 0.099k−0.088, R2 = 0.016

(b) Average clustering coefficient distribution of

Lu-model after model modifications. A power-

law (red line) is fitted with the following equation:

C(k) = 0.191k−0.298, R2 = 0.085

Figure 3.9. The clustering coefficient distribution of the (a) original and the (b) modified version

of the Lu-model on a log log scale.

Some model modification were performed on the Park and the Lu-models, while the origi-
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nal network structure of CASCADE 1.0 was retained. It should be noted that these model

modifications are not necessary requirements to run the DrugLogics synergy prediction

pipeline. They are rather performed to limit the number of model specific adjustments

and project steps. Larger multiscale models representing cancer development on differ-

ent scales – from intracellular signalling and metabolism, to the effect of extracellular

stimuli and cell-cell communication – should be considered in further research with the

DrugLogics pipeline, as these elements could have great effect on drug response [75,76,80].

Model characterisation was performed to ensure that key network properties were not lost

due to model modifications. No large changes in degree- or average clustering coefficient

distribution are observed after model modification of the Lu- and Park-models. Both

CASCADE 1.0 and the Park-model exhibit a scale-free structure, suggesting the presence

of a few high degree hub nodes connected to a large number of low degree nodes. These

hubs serve as the backbone of the network, being in close interaction with large fractions

of the network, and thereby maintaining the structural integrity of the network [5]. The

Lu-model, on the other hand, appears to have a more random network structure with a

few low degree nodes, a few hubs and a large proportion of average degree nodes [11].

Cellular networks are usually hierarchical in structure, consisting of node communities

only connected through a few number of hubs [5]. Such node communities represent groups

of biomolecules, which interact both physically and functionally [10]. This modularity is

present on different levels of the network, from physically connected protein complexes,

to functionally related signalling molecules regulating the same cellular functions. No

significant hierarchical structure is observed in any of the three models. The non-hierarchic

structure can possibly be explained by the modelling strategy applied during network

construction. Flobak et al., Park et al. and Lu et al. all apply a pathway oriented

network construction strategy [20,47,60]. It can be suspected that this causes a more linear

pathway network structure than a hierarchical module network structure. Additionally, in

the CASCADE 1.0 model, all protein complexes are collapsed into single complex nodes,

removing the modular layer of complexes.

No model is dismissed solely based on the absence of scale-freeness or hierarchical struc-

ture. The research done by the model creators suggests, that all three models are able to

simulate certain cellular behaviours of cancer.

3.2 Collection of Cell Line Specific Baseline Activity

Profiles for Model Calibration

A baseline activity profile gives an overview of the experimentally observed activity of

each cancer related biomolecule included in a Boolean network model. Baseline activity

profiles for the AGS cell line was retrieved from a paper published by Niederdorfer et

al. [56]. The baseline activity profile was partly inferred from the literature, and partly

from cell line copy number variations and gene expression data. COLO 205, HCT 116,
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SW 48 and SW 620 specific baseline activity profiles were inferred from normalised and

binarised transcription data. All baseline activity profiles are provided in Appendix C.

Ideally, the baseline activity profile should give a true representation of the observed

activity of all cancer related biomolecules represented by a model. It should not be a

relative description of the activity of biomolecules in a cancer cell compared to a healthy

cell, but an absolute description of how these molecules are are acting in the cancer cell.

Creating good quality baseline activity profiles poses a great challenge, due to limitations

regarding correct activity inference from omics data. In this project, cell line specific

baseline activity profiles are completely or partly inferred from transcriptomic data. The

validity of inferring protein activity from transcription data is however highly debated.

The transcriptomic profile of a cell gives a snapshot of the temporary state of the cell

and provides information about the set and the number of RNA molecules which are

transcribed from the genome [72]. There is, however, no straight-forward correlation

between the amount of mRNA and the amount of active protein in the cell [52]. Due

to variations in the degradation rate of mRNA, there are variations in the number of

proteins being translated from one mRNA molecule [52]. Analysing the proteome instead

of the transcriptome can overcome some of these challenges, but also on the level of the

proteome, challenges are faced when trying to infer protein activity from protein level

measurements. The level of protein does not take into account how the protein activity is

affected by post-translational modifications, the spatial location of the protein and other

regulatory interactions between the protein and its environment [52,71].

Phosphoprotomic analysis has been suggested as a source for assessing protein activity.

The phosphorylation or dephosphorylation of a protein is often associated with an acti-

vating or deactivating regulation of a protein, and most signalling pathways in cancer are

driven and mediated by protein phosphorylation [8]. Protein phosphorylation is easily de-

tected, but the level or the site of phosphorylation is more difficult to identify. And again,

there is not necessarily a straight forward relationship between the level of phosphorylation

and activity. GSK3β and BRAF are examples of proteins which are deactivated rather

than activated by phosphorylation [16]. Further development of good quality datasets

and high performance tools for activity inference from phosphoproteomics is needed.

Different levels of omics data, from transcriptomics to phosphoproteomics, provide impor-

tant information about protein activity and involvement in cellular signalling. However,

no omics level is able to provide all the information necessary to infer protein activity

and regulation. Hence, protein activity should ideally be assessed at as many levels as

possible [52]. The integrative analyses of multi-omics data will hopefully improve the

process of inferring protein activity and several bioinformatic tools are being developed

to automate this process [6, 9, 49]. The use and integration of such tools, as a part of

the DrugLogics framework, has been the main objective of the master’s project of Victo-

ria Nilsen Gjøvaag (Exploring Software Workflows to Optimise Biomarker Inference for

Boolean Model Calibration and Drug Synergy Predictions, 2023). However, no exten-
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sive multi-omics activity inference was conducted in this project. It is quite certain that

transcriptomic data only provides a partial image of the baseline activity of proteins in a

cancer cell. However, transcriptomics datasets are largely available in different databases

and provide good coverage of model nodes which enabled the construction of complete

baseline activity profiles for all cell lines.

3.3 Identification of Cell Line Specific Gold Standard

Synergies

Cell line specific and experimentally verified gold standard synergies were retrieved from

the literature. Flobak et al. provides an experimental validation of four drug synergies

i AGS, among the pairwise combinations of seven targeted drugs [20]. A drug screen

conducted by Jaaks et al. provides cell line specific drug synergies for the COLO 205,

HCT 116, SW 48 and SW 620 cell lines. Synergistic drug combinations were further

filtered for targets included in the Park- and Lu-models. All cell line and model specific

gold standard synergies are presented in Appendix D.

Generally, a larger number of gold standard synergies are identified for the CRC cell lines,

than AGS, as the number pairwise drug combinations tested by Jaaks et al. is much larger

than the number of pairwise drug combinations tested by Flobak et al. (2025 versus

21) [20, 35]. It should also be noted, that two different synergy calculation methods are

applied in each respective synergy screen. In the Jaaks et al. screen, Bliss independence

is applied to assess drug synergy, while Flobak et al. apply Loewe additivity. Different

synergy calculation methods can provide different synergy results [23]. This difference

is, however, accounted for during in silico synergy predictions with Drabme, as different

synergy calculation methods are computationally implemented, and can be applied during

synergy predictions.

The Bliss independence model applied by Jaaks et al. corresponds to the Bliss method

applied during synergy predictions with Drabme. Loewe additivity, however, can not

be applied by the Drabme module, as the implementation of dose-response curves is

not supported by the binary modelling framework. However, as explained by Flobak et

al., a drug combination is considered synergistic, according to Loewe additivity, if ”the

combined effect outperforms the effect of either drug” [20]. This interpretation is similar

to the HSA method (EAB > max(EA, EB)), which is implemented in the Drabme module

and was considered the appropriate alternative to Loewe additivity.

3.4 Calculation of Degree Z-score, DP, and a Near-

minimal FVS

For all model nodes included in CASCADE 1.0, Park- and Lu-models, the degree Z-score

and DP was calculated. In addition, a near-minimal FVS was identified for each model. In
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this section it is investigated whether or not these three measures suggest unique possible

driver sets or not.

3.4.1 Top Nodes Based on Degree Z-score

The top 10% subset of all model nodes, based on degree Z-score, is provided for each

Boolean model in table 3.2. The Z-scores for all remaining model nodes are given in

Appendix E.

A node is considered a hub if it has a degree Z-score above 2.5, as given by Guimera

and Amaral [27]. Five hub nodes are identified in CASCADE 1.0 and the Park-model,

while only one hub is identified for the Lu-model. The difference in hubbiness is related

to differences in degree distribution observed for the three models. The scale-free network

structure of CASCADE 1.0 and the Park-model is characterised by a high number of low-

degree nodes and a high number of high-degree nodes, compared to models with a random

network structure, such as the Lu-model [11]. The limited number of hubs identified for

the Lu-model might be a first indication that degree Z-score is not a suitable measure for

target control, in the case of the Lu-model.

Based on Z-score, AKT is among the top nodes across all models. The high Z-score can

be related to the biological relevance of AKT in many human cancers [66]. AKT is a key

kinase, affecting the activity of many downstream proteins involved in cell survival and

proliferation. This extensive signalling involvement is reflected in the topology of all three

Boolean models.

Table 3.2. Nodes with the highest degree Z-score in CASCADE 1.0, Park-model and Lu-model.

Degree Z-score

CASCADE 1.0 Park-model Lu-model

Node Score Node Score Node Score

ERK f 3.956 Akt 3.302 P53 2.950

AKT f 3.523 ERK 3.092 NFKB 1.960

MAPK14 3.090 PP2A 2.883 AKT 1.960

GSK3 f 2.656 p53 2.673 P21 1.960

LRP f 1.790 GSK3beta 2.044 CASP3 1.465

TSC f 1.356 c Myc 2.044

RSK f 1.356 p38 1.625

TCF7 f 0.923 JNK 1.625

Bax 1.416

3.4.2 Top Nodes Based on DP

The top 10% subset of all model nodes, based on DP is provided for each Boolean model

in table 3.3. The DP for all remaining model nodes are given in Appendix E.
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Across all three models, AKT is also among the top nodes based on DP. The upper pos-

sible DP limit for a node depends on the number of outgoing interactions, as the mutual

information is summarised over all outputs [62]. Hence, there might be a correlation be-

tween the high Z-score of AKT and the high DP. However, some nodes are included in

the subset of top nodes based on DP, but not Z-score. One example is the RAC f node in-

cluded on CASCADE 1.0. RAC f and its nearest neighbours are visualised in Figure 3.10.

Figure 3.10. RAC node and

its four nearest neighbours

RAC f has a degree of 4 and a degree Z-score of 0.056. How-

ever, RAC f constitutes the only input node of MAP3K11

and MAP3K4, giving it complete determinative power over

the state of these two nodes. Hence, the DP-score of RAC f

is 2.000, making it one of the top nodes in CASCADE 1.0

based on DP. This example illustrates how Z-score and DP

are not always correlated.

Table 3.3. Nodes with the highest DP in CASCADE 1.0, Park-model and Lu-model

Determinative power

CASCADE 1.0 Park-model Lu-model

Node Score Node Score Node Score

AKT f 4.059 ERK 3.794 NFKB 2.828

MAPK14 3.193 p53 3.754 GSK3B 2.220

TCF7 f 2.623 Akt 3.155 ERK 2.019

ERK f 2.262 ATM 2.884 MOMP 2.000

LRP f 2.008 GSK3beta 2.617 AKT 1.907

RAC f 2.000 Smad2 3 2.311

MAP3K7 1.999 PP2A 2.245

IKBKB 1.690 p38 1.851

Src 1.733

3.4.3 Near-minimal FVS

Table 3.4 gives an overview of all nodes included in a near-

minimal FVS identified for each Boolean model. Across all three models, between a third

and a fourth of all network nodes are included in a near-minimal FVS. Newby et al.

identified a near-minimal FVS for 6 different network models, with a size ranging from 28

to 60 nodes [55]. They report that the size of the near-minimal FVSs identified ranged

from 8 to 17 nodes, which corresponds to a 30% subset, and is consistent with the size

of the near-minimal FVSs identified in this project.
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Table 3.4. All nodes included in the near-minimal FVS identified for CASCADE 1.0, Park-

model and Lu-model

Near-minimal FVS

CASCADE 1.0 Park-model Lu-model

26/77 nodes (34%) 24/91 nodes (26%) 15/49 nodes (31%)

AKT f, AKT1S1, BTRC, Akt, AXIN, beta catenin, AKT, CASP3, CASP8,

CTNNB1, DUSP6, ERK f, CyclinA, CyclinB, E2F1, CASP9, ERK, JAK,

GRB2, GSK3 f, KRAS, ERK, GSK3beta, JNK, MEK, P21, P53, SMAD,

LRP f, MAPK14, MDM2, MDM2, mTOR1, mTOR2, SMAD7, SOCS, SPHK1,

MDM2 g, MEK f, mTORC1 c, p38, PI3K, p53, PDPK1, STAT3, TGFR

mTORC2 c, PDPK1, PIK3CA, PIP3, PP2A, S6K, SHP2,

RAF f, RHEB, RTPK f, S6K f Smad2 3, Smad7, Src,

SHC1, TCF7 f, TP53,TSC f TSC1

3.4.4 Degree Z-score, DP, and Near-minimal FVS Give Unique

Node Subsets

There is some overlap between the selection of nodes with the top 10% highest degree

Z-score, the selection of nodes with the top 10% highest DP and the near-minimal FVS.

