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Abstract

Flexible graphite (FG) is obtained by compaction of exfoliated graphite in the
form of sheets having a thickness of 0.2 to 3 mm and density ρ from 0.7 to 1.9
g/cm3. Sigraflex® is a commercial type of FG with ρ = 1 g/cm3 employed as
beam dumping material in the Target Dump External (TDE) cores of the Large
Hadron Collider (LHC) located in Geneva, Switzerland. The performances of the
TDE components are assessed by comprehensive FE simulations whose accuracy
depends on the material parameters assigned to each component. In such context,
this thesis aims to find the model and the necessary parameters for the mechanical
simulation of the Sigraflex® core in the TDE.
At first, a review of Sigraflex® and FG properties available in literature will be
presented: this will include the description of the microstructure, the collection of
the mechanical and thermal properties, and their critical comparison with other
well-known types of graphite. Then, an extensive experimental campaign will be
reported. For the first time, the application of a Focused Ion Beam - Scanning
Electron Microscopy (FIB-SEM) technique to FG for the quantitative investigation
of the pores’ sizes and shapes and the micro-sheets’ thickness and arrangement,
will be described. Moreover, the experimental setup and the mechanical properties
obtained by in-plane tension, out-of-plane compression and nanoindentation tests
will be outlined and thoroughly discussed. In particular, nanoindentation revealed
to be an easy-to-use method to measure the orthotropic elastic properties of FG.
Finally, although the focus will be mainly on the mechanical properties, a thermo-
mechanical testing campaign will be presented, too.
Based on experimental observations, the behavior of FG will be assimilated to
other well-known materials such as crushable foams and crumpled materials. A
1D analytical model will be proposed to decouple the deformation contributions
from the graphite-like and crumpled-like behaviors, and the extension of the non-
linear stress-strain behavior to 3D cases will be discussed. A practical solution
will be to use a material model found in Ansys LS-Dyna library i.e., MAT_142
transversely crushable foam. Its suitability was investigated by means of 3D FE
simulations of nanoindentation and the numerical force-displacement curves will
be shown in comparison with the experimental curves. Although not exhaustive,
the results are promising and can be considered as a reference point for future
works on FG characterization.
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1. Introduction

1.1 Background

The motivation behind this study has originated by the need to assess the operat-
ing conditions of the Large Hadron Collider (LHC) current design [1]. Specifically,
the thermo-mechanical behavior of the low-density graphitic core in the Target
Dumps External (TDE) blocks is of interest for increasing the future LHC energy
deposition capabilities [2].

Kicker 
magnet

Magnet 
deflecting the 

beam

External 
dumps

Kicker 
magnet

Figure 1.1: Large Hadron Collider facility overview [3] and external beam dumps
also called Target Dump External (TDE) blocks (picture reworked from [4])

In the LHC (figure 1.1), two proton beams each one having 6.5 TeV/c energy
counter rotate and collide in four different locations along the 27 km ring that
correspond to four particle detectors. In this way, physicists can observe condi-
tions similar to that of the Universe a few instants after the Big Bang explosion:

1
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as an example, particles colliding at 1 TeV energy experience a state similar to
that after 10−10 s after the Big Bang. This allows to explore the boundaries of
Standard Model theories and different theories of particle physics, leading to new
fundamental observations such as the measurement of the Higgs boson proper-
ties on 2012. As it is easily understood, the energy involved in this type of tests
is enormous [5] and the LHC Beam Dump System (LBDS) is a critical section to
ensure safe LHC operations: it consists of a fast extraction system that directs the
beams out of the LHC circular trajectory to a tangential extraction line that is 700
m in length (magnification view in figure 1.1). This is done by means of a series
of kicker magnets, at the end of which the Target Dump External (TDE) blocks are
responsible for the safe absorption of the beam. The fast-pulsed dilution kickers
sweep the high-energy focused beam in a quasi-elliptical spiral path to guarantee
the energy spreading over the TDE core materials (figure 1.2).
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Figure 1.2: Schematic illustration of the TDE blocks graphitic core

As seen in figure 1.2, the core materials of the TDE are housed in a 318LN stainless
steel vessel, sealed and filled with nitrogen gas. Inside, it consists of:

• 6 isostatic polycrystalline graphite blocks (SGL Sigrafine® 7300 [6]) 700
mm long with 1.73 g/cm3 nominal density shrink fitted into a Uranus-45
vessel (length-by-diameter-by-thickness = 8500 × 722 × 12 mm3),
• approximately 1650 SGL Sigraflex® [6] sheets (L20012C) as thick as 2 mm

and with 1.2 g/cm3 density. This is the low-density central section and also
the focus of this work,
• two SGL Sigrafine® HLM plates [6], 80 mm thick with 1.72 g/cm3 density,

fixed to the vessel by two steel retaining rings,
• two Titanium Grade 5 windows enclosing the vessel.

The choice of graphite-based materials usage is due to the high performances with
respect to beam absorption purposes since they are characterized by low atomic
number and good thermo-mechanical performances at high temperature [7]. The
temperature reached inside the core is indeed related to the impacted material
density and, in this sense, the Sigraflex® section is the most exposed, also consid-
ering the energy increase expected in the current Run 3: a peak dose of 2.5 kJ/g in
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nominal conditions and up to 4.1 kJ/g in case of dilution failure will correspond to
1500°C and 2300°C, respectively [8]. As a nominal reference, the expected work-
ing conditions of the Sigraflex® core are reported in Table 1.1.

Heating rate 108 K/s
Temperature max. 2000◦C

Strain max. 0.13 - 2.6%
Strain rate 103 - 104 s−1

Table 1.1: Nominal working conditions of the graphitic core

Sigraflex® is a commercial flexible graphite (FG) obtained by compaction of ex-
panded graphite particles without any binder [9]. In figure 1.3 some real samples
of L20010C grade provided by SGL Carbon1 are shown. This material is porous
and anisotropic with a carbon content above 98 – 99%. Its properties make it
well-exploited in sealing and gasketing, also for thermal interfaces for cooling
and insulation applications, often in sandwiched structures with stainless steel
foils or in the shape of impregnated yarns. It shows some similarities with other
types of graphites such as the well-known polycrystalline and pyrolytic graphite
but differs in terms of micro-scale morphology and mechanical properties. It will
be thoroughly described in Chapter 2 and actually, its characterization is the main
goal of the present work.

Figure 1.3: Some samples of Sigraflex® L20010C.

1.2 Thermo-mechanical problem

The beam impact generates a sudden energy deposition in the TDE materials that
occurs in ∼86 µs and the subsequent thermal expansion of the impacted volume
determines a dynamic multi-axial stress state in the volume and the surrounding
region. A schematic representation of a proton beam impact is shown in figure
1.4. The beam has a gaussian spatial distribution around its axis and originates
an axisymmetric temperature field in the impacted volume. Assuming adiabatic

1https://www.sglcarbon.com

https://www.sglcarbon.com
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Figure 1.4: Schematic representation of a proton beam impact into a volume
of Sigraflex® . This was reworked from a picture obtained post-mortem by com-
puted tomography. The beam is gaussianly distributed around its symmetry axis
with standard deviation equal to 0.25 mm. After the impact, the volume under-
goes a sudden temperature increase and expands mainly along the beam axis
direction.

conditions, the temperature evolution against time of a general body due to a
volumetric heat source q̇ is described by the heat diffusion equation:

ρcp
∂ T
∂ t
=∇ · (k∇T ) + q̇ (1.1)

where ρ is the density, cp is the specific heat and k the thermal conductivity of
the body. If the body is homogeneous and isotropic, the thermal diffusivity can be
defined as a = k

ρcp
and represents a measure of the heat transfer rate from the hot

to the cold ends.
The characteristic time constant is hence derived as τ = L2

a where L is a charac-
teristic size of the volume. If the deposition energy time is much shorter than τ,
the temperature gradient over the volume can be neglected, the conditions are
described as quasi-instantaneous and the temperature dependence on time is de-
termined by the product ρcp. Conversely, if the deposition time is much longer
than τ, the conditions are quasi-static and the temperature distribution over the
volume is mainly determined by k.
In any case, to a small temperature change ∆T is associated a change in volume
∆V due to the intrinsic thermal expansion coefficient. For an anisotropic material,
this is treated as a second-order tensor with up to six independent components
αi j and links the temperature change to the thermal strains ϵT

i j in the 3D space



1. Introduction 5

by:
ϵT

i j = αi j∆T (1.2)

This relationship implies that a deformation occurs whenever a temperature gradi-
ent or a variation in the thermal expansion properties occurs. This is always the
case for materials with finite thermal conductivity or inhomogeneities.
Duhamel and Neumann extended the Hooke’s law to include such thermal contri-
bution in the linear elastic constitutive equations by assuming that at each point
of a solid body the components of stress-induced strain ϵσi j and thermal strain ϵT

i j
add up, such as:

ϵi j = ϵ
σ
i j + ϵ

T
i j = Si jklσkl +αi j∆T. (1.3)

Here, ϵi j are the components of the total strain tensor, Si jkl are the components
of the compliance fourth-order tensor, and σkl are the components of the stress
tensor. Equation 1.4 can be reverted to obtain the stress components explicitly:

σi j = Ci jklϵkl − Ci jklαkl∆T (1.4)

where Ci jkl are the components of the fourth-order stiffness tensor. This equation
takes the name of linear thermo-elastic constitutive equation and neglects any de-
pendence of the elastic constants Ci jkl and thermal expansion coefficients αi j on
temperature, as well as any inertial effect associated with the heating rate [10].
Expressed in this way and under the assumption of symmetry of αi j , the unknown
parameters in this equation are 27 and they can be reduced only if the impacted
material presents symmetries such as transversal isotropy or orthotropy. Equa-
tion 1.4 is a very simplified case and is seldom of interest for real applications
where the deformations are severe, plastic deformations occurs, and the material
parameters are rate or temperature dependent. Then closed-form solutions to this
equation are not available and the stresses must be predicted by Finite Element
(FE) thermo-structural simulations.
Moreover, when the heating rate is severe, stress waves may arise and the ma-
terial density may experience large variations depending on how much larger is
the yield strength than the dynamic current stress. If the yield strength is much
smaller than the dynamic stress, the material can be considered as behaving like
a fluid, i.e. with strong predominance of hydrostatic stress states. In this extreme
case an additional constitutive equation called equation of state would be reques-
ted to predict the stress state. This provides the evolution of pressure (hydrostatic
component of the stress tensor) as a function of specific volume, temperature and
energy and is solved by dedicated algorithms (hydrocodes) implemented in soft-
ware such as AutoDyn [11] or Ansys®LS-Dyna [12].
In summary, the procedure used to evaluate the stress state on a beam-impacted
material and hence assess the safety of a component such as the TDE, follow the
classical scheme represented in figure 1.5 (see also [13] for a detailed example).
At first, the energy distribution is converted to a temperature field by Monte-
Carlo particle transport codes such as FLUKA [14]. This can be given as thermal
load in input to a FE software where the necessary geometry has been previously
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defined, bounded and meshed. The constitutive law for each material involved
in the impact is usually based on experiments or literature data and attributed
to a geometry representative of the real impacted volume. In the case of the
Sigraflex® core, this may be a stack of sheets interacting among each other or
a single homogeneous volume. The law may include the elastic constants, a yield
function, the hardening parameters and their dependence on strain-rate and tem-
perature, and a failure model. The thermal properties are also assigned as well
as an equation of state, if needed. A simple example of constitutive law that the
material may have at this stage is given by equation 1.4.
The model is eventually validated by experiments close to the real-case scenario
such as the HiRadMat series [8, 13] and a failure model is employed to predict
the life of the components and the maximum sustainable load.

FE/Hydrocode solver

Life prediction

Experiments

Geometry 

Boundary conditions

Material model

Mechanical 
properties

Thermal 
properties

Equation of 
state

- Elasticity 
- Plasticity 
- Rate effects
- ...

- Expansion
- Conductivity
- ...

- p(T,V,ei)

Temperature field T(𝒙,t)

Energy deposition

Validation

Objective of this work

Figure 1.5: Procedure for the life prediction of the Sigraflex® core inside the TDE.

1.3 Challenges

The original goal of this work was to cover all the aspects related to the material
model in figure 1.5, including the thermal and equation of state aspects. However,
this was resized based on the observations listed below.
The application of Sigraflex® in the TDE dumping core is unique and largely de-
viates from the commercial spectrum mentioned in section 1.1. This is unfortu-
nately reflected on a limited amount of experimental data available in literature or
provided by the producers, often targeted to the only sealing applications. Some
examples include monotonic static out-of-plane uniaxial compression properties,
gas permeability measurements, thermal and electrical conductivity, and coeffi-
cients of thermal expansion as a function of the sheet density.
Moreover, since the properties are strongly affected by the density and by pro-
duction process parameters such as chemical species, exfoliation temperature and
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residual ash content, it is not straightforward to borrow the available data and ap-
ply it in the scenario considered here. In this sense, the type of Sigraflex® under
the lens has 1 g/cm3 density, whereas potentially useful data, not provided by
SGL Carbon, can be found only for different brands FG such as Papyex® [15] and
GraFoil® [16]. Or sometimes in works where the FG sheets were made in-house
(see for example [17]).
For reasons that will be more clear with the reading of this work, the visual ac-
cess to the material microstructure is hindered when the micro-sheets become too
packed and, so far, any invasive attempt of cross-sectioning would affect the sur-
face so that imaging techniques are not sufficient to collect quantitative data. Non-
invasive techniques such as X-Ray Computed Tomography (also reported here in
chapter 3) proved not to give sufficient resolution for accurate pore detection, but
only for the monitoring of the deformation field under compression [18, 19]. The
most complete microstructure description available in literature is from Celzard
et al. [20] that went into details for exfoliated graphite compacts up to 0.3 g/cm3

and the results cannot be trivially extrapolated to higher densities sheets.
In addition to the unknowns ascertained from the literature review, some addi-
tional questions arose from a general problem analysis and previous experimental
observations:

• What happens when a so tortuous material is being impacted by a proton
beam? Is the nitrogen (necessary for the inert atmosphere in the TDE) cap-
able to flow out during the impact time or it expands internally contributing
to the overall thermal expansion?2.
• What is the characteristic size relevant to the problem? The protons have a

gaussian spatial distribution with 200 - 300 µm standard deviation around
the beam axis, but affects up to 15 mm volume radius around them [data
provided by internal communication]. Sigraflex® instead is made of particles
as wide as ∼100 µm, with the constitutive carbon planes oriented perpen-
dicularly to the beam axis. Are the interlocking forces or the inner graphite
structure that determines the stress-state during a single impact?
• Which kind of stress-strain constitutive law can be a good initial guess? FG

is clearly a type of graphite, but the production process is different from e.g.
polycrystalline or pyrolytic graphite, as well as some substantial differences
are obvious in the mechanical response. Transversal isotropy in the elastic
domain is a realistic assumption and the Young’s moduli have been already
investigated in some works, but no data are given about the yield strengths
and Poisson’s ratios. Not to mention about the plastic behavior, for which
there is basically no previous proposals for a yield function or hardening
rule.

2For further insight, compare figure 4 in [8].
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1.4 Objectives

After the observations listed in the previous section, the original objectives had to
be resized and the focus restricted only to the mechanical properties of Sigraflex® ,
i.e. the first member of equation 1.4. The research is therefore limited to the con-
stitutive stress-strain relationship in static conditions without taking into account
rate and temperature effects. A particular effort is put on the classification, that is,
to which set of well-known models of similarly-behaving materials Sigraflex® can
be assigned. These is meant to find a model that is already implemented in FE soft-
ware such as LS-Dyna or Abaqus [21] and that could be quickly adapted to this
application. A second objective is to find an experimental technique that could
allow for the accurate observation and quantitative evaluation of the microstruc-
ture, including the size, shape and distribution of pores and micro-sheets. This
could serve as a basis for a micromechanical model that could replicate the mech-
anical and thermal responses even when the latter is given by e.g. nitrogen expan-
sion or structural re-arrangement of the micro-sheets. A third and last objective
is to extend the technical know-how on mechanical testing of Sigraflex® and to
understand which are the key mechanical properties that are of interest to this ap-
plication. Most of the experimental data available regards the out-of-plane com-
pression and in-plane tension of FG but they are barely sufficient even for the
simplest material model. However, due to the fragility of Sigraflex® , the stand-
ard mechanical tests are not always the easiest solution and alternatives such as
nanoindentation may represent the best way to go.

1.5 Publications and contributions

Conference papers

• E. Solfiti and F. Berto, ‘Mechanical properties of flexible graphite,’ Procedia
Structural Integrity, vol. 25, pp. 420–429, 2020
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graphite,’ Procedia Structural Integrity, vol. 26, pp. 187–198, 2020
• E. Solfiti, M. Calviani, A. Perillo-Marcone, J. Heredia, C. Torregrosa, A. Al-

varo and F. Berto, ‘Flexible graphite as beam dumping material in the TDE
blocks of the large hadron collider,’ Procedia Structural Integrity, vol. 28,
pp. 2228–2234, 2020

Journal paper

• E. Solfiti, D. Wan, A. Celotto, N. Solieri, P. A. Munoz, R. F. Ximenes, J. M.
Heredia, C. L. T. Martin, A. P. M. F.-X. Nuiry, A. Alvaro et al., ‘FIB-SEM in-
vestigation and uniaxial compression of flexible graphite,’ arXiv preprint
arXiv:2304.04021, 2023. Currently under revision in Materials and Design -
Elsevier.



2. Literature review

2.1 Introductory comments

The publications available in the literature that address the microstructure, the
mechanical and the thermal properties of FG or exfoliated graphite compacts,
have been collected, reviewed and summarized in this chapter. The goals were:

• to understand FG and hence Sigraflex® microstructure including the char-
acteristic sizes of particles, micro-sheets and pores,
• determine the suitable experimental techniques for its characterization,
• assess which material models could be used on FE simulations to best predict

its behavior.

Most of the following information can also be found in [22–24] and in [25] (cur-
rently under review in Materials and Design1).
Mainly, Google Scholar2 and Scopus3 were used to search for scientific papers.
Some data were also found in technical datasheets from different manufacturers
websites.
The main challenge was represented by the fact that many authors attributed dif-
ferent names to the same material with the same density. For example, FG with 1
g/cm3 was referred to as flexible graphite or natural graphite or expanded graph-
ite. However, the name natural graphite flakes is mainly used for the ore mater-
ial involved in the production of expanded graphite (also synonym of exfoliated
graphite). Only at a later stage, this is compressed to obtain compacts of expan-
ded graphite or flexible graphite.
FG was patented by Shane [9] in 1968, then Dowell and Howard [26] conducted
a thorough characterization work in 1986 aiming to understand the microstruc-
ture and basic mechanical properties. In 2005, Celzard et al. collected in a com-
prehensive paper [20] many experimental results about the characterization of
low-density graphite compacts, including modeling approaches of the pore space
and micro-sheets arrangement. The PhD thesis of Cermak [17] was published in

1https://www.sciencedirect.com/journal/materials-and-design
2https://scholar.google.com/
3www.scopus.com

9
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2020 and is among the most recent works concerning the mechanical and thermal
properties of FG.
This review has been continuously updated since October 2019 until December
2022, but no relevant publications on mechanical or thermal properties were
found after [17]. Many recent publications can be found about flexible graph-
ite applied for example to fuel cell electrodes or sensors, but these will not be
considered as relevant to this work.

2.2 FG microstructure

A visual summary of FG production process is given in Figure 2.1. It starts from
natural graphite, a purely crystalline ore material in the form of plates and whose
thickness and diameter measure around 101µm and 102µm, respectively [22].
Sulfuric and nitric acids are chosen as chemical species for the intercalation: they
are able to penetrate among the basal planes and to expand rapidly upon heat-
ing so to push apart the carbon basal planes and obtain the exfoliated particles.
Smaller is the thickness-to-diameter ratio of the flakes, longer is the path for the
gaseous products to escape, and maximized is the final expanded volume [27].
Such particles are commonly referred to as worms due to their accordion-like
shape and, thanks to their jagged profile, can be compressed together to create
compacts or sheets with tailored density and thickness. Typically, compacts denser
than 0.7 g/cm3 and up to 1.9 g/cm3 are referred to as FG whereas lower density
materials are simply referred to as exfoliated graphite compacts or compressed
expanded graphite. It is basically impossible to obtain densities higher than 1.8 –
1.9 g/cm3 due to the difficulty on applying further irreversible work of compres-
sion [26].
The following nomenclature will be adopted throughout the text (see also Figure
2.1):

• natural graphite flakes: raw material made of purely crystalline graphite
flakes,
• worms or exfoliated graphite: flakes after expansion,
• micro-sheets: stacks of tens of carbon basal planes. The skeletal structure of

each single worm is a pile of corrugated micro-sheets,
• particles: worms intended as entities inside the compacted materials. They

are flattened along the bedding plane,
• out-of-plane and in-plane directions: perpendicular and parallel to the bed-

ding plane, respectively. Sometimes, the in-plane directions will be also refer
to as directions 1 or 2, while the out-of-plane direction will be direction 3.
• compaction: the compression stage in the production process.

Furthermore, a bottom-up hierarchical order can be identified at different length
scales: the carbon basal planes (nm) inside the micro-sheets (µm), the micro-
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Compaction

Out-of-plane

In-plane Flexible graphite - cross-section A-A

Natural graphite
flakes

width ~ 100 μm 

thickness 
~ 10 μm 

Exfoliated  
graphite 
(worms)

length ~ 100 × thickness 

After compaction

Before compaction

Micro-sheet 

 100 μm

 1 μm

 1 μm

Flexible graphite

Single particle

A-A

Figure 2.1: Production process of FG. The compaction stage is made by rolling
compression up to ρ = 0.7 – 1.9 g/cm3. On the bottom, the virtual cross section
A-A of the final sheet highlights the presence of flatten particles having internal
pores that deform severely under compaction.

sheets inside the particles (10 - 100 µm) and the interlocked particles as con-
stitutive units of the bulk material (mm).
The uncompressed worms’ density ranges around 0.004 - 0.015 g/cm3 (corres-
ponding to aporosity P > 99%) [20, 28] and their morphology depends on the
initial flakes’ size [29, 30] as well as on production process parameters such as
maximum exfoliation temperature [27] and intercalant species [31]. Their final
length can reach up to 100 - 300 times the initial thickness, whereas the width cor-
responds to the original width of the particles in the order of 100 µm. The cells
are randomly dispersed along the worms’ body, as a result of the expansion of
the intercalant species [20], and have non-regular honeycomb shape. The single
worm structure may be schematically seen as that of a foamy particle with open
porosity space and cylindrical enveloping volume. The cells result from the cor-
rugation of carbon basal planes that maintain the roughly circular perimeter and
are averagely arranged perpendicularly to the cylinder axis. The degree of corrug-
ation can be related to the degree of dispersion of chemicals and their consequent
volatilization.
In [28], the typical sizes of the single cell (wall-to-wall) before compaction were
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measured by SEM imaging in worms with three different densities (0.006 g/cm3,
0.009-0.011 g/cm3 and 0.004 g/cm3) and were found to have ellipsoidal shape,
with average aspect ratio equal to 0.5, major axis ranging between 21 to 32 µm
and the minor axis between 10 to 16 µm. Pores as large as 100 – 200 µm were
also reported at the distribution extremes. The wall thicknesses (that correspond
to the micro-sheets thickness) could be inferred by nitrogen adsorption and spe-
cific surface area calculation in [20] and [32] and were found to be equivalent to
48 – 68 carbon basal planes i.e., ≃ 16 – 22 nm. In [26] a higher estimate for the
wall thickness corresponding to 30 – 60 nm was also estimated. The thickness-to-
length ratio of a cell wall can be calculated from this data as≃ 20/20000 [nm/nm]
= 10−3, which certifies the large flexibility thereof.
The orientation of the basal planes depends on the orientation of the micro-sheets
during the compaction: Celzard et al. [20] reported that they are randomly dis-
persed at the early stage of compaction whereas Cermak et al. [17], upon X-ray
diffraction measurements, showed that the basal planes of compacted FG are ori-
ented only by 9 – 15◦ with respect to the in-plane direction. Likewise, the pores
flatten out upon compaction: in [33], it was extrapolated that, at 1 g/cm3, they
must have disk-like shapes with the largest faces parallel to the same direction.
The pore space properties in compacts up to 0.3 g/cm3 were thoroughly investig-
ated in [20]. The Johnson, Koplik and Schwartz (JKS) theory was found to reas-
onably describe the electrical conductivity by assuming cylindrical pore shapes
with equal lengths and diameters. Moreover, various parameters such as density,
permeability and formation factor were related one each another by simple power
laws. The pore network developed at the considered densities was described tor-
tuous and increasingly anisotropic along with the density increase. In the same
work, the porosity after compaction was described as the result of inter- and intra-
particle contributions so that the bulk density and the particles density could be
related in a linear relation. For example, when the bulk density reaches 1 g/cm3,
the particles are compressed from 0.015 g/cm3 even up to 1.2 – 1.8 g/cm3.
The JKS theory was also used in [34] for compacts with density from 0.0236
g/cm3 to 0.35 g/cm3; in this case the pore sizes decreased from 1.36 µm to 0.078
µm.
In [27], the pore sizes and permeabilities of 1 g/cm3 material were investigated by
mercury porosimetry and nitrogen adsorption-desorption experiments. Three dif-
ferent pore categories, related to their spatial scale sizes, were identified: macro-
pores (80 nm), meso-pores (2-3 nm) and micro-pores (inter-crystalline cavities).
The permeability analysis revealed a dominant orientation along the bedding
planes so that the gas could penetrate in the in-plane direction 2-3 times faster
than in the out-of-plane direction. In [35], the distribution of the transport pores
size was investigated by nanopermporometer with hexane as filler of the porous
matrix and nitrogen as the gas-carrier. The characteristic pore sizes were found to
range between 1.5 and 6 nm.
Since the visual access to the pore network at such density is made difficult by
sub-micron scale pore sizes, the amount of open or closed porosity at 1 g/cm3 is
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yet to be clarified. While Celzard et al. [20] found 30% closed porosity at 0.14
g/cm3, Dowell and Howard [26] observed that the reduction of specific surface
area upon compression of 1 g/cm3 sample is not related to the creation of new
closed voids. Toda et al. [18] inferred that the closed porosity volume fraction at
1 g/cm3 is 8%, based on the rule of mixture of homogeneously distributed closed
and open pores. In [27], the total volume occupied by macro-pores (pore size ≥
40 nm) in 1 g/cm3 specimens was obtained by the volume of intruded mercury
at high pressure and resulted 0.51 – 0.48 cm3/g. The total volume of meso-pores
(pore size ≤ 40 nm) was measured in terms of outgassed nitrogen volume for
2h at 300◦C. This was 0.03 – 0.08 cm3/g. On the base of this data, the specific
volume occupied by the pores can be easily calculated as well as the final porosity.
The first is equal to 0.51 – 0.59 cm3/g which means that the porosity is 0.51 –
0.59 for 1 g/cm3. Then, if the total theoretical porosity is taken as

P = 1−
ρ

ρs
= 0.56

where ρ = 1 g/cm3 and ρs = 2.26 g/cm3 is the density of crystalline graphite
[36], the closed porosity can be confused within the uncertainty of measures, but
cannot certainly overcome 9%.