(Figure 3.11). However, all measures identify a unique subset of nodes across all three

models. No subset is completely covered by any other subset.

(a) CASCADE 1.0 (b) Park-model (c) Lu-model

Figure 3.11. A venndiagram indicating the overlap between nodes with high degree Z-score (10%

highest), nodes with high DP (10% highest) and nodes included in the near-minimal FVS of (a)

CASCADE 1.0, (b) Park-model and (c) Lu-model.

Since each measure provides a unique subset of nodes and covers a different node property,

they are further investigated as possible driver set identifiers and used to select subsets

of baseline data for Boolean model calibration.
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3.5 Effect of Calibration Data Subsetting on Cali-

brated Model Stable State

The aim of Boolean model calibration, using the Gitsbe software module, is to obtain a

calibrated model whose stable state reflects a target state. In this section, it is investigated

if calibration of a Boolean model, with respect to a possible driver set of nodes, will ensure

a calibrated model with a stable state which correctly represents the target state.

Boolean model calibration can be described as a Boolean model optimisation problem. It

is a search for an optimal model in a model solution space, and the best model solution

is the one that reflects the target state. The feasible model solution space is restricted by

the topology of the Boolean input model, as it can only reach a limited number of possible

stable states [67]. Mutations introduced to the logical rules during model calibration can,

however, increase the number of possible stable states, as is exemplified by the exchange

of an OR operator against an AND operator in the toy example in Figure 3.12. Hence,

the model solution space is rather restricted to the possible stable states of the Boolean

input model and all possible mutated counterparts.

Figure 3.12. Model solution space for a three-node sub-network. Exchanging the OR operator for

an AND operator in the logical rule of node C increases the number of possible state solutions

from two to four.

The model solution space is further constrained by the calibration dataset, as it defines

the target state of some nodes, and acts as an objective guiding model calibration. The

activity of a node is a dependent variable as it is determined by the activity of its regula-

tors. Hence, including information about the target activity of one node in the calibration

dataset will also provide information about the target activity of other nodes, as their

activity is inferred from this main node. Due to this node interdependence, it is hy-

pothesised that only including the target activity for a set of driver nodes is sufficient to

obtain a calibrated model whose stable state is compliant with the whole target state,

as the target activity of all remaining nodes will be inferred from this driver set. This

hypothesis is illustrated by a toy example in Figure 3.13. The toy example includes a
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three-node sub-network where node A and node B inhibit node C. The topology of the

sub-network itself constrains the possible model solution space. The solution space is

further constrained as node A is defined as active in calibration dataset 1. The activity

of node A and B in calibration dataset 2 constitutes a driver set as it only allows one

possible model solution.

Figure 3.13. The model solution space for a three-node sub-network is restricted both by the

topology and the applied calibration dataset. Calibration dataset 2 constitutes a driver set as it

only allows one possible model solution.

This driver-based calibration strategy was applied to calibrate three Boolean cancer mod-

els representing AGS (CASCADE 1.0) and CRC (Park-model and Lu-model). The target

state for model calibration was given by the cell line specific baseline activity profiles

of AGS, COLO205, HCT116, SW48, and SW620. Subsets of data from these baseline

activity profiles were sampled for possible driver sets, based on degree Z-score, DP, and a

near-minimal FVS. A near-minimal FVS constitutes a single possible driver set. Z-score

and DP, on the other hand, are continuous measures. Hence, 10 possible driver sets –

including the top 10%, 20%, . . . 100% nodes – were sampled for each measure.

The output from model calibration is an ensemble of calibrated models. If a true driver

set constrains the model solution space in a way that only leaves one possible target state,

then every model in the calibrated model ensemble should reach this target state. Hence,

the efficiency of the driver-based calibration strategy is evaluated both in terms of stable

state homogeneity across the ensemble, and the compliance between the stable state of the

calibrated model ensemble and the target state defined by the baseline activity profile. All

results obtained by driver-based model calibration are presented in the following sections,

followed by a discussion of main findings.
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3.5.1 Model Calibration Using Possible Driver Sets Based on

Degree Z-score

For CASCADE 1.0, an increased level of stable state homogeneity is observed, as the

sample size of the possible driver set (Z-score) increases. (Figure 3.14). There is a no-

table increase in stable state homogeneity as the size of the possible driver set exceeds

30%. However, no overall homogeneous stable state is obtained for any calibrated model

ensemble. The increase in stable state homogeneity across model ensembles is also re-

flected in an increase in baseline compliance. The highest compliance level – of 0.783 –

is obtained when CASCADE 1.0 is calibrated to the complete baseline activity profile of

AGS. The stable state of nodes such as RHEB, MAP2K4, MAP3K11, MAP3K4, TSC f

and mTORC1 c violate their baseline activity across stable states.

Figure 3.14. Ensemble-wise stable state heatmap for CASCADE 1.0. Columns are ordered by

the size of the possible driver set (Z-score), and an annotation row indicates the experimentally

observed AGS baseline activity. A baseline compliance plot is provided below the heatmap, and

the baseline compliance of the uncalibrated model is indicated by a red line.
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The stable state of the calibrated Park-model shows high levels heterogeneity across all

cell lines, and no consistent stable state is reached by any calibrated model ensemble

(Figure 3.15). However, there seems to be an increase in stable state homogeneity as

the size of the possible driver set increases. Across all cell lines, this increase in stable

state homogeneity seems to coincide with an increase in baseline compliance. The highest

compliance level – of 0.755 – is obtained by the Park-model calibrated to the complete

baseline activity profile of the SW 620 cell line.
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(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.15. Ensemble-wise stable state heatmap for the Park-model calibrated to the (a)

COLO 205, (b) HCT 116, (c) SW 48 and (d) SW 620 cell line. Columns are ordered by the size

of the possible driver set (Z-score), and an annotation row indicates the experimentally observed

cell line specific baseline activity. A baseline compliance plot is provided below every heatmap,

and the baseline compliance of the uncalibrated model is indicated by a red line.
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The stable state of the calibrated Lu-model differs between cell lines (Figure 3.16). When

the Lu-model is calibrated to the baseline data of the COLO 205 and HCT 116 cell lines,

the stable state homogeneity increases as the size of the possible driver set (Z-score)

increases. However, for the HCT 116 cell line, a high level of stable state heterogeneity

is observed when calibrated to the complete baseline activity profile. For both cell lines,

higher levels of stable state homogeneity seems to be associated with higher levels of

baseline compliance, but no overall baseline compliant stable state is obtained. For the

SW 48 and SW 620 cell lines, model ensembles switch between different stable states.

Some of these switches are reflected in the compliance plot as well. For the SW 48 cell

line, ensemble-wise stable states with larger fractions of inactive nodes are associated with

higher baseline compliance, while the opposite is true for the SW 620 cell line. Across all

cell lines, the highest compliance level – of 0.679 – is obtained by the Lu-model, calibrated

to a 90% sample of the COLO 205 baseline activity profile.

Across all stable states, 15 nodes (ATM, CASP8, CFLIP, GP130, IKB, IKK, IL6, JAK,

NFKB, ROS, SMAD7, SOCS, SOD, STAT3, TGFR) are observed to be consistently active

or inactive, even though the baseline activity of these nodes differs between cell lines.
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(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.16. Ensemble-wise stable state heatmap for the Lu-model calibrated to the (a)

COLO 205, (b) HCT 116, (c) SW 48 and (d) SW 620 cell line. Columns are ordered by the size

of the possible driver set (Z-score), and an annotation row indicates the experimentally observed

cell line specific baseline activity. A baseline compliance plot is provided below every heatmap,

and the baseline compliance of the uncalibrated model is indicated by a red line.
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3.5.2 Model Calibration Using Possible Driver Sets Based on

DP

The ensemble-wise stable state of CASCADE 1.0, calibrated to possible driver sets (DP),

can be divided into three main groups: largely homogeneous, partly homogeneous and

largely heterogeneous (Figure 3.17). When CASCADE 1.0 is calibrated to possible driver

sets of 10% to 50%, the average stable state of the calibrated model ensemble has some

areas of stable state homogeneity, and some areas of heterogeneity. When CASCADE

1.0 is calibrated to possible driver sets of 70% to 100%, average stable states are highly

homogeneous. However, no overall homogeneous stable state is observed across ensembles.

The stable state of CASCADE 1.0 calibrated to a possible driver set of 60% stands out

as being highly heterogeneous across the model ensemble.

Differences in stable state homogeneity are reflected in the baseline compliance plot.

Higher levels of ensemble-wise stable state homogeneity is associated with higher levels

of baseline compliance. The calibrated model ensemble with the highest level of stable

state heterogeneity does also have the lowest compliance level. The highest compliance

level – of 0.783 – is observed for CASCADE 1.0 calibrated to the complete AGS baseline

activity profile.
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Figure 3.17. Ensemble-wise stable state heatmap for CASCADE 1.0. Columns are ordered by

the size of the possible driver set (DP), and an annotation row indicates the experimentally

observed AGS baseline activity. A baseline compliance plot is provided below the heatmap, and

the baseline compliance of the uncalibrated model is indicated by a red line.

High levels of stable state heterogeneity is observed for the calibrated Park-model, and

no homogeneous stable state is reached across any ensemble (Figure 3.18). The tendency

is, however, that there is an increase in stable state homogeneity for models calibrated

to possible driver sets (DP) of a larger size. This increase in stable state homogeneity

is reflected in an increase in baseline compliance across all cell lines, and the highest

compliance level – of 0.761 – is observed for the Park-model calibrated to the complete

baseline activity profile of the SW 620 cell line.
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(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.18. Ensemble-wise stable state heatmap for the Park-model calibrated to the (a)

COLO 205, (b) HCT 116, (c) SW 48 and (d) SW 620 cell line. Columns are ordered by the size

of the possible driver set (DP), and an annotation row indicates the experimentally observed cell

line specific baseline activity. A baseline compliance plot is provided below every heatmap, and

the baseline compliance of the uncalibrated model is indicated by a red line.

Different stable state patterns are observed for the calibrated Lu-model across cell lines

(Figure 3.19). When the Lu-model is calibrated to the COLO 205 and the HCT 116 cell

lines, there is an increase in stable state homogeneity as the size of the possible driver
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set (DP) gets larger. However, for the HCT 116 cell line, there is a sudden increase in

stable state heterogeneity as the sample size exceeds 80%. This is not observed in the

COLO 205 cell line. In the stable state heatmaps of the Lu-model calibrated to the SW 48

and SW 620 cell lines, several stable state switches are observed.

The increase in stable state homogeneity observed for the COLO 205 cell line seems

to coincide with an increase in baseline compliance. The Lu-model, calibrated to the

complete baseline activity profile of COLO 205, obtains the highest compliance – of 0.679.

For the SW 48 cell line, a stable state characterised by a larger fraction of inactive nodes

is associated with a higher compliance, while the opposite is true for the SW 620 cell line.

However, no overall baseline compliant stable state is obtained by any calibrated model

ensemble.

Across all calibrated model stable states, a group of 15 nodes (ATM, CASP8, CFLIP,

GP130, IKB, IKK, IL6, JAK, NFKB, ROS, SMAD7, SOCS, SOD, STAT3, TGFR) are

observed consistently active or inactive, even though their baseline activity differs between

cell lines.
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(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.19. Ensemble-wise stable state heatmap for the Lu-model calibrated to the (a)

COLO 205, (b) HCT 116, (c) SW 48 and (d) SW 620 cell line. Columns are ordered based

on the size of the possible driver set (DP), and an annotation row indicates the experimentally

observed cell line specific baseline activity. A baseline compliance plot is provided below every

heatmap, and the baseline compliance of the uncalibrated model is indicated by a red line.
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3.5.3 Model Calibration Using a Possible Driver Set Based on

a Near-minimal FVS

Some stable state heterogeneity is observed for the model ensemble of CASCADE 1.0

calibrated to a possible driver set given by the near-minimal FVS (Figure 3.20). The

compliance between this stable state and the AGS baseline activity profile is 0.693.

Figure 3.20. Model-wise stable state heatmap for CASCADE 1.0 calibrated to a possible driver

set based on a near-minimal FVS. Model nodes are represented by rows, and individual models

in the calibrated model ensemble are represented by columns. An annotation row indicates the

experimentally observed baseline activity of AGS.
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The stable state of the calibrated Park-model is largely heterogeneous across model ensem-

bles (Figure 3.21). No homogeneous stable state is obtained across the model ensemble,

for any cell line.

(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.21. Model-wise stable state heatmap for the Park-model calibrated to a possible driver

set based on a near-minimal FVS. Model nodes are represented by rows, and individual models

in the calibrated model ensemble are represented by columns. The annotation row indicates the

experimentally observed baseline activity of the (a) COLO 205, (b) HCT 116, (c) SW 48 and d)

SW 620 cell line
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The baseline compliance of the calibrated Park-model ranges from 0.501 to 0.649 (Table

3.5). The highest baseline compliance is observed for the SW 620 cell line.

Table 3.5. Compliance between the stable state of the Park-model, calibrated to a possible driver

set based on a near-minimal FVS, and cell line specific baseline activity profiles.

Model Cell line Baseline compliance

Park COLO 205 0.546

Park HCT 116 0.501

Park SW 48 0.538

Park SW 620 0.649

The stable state of calibrated Lu-model has large areas of homogeneity and some areas of

heterogeneity across model ensembles (Figure 3.22). The ensemble stable state of the Lu-

model, calibrated to a near-minimal FVS sample of the SW 48 baseline activity profile,

is homogeneous across all nodes, except the Prosurvival output node (Figure 3.22c).
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(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.22. Model-wise stable state heatmap for the Lu-model calibrated to a possible driver

set based on a near-minimal FVS. Model nodes are represented by rows, and individual models

in the calibrated model ensemble are represented by columns. The annotation row indicates the

experimentally observed baseline activity of the (a) COLO 205, (b) HCT 116, (c) SW 48 and d)

SW 620 cell line

The baseline compliance of the calibrated Lu-model ranges from 0.475 to 0.580 (Table

3.6). The highest baseline compliance – of 0.580 – is observed for the COLO 205 cell line.
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Table 3.6. Compliance between the stable state of the Lu-model, calibrated to a possible driver

set based on a near-minimal FVS, and cell line specific baseline activity profiles.

Model Cell line Baseline compliance

Lu COLO 205 0.580

Lu HCT 116 0.548

Lu SW 48 0.515

Lu SW 620 0.475

3.5.4 A Driver-based Calibration Strategy does not Ensure a

Calibrated Model with a Baseline Compliant Stable State

Three main observations are extracted from stable state results and will be discussed in

the following sections. First of all, stable state results do not suggest that a driver set can

be identified for CASCADE 1.0, Park-model and Lu-model – based on degree Z-score,

DP, nor a near-minimal FVS – as the driver-based strategy does not ensure a calibrated

model reflecting the cell line specific baseline activity. Secondly, the cell line specific

topology of CASCADE 1.0 gives a higher baseline compliance compared to the generic

CRC topologies of the Park- and Lu-models. It seems however, that there is some cell

line specific bias in the network of the Park- and Lu-models as well, as a higher baseline

compliance is observed for certain CRC cell lines compared to others. The last observation

– which is discussed most thoroughly – relates to how certain topological characteristics

and limitations affect the ability to obtain a calibrated model with a baseline compliant

stable state.

No Driver Set is Identified Based on Degree Z-score, DP or a Near-minimal

FVS

Neither degree Z-score, DP, nor a near-minimal FVS is identified as a superior measure

for identification of a driver set in CASCADE 1.0, Park- and the Lu-model, as no overall

baseline compliant state is observed for any calibrated model. In addition, the highest

baseline compliance is generally observed when these models are calibrated to the complete

baseline profile of a cell line, suggesting that the target state is not inferred from the state

of the possible driver set.

These findings underpin that target control of complex networks is a very challenging

task. There is no general dominating theory or strategy for successful control of large

complex networks [7]. Even though Z-score, DP, and a near-minimal FVS cover node

properties that would indicate a possible driver set, both the results from this project

and previous scientific reports are not conclusive. Although hubs are central interaction

points in scale-free networks, it is debated to what extent driver nodes tend to be high

degree nodes. Guo et al. find, that in biological networks, driver nodes tend to be nodes

with a high degree, while Liu et al., on the other hand, conclude that the number of
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driver nodes is significantly larger among low-degree nodes in scale-free networks [28,46].

Matache and Matache, as well as Pentzien et al., find that knowledge about the activity

of a subset of nodes with the highest DP reduces the uncertainty about the whole model

state [50, 62]. They do, however, not conclude that a DP-based subset of nodes provides

full target control. Controlling the near-minimal FVS of a Boolean model should in theory

be sufficient to drive the model into a target state, as it prevents multistability [55].

However, this target state needs to be one of the natural end states of the model. As

previously mentioned, the possible model solution space is restricted by the topology of

the input Boolean model, as it has finite number of possible stable states [67]. If the cell

line specific baseline state is not in the state space of the model, it can not be reached,

even by a sufficient driver set.

Differences in Baseline Compliance Suggests Cell Line Specific Bias in the

Network Topology

The highest baseline compliance value of – 0.783 – is obtained by CASCADE 1.0, cali-

brated to the complete AGS baseline activity profile. The Park- and Lu-models are not

able to reach this compliance level for any cell line specific baseline activity profile. This

can be explained by the fact, that CASCADE 1.0 is a cell line specific AGS model, while

both the Park- and Lu-models are only specific for the CRC cancer type [20,47,60]. The

cell line specific topology of CASCADE 1.0 might be better at representing the cell line

specific baseline activity of AGS, than the general CRC topology of the Park- and Lu-

models are able to represent the cell line specific baseline activity profiles of COLO 205,

HCT 116, SW 48 and SW 620. The level of baseline compliance obtained by model cal-

ibration of the Park- and Lu-models does, however, suggest that there might be some

cell line specific bias in the topology of these networks as well. The highest baseline

compliance for the Lu-model is observed when calibrated to the COLO 205 cell line, and

ranges from 0.548 to 0.679. In comparison, the baseline compliance with the remaining

cell lines is in the following range: HCT 116 [0.465, 0.604], SW 48 [0.447, 0.552] and

SW 620 [0.410, 0.541]. The highest baseline compliance is obtained by the Park-model

when calibrated to the SW 620 cell line, and ranges from 0.602 to 0.755. In comparison,

the baseline compliance of the remaining cell lines is in the following range: COLO 205

[0.530, 0.670], HCT 116 [0.543, 0.715] and SW 48 [0.542, 0.693]. These results suggest,

that even though these models are supposed to be generic CRC cell lines, they are better

fit to represent the baseline activity of some CRC cell lines. No further analysis was

conducted to identify which topological characteristics are causing this cell line bias.

Model Topology Limits the Ability to Reach a Baseline Compliant State

The driver-based calibration strategy applied in this project does not ensure maximal

compliance between the stable state of calibrated models and the cell line specific baseline

activity profiles. It can partly be because no true driver set is identified based on the

selection of network measures. However, it is more likely caused by certain topological
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characteristics restricting the possible model solution space during calibration.

CASCADE 1.0 does obtain a largely homogeneous stable state across the model ensemble,

when calibrated to a 70% sample of AGS baseline activity data, based on degree Z-

score or DP. However, this homogeneous stable state configuration does only have an

overall baseline compliance of ∼ 0.75. For some nodes, such as MAP2K4, MAP3K11 and

MAP3K4, the stable state activity violates the baseline activity. These nodes are defined

as inactive in the AGS baseline activity profile, but are observed as active across stable

states.

The logical equations of these nodes imply that MAP3K4, MAP3K11 and MAP2K4 are

only regulated by activation:

MAP3K4: RAC f

MAP3K11: RAC f

MAP2K4: MAP3K4 | MAP3K11 | MAP3K7 | GRAP2

It is also evident, from these logical equations, that the activity of this node triplet is solely

based on the activity of RAC f, as it is the only activator of MAP3K4 and MAP3K11,

which are sufficient activators of MAP2K4. This is an example of what Kauffman defines

as canalising Boolean functions [39]. Canalising Boolean functions have the property that

the activity of an input is sufficient to determine the activity of the output. In this case,

the activity of RAC f is sufficient to determine the activity of MAP3K4, MAP3K11, and

MAP2K4. RAC f is defined as active in the AGS baseline activity profile, while MAP3K4,

MAP3K11, and MAP2K4 are defined as inactive. However, the activity of RAC f and the

inactivity of MAP3K4, MAP3K11, and MAP2K4 are not in accordance with the topology,

due to the canalising functions, and is not a possible state in the model solution space of

CASCADE 1.0.

Such inconsistencies between the model topology and the baseline activity profile need to

be addressed, as it limits successful model calibration. There are two different approaches

to this challenge, depending on whether the network topology or the baseline activity

data is considered the most likely reflection of reality. The topology of the network can

be changed to fit the baseline data, or the topology can be used to evaluate the accuracy

of the baseline activity [29]. The activity of RAC f is reported by several researchers, and

was also considered by Flobak et al. as one of the main biomarkers of AGS [20, 33, 43].

MAP3K11 activity in gastric cancer is reported by Ramachandraiah et al., supporting

the stable state configuration of CASCADE 1.0. However, Magnelli et al. report that

MAP2K4 is mainly a tumour suppressor in gastric cancer, suggesting that inactivation

promotes pathogenesis, which is more in accordance with the applied AGS baseline ac-

tivity profile [48]. Such contradictions makes it evident that more research is needed to

improve the consistency between CASCADE 1.0 and the AGS baseline activity profile.
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Stable state heatmaps reveal notable heterogeneity across ensembles of the calibrated

Park-model, suggesting that different stable states are reached by models in the ensem-

ble. There seems to be a general increase in both stable state homogeneity and baseline

compliance as larger samples of the baseline activity profile is added to the calibration

datasets, suggesting that the Park-model is quite sensitive to the data included in the

calibration dataset during model calibration. Even adding the the baseline data of nodes

with the 10% lowest Z-score and DP gives an increase in baseline compliance. A much

higher stable state homogeneity is observed for calibrated model stable states reached

by the Lu-model, as 15 nodes are consistently observed as active or inactive across all

calibrated Lu-models. This highly consistent state does, however, not reflect differences

in baseline activity across cell lines, suggesting that the topology of the Lu-model is not

able to adapt to cell line specific differences during model calibration.

Kauffman characterises Boolean networks as either ordered, critical or chaotic [39]. The

stable state of an ordered model has a ”frozen core” of nodes with a fixed state, and some

additional ”twinkling islands” of nodes which are able to change their activity. The stable

state of an ordered network is robust, both to changes in the activity of certain nodes,

and mutations to interactions or logical rules [70]. The stable state of a chaotic model,

on the other hand, has a more flexible core, and is more sensitive to small changes in

conditions. A model with a critical behaviour lies on the border between chaos and order,

and is both robust and adaptive. The consistency observed in the stable states of the

Lu-model indicates an ordered model structure, having a fixed node core, unaffected by

the calibration data. The heterogeneity observed across stable states of the Park-model

is more in accordance with the description of a chaotic Boolean model, as the model is

able to reach a variety of stable states, and is sensitive to the content of the calibration

dataset.

In a biological perspective, it is more likely that cellular systems are ordered or critical,

as robustness to perturbations is an essential property of living cells [70]. Cancer cells are

especially robust, as they are able to maintain proliferation despite perturbations [40].

Shmulevichet et al. analysed the underlying genetic network of the HeLa cervical cancer

cell line, and concluded that these cells are either ordered or critical, but not chaotic [70].

Hence, in a biological perspective, the ordered behaviour of the Lu-model is more in

accordance with the expected behaviour of a cancer model than the chaotic behaviour

of the Park-model. In a model calibration perspective, however, some model flexibility

is required for the model to adapt to the cell line specific baseline activity data, and to

be able to reflect a baseline target state. An ordered network with a fixed core, such

as the Lu-model, will not be able to adapt to any cell line specific baseline data that is

different from the natural stable state of the model. The model needs to be sensitive to

mutations introduced to the logical rules during model calibration, hence calling for a more

chaotic model behaviour. No optimal trade-off between order and chaos is observed in the

Lu- and Park-models, taking into account both the biological and the model calibration

perspective. As previously mentioned, Kauffman presents a third model category, the
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critical one, which lies on the border between order an chaos. It might be suspected that

a high quality Boolean cancer model, both in terms of biological representation and model

calibration potential, should possess such a critical behaviour. However, more research is

required to make any further conclusions.

Overall, these results highlight how the process of model calibration is more a process

of Boolean model refinement than a process of extensive Boolean model adaptation. If

the baseline target state violates the feasible state space of the Boolean input model, no

baseline compliant stable state can be reached, even by a driver set of nodes. A strategy for

evaluating the compatibility between the baseline target state and the feasible state space

of the Boolean model would be a valuable contribution to the process of model calibration.

Measuring the Hamming distance (the similarity between two binary strings) [59] between

the baseline target state and the stable state of the uncalibrated model could give a

first indication of compatibility. Several computational methods have been presented to

identify inconsistencies between experimental data and model topologies [30,51] and could

be implemented in this model calibration framework as well.