2.3 Mechanical properties

The mechanical properties of FG may depend on several parameters: initial flake
sizes, ash content, chemical intercalant species, exfoliated volume, density and
thickness of the final product. Their influence will be discussed in this section.

2.3.1 Tensile properties

The tensile strength in the in-plane direction increases linearly with the bulk dens-
ity increase, but the is not valid for the tensile strength in the out-of-plane direction
(see figure 2.2a). Typical values of the tensile strength in the in-plane direction for
1 g/cm3 are in the range 4 - 7 MPa (some higher values were solely reported by
Sykam et al. [37]) whereas in the out-of-plane direction the uncertainty is larger.
Only one work concerning this quantity was found [38] and the values obtained
were around 0.02 - 0.03 MPa.
The crack due to in-plane tensile stresses was found to propagate along the particles,
or clusters of particles boundaries. It outlined some boundaries even parallel to the
loading direction and departing from different locations near the notch [30, 38].
It was therefore suggested that these clusters of particles, also called structural
units, first rotate along the load direction and then slip until the final separation.
The interlocking forces hence play a key role in the in-plane tensile deformation

mechanism. Dowell and Howard [26] explained that they are generated by some
links between the jagged boundaries whose number increases proportionally to
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Figure 2.2: (a) Tensile strength dependence on bulk density and (b) natural
graphite flake size. 1[30], 2[26], 3[39], 4[38], 5[40], 6[38] (measured in the out-
of-plane direction).

the bulk density, and whose effectiveness depends on the initial relative misalign-
ment of the micro-sheets. Higher is the misalignment, and more likely is to have
an effective interlock. This is in turns a consequence of the quality of the exfoli-
ation process and the initial flake size: in [30], it was indeed noticed that fully
exfoliated worms, with final length up to 300 times of the original flake thick-
ness, ensure a tensile strength increase. Larger flakes can also result on higher
exfoliated volume and bigger structural units in which an eventual pull-out stress
would be better hindered [31] (see figure 2.2b).
Not only, but also different intercalant substances like sulphuric acids result in
larger pores, described as flat baloons, in the exfoliated structure and may in turn
lead to larger particles [31]. Ionov et al. [41] noticed an effect of the intercalant
species both on the absolute value of the strength and on the regression slope of
the linear dependence on the bulk density. However, the effect of the exfoliated
volume on the tensile strength is clearly visible only when the compound is con-
sidered as fully exfoliated [30].
The tensile strength may also depend on the ash content4 of natural graphite:
Dowell and Howard [26] for example found that to increase the ash content means
to decrease the potential enhancement led by the density rise, while Savchenko et
al. [42] extracted an increasing linear relation between the tensile strength and
the ash content.
Typical values for the elongation at break in the in-plane direction are around 1 -
2%. However, the elongation at break along the in-plane direction was found to
be markedly different between the axis parallel to the rolling direction and per-
pendicular to it. This was attributed to an higher tensile deformation during the
the rolling process along the rolling direction, that may affect the maximum strain

4The ash content is the residue (mostly oxydes of metals) that comes from the extraction process
of natural graphite and it is an index of the purity level of the flakes. It can affect the oxydation
sensitivity of the FG and also the strength.
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achievable upon reloading, as a sort of mechanical treatment, while the ultimate
tensile stress remains unaffected [26].
The typical stress-strain curves of tensile tests can be found in [26, 37, 43] but the
only attempt to carry out a simple constitutive model was shown in [26]. In this
work, a simple power law of the type σ = Aϵ+Bϵ2 was used to fit the stress-strain
curve. The expression was originally proposed by Jenkins for the compression be-
havior of polycrystalline graphite [44] and was adapted for the tensile behavior.
The fitting was however satisfactory only up to a half of the tensile strength. The
in-plane tensile Young‘s modulus reported from [26] goes from 0.5 to 3 GPa, in ac-
cordance with 1.38 GPa extracted by Xi et al. [45] and with commercial data from
FG furnishers such as SGL Carbon5. By visual inspection of the cyclic curves also
reported in [26] and with the aid of the data on permanent deformation found
in the Sigraflex® datasheet6, it can be noticed that the deformation includes both
elastic and plastic contributions but the transition between the two domains is not
clearly visible. Concerning the underlying deformation mechanism, if some tensile
forces are applied along the in-plane direction, the elastic modulus is expected to
be initially controlled by the flexing and unwrinkling of the carbon planes, while
only then, when the shear forces acting between the carbon planes reach a local
threshold, an irreversible sliding occurs [30].

2.3.2 Compression and recovery properties

Compressibility and recovery are fundamental properties for sealing performances
and are direct effects of the FG inherent resilience. Indeed, the production process
is based on the application of compression to gain severe irreversible deformation
until the desired density is achieved. The latter was related to the forming pres-
sure p f by an exponential law of the type p f = 0.35e2.6ρ by Cermak et al. [46]
for a density range from 0.2 to 1.7 g/cm3.
Celzard et al. [20] explained that the material is isotropic at the beginning of the
compression because of the worms and the micro-sheets random arrangement,
while the degree of transversal isotropy and alignment increases with the com-
pression increase.
Dowell and Howard [26] tested 1 g/cm3 FG in the out-of-plane direction and ap-
plied out-of-plane cyclic compression up to 31 MPa. The material was observed to
densify up to 1.73 g/cm3 where no irreversible deformation was further possible.
The concavity of the loading path was oriented upward, while the unloading-
reloading behavior turned into a more and more linear trend. Some critical points
were also highlighted: (i) the stiffness in compression increased with the misalign-
ment of the basal planes, (ii) at high densities, the reversible work of compression
was predominant on the irreversible work and (iii) the load carrying mechanism

5https://www.sglcarbon.com
6https://www.sglcarbon.com/en/markets-solutions/material/

sigraflex-flexible-graphite-foil-and-tapes/

https://www.sglcarbon.com
https://www.sglcarbon.com/en/markets-solutions/material/sigraflex-flexible-graphite-foil-and-tapes/
https://www.sglcarbon.com/en/markets-solutions/material/sigraflex-flexible-graphite-foil-and-tapes/
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was entirely attributed to the bending of the carbon basal planes. In addition, the
presence of two types of micro-structural regions was noticed: one with slightly
oriented micro-sheets and well-aligned basal planes, probably responsible for the
elastic compression response; the other with highly wrinkled micro-sheets and
responsible of the inelastic response. Given by the predominance of creases that
request for larger external work to increase the degree of folding, the second type
of regions was also expected to give a stiffer contribution.
Similarly, Toda et al. [18] observed, by means of synchrotron X-ray microtomo-
graphy with ZnO and WC marker particles, that the bending and the thickness re-
duction of the micro-sheets were the predominant deformation mechanisms upon
compression loading, whereas the unloading was characterized mainly by thick-
ness recovery. Leng et al. [30] hypothesized also an influence on the deformation
mechanism from the air trapped in the pores. This was in agreement with Toda
et al. [18] who argued that trapped air may also contribute to the behavior un-
der recovery. It is not clear though to what extent such a small amount of closed
porosity (< 9 %) discussed in the previous section, could influence so much the
mechanical response.
Kobayashi et al. [19] adopted the same technique as [18] to observe the 3D strains
inside 1 g/cm3 FG during two cycles of out-of-plane compression. Some clusters
of materials with average diameters equal to 100 – 150 µm showed similar de-
formation fields and were defined as deformation units. These owned rod- and
sheet-like shapes, and presumably matched with the same entities mentioned as
structural units in the analysis of Gu et al. [38] reported in the previous section.
The size of the natural flakes do not seem to have a remarkable influence on
the compressibility7 and recovery8, but an increasing linear trend is also visible
between the density and the compressibility [30].
Some typical uniaxial compression (engineering) stress-strain curves are repor-
ted in figure 2.3a for different FGs. The commercial types of FG were tested only
at high loads so that the resolution at low loads is scarce. Here the concavity of
the curve is upward with a strong stiffening at increasing stress. Cermak et al.
[46] instead investigated the low loads response (maximum load = 1 MPa and
maximum engineering strain < 6%) of FG at four different densities, i.e. 0.55,
1.05, 1.54, 1.7 g/cm3, and reported a full elastic recovery with little hysteresis
in all cases. The curve shape is also non-linear at the beginning with seeming
linearization at increasing stress. The concavity is kept upward in the whole do-
main with tangent slope varying from 10 to 50 MPa. While the curves at high
loads show a behaviour similar to that observed in materials that densify, such as
foams, the low-loads behaviour reported in the inset of figure 2.3a appears un-
usual and needs to be further investigated. It is indeed unclear why the low-loads
curve show an initial non-linear region that appears to extend if the material is
denser. And furthermore, if one would obtain a comprehensive stress-strain curve

7taken as the nominal compression strain evaluated at a fixed pressure i.e., total strain
8taken as the nominal strain recovered i.e., elastic strain. Compressibility - recovery = plastic

strain
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putting all together, the only way would be to add a point of flex as conjuction
between the low-loads and high-loads domain, which add a further questioning
to the behavior. Other experimental curves can be found in [47] for high loads
and in [48] for low loads.
Concerning other compression-related properties, both Dowell and Howard [26]
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Figure 2.3: (a) Stress-strain curves at high loads from Sigraflex® datasheet and
Grafoil datasheet®,9. Stress-strain curves at low-loads from 1[46], reproduced by
means of the provided fitting parameters. (b) In-plane and out-of-plane moduli
dependence on density from [33]: both of them follow an exponential relation-
ship in the high density domain. The original data were converted from porosity
to density by means of ρ = ρs(1− P) where ρs = 2.26 g/cm3. These data will be
further reported for analysis in figure 3.19.

and Cermak et al. [46] reported that the transversal deformation under and after
out-of-plane loading was negligible. For the in-plane compression instead, Krzes-
inska [33]measured the in-plane (dynamic) Young’s modulus by ultrasound tech-
nique and found a value equal to around 4 GPa. The ratio between this value and
the values found in [46] is ≃100 and certifies an extremy degree of anisotropy.
A semi-empirical approach was proposed to fit the dynamic elastic modulus both
in the high and low porosity regions (the latter being typical of FG foils). Defining
E as the dynamic elastic modulus at the porosity P, E0 as the Young’s modulus
at P = 0 and finally b as a parameter that quantify the effect of porosity on the
dynamic modulus, the exponential equation E = E0e−bP is consistent in the low
porosity region whereρ > 0.3 g/cm3 (figure 2.3b) and, according to the values for
b, it was supposed that the pores are roughly disk-shaped with the faces aligned
to the bedding plane.
Finally, an attempt of modeling the FG compression response was done in [47]
for 1.1 g/cm3 FG. An hyper-elastic Blatz-Ko foam constitutive law was calibrated
with the experimental data and then adapted to model a particular sealing con-
figuration under high pressure.

9https://neograf.com/products/gaskets-sealants/grafoil-flexible-graphite

https://neograf.com/products/gaskets-sealants/grafoil-flexible-graphite
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2.3.3 Other mechanical properties

Nanoindentation is a well-established technique for the characterization of sev-
eral types of materials and distinctly suitable to extract the elastic modulus and
the hardness of films, membranes or any thin specimen for which standard tests
would be cumbersome. Chen et al. [32] employed nanoindentation to investig-
ate exfoliated graphite compacts with density from 0.089 to 0.275 g/cm3 and
observed that the cell walls undergo very large recoverable shear deformation
probably allowed from the sliding of the basal planes inside the cell walls.
Neverthless, Xiao et al. [34] modeled low density compacts with interfacial fric-
tion theory where each cell was considered as four Voigt elements in parallel, and
showed that the contribute on the overall sliding stems primarily from the cell
walls relative displacement. A single cell can give an engineering shear strain,
and hence potential sliding and overall flexibility, up to 35 and up to 12 for com-
pacts and FG with ρ = 0.86 g/cm3, respectively [49]. This argumentation is valid
for low density compacts, whereas the extrapolation is not immediate for FG since
the viscous component may decrease strongly as the density increases [32].
Khelifa et al. [50] indented and simulated a commercial FG foil with 1 mm thick-
ness and compared the results with experimental nanoindentation data. The con-
stitutive equation used was that of an isotropic elasto-plastic material with power-
law isotropic hardening. Among the coefficients, the yield strength found was 1.9
MPa, the (isotropic) elastic modulus was 190 MPa with assumed Poisson’s ratio
equal to 0.3. These values are significantly smaller than those owned by any other
types of graphite e.g., the out-of-plane elastic modulus of single crystale graphite
is 36.5 GPa [51] and for polycrystalline graphite (ρ = 1.58 - 1.97 g/cm3), this is
in the range 4.8 - 23 GPa [52]. Under the same assumed value for the Poisson’s
ratio, Chen et al. [29] found by nanoindentation that that the indentation modu-
lus was 1.7 MPa for FG with 1 g/cm3, in strong disagreemnt with [50].
Dissipative and visco-elastic phenomena in low density compacts have been largely
studied in [49, 53–56]. The visco-elastic behavior of a material can be substan-
tially measured by its loss factor tanδ where δ is the phase-lag angle between the
dynamic stress applied and the observed strain. The loss factor found by flexural
tests of FG with density equal to 1.1 g/cm3 spanned up to 0.187, while it was
0.019 or 0.021 for pure aluminum and Zn-Al alloy [53]. This strong viscous com-
ponent becomes less relevant at higher densities where the layered microstructure
is more hindered on allowing for relative sliding of micro-sheets.

2.3.4 Summary

A schematic overview of the values for the mechanical properties discussed along
this section is shown in figure 2.4. Scarce data are available to properly define the
main mechanical properties, also due to a large variation of these against dens-
ity, different manufacturing techniques and parameters: a summary of numerical
values for tensile and compression strengths are reported in table 2.1.
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E = 13353 - 22906 MPa
σf = 4 - 5 MPa4

E = 3 - 4 GPa2

E = 10 - 50 MPa5

σf = 50 - 150 MPa6

σf = 0.03 - 0.04 MPa1

In-plane

Out-of-
plane

In-plane

1
2

3

Figure 2.4: Visual summary of elastic moduli and yield strengths for 1 g/cm3 FG.
In-plane isotropy is assumed. 1Data from [38], 2Data from [33], 3Data from [45],
4Data from [24], 5Data from [46], 6Data from [26].

Reference Density
[g/cm3]

Tensile
strength
[MPa]

Young’s
modulus
[GPa]

Compressive
strength
[MPa]

Compressive
modulus
[GPa]

Poisson’s
ratio

[52] (polycr.
graph.)

1.72 - 1.94 13.44 -
30.33

8.96 - 17.7 57.91 -
102.34

4.8 - 23 0.07 - 0.22

[26] 1 ≃ 4 2.29 150 0.366 -
0.597

negligible

[30] 1.1 ≃ 4

[38] 1 ≃ 3.5 (≃
0.03 out-of-
plane)

[18] 1 0.04

[45] 1 1.335

Sigraflex® 1 >4

Grafoil® 1.12 4.5 - 5.2 165 0.166 - 0.2*

[46] 1.05 0.01 - 0.05 negligible

*these values were taken for 1.4 g/cm3 foils after unloading from 14 - 52 MPa compression stress.

Table 2.1: Mechanical properties (tensile properties in-plane, compression prop-
erties out-of-plane, Poisson’s ratio as transversal deformation under out-of-plane
compression)

2.4 Thermophysical properties

The thermal conductivity k, the coefficient of thermal expansion α and the specific
heat capacity cp of FG and exfoliated graphite compacts will be reviewed in this
section. As mentioned in section 1.2, if a body is homogeneous and isotropic then
these quantities are related one each other by means of the thermal diffusivity a
as k = ρcpa and can be used to solve many thermal problems by means of the
heat equation 1.1.
Most of these properties were recently investigated by Cermak [17] that also com-
pared the results of a large experimental campaign on FG with different densities
with previous literature data. Here, the essential information will be reported in
addition to some conceptual comments as appendices to the already exhaustive
work mentioned.
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2.4.1 Thermal conductivity

FG is transversal isotropic also from a thermal perspective. This means that the
thermal conductivity can be defined both in-plane k∥ and out-of-plane k⊥ where
k∥ is expected to be greater than k⊥ due to the preferred orientation of the carbon
basal planes. Since the orientation depends on the micro-sheets re-arrangement
and on the pore closures, a global indicator of the conductivity may be represen-
ted by the bulk density. As shown in figure 2.5a indeed, many authors employed
different measurement techniques to observe that k∥ increases linearly along with
the density. Cermak et al. [57] also proposed a linear fitting for the data collected
across density values from 0.55 to 1.7 g/cm3.

Conversely, k⊥ was observed in figure 2.5b to increase at low densities up to a
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Figure 2.5: (a) Thermal conductivity in the in-plane and (b) out-of-plane direc-
tions against density: Papyex®,10, Sigraflex® , 1[58], 2[39], 3[59], 4[60], 5[57]
(replicated from the fitting parameters provided), 6[61], 7[62].

turning point around 0.5 g/cm3, and decrease afterward. k⊥ indeed results from
a trade-off between the increased number of contact points between the cell walls
and the improved alignment of micro-sheets. The former is probably predominant
at low densities where the material is still isotropic and the pore size decrease is
beneficial for the out-of-plane conductivity. The latter is instead predominant at
higher densities and, despite the increased number of contacts between the micro-
sheets, the heat is more and more conducted only in the in-plane directions [39].
The ratio

k∥
k⊥

is approximately 10 at 0.5 g/cm3, 40 at a g/cm3 and overcomes 100
at 1.8 g/cm3. The increase is exponential with the density in analogy to the in-
crease in the ratio between the in-plane to out-of-plane Young’s moduli discussed
in figure 2.3b.
Cermak et al. [57] further investigated the effect of out-of-plane pressure on the
conductivity from 0.1 to 1.08 MPa of FG specimens with 0.55, 1.05, 1.55 and
1.7 g/cm3. k∥ was found to not be affected by the pressure in this density range,

10https://www.mersen.com/sites/default/files/publications-media/
6-gs-papyex-graphite-souple-mersen.pdf

https://www.mersen.com/sites/default/files/publications-media/6-gs-papyex-graphite-souple-mersen.pdf
https://www.mersen.com/sites/default/files/publications-media/6-gs-papyex-graphite-souple-mersen.pdf
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while k⊥ showed slightly higher values at higher pressure. Interestingly, k∥ and
k⊥ of FG specimens with 1.7 g/cm3 density were initally more sensitive to the
pressure increase, but the sensitivity decreased quickly above approximately 0.8
MPa. As noticed in the compression stress-strain curves in the inset of figure 2.3a,
this stress value coincides with the end of the initial non-linear region and the
beginning of the steep increase. This is interpreted as a connection between the
micro-sheet orientation, that undergoes a stronger change at low loads determin-
ant for the conductivity, and the non-linear shape of the stress-strain curve.
The conductivity is not only dependent on the density, but also function of the tem-
perature. In this case, the change is mainly ascribed to a variation of the inherent
crystalline properties and can be compared to other carbon-based materials. In
figure 2.6, this comparison was done by observing the conducitivity of commer-
cial FG ranging around 1 g/cm3.
It is noticed that k⊥ of commercial FG follows the same trend as k⊥ of pyrolytic
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Figure 2.6: Temperature dependence of thermal conductivity: 1[63], 2[64].
Papyex® is another commercial FG with ρ = 0.7 - 1.1 g/cm3, Grafoil® with ρ
= 0.72 - 1.36 g/cm3, Sigraflex® .

graphite. Probaly, k∥ of FG with even higher densities would tend to match with
k∥ of pyrolytic graphite, which is similarly composed by strongly oriented carbon
planes and clearly constitutes an upper bound for the conductivity.
k∥ of commercial FG instead follows the same trend of polycrystalline graphite,
that is considered much more isotropic than FG. The increasing-decreasing trend
of k∥ along with the temperature may be ascribed to the effect of lattice vibrations
that is beneficial for the conductivity at low temperature but detrimental at higher
temperature. Copper and aluminum own values higher than FG although in the
same order of magnitude but they cannot hold the same working temperature
of FG. Their melting point results equal to 1357◦C and 933◦C respectively [63],
which is considerably lower than 2500◦C of FG.
Many approaches about modeling of the thermal conductivity were presented in
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literature. These often starts from the observation of micro-mechanisms of ma-
terial compaction at very low densities. Celzard et al. [20] observed that there
exist a critical density (at very low densities) for which a sudden increase of the
conductivity. Around such threshold, the percolation theory was found to be ad-
equate on modeling the conductivity and elasticity behavior using power laws of
density such as

k∝ (ρ −ρc)
t

where ρc is the critical density corresponding to the threshold and t is a fitting
exponent. At higher densities, corresponding to rolled commercial FG range, the
material is assumed to be a binary mixture of air and solid part and some hypo-
thesis are made about the pore shapes. The conclusions are obtained by means
of analytical theory such as the effective media theory and JKS theory [20], or
Hashin-Shtrikman upperbound for two phases compound [60]. In the latter case,
the thermal conductivity of the overall compact can be expressed as a function of
the thermal conductivity of the solid content ks and the porosity P = 1 − ρ/ρs,
with ρs = 2.26 g/cm3:

k = ks

�

1−
P

2+ P

�

.

ks mixes the contributions from the in-plane direction and out-of-plane direction
of the solid content to the thermal conductivity. This mixing approach seemed
to fit the experimental data with a low error in a wide range of density up to
commercial FG foils.
Chen et al. [62] compared the two approaches of Hashin-Shtrikman and the well-
known rule of mixtures k = vsks+ vaka in the out-of-plane direction, where vs and
va are the volume fractions of the solid part and air, respectively, while ka ≃ 0 is the
conductivity of the air. While the rule of mixtures does not consider the changes in
the solid content orientation during the compaction and considers the conduction
path as uniformly oriented in the same direction, it could still to capture the trend
along with the increasing density.

2.4.2 Specific heat capacity

No data are available in literature about the FG specific heat dependence on the
temperature except for some data from commercial FG datasheets (figure 2.7).
One value is given at room temperature by [60] and by [17]: these were cp = 850
J/kgK and cp = 729.3 J/kgK, respectively. Since FG has usually > 97 - 98% car-
bon content (even≥ 99.85% for tailored thermal FG such as Sigraflex® TH11), the
specific heat is basically the same as that of crystalline or polycrystalline graphite.
Also Grafoil® declares a value of 711 J/kgK at 21◦C, which is indeed quite similar
to that of polycrystalline graphite at T = 19 - 25◦C i.e., 704 - 720 J/kgK [65]. The

11https://www.sglcarbon.com/en/markets-solutions/material/
sigraflex-high-purity-flexible-graphite-foil-and-sheets/

https://www.sglcarbon.com/en/markets-solutions/material/sigraflex-high-purity-flexible-graphite-foil-and-sheets/
https://www.sglcarbon.com/en/markets-solutions/material/sigraflex-high-purity-flexible-graphite-foil-and-sheets/
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increase of cp of polycrystalline graphite in the neighbourhood of room temper-
ature can be considered as linear, whereas a polynomial fit of the type

cp = 4184(0.538657− 9.11129× 106T − 90.2725T−1

− 43449.3T−2 + 1.59309× 107T−2 − 1.43688× 109T−4)

is suitable when the range of T is extended from -23◦C to +2726.85◦C [66]. This
fitting appears as suitable to model the specific heat of FG in the same range of
temperature.
The behavior of copper and aluminum curves are markedly different from that of
graphitic materials showing milder increments along with temperature.
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Figure 2.7: Temperature dependence of FG specific heat capacity cp: Grafoil®

with ρ = 0.72 - 1.36 g/cm3, Sigraflex® 700 J/KgK at 20◦C. 1[66], 2[65]
703.6 - 720.7 J/kgK at 19 - 25◦C, 3[67], 4[60] 850 J/Kgk at 20◦C and ρ not
specified,4[17] 729.3 J/KgK at 25◦C and ρ = 0.55 - 1.7 g/cm3, 6[68], 7[69],
8[66].

2.4.3 Coefficient of thermal expansion

The coefficient of linear thermal expansion αT was probably the least investigated
thermal properties before Cermak et al. [17]. This physical quantity arises from
the lattice change effects due to the applied temperature: the increase in the car-
bon lattice distance in the c-axis direction is responsible for αc and this appears
much larger than αa, even negative up to ≃ 600 K. Riley et al. [70] proposed
a model for the thermal expansion of crystalline graphite based on a relation
between the hexagonal lattice vibrations (perpendicular and parallel to it) and
the heat capacity at constant volume cv defined as:

cv =
2
3

cVa +
1
3

cVz ,
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where a and z refer to the directions parallel and perpendicular to the lattice,
respectively. cVa and cVz can be expressed as Debye functions D of the form

cVa = 3RD
�

Θa

T

�

and cV c = 3RD
�

Θc

T

�

where Θa and Θc are the two characteristics temperature referring to vibrations
perpendicular and parallel to the hexagonal axis, respectively, and R = 8.314 J/-
mol K. The Debye function in this case is expressed by

D
�

Θa

T

�

= 3
�

Θa

T

�−3
∫

Θa
T

o

z4ez

(ez − 1)2
dz.