3.6 Effect of Calibration Data Subsetting on Synergy

Predictions

A calibrated model ensemble can be given as input for prediction of synergistic drug

combinations, using the Drabme software module. It has previously been shown, by

Niederdorfer et al., that calibrating a model to the baseline activity data of highly influ-

ential network nodes could improve predictive performance [56]. Highly influential nodes,

or network driver nodes, are subsets of network nodes able to control the dynamic be-

haviour of the network, and drive the network into a target state [81]. Since driver nodes

are able to control the dynamics of a network model, they will largely determine how

the model reacts to drug perturbation simulations as well. Hence, correctly defining the

activity of driver nodes during model calibration is thought to also ensure precise synergy

predictions.

Niederdorfer et al. identified highly influential nodes through a series of in silico pertur-

bation experiments [56]. Each network node was sequentially fixed at its state defined

in the baseline activity profile, and at its inverted state. Each perturbation was followed

by a synergy simulation, and those nodes whose inversion led to a change in synergy

predictions, or caused the system to reach a cyclic attractor, were considered highly in-

fluential [56]. A downside of this strategy is the large number of simulations required to

assess the influentiality of every network node. Given a network of n nodes, this strategy

requires n ∗ 2 pipeline simulations and is a rather tedious approach.

In this project, it is hypothesised, that calculating the degree Z-score and DP for every

model node, as well as identifying and a near-minimal FVS, could serve as a possible

strategy for identifying a driver set a priori, without the need of numerous dynamic
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simulations. In the following section it is investigated if model calibration with respect

to possible driver sets – based on degree Z-score, DP, and a near-minimal FVS – improve

subsequent synergy predictions compared to random sample calibration.

3.6.1 Models Calibrated to Random Samples of Baseline Activ-

ity Data Reveal Possible Span of Predictive Performance

Random resampling was performed to assess the possible span of predictive performance

for each Boolean model compared to a set of cell line specific gold standard synergies.

For every Boolean model and cell line combinations, random resampling was applied to

construct a variety of calibration dataset including random subsets of baseline activity

data. Each sample was used as calibration dataset for model calibration, and subsequent

synergy predictions were performed with each calibrated model ensemble. The AUC ROC

was calculated for each calibrated model ensemble, indicating the predictive performance

and the ability to correctly predict a set of experimentally verified gold standard synergies.

For CASCADE 1.0 and the AGS baseline activity profile, a large span of AUC ROC

values is observed across all sample sizes (Figure 3.23). The largest variation is observed

for samples sizes below 40%, where both AUC ROC values close to 1.0 and 0.0 are

observed. For models calibrated to random baseline samples above 30%, there is a drop

in the upper possible predictive performance below an AUC ROC of 0.7.

Figure 3.23. Predictive performance (AUC ROC) of CASCADE 1.0 calibrated to random sam-

ples of the AGS baseline activity profile. The x-axis gives the sample size, and the y-axis gives

the corresponding AUC ROC value. The Random Chance Line (RCL) of classification is repre-

sented by a red line.

.
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The possible span of AUC ROC values is narrower for the Park-model, compared to

CASCADE 1.0, ranging from an AUC ROC of ∼0.25 to ∼0.75, across cell lines (Figure

3.24). No calibrated Park-model approaches a maximal AUC ROC of 1.0.

(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.24. Predictive performance (AUC ROC) of the Park-model calibrated to random sam-

ples of the (a) COLO 205, (b) HCT 116, (c) SW 48, d) SW 620 baseline activity profiles. The

x-axis gives the sample size, and the y-axis gives the corresponding AUC ROC value. The Ran-

dom Chance Line (RCL) of classification is represented by a red line.

For the Lu-model, results differ between cell lines (Figure 3.25). The Interquartile Range

(IQR) of AUC ROC values observed for the COLO 205 cell line, is below the RCL for all

sample sizes. For the SW 620 cell line, on the other hand, most sample sizes have an IQR

above the RCL. However, across all cell lines, AUC ROC values both above and below the

RCL are observed for all samples sizes below 100%. An AUC ROC of 0.9 is obtained for

the SW 620 cell line, but for all other cell lines, the predictive performance never exceeds

an AUC ROC of 0.75.
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(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.25. Predictive performance (AUC ROC) of the Lu-model calibrated to random samples

of the (a) COLO 205, (b) HCT 116, (c) SW 48, d) SW 620 baseline activity profiles. The x-

axis gives the sample size, and the y-axis gives the corresponding AUC ROC value. The Random

Chance Line (RCL) of classification is represented by a red line.

For all model and cell line specific random resampling results, the AUC ROC and sample

size of the worst and best performing models are provided in Table 3.7 and 3.8. Both best

performing and worst performing models are calibrated to random samples below 80%.

Across all models and cell lines, the best performing calibrated models have an AUC ROC

above the RCL, which is considered better than a random synergy classifier.
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Table 3.7. Overview of best performing models, calibrated to random samples of baseline activity

data. For every model and cell line the AUC ROC closest to 1.000 is stated.

Model Cell line AUC ROC Sample size

CASCADE 1.0 AGS 1.000 20

Lu COLO 205 0.700 50, 80

Lu HCT 116 0.658 10, 20

Lu SW 48 0.733 50, 80

Lu SW 620 0.900 70

Park COLO 205 0.657 40

Park HCT 116 0.633 50

Park SW 48 0.760 20

Park SW 620 0.731 30

Table 3.8. Overview of worst performing models, calibrated to random samples of baseline activity

data. For every model and cell line the AUC ROC closest to 0.000 is stated.

Model Cell line AUC ROC Sample size

CASCADE 1.0 AGS 0.029 10

Lu COLO 205 0.200 10, 20, 30, 40

Lu HCT 116 0.128 70

Lu SW 48 0.374 30

Lu SW 620 0.320 30

Park COLO 205 0.347 20

Park HCT 116 0.347 10

Park SW 48 0.356 30

Park SW 620 0.298 60

Two main conclusions can be drawn from these observations. First, across all sample sizes,

we observe a variety of AUC ROC values. Two models calibrated to calibration datasets

of equal sample size can obtain different levels of predictive performance, suggesting that

the content of the calibration dataset is not arbitrary. The only difference between two

calibration dataset of equal sample size is the identity and characteristics of the nodes

included. Differences in predictive performance could be caused by the absence or presence

of certain high impact nodes in the calibration datasets.

A second conclusion drawn from these results is that larger samples of baseline activity

data included in the calibration data do not necessarily provide better predictive perfor-

mance. The best predictive performance is generally observed for models calibrated to

subsamples of baseline activity data. Across all combinations of models and cell lines,

models calibrated to the complete baseline activity profile obtain an AUC ROC below or

close to the RCL.
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Calibrating a model with respect to a possible driver set, based on Z-score, DP, or near-

minimal FVS, is in accordance with both of these observations. A driver set constitutes

a subsample of baseline activity data, and includes nodes with high impact on model

dynamics. Hence, it is in this project being tested as a strategy for constructing calibra-

tion datasets targeting models with high predictive performance, compared to random

sampling.

3.6.2 Predictive Performance of Models Calibrated to Possible

Driver Sets (Degree Z-score)

Models calibrated to possible driver sets, based on degree Z-score, are given as input

to the Drabme module for synergy predictions. The AUC ROC is calculated for every

calibrated model – as a measure of predictive performance – and compared against the

predictive performance of models calibrated to random samples. An AUC ROC above

the Interquartile Range (IQR) of the corresponding random sample results is considered

an improvement of predictive performance.

Calibration of CASCADE 1.0, using a possible driver set (Z-score) with a sample size of

10% to 50%, obtains significantly improved predictive performance compared to random

sampling (Figure 3.26). A maximal AUC ROC of 1.0 is obtained by CASCADE 1.0 when

calibrated to a 10% sample. For models calibrated to samples above 50%, predictive

performance falls below or within the IQR of random sample results.

Figure 3.26. AUC ROC of CASCADE 1.0 calibrated to random samples of baseline activity data

(black dots) and Z-score based samples of baseline activity data (red dots) for the AGS cell line.

The x-axis indicates the sample size

.
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The predictive performance obtained by the Park-model calibrated to possible driver sets

(Z-score) differs across cell lines (Figure 3.27). For the COLO 205, HCT 116 and SW 48

cell lines, the AUC ROC falls mostly within and below, and sometimes above, the IQR of

random sample results. For the SW 620 cell line, the AUC ROC never exceeds the IQR

of random sample results.

(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.27. AUC ROC of Park-model calibrated to random samples of baseline activity data

(black dots) and Z-score based samples of baseline activity data (red dots) for the (a) COLO 205,

(b) HCT 116, (c) SW 48 and d) SW 620 cell line. The x-axis indicates the sample size.

As for the Park-model, great variation in predictive performance is observed for the Lu-

model, calibrated to possible driver sets (Z-score) (Figure 3.28). For most calibrated

models, the predictive performance falls within or below the IQR of random sample results.

AUC ROC values above the IQR are only observed for the SW 48 cell line.
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(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.28. AUC ROC of Lu-model calibrated to random samples of baseline activity data (black

dots), and Z-score based samples of baseline activity data (red dots) for the (a) COLO 205, (b)

HCT 116, (c) SW 48 and d) SW 620 cell line. The x-axis indicates the sample size.

3.6.3 Predictive Performance of Models Calibrated to Possible

Driver Sets (DP)

Models calibrated to possible driver sets, based on DP, were given as input to the Drabme

pipeline module for synergy predictions. The AUC ROC was calculated for every cali-

brated model, as a measure of predictive performance, and compared against the predic-

tive performance of models calibrated to random samples. An AUC ROC above the IQR

of the corresponding random sample results is considered an improvement of predictive

performance.

Calibration of CASCADE 1.0, using a possible driver set (DP) with a sample size of 10%

to 50%, ensures an AUC ROC value above the IQR of corresponding random sample

performance (Figure 3.29). As the DP based sample exceeds 50% of the baseline activity

profile, predictive performance drops below the RCL and does not exceed the IQR of

random sample performance.
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Figure 3.29. AUC ROC of CASCADE 1.0 calibrated to random samples of baseline activity data

(black dots), and DP based samples of baseline activity data (red dots) for the AGS cell line.

The x-axis indicates the sample size.

The Park-model calibrated to possible driver sets (DP) obtains an AUC ROC value both

above, below and within the IQR of random sample performance. The upper AUC ROC

value reached by models calibrated to random samples of baseline data, is not obtained

by any model calibrated to a possible driver set.
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(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.30. AUC ROC of Park-model calibrated to random samples of baseline activity data

(black dots), and DP based samples of baseline activity data (red dots) for the (a) COLO 205,

(b) HCT 116, (c) SW 48 and d) SW 620 cell line. The x-axis indicates the sample size.

The AUC ROC of the Lu-model calibrated to possible driver sets (DP) falls mostly within

or below the IQR of random sample performance (Figure 3.31). Optimal predictive per-

formance, reached by random sample calibration of the Lu-model, is not reached by any

model calibrated to a possible driver set.
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(a) COLO 205 (b) HCT 116

(c) SW 48 (d) SW 620

Figure 3.31. AUC ROC of Lu-model calibrated to random samples of baseline activity data

(black dots), and DP based samples of baseline activity data (red dots) for the (a) COLO 205,

(b) HCT 116, (c) SW 48 and d) SW 620 cell line. The x-axis indicates the sample size.

3.6.4 Predictive performance of models calibrated to a possible

driver set (near-minimal FVS)

The AUC ROC of CASCADE 1.0 calibrated to a near-minimal FVS sample of baseline

activity is above the IQR of random sample performance of similar sample size. (Table

3.9). The Park- and Lu-models calibrated to a near-minimal FVS sample obtain AUC

ROC values both below, within and above the IQR of random sample performance, de-

pending on the cell line. No calibrated model reaches the optimal predictive performance

obtained by models calibrated to random samples.
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Table 3.9. AUC ROC obtained by models calibrated to a possible driver set based on a near-

minimal FVS. The IQR of AUC ROC values obtained by models calibrated to random samples

of similar size is given as a comparison.

Model Cell line Sample size AUC ROC IQR of random sample

AUC ROC (30%)

CASCADE 1.0 AGS 34 0.794 [0.235, 0.529]

Lu COLO 205 31 0.300 [0.340, 0.480]

Lu HCT 116 31 0.393 [0.286, 0.490]

Lu SW 48 31 0.626 [0.444, 0.604]

Lu SW 620 31 0.520 [0.480, 0.640]

Park COLO 205 26 0.598 [0.427, 0.500]

Park HCT 116 26 0.372 [0.425, 0.500]

Park SW 48 26 0.581 [0.525, 0.583]

Park SW 620 26 0.542 [0.482, 0.547]

3.6.5 Predictive Performance is Improved for CASCADE 1.0

when some Stable State Heterogeneity is Observed

The predictive performance of CASCADE 1.0 is improved, compared to random sampling,

when calibrated to Z-score and DP based samples of the AGS baseline activity profile,

below a 60% sample size. Adding more baseline data to the calibration dataset decreases

the predictive performance significantly. Interestingly, this drop in predictive performance

coincides with an increase in stable state homogeneity and baseline compliance observed in

the stable state analysis. Comparing both stable state and predictive performance results,

for CASCADE 1.0, it seems like an optimal model in terms of stable state homogeneity

and baseline compliance is not the same as an optimal model in terms of predictive

performance.

This observation questions one of the main assumptions of the DrugLogics framework,

namely that a model reflecting the baseline activity of a cell line also correctly reflects syn-

ergistic and non-synergistic responses to drug combinations. In machine learning terms,

this is known as transfer learning [17]. In traditional machine learning, both the training

data, used to build the model, and the test data, applied to test model performance, is

taken from the same feature space. However, in many real-world scenarios, the train-

ing and test data might have features representing different attributes. Hence, transfer

learning involves building a model based on one feature set and using this model to make

predictions on another feature set [17]. The applicability of transfer learning requires a

relationship between the training and the test data domain. In the DrugLogics frame-

work, it is assumed that the ability to correctly represent the baseline activity of a cell

line ensures the ability to predict cell line specific drug synergies. However, in the case

of CASCADE 1.0, this positive relationship between baseline compliance and predictive
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performance is not observed.

This unexpected inconsistency between the baseline compliance and predictive perfor-

mance of CASCADE 1.0 can be explained by the ensemble-wise approach applied in the

DrugLogics framework. From model calibration, an ensemble of calibrated models is given

as output. Drug perturbation simulations are performed on the whole model ensemble,

and the predictive performance is calculated based on the average drug combination re-

sponse across the ensemble [84]. An ensemble-based machine learning approach is shown

to improve the predictive performance of a prediction model, as the combined perfor-

mance of an ensemble of different imperfect models is better than the performance of one

imperfect model [63], as exemplified in Figure 3.32.

Figure 3.32. Illustrative representation of ensemble-wise prediction of synergies (S) and non-

synergies (NS). Neither model 1, 2, nor 3 is able to correctly classify synergies and non-synergies,

but the ensemble-wise prediction is in accordance with the true classification.

This strategy requires some diversity across the model ensemble, to ensure that different

models make different errors. This error diversity will provide a lower error rate for the

model ensemble combined, as the error of one model is compensated for by another.

For CASCADE 1.0, a calibrated model ensemble with some stable state diversity is able

to correctly predict most synergistic drug combinations in AGS, not necessarily because

every individual model in the ensemble has an overall high predictive performance, but

because the collective prediction effort of the ensemble is high.

3.6.6 Park- and Lu-models are not Able to Correctly Predict

Synergies for CRC Cell Lines

Neither the Park-, nor the Lu-model is able to correctly predict all cell line specific drug

synergies included in the gold standard synergy lists of the COLO 205, HCT 116, SW 48

and SW 620 cell lines. The predictive performance of the Park- and Lu-models, calibrated

to random samples of baseline data, never approach an AUC ROC of 1.0, and no general

improvement in predictive performance is observed for the Park- and Lu-models calibrated
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to possible driver sets, based on degree Z-score, DP or a near-minimal FVS. No calibrated

model is able to correctly discriminate between TP and FP synergistic drug combinations.

This suggests, that the topology of the Park- and Lu-models do not reflect the dynamic

response to combinatorial drug perturbations that is observed experimentally in the four

CRC cell lines.

The topology of each CRC model has to be inspected individually to assess the possibility

of model improvement. Folkesson et al. suggest three topological changes that can be

introduced to a logical cancer model, to improve the ability to correctly predict syner-

gistic drug combinations [22]. First, the logical rules of existing nodes can be altered.

Logical rule adjustments were introduced to both CRC models in this project during

model calibration, but were insufficient to obtain models with an AUC ROC close to 1.0.

Folkesson et al. also suggest introducing additional nodes and additional edges, between

existing nodes, to the model. Synergistic drug combinations act through certain molec-

ular mechanisms [36, 41], and if these mechanisms are identified, missing interactions or

nodes facilitating these effects can be added to the model.

CASCADE 1.0 was constructed specifically to represent AGS and predict synergistic

drug responses in this cell line [20]. Park- and Lu-model, on the other hand, represent the

generic signalling network in CRC and are not topologically adjusted to represent a specific

cell line [47, 60]. Eduati et al. constructed a set of cell line specific logical models, for 14

different CRC cell lines, from a generic prior knowledge network [19]. They quantified the

heterogeneity across these CRC cell line specific models and observed a lot of variability

across major signalling pathways. Hence, it can be suspected, that such cell line specific

differences need to be implemented in the model topology of the Park- and Lu-models as

well, to improve their ability to correctly predict cell line specific drug synergies.

3.7 Further prospects

Some suggestions for further research and improvement of calibration data influence on

model calibration and synergy predictions have been mentioned throughout this report,

and are related to three main aspects: improvement of baseline activity inference, topo-

logical assessment of input model, and further investigation and identification of driver

nodes.

First of all, new tools for activity inference from multi-omics data should be investigated,

to improve the quality of the cell line specific baseline activity profiles. If the molecular

profile used to define the target state during model calibration is erroneous, then the

calibrated model will reflect these errors. The construction of baseline activity profiles,

conducted in this report, was based on transcriptomic data. However, transcriptomic data

is not a fully legitimate proxy for protein activity [52]. Genomic data in combination with

proteomic data has been proposed as the most effective strategy for activity inference

[68]. Hence, omics inference tools integrating both genomics and proteomics should be
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considered for further research.

Secondly, results obtained in this report highlight, that both successful model calibra-

tion and synergy prediction is dependent on the network topology of the Boolean input

model. If the target state for model calibration is not in the feasible state space of the

input model, then no calibration strategy will be able to target this state. A strategy

that allows to test the compatibility between the experimentally observed baseline tar-

get state and the topology of the network model – prior to model calibration – would

be a valuable contribution to the DrugLogics framework. The same holds for successful

synergy predictions. If no possible configuration of the input model is able to reflect the

dynamic response to drug perturbations, observed in vitro, then no calibration strategy

can resolve that issue. Hence, when such inconsistencies are discovered, larger topological

modifications have to be made to improve predictive performance.

Lastly, even though no general driver set was identified using Z-score, DP, or a near-

minimal FVS in this project, the notion of driver nodes and target control should be

further investigated. For CASCADE 1.0, a driver-based calibration strategy was, in fact,

able to improve predictive performance. However, the research has to be extended from

purely stating that a calibration strategy improves predictive performance, to asking why

this is the case, and how it can be extended to other models. Results also suggest,

that a possible driver set can be unsuccessful in driving the calibrated model to a baseline

compliant stable state, but successful in obtaining a calibrated model with high predictive

performance. Hence, a goal dependent (baseline-compliant stable state versus predictive

performance) strategy for driver set identification might be required.
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Chapter 4

Conclusion

The main aim of this project was to identify a strategy for calibration dataset construc-

tion, that would improve model calibration of Boolean cancer models and drug synergy

predictions.

The DrugLogics pipeline includes two software modules for calibration of Boolean models

and combinatorial perturbation experiments. The model calibration module introduces

changes to the logical rules of a Boolean input model, to obtain a calibrated ensemble

of models whose stable state reflects an experimentally observed target state. The en-

semble of calibrated models can be given as input to the synergy prediction module to

assess the response to combinatorial perturbation experiments. In this project, the two

software modules were used to calibrate three different Boolean cancer models, to make

them compliant with a cell line specific baseline state. Combinatorial perturbation exper-

iments – simulating the effect of targeted cancer drugs – were performed on the cell line

specific calibrated models, to assess the ability to correctly identify cell line specific drug

combinations with synergistic effect.

One of the main inputs given to the model calibration module was a calibration dataset

including the experimentally observed baseline activity of genes and proteins in a cell line.

It was hypothesised, that including the experimentally observed baseline activity for a set

of driver nodes would be sufficient to obtain a calibrated model that correctly represents

the complete baseline activity profile, as the state of the driver set determines the state of

the whole network model. It was further hypothesised, that this driver-based calibration

strategy would improve subsequent synergy predictions, as it is assumed, that a model

correctly representing the baseline state of a cell line, would also correctly represent the

response to targeted drug combinations. If the hypothesis is correct, then the process of

inferring the experimentally observed baseline activity from omics data could be limited

to the driver set of model nodes.

Three topological measures, degree Z-score, Determinative Power (DP) and a near-minimal

Feedback Vertex Set (FVS), were used to identify possible driver sets in three Boolean

cancer models: CASCADE 1.0 representing the AGS cell line of gastric cancer, the Park-
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model representing Colorectal Cancer (CRC), and the Lu-model also representing CRC.

Baseline activity profiles for AGS and four CRC cell lines were retrieved from omics data,

and a collection of calibration datasets were constructed by sampling the baseline activity

data with respect to the possible driver sets. These calibration datasets were further used

as input for automated calibration of the selected Boolean cancer models.

The efficiency of the driver-based calibration strategy was assessed in terms of stable

state homogeneity, and compliance between the stable state of the calibrated Boolean

model ensemble and the cell line specific baseline activity profile. Overall, this driver-

based strategy for model calibration did not ensure calibrated models reaching an overall

baseline compliant stable state, as some stable state heterogeneity was observed for all

calibrated models. Stable state results do suggest, that certain topological characteristics

– inherent in the Boolean input models – limit the ability to obtain a calibrated model

stable state with high baseline compliance. First of all, the compliance between the stable

state of a calibrated model and the baseline activity profile is higher for some cell lines

than others, suggesting that there might be some cell line specific bias in the topology

of the input models. Secondly, large differences in topological flexibility were observed

across the Boolean models. For some models, the activity of certain nodes was restricted

to a single value, due to the presence of canalising functions, and an overall ordered model

structure. If the activity of such fixed nodes is not in accordance with the cell line specific

baseline profile, then there will be inconsistencies between the model stable state and the

cell line specific baseline profile, which can not be resolved by any driver-based calibration

strategy.

All calibrated models were further used as input for in silico drug synergy predictions,

in order to assess how the driver-based calibration strategy affects the ability to correctly

predict a set of cell line specific gold standard synergies, compared to models calibrated

to random samples of baseline activity data. Overall, no general improvement in predic-

tive performance was observed for the two CRC models, compared to random sampling.

No calibrated version of these models – neither random, nor driver-based – was able to

correctly predict all gold standard synergies. Hence, larger topological adjustments have

to be made to improve their predictive performance. For CASCADE 1.0, some improve-

ment in predictive performance was observed when calibrated to possible driver sets based

on degree Z-score and DP, compared to random sample calibration. Interestingly, this

improvement in predictive performance is observed for models with some heterogeneity

across the stable states of the ensemble. This result could suggest, that the best perform-

ing model in terms of stable state homogeneity and baseline compliance is not necessarily

the best model in terms of predictive performance. It also suggests, that the predictive

error rate of an ensemble of diverse models would be lower than for an ensemble of similar

models.

To further improve both model calibration and synergy predictions, several action areas

should be further assessed. The process of baseline activity inference should integrate

several omics data types, and topological characteristics limiting performance need to be
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resolved. In addition, more insight into how possible driver sets improve performance in

some models, and how it can be utilised in other models as well, constitute valuable next

steps.
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Appendix A

Pipeline Configuration File

The pipeline configuration file includes global, Gitsbe-specific, and Drabme-specific pa-

rameter specifications. The following parameter specifications were applied in this report.

A.1 Global configurations

verbosity was set to 3, to save all logging messages produced by Gitsbe and Drabme. If

necessary these could be used to trace back the execution of certain pipeline analyses.

delete tmp files and compress log and tmp files was set to TRUE, to avoid saving all tem-

porary files produced during simulations and save storage.

use parallel sim was set to TRUE to allow parallel simulations. This configuration option

allows faster simulations, due to the use of several processor cores. The maximal number

of simulations was usually set to 4, using the parallel sim num option in the configura-

tion file. When running the pipeline using an external server, the parallel sim num was

changed to adjust to the number of processor cores available.

The attractor tool was set to biolqm stable states. This tool calculates all the fixpoints

of the models.

A.2 Gitsbe specific configurations

remove output nodes was set to FALSE and remove input nodes was set to TRUE, to

ensure self-contained models. Output nodes are not removed because these represent phe-

notypic outcomes, which are very relevant for further perturbation analyses with Drabme.

The only relevant export format in this case was the export to gitsbe, because these Gitsbe

output models are used as input for the Drabme module.

The following options were defined to configure the genetic algorithm used to generate

and optimise the ensemble of Boolean models.
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• simulations : The number of simulations was set to 50.

• generations : The maximal number of generations per evolution was set to 20. The

number of generations is less if the target fitness threshold is reached.