The final model is then expressed by

αc = ACVa + BCV c + C T and αa = LCVa +MCV c + N T. (2.1)

where A, B, C , L, M , N are fitting constants. In figure 2.8, an example of this
fitting is shown together with data collected from literature in both the in-plane
and out-of-plane directions. All the experiments involved pyrolytic graphite as
tested material (the closest material to crystalline graphite). The constants A, B,
C were taken from [71]:

A= 1.777× 10−7 [J/mol], B = −1.065× 10−7 [J/mol], C = 0 [(◦C)2],

Θa = 2280 [K], Θc = 760 [K].

While L, M , N from Tsang et al. [72] were preferred:

L = −5.05×10−7 [J/mol], M = 1.4×10−6 [J/mol], N = 5.15×10−9 [(◦C)2],

Θa = 2300 [K], Θc = 800 [K].

These equations were found to follow the experimental data quite satisfactorily
from 77 K to above 3000 K [71], though not respecting the limits imposed by
thermodynamic principles in the neighborhood of 0 K i.e., α and its derivatives
must approach zero as T tends to 0 K [73].
Mixing functions of the type αx = ξαc+(1−ξ)αa can be also employed to find α
at a fixed temperature or in a temperature range assuming the mixing parameter
ξ independent on T in a random direction x [77]. Alternatively, α should be
considered as a tensor as in equation 1.2, where α11 = α22 = αa and α33 = αc
due to transversal isotropy.
FG data from different datasheets are also shown in figure 2.8 and result in good
agreement with those of crystalline graphites in both directions when considering
the average values taken in the temperature ranges shown. It must be noted that
the subscripts c and a for graphite were deliberately confused with the out-of-
plane and in-plane directions of FG to indicate the predominant orientations of the
micro-sheets and the internal basal planes. The FG foils have very low expansion in
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Figure 2.8: (a) Out-of-plane and (b) in-plane coefficients of thermal expansion
from datasheet of commercial FGs: Papyex® with ρ = 0.7 - 1.1 g/cm3, Grafoil®

with ρ = 0.72 - 1.36 g/cm3, Sigraflex® , and from literature: 1[71], 2[74], 3[75],
4[70], 5[72], 6[76].

the in-plane directions, even negative, similarly to crystalline graphite. In Grafoil®

datasheet is explained that at first the foil shrinks (negative αc) up to 1095◦C
due to the relieve of residual stresses of previous compression, and then slightly
expands, but the phenomen could also be explained as a natural effect given by
the properties of the crystalline lattice.
Likewise for the thermal conductivity, Cermak et al. [17] measured the variation
of FG thermal expansion along with the initial density. This was reported here in
figure 2.9 by means of the fitting equations representing the average values at
four density values i.e., 0.55, 1.05, 1.54, 1.7 g/cm3:

α⊥ = −119ρ−0.151 + 142, α∥ = −0.132ρ3.46 − 0.6.

The measurements were executed from 0 to 100◦C at the heating rate of 0.07◦C/s.
As observed, the in-plane expansion is always negative and tends to increase in ab-
solute value with increasing density. Similarly, the out-of-plane expansion remains
positive and increases in absolute value at increasing density. Since no variation
was found on specimens with different thicknesses but same density, it was sug-
gested that the expansion is independent on the specimen thickness. Although it
is intuitive for many FG properties that at higher density the similarity with crys-
talline graphite is increased, this may not be valid for the thermal expansion, too.
Observing figure 2.9, it seems that at 1.7 g/cm3 the thermal expansion is already
higher than graphite (both in-plane and out-of-plane if considering the absolute
values), but the uncertainty of the measurements do not allow to get to any cer-
tain conclusion.
The density-dependence of FG thermal expansion suggests a probable involve-
ment not only of the carbon mirco-structure, but also of the micro-sheets meso-
structure on the thermal expansion. The meso-structure comprises the geometry
created by micro-sheets folds and wrinkles and it is realistic that the geometrical
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effects may affect the overall thermal expansion to make it, for example, larger in
the out-of-plane direction or even rate-dependent.
Further investigation is needed to explain the origin of the Sigraflex® behavior
reported in [8] and to further decouple it from possible contributions of trapped
gaseous substances.
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Figure 2.9: Density dependence of the coefficient of thermal expansion [17].
This was compared with an average value of αc and αa obtained by averaging
equations 2.1 in the range 0 - 100◦C.

2.4.4 Other thermal properties

Dowell and Howard [26] reported a reduction on the ultimate tensile strain after
one hour heat treatment at 1750◦C by a factor of 0.6 whereas the strength in-
creased by a factor of 1.2. The compressive modulus (tangent at 6.9 MPa out-of-
plane pressure) was found to decrease from 366 MPa to 178 MPa after 1 hour
of heat treatment at 2750◦C. Thus, thermal treatment appears beneficial for the
tensile strength, while improving ductility upon compression.
In general, crystalline graphite does not have a melting point at a pressure of 1
atm. It directly sublimes at approximately 4000 K and, for the triple point to be
observed, a pressure of 100 atm and 4200 K are needed. However, the reaction
to oxygen and combustion occurs at much lower temperature in air i.e., at 350
- 400◦C. The oxides obtained are gaseous and do not form as in many carbides
a protective oxide layer to delay the oxidation [36]. It follows that FG with pure
carbon content without any residual metal oxides could both avoid the burn-out
at high working temperature and also improve the overall strength [26, 42]. That
is also one of the reason why Sigraflex® TH grade should be preferred in high
temperature applications [private communication with SGL Carbon].
The electrical conductivityσe has in general a strong relationship with the thermal
conductivity. For metals this is usually described by the well-known Wiedemann-
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Franz law:
k = LTσe

where L is the Lorentz number whose values for metals is equal to 2.44·10−8WΩ/K2.
Similar relations have been carried out for different types of graphites, for example

k−1 = 2.93 · 10−3σ−1
e + 0.34

that works for graphitised coked based materials and pyrolytic graphite [78, 79].
Typical value of L for polycrystalline graphites is 1.2·10−6WΩ/K2 [80] whereas
for pyrolytic graphite in the in-plane and out-of-plane directions is respectively
2.9·10−6WΩ/K2 and 5.4·10−5WΩ/K2 [62].
Regarding FG, the results in [39] gave L values from 5.6 to 6.2·10−6WΩ/K2 and
a final fit in the shape of a sigmoidal regression at room temperature as follows

λ= 1168.4e−
1

3.5σe + 102.2.

Chen and Chung [62] found a linear relation among the electrical and thermal
conductivity in the out-of-plane direction corresponding to L = 7.3·10−6WΩ/K2.
FG also inherits from graphite properties both a certain degree of thermoelec-
tric power and piezoresistivity. The first was quantified by [81]: a temperature
gradient was generated at the surface of a 1.1 g/cm3 FG specimen in the out-
of-plane direction at slow heating rate and the voltage difference was measured.
This raised in a linear manner with a slope equal to -2.6 µV/◦C. The piezores-
istivity was investigated by Xi e al. [45] who observed an increment of electrical
resistivity above 30% when the material is stressed up to 3.18 MPa. In the latter
work moreover, the behavior of FG as electret and piezoelectret element has been
reported for the first time.
A thermal property also relevant to the application of this thesis, is the thermal
contact resistance. Due to the good compliance ability that stems from the porous
microstructure, FG foils are indeed good thermal interface materials. It was un-
derlined by Gandhi et al. [82] how the contact pressure can modify it depending
strongly on the application: increasing the contact pressure leads to a minimiza-
tion of the resistance, but overcoming such value can deform the surface and lead
to an increment of that.
Marotta et al. [83] showed how to model the contact interface problem for FG
used as interstitial material. The thermal resistances can be modeled in a spring
series model, considering an applied temperature variation ∆T and the heat flux
Q. The resistances are ascribed to the non-effective contact area, to the medium
present in the gaps between the contact points and to the bulk material itself.
The equivalent thermal resistance is defined as thermal joint resistance and it
was shown to be function of the applied pressure and thickness of the intersti-
tial material. The data shown for eGraf12 suggested that, regardless of the sheet

12This is a commercial grade of FG and information can be found in https://neograf.com/
products/thermal-management-solutions/egraf-hitherm-thermal-interface-materials, al-
though Marotta et al. [83] reported that the trademark is from Graftech, Inc.

https://neograf.com/products/thermal-management-solutions/egraf-hitherm-thermal-interface-materials
https://neograf.com/products/thermal-management-solutions/egraf-hitherm-thermal-interface-materials
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thickness, increasing the pressure from 50 to 500 kPa, leaded to a decrease of the
thermal joint resistance by 5 times.
The bulk resistance is instead only a part of the total joint resistance and this
was reported by Smalc et al. [48] for FG (eGraf, 0.13 mm thickness) to be 30
±0.05 mm2 ◦C/W at 100 kPa applied pressure (and 162±0.08 mm2 ◦C/W thermal
joint resistance). This data were obtained by stack of three specimens under the
assumption that the individual specimens coalesce together under pressure and
thus making the contact resistance between them negligible. This was checked by
measuring the thermal joint resistance of single and stacked specimens as shown
in figure 2.10. All the results for one, two or three stacked specimens of two dif-
ferent thicknesses lies on the same regression line or even overlaps, showing that
even at 100 kPa pressure, the gap between the sheets is irrelevant.
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axis indicates the total stack height.



3. Experimental campaign

3.1 Material datasheet

This chapter reports the experimental campaign carried out on Sigraflex® L20010C1

provided in form of sheets with 1 g/cm3 density, 2 mm thickness and 2% ash con-
tent. Some relevant properties are reported in Table 3.1. Although type L20012C is
currently being employed in the TDE, type L20010C is considered for application
in the future TDE design mentioned in the Introduction.

Foil size 1000×1000×2 mm3

Density 1 g/cm3

Ash content ≤0.15 %

Elongation at break(in-plane) >1 %

Tensile strength (in-plane) ∼4 MPa

Specific heat (20◦C) 0.7 J/Kg K

Coeff. of thermal expansion (20 -1000◦C) 1×10−6K−1 (in-plane), 30×10−6K−1 (out-of-plane)

Thermal stability - 250 to +3000◦C (up to +400◦C in presence of oxygen)

Table 3.1: Sigraflex® L20010C datasheet properties.

3.2 FIB-SEM investigation

3.2.1 Motivation

The pore sizes estimated by means of gas or fluid flow experiments are not always
straightforward to be employed in the material structural modelling and they can-
not unveil properties related to the deformation micro-mechanism. Characteriza-
tion through visual inspection can instead lead to a quantitative description of the
microstructure properties such as pore sizes and orientations, giving results suit-
able for statistical analysis and micro-mechanical modelling. SEM imaging of FG

1https://www.sglcarbon.com/en/markets-solutions/material/
sigraflex-flexible-graphite-foil-and-tapes/
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https://www.sglcarbon.com/en/markets-solutions/material/sigraflex-flexible-graphite-foil-and-tapes/
https://www.sglcarbon.com/en/markets-solutions/material/sigraflex-flexible-graphite-foil-and-tapes/
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fractured sections was already reported in [17, 26, 38] but no attempt to extract
quantitative properties was reported in any of the reviewed works.
FIB-SEM tomography is by now an established technique to obtain 3D informa-
tion on different materials but the applications in carbon-based materials are still
limited, especially for quantitative reconstruction purposes [84]. The accuracy of
the extracted microstructure properties relies on the capabilities of segmentation
algorithms which should be capable of discerning solid phase from the pores. This
can be challenging in highly porous media where shine-through artifacts and cur-
tain effects are more likely to occur and generate ambiguities after image binariz-
ation [84, 85]. For these reasons, and since no data were available from previous
works on FG, the investigation was limited and optimized on a single section as
well as the image processing was focused on the only bi-dimensional pore prop-
erties. The following section is part of a publication currently under review [25].

3.2.2 Methods

A transversal cross-section of a FG specimen free from any production process
marks was cut by Ga+ Focused Ion Beam microscope. The surface was first pre-
pared by platinum deposition along the top edge of the desired section. This was
meant to be sacrificial for the cross-sectioning while limiting the tail and curtain-
ing effects by levelling of the superficial asperities.
Then, the section was milled by ion sputtering (30 kV, 65 nA) along parallel stripes,
at increasing depth, from the surface down to approximately 100 µm. An ion cur-
rent of 2.8 nA was adopted in the last milling step to finely smooth the surface.
The final section was rectangular with sides of 100 µm × 150 µm, perpendicular
to the slicing direction as in figure 3.1.
The images that accurately captured the pore structure and the regions less subjec-
ted to curtaining were analyzed in MATLAB® using Image processing ToolboxT M

functions. The anisotropic diffusion filter was used to lower the noise while pre-
serving the edges, and the marker-controlled watershed algorithm was exploited
for pore detection. Morphological operations improved the analysis and manual
intervention was sporadically needed to discard poorly detected pores, sometimes
confused with dark artifacts in the denser material domains. Moreover, the mater-
ial was visually split in two phases (dense and coarse) by direct crop of the image
FFT followed by thresholding of the reconstructed image. The best parameters
combination was found by recursive attempts comparing the trend of the total
porosity affected by each of them.
The radii of the maximum inscribed circles Rins were calculated as the maximum
of the distance transform per each pore binary image and used for the definition
of the aspect ratio AR = Rins/Rmax where Rmax was taken as a half of the max-
imum Feret diameter. All the quantities calculated were converted to the metric
system by pixel proportion.
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Figure 3.1: (a) Schematic illustration of the section obtained by FIB-SEM and (b)
top view of the actual section.

3.2.3 Results

The corrected view of the whole section is reported in figure 3.2. Despite the cur-
tain effect due to the high porosity, the microstructure is much more evident than
in tension-fractured specimens images such as those ones reported in detail in [17]
or on the right side of figure 3.2. Two types of regions can be identified by visu-

Figure 3.2: Schematic illustration of the section obtained by FIB-SEM together
with its relative dimensions with respect to the whole specimen dimensions. The
image on the right was obtained by applying in-plane tensile forces as described
in section 3.4.

ally separating darker and brighter spots. The former have stripe-like shapes with
tiny pores and tend to run perpendicularly to the compaction direction; the latter
show larger pores with very misaligned walls and shiny features. Such distinc-
tion becomes more evident at increased magnifications such as in figure 3.3. The
darker regions are composed of several compacted layers attributed to bundles of
micro-sheets (figure 3.3b). The micro-sheets are well-aligned with each other and
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are separated by thin and elongated pores. The contact lines visible in figure 3.3d
help to visually follow the micro-sheets profiles and could be attributed to totally
compacted pores.
The micro-sheet’s thicknesses did not show big variation in dimension when manu-
ally measured by pixel proportion. These ranged between 40 to 120 nm that cor-
respond to 120 to 360 carbon basal planes: at least twice than the values predicted
by nitrogen adsorption and specific surface area estimation [20, 32]. In the trans-
ition between the two regions (figure 3.3c), the micro-sheets deviate from the
aligned state and branch out with continuity until becoming pore walls.
The relative interlocking between neighbouring worms is so effective that any
discontinuity amenable to the particles’ boundaries was not detected. Due to the
sheets’ extreme flexibility, the particles withstand large deformations without fail-
ure so that during compaction they can fold into themselves and collapse creat-
ing very non-regular pores’ contours. This confirms the observations made in [26]
about the presence of two types of regions, one with slightly oriented micro-sheets
and one with highly wrinkled micro-sheets, each related to a different deforma-
tion response upon uniaxial compression load. In the following, we will refer to
the oriented micro-sheets regions as aligned regions whereas to wrinkled regions
as misaligned regions. The pores detected in the imaged domain are highlighted

(a) (b)

(c) (d)

Figure 3.3: microstructure of Sigraflex® : magnified views.

and overlapped to the original image in figure 3.4a. Despite the accuracy of the
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measurements was checked by visual assessment, it was obvious that the most
accurate results were obtained for medium-size pores. Large pores’ boundaries
indeed were affected by ambiguous features visible in the internal pore walls and
often resulting in the areas underestimation. Smaller pores conversely could be
confused in the noisy and dark shades of the hard regions.
In total, 2681 pores were identified within an area of 27.62 × 41.47 = 1145.5
µm2, resulting in a local 2D porosity of 0.15 ± 0.05 averaged over and includ-
ing all the tested combinations for the image analysis algorithm parameters. The
limited size of the region together with the 2D nature of the investigation can ex-
plain the big discrepancy with the overall material porosity (P = 0.51 – 0.55). Not
only, but also the density gradient along the sheet thickness predicted in [60] i.e.,
denser material on the sheet surface, can be considered as a suitable explanation
for such discrepancy.
The aligned and misaligned domains were separated (see figure 3.4a and 3.4b)
so that the pores’ properties could be assessed separately per each domain.
The different combinations of the algorithm parameters, such as the cut-off fre-

quencies of the passband filter and the grayscale thresholds, were tuned until
the binarized regions satisfactorily overlapped the aligned and misaligned re-
gions, considered as complementary. The area fraction of the aligned phase ranged
between 0.42 and 0.55, with an average value of 0.49. Its porosity was calculated
as the summed areas of all the pores falling within this region with more than 50%
of their pixels. The value obtained at 0.49 area fraction was 0.051, one order of
magnitude lower than the porosity of the misaligned phase that instead was 0.24.
The number of pores was almost equally distributed between the two phases i.e.,
1459 for the misaligned phase and 1222 for the aligned phase, but the misaligned
phase contributed to the 85% of the overall porosity volume.
The radius of the maximum inscribed circle Rins, the half of maximum Feret dia-
meter Rmax together with their ratio AR (figure 3.4c-d-e) were used to describe
the size and shape of the pores. On average, the values of Rins and Rmax of the
misaligned region pores were larger than the hard phase pores, whereas the AR
distributions were identical meaning that the main difference between the two
phases was mainly about the pore sizes. This was better quantified by the equival-
ent radii Req distributions in figure 3.4d which shows that despite the continuous
spectrum of values, the two logarithmic distributions would tend to decouple. Fit-
ting them as log-normal distributions, the expected values for Req are 0.145 µm
and 0.0693 µm, corresponding to an area of 0.066 µm2 and 0.015 µm2, for the
misaligned and aligned phases, respectively. The pores in the misaligned regions
were therefore more than 4 times bigger than the pores in the aligned regions.
Gathering all the data under the same distribution, the average values for all the
pore parameters were obtained and reported in table 3.2.
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Figure 3.4: Results from image analysis: (a) pores as obtained by watershed seg-
mentation, highlighted, and overlapped to the original image, (b) hard and soft
phase distinction as obtained by image FFT cropping and thresholding, (c) max-
imum inscribed circle radii Rins distribution, (d) half of maximum Feret diameter
Rmax distribution, (e) aspect ratio AR distribution, defined as fraction of the pre-
vious two quantities and (f) pore equivalent radii distribution.
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Regions µ σ Expected value [µm]
Misaligned -2.198 0.7319 0.1451

Req [µm] All
Aligned

-2.216
-2.8219

0.5776
0.5528

0.129
0.0693

Misaligned -2.495 0.5374 0.0953
Rins [µm] All

Aligned
-2.68

-2.9727
0.522

0.3272
0.0786

0.054
Misaligned -1.422 0.74 0.3171

Rmax [µm] All
Aligned

-1.616
-1.923

0.7234
0.577

0.2581
0.1727

Misaligned -1.0729 0.4721 0.3824
AR [-] All

Aligned
-1.064

-1.05
0.4815

0.496
0.3875

0.396

Table 3.2: Mean values of all pore parameters considered as single log-normal
distribution

3.2.4 Observation of detached particles

This section reports an additional investigation performed on some particles that
were pulled apart from the specimen surface by means of simple "scotch tape"
technique. This technique is often used for graphitic materials to induce exfoli-
ation and delamination (see e.g. [86]). The particles detached from the specimen

Figure 3.5: FIB-SEM investigation of a particle detached from the specimen top
surface. The magnification views shows aligned and misaligned regions in the
inner microstructure.

surface looked like the one in figure 3.5. It may not be possible to indicate with
certainty whether the whole particle or part of it could be detached, but the thick-
ness size thereof is coherent with those expected for compressed particles. Many
micro-sheets were teared apart and fractured in the out-of-plane direction, which
corresponded with the pulling direction of the tape. A small part of the particle
detached appear as still being attached to the bottom surface and constitutes as
an example of how the particle interlocks among each other. However, once they
are compacted together, it is nearly impossible to distinguish them since the inner
and outer (in between the particles) porosity show the same level of inhomogen-
eity. Both aligned and misaligned regions are clearly visible in the inner particle
structure and especially in the inset B of figure 3.5, the micro-sheets configura-
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tion appears as the result of meso-structure kinking due to in-plane compression
stress. In this case, the misaligned regions are originated in between two kinking
micro-sheets bundles.

3.3 Computed tomography

In X-ray computed tomography (XCT), several projections in multiple angles al-
lows the 3D representation of an object to be reconstructed with several microns
spatial resolution. This testing method was performed in the attempt of obtain
a digital 3D reconstruction of Sigraflex® microstructure that could give more in-
formation about the porosity and be complementary for the 2D FIB-SEM analisys
reported in section 3.2.
The XCT machine employed and the related configuration parameters are repor-
ted in figure 3.6. The specimens were stripe-shaped at the smallest size possible
by means of waterjet first, and hand cutter later. This was done to avoid delamin-
ation, most likely to occur under highly pressurized water. In figure 3.7 four cross
sections of the sample along the z directions can be observed. To visualize the
sample more accurately, a 3D stack of images was reconstructed by images cap-
tured at different depths in both x and y direction. The 3D reconstructed volume
is presented in figure 3.8. A few clusters of highly attenuating particles were also
found in the internal volume (not shown here), probably due to locally denser
carbon regions.
Unfortunately, despite the long-time exposure, the resolution was not sufficient
to obtain detailed imaging of the microstructure and get noteworthy features re-
usable for further purposes.
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Figure 3.6: XCT machine and geometry of the specimen investigated. Measures
are given in mm.
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Figure 3.7: Four images extract from XCT analysis along the z-axis of the speci-
men.
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(a) (b)

Figure 3.8: (a) and (b): two FG specimens volume as reconstructed from stack
of x, y and z images.
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3.4 Static uniaxial in-plane tensile tests

3.4.1 Motivation

This section reports the in-plane tensile tests performed on Sigraflex® . The goal
was to observe and analyze the stress-strain curves so to extract the main mechan-
ical parameters and find an analytical description suitable for modeling purposes.

3.4.2 Methods

The procedure to obtain dog-bone specimens was challenging due to the material
softness and ease to delaminate. After several trial-and-error iterations, the pre-
ferred method was based on waterjet cutting by means of a CNC machine i.e., WJS
NCH 30, with the following parameters: jet pressure = 3800 bar, beam diameter
= 0.3 mm, sand GRIT = 230.
After the cutting, the specimens were let to dry for 24+ hours at room temper-
ature and spray-painted for Digital Image Correlation (DIC) pattern. The final
geometry and its dimensions are shown in figure 3.9. In-plane tensile static tests
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Figure 3.9: Post-mortem tensile specimens. Specimen sizes are shown on the top
left, the dimensions are given in mm.

were performed in a MTS Exceed® Universal testing machine (5 kN). Eight spe-
cimens were tested upon four different displacement rates from 0.01 to 10 mm/s
(figure 3.9). The front and side views were recorded at the same time to capture
the deformation field on both specimen sides. The strain was calculated in two
different gauge lengths as shown in figure 3.10a: the full gauge length, corres-
ponding to commonly used gauge length, and the short gauge length, arbitrarily
defined per each case between the upper and lower bounds of the fracture sur-
rounding volume. The engineering stress and engineering strain were obtained
by definitions as

σ =
F
A0

and ϵ =
u− u0

lg
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where F is the force recorded by the machine expressed in kN , A0 the initial cross-
sectional area of the gauge length, u is the displacement array recorded by the ma-
chine, u0 = u(1) (according to MATLAB® convention) and lg is the gauge length.

3.4.3 Results and discussion

The static curves are plotted in figure 3.10. DIC data for test 1 were not usable due
to technical reasons whereas for specimens 7 and 8 the camera sampling rate was
not sufficient to capture the strain fields. In figures 3.10b-c-d some combinations

Front view

Side v
iew

Fu
ll 

ga
ug

e 
le

ng
th

Sh
or

t g
au

ge
 le

ng
th

Short gauge length

Full gauge length

(a)

0 0.5 1 1.5
Eng. strain [%]

0

1

2

3

4

5

E
ng

. s
tr

es
s 

[M
P

a]
Test id. 2, 0.01 mm/s (machine log)
Test id. 3, 0.1 mm/s (machine log)
Test id. 5, 1 mm/s (machine log)
Test id. 7, 10 mm/s (machine log)
Test id. 2, 0.01 mm/s (DIC)
Test id. 3, 0.1 mm/s (DIC)
Test id. 5, 1 mm/s (DIC)

(b)

0 0.2 0.4 0.6 0.8 1
Eng. strain [%]

0

1

2

3

4

5

E
ng

. s
tr

es
s 

[M
P

a]

Test id. 2, 0.01 mm/s (DIC - full length)
Test id. 3, 0.1 mm/s (DIC - full length)
Test id. 5, 1 mm/s (DIC - full length)
Test id. 2, 0.01 mm/s (DIC - short length)
Test id. 3, 0.1 mm/s (DIC - short length)
Test id. 5, 1 mm/s (DIC - short length)

(c)

0 0.2 0.4 0.6 0.8 1
Eng. strain [%]

0

1

2

3

4

5

E
ng

. s
tr

es
s 

[M
P

a]

Test id. 2, 0.01 mm/s (DIC - full length)
Test id. 3, 0.1 mm/s (DIC - full length)
Test id. 5, 1 mm/s (DIC - full length)
Test id. 2, 0.01 mm/s (DIC - short length)
Test id. 3, 0.1 mm/s (DIC - short length)
Test id. 5, 1 mm/s (DIC - short length)

(d)

Figure 3.10: (a) DIC specimen views and gauge length definitions. Three plots are
shown according to different DIC views and comparison with machine crosshead
displacement data: in (b) ϵ was calculated by both machine displacement and
DIC front view (full gauge length), in (c) ϵ was calculated from DIC front view
including full and short gauge length, and in (d) from DIC side view including
full and short gauge length.

of static curves are compared upon different views and gauge lengths. The fail-
ures appeared as brittle together with obvious delamination of the layered struc-
ture probably occurring between the compressed particles. In some cases, the DIC
front camera could not detect the initial crack location because of this growing
internally, while evidences of delamination were shown either in the side or back
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views. The static curves plotted with the different displacements monitored from
the front and side views were indistinguishable as well as the strains calculated
from the full and short gauge lengths (figure 3.10c and d). The latter observations
implies negligible deformation gradient along the longitudinal direction.
The non-linear stress-strain behavior resulted quite similar to that of polycrystal-
line graphite (see e.g. [52]). This was modeled in [44] by a simple power-law of
the type:

ϵ = Aσ+ Bσ2 (3.1)

where A [MPa−1] and B [MPa−2] were regarded as material elastic and plastic
compliances. Although proposed for compression loading, in [26] such relation
was adapted for the FG in-plane tensile static curves and it was found to fit pretty
well the stress-strain curves up to a half of maximum stress. In the same way, A
and B were obtained in this work by means of non-linear least square regression
of experimental DIC data of tests 2 and 3 from the front and side views, as shown
in in figure 3.11a.
In the latter figure, the data points were gathered together in the same plot while
the fitting resulted from a final average of fitting parameters obtained by fitting
each curve separately.
First, the data were converted to true quantities by the usual conventions (al-
though negligible differences in the results there exist with respect to engineering
quantities):

ϵt rue = ln
�

1+ ϵeng

�

σt rue = σ(1+ ϵeng)

Then, an initial fitting was done by means of a high-degree polynomial (degree
≥ 2) so to obtain a smooth series of data, and its derivative was evaluated at the
origin so to get the best approximation for the initial elastic modulus. This was
found to be 2288.94 ± 0.266 MPa.
A second fitting was done by means of equation 3.1: in one case, A was imposed
as equal to the initial tangent slope found earlier while on another case this was
left as a fitting parameter. In the latter case the values of A found were com-
pared to the values of the derivative evaluated at the origin (3.11b). The stress
domain on which the fitting was executed was varied until the best coefficient of
determination R2 was obtained (R2 > 0.998). This occurred around 60 - 70% of
the maximum stress as shown by the end of continuous line in figure 3.11a; here
the curve is also compared with the fitting obtained by using the whole stress do-
main. This tends to overestimate the tangent at the origin (see figure 3.11b) while
it best describes the curve shape at larger strains. The mean values of A and B at
the optimal R2 are 0.3488 ± 0.106 GPa−1 and 130.78 ± 44.93 GPa−2, while the
mean values in the whole stress domain are 0.0384 ± 0.032 GPa−1 and 256.97 ±
14.73 GPa−2. The latter pair of values compare well with the quantities reported
by Dowell and Howard [26]: A= 0.437 GPa−1 and B = 392 GPa−2.
The ultimate tensile strength was taken as the maximum stress, also correspond-
ing to the maximum strain, reached by the curve and it is reported in figure 3.11c.
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The average value obtained is 4.984 ± 0.181 MPa in full agreement with values
from literature (see [22] for a review).
Finally, the true strain at break is reported in figure 3.11d: the mean value ob-
tained from machine log data are higher that DIC data. The latter are quite similar
in both the front and side views. None of elastic modulus, maximum stress and
maximum strain show rate-dependency in the range 0.01 - 10 mm/s.
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Figure 3.11: (a) Fitting of experimental data according to Jenkins [44] at dif-
ferent maximum stress. The derivative at the origin is evaluated from a different
fitting that employed a high-degree polynomial. (b) Inverse of A and derivative at
the origin compared with values found in literature [26]1 and [45]2. (c) Tensile
strength obtained as the maximum stress of the curve. The dashed line indicates
the mean value: 4.984 ± 0.181 MPa (d) Tensile true strain at maximum stress,
also corresponding to the strain at failure. The dashed lines indicate the mean
values: 1.12 ± 0.090 % (from machine log) and 0.72 ± 0.052 % (from DIC).
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3.5 Static uniaxial in-situ tensile tests

3.5.1 Motivation

This section reports the in-plane tensile tests performed in-situ on Sigraflex® . The
specimens tested were markedly smaller than those used in the previous section,
the environment was controlled the fracture could be observed by SEM while
propagating. The goal was to observe the differences with the macro-scale tests
and the effect of different environments.

3.5.2 Methods

Small specimens were cut by the same technique described in section 3.4.2. The
dimensions and geometry are reported in figure 3.12 together with the test matrix
that summarizes all the testing conditions. The testing equipment consisted in a
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Figure 3.12: (a) In-situ tensile dog-bone specimens, including dimensions in mm,
and (b) test matrix

SEM with an embodied Kammrath & Weiss tensile/compression module with 5
kN load cell2. Two first trial tests were performed in air at 2 µm/s to calibrate the
set-up procedure and check the load cell capabilities. Then, seven more different
specimens were tested in inert atmosphere (N2) and both in low and high vacuum
≃102 and ≃10−3 Pa, respectively.
After each specimen setup, a waiting time of at least 20 minutes was given to allow
the vacuum conditions to stabilize inside the chamber. In test number 10, the
waiting time was extended up to 40 minutes to further ensure that the complete
outgassing. All tThe specimens were tested at two different displacement rates i.e.,
0.2 and 20 µm/s, corresponding to 5·10−5 and 5·10−3 s−1 nominal strain-rates and
also to the upper and lower limits achievable with the available equipment.

2www.kammrath-weiss.com/en/tensile-compression-module

www.kammrath-weiss.com/en/tensile-compression-module


3. Experimental campaign 45

3.5.3 Results and discussion

A sequence of four frames captured during a single test is reported in figures 3.13a-
d. Each test shows similar characteristics of the propagating crack: this started
from a defect sometimes visible on the surface, and propagated in a brittle man-
ner along the cross-section with no obvious striction of the lateral sides. Similarly
to what was discussed in section 3.4.3, the original defect may also lay on the
sides of the specimen that were not imaged, and the propagation lines visible on
the top surface may be an advanced stage of cracking. The crack runs around the
particles that appear to maintain their integrity while they are being pulled apart,
rotated and detached. Some of them can be easily recognized along the fracture
profile in figure 3.13d, but a further insight will be given in section 3.5.4.
All the engineering stress-strain curves are reported in figure 3.14a. The curves

(a) (b)

(c) (d)

Figure 3.13: Frames sequence of test 4: (a) undamaged specimen, (b) and (c)
the crack grows and propagates, and (d) the specimen is completely fractured.

appear uniformly scattered and no clear effect can be observed from strain-rate
variations in the tested range or in different pressure conditions. The stress-strain
relationship appears non-linear with downward concavity from the early begin-
ning of the deformation, in line with the macro-scale tests. Although the crack can
develop either in the central cross-section or more towards the grips, the stress-



46 E. Solfiti: On the modelling of flexible graphite

strain trend is not much influenced. Interestingly, the decrease in stiffness near
the maximum appears smoother than in the macro-scale testing, either ascribed
to a lower rate sensitivity or to a scale effect. The maximum strength is taken as
the maximum point of the stress curves and resulted 4.348 ± 0.332 MPa. This
compares well with the one recorded in macro-scale tests. Same for the strain at
maximum stress calculated from the machine log that is 0.968 ± 0.086 % (see
figure 3.14b).
All the curves fall within the same scatter of data and nothing can be said about
the effect of each environment on the stress-strain curves.

0 0.2 0.4 0.6 0.8 1 1.2
Eng. strain [%]

0

1

2

3

4

5

E
ng

. s
tr

es
s 

[M
P

a]

Air - 1 - 2 μm/s
Low Vacuum - 4 - 0.2 μm/s
Low Vacuum - 5 - 0.2 μm/s
Low Vacuum - 7 - 0.2 μm/s
Low Vacuum - 9 - 20 μm/s
High Vacuum - 6 - 0.2 μm/s
High Vacuum - 10 - 0.2 μm/s
High Vacuum - 8 - 20 μm/s

(a)

0 0.2 0.4 0.6 0.8 1 1.2
Eng. strain [%]

0

1

2

3

4

5

E
ng

. s
tr

es
s 

[M
P

a]

Machine log (macro)
DIC (macro - front view, long gauge length)
Machine log (in-situ)

(b)

Figure 3.14: All the stress vs strain curves are reported in (e) except for test 2
and 3 which were discarded due to bad sampling. These are compared with stress
vs strain curves (Test 2, 3 and 4) from macro-scale tensile tests in (f), both from
machine log and DIC recording.

3.5.4 Post-mortem fractography study

After the complete failure, the fractured surfaces of the specimens correspond-
ing to test 3,4 and 5 were observed by SEM. Examples of top and front views
are shown in figure 3.15. In the front view, the white creases laying horizontally
correspond to the particles and micro-sheets bundles that have been compressed
from above during the compaction process. The fractured cross-sections is not flat
and indeed clear vacancies of the particles pulled apart have left are obvious. The
effect is similar to delamination of fiber in fiber reinforced composites.
Some particles not completely detached can be observed here and there, as a con-
firmation that some degrees of integrity is maintained during the compaction and
during the tensile test. In figure 3.13d, the fracture shows smooth edges that seem
to follow the boundaries of the compacted particles. Getting closer in the magni-
fied view A of figure 3.15, traces of tearing and ripping off are clearly visible and
sometimes patches of particles appeared still stuck to what were the neighbor-
ing particles before the rupture. The micro-sheets can create complex patterns at
micro-scale as the ones shown in the magnified views of figure 3.15: their extreme
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flexibility originated from inherent carbon basal planes property and the internal
structure of each single particle is expected to be a compacted network of folds
and creases. In the magnification D of the same figure, the surface of the micro-
sheets is extremely corrugated and looks like a ripped off cloth after breakage.
Among the SEM pictures available in literature, these and the similar ones repor-
ted in [17] were the most detailed to get a close-up of FG microstructure before
the FIB-SEM application reporeted in section 3.2.
Upon careful observation of each test fracture surface, the type of fractures were
found to be slightly correlated to the testing rate. Borrowing the glossary from
metals, we can consider the particles as grains and define transgranular the local
fractures occurring across the grain and intergranular those occurring at the bound-
aries. The latter were found mostly at lower strain rates whereas transgranular
fractures were observed to be consistent at higher strain-rates. In this condition
the material tended to show brittleness and transgranular fractures probably be-
cause of shorter time available to rotate and re-arrange so to redistribute the stress
along the boundaries.

Figure 3.15: Post-mortem cross-section of in-situ tensile tested specimens. Mag-
nified views A, B and C highlight the tearing mechanism at the origin of particle
detaching, the micro-sheet complex patterns due to particles interaction during
the compaction process and the corrugated surface of a single micro-sheet.
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3.6 Uniaxial compression

3.6.1 Motivation

This section reports the out-of-plane compression tests performed on Sigraflex® .
The goal was to extract the main mechanical parameters such as the elastic mod-
ulus or the yield strength, and to assess whether Sigraflex® showed similarities
with stress-strain curves of other well-known materials. Although some data were
already available in literature [46], these were taken up to a maximum stress
of 1 MPa. Here, the tests will be pushed further above, the unloading and cyclic
behavior will be analyzed as well as the stiffening due to densification.

3.6.2 Methods

Static and cyclic uniaxial compression tests were carried out by using the same
material described on section 3.1. The foils were hole punched in circular speci-
mens with 26 mm nominal diameter (figure 3.16a) and an Instron Electropuls®

E10000 machine used for testing (maximum load ±10 kN, load cell resolution
±0.5 N) was equipped with compression plates as in figure 3.16c.
In total, 25 tests were performed on single unit specimens (figure 3.16b) and

(a) (b) (c)

Figure 3.16: (a) Single sheet and stacked specimens’ geometry and stack spe-
cimen residual deformation (top and bottom, respectively). Testing example of
single sheet (b) and stacked (c) specimens.

5 tests on 6-units stacked configuration (figure 3.16c). The number of specimen
per each testing condition is reported in Table 3.3. Recommendations from ASTM
D695 [87] and ISO 13314 [88] were followed when possible. All the monotonic
and cyclic displacements were applied at 0.1 mm/min rate by means of single or
repeated triangular waveforms where, in some cases, a 30 seconds holding time
was applied at the maxima and minima displacement peaks. A pre-load not ex-
ceeding 0.03 MPa (∼15 N) was consistently imposed for all tests to ensure contact



3. Experimental campaign 49

between the plates and the specimen. The monotonic tests were stopped at arbit-
rary displacements and unloaded completely before any sign of failure could be
detected.
In 7 cyclic tests, a cyclic load up to 1 MPa with a load rate of 30-40 kPa/s was
imposed prior to testing for 6-10 cycles, until a satisfactory repeatability was ob-
served in the loading-unloading curves, and the test program followed as regular
in displacement control. One test was done at 0.01 mm/min and one in load con-
trol at 20 kPa/s (roughly equivalent to a displacement rate of 0.1 mm/min). In
any case, the maximum stress achieved ranged from 1 to 14 MPa.
The specimens’ diameters and thicknesses were measured by a digital calliper (±
0.01 mm resolution) at 5 random positions along the lateral and base surfaces be-
fore and after each test so that the residual deformations could be compared with
the machine log data. The data were plotted using the definition of true strain for
compression:

ϵ = ln
h0

h
, (3.2)

where h0 = 2 mm is the gauge length of the specimens also corresponding to the
nominal thickness, and h is the current specimen thickness. The engineering and
true stresses were considered as equal due to the small variation of the resistant
area. These were obtained as:

σ =
F
πR2

, (3.3)

where F is the machine force and R the specimens radii.

Monotonic Cyclic
Single specimens 8 17

6-sheets specimens 4 1

Table 3.3: Number of tests per each case

3.6.3 Monotonic curves: description and discussion

Three examples of true stress-true strain curves are shown in figure 3.17a. All
the stress-strain responses feature an initial flat toe of variable length, including
those obtained from stacked specimens, and steepens up to prosecute with an ap-
parently linear domain. The concavity is turned upward after a knee occurring
always at a well-repeatable stress level between 3 and 4 MPa. Three domains
were detected based on the change points of the true stress-true strain tangent
modulus (figure 3.17b). In the first domain, the initial toe was characterized by
a fast increase in slope where a local maximum was reached in correspondence
of a stress value of 3 MPa and slope value of 30 to 40 MPa. The true strain at
maximum showed a wide scatter of values around 6 – 6.2 %, spanning between
1.5% and 16%. The corresponding stress values were instead tight in the range
0.3 - 0.4 MPa. To exclude that this initial toe was due to unexpected geometrical
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Figure 3.17: (a) Uniaxial compression curves of Sigraflex® , (b) average curve
and relative tangent slope, (c) monotonic loading up to 7 MPa and subsequent
cyclic reloading after full recovery and (d) comparison between curves obtained
by shifting in the strain axis and curves obtained by considering zero trues stress
at the virtual preload of 0.3 MPa

imperfections of the specimens, a single sheet was monotonically loaded up to 7
MPa to obtain a perfect flat specimen, let recover for 2 hours and loaded again,
cyclically, up to 7 MPa (figure 3.17c). The toe was again clear, but the strain re-
covered was much less than the one observed in the first loading-unloading path.
The same behavior was also well visible in the piled-up specimens and was con-
sidered as part of the material response in a recent investigation of similar FG
stacked disks loaded up to 1 MPa [46]. However, since it contributes to a large
part of the total true strain, its influence was normalized here by applying a virtual
preload of 0.3 MPa to all the tests and by taking the corresponding displacement
as a new zero for the true strain definition 3.2. The curves obtained in this way are
plotted in figure 3.17d together with the corresponding curves obtained by taking
the first recorded displacement value as reference and by shifting along the strain
axis. Interestingly, the curves obtained by virtual pre-load tend to nicely overlap
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meaning that the 2-mm-gauge length starts to be "effective" only at the end of
the toe. It is therefore supposed that the toe strain is due to the relaxation of the
material after the production process governed by meso-structural mechanisms
such as micro-sheets unfolding and disentangling. Since friction is involved in the
unfolding process of the micro-sheets, it is regarded to as visco-elastic mechanism
that is hindered at higher compression loads by an increasing number of contacts
and geometrical constrains of the micro-sheets. This can be better explained by
the crumpled nature of FG, that will be detailed in depth in section 4.2.2.
It is highlighted that the curves used and the data calculated in the next sections
will always refer to the curves calculated assuming the virtual preload, and hence
excluding any data in the stress domain below 0.3 MPa.
The second domain of the monotonic behavior under discussion spanned up to
24% strain. Here the tangent slope decreased (and hence, the stress-strain curve
is not actually linear) more slowly than in the first domain and reached its local
minimum at around 12 MPa. This occurred in correspondence of the curves’ knee,
recognizable as the hump at the end of this domain. The stress corresponding to
the slope minimum was again well repeatable for all the tests and it was 5.1 MPa
on average.
In third domain, the tangent modulus grew up to the maximum load. The concav-
ity acquired at this point by the stress-strain curve is attributed to the densification
regime given by the pore closures mechanisms where the pore walls are predom-
inantly touching with each other. Since the material itself is the result of a dens-
ification process followed by a certain amount of recovery, the third regime can
be regarded as a continuation of this process, whereas the second region repres-
ents the transition needed for the specimen to catch up the inelastic deformation
accumulated during the production. To trigger again the densification, the stress
applied must be equal to or higher than the maximum stress undergone during
the compaction: this can be estimated by the exponential fit proposed in [46],
where the forming pressure is replaced with the compression stress and is related
to the final density ρp by:

σ = 0.35e2.6ρp . (3.4)

When ρp = 1 g/cm3 then σ = 4.7 MPa, similar to the average value σ = 5.1 MPa
found here.

3.6.4 Cyclic curves: description and discussion

An example of cyclic curve is shown in figure 3.18a. Three main phenomena were
observed in all the tests: (i) memory of subsequent cycles stress-strain extreme
points, (ii) nearly-zero yield strength and (iii) large hysteresis in the unloading-
reloading path.
The first one refers to the tests where 2 or more cycles were done at the same

peak strain (figure 3.18a or inset in figure 3.18b): inelastic deformation is in-
duced in the material only during the first few loading cycles that are followed
by a stable regime where the strain is fully recovered at each cycle. Hysteresis



52 E. Solfiti: On the modelling of flexible graphite

2 4 6 8 10

Cycles

0 0.1 0.2 0.3 0.4 0.5 0.6
True strain [-]

0

5

10

15
T

ru
e 

S
tr

es
s 

[M
P

a]

0 0.02 0.04 0.06

0.2

0.4

0.6

0.8

(a)

0 0.02 0.04 0.06
0

0.5

1

0 0.02 0.04 0.06 0.08 0.1 0.12
True strain [-]

0

0.5

1

1.5

T
ru

e 
S

tr
es

s 
[M

P
a]

Pre-conditioning
Testing

(b)

Figure 3.18: Cyclic curves: (a) example of cyclic curve, including a magnification
view of the first cycles at low loads. Two cycles at the same peak strain were done
up to 5% true strain, then one cycle. (b) Stabilization at 1 MPa peak stress and
cyclic loading at higher peak strains. The material has almost perfect memory of
stress-strain extremals from the second cycle on.

is always visible, but the stress-strain reversal points are held fixed and become
memory points. The memory can be established again by exceeding the current
peak stress and cycling at higher strains or loads. This behavior was reported for
bulk artificial graphite [89] and can be associated to discrete memory typical of
rocks and soils [90]. It was motivated by the layered structure of graphite that
allows for generation of so-called incipient reversible kink bands [89].
About the nearly-zero yield strength, this is common in foams under compression
due to specimen geometry imperfections, as reported in [91], but it is also well-
known to occur naturally in polycrystalline graphite under uniaxial compression
loads [52]. As shown in the inset of figure 3.18a, the cyclic paths usually started
from a positive pre-load around 0.03 – 0.04 MPa, reached the peak stress and
recovered the total strain imposed. When the peak load overcame 0.5 MPa, a per-
manent strain at zero load appeared at the end of the unloading. However, for
any peak stress, also lower than 0.5 MPa, the stress values at zero strain tended
to decrease as if the preload was already inside the plastic domain and the yield
strength lower than the pre-load.
An alternative explanation to this phenomenon may be the viscous behavior of the
material. It is not excluded that holding a longer waiting time at zero load may
have allowed for the full recovery of cycles having peak stresses even higher than
0.5 MPa. However, the same behavior was also observed in the 0.01 mm/min test,
the slowest one.
Concerning the large hysteresis, this is typical in foams made of polymeric ma-
terials [91] due to the visco-elastic character of polymer chains. Analogously, the
viscous character of FG (already highlighted in [32]) may be inherited by the
layered crystal structure of graphite that allow for basal dislocations and kink
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bands to propagate and exhibit recoverable hysteresis loops [89].
Thus, on one side, the contribution from the graphite crystalline structure to the
FG hysteresis would be given by the aligned regions that may constitute a large
part of the total volume (in the FIB-SEM section, a fraction equal to 0.49 of the
area investigated was attributed to aligned regions). On the other side, the mis-
aligned micro-sheets can also contribute to the viscous behavior in different ways,
as for example fibres in entangled materials where geometrically constrained fea-
tures slide and originate friction forces [92]. Further testing is needed to uncouple
these two potential contributions, but it is believed that the second one is limited
to the toe region at low loads since that can be related to the structural component
of the total strain (further discussion will be given in section 4.2).
As final remark, it is reported that those tests that were pre-conditioned did not
show any remarkable difference with the other ones. The cyclic paths stabilized
after 2 - 6 cycles as in figure 3.18b while the toe was always visible in the low-
loads domain together with a constant are inside the cycles. Further re-cycling at
higher or lower loads than 1 MPa did not show again any difference with other
not pre-conditioned tests. In each test, the toe contribution was visible only in
the low-loads region of every cycle and tends to gradually become shorter at in-
creasing loads until almost disappearing above 40% true strain and 7 MPa true
stress.

3.6.5 Observations on the initial cyclic tangent slope

The initial tangent modulus of the loading paths was calculated to monitor the
change in stiffness under increasing compression loads. A part of the irrevers-
ible deformation obtained by new compaction is given both by micro-sheets’ fold-
ing and additional interlocking. These affect the pore shapes and sizes, and con-
sequently the elastic response for which the initial tangent modulus is considered
as representative.
Due to the hysteresis loops shape, the modulus was calculated as shown in figure
3.19a: per each cycle, the initial part of the loading path was fitted by a linear
polynomial in the part where the toe was considered as fully expired, usually cor-
responding to 0.3 – 0.4 MPa. The slope of the fitting was taken as the tangent
modulus.
The tangent line was then extended downward to cross the x-axis and the inter-
sected true strain ϵp was considered as the inelastic component of the total strain.
This was used to define to final relative density ρ∗p by means of

ρ∗p =
ρ0

ρs
eϵp (3.5)

where ρ0 = 1 g/cm3, ρs= 2.26 g/cm3 and no lateral deformation is assumed.
The last hypothesis will be better supported in section 3.6.6. The moduli are fi-
nally plotted against ρ∗p in figure 3.19b.
The initial cyclic tangent modulus in general differs from the cyclic secant mod-
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Figure 3.19: (a) Calculation of the tangent slope in the initial part of loading
cycles. This is taken as the slope of the true stress-true strain loading path as soon
as the toe is ended. The initial strain is found by the tangent line intersection with
the x-axis. The cycles not reaching at least 0.5 MPa peak stress were not included
in the calculation. (b) Tangent slope plotted against the relative density. The latter
was obtained from the true strain by the assumption of no lateral deformation.
(c) Tangent slope and compression moduli from literature plotted against the
relative density: 1[93], 2[20], 3[46], 4[94], 5[33]. Only data points at ρ∗p > 0.1
were considered in the linear fit.

uli used to characterize foams of various nature (see for example [91]), but it is
considered here as more meaningful because of the different production process
employed for FG. The uniaxial compression test can indeed be regarded as a con-
tinuation of such process, and each unloading as the final stage for obtaining a
new FG sheet with different properties such as density and tangent modulus.
In [91], it was observed that the cyclic secant modulus in metal, polymer and ce-
ment foams varies differently in the elastic, plastic and densification domains. In
the case of Sigraflex® instead, the tangent modulus was found to solely increase
from an initial value between 30 to 40 MPa up to 60 MPa when the relative density
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was increased from 0.44 to 0.6. The material hence undergoes stiffening from the
beginning of compaction, or equivalently, continues the crumpling process from
where it was left after production.
In light of equation 3.4 and of the exponential law Ed = Ed,0 e−bP proposed earlier
in [33] to relate the compression moduli Ed and the porosity P where P = 1−ρ∗p,
the cyclic tangent moduli were plotted in semi-logarithmic coordinates together
with the data available in literature (figure 3.19c ).
The exponential fit in the inset of figure 3.19c was found to describe nicely the
moduli evolution along with ρ∗p and gave an exponential coefficient of 3.4, quite
different though from 0.2 found in [33]. Likewise, the data found in literature
were fitted in the same figure to a similar exponential laws, including the average
value for the initial tangent modulus found in this work (34.35 MPa). They gave
a similar exponential coefficient equal to 3.89, supporting the argument that the
application of further compression may be also seen as a continuation of the pro-
duction process.
Even if the specimens were produced under different conditions (closed die or
rolling) and different were the measurement technique (ultrasound speed or stress-
strain tangent slope), it is clear that the FG tangent modulus H follow a scaling
law of the type

H = H0 enρ∗p = 7.74e3.4ρ∗p , (3.6)

when in the range 0.1 – 0.2 g/cm3 ≤ ρ∗p ≤ 0.7 - 0.8 g/cm3. Here, H0 is the FG
tangent modulus at ρ = ρ0 and n is the exponential coefficient.
Similarly, also equation 3.4, can be expressed in terms of the final relative density
ρ∗p by setting ρp = ρ∗p ρs,

σ = 0.35 e5.88ρ∗p . (3.7)

The relations 3.6 and 3.7 highlight the main differences between FG and cellular
solids, that mainly follow power law-like scaling relations [95].