• population: The number of models per generation was set to 20.

• crossover : The number of crossovers was set to 1. This number indicates the number

of splitting points used when splitting and matching features from the parent models

during the crossover phase.

• selection: This option was set to 3, meaning that three models are selected from

each generation.

• Different types of mutations can be introduced during the mutation phase. In this

case 3 balance mutations were introduced during each mutation phase.

• target fitness : The fitness target threshold is set to 0.99, just below the absolute

maximum of 1. A fitness above 0.99 will halt the generation.

• bootstrap mutations factor : This option is set to 1000, to boost the number of mu-

tations introduced in the initial generation.

• mutations factor : Unlike the bootstrap factor, this option is only set to 1, to reduce

the number of mutations introduced after the initial generation.

• models saved : 3 models are saved after each simulation. Given that the number of

simulations is 50, this results in a total of 150 output models in each ensemble.

• fitness threshold : In addition to the fitness target threshold, a lower fitness threshold

for saving a model is defined. This threshold is set to 0.1, which is a limit usually

being exceeded.

A.3 Drabme specific configurations

The Drabme configurations include two parameters.

max drug comb size is related to the order of drug combinations tested. This option was

set to 2, to limit the perturbation analyses to double drug combinations.

synergy method parameter defined the synergy calculation method. This option was set

to either HSA or Bliss depending on the synergy calculation method applied in the ex-

perimental synergy screen used to provide gold standard synergies.
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Appendix B

Calculation of Determinative Power

The Determinative Power (DP) value of node j is the sum of the Mutual Information

(MI) for all its output nodes [81].

DP (j) =
n∑

i=1

MI(fi(X); (Xj) (B.1)

MI is a measure of the information gained about the state of X = {X1, X2 ..., Xn} given

the knowledge about the state of Xj [62]. The expression fi(X) represents the logical

function of node i. The DP of node j is the sum of the MI for all its output nodes [81].

The Shannon entropy H(X) is applied to calculate MI. In the binary case, such as for

Boolean modelling, the Shannon entropy is calculated as follows

h(p) = −plog2(p)− (1− p)log2(1− p) (B.2)

Implementing the Shannon entropy equation in calculation of MI we get

MI(fi(X); (Xj) = H(fi(X))−H(fi(X)|(Xj) (B.3)
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H(fi(X)) = h

( ∑
xϵsuppfi

px

)
,

H(fi(X)|(Xj) =
∑

xϵsuppfi

P (Xj = xj)h

( ∑
xϵsuppfi

P (X = x|Xj = xj)

)

= P (Xj = 1)h

( ∑
xϵsuppfi

P (X = x|Xj = 1)

)
+ P (Xj = 0)h

( ∑
xϵsuppfi

P (X = x|Xj = 0)

)
,

MI(fi(X); (Xj) = h

( ∑
xϵsuppfi

px

)

− P (Xj = 1)h

( ∑
xϵsuppfi

P (X = x|Xj = 1)

)
+ P (Xj = 0)h

( ∑
xϵsuppfi

P (X = x|Xj = 0)

)

(B.4)

We assume that there is an equal probability of X being 1 and 0 [62]. Hence, P(Xi = 1)

= P(Xi = 0) = 1/2.

Example: Consider a 4-node network and the following logical rules:

Logical rule of node 1:f1(x2, x3, x4) = x2 AND x3 AND NOT x4

Logical rule of node 2:f2(x1, x2, x3) = x1 AND (x2 OR x3)

Logical rule of node 3:f3(x1, x2) = x1 OR x2

Node x4 is an input and has no logical rule. Given the logical rules, the following input

states will give an active node:

Node 1 activity : suppf1(x2, x3, x4) = (1, 1, 0)

Node 2 activity : suppf2(x1, x2, x3) = (1, 0, 1), (1, 1, 0), (1, 1, 1)

Node 3 activity : suppf3(x1, x2) = (0, 1), (1, 0), (1, 1)

To calculate the DP value of node 1 we need to solve the following equation adding the

MI for the logical rules dependent on X1, which are f2 and f3.

DP (1) = MI(f2;X1) +MI(f3;X1)

MI(f2;X1) = h

( ∑
xϵsuppf2

px

)

− P (X1 = 1)h

( ∑
xϵsuppf2

P (X = x|X1 = 1)

)
+ P (X1 = 0)h

( ∑
xϵsuppf2

P (X = x|X1 = 0)

)
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We see that

∑
xϵsuppf2

px = 3/8

if we sum up all the possible states that result in the activity of node 2. And since all

elements of suppf2 have X1 = 1, it follows that

∑
xϵsuppf2

P (X = x|X1 = 0) = 0

and ∑
xϵsuppf2

P (X = x|X1 = 1) =
∑

xϵsuppf2

P (X = x,X1 = 1)

P (X1 = 1)

=
P (1, 0, 1)

1/2
+

P (1, 1, 0)

1/2
+

P (1, 1, 1)

1/2

=
1/8

1/2
+

1/8

1/2
+

1/8

1/2
=

3/8

1/2
= 3/4.

Then

MI(f2(X);X1 = h(3/8)− 1

2
h(3/4)

=

(
−3

8
log2(

3

8
)− (1− 3

8
)log2(1−

3

8
)

)
− 1

2

(
−3

4
log2(

3

4
)− (1− 3

4
)log2(1−

3

4
)

)
= 0.5488.

Similarly,

MI(f3(X);X1) = h(3/4)− 1

2
h(1) +

1

2
h(1/2) = 0.3113.

Given these calculations, the DP value of node X1 is 0.8601.
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Appendix C

Cell Line Specific Baseline Activity

Profiles

Cell line specific baseline activity profiles are provided in the following tables.

Table C.1. AGS baseline activity for all nodes included in CASCADE 1.0, retrieved from Nieder-

dorfer et al. [56]

Model: CASCADE 1.0

Node AGS Activity inference tool

AKT f 1 literature

BAX 0 literature

BCL2 1 literature

CASP3 0 literature

CASP8 0 literature

CCND1 1 literature

CTNNB1 1 literature

ERK f 1 literature

GSK3 f 0 literature

JNK f 0 literature

KRAS 1 literature

MAPK14 0 literature

MMP f 1 literature

MYC 1 literature

NFKB f 1 literature

PIK3CA 1 literature

PTEN 0 literature

RAC f 1 literature

S6K f 1 literature

TCF7 f 1 literature
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TP53 0 literature

MAP3K7 0 PARADIGM

IKBKB 1 PARADIGM

FOXO f 1 PARADIGM

TSC f 1 PARADIGM

GAB f 1 PARADIGM

FZD f 1 PARADIGM

BAD 0 PARADIGM

CFLAR 0 PARADIGM

CYCS 0 PARADIGM

EGR1 1 PARADIGM

LEF 1 PARADIGM

SFRP1 0 PARADIGM

SHC1 1 PARADIGM

TAB f 1 PARADIGM

PDPK1 0 PARADIGM

RSK f 1 PARADIGM

GRB2 0 PARADIGM

mTORC1 c 0 PARADIGM

mTORC2 c 0 PARADIGM

NLK 0 PARADIGM

mTORC1 c 0 PARADIGM

MEK f 1 PARADIGM

CHUK 1 PARADIGM

MSK f 1 PARADIGM

GRAP2 0 PARADIGM

VDL f 1 PARADIGM

BTRC 1 PARADIGM

CASP9 0 PARADIGM

DUSP6 1 PARADIGM

ITCH 1 PARADIGM

MAP3K5 0 PARADIGM

MDM2 1 PARADIGM

PTPN11 1 PARADIGM

RTPK f 1 PARADIGM

SOS1 1 PARADIGM

DUSP1 1 PARADIGM

MAP2K4 0 PARADIGM

RHEB 0 PARADIGM

AKT1S1 0 PARADIGM
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AXIN1 1 PARADIGM

CK1 f 1 PARADIGM

IRS1 0 PARADIGM

MAP2K3 0 PARADIGM

MAP2K7 0 PARADIGM

MAP3K11 0 PARADIGM

MAP3K4 0 PARADIGM

MAP3K8 0 PARADIGM

RAF f 1 PARADIGM

DKK f 1 PARADIGM

RTPK g NA -

MDM2 g NA -

PTEN g NA -

SFRP1 g NA -

DKK g NA -

Table C.2. Baseline activity for all nodes included in the Lu-model, inferred for the COLO 205,

HCT 116, SW 48 and SW 620 cell lines. Normalised transcription values and corresponding

binary values are provided.

Model: Lu

Node
COLO205 HCT116 SW48 SW620 Activity

Norm Bin Norm Bin Norm Bin Norm Bin inference tool

AKT 0.029 0 0.443 0 0.810 1 0.604 1 PROFILE

APC 0.500 0.5 0.500 0.5 0.500 0.5 0.500 0.5 PROFILE

ASK1 0.846 1 0.723 1 0.771 1 0.500 0.5 PROFILE

ATM 0.620 1 0.620 1 0.566 1 0.732 1 PROFILE

BAX 0.385 0 0.323 0 0.500 0.5 0.445 0 PROFILE

BCATENIN 0.414 0 0.323 0 0.248 0 0.307 0 PROFILE

BCL2 0.000 0 0.000 0 0.467 0 0.000 0 PROFILE

CASP3 0.849 1 0.122 0 0.332 0 0.390 0 PROFILE

CASP8 0.936 1 0.598 1 0.144 0 0.385 0 PROFILE

CASP9 0.780 1 0.677 1 0.500 0.5 0.677 1 PROFILE

CERAMIDE NA NA NA NA NA NA NA NA PROFILE

CFLIP 0.780 1 0.500 0.5 0.500 0.5 0.323 0 PROFILE

CYCLIND1 0.252 0 0.615 1 0.648 1 0.638 1 PROFILE

CYCT 0.688 1 0.426 0 0.407 0 0.683 1 PROFILE

ERK 0.269 0 0.500 0.5 0.223 0 0.457 0 PROFILE

FOS 0.109 0 0.422 0 0.750 1 0.582 1 PROFILE
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GP130 0.365 0 0.500 0.5 0.323 0 0.276 0 PROFILE

GSK3B 0.754 1 0.553 1 0.722 1 0.263 0 PROFILE

IAP 0.914 1 0.694 1 0.500 0.5 0.835 1 PROFILE

IKB 0.323 0 0.323 0 0.323 0 0.763 1 PROFILE

IKK 0.770 1 0.952 1 0.323 0 0.930 1 PROFILE

IL6 NA NA NA NA NA NA NA NA PROFILE

JAK 0.944 1 0.814 1 0.541 1 0.844 1 PROFILE

JNK 0.640 1 0.856 1 0.640 1 0.809 1 PROFILE

JUN 0.500 0.5 0.464 0 0.392 0 0.794 1 PROFILE

MDM2 0.209 0 0.683 1 0.500 0.5 0.268 0 PROFILE

MEK 0.841 1 0.323 0 0.458 0 0.705 1 PROFILE

MEKK1 0.857 1 0.418 0 0.323 0 0.570 1 PROFILE

MOMP NA NA NA NA NA NA NA NA PROFILE

NFKB 0.313 0 0.313 0 0.245 0 0.245 0 PROFILE

P21 0.355 0 0.689 1 0.733 1 0.127 0 PROFILE

P53 0.791 1 0.651 1 0.457 0 0.709 1 PROFILE

PI3K 0.794 1 0.794 1 0.794 1 0.677 1 PROFILE

PP2A 0.885 1 0.646 1 0.180 0 0.459 0 PROFILE

PTEN 0.766 1 0.730 1 0.821 1 0.730 1 PROFILE

RAF 0.064 0 0.239 0 0.166 0 0.323 0 PROFILE

ROS NA NA NA NA NA NA NA NA PROFILE

S1P 0.810 1 0.926 1 0.164 0 0.654 1 PROFILE

SMAC 1.000 1 NA NA 0.000 0 NA NA PROFILE

SMAD 0.677 1 0.780 1 0.780 1 0.780 1 PROFILE

SMAD7 0.500 0.5 0.285 0 0.887 1 0.406 0 PROFILE

SMASE 0.629 1 0.139 0 0.072 0 0.343 0 PROFILE

SOCS 0.000 0 0.000 0 0.000 0 0.000 0 PROFILE

SOD 0.196 0 0.323 0 0.307 0 0.111 0 PROFILE

SPHK1 0.000 0 0.000 0 0.987 1 0.000 0 PROFILE

STAT3 0.597 1 0.639 1 0.076 0 0.161 0 PROFILE

TBID 0.641 1 0.376 0 0.553 1 0.553 1 PROFILE

TGFR NA NA NA NA NA NA NA NA PROFILE
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Table C.3. Baseline activity for all nodes included in the Park-model, inferred for the COLO 205,

HCT 116, SW 48 and SW 620 cell lines. Normalised transcription values (inferred with PRO-

FILE) and corresponding binary values are provided.