3.6.6 Measurement of the residual deformation

Despite Sigraflex® datasheet indicates 0.1 coefficient of friction for general con-
tact with steel, very low barrelling and lateral deformation were visible in the
piled-up specimens during the tests up to 30% longitudinal compression strain.
The same was reported by Cermak et al. [46]. For these reasons, the volumetric
strain will be taken as equal to the axial strain for both single and piled-up spe-
cimens, so that equation 3.5 holds. This assumption is not completely true, since,
as it will be shown in this section, a small amount of residual lateral deformation
is visible at the end of each test and is supposed to exist also during the com-
pression. However, it will be considered accurate enough for the transformation
of axial strain into volumetric strain until more accurate measurements will be
performed in future works.
The residual volume change was assessed by measuring the residual axial and
radial deformations at the end of each test. In figure 3.20a, the measurements of
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the thicknesses and radii of each specimen are shown against the maximum true
strain; in the case of axial residual strain the corresponding machine data for the
last displacement value at zero load is also shown to assess potential influence of
additional strain due to long-time relaxation. The minimum displacement resolu-
tion caught by the calliper was ± 0.01 mm: this was fine enough to exclude the
influence of a systematic error, but not to resolute the size variations of specimens
loaded below 0.08 true strain. The radial residual strains shown in figure 3.20a
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Figure 3.20: (a) Radial and axial residual strains, and (b) radial/axial residual
strain ratio. The measures of the sample thickness were taken by a digital calliper
at least 30 minutes after each test and compared with the machine displacement
in (b). The latter represents the values of the thickness right after the test end
and the dashes lines represent the waiting time before each measurement (≥ 30
minutes).

rose above the calliper resolution at around 0.1 true strain (corresponding to 3
MPa) and increased almost linearly with the applied deformation. Same for the
axial residual strain that showed good agreement with the last strain recorded by
the machine at the end of the unloading path. Long-time relaxation was probably
more effective at strains higher than 0.5 where more gap is visible between the
calliper and machine data.
These measurements were meant to quantify the recovered deformation of the
initial toe after sufficient relaxation time, but this was not detected probably be-
cause of the too high pressure applied manually by the calliper. The ratio between
the residual strains in the radial and axial directions can be considered as an es-
timation of the plastic Poisson’s ratio of the material, even though more accurate
strain-recording method should be applied to verify the quality of these data. The
plastic Poisson’s ratio is typically very low for most foam materials ranging around
0.04 [95]. The elastic Poisson’s ratio for non commercial FG was observed in the
single particle deformation under compression and it was estimated to be 0.04
in [18]. This is not so different from the average value of 0.083 shown in figure
3.20b and can be considered as constant through the whole tested domain, that
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is, up to ≃0.58 true strain.

3.7 Nanoindentation

3.7.1 Motivation

Nanoindentation is a useful technique for measuring the mechanical properties of
materials at the micro and nano scales. In this section, the nanoindentation testing
of Sigraflex® is presented: the primary goal is to observe the load-displacement
response and extract the modulus of elasticity and hardness. These will be com-
pared to the corresponding macroscale mechanical properties.
Although this technique is widely and successfully used to find the modulus of
elasticity and hardness of several materials, the scalability of this parameters is not
trivial when a porous and anisotropic material such as FG is investigated. Indeed,
as mentioned in chapter 2, only two studies have been published about nanoin-
dentation on similar FG, and only one of them concerns FG with 1 g/cm3 [50]. In
the latter, an average value of 190 MPa for the modulus of elasticity was extracted
from nanoindentation unloading curves, a value much higher than those found in
this work (30 to 40 MPa) and those reported by Cermak et al. [46] (around 50
MPa) in the static uniaxial compression tests.
This discrepancy may be ascribed to either local variations of density, (Bonnissel
et al. [60] indeed predicted a density gradient from the sheet midline to the sur-
face due to the compaction process) or to the anisotropy of the microstructure.
Despite the FIB-SEM analysis has clarified how the microstructure appears, it still
remains a local analysis that cannot guarantee whether or not the observations
done on an area of 100 × 150 µm2 with porosity P = 0.15 is representative of the
bulk material. In figure 3.21, a real-size indenter drawing has been placed on top
of the mentioned SEM image obtained in section 3.2.3. From this picture, it is first

Figure 3.21: Schematic representation of a real-size Berkovich tip placed on top
of the FIB-SEM cross-section investigated in section 3.2.
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noticed that the surface roughness3 can be neglected compared to the maximum
indentation depth (4 µm in this case).
An indentation can affect a large volume of material underneath the tip, down to
tens of times of the maximum indentation depth, but the exact dimension is not
easy to estimate a priori being also material dependent. Therefore, the properties
extracted from this nanoindentation study may potentially be representative of a
FG volume equal or smaller to that investigated in the FIB-SEM analysis, but this
should be checked a posteriori by means of, for example, the direct comparison
of the extracted mechanical properties with the mechanical properties obtained
in macro-scale tests.

3.7.2 Methods

Instrumented nano-indentation testing was performed by a Hysitron TI950 Tri-
boindenter equipped with a Berkovich tip (figure 3.22a) on a small squared sample
(∼10 x 10 mm2) that was cut out of a bigger sheet by means of a cutter. The tip
is described in the indenter manual as a three-sided pyramidal probe with total
included angle from one edge to the opposite side of 142.35◦. The half angle from
the perpendicular to one face is α = 65.35◦. For the sake of accuracy, it is under-
lined that in some reference such as [96], this angle is given as 65.27◦ and may
lead some differences when comparing data at very small indentation depths. See
the inset in figure 3.22a for a complete geometry overview.
The static nanoindentation consisted on a single loading - unloading cycle, sep-
arated by a short holding time (0.5 s) at fixed maximum load (see figure 3.22b).
The holding time was included so to uncouple the unloading behavior from any
viscous effect. The loading and unloading ramps were conducted at constant and
symmetric loading rates: 1000 - 2000 - 3000 - 4000 µN/s, and the maximum
stress was kept at 1000 - 2000 - 3000 - 4000 µN. A matrix of 10×10 indentations
per load rate was performed on the top surface of the sample in the out-of-plane
direction, each spaced by 10 µm in the in-plane directions.
According to the indenter manual, the tip radius is usually finite and given as

150 nm in a brand new tool. As it will be shown in section 4.12, the tip radius
is fundamental to model correctly the material response in the low load region.
However, this is expected to naturally wear out after several uses and for a better
accuracy, it is usually either measured a posteriori by means of e.g. AFM micro-
scope or calculated by Hertzian fitting of the low-loads region in the loading path.
In this case, direct measurements of the tip were not available, and the radius was
estimated by means of Hertzian contact fitting in a previous work that employed
the same tip [97]. This was found to be 1 µm.
The reduced modulus Er as well as the hardness H are extracted from the load P

3In the Sigraflex® datasheet, it is reported a value of 10 µm for the surface roughness. It
is however unclear whether it concerns the peak-valley roughness or any derived quantity. The
datasheet can be found here: https://www.sglcarbon.com/en/loesungen/material-downloads/
downloads-sigraflexr/

https://www.sglcarbon.com/en/loesungen/material-downloads/downloads-sigraflexr/
https://www.sglcarbon.com/en/loesungen/material-downloads/downloads-sigraflexr/
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Figure 3.22: (a) Example of P-h curve together with the relevant parameters
used in the analysis. In the inset, the geometry of the Berkovich tip according
to the nanoindentater manual. (b) Load-time curves imposed to the indenter.
(c) Scheme of an imprint for a conical indentation where a is the radius of the
projected area at peak load. (d) Definition of effective angle α′ for an elastic-
plastic nanoindentation.

vs depth h curve following the Oliver and Pharr method [98]:

1. the unloading path of the P-h curve is fitted by a power law of the type

P = Â(h− h f )
m

where Â, h f and m are fitting parameters. The expression is analytically dif-
ferentiated and evaluated at hmax corresponding to Pmax to find the contact
stiffness

S =
dP
dh
|hmax

,

2. the contact depth hc is the depth for which the indenter is actually in con-
tact with the material. It accounts for the curvature of the material in the
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neighbourhood of the indenter tip. It is found as

hc = hmax − ϵ
Pmax

S
,

where ϵ = 0.75 is an analytical coefficient accounting for the actual para-
boloid shape of the deformed surface below a Berkovich tip,

3. the projected contact area at peak load A, whose equivalent radius is indic-
ated as a in figure 3.22c, is a function of hc . For a perfect Berkovich tip:
A(hc) = 24.5h2

c . Because of the tip blunting however, this is better approx-
imated by a polynomial function A(hc) = 24.5h2

c +C1h1
c +C2h1/2

c +C3h1/4
c +

...+ C8h1/128
c . This is found by an iterative fitting procedure done while in-

denting a material with known Young’s modulus, usually fused quartz or
aluminum. Oliver and Pharr assumed and observed that the Young’s moduli
of the materials indented are not dependent on the contact depth and that
a single area function can be used for materials on a wide range of Young’s
moduli,

4. the hardness is obtained as

H=
Pmax

A
where A is evaluated at the peak load for each test. H is defined as the mean
pressure undergone by the material at Pmax ,

5. finally, the reduced modulus is obtained as

Er =
p
π

2
S
p

A
. (3.8)

The last relationship was derived from Sneddon [99] that solved the analytical
problem of a conical tip indenting a linear elastic semi-infinite half space. He
derived the P - h analytical relationship:

P =
2Er tanα
π

h2. (3.9)

Differentiating with respect to h, the slope is obtained as:

dP
dh
=

4Er tanα
π

h. (3.10)

Moreover, he also found that hc =
2h
π (this is also the expression at the origin of

the coefficient ϵ given above) and hence A = πh2
c tanα2 = h2 tanα2

π . Substituting
this last expression in equation 3.10, equation 3.8 is retrieved. This is valid for
both elastic and elastic–plastic indentations by assuming that the initial unload-
ing segment of the load–displacement curve is linearly elastic.
However, to model the unloading path under the assumption of elastic unloading,
the Sneddon solution 3.9 must be modified: the angle α with an effective angle α′

(see figure 3.22d). This is because the unloading is interpreted as a loading path
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occurring on an imprinted surface while the Sneddon solution would be applic-
able only on a flat space.
Later researches found that the equation works well for all axisymmetric indendeters
with infinitely differentiable profile provided that a correction factor β is added.
For a pyramidal Berkovich tip, the corrected indentation modulus is then

Er =
p
π

2β
S
p

A
. (3.11)

Here, β will be taken as 1.034 as in [50].
In general, for an isotropic material, the Young’s modulus Especimen and Poisson’s
ratio νspecimen are obtained by simply reverting the relation

1
Er
=

1− ν2
specimen

Especimen
+

1− ν2
indenter

Eindenter
≃

1− ν2
specimen

Especimen
, (3.12)

where νindenter = 0.07 and Eindenter = 1140 GPa for a diamond tip. The approx-
imation holds when Eindenter >> Especimen or when the indenter is rigid.
However, as observed from FIB-SEM investigation, Sigraflex® and and FG have
a strongly oriented microstructure at the indentation scale. If the anisotropy is
not neglected, then the indentation modulus is a weighted average of the elastic
constants relative to the indentation direction. According to Delafargue and Ulm
[100], for a transversely isotropic material indented along the symmetry axis (out-
of-plane), this reads:

M =
1
πH

(3.13)

where

H =
1

2π

√

√

√
C11

C2
31 − C2

13

�

1
C44
+

2
C31 + C13

�

(3.14)

and the components of the stiffness tensors C are expressed in Voigt notation:

C11 = C1111, C13 = C1133 = C3311,

C44 = C2323 = C1313, C33 = C3333,

C31 =
p

C11C33 > C13.

In this case, M would replace Er in equation 3.9 and again the load-displacement
response follows the same quadratic law. However, to decouple the contribution of
all these parameters, combined nanoindentation tests are needed in the in-plane
and out-of-plane directions. These were not performed here and the indentation
modulus will be extracted by means of equation 3.11. However, the definition of
M will be used in section 4.5.2 for discussion on Sigraflex® elastic properties and
in section 4.6 for the validation of the FE model.
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3.7.3 Results: static tests

The averaged P-h responses are presented in figure 3.23a. None of the loading
paths showed pop-ins or discontinuities and the aspect is that typical of elastic-
plastic materials. The viscous effect and any dependence on loading rate were
not considered as affecting the results because of the negligible change in rate
imposed. The curves were also analyzed in figure 3.23b after normalization with
respect to both hmax and Pmax . As can be observed, the amount of inelastic depth
is independent on both the maximum depth and load, and on average was ≃
60% of hmax . The loading and unloading paths does not show clear differences
by going down to deeper hmax and the underlying area is nearly constant. Hence,
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Figure 3.23: (a) Average P-h curves. These were obtained by averaging along
the depth axis, keeping the imposed load fixed. The scatter band stands for one
standard deviation (upper and lower). (b) Average P-h curves, normalized with
respect to both Pmax and hmax .

indenting such material at 1 µm or 4 µm does not change significantly the scale
of the phenomena involved in the response. However, there might be a size effect
affecting both the modulus and the hardness, as shown in figure 3.24. The boxplot
in figure 3.24a shows the median values of the indentation modulus including the
25th and 75th percentiles in M Pa. These are:

360.239 [302.74477.1], 284.199 [227.075328.99],

374.629 [284.75464.73], 271.199 [238.02309.73],

for 1000 - 2000 - 3000 - 4000 µN/s, in order. The overall median value is 322.56
MPa.
Plotting the four median values versus the corresponding contact depth (inset of
figure 3.24) shows a decreasing trend of the indentation modulus. Similarly, the
hardness suffers of the same effect and does not reach any asymptotic value even
at 4 µm. The nanohardness or even better the hardness are usually correlated to
the yield strength of a material by [101]:

H = Cσy . (3.15)
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For metals, it has been shown empirically that C ≃ 3 while for porous materials
this can be much lower down to 1. Therefore, the impossibility to find a yield point
under uniaxial compression pointed out already in the macro-scale tests section
3.6.4 may also constitute a meaningful motivation for the hardness size effect.
This can be confirmed by deeper indentations tests such as macro-indentations
which, although involving of a larger volume of material and porosity, should
give the same result.
Finally, from the measurements of the contact stiffness found as in equation 1,
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Figure 3.24: (a) Indentation modulus M plotted against the load rate and (inset)
the contact depth hc . It is not obvious whether or not M is dependent on hc . (b)
H-hc data.

the effective angle α′ can be calculated as in [96]:

α′ = arctan
�

1
2he

Æ

π A(hc)
�

= 81.85◦ [80.46◦, 82.6◦] (3.16)

where he = hmax − h f inal is the elastic deformation. The uncertainty is derived
from the uncertainty in the experimental contact stiffness.

3.7.4 Discussion: static tests

Cermak et al. [46] reported that the elastic modulus under uniaxial compression
in the out-of-plane direction for 1 g/cm3 FG ranges around 50 MPa. In this work
the same quantity was found to be around 30 and 40 MPa (see section 3.6.3).
Assuming by contradiction that the material is isotropic, one could calculate the
isotropic elastic modulus from the reduced modulus by means of the relation 3.11
and get E = 322.56 MPa for ν≃ 0 or E = 324.8 MPa for ν≃ 0.083: in both cases,
one order of magnitude higher than the macro-scale out-of-plane modulus.
One reason for this discrepancy could be the local variation of density: Bonnissel
et al. [60] indeed derived analytically that a density gradient should be present
from the midline to the surface of compacted graphite sheet due to the compaction



64 E. Solfiti: On the modelling of flexible graphite

process. This means that FG is expected to be denser on the surface, and stiffer
according to the observations of section 3.6 about the initial tangent slope, while
softer in the inside core. Indeed, more recently, Efimova et al. [35] reported that
the foil investigated (0.3 - 1.5 g/cm3) had a three-layers structure: two higher
density surface layers and one lower density bulk layer, in line with the prediction
of Bonnissel et al. The surface density was estimated to be 2 g/cm3 and was like-
wise ascribed to the compaction process. However, it was underlined in Cermak
et al. that it was not possible to notice any change in density along the thickness
from SEM analysis of tensile fractured specimens [17].
In figure 3.25, two nanoindentation P-h curves found in literature were also com-
pared with the one found in this work: despite the similar densities, the results
are pretty different and underline how other process parameters than density can
affect the mechanical properties. From this curves, Khelifa et al. [50] (reference 1
in the same figure) obtained an indentation modulus equal to 190 MPa, in good
agreement with that reported for Grafoil®. Although much lower than the indent-
ation modulus found here (322.56 MPa), yet the corresponding elastic modulus
would result in a large overestimation of the out-of-plane elastic modulus.
Another suitable reason to motivate the big discrepancy is that the contribution
to the indentation modulus is strongly affected by the in-plane directions stiffness
components, too. This is ideally true for elastic anisotropic materials according
to equation 3.14, but it is not straightforward for FG. To uncouple the contribu-
tions of Ci j components, additional nanoindentation tests would be requested at
least along the in-plane direction. These were not part of in this work, but further
insights on this discussion, also supported by FE modeling, will be provided in
section 4.6 by exploiting the experimental data from macro-scale testing.
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Figure 3.25: P-h curves comparison between this work Sigraflex® , 1 g/cm3, 1
µN/s), 1Chen and Chung [29] (raw material from Mineral Seal Corporation, 0.86
g/cm3, 1 µN/s), 2Khelifa et al. [50]. In the latter case, Papyex®, 1.1 g/cm3 was
used and the tests run in displacement control at 0.05 µm/s).
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3.8 Thermomechanical testing

3.8.1 Motivation

As mentioned in the Introduction, the LHC dump working conditions includes
both thermal and mechanical loads applied at the same time. The section reports
two different test sessions. The first test session aimed to reproduce the ther-
momechanical conditions in a controlled way, alternatively to the direct proton
beam impacts performed in the HiRadMat43 campaign4. Due to some complexit-
ies arose in this session, the second session was focused only on the thermal load
and aimed to investigate the effect of the heating rate on the thermal expansion
coefficient once the specimens was completely outgassed.
The coefficient of thermal expansion of FG and Sigraflex® seems to have strong
similarities with the thermal expansion of crystalline and polycrystalline graphite
(see section 2.4.3). The measurement of this quantity usually involves long heat-
ing time (see e.g. [103]) to ensure a uniform distribution of the temperature along
the specimen, and also because in principle the thermal expansion coefficient is
not rate-dependent.
However, during the HiRadMat43 experiment on a Sigraflex® specimen performed
in air, a huge local swelling in the out-of-plane direction of the affected volume was
recorded [8], much higher than predicted by simply accounting for the material
CTE. The reasons at the origin of this behavior are still unknown: on one side, the
trapped gas or the residual chemicals inside the material pores may have played
a role in the phenomenon. The fast heating delivered by the impact together with
the high tortuosity of the pore space may have not allowed the flowing of the
heated region within the impact time and would have provided an additional ex-
pansion term. On the other side, it is not excluded that the samples CTE could be
rate dependent, maybe as a result of the particular crumpled microstructure.
Although the objectives of this thesis were reduced to the only mechanical in-
vestigation, this part was performed at the early beginning of the project when
the challenges were still unknown and the goal was to shed some lights on these
questions by the controlled decoupling of the mechanical and thermal loads. Nev-
ertheless, the success of this investigation was limited and left much room for
improvement, but constitutes a source of fundamental technical know-how for
future works willing to focus on the thermomechanical behavior of FG.

3.8.2 Tensile force and heating rate applied

The machine used was a Gleeble GTC 3800 (figure 3.26) equipped with a sealed
chamber for vacuum and inert environment (N2 or Ar). The temperature was in-
creased through the specimen by direct resistive heating i.e., the current flowed

4The HiRadMat testing campaign has already been mentioned in the Introduction. These tests
are usually performed at CERN and recreate the real-case scenario of a proton beam impact on
different materials under various environmental conditions [102]
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directly across the contacts between the specimen and the grip, and it was feedback-
controlled by means of thermocouples attached to the specimen surface. Tensile
loads could be applied at the same time by means of hydraulic actuators. A first
round of preliminary tests, not reported here for brevity, led to the adjustments
listed below:

• the thermocouples are usually welded to the specimens, but this was not
considered as a viable option due to the weakness of the material. A second
possibility was to cement them on the surface of the specimen, without pen-
etrating and therefore weakening the sample. However, this option was dis-
carded due to possible influence of the cement on the specimen thickness
and hence on the local temperature distribution. The favourite option was
then to twin the two nude extremities of a thermocouple and to leave the
knot in touch with the specimen surface. The light tension obtained by fix-
ing the other extremities at the machine was responsible for keeping the
setup in place (see inset of figure 3.26),
• the original load cell of the machine was substituted to improve the load

acquisition: the one in use had 2.2 - 22 kN as maximum load range,
• the use of a IR thermo-camera was assessed: due to the wavelength it could

read with the available lenses and the presence of a borosilicate glass on
the backdoor, no recording could be obtained. In any case, the available IR-
camera setup allowed only for a maximum temperature reading up to 350
◦C, and therefore this was not used,
• low-force jaws were installed to facilitate the set-up. Copper flat grips with

thickness range 2.0-3.25 mm were preferred.

.

Figure 3.26: Gleeble GTC 3800 with sealing chamber for vacuum and inert en-
vironment

Four tests were performed on dog-bone specimens shown in the inset of figure
3.27.
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Test 1: only tensile load

This was intended to verify the capacity to register the force with the new load
cell. The chamber was set under high-vacuum and filled with Argon. To prevent
the specimen from breaking during creation of vacuum, the hydraulics were kept
active so that the jaws did not get pulled together and break the specimen in
compression. The test was run at room temperature and constant displacement
rate. As observed in figure 3.27, the load cell seems to have enough resolution to
record the forces despite the force being small in relation to the load cell range
being much larger.
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Figure 3.27: Force-time history of a tensile test performed by means of Gleeble
GTC 3800

Test 2: only thermal load

This was performed to understand and verify how to impose heat on the specimen
and define the heating rate the specimens could handle. K-type thermocouples
were used and the environment as well as the grips were kept same as in Test 1.
The maximum temperature imposed was 1000◦C at different heating rates: 2 – 50
– 100 – 200◦C/s. All the tests were run using the same specimen several times. As
observed, the temperature control was still satisfactory at 200◦C/s up to 1000◦C.
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Figure 3.28: Temperature time history: thermocouple measurement compared
with machine imposed history at different heating rates. (a) 2 ◦C/s, (b) 50 ◦C/s,
(c) 50 ◦C/s and (d) 200◦C/s.

Test 3 and 4: tensile and thermal load
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Figure 3.29: (a) and (b) Temperature time histories of test 3 and 4. (c) and (d)
corresponding force time histories.

These tests were done combining heating and application of force. They were
done to see which stroke rates the specimen could handle while keeping the en-
vironment, the gripping and the temperature measurements as in test 1 and 2. In
test 4, the heating rates was sped up to 500◦C/s. The mechanical load was applied
at constant displacement rate 100 mm/s. As obvious from figures 3.29c-d, the res-
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ulting data did not allow for post-processing due to low resolution at the applied
displacement rate, but the set-up procedure was the result of several optimization
iterations and was considered as satisfactory as well as the temperature control
method.

3.8.3 Only heating rate applied

As a first outcome from the previous test session, the specimen geometry was
changed from dog-bone to stripe-shaped so that the cross-section and the load-
bearing capability was tripled (see figure 3.30). A preliminary testing stage was
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Figure 3.30: Stripe-shaped specimen new design with dimension in mm and tem-
perature vs time measurements from thermo-couples in different locations along
the specimen.

again performed to compare K-type thermocouples (Ni-Cr(+) vs. Ni-Al (-)) with
a 0 - 1250◦C temperature range, and R-type thermocouples (Pt - 13% Rh(+) vs
Pt(-)) with a temperature range of 0 - 1450◦. The goal was to find the peak tem-
perature at which the thermocouples would still work without melting or fail in
some way. The K-type thermocouples melted at 1265◦C which is 15◦C above their
nominal temperature range. The R-type thermocouples broke at 1068◦C despite
the working range was supposed to be up to 1450◦C. With these results for the
thermocouples, the expectations of reaching temperatures such as 2000◦C were
scaled back and 1200◦C was set as the maximum achievable temperature. The
K-type thermocouples were considered as the best choice for this testing session.
One preliminary test was also performed with 3 thermocouples (schematic de-
tail in figure 3.30) to see how the temperature was distributed throughout the
graphite specimen when using stainless steel hot grips. These grips gave a well-
distributed temperature field.
In order to assess the out-of-plane expansion of the sample, the best option was
the so-called edge tracing techinque, which is a simplification of standard DIC:
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this captures the displacements of the only specimen outer edges thanks to the
contrast with the background. However, due to some issues related to the relat-
ive orientation between the DIC camera and machine testing chamber, the entire
setup was modified again. Particularly, the standard jaws (the ones used at the
very first attempt before Test 1) were considered as the only possible solution to
obtain the correct visual access to the specimen. The grips were also changed to
steel grips.
The chamber was set to low vacuum (103 Pa) and filled with Argon. As described
before, three K-type thermocouples were wrapped around the specimen and a
temperature profile was imposed up to 1200◦ at 10 and 1◦C/s.

Test 5

The DIC camera was located on the back of the chamber and the light source
was on the front side of the chamber with a white paper in front of the light as
shown in figure 3.31a. This allowed the sides of the specimen to be dark and

Edges to trace

25°C

1200°C

(a)

25°C

1200°C

Pixels to
trace

(b)

Figure 3.31: (a) Test 5: the contrast between the background and the specimen
is not sufficient to obtain a reliable edge tracing. (b) Test 6: the pixel tracing
suffered from the same issue at increasing temperature.

with the contrast with the white paper in the background. This test was run at a
heating rate of 10 ◦C/sec. At the beginning of the test, the contrast between the
background and the specimen was sufficiently high for imaging, but with the tem-
perature increase, it started to decrease significantly due to the sample emissivity.
At this stage, the edge-trace calculations were not reliable anymore. Then, above
1000◦C, the specimen-background contrast was again good enough to obtain re-
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liable results, but the edges got blurry and easy to confuse with the surrounding
halo.

Test 6

Since edge tracing did not provide reliable results because of the blurred edges
and the halo effects, the thermal expansion of the specimen was attempted to be
obtained by following the distance between two pixels on the outer surfaces, as
shown in figure 3.31b. The light source was placed on the chamber back side so
that the thickness side surface of the specimen had a black background. In ad-
dition, since test 5 showed a strong gradient in the specimen luminosity during
heating, the heating rate was set to 1◦C/sec, in the way that the camera contrast
could be changed by decreasing the exposure time of the camera during the heat-
ing.
Unfortunately, when the specimen started to glow, the pixels tracking started to
fail again. The contrast with the background was still good, but the specimen’s
contours faded. At 1200◦C most of details on the specimen front surface were
almost gone.

Proposed solution

In order to solve the issues encountered, the possibility to use any types of filter
to dim the emitted light from the specimen was explored. A possible solution,
similar to what is discussed in [104], involves the use of ultraviolet lights and
optics to minimize the light emitted by specimens in the concerned temperature
range. Another cheaper option would be to use a thermo-resistant spray paint that
reduce the emissivity of the specimen while also creating the speckle needed for
the DIC analysis.





4. Modelling

4.1 Objectives

FG can be classified as a cellular solid that embodies a three-fold character ori-
ginated by the hierarchical microstructure. Its response is due to (i) the layered
crystalline structure of graphite, (ii) the meso-structure of a crumpled material
and (iii) the macro-structure given by cohesive forces between particles, in ana-
logy to compacted powders. The aim of this chapter is to describe and model
especially the contributions (i) and (ii) and to support the idea that a full charac-
terization of the response must account in parallel for all the three aspects. The
characteristics that a suitable material model should have will be highlighted and
the adaptation of a specific model already implemented in LS-Dyna will be shown
with the practical purpose of modeling a static nanoindentation test.

4.2 FG similarities with crumpled materials

4.2.1 Microstructure and mechanical properties

Thanks to FIB-SEM imaging, it is clear that FG is a highly porous type of graphite
with a complex pore space originated by irreversible crumpling of micro-sheets.
Since no binder is added throughout the production process, the micro-sheets can
be considered as purely crystalline and having properties more similar to those of
graphite single crystals or multi-layered graphene. However, changing the thick-
ness from one to two to a hundred layers of carbon results in mechanical and
thermal properties extremely different and that need to be investigated per each
case.
An example of such property is the modulus of rigidity associated to the bending
stiffness of the carbon planes and to the inherent elastic properties. Considering
that the elastic modulus perpendicular to the basal plane of a graphite single crys-
tal (direction c) is C33 = 36.5 GPa [51], and that the out-of-plane elastic modulus
of a less perfect material such as polycrystalline or pyrolytic graphite ranges from
10.88 GPa to 29.35 GPa [105, 106], a simplistic rule of mixture to estimate the
out-of-plane modulus E⊥ of FG would give a value in the order of magnitude of
1−10 GPa i.e., a hundred times bigger than the actual tangent modulus: compare

73
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with values found in this work and from Cermak et al. [46]: 30 - 50 MPa.
A good explanation to this big discrepancy can be given by regarding FG as having
a crumpled meso-structure in which the bending rigidity of the constitutive micro-
sheets plays the major role under compression loads. Indeed, the ratio between
the bending and stretching in-plane rigidity of an elastic plate scales with (h/L)2,
that is the square of the ratio between its thickness h and width L.
The h/L ratio of a single FG micro-sheet with h ∼ 0.1 µm and L ∼ 100 µm can
be estimated as in the order of 10−3. This gives a modulus E⊥ ∼ 1 MPa that is
10−6 times lower than the graphite single crystal in-plane modulus C11 = 1060
GPa [51]. This is a much better estimate for the compression modulus reported
in [20] or [93] for expanded graphite at densities around 0.01 – 0.2 g/cm3 (see
also figure 2.3b) and explains the values for higher density sheets.
Crumpled materials have been partially investigated from a structural point of
view, and some works can be found about crumpled paper, crumpled aluminum
foils, crumpled graphene and crumpled pyrolytic graphite [107–111]. Crumpled
materials are also related to another class of material called entangled materials,
which are usually made of compacted metal wires, including aluminum, steel, and
titanium [92, 112, 113]. In [114], some similarities between crumpled aluminum
and entangled materials under uniaxial compressive loads were highlighted also
with respect to crushable foams. These three groups of materials can all be viewed
as cellular solids, but the peculiar aspect is in that both crumpled and entangled
materials are kept together by contact forces generated by local geometrical con-
figurations that constitute the material meso-structure.
In the case of FG however, the micro-sheets are the entities that undergo the
crumpling process as represented schematically in figure 4.1: here a single cell of a
expanded worm is crumpled hydrostatically and the micro-sheets are severely dis-
torted. This is made possible by the very low shear forces needed to delaminate the
micro-sheets and by the ability of the carbon planes to fold down without break-
ing. Indeed, Luo et al. [115] reported that a few layers graphene is capable to form
curves with ≈ 10 nm in radius without breaking. The resulting meso-structure is

c

a
c

a

Figure 4.1: Schematic representation of single cell walls crumpling under hydro-
static pressure. a and c are the crystalline axes parallel and perpendicular to the
basal planes, respectively.

made of heterogeneous configurations of the micro-sheets: the aligned regions
are piled up, well-straighten along the bedding plane and tiny pores run among
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them. The misaligned regions are randomly oriented and form zig-zag paths run-
ning around much bigger pores. The voids distribution is non uniform as well as
the mass distribution is random, like what happens when a paper ball is crumpled
under compression forces [116].
The crumpled nature may also explain the huge volumetric strain undergone by
the pores during the production process. These, in the uncompacted worms, are
roughly equiaxial with wall-to-wall size in the order of ∼ 10 µm, while the aver-
age size of a Sigraflex® pore is in the order of magnitude of 0.1 µm. This leads to
a large volumetric strain that is only explained by the continuous folding of the
micro-sheets and implies the modification of the pore space with the creation of
new pores in between the folds.
The crumpled nature also explains the impossibility of compacting a FG sheet to
a density higher than 1.9 g/cm3 [17]. The crumpling process is indeed governed
by a quantity called fractal dimension D that is a material property. A spherical
volume of a crumpled thin sheets with dimensions L × L obeys a scaling law of
the type [117]

L2 ∼ RD

at a given compression force, where R is the radius of the sphere and 2 < D < 3.
When D = 3, the sheet is completely transformed into a spherical volume and the
physical upper bound can be reached thanks to an effective packing. For single
layer graphene, it was found D = 2.36 [118] while experiments say that most
of the materials like paper and aluminum sheets have 2.1 < D < 2.7 [119]. If
a similar value also applied to micro-sheets, this implies that the internal fractal
microstructure of FG is retained regardless of the compaction force applied and
the maximum density achieved is governed by the fractal dimension of the micro-
sheets.

4.2.2 Analogies in the uniaxial compression curves

At the macro-scale then, despite the crumpling process may seem accidental, the
randomly folded materials are statistically well-defined and well-reproducible in
experiments [119]. The good repeatability of the uniaxial compression tests of
Sigraflex® may represent a good example thereof.
In [120], a non-linear elastic region in closed-die compaction of aluminium foils
was noticed at low strains (see figure 4.2 for comparison with FG uniaxial cyclic
compression curves). This regime was described as apparent, resulting from two
deformation contributions, one from the material and the other from dry sliding
between sheets i.e., the meso-structure. Similarly, Tan et al. [113] argued that a
structural strain component dominates the initial elastic domain in quasi-ordered
entangled aluminium alloys and leads to similar nonlinear stress-strain curves.
More examples of akin behaviors can be found in [112, 121].
In analogy therefore, this allows to think of FG initial toe as a combination of
material and structural contributions: the first is localized near the creases and
involves basal dislocations inside the micro-sheets, while the second can be asso-
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Figure 4.2: (a) True stress vs relative density curves. Both ρ∗ and ρ∗p are used as
independent variables. (b) Closed-die compaction curve of a crumpled aluminum
sheet [120]. A toe region similar to that observed for Sigraflex® is also evidenced.

ciated to local rigid motions of unstrained micro-sheets that result on large mac-
roscopical deformation.
In [119] it was underlined that the stress relaxation in crumpled aluminum can
be treated as a random consequence of individual events of energy dissipation.
Therefore, since the toe in FG tests is always fully or partially recovered after un-
loading in uinaxial cyclic tests, this is attributed to a structural mechanism that
is locked and retrieved only when the load is increased or decreased at a stress
threshold value (in this case 0.3 – 0.4 MPa). When the compaction load increases,
the number of folds and the consequential inelastic strain increase too, and can
limit the toe strain recovery associated to the structural mechanism.
The FG transition domain seen in figure 3.17b can be interpreted as a hardening
region, opposed to the typical flat plateau occurring in foams due to cell walls’
buckling. Hardening and absence of flat plateau were also observed in [114]
for crumpled aluminum and they were set among the similarities with entangled
fibrous materials.
Cottrino et al. [120] motivated this response by noticing that the stress increases
with the number of contact points in a power-law-like dependency. This is also ob-
served in foams at the beginning of the densification regime [95]where the stress-
strain curve concavity is turned upward for the whole regime. The FG transition
domain is instead peculiar: the stress-strain concavity is downward for at least
20% strain and only later it is turned upward, as if a different mechanism than
new wall contacts generation is predominant at this stage. This may originate from
the aligned regions where the probability of new contacts is reduced and the de-
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formation mechanism is closer to crystalline graphite. As it will be presented in the
next section, the stress-relative density relation in the densification regime of FG
follows an exponential law instead of a power-law more common in entangled
materials or foams [95, 114, 122]. Luo et al. [115] tested crumpled graphene
balls by nanoindentation and, given the ability of graphene to fold more severely
than other materials, motivated the stiffness and strength increase by formation
of more hard-to-bend ridges. This may explain the exponential hardening that
is seen in the whole density range 0.1 - 1.7 /cm3, where also the compression
moduli (figure 3.17b) and the cyclic moduli (3.19b) observed in this work evolve
accordingly.
Finally, a visible difference between FG and crumpled materials under compres-
sion can be related to the nature of the base material, that is, for example in
crumpled aluminum the yield point is obvious and the hysteresis area is very lim-
ited, where FG has unclear yield stress and large hysteresis loops areas.

4.3 FG similarities with compacted powders

For the sake of completeness, it is emphasized that FG can show some aspects typ-
ical of compacted powders. Indeed, FG is nothing else than an exfoliated graphite
powder compact with soft particles that aggregate thanks to their meso-structure
ability to fold and interlock. Density-dependent properties such as the elastic mod-
ulus are common in compacted powders and many material models available in
commercial FE software allow for controlling such dependency (see for example
Modified Drucker-Prager/Cap plasticity [123]).
Nevertheless, the particles’ boundaries and their interaction features are practic-
ally indistinguishable in the FIB-SEM images, unless pulled apart on purpose, and
not much can be added about the particles behavior under mechanical load.
The role of cohesive forces is probably not observable under compression loads,
while it may constitute the key contribution to model the mechanical response
under tensile or simple shear loading.

4.4 1D analytical model

Intuitively, the aligned regions described in section 3.2.3 tend to behave like well-
ordered graphite at increasing compression forces and the local deformation is
expected to be stiffer (also suggested in [26]) and predominantly due to the dislo-
cation mechanisms of the crystalline structure. In [26], these regions were linked
to the reversible stored energy of the material.
Conversely, the misaligned regions mainly contribute to the deformation by means
of their meso-structure in the sense that the micro-sheets create new folds, new
contact points and interlocking constraints. Once sufficiently crumpled, these re-
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gions turn into aligned regions and add on their volume fraction to the aligned
region volume fraction. The result is an overall stiffening and a shift of the dom-
inant deformation mechanism from the meso-structure to the microstructure.
A simple analytical model is proposed in this section in the attempt to decouple
the deformation contributions upon compression coming from the FG graphitic
component, associated to the aligned regions, and crumpled component, associ-
ated to the misaligned regions.
The aligned regions are here associated to a stress-strain response similar to poly-
crystalline graphite under compression. This was found to obey a power law of
the type [44]:

ϵ = Aσ+ Bσ2, (4.1)

where A [MPa−1] and B [MPa−2] are defined as elastic and plastic compliances.
The model originated from the intuition of inhomogeneous plastic deformations
that gradually participate to the overall deformation and can be visualized as a
continuous involvement of additional spring in series. Despite the equation was
found to give a good fit only up to a half of the graphite sample strength, this is
easy to manipulate and resembles the commonly used Ramberg-Osgood equation
when the stress exponent is set to 2. This can be expressed in terms of stiffnesses
instead of compliances as:

ϵ = ϵe + ϵp =
σ

E0
+
σ2

K
. (4.2)

Here E0 is the elastic modulus of the aligned regions at zero strain and K is a
material parameter that accounts for both the volume fraction and stiffness of
the aligned regions involved in the plastic deformation. This relation can also be
inverted, assuming positive strain ϵ ≥ 0, as follows:

σ = −
K

2E0
+

K
2E0

�

1+
4E2

0

K
ϵ

�1/2

(4.3)

On the other side, the misaligned regions are associated to a different function
of the compressive stress and the current relative density ρ∗. This differs from ρ∗p
defined in equation 3.5 since it is related directly to ϵ by:

ρ∗ =
ρ0

ρs
eϵ. (4.4)

To formulate the relationship, it is postulated that not only ρ∗p is related to the
compressive stress σ by an exponential law of the type 3.7, but also ρ∗ satisfies a
similar law.
Indeed, plotting the experimental σ - ρ∗ curves in figure 4.3a in semi-logarithmic
coordinates, a straight line can be fit in the whole densification regime. For com-
parison, σ - ρ∗p curves extracted from the cyclic compression curves were also
plotted in the same figure using the initial strain as found in the inset of figure
3.19a and by means of the conversion 3.5.
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Figure 4.3: (a) True stress vs relative density curves. Both ρ∗ and ρ∗p are used
as independent variables. (b) Example of experimental curve fitting by means of
equation 4.7, including the scatter in the strains at flex and a schematic view of
the proposed rheological model.

The exponential coefficient is in good agreement with that reported in equation
3.7 [46] i.e. 5.88. The difference is ascribed to the uncertainty about the real rel-
ative density of the tested specimens in this work.
Assuming that the misaligned regions are those who provide the major deform-
ation contribution in the densification regime, their contribution to the overall
compressive modulus can be related to ρ∗ by an exponential law, in analogy to
the exponential law 3.6 between σ and ρ∗ during densification:

H = H0enρ∗ . (4.5)

Here, H0 is the initial modulus of the misaligned regions and n is a parameter
related to the rate of densification. Relation 4.5 can be easily expressed in terms
of ϵ by use of 4.4:

H = H0en
ρ0
ρs

eϵ . (4.6)

The contributions from 4.3 and 4.5 are assumed to work in parallel such as in
the equivalent rheological model of figure 4.3b, and the total stress σ versus true
strain ϵ relationship reads:

σ = −
K

2E0
+

K
2E0

�

1+
4E2

0

K
ϵ

�1/2

+H0en
ρ0
ρs

eϵϵ, (4.7)

Equation 4.7 was used to fit the average experimental monotonic curves as shown
in figure 4.3b. The toe contribution to the total strain was not included in the av-
eraging procedure.
The statistics of the fitting parameters is reported in table 4.1 together with the
corresponding confidence interval. The parameter E0 was obtained a priori from
a high order polynomial fitting of the average curve, whose slope was evaluated
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Median 95% confidence interval
E0 [MPa] 39.41 (fixed)
H0 [MPa] 0.04262 (0.0392, 0.04604)
K [MPa2] 135 (133.2, 136.7)

n [-] 7.091 (6.995, 7.187)

Table 4.1: Statistics of fitting parameters obtained by the mechanical model in
4.7.

at ϵ = 0, and it was kept fixed during the fitting. Whereas the exponential trend
in the densification regime is matched perfectly, much room for improvement is
visible in the transition region: this indeed depends on the exponent 1/2 in equa-
tion 4.3 which is already known to partially match the graphite behavior.
The two friction blocks in the rheological model of figure 4.3b were inserted to
represent the accumulated inelastic strain and to underline that both the graphitic
and crumpled natures give separate contributions to the overall inelastic deform-
ation. The friction block backing the spring series and associated to the fitting
parameter K represents the non-recovered deformation coming from dislocations
internal to the micro-sheets. The contact forces at micro-sheets interlocks are in-
stead gathered in a separate block representative of such meso-structural con-
tribution. Each spring of the spring series was associated by Jenkins [44] to the
elastic stiffness of the plasticizing regions. Here however, these components were
not decoupled and K is simply regarded as a fitting parameter that incorporates
such stiffnesses as if they were already integrated over the deformed volume and
uncoupled from any stress dependency.
At the early beginning of deformation, E0 and H0 act in parallel on behalf of the
aligned and misaligned regions, but H0 is negligible meaning that the former are
predominant and E0 and K determines the initial response. The resultant tangent
slope decreases thanks to the contribution of the spring series until it rises quickly
for the high rate of densification n. The flexes obtained numerically at the min-
imum of the stress-strain first derivative match satisfactorily the flexes given by
the fitting curves as shown the inset of figure 4.3b.
Despite a 1D model is not comprehensive and direct applications for material mod-
eling are limited, it confirms that the assumptions made about the decoupling of
deformation contributions are realistic. The model derived in 4.7 will be used to
define the input curves in the material model investigated in sectoin 4.6.6.

4.5 Characteristics of a suitable material model

4.5.1 Overview of the stress-strain curves

Although many differences have been underlined so far between FG and other
types of graphite, the models available for the polycrystalline constitute a starting
point also for FG modeling.
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The uniaxial tensile and compression stress-strain curves of nuclear grade graph-
ite were discussed by Jenkins [44] and other authors already in the 60’s. In both
the loading directions, these were observed to have a very small and even neg-
ligible elastic region, followed by a inelastic non-linear behavior with downward
concavity. The same behavior was clearly observed for Sigraflex® and FG in the
in-plane tensile tests (figures 3.10 and 3.13), but could be also recognized in the
out-of-plane compression tests (figure 3.16) when the stress overcomes the toe
region and remains lower than the point of flex. This point can be interpreted as
the end of the predominant graphite-like behavior and the beginning of the pre-
dominant foam- or crumpled-like behavior, as observed hanks to the mechanical
model of section 4.4.
However, many types of graphite are usually described as brittle or quasi-brittle
materials in both tensile and compression loading directions, but the same does
not applies to FG, where the in-plane tensile behavior is very brittle with low frac-
ture strain (∼ 0.7%), but the out-of-plane compression curve flows plastically up
to very large strains (70 - 80 %) with no sign of failure.
Furthermore, synthetic or artificial graphite shows a degree of anisotropy given
by the direction and shape of the grains. Isotropic graphite can be obtained by
fine and randomly oriented grains while transversal isotropy originates by larger
crystals obtained by pyrolysis, such as for pyrolytic graphite, or from compaction,
such as for FG.
In addition, different behaviors in tension and compression along the same load-
ing direction are another typical feature of graphitic materials [124, 125], in ana-
logy with ceramics and glasses. Not only the failure strength, but also the initial
modulus, the tangent modulus or any plastic internal variables can vary when go-
ing from positive to negative strains. Therefore, such a behavior can be expected
also for FG and indeed, while in section 3.4, the initial modulus in the tensile in-
plane direction was found to be 2288.94 MPa (other values from literature were
1335 MPa [45] and 2290 MPa [26]), the elastic modulus in the compression in-
plane mode was found to be around 3500 MPa in [33] by means of ultrasound
technique.
Assuming the full reliability of this data, a simple way to guess the stress-strain
curve in the in-plane compression direction is to replicate the same non-linear
trend as the tensile curve along the same direction and scale it uniformly along
the stress axis until the derivative at the origin matches the value found in [33].
This is how the plot in figure 4.4a was obtained.
Of course, this is a trivial procedure and the scale factor must be considered as a
new parameter of investigation.
The tensile out-of-plane compression curve has never been measured while the
only known property is the out-of-plane fracture strength equal to 0.03 - 0.04
MPa [38]. Hence, the stress-strain curve in figure 4.4b was obtained by taking the
same tangent at the origin of the compression curve and by extending the linear
trend up to the fracture strength.
In summary, the montonic stress-strain curves of FG are expected as non-linear
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in both the in-plane and out-of-plane directions, with possible asymmetry in the
strain axis given by a pressure-dependent behavior.
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Figure 4.4: (a) In-plane stress-strain curves for FG. The tangent lines at the origin
highlight the difference in modulus when the load is reversed. (b) Out-of-plane
curves for FG.

4.5.2 Elastic properties

A very first approximation at small strains for Sigraflex® behavior, that is also
suitable for exploratory FE simulations, could be the orthotropic elastic material
model of the type σi j = Ci jklϵkl .
Here Ci jkl are the components of the elastic stiffness tensor C for FG, also called
elastic moduli. The inverse of the stiffness tensor C is the compliance matrix S =
C−1 and can be expressed in Voigt notation as a function of the engineering elastic
constants. This links the stress σi j to the strain ϵkl components expressed by the
same notation. The relation reads:
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(4.8)

For transversely isotropic material in the 1-2 plane, such as Sigraflex® or FG in
general, one can set

E11 = E22 ν31 = ν32 G31 = G23

so that the number of independent parameters for the elastic response is limited
to five:

E11, E33,ν12,ν31, G23. (4.9)
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Moreover, by the symmetry of C and from the in-plane isotropy, it follows

ν21 = ν12
E22

E11
= ν12,

ν13 = ν31
E11

E33
,

ν23 = ν32
E22

E33
= ν31

E22

E33
,

and

G12 =
E11

2(1+ ν12)
. (4.10)

Assuming that the FG response is fully elastic, only two out of five elastic para-
meters are known so far from the experimental tests i.e., E11 = E22 = 2290 MPa
and E33 = 30− 40 MPa1. The in-plane Poisson’s ratio ν12, the out-of-plane Pois-
son’s ratio ν13 and the out-of-plane shear modulus G23 are missing and should be
guessed reasonably:

• ν12 is the in-plane Poisson’s ratio. In general, graphite single crystals have
in-plane Poisson’s ratio equals to 0.164 [51], but here the high porosity
leads to think of a even lower transverse deformation. The latter is hardly
visible from the images of both macro and micro-scale tensile tests because
of poor image resolution, but it is supposed to be negligible with respect
to the longitudinal deformation. For simplicity then, ν12 ≃ 0, also constant
with the applied deformation,
• ν31 it the Poisson’s ratio that determines the in-plane deformation (direction

1) given by an out-of-plane compression (direction 3). To estimate that, one
could use the measurements reported in section 3.6.6 assuming that most of
the total deformation is plastic, so that ν31 = 0.083, again constant through
the whole strain domain ,
• G23 is probably the most challenging elastic property to measure experi-

mentally. A practical approach for a realistic guess may be that shown in
[126], that is:

G23 =

p

E22E33

2(1+pν23ν32)
.

where ν31 = ν32 due to transverse isotropy and ν23 = ν32E22/E33 from the
simmetry of C . Setting E22 = E11 = 2290 MPa and E33 = 30− 40 MPa, it is
finally obtained G23 = 76− 93 MPa. Again for simplicity, this is assumed as
constant with the applied deformation.

1From the linear fitting of the experimental curves in section 3.6.5, a mean value of 34.35 MPa
was obtained, while from the derivative of polynomial fitting also used in section 4.4, this value
was 39.02 MPa.
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From these values, the in-plane shear modulus resulted from equation 4.10 as
G12 = 1145 MPa. Therefore, a first set of suitable elastic parameters can be that
reported in table 4.2. Here, all the nine orthotropic parameters are reported but
only five are independent due to transversal isotropy.

E11 = 2290 MPa E22 = 2290 MPa E33 = 30− 40 MPa
ν21 = 0 ν31 = 0.083 ν32 = 0.083

G12 = 1145 MPa G23 = 76− 92.95 MPa G31 = 76− 92.95 MPa

Table 4.2: Set of elastic parameters for the orthotropic elastic material model.

To improve the guess about G23, the results from static nanoindentation tests were
further analyzed as follows. By means of the Sneddon formula 3.9 and the effect-
ive angle α′ (equation 3.16), the unloading experimental curve can be matched
under the assumption of pure elastic unloading. To do so, the compliance matrix S
needs to be built with the parameters in table 4.2 and then inverted to obtain the
components of the stiffness tensor Ci jkl to plug in the Delafargue and Ulm equa-
tion 3.14 for the calculation of the indentation modulus M . The load-displacement
curve is finally obtained by using M in the Sneddon solution.
While building the compliance matrix S however, the elastic parameters must sat-
isfy the following inequalities (see LS-DYNA Theory Manual2) to ensure that the
material is thermodynamically stable:

E11, E22, E33, G12, G23, G31 > 0

|ν12|< (E11/E22)
1/2

|ν31|< (E33/E11)
1/2

|ν32|< (E33/E22)
1/2

1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13 > 0 (4.11)

As a consequence of the stiffness symmetry νi j = ν ji
Eii
E j j

, the second, third and
fourth inequalities could be expressed alternatively as:

|ν21|< (E22/E11)
1/2

|ν13|< (E11/E33)
1/2

|ν23|< (E22/E33)
1/2

If the value E33 = 30 MPa is used for the calculation, the parameters reported in
table 4.2 leads to satisfy all the conditions except 4.11. The reason was ascribed to
the large difference between the elastic moduli in the in-plane and out-of-plane
directions; indeed, simply setting E33 = 40 MPa could fulfill all the conditions.
This also means that extreme care must be taken every time these parameters are

2https://www.dynasupport.com/manuals

https://www.dynasupport.com/manuals
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tweaked for numerical simulations that have in input orthotropic elastic paramet-
ers. For this reason, the values E33 = 40 and G23 = 92.95 MPa were preferred
over E33 = 30 and G23 = 76 MPa.
The final indentation modulus M with this set of values was 149.94 MPa and the
Sneddon solution could be plotted as in figure 4.5a. The unloading curve is still far
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Figure 4.5: (a) P-h comparison between this work experimental and analytical
solution by Sneddon. All the analytical curves were shifted so that the maximum
displacements match. The dispersion of experimental data in the unloading path
indicates one standard deviation far from the median value. (b) Indentation mod-
ulus M dependency on G23 and Poisson’s ratios ν31.

from the experimental unloading curve as well as from the experimental indenta-
tion modulus M = 322.56 MPa. Hence, a simple one-parameter optimization was
performed to improve the matching. All the parameters except G23 were fixed un-
til the experimental value of the indentation modulus was retrieved. The optimal
value obtained was G23 = 646.52 MPa.
This is of course very simplistic and variations of other parameters could also af-
fect the final value of M, including the equivalent included angle α’ that was not
observed experimentally and ν31.
In particular, ν31 was varied from 0 to the upper limit imposed by the thermody-
namic i.e., |ν31| = (

E33
E11
)1/2 = 0.132. As can be seen in figure 4.5b, many optimal

solutions are available at the same value of M if both ν31 and G23 are changed
accordingly. Large variations of G23 request small variation of ν31, allowing to
think of a bigger influence of G23 to the elastic response. Moreover, the material
becomes unstable when ν31 is increased above 0.0925 or G23 is decreased be-
low 341.4 MPa, and hence the only stable solution domain is ν31 ≤ 0.0925 and
G23 ≥ 341.4 MPa.
An equivalent isotropic material would match the unloading curve at E = 293
MPa and ν = 0.3 thus giving elastic parameters substantially inconsistent with
experimental observations.
To minimize the number of dependent parameters, ν31 was left unchanged to its
original assumption while the shear moduli value was increased to G23 = G31 =
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646.52 MPa.
The set of elastic parameters is finally adjusted as in table 4.3.