Model: Park

Node
COLO205 HCT116 SW48 SW620 Activity

Norm Bin Norm Bin Norm Bin Norm Bin inference tool

Akt 0.024 0 0.500 0.5 0.871 1 0.677 1 PARADIGM

AMPK 0.000 0 0.443 0 0.000 0 0.722 1 PARADIGM

AP1 0.399 0 0.342 0 0.242 0 0.864 1 PARADIGM

APAF1 0.161 0 0.323 0 0.161 0 0.056 0 PARADIGM

ATF2 0.596 1 0.677 1 0.102 0 0.500 0.5 PARADIGM

ATM 0.809 1 0.809 1 0.740 1 0.914 1 PARADIGM

AXIN 0.096 0 0.052 0 0.759 1 0.833 1 PARADIGM

Bax 0.500 0.5 0.414 0 0.644 1 0.577 1 PARADIGM

Bcl2 0.000 0 0.000 0 1.000 1 0.000 0 PARADIGM

betacatenin 0.591 1 0.449 0 0.323 0 0.422 0 PARADIGM

BRaf 0.500 0.5 0.826 1 0.826 1 0.876 1 PARADIGM

BRCA1 0.388 0 0.388 0 0.076 0 0.388 0 PARADIGM

c Myc 0.158 0 0.689 1 0.599 1 0.966 1 PARADIGM

CASP3 0.805 1 0.165 0 0.360 0 0.409 0 PARADIGM

CASP9 0.780 1 0.677 1 0.500 0.5 0.677 1 PARADIGM

Cdc25 0.010 0 0.260 0 0.056 0 0.144 0 PARADIGM

CHK1 NA NA NA NA NA NA NA NA PARADIGM

CHK2 0.118 0 0.570 1 0.570 1 0.323 0 PARADIGM

CRaf 0.104 0 0.323 0 0.238 0 0.412 0 PARADIGM

CREB 0.652 1 0.652 1 0.323 0 0.500 0.5 PARADIGM

CyclinA NA NA NA NA NA NA NA NA PARADIGM

CyclinB 0.050 0 0.241 0 0.050 0 0.323 0 PARADIGM

CyclinD 0.269 0 0.672 1 0.705 1 0.696 1 PARADIGM

CyclinE 0.010 0 0.598 1 0.677 1 0.010 0 PARADIGM

CyclinG 0.098 0 0.533 1 0.591 1 0.289 0 PARADIGM

CytC 0.714 1 0.482 0 0.464 0 0.710 1 PARADIGM

E2F1 0.038 0 0.058 0 0.323 0 0.577 1 PARADIGM

EGFR 0.268 0 0.529 1 0.899 1 0.026 0 PARADIGM

ELK1 0.500 0.5 0.643 1 0.600 1 0.850 1 PARADIGM

ERK 0.384 0 0.645 1 0.323 0 0.601 1 PARADIGM

FOXO3 0.500 0.5 0.599 1 0.442 0 0.442 0 PARADIGM

GAB1 0.220 0 0.500 0.5 0.500 0.5 0.220 0 PARADIGM

GADD45 0.430 0 0.836 1 0.572 1 0.847 1 PARADIGM

Grb2 0.901 1 0.837 1 0.465 0 0.762 1 PARADIGM
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GSK3beta 0.753 1 0.553 1 0.722 1 0.263 0 PARADIGM

IGFR 0.892 1 0.220 0 0.628 1 0.628 1 PARADIGM

IRS 0.101 0 0.851 1 0.863 1 0.379 0 PARADIGM

JAK 0.718 1 0.628 1 0.718 1 0.323 0 PARADIGM

JNK 0.500 0.5 0.826 1 0.500 0.5 0.753 1 PARADIGM

MDM2 0.323 0 0.870 1 0.718 1 0.417 0 PARADIGM

MDMX 0.652 1 0.986 1 0.323 0 0.500 0.5 PARADIGM

MEK 1.000 1 0.106 0 0.712 1 0.998 1 PARADIGM

MEKK1 0.979 1 0.500 0.5 0.323 0 0.753 1 PARADIGM

MEKK2 0.966 1 0.770 1 0.655 1 0.500 0.5 PARADIGM

MEKK3 0.500 0.5 0.780 1 0.500 0.5 0.780 1 PARADIGM

MEKK4 0.011 0 0.763 1 0.500 0.5 0.161 0 PARADIGM

MK2 0.314 0 0.352 0 0.566 1 0.428 0 PARADIGM

MKK3 6 0.285 0 0.285 0 0.661 1 0.638 1 PARADIGM

MKK4 0.597 1 0.677 1 0.597 1 0.597 1 PARADIGM

MKK7 0.677 1 0.744 1 0.596 1 0.839 1 PARADIGM

MKPs NA NA NA NA NA NA NA NA PARADIGM

MLKs NA NA NA NA NA NA NA NA PARADIGM

MSK NA NA NA NA NA NA NA NA PARADIGM

mTOR1 0.775 1 0.500 0.5 0.323 0 0.854 1 PARADIGM

mTOR2 0.775 1 0.500 0.5 0.323 0 0.854 1 PARADIGM

p120RasGAP 0.954 1 0.388 0 0.446 0 0.500 0.5 PARADIGM

p14ARF 1.000 1 1.000 1 0.000 0 1.000 1 PARADIGM

p15 0.981 1 0.856 1 0.691 1 1.000 1 PARADIGM

p21 0.432 0 0.840 1 0.877 1 0.106 0 PARADIGM

p27 0.967 1 0.000 0 0.000 0 0.000 0 PARADIGM

p38 0.238 0 0.164 0 0.323 0 0.581 1 PARADIGM

p53 0.820 1 0.500 0.5 0.153 0 0.640 1 PARADIGM

p90RSK 0.113 0 0.157 0 0.542 1 0.255 0 PARADIGM

PDK1 0.323 0 0.323 0 0.500 0.5 0.628 1 PARADIGM

PI3K 0.794 1 0.794 1 0.794 1 0.677 1 PARADIGM

PIP3 NA NA NA NA NA NA NA NA PARADIGM

PP2A 0.863 1 0.577 1 0.125 0 0.376 0 PARADIGM

PTEN 0.700 1 0.644 1 0.786 1 0.644 1 PARADIGM

Ras 0.323 0 0.600 1 0.600 1 0.834 1 PARADIGM

Rb 0.973 1 0.500 0.5 0.101 0 0.101 0 PARADIGM

S6K 0.500 0.5 0.982 1 0.655 1 0.847 1 PARADIGM

Shc 0.893 1 0.927 1 0.295 0 0.753 1 PARADIGM

SHP2 0.201 0 0.932 1 0.432 0 0.724 1 PARADIGM

SMAC 1.000 1 NA NA 0.000 0 NA NA PARADIGM
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Smad2 3 0.260 0 0.788 1 0.500 0.5 0.260 0 PARADIGM

Smad2 3 4 0.718 1 0.591 1 0.591 1 0.718 1 PARADIGM

Smad7 0.357 0 0.169 0 0.842 1 0.268 0 PARADIGM

Sos 0.278 0 0.500 0.5 0.677 1 0.500 0.5 PARADIGM

SPRY 0.500 0.5 0.091 0 0.375 0 0.718 1 PARADIGM

Src 0.902 1 0.241 0 0.454 0 0.241 0 PARADIGM

STAT 0.433 0 0.740 1 0.323 0 0.500 0.5 PARADIGM

TAK1 0.174 0 0.794 1 0.500 0.5 0.794 1 PARADIGM

TAO 0.743 1 0.677 1 0.596 1 0.393 0 PARADIGM

TGFR 0.825 1 0.752 1 0.417 0 0.500 0.5 PARADIGM

TSC1 2 0.677 1 0.500 0.5 0.500 0.5 0.270 0 PARADIGM

Wip1 0.677 1 0.937 1 0.500 0.5 0.677 1 PARADIGM

XIAP 0.808 1 0.549 1 0.386 0 0.699 1 PARADIGM
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Appendix D

Cell Line Specific Gold Standard

Synergies

All cell line specific gold standard synergies are listed in table D.1.

Table D.1. Overview of all experimentally verified drug synergies observed in AGS, COLO 205,

HCT 116, SW 48, and SW 620. Abbreviations used as drug identifiers in the pipeline input files

are listed.

Model: CASCADE 1.0

Cell line: AGS

Drug A Abbrev. Target A Drug B Abbrev. Target B

PI103 PI PIK3CA (5Z)-7-

oxozeaenol

5Z MAP3K7

PD0325901 PD MEK PI103 PI PIK3CA

AKTi-1,2 AK AKT (5Z)-7-

oxozeaenol

5Z MAP3K7

AKTi-1,2 AK AKT PD0325901 PD MEK

Model: Park

Cell line: COLO 205

Drug A Abbrev. Target A Drug B Abbrev. Target B

Navitoclax NA Bcl 2 Afatinib AF EGFR

Navitoclax NA Bcl 2 MK-2206 MK Akt

Navitoclax NA Bcl 2 Taselisib TA PI3K

Trametinib TR MEK Taselisib TA PI3K

Trametinib TR MEK Saptinib SA EGFR

Dabrafenib DA BRaf Saptinib SA EGFR

Dabrafenib DA BRaf Taselisib TA PI3K

Linsitinib LI IGFR AZD7762 AZ62 CHK1,

CHK2
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Linsitinib LI IGFR Saptinib SA EGFR

Taselisib TA PI3K SB216763 SB21 GSK3beta

Taselisib TA PI3K AZD7762 AZ62 CHK1,

CHK2

SCH772984 SC ERK Taselisib TA PI3K

Model: Park

Cell line: HCT 116

Drug A Abbrev. Target A Drug B Abbrev. Target B

Navitoclax NA Bcl 2 AZD7762 AZ62 CHK1,

CHK2

Navitoclax NA Bcl 2 Nutlin-3a(-) NU MDM2

Navitoclax NA Bcl 2 BMS-

754807

BM IGFR

MK-2206 MK Akt AZD7762 AZ62 CHK1,

CHK2

MK-2206 MK Akt Dabrafenib DA BRaf

AZD8055 AZ55 mTOR1,

mTOR2

Linsitinib LI IGFR

AZD8055 AZ55 mTOR1,

mTOR2

Taselisib TA PI3K

Trametinib TR MEK AZD7762 AZ62 CHK1,

CHK2

Trametinib TR MEK MK-2206 MK Akt

Trametinib TR MEK Dabrafenib DA BRaf

Trametinib TR MEK Taselisib TA PI3K

Trametinib TR MEK Saptinib SA EGFR

Dabrafenib DA BRaf AZD7762 AZ62 CHK1,

CHK2

Dabrafenib DA BRaf Linsitinib LI IGFR

Dabrafenib DA BRaf Taselisib TA PI3K

Linsitinib LI IGFR AZD7762 AZ62 CHK1,

CHK2

Linsitinib LI IGFR MK-2206 MK Akt

Taselisib TA PI3K SCH772984 SC ERK

SCH772984 SC ERK Navitoclax NA Bcl 2

SCH772984 SC ERK MK-2206 MK Akt

SCH772984 SC ERK Dabrafenib DA BRaf

SCH772984 SC ERK Linsitinib LI IGFR

SCH772984 SC ERK Saptinib SA EGFR
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BMS-

754807

BM IGFR Trametinib TR MEK

BMS-

754807

BM IGFR Saptinib SA EGFR

Model: Park

Cell line: SW 48

Drug A Abbrev. Target A Drug B Abbrev. Target B

Afatinib AF EGFR Trametinib TR MEK

AZD7762 AZ62 CHK1,

CHK2

Afatinib AF EGFR

BMS-

754807

BM IGFR MK-2206 MK Akt

BMS-

754807

BM IGFR Trametinib TR MEK

MK-2206 MK Akt SCH772984 SC ERK

Navitoclax NA Bcl 2 Afatinib AF EGFR

Navitoclax NA Bcl 2 Linsitinib LI IGFR

Navitoclax NA Bcl 2 MK-2206 MK Akt

Navitoclax NA Bcl 2 Saptinib SA EGFR

Navitoclax NA Bcl 2 SB216763 SB21 GSK3beta

Navitoclax NA Bcl 2 SB505124 SB50 TGFR

Navitoclax NA Bcl 2 SCH772984 SC ERK

Navitoclax NA Bcl 2 Taselisib TA PI3K

Nutlin-3a(-) NU MDM2 MK-2206 MK Akt

Nutlin-3a(-) NU MDM2 Taselisib TA PI3K

Saptinib SA EGFR Trametinib TR MEK

SCH772984 SC ERK Afatinib AF EGFR

SCH772984 SC ERK Saptinib SA EGFR

Taselisib TA PI3K SCH772984 SC ERK

Trametinib TR MEK Saptinib SA EGFR

Trametinib TR MEK SB216763 SB21 GSK3beta

Trametinib TR MEK Taselisib TA PI3K

Model: Park

Cell line: SW 620

Drug A Abbrev. Target A Drug B Abbrev. Target B

AZD8055 AZ55 mTOR1,

mTOR2

MK-2206 MK Akt

Dabrafenib DA BRaf Taselisib TA PI3K

Linsitinib LI IGFR AZD8055 AZ55 mTOR1,

mTOR2
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MK-2206 MK Akt Afatinib AF EGFR

MK-2206 MK Akt Saptinib SA EGFR

MK-2206 MK Akt SB216763 SB21 GSK3beta

MK-2206 MK Akt SB505124 SB50 TGFR

Trametinib TR MEK SCH772984 SC ERK

Model: Lu et al.