E11 = 2290 MPa E22 = 2290 MPa E33 = 40 MPa
ν21 = 0 ν31 = 0.083 ν32 = 0.083

G12 = 1145 MPa G23 = 646.52 MPa G31 = 646.52 MPa

Table 4.3: First suitable set of elastic parameters for orthotropic elastic material
model

Due to the uncertainties on the size of the elastic domain, the term elastic is used
here to refer to the material properties at the early beginning of the loading path.
For example, the elastic moduli E11 and E33 are used for the initial tangent slope
of the corresponding stress-strain curves. Nevertheless, a material model that is
fully linear elastic is clearly not the best option even at small strains due to the
non-linearity of the stress-strain curves and the intrinsic presence of plastic de-
formation since the early beginning of deformation.

4.5.3 Coupling of the uniaxial non-linear behaviors: Jones and Nel-
son model

The model originally proposed by Jones and Nelson [124] for artificial graphite
appears as the simplest option to extend and couple the non-linear stress-strain
behaviors observed separately in different uniaxial directions. This model was
developed in the 70’s while it is still on used in recent works such as [127] where
a cutting simulation of carbon/carbon composites was modeled.
The model assumes that each mechanical property Yi , such as the elastic moduli
(derivative at the origin), the secant moduli σ/ϵ and the Poisson’s ratios, is a
function of the strain energy U:

Yi = Ai

�

1− Bi

�

U
U0

�Ci
�

(4.12)

where

U =
1
2
(σ11ϵ11 +σ22ϵ22 +σ33ϵ33 +σ23ϵ23 +σ31ϵ31 +σ12ϵ12) (4.13)

and Ai is the initial value for the property Yi with the dimensions of the prop-
erty itself. Bi and Ci are dimensionless fitting parameters that stand for the initial
curvature and the curvature change of the stess-strain curves. Lastly, U0 is an ar-
bitrary value usually selected as equal to 1 so to make the factor inside the square
brackets dimensionless.
The strain energy U is independent on the coordinate system and characterizes
the elasto-plastic response under multiaxial stress-strain states. This requests pre-
vious knowledge of at least the uniaxial stress-strain responses in the principal
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directions including the shear directions. For FG, the tensile in-plane and com-
pression out-of-plane uniaxial responses are known (figure 4.6) while the shear
directions responses are not. As an example, the stress-strain curves obtained in
sections 3.4 and 3.6 are reported in figure 4.6a and 4.6c together with the corres-
ponding secant modulus-U function Yi = Yi(U) in figures 4.6b and 4.6d.
The parameters Ai , Bi and Ci were simply fitted by non-linear least square regres-
sion. The compression curve in figure 2.3b shows a change in concavity that is

U = 1/2σε
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Figure 4.6: (a) Experimental tensile in-plane curve. The definitions of secant
modulus and strain energy U are also shown. Their relationship is fitted with
equation 4.12 and shown in (b) together with the average fitting coefficients.
The same was done for the out-of-plane compression curves in (c) and (d).

not a feature common in graphite and whose secant modulus does not conform
to equation 4.12. Hence, the fitting and the applicability of Jones and Nelson
model is limited to ϵ ≤ 0.13, in correspondence to the flex where the concavity
changes.
Assuming that the Poisson’s ratios ν12 and ν23 characterize the stress-strain be-
havior for the whole non-linear regime, these could be taken as constant with
respect to U by setting Bi = 0 in equation 4.12 for both cases.
The same can be done for the unknown out-of-plane shear stress-strain curve cor-
responding to G23, and its slope can be fixed to a constant value G23 = 646.52
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MPa. Finally, the in-plane shear stress-strain curve can be found by the assumption
of transversal isotropy, and its slope taken as equal to G12 =

E11
2(1−ν12)

.
Under these hypotheses, the iterative procedure to solve for combined load states
looks like the one represented in figure 4.7. For a stress driven problem, equation
4.8 is first solved with the initial values of the material properties Yi in the com-
pliance matrix S. Ui is calculated with the strain obtained and the stress imposed
so that the a new cycle is fully initialized. Then, new values for Yi are obtained by
plugging Ui into equation 4.12 and a new stress state is obtained together with a
new value of Ui . If the ratio∆U/U does not fall below an arbitrary low threshold,
new values for Yi are found from Ui and a new iteration begins. When the con-
vergence is reached the strain is stored and a new imposed stress is applied.
The procedure just described was implemented in a simple MATLAB code to as-

Set initial values of Yi based on initial 
experimental data  

Form initial compliance matrix S0 in 
principal material directions

Impose new value of σ or ε and 
calculate the resulting σ or ε, and U

ΔU/U = (Ui - Ui-1)/Ui-1 

ΔU/U < tol.?

Yes

Calculate new σ, ε and U 

Calculate new Yi and form Si

Store converged Si , and σ or ε

No

i = i + 1

Figure 4.7: Jones and Nelson iterative procedure

sess more in detail the behavior of the material model. In figure 4.8a both uniaxial
and biaxial stress responses in directions 1 and 1-2 are displayed. Here it is no-
ticed that due to the non-increasing ν12, the biaxial response shows softening with
respect to the uniaxial in-plane response. This feature was reported by Jones and
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Nelson [124] for artificial graphite and recognized as a marked difference with
behaviors of other materials such as aluminum.
Applying compression along the direction 3 (the softest one) together with biaxial
tension in the plane 1-2, leads to higher strains at the same maximum stress with
respect to the case were only uniaxial compression along 3 is applied (see figure
4.8b).
Applying compression along direction 3 with biaxial compression in the 1-2 plane
leads to the opposite behavior, and hence to a stiffening along the direction 3.
This behavior can be realistic also for FG but should be supported by multi-axial
experiments.
A limitation of this model is that U combines the contributions of maximum
stresses from all the directions and may reach values that were not actually achieved
in the uniaxial experimental curve but are only the result of bad extrapolation of
the fitting function. For example, the fitting reported in figure 4.6b goes to zero
when U = U0B−1/C = 0.05 and hence the secant moduli turns into a negative
value. This should be fixed by constraining the fitting parameters so to obtain a
larger suitable domain for the strain energy.
An advantage of this model is that it is easy to implement, also on a FE software
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Figure 4.8: Behavior of Jones and Nelson model under multi-axial loading. (a)
In-plane uniaxial and biaxial load, and (b) uniaxial compression along 3 together
with in-plane biaxial tension and compression.

by means of a user defined subroutine, but the efficiency in the calculation should
be checked since the strain energy convergence should be solved per each element
at each step inside the material subroutine. In addition, the model is capable to
account for different behaviors in tension and compression if a weighted compli-
ance matrix is used. This is based on the attribution of a positive U to tensile stress
states and negative U to compression stress states. Then, a tensile compliance S t

and a compression compliance Sc can be defined whose components are chosen
according to the following four cases (see [127]):

1. σi j > 0 and σ ji > 0:
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Sii = S t
ii , Si j = S t

i j = S ji , S j j = S t
j j

2. σi j < 0 and σ ji < 0:
Sii = Sc

ii , Si j = Sc
i j = S ji , S j j = Sc

j j
3. σi j > 0 and σ ji < 0:

Sii = S t
ii , Si j = ki jS

t
i j + k jiS

c
i j , S ji = k jiS

c
ji + ki jS

t
ji , S j j = Sc

j j
4. σi j < 0 and σ ji > 0:

Sii = Sc
ii , Si j = ki jS

c
i j + k jiS

t
i j , S ji = k jiS

t
ji + ki jS

c
ji , S j j = S t

j j

where ki j =
|σi j |

|σi j |+|σ ji |
and k ji =

|σ ji |
|σi j |+|σ ji |

are defined as flexibility coefficients. The
correct case is chosen per each element based on the imposed stress at the current
step. This part has not been tested here but it is suggested for future works that
may focus on the FE implementation of a similar material model for FG.

4.5.4 Load reversal and compressibility under plastic flow

The Jones and Nelson model can be a first approach to couple the non-linear
responses when the material undergoes multi-axial stress states. However, given
the total strain formulation, it cannot predict some accumulated properties such
as the total plastic strain or the hysteresis, and hence cannot model the unloading
response as observed in the experiments of Sigraflex® .
This model is indeed a sort of extension of the more famous Ramberg-Osgood
constitutive law to a three dimensional case, but it is capable to replicate both the
anisotropic plastic behavior and the volumetric deformation in the plastic regime.
The latter is a critical property that is missing for example in the implementation
of deformation plasticity model (based on Ramberg-Osgood law) in Abaqus3.
Another desired feature of this kind of plasticity as well as Jones and Nelson plas-
ticity is that there is no yield function involved as in the classical plasticity, and
hence there is no need for a yield strength to be defined. If the same zero-yield
feature needs to be modeled within a classical plasticity framework, some com-
plexities may arise. A first solution may be that of employing a two-surface plas-
ticity model. One example could be that proposed by Dafalias and Popov [128]
that presented also a modification thereof for ATJ graphite that was showing a
vanishing elastic domain. The advantage of this model is that a bounding surface
is defined, in addition to the usual yield surface, having the normal vector equal
to that of the enclosed yield surface so to prevent it from being undefined when
the yield strength is set to zero.
An alternative model that made use of more than one yield surface to overcome
the same issue is the one developed by Greenstreet and Phillips [129]; here at
each load reversal a new yield surface is originated and expands generating plas-
ticity also during unloading.
Although two-surface plasticity models are widely used for metals and are capable

3Online Simulia User Assistance 2022 - Dassault Systemès - Deformation plasticity
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of describing many cyclic characteristics including the Bauschinger effect, the cyc-
lic hardening or softening, ratcheting, and the stress relaxation, these become of
complex implementation especially for anisotropic and pressure-dependent ma-
terials such as FG.
Other material models that can embody compressibility and anisotropy under
plastic deformation are crushable foams and soils or compressed powders. These
make use of elliptical or spherical yield surface with associative or non-associative
flow rule to model the compressible plastic behaviors given by pore closures. In
this case, a yield strength is requested, but a sufficiently low values may be given
as input so to have a negligible elastic domain. Since a wide variety of crushable
foam models is already implemented in LS-Dyna, these were the first and the only
ones investigated in this work.

4.6 FE nanoindentation model

4.6.1 Objective

A nanoindentation test on FG has been simulated by means of Ansys LS-Dyna.
The main goal was to assess the material models already available in the software
that could be suitable for the simulation of Sigraflex® under static loading and
unloading. As described in the Introduction section, the proton beam impact in
figure 1.4 generates a multi-axial stress state that may involve a large volume
underneath the surface. The standard deviation of the spatial beam distribution
is 250µm2 in width, which means that an area slightly bigger than that shown
in figure 3.21 is being heated up instantaneously. Since the largest pores of the
size distribution were found to be in the order of magnitude of 1µm, these are
much smaller than the heated volume and hence we can consider the response of
the material at the macro-scale as the one relevant for the mechanical part of the
beam impact problem. For the thermal part instead, the phenomena occurring at
the meso-structure scale, such as the interaction between trapped gaseous species
and unfolding of micro-sheets, are probably more relevant and would request a
micromechanical model for a complete understanding.
The nanoindentation is seen as the simplest way to induce a multi-axial stress state
into the material, especially due to the technical problems that arise when dealing
with the fragility of the material during most types of testing setup. It has been
already clarified in section 3.7.4 by applying the Delafargue and Ulm formula
that the nanoindentation curves of Sigraflex® can be potentially interpreted as
the macro-scale response of the material and this section can be considered as a
confirmation a posteriori of this observation.

4.6.2 Overview of suitable material models in LS-Dyna

Based on the experimental observations pictured so far, a list of suitable material
models for FG modeling is collected in table 4.4. The most straightforward ma-
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Names Comments

MAT_02_ORTHOELASTIC
Orthotropic elastic. The implementation depends
on the type of elements used.

MAT_26_HONEYCOMB

Orthotropic: it needs six input curves σy - ϵv,pl . A
nonlinear elastoplastic behavior can be defined sep-
arately for all normal and shear stresses, which are
fully uncoupled. Elastic unloading based on tangent
slope of last loading point.

MAT_57_LOW DENSITY_FOAM

Isotropic hyperelastic with hysteresis upon unload-
ing governed by one parameter. The behavior under
uniaxial loading does not significantly couple in the
transverse directions.

MAT_63_CRUSHABLE_FOAM (MODEL = 1)

the behavior is the same as default implementation
of Abaqus crushable foam. Elliptical yield surface
in pressure-deviatoric stress space and independent
definitions of elastic and plastic Poisson’s ratio. Iso-
tropic. Elastic unloading.

MAT_75_BILKHU/DUBUOIS_FOAM

Yield function and plastic flow equivalent to
MAT_154 if Plastic poisson = 0. Triaxial tests are
needed because the pressure for plastic yielding as
a function of volumetric strain is given in input. Iso-
tropic.

MAT_83_FU-CHANG
Isotropic hyperelastic with hysteretic unloading
governed by one parameter

MAT_126_MODIFIED_HONEYCOMB Advanced version of MAT_26.

MAT_142_TRANSVERSELY_ISOTROPIC_FOAM

Modification of MAT_26. The stress-strain curves
are input separately and the stress response is fully
uncoupled. It solves the issue of MAT_26 related to
the overestimation of off-axis response.

MAT_154_DESHPANDE_FLECK
Elliptical yield surface such as MAT_63, but with
concavity of hardening only directed upward.

MAT_05_SOIL_AND_FOAM
For soil, concrete and crushable foams. Isotropic. It
needs pressure-volumetric strain input curve. Sim-
ilar to Drucker-Prager/Cap model in Abaqus.

MAT_25_GEOLOGICAL_CAP_MODEL
Several material parameters that need to be calib-
rated by experiments. Mainly for concrete and soil.

Table 4.4: List of suitable material models in LS-Dyna.

terial model suitable for FG modeling in LS-Dyna is MAT_02 which is orthotropic
elastic. This may serve as a test material model to check the validity of the input
elastic parameters for other more complex orthotropic models and will be better
commented in section 4.6.4.
MAT_26, MAT_126 and MAT_142 seem to have similar implementations. All of
them have the characteristic of uncoupled uniaxial response which is desired to
model the low plastic Poisson’s ratio typical of crushable foams. MAT_57, MAT_63,
MAT_75 and MAT_83 are all potentially suitable to reproduce the nonlinear be-
havior shown by FG under uniaxial compression, but either they are isotropic or
hyperelastic and hence not capable to represent the correct unloading behavior.
MAT_154 has a particular hardening law that would not allow the change in
curvature shown by the FG experimental curve.
MAT_05 and MAT_25 were included in this list as the simplest models to repres-
ent concrete-like behavior. In particular, the advantage of cap models over other
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models such as the standard Drucker-Prager and Mohr-Coulomb is the ability to
model plastic compaction, but the calibration involve several parameters that must
be found by means of multi-axial tests, difficult to perform on FG sheets.

4.6.3 Geometry and boundary conditions

A 3D FE model was built Ansys APDL so to parametrize the geometry dimensions
and the mesh parameters. The geometry of the volume is one-sixth of a cylinder
with radius r = 200 µm and height hs = r. Since the maximum indentation depth
hmax imposed to the indenter tip is 2 µm, the conditions for a converged geometry
are fulfilled [130]:

r
hs
≥ 1

hs

hmax
≥ 100.

The indenter was modeled as the Berkovich tip shown previously in figure 3.22a.
Two tip radii were chosen to be compared, since this quantity is well-known to
affect the loading response of elastic-plastic materials [131]. The values were 0
µm, to simulate the ideal case of sharp tip, and 1 µm (figure 4.9b), since it is the
closest measurement available for the real tip used in the experiments [97]. The
simulations were run by using both implicit and explicit solvers. In the second
case, the kinetic-to-internal energy ratio were kept smaller than 5% so as to per-
form quasi-static analyses, as well as the hourglass-to-internal energy ratio when
reduced elements were used.
The indented volume was meshed by hexahedral elements with progressively
smaller sizes. The smallest elements were placed near the tip and were varied
from 30 to 150 nm (figure 4.9c). The largest element sizes far from the indenter
tip were approximately 100 times larger than the smallest elements. The indenter
with tip radius equal to 0 µm was also meshed with hexahedrons, while the in-
denter with finite tip radius was meshed with tetrahedrons to better capture the
curvature.
The displacement of the indenter was imposed as a rigid body motion (figure 4.9b)
with a constant displacement rate up to a maximum value, followed by a holding
time and unloading. The boundary conditions were applied to the volume as in
figure 4.9d. To constrain the nodes on the lateral surface rotated by 60◦ around
the direction 3, an additional reference was defined so to bound the nodes to
move only on the plane 1∗ − 2∗. The contact force along the displacement direc-
tion 3 was taken as output and was multiplied by six so to obtain the final value
to compare with the experimental curves.
The contact formulation used was the surface-to-surface mortar type for both the
implicit and explicit solver. Although not common for the second solver, it was
found to be the best option to minimize the penetration. Element formulations
ELFORM = -1, -2 were mainly used in order to avoid hourglass problems and
improve the accuracy of the results. The maximum relative penetrations were
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Figure 4.9: (a) 3D FE nanoindentation model geometry together with the in-
denter tips with radii equal to 0 µm and 1 µm. (b) The normalized displacement
imposed during the simulation to the rigid indenter. (c) Detail of mesh refinement
near to the tip. (d) Boundary conditions applied to the indented volume.
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checked to be always below 10 nm so to give a negligible contribution to the final
response.
Finally, when orthotropic material models were used, the initial material axis were
oriented so that the c material axis (corresponding to E33) is coincident with the
indenter displacement direction as in figure 4.9d.
For comparison purposes, mostly related to the testing of different implementation
of the elastic material models in LS-Dyna, an equivalent axisymmetric 2D model
was also employed (figure 4.10). This geometry should be in principle closer to
the Sneddon solution. The indenter was a single rigid shell with 70.3◦ included
angle in order to have the same contact area of a pyramidal Berkovich. The ele-
ment adopted were axisymmetric quadrilateral shells (ELFORM = 15) with the
y axis being the symmetry axis. When orthotropic material properties were used,
the material c axis was taken as normal to the shell elements plane and the b axis
was chosen as the weakest material direction (figure 4.10b).

(a) (b)

Figure 4.10: (a) 2D FE nanoindentation model together with the applied bound-
ary conditions and (b) material directions applied to the elements, different from
the 3D case.

4.6.4 Elastic simulations

At first, the simulations were run with MAT_01_ELASTIC, i.e. linear isotropic
elastic properties, for the indented volume. The aim was to validate the model,
the accuracy of the contact and the relative penetrations.
The material properties chosen were arbitrary i.e., E = 500 MPa and ν = 0.3,
while the indenter was given rigid body properties with realistic elastic paramet-
ers for contact treatment i.e., E = 210 GPa and ν= 0.3.
The results are plotted in figure 4.11a together with the analytical solution from
Sneddon obtained with the isotropic indentation modulus E

1−ν2 . As expected, the
3D simulation with MAT_01 overestimates the Sneddon analytical solution mainly
due to the difference in shape between the conical geometry and the Berkovich
pyramidal shape, and the radial displacement, both not included in the Sneddon
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solution but captured by the FE simulations. Many authors in literature have pro-
posed simple coefficients to correct this discrepancy (see e.g. Hay et al. [132]),
practically used to divide either the FE load-displacement curve or the unloading
stiffness in case of elasto-plastic materials in order to obtain the correct indenta-
tion modulus and the underlying elastic properties.
The correction factor β = 1.034 already introduced in section 3.7.4 is among the
most used coefficients for the correction of the difference in shape, while for the
radial displacement Hay et al. proposed the coefficient γ as function of the equi-
valent indenter angle (70.3◦ for Berkovich indenter) and Poisson’s ratio of the
material. For example, when ν = 0.3, then it outputs γ = 1.067. However, the
corrective coefficients will not be used here since the main goal is to match real
experimental curve by using a FE model that reproduces the real indenter shape
and boundary conditions.
The real elastic properties of Sigraflex® are however transversely isotropic and
therefore MAT_02_ORTHOTROPIC_ELASTIC model is better suited to get closer
to the real behavior. This material model was first given isotropic elastic proper-
ties and compared to the Sneddon solution again in figure 4.11a. Since MAT_02 is
implemented differently on LS-Dyna depending on both the type of solver (linear
or non-linear) and the type of element (shells and solids)4, it was also decided
to assess the differences with an equivalent 2D axisymmetric model that employ
shell elements (axisymmetric formulation).
Using MAT_01 in the 2D model with the same elastic parameters as for the 3D
model gave results basically equal to the Sneddon solution, net of the neglected
radial displacements. And, as expected, the same result is obtained if MAT_02 is
used with the same isotropic elastic parameters as for MAT_01. The corresponding
Von Mises stress fields for MAT_01 simulations for 2D and 3D simulations appear
very similar and radially distributed beneath the indenter tip as shown in figure
4.11b.
However, if MAT_02 is used in the 3D model with the same isotropic elastic para-
meter of MAT_01, the load-displacement curve obtained is very different from that
of MAT_01 for both the 2D and 3D model. This difference is visible for both the
explicit and implicit non-linear solvers, whereas switching to the implicit linear
solver gives the expected result. In the case of shell elements indeed, the linear
behavior is retained even when large deformation are accounted for, while for
solid elements the linear solver is needed to make the material behaving linearly
at large deformation. This otherwise corresponds to the hyperelastic St. Venant-
Kirchoff model.
This can be observed even more clearly also when plugging the orthotropic elastic
properties of table 4.3 into MAT_02 as shown in figure 4.11c. In this case the force-
displacement FE curves are compared with the Sneddon solution obtained with
the Delafargue and Ulm orthotropic indentation modulus and again switching to
the linear solver gives the wanted result. It should be also noticed that there is a
big difference between the explicit and implicit solvers, probably due to the latter

4see LS-Dyna Theory Manual 06/08/22 (r:14765) - section 22.2
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Figure 4.11: (a) Simulations with isotropic elastic material properties. MAT_01
and MAT_02 are compared with the same elastic properties in input. (b) 2D
nanoindentation FE model with axisymmetric shells and comparison of Von Mises
stress fields (MPa) for both 2D and 3D isotropic elastic simulations (MAT_01). (c)
3D nanoindentation FE model: validation with MAT_02 and different FE solvers

being more stable when the material embodies such a large ratio between E11 and
E33.
It is therefore concluded that the 2D approach should be preferred if the model
needs to be validated by comparison with the Sneddon solution. Alternatively, the
3D model should be run by switching to the linear implicit solver which is how-
ever not the best option when non-linearities not derived from the material are
present in the model.

4.6.5 Mesh sensitivity and tip radius effect

In the case considered here, large deformations and hence high mesh distortions
are expected beneath the tip and thus a sensitivity analysis was performed by
changing the element sizes from 50 to 150 nm.
The material model chosen was MAT_24 (piecewise linear plasticitiy model) that
has isotropic elastic-isotropic plastic behavior. The material properties chosen in



98 E. Solfiti: On the modelling of flexible graphite

this case were: E = 500 MPa, ν = 0.3, σy = 0.1 MPa and Etan = 0.001 MPa.
The tangent modulus Etan was given a value close to zero so to have an elastic-
perfectly plastic material. At the same time, the effects of having a large tip radius
equal to 1 µm instead of a sharp vertex were assessed.
The resulting force-displacement curves are shown in figure 4.12a. In the low
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Figure 4.12: (a) Force-displacement curve from elastic-plastic simulations for
different mesh size near the tip and different tip radius. (b) Slope of the force-
displacement curves evaluated at four different force levels.

displacements part, the finest mesh reproduced better the power-law-like shape
of a perfect shallow indenter while at higher displacements the difference in the
curve slope was negligible. The same occurred for the finite radius model, which
however shows a much higher force for the same displacement. This is expected
because of the different contact area function which is larger since the beginning
and requests a larger external force to produce the same displacement.
The slope of the force-displacement curves was evaluated at four different force
values and plotted in figure 4.12b. It is observed that above certain values of the
load (in this case higher than 5 µN) the slopes never differ more than 5% one from
each other regardless of the mesh size and the effect of the tip radius vanishes.
It is therefore important to have a mesh size that is very fine if the goal is to
reproduce reliably the shape of the low displacement region, while coarser mesh
are also acceptable if the goal is to investigate large displacements. The blunt
radius affects the loading curve shape only when the maximum force is sufficiently
low, but shifts the whole curve towards left also at higher force values.

4.6.6 MAT 142: Transversely isotropic crushable foam

Definition of the input quantities

Based on the observations reported in the previous sections, a 3D FE nanoindent-
ation model was simulated by means of the implicit non-linear solver with mesh
size at the tip equal to 150 nm.
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The material model chosen among the ones listed in section 4.6.2, is MAT_142
transversely isotropic crushable foam, currently only implemented for solid ele-
ments5.
This material was developed by Hirth, Du Buois and Weimar [133] to model trans-
versely anisotropic crushable foams. During their analysis, they observed that, un-
til then, the only orthotropic models for low density foams with zero Poisson effect
were MAT_26_HONEYCOMB and MAT_126_MODIFIED_HONEYCOMB.
However, the first showed an issue on the overestimation of the off-axis strength
due to the full uncoupling of each stress component with its own yield strength,
while MAT_142 represents an adjusted version thereof. MAT_126 may represent
a good alternative to MAT_142, but it is left for future works to test and compare
with the results of MAT_142 reported here.
MAT_142 is transversely anisotropic both in the elastic and plastic behavior and
it is characterized by a yield surface that is an adaptation of the Tsai-Wu fail-
ure criterion. The surface hardens or softens as function of the volumetric strain
ϵv = 1 − V

V0
, here considered as equal to the axial strain ϵv = ϵ due to the low

transversal deformation observed in the in-plane and out-of-plane directions. The
requested inputs for this model are reported in table 4.5. Although the problem
under investigation concerns the microscale, here the inputs used are borrowed
from experimental data taken at the macroscale. This constitutes a strong assump-
tion whose validity can only be assessed a posteriori.
For the load curve I11 shown in figure 4.13a, the mechanical model 4.7 proposed
in section 4.4 was used for the negative volumetric strain part in order to have a
smooth input curve and a realistic extrapolation at high volumetric strains. How-
ever, since the material model requested the engineering volumetric strain, the
fitting already shown in section 4.4 was adapted to the engineering stress-strain
curves. The new parameters were:

E = 41.91 MPa H = 0.0009359 MPa K = 166.2 MPa2 n= 14.19 (4.14)

Since it was also of interest to vary the elastic contribution in the out-of-plane
direction, other two curves were given in input. These were simply obtained by
keeping the known fitting parameters in 4.14 except for the elastic modulus, which
was instead doubled and tripled i.e., E33 = 80 MPa and E33 = 120 MPa. The
curves obtained are shown in figure 4.13a. For the positive volumetric strain part,
a very low constant stress value was given so to have a sort of elastic-perfectly
plastic material under tensile load. The value of asymptotic stress was set to 0.3
MPa. Concerning I22 (figure 4.13b), the fitting 3.1 with the values A = 1/2290
MPa−1 and B = 130.78 ·10−6 MPa−2, already reported in section 3.9, was used to
construct the curve for both the positive and negative domains of the volumetric
strain. To test also the potential differences between the tension and compression
behavior discussed in section 4.5.3, the compression part was also scaled in order

5The author tested different element formulations, including shell elements, and observed that
only hexahedral solid elements gave meaningful results.
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E11 Elastic modulus in the out-of-plane direction 40 MPa
E22 Elastic modulus in the in-plane direction 2290 MPa
E12 Shear modulus in the longitudinal plane 1 - 2 646.56 MPa
E23 Shear modulus in the transversal plane 2 - 3 1145 MPa
G Shear modulus for contact 1145 MPa
K Bulk modulus for contact 190 MPa∗

I11
Load curve for nominal axial stress as a function of volumetric
strain

Figure 4.13b

I22
Load curve for nominal transverse stresses as a function of
volumetric strain (I22 = I33)

Figure 4.13a

I12
Load curve for shear stress component 12 and 31 as a function
of volumetric strain (I12 = I31)

Figure 4.13d

I23
Load curve for shear stress component 23 as a function of
volumetric strain

Figure 4.13d

IAA
Load curve for nominal off-axis stress as a function of volu-
metric strain

Not assigned

σy Yield strength (in all the directions) 0.001 MPa
µ Damping coefficient for tensor viscosity 0.05

*This was estimated according to Summerscales et al. [126].

Table 4.5: Inputs for MAT_142. It must be noticed that the material axes for
MAT_142 are different from the material axes used for MAT_02. In MAT_142,
the out-of-plane axis corresponding to the weak direction was along direction 1
instead of 3 (compare with figure 4.9c).

to have the value of the initial slope in the negative strain domain equal to a typ-
ical elastic modulus value of polycrystalline graphite (see e.g. [52]).
Due to the assumption of transverse isotropy, the in-plane shear modulus is de-
pendent on the in-plane tensile modulus, but the entire shear stress-shear strain
curve is not known from the experiments. This was assumed as having a linear be-
havior with slope correspondent to the elastic in-plane shear modulus G12 = 1145
MPa. Consequently, since the in-plane compression curve was scaled for testing
purposes, also the corresponding shear in-plane curve had to be changed, and a
mean value between the tension and compression in-plane moduli was assigned
per each case 4.13c.
The out-of-plane shear curve curve in figure 4.13d was also not known from the
experiments and was likewise assumed as linear with slope equal to the initial
shear modulus G23 = 646.52 MPa. Two additional values of the slope were tested,
the first corresponding to the slope of in-plane shear curve and the second corres-
ponding to the in-plane tensile modulus.
Finally, all the curves were let to start from σy = 0.001 MPa in order to simulate
the vanishing elastic domain.
Not clear indications were given in the user manual about the unloading behavior
but this was directly observed by simulations of single solid elements and was
found to be linear elastic with the unloading moduli corresponding to the initial
elastic moduli.
The simulations were run by changing only one quantity at a time while keeping
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Figure 4.13: MAT_142 input curves: (a) I11, (b) I22, (c) I23 and (d) I12. See also
table 4.5.

the others equal to the basic case: this corresponds to case where the lowest value
of the elastic moduli is considered in each direction as well as R = 0 µm. The tip
radius was increased up to 5 µin this session to exaggerate the effects observed in
section 4.6.5.

Results

The resulting load-displacement curves are displayed in figure 4.14a to 4.14d.
With respect to the basic case, it can be observed that:

• increasing the slope G12 of the out-of-plane shear curve I12 has a very low
effect on the maximum load and on the displacement recovered after un-
loading (figure 4.14a),
• increasing the in-plane compression initial modulus ( ∂ σ∂ ϵ

�-
does not lead

to any sensitive effects on the maximum load (figure 4.14b) except for the
highest modulus case. This deviated slightly and showed a much larger non-
recovered displacement. This case is however extreme and not realistic be-
cause of the unloading being fully elastic while the underlying elastic prop-
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erties not representing to a stable material (violation of the stability condi-
tions discussed in section 4.5.2). The loading part instead develops entirely
in the elasto-plastic domain of the material where the stability conditions
are not required anymore,
• increasing the tip radius from 0 up to 5 µm leads to a noticeable increase in

the maximum load (figure 4.14c). The slope of the unloading curve together
with the recovered deformation are instead untouched. This is in line with
what is usually observed in nanoindentation tests where the unloading is
assumed fully elastic and the elastic properties extracted are not dependent
on the tip radius [131],
• increasing E33 elastic modulus has the major effect on the loading curve

(figure 4.14d). Also the slope after the load reversal is strongly increased
while the permanent deformation is basically the same for the three cases.
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Figure 4.14: Numerical force-displacement curves from MAT_142 simulations:
(a) variation of the out-of-plane shear curve I12, (b) variation of the in-plane
curve I11, (c) variation of the tip radius, (d) variation of the out-of-plane curve
I33.
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Discussion

The first challenge encountered while running these simulations was the strong
difference between the in-plane and out-of-plane stiffness of the elements being
compressed under the tip. The optimal mesh near the tip was found after several
iterations and was constituted of elements with aspect ratio between the out-of-
plane and in-plane sizes higher than one, so that they could deform largely in the
out-of-plane direction while avoiding volumetric locking and negative volumes.
Observing 4.15, it can be seen that the equivalent stress field extends mainly along
the in-plane direction with respect to an equivalent isotropic case (compare with
figure 4.11b) and the perturbation follows the stiffest material axes while remain-
ing narrow along the weak direction axis. After the unloading, the plastic imprint
is well visible and follows a convex surface profile probably resulted from the pre-
dominant recovery of the radial deformations.
Although the nanoindentation problem originates a 3D stress state that involves

Figure 4.15: Von mises stress distribution beneath the indenter tip. On the left
side, front and trimetric view of the simulation when tip is pushed down to 1
µm. On the right side, front and trimetric view of the simulation after complete
unloading.

also the contributions from the in-plane directions, the most influencing mater-
ial quantity was the out-of-plane elastic modulus E33. To assess more in depth
this contribution, the slope of the loading curve at different loads was measured
by evaluating the derivative of a polynomial fitting to both the simulation curves
and to the experimental curve (figure 4.16a). The experimental curve slope lays
in between the slopes corresponding to E33 = 80 MPa and E33 = 120 MPa. This
means that either the real material is denser and stiffer near the surface, as already
discussed in section 3.2, or that it undergoes densification due to pore closures
while being indented. According to figure 3.19a, the modulus should increase ex-
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Figure 4.16: (a) Slope of the force-displacement curves reported in figure 4.14d
at four different force levels. (b) Effect of 5 µm tip radius and E33 = 120 MPa.

ponentially as function of the relative density. For example, an increase from 30
to 60 MPa would correspond to a relative density increase from 0.44 to 0.6. It is
therefore reasonable that, if the volume under the indenter densifies up to 0.7 or
0.8, the modulus could increase up to 120 MPa.
However, the gap that is missing to match the experimental behavior is still large.
Although the slopes of the simulation and experimental curves are similar, a big
shift backward in the displacement axis would be needed to improve the match-
ing (see figure 4.16b). This could be attributed to an effect of the tip radius, as
shown in section 4.6.5, which would act exactly as a shift along this axis. Indeed,
keeping E33 = 120 MPa, and increasing the radius up to the unrealistic value of
5 µm, would actually lead a very good match to the loading path. Measurements
of the real tip radius are unfortunately not available but this is unlikely to deviate
so much from R = 1 µm inferred in [97]. Therefore, other material parameters
related to the local porous microstructure may have played a similar role and may
have originated a larger contact area since the early beginning of the indentation.
The unloading path remains untouched with respect to the case for R = 0 µm.
This deviates from the shape of the experimental curve but shows a similar ra-
tio between the residual and maximum deformations. The underestimation of the
unloading slope also defined contact stiffness can be ascribed to even further stiff-
ening of the real material at peak load or to a different equivalent angle of the
plastic imprint with respect to the one obtained in the simulation.
In summary, MAT_142 equipped with stress-strain curves borrowed from macro-
scale tests can be considered as a good initial guess for FG modeling and mech-
anical properties investigation. Further experiments such as macro-indentations
at different length scale and with different shapes of the indenter tip could be
a useful resource to proceed with this investigation and get further refinement
of the material model parameters without stepping too far from the observations
gathered in this work. Other material models such as MAT_126 may also be tested
and compared with MAT_142.
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4.7 Challenges and potentialities of a micromechanical
model

The goal of a micromechanical model would be to obtain homogenized properties
that are better estimates than those found in this work by macro-scale approaches
or that could be used for example for FE multi-scale simulations.
A fundamental parameter for the design of a micromechanical model is the size of
the representative volume element (RVE) for the microstructure. This should be
large enough to reproduce the global mechanical response but as small as possible
to reduce the simulation time. Since the nanoindentation simulations could some-
how reflect the behavior of Sigraflex® at macro-scale, it is likely that the volume
of material as large as the one compressed under the indenter tip is representative
of FG mechanical response.
Observing the FE simulations, this may be roughly represented by a volume with
height from 10 to 15 µm in the out-of-plane direction and widths from 20 to 30
µm in the in-plane directions. The image analysis in section 3.2 was performed
on pictures of the cross-section area having dimensions in the same order of mag-
nitude (40×50 µm2), and gave as estimated porosity a value around 0.15, much
smaller than the global porosity that is around 0.5. On one side, this does not sup-
port the previous argument about the RVE size, while on the other side it could be
simply due to the difference between the 2D and 3D pores distributions that is not
captured by image analysis. Therefore, different techniques capable to both de-
tect pore sizes as low as∼10 nm and capture three dimensional features would be
needed, such as slice-and-view FIB-SEM scanning [134] or computed tomography
with higher resolution.
In this work, a simple 2D micromechanical model based on the FIB-SEM image
analysis was attempted to assess the benefits and challenges of a potential 3D mi-
cromechanical model to be developed in future works. A possible geometry for
a representative area element was rendered by post-processing the FIB-SEM im-
ages of section 3.2; the model shown in figure 4.17a was constructed by means
of conversion from pixels to coordinate performed in MATLAB® and by exploiting
the boolean geometry capabilities of Ansys APDL®. The material was assumed
as isotropic elastic-perfectly plastic (MAT_24) with elastic properties in the order
of magnitude of those of polycrystalline graphite: E = 10 GPa and ν = 0.3. The
yield strength was arbitrarily set to 1 MPa. The boundary conditions included plain
strain in the shell elements plane and static uniaxial compression applied in the
out-of-plane direction. A FE model of this type could easily run in a short solution
time but carried so many uncertainties that the solution at this stage could not be
considered as reliable. Due to time constraints related to the project at the time
of the model development, it was decided to prioritize the macro-scale approach
while leaving the refinement of the micromechanical model for future work. A
short discussion is reported anyway for completeness.
A first observation is that a large number of small pores could not be well re-
produced in the geometry due to the insufficient accuracy of the pixel-coordinate
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(a) (b)

Figure 4.17: (a) Geometry of 2D micromechanical model based on image analysis
of FIB-SEM investigation. (b) Von Mises stress field after compression along the
out-of-plane direction.

conversion. Most of them corresponded to less than three pixels and their contours
were uncertain. The limitations of this type of image analysis are thus related to
the possibility of capturing with the same amount of pixels the large and the tiny
pores randomly mixed together inside the material. Many more pictures should be
taken at different magnifications and analyzed separately so that, after re-scaling
and composition, the representative element geometry could be reproduced more
accurately.
The geometry as it appears in figure 4.17a corresponds to a material that is porous
and continuously connected such as a disordered foam. FG is instead the result
of a crumpling process that put the micro-sheets in contact without creating new
linking forces6. Many regions that appear as continuously connected contain in-
stead non visible contact surfaces where none or weak links exist. The modeling
of all these contacts with any FE software would probably lead to an enormous
increase in the simulation time but would include the fundamental structural dif-
ference with a continuous foam microstructure.
Finally, it should be considered that the micro-sheets are anisotropic and that this
property is probably not negligible for the correct simulation of the homogenized
mechanical properties. This should be implemented in any FE mesher by orienting
the initial material directions of each element along the actual crystalline axes fol-
lowing the micro-sheets mid-surface curvature (in a similar way as shown in figure
4.1). In this way, the material properties of graphite single crystals could also be
used and this basically constitutes the main advantage of such a micromechanical
model whose role would be to only replicate the contribution of the structural
deformation.
A solution for the correct reproduction of the structure would be to first generate
the geometry in the uncompressed configuration e.g., a single expanded worm or
a single honeycomb cell with carbon walls, and then compress it by leaving the

6Actually, in folding of graphene sheets, new Van der Waals forces may be recreated at the
contacts and act as stabilizers for the folded configuration [118]
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folds and the creases to generate freely according the random crumpling dynam-
ics. This is somehow similar to what has been done in many crumpling materials
investigation where techniques such as molecular dynamics or discrete elements
were employed to simulate the crumpling mechanism of single elastic and elasto-
plastic thin sheets [117, 135]. This procedure would serve to the only microstruc-
ture generation, which could now be tested under the desired load conditions.
With the recent advances in terms of computing capabilities, it is not excluded
that also FE would succeed in solving similar problems in reasonable simulation
times. In this case, to know the size of a representative element would be cru-
cial in speeding up the solution. Many random configurations of two interacting
micro-sheets could be simulated under compression loading so to obtain several
crumpled volumes with geometrical properties that can be correlated to the mech-
anical properties, perhaps in a statistical way, and compared with experimental
data. Experiments such as in-situ compression tests on the same line as the the
ones shown in section 3.5 would serve as model validation.
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5.1 Concluding remarks

An extensive characterization of Sigraflex® (ρ = 1 g/cm3) and FG have been
presented in this thesis.
A comprehensive review of the known FG properties was first presented. In par-
ticular, the experimental observation and data from microstructural investigations
were collected and presented. The latter was described as strongly inhomegeneous
and anisotropic, with pores having sizes ranging from a few nanometers up to a
few micrometers, and shapes mainly flatten along the in-plane directions. The
micro-sheets constituted the basic structural elements and their crumpled con-
figurations were considered as responsible of the aggregation forces developed
during the compaction process.
The mechanical properties were collected and compared at different densities.
The density was observed to be the main design parameters for FG sheets as af-
fecting both the sheet stiffness and the ultimate strength. The thermal properties
such as the heat capacity and the thermal expansion were found to be quite similar
to those of crystalline graphite given the high content of carbon (> 98 %), while
the conductivity was comparable to that of pyrolytic and polycrystalline graphite.
The review outlined a consistent lack of quantitative data obtained by direct in-
vestigation of the microstructure, such as image analysis, especially at the dens-
ity of 1 g/cm3. This aspect motivated the second goal of this work established
in the Introduction i.e., to find an experimental technique that could allow for
the quantitative evaluation of the microstructure. The FIB-SEM investigation per-
formed during the experimental campaign was applied to FG for the first time,
and was recognized as a successful technique in this sense, finally allowing for
the measurement of the micro-sheet thickness, the 2D pores’ sizes and shapes.
The micro-sheets were clearly visible and they were estimated to be made of 120
- 360 carbon basal planes.
Moreover, some portions of the milled section (100 × 150 µm) that were the least
affected by curtaining were chosen for image post-processing in 2D. The micro-
structure was found to be made of aligned and misaligned regions: the first ones
were composed of bundles of well-oriented micro-sheets surrounded by thin and
elongated pores. The second ones had bigger pores (Req = 0.13 µm) and mainly
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contributed to 85% of the overall porosity. In general, all the pores were found to
have an average 2D aspect ratio equal to 0.384, as it is expected after a compact-
ing production process.
Subsequently, tensile tests were performed on Sigraflex® in the in-plane direction
both in-situ and at the macro-scale. The initial tangent modulus was found to
be 2290 MPa. Post-mortem fractographies performed by SEM on tensile-fractured
specimens highlighted that the interlocked particles inside the material were mainly
torn apart near the boundaries. However, it was difficult to define whether the
micro-sheets or the interlocking arrangement were the weakest link.
The stress-strain curve observed in the out-of-plane compression was observed to
be extremely different from the in-plane tensile curve. This showed three stages
of deformation: the initial toe, the transition and the densification. The deform-
ation mechanism behind the initial toe was attributed to a structural component
of the strain, in analogy to uniaxial compression tests of crumpled and entangled
material. The transition region was markedly different from a typical flat plateau
usually observed in foam compression and was attributed to a predominance of
graphite-like dislocation mechanism.
During cyclic loading, FG showed discrete memory behavior similar to rock and
soils, nearly zero yield strength typical of graphitic material and relatively large
areas of the hysteresis loops. The initial tangent slope of each cycle was observed
to increase from 30 to 60 MPa while the relative density was increased from 0.45
to 0.6.
Finally, the ratio of the residual deformations was estimated to have constant value
(0.083) along the strain domain tested. This could be also considered as a rough
approximation for the plastic Poisson’s ratio.
In summary, FG behavior could be described at three different scales of length:
at the micro-scale, hundreds of carbon basal planes constituted the microstruc-
ture of a single micro-sheet and the deformation mechanism was ascribed to the
crystalline dislocations. At the meso-scale, the micro-sheets arrangement resul-
ted from severe crumpling after the compaction thank to ease of sliding of the
basal planes, and deform locally in a way similar to crumpled materials. At the
macro-scale, contact forces due to folds and wrinkles act likewise cohesive forces
in compacted powders and keep the micro-sheets as well as the particles aggreg-
ated.
In the modeling section, a simple 1D phenomenological model was proposed to fit
the experimental compression curves and to support the assumptions about the
decoupling of underlying deformation mechanisms under compression i.e., one
from the graphitic nature and the other from the crumpled nature. The model
was also used subsequently in the implementation of the out-of-plane compres-
sion curve for the FE nanoindentation model.
From the 1D dimension, the focus was then shifted to the 3D dimensions: the five
elastic parameters E11, E33, G23, ν12, ν23 needed to build the elasticity stiffness
were found and inferred by simple assumptions based on experimental observa-
tions.
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However, FG showed a non-linear behavior in both the in-plane and out-of-plane
direction and the extension from 1D to 3D was found to be not straightforward.
The most practical solution was to adapt a material model already implemented in
the LS-Dyna materials library and in principle targeted for transversely isotropic
crushable foams.
To test the accuracy of this model, a 3D FE nanoindentation model was built with
the aim to reproduce the typical experimental force-displacement curve extrac-
ted from the nanoindentation tests. The six stress-strain curves requested in input
were partially taken from macro-scale tests and partially assumed along the same
line as the elastic parameters. The elastic modulus E33 was found to be most af-
fecting quantity, and the simulations were able to predict the slope of the loading
curve only when E33 was increased from the initial value of E33 = 40 MPa up to
120 MPa. This was attributed the a local densification of the material caused by
the indentation itself. Increasing the tip radius from 0 µm to 1 µm and even up to
5 µm improved the matching, but not enough to attribute a major contribution to
this parameter. The unloading path could not be reproduced, and this was prob-
ably due to a different effective angle of the plastic imprint.
Finally, the challenges related to a potential micromechanical model were dis-
cussed based on observations about an exploratory 2D micromechanical model.
The computational cost of such a modeling was considered as demanding, but
since, to the knowledge of the author, no constitutive material model is dedicated
to the modeling of crumpled materials, the potential of a micro-mechanical model
capable to give an homogenized solution would be extremely high and of interest
also in different applications of crumpled materials.

5.2 Suggestions for future works

The next experimental steps may help to enlarge the knowledge about FG proper-
ties and perhaps reveal the properties that were only guessed in this work. These
may include:

• In-plane compression testing of FG. The goal would be not only to extract
the compression modulus (that could be done by ultra-sound techniques)
but the whole stress-strain curve. An idea for the setup can be found in
ASTM D695 [87]. Here, a support jig for thin specimens is recommended
and, given the smoothness of FG external surfaces and the low lateral ex-
pansion expected, the approach is worth to try. It is not excluded that also
flexural tests maybe of help for indirect observation of different moduli in
tension and compression.
• In-plane shear tests to measure G12 and the shear stress-strain curve. Some

possible tests configurations could be two/three rails or Iosipescu-type tests
(e.g. [136]).
• Out-of-plane shear tests to measure G23. This correponds to the delamina-
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tion mode of deformation and can be more challenging to measure due to
the fragility of the material. Some possible test options could be the double-
notched specimen test described in ASTM D5379 [137] or the torsional test
on a rectangular-based specimen as described in [138–140]. Other suitable
tests may include dynamic tests based on sonic resonance of lamina-type
specimens, for which dedicated standards on graphitic materials there exist
(see e.g. ASTM C747 [141] and related).
• measurement of ν12. This can be found by measuring the lateral deform-

ation in a uniaxial tension test in the in-plane direction by Digital Image
Correlation. If possible, with a similar setup proposed also for in-plane com-
pression, ν12 should be measured also under in-plane compression.
• measurement of ν31. This can be found by measuring the lateral deform-

ation in a uniaxial compression test along the out-of-plane direction and
measuring at the same time the lateral deformation along the in-plane dir-
ection by Digital Image Correlation. This could be done by stacking squared
specimens until a cubic volume is obtained so to have a large imaged area.
The main unknown is about the large deformation expected and hence the
reliability of the spray pattern to capture it without being damaged.
• a substitute test to replace the nanoindentation in the modeling validation

task. This can be a macro-indentation tests with the indenter tip much lar-
ger than a Berkovich tip (such as a typical hardness test). This is to make
sure that no size effect is involved in the testing. Indentation tests are often
employed for foam FE model validation such as in [133, 142] and may use
both spherical, pyramidal or flat tip. Here a limitation would be that the
sheet thickness is limited to 2 or 2.5 mm, and hence, for very deep indent-
ations the force-displacement may be affected by the rigid floor below the
specimen. But again, this could be solved by stacking two or more sheets.
• nanoindentation tests that can be a useful tool to extract FG orthotropic

properties. To decouple the contributions of the elastic moduli from each
direction, it is suggested to indent FG along the in-plane direction. (The
same could be done for the macro-indentation test mentioned above). The
limitation here can be given by the surface roughness observed after the
specimen cutting with water jet machining. It is noticed however that as-
provided Sigraflex® sheets shows a fine lateral surface, probably sufficient
to obtain reliable force-displacement curves.
• FIB-SEM slice-and-view technique or µ-CT to reconstruct a volume of ma-

terial at least as big as 50× 50× 50 µm3,
• the thermal properties of Sigraflex® . A thermo-mechanical tests can be ex-

tremely valid to quantify the effect of a fast application of thermal load. This
should be supported by adequate equipment such as a high-temperature
camera, capable to measure the temperature field and the temperature gradi-
ent. The issue of specimen emissivity observed in this work may be solved
by spray painting the specimen with an adequate absorbing paint that may
also act as base paint for the Digital Image Correlation speckle.
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Some ideas for future modeling steps are instead listed here:

• Compare MAT_126 (modified honeycomb) and MAT_142, preferably using
macro-scale tests for validation, such as the last proposed in the previous
list. Refine the material parameters in input with the experimental results
from the previous list.
• Implement the Jones and Nelson model in a user defined subroutine and

compare with the abovementioned material models upon loading condi-
tions. To model the unloading implies that a criterion to account for plastic
internal variable should be also implemented but this is non trivial and fur-
ther theoretical knowledge must be developed previously. Perhaps, a modi-
fication of the Ramberg-Osgood implementation in Abaqus targeted to edit
the incompressibility of the material under plastic flow may be a good start-
ing point,
• Use the volume reconstructuted by FIB-SEM slice-and-view or µ-CT to build

a micromechanical model capable to replicate the crumpled meso-structure.
This can be not trivial given the large amount of contacts that may not be
captured after the reconstruction.
• Improve the knowledge about crumpled materials and ensure whether the

theory and the means used in the investigation of crumpled materials could
be used to ease the FG modeling. For example, the excessive thermal expan-
sion observed in the HiRadMat experiments may also be seen as a structural
deformation mode, that can be explained by the crumpled meso-structure.
Moreover, since crumpled materials have mechanical properties that are
well-reproducible despite the chaotic microstructure, it is expected that a
few basic mechanisms govern the crumpling dynamic and hence a few stat-
istical parameters may suffice to represent a crumpled geometry. If it could
be demonstrated that a FG micro-sheets behave as a crumpled sheet, a mi-
cromechanical model could be even avoided.
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