Cell line: COLO 205

Drug A Abbrev. Target A Drug B Abbrev. Target B

Navitoclax NA BCL2 MK-2206 MK AKT

Navitoclax NA BCL2 Taselisib TA PI3K

Trametinib TR MEK Taselisib TA PI3K

Taselisib TA PI3K SB216763 SB GSK3B

SCH772984 SC ERK Taselisib TA PI3K

Model: Lu

Cell line: HCT 116

Drug A Abbrev. Target A Drug B Abbrev. Target B

Crizotinib CR ROS Navitoclax NA BCL2

Navitoclax NA BCL2 Nutlin-3a(-) NU MDM2

SCH772984 SC ERK MK-2206 MK AKT

SCH772984 SC ERK Navitoclax NA BCL2

SCH772984 SC ERK Taselisib TA PI3K

Taselisib TA PI3K Trametinib TR MEK

Trametinib TR MEK MK-2206 MK AKT

Trametinib TR MEK Taselisib TA PI3K

Model: Lu

Cell line: SW 48

Drug A Abbrev. Target A Drug B Abbrev. Target B

Crizotinib CR ROS SCH772984 SC ERK

MK-2206 MK AKT SCH772984 SC ERK

Navitoclax NA BCL2 MK-2206 MK AKT

Navitoclax NA BCL2 SB216763 SB GSK3B

Navitoclax NA BCL2 SCH772984 SC ERK

Navitoclax NA BCL2 Taselisib TA PI3K

Nutlin-3a(-) NU MDM2 MK-2206 MK AKT

Nutlin-3a(-) NU MDM2 Taselisib TA PI3K

Taselisib TA PI3K SCH772984 SC ERK

Taselisib TA PI3K Trametinib TR MEK

Trametinib TR MEK SB216763 SB GSK3B

Model: Lu

Cell line: SW 620
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Drug A Abbrev. Target A Drug B Abbrev. Target B

Navitoclax NA BCL2 Trametinib TR MEK

Navitoclax NA BCL2 Taselisib TA PI3K

Navitoclax NA BCL2 SCH772984 SC ERK

Crizotinib CR ROS Trametinib TR MEK

Trametinib TR MEK Taselisib TA PI3K
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Appendix E

Degree Z-score and DP Calculations

Table E.1. Degree Z-score calculated for all nodes in CASCADE 1.0, Park-model and Lu-model

Degree Z-score

CASCADE 1.0 Park-model Lu-model

Node Score Node Score Node Score

ERK f 3.956 Akt 3.302 P53 2.950

AKT f 3.523 ERK 3.092 NFKB 1.960

MAPK14 3.090 PP2A 2.883 AKT 1.960

GSK3 f 2.656 p53 2.673 P21 1.960

LRP f 1.790 GSK3beta 2.044 CASP3 1.465

RSK f 1.356 c Myc 2.044 JUN 1.465

TSC f 1.356 p38 1.625 GSK3B 0.970

IKBKB 0.923 JNK 1.625 MOMP 0.970

MAP2K4 0.923 Bax 1.416 CERAMIDE 0.970

MAP3K7 0.923 E2F1 1.416 STAT3 0.970

S6K f 0.923 MDM2 1.416 BCL2 0.970

TCF7 f 0.923 Src 1.206 PTEN 0.475

JNK f 0.490 ATM 0.997 MDM2 0.475

MEK f 0.490 Bcl 2 0.997 IAP 0.475

mTORC1 c 0.490 AP 1 0.997 PP2A 0.475

PDPK1 0.490 CyclinE 0.787 CYCLIND1 0.475

RAF f 0.490 FOXO3 0.787 BAX 0.475

RTPK f 0.490 MKK4 0.577 ERK -0.020

TP53 0.490 CyclinD 0.577 ROS -0.020

BTRC 0.056 S6K 0.368 CASP8 -0.020

CTNNB1 0.056 EGFR 0.368 SMAD -0.020

DUSP1 0.056 CyclinA 0.368 JNK -0.020

FOXO f 0.056 p90RSK 0.368 CASP9 -0.020
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GAB f 0.056 p27 0.368 TBID -0.020

IRS1 0.056 Smad2 3 0.158 SPHK1 -0.515

KRAS 0.056 Ras 0.158 IKK -0.515

MDM2 0.056 IGFR 0.158 JAK -0.515

MSK f 0.056 MKPs 0.158 MEK -0.515

mTORC2 c 0.056 PI3K 0.158 SMAD7 -0.515

MYC 0.056 Rb 0.158 SOD -0.515

NFKB f 0.056 p21 0.158 TGFR -0.515

PIK3CA 0.056 MKK3 6 0.158 ASK1 -0.515

PTEN 0.056 beta catenin -0.051 MEKK1 -0.515

RAC f 0.056 ATM -0.515 TSC1 2 -0.051

BAD -0.377 Smad2 3 4 -0.051 BCATENIN -0.515

CASP3 -0.377 Shc -0.051 IKB -1.010

CCND1 -0.377 p14ARF -0.051 IL6 -1.010

CFLAR -0.377 MDMX -0.051 SMAC -1.010

CHUK -0.377 MKK7 -0.051 CFLIP -1.010

CYCS -0.377 CREB -0.051 GP130 -1.010

DKK g -0.377 GAB1 -0.261 RAF -1.010

DUSP6 -0.377 mTOR1 -0.261 S1P -1.010

DVL f -0.377 PTEN -0.261 SMASE -1.010

FZD f -0.377 Wip1 -0.261 SOCS -1.010

GRAP2 -0.377 Grb2 -0.261 CYTC -1.010

GRB2 -0.377 CyclinB -0.261 PI3K -1.010

MAP2K3 -0.377 TAK1 -0.261 FOS -1.010

MAP2K7 -0.377 Cdc25 -0.261

MDM2 g -0.377 IRS -0.261

NLK -0.377 XIAP -0.470

RHEB -0.377 TGFR -0.470

SHC1 -0.377 BRCA1 -0.470

SOS1 -0.377 CASP9 -0.470

AKT1S1 -0.810 Sos -0.470

AXIN1 -0.810 MEK -0.470

BAX -0.810 CHK2 -0.470

BCL2 -0.810 BRaf -0.470

CASP8 -0.810 CRaf -0.470

CASP9 -0.810 MLKs -0.470

CK1 f -0.810 MEKK1 -0.470

DKK f -0.810 GADD45 -0.680

EGR1 -0.810 SHP2 -0.680

ITCH -0.810 p120RasGAP -0.680
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LEF -0.810 mTOR2 -0.680

MAP3K11 -0.810 MK2 -0.680

MAP3K4 -0.810 CHK1 -0.680

MAP3K5 -0.810 STAT -0.680

MAP3K8 -0.810 APAF1 -0.680

MMP f -0.810 TAO -0.680

PTEN g -0.810 MEKK2 -0.680

PTPN11 -0.810 MEKK4 -0.680

RTPK g -0.810 MEKK3 -0.680

SFRP1 -0.810 ATF2 -0.680

SFRP1 g -0.810 ELK1 -0.680

TAB f -0.810 CASP3 -0.889

PIP3 -0.889

SMAC -0.889

SPRY -0.889

Smad7 -0.889

PDK1 -0.889

CytC -0.889

p15 -0.889

CyclinG -0.889

MSK -0.889

JAK -1.099

AXIN -1.099

AMPK -1.099

Rac1 -1.309

Table E.2. DP calculated for all nodes in CASCADE 1.0, Park-model and Lu-model

Determinative Power

CASCADE 1.0 Park-model Lu-model

Node Score Node Score Node Score

AKT f 4.059 ERK 3.794 NFKB 2.828

MAPK14 3.193 p53 3.754 GSK3B 2.220

TCF7 f 2.623 Akt 3.155 ERK 2.019

ERK f 2.262 ATM 2.884 MOMP 2.000

LRP f 2.008 GSK3beta 2.617 AKT 1.907

RAC f 2.000 Smad2 3 2.311 CERAMIDE 1.634

MAP3K7 1.999 PP2A 2.245 ROS 1.623

IKBKB 1.690 p38 1.851 P53 1.460
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TP53 1.623 Src 1.733 CASP3 1.422

MYC 1.623 S6K 1.448 STAT3 1.390

TSC f 1.311 Bax 1.311 SPHK1 1.311

FOXO f 1.311 Ras 1.239 BCL2 1.028

CTNNB1 1.311 GADD45 1.210 PTEN 1.011

GSK3 f 1.278 GAB1 1.139 IKB 1.000

GAB f 1.138 IGFR 1.118 IKK 1.000

JNK f 1.032 CyclinE 1.042 IL6 1.000

FZD f 1.032 beta catenin 1.001 JAK 1.000

SHC1 1.000 CASP3 1.000 MEK 1.000

CYCS 1.000 PIP3 1.000 SMAD7 1.000

BAD 1.000 TSC1 2 1.000 SOD 1.000

CFLAR 1.000 JNK 0.929 P21 0.826

DKK g 1.000 CyclinA 0.826 MDM2 0.717

TAB f 1.000 CyclinB 0.826 IAP 0.687

SFRP1 1.000 c Myc 0.793 TGFR 0.623

EGR1 1.000 E2F1 0.750 PP2A 0.576

SFRP1 g 1.000 SHP2 0.668 SMAC 0.549

LEF 1.000 mTOR1 0.642 JUN 0.461

PDPK1 0.934 PTEN 0.575 CASP8 0.360

S6K f 0.917 EGFR 0.552 SMAD 0.330

RSK f 0.771 SMAC 0.549 ASK1 0.311

mTORC1 c 0.623 SPRY 0.549 CFLIP 0.311

mTORC2 c 0.623 XIAP 0.530 GP130 0.311

PTEN 0.623 Wip1 0.495 MEKK1 0.311

GRB2 0.623 Bcl 2 0.479 RAF 0.311

NLK 0.623 Smad2 3 4 0.441 S1P 0.311

MEK f 0.530 MKPs 0.422 SMASE 0.311

MSK f 0.449 Grb2 0.406 SOCS 0.311

CHUK 0.449 FOXO3 0.366 JNK 0.230

GRAP2 0.377 PI3K 0.360 CYTC 0.138

DVL f 0.319 TGFR 0.358 PI3K 0.138

RTPK f 0.311 Smad7 0.340 ATM 0.077

PIK3CA 0.311 BRCA1 0.311 CYCLIND1 0.066

MDM2 0.311 CASP9 0.311 FOS 0.066

BTRC 0.311 JAK 0.311 CASP9 0.049

NFKB f 0.311 p120RasGAP 0.311 BCATENIN 0.030

CASP3 0.311 Sos 0.311 TBID 0.030

CCND1 0.311 MDM2 0.285 BAX 0.011

SOS1 0.311 PDK1 0.276
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DUSP6 0.311 AP 1 0.251

MAP3K5 0.311 Shc 0.187

PTPN11 0.311 p14ARF 0.169

PTEN g 0.311 CytC 0.157

BAX 0.311 p90RSK 0.143

BCL2 0.311 TAK1 0.139

CASP9 0.311 Cdc25 0.139

CASP8 0.311 MEK 0.138

ITCH 0.311 mTOR2 0.138

MAP2K4 0.276 AXIN 0.138

DUSP1 0.276 MDMX 0.136

KRAS 0.203 p15 0.128

RHEB 0.203 MK2 0.114

IRS1 0.138 Rb 0.101

MAP2K7 0.138 p21 0.089

MAP2K3 0.138 p27 0.089

AKT1S1 0.138 MKK4 0.084

AXIN1 0.138 CHK2 0.077

CK1 f 0.138 CHK1 0.066

MAP3K4 0.066 MKK7 0.066

MAP3K11 0.066 CyclinD 0.061

RAF f 0.049 CyclinG 0.056

MDM2 g 0.049 IRS 0.055

MAP3K8 0.049 STAT 0.049

DKK f 0.032 CREB 0.032

RTPK g 0.019 APAF1 0.019

MMP f 0.019 BRaf 0.019

CRaf 0.019

MKK3 6 0.019

MSK 0.012

AMPK 0.004

MLKs 0.001

TAO 0.001

MEKK1 0.001

MEKK2 0.001

MEKK4 0.000

MEKK3 0.000

ATF2 0.000

ELK1 0.000

Rac1 0.000
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