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Preface  
 
 
 
This thesis is written to fulfill the requirement for the Ph.D. in Petroleum Engineering at the 
Department of Geoscience and Petroleum, Norwegian University of Science and Technology 
(NTNU). The research work discussed in this thesis was conducted for the past 3 years, from 
November 2019 until November 2022. It is a part of BRU21 – NTNU Research and Innovation 
Program on Digital Automations for the Oil and Gas Industry under the program area of Reservoir 
Management and Production Optimization. This research is carried out under the supervision of 
Associate Professor Dr. Ashkan Jahanbani Ghahfarokhi from the Department of Geoscience and 
Petroleum and the co-supervision of Professor Dr. Lars Struen Imsland from the Department of 
Engineering Cybernetics at NTNU. The main goal of this study is to formulate a fundamental 
methodology that can be implemented to build data-driven models with the aid of machine learning 
techniques to solve reservoir management issues. Therefore, most of the case studies presented are 
discussed in the context of petroleum reservoir engineering. This doctorate thesis is prepared in 
paper-based format in which 8 research journal articles are compiled. It consists of 4 chapters that 
aim at providing clear ideas about some important concepts to the readers before perusing the journal 
papers.  
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Abstract 
 
 
 
This Ph.D. thesis consists of 8 papers that summarize the main contents of the research work done 
over the past 3 years. Due to the ability of machine learning (ML) in capturing high nonlinearity, the 
thesis mainly touches upon its use in data-driven modeling to provide aids in reservoir management. 
Data-driven models are referred to as “proxy models” as they act on behalf of the reservoir simulator. 
Proxy models are deemed practically useful if they can provide fast and desirably accurate solutions.   
 
In this thesis, a survey on the use of ML and metaheuristic algorithms in developing proxy models 
for reservoir simulation was presented to enlighten the readers. We also explained the methodology 
of proxy modeling with an associated case study, viz. the waterflooding process. The proxy modeling 
of a synthetic reservoir model was first formulated on which further works were done as 
improvements. These improvements, including the integration of sampling techniques and the use of 
more complex reservoir models, proposed the fundamentals of the proxy modeling methodology in 
more realistic application cases. Upon the completion of these steps, adaptive sampling and retraining 
were applied to address the geological uncertainties. Also, two classes of proxy modeling, namely 
local and global proxy modeling, were implemented to handle optimization problems with higher 
dimensions.  
 
Furthermore, additional works were illustrated to provide a scaffold for the maturity of the 
methodology. These works pertain to research on applying ML methods in predictive modeling and 
a decision analysis framework. One of them illustrated the establishment of ML-based predictive 
models with splendid predictability. The work also includes a discussion about the steps of predictive 
modeling for well production forecast based on real field data. The other one displayed coupling of 
ML with a mathematical algorithm to approximate the Value of Information that was used for 
optimization under uncertainties. These studies are not only related to those described earlier but also 
illustrate the robust application of machine learning. In summary, this research project portrayed the 
establishment of a methodology that could yield proxy models to facilitate the resolution of reservoir 
management issues with less computational efforts as compared with reservoir simulator without 
compromising the accuracy.  
 



2 
 

 
 
 
 

Chapter 1  
 
 
 

Introduction 
 
 
 
This Ph.D. thesis is a summary of the results obtained from research work done over the past 3 years. 
This research work is part of the BRU21 program that aims at generating a value chain throughout 
the oil and gas industry by providing digital and automation solutions. The title of this thesis is Data-
Driven Reservoir Modeling: Application of Proxy Models in Reservoir Management under the 
program area of Reservoir Management and Production Optimization of BRU21. As the title implies, 
the overall goal of the research work is to outline a framework of methodology that offers an 
alternative solution to reservoir management (RM). This alternative solution is targeted to be fast and 
within a good level of accuracy. Therefore, this solution (using machine learning) can provide 
convenience especially if the RM plan needs to be updated quite frequently. Apart from this, this 
research places a certain degree of emphasis upon the investigation of the use of machine learning in 
predictive modeling and resolving sequential decision problems. The relevant details will be 
uncovered later.   
 
With the rapid development of digitalization in STEM (science, technology, engineering, and 
mathematics), many researchers and engineers have begun exploring and researching machine 
learning as one of their research domains. This motivates the employment of machine learning, an 
epitome of data-driven methods, as an alternative approach to resolve any sophisticated engineering 
problem. In this case, solving optimization problems in reservoir management generally have a high 
computational footprint. Data-driven modeling was thereafter suggested to provide a computationally 
cheap and desirably accurate solution. Therefore, a term called “proxy modeling” has been coined to 
represent these data-driven models. In the context of reservoir simulation, these proxy models act on 
behalf of the reservoir simulators to yield fast solutions.  
 
In Paper 1, a survey of the use of ML and metaheuristic algorithms in building machine learning-
based proxy models for reservoir simulation was conducted. Machine learning-based proxy model 
was termed intelligent proxy model in the paper. Numerous literature that considered the 
implementation of machine learning and metaheuristic algorithms in intelligent proxy modeling in 
different applications of reservoir simulations were discussed. For the pertinent details, refer to Paper 
1. Then, Paper 2 generally illustrated the proxy modeling of a fractured reservoir model, which was 
considered a plain-vanilla case, on which further works were done as parts of Papers 3 to 6 to achieve 
higher maturity. In these four papers, the sampling techniques were demonstrated to be integrated 
into proxy modeling to do well control optimization with a relatively higher level of complexity as 
compared to Paper 2. Besides that, in Papers 3 and 4, a more sophisticated reservoir model was 
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utilized as compared to Paper 2. Metaheuristic algorithms were also incorporated in the whole 
framework to do the well control optimization.  
 
Upon developing a general workflow of methodology that considers the training of proxy models 
and optimization, small steps of improvements were performed to increase its applicability. One of 
the refinements done was to consider geological uncertainty in which adaptive sampling was 
employed to modify the training database and retraining was conducted iteratively. Refer to Paper 5 
for the relevant information. In addition, under the circumstance of a more realistic reservoir model 
and optimization problem with higher dimensions, two classes of proxy modeling were proposed in 
which the initially established proxy models were coupled with optimization algorithms to generate 
a new database to develop new proxy models. Paper 6 presents the respective details.  
 
It is of great importance to remind the readers that proxy modeling can be used for predictive 
modeling. This is because proxy models need to possess satisfying prediction performance to be 
ready for further use, including optimization. So, in this Ph.D. research, we are also motivated to 
further investigate the use of machine learning to leverage its potential in creating predictive models 
that can be insightful to the overall methodology of proxy modeling. Paper 7 is the product of this 
investigation in which, the developed predictive models were trained based on real field data by using 
derivative-based and derivative-free algorithms for in-depth comparative studies. Moreover, another 
intriguing task was done to harvest the potential of ML for the analysis of Value of Information (VOI: 
an important decision analysis tool to resolve sequential decision problems). VOI served as a 
guidance to identify the optimal time to initiate waterflooding in different geological settings of a 
benchmark reservoir model. Paper 8 consists of the corresponding explanation and details.   
 
In most of the tasks presented in this thesis, considering a practical illustration of the methodology 
of proxy modeling, we selected waterflooding optimization case study problem that is primarily 
associated with reservoir management. By doing so, we hope that reservoir engineers and researchers 
can be inspired to fathom the usefulness of machine learning in reservoir engineering. Despite having 
refinements throughout this Ph.D. journey, limitations were explained with possible 
recommendations to offer insights to other engineers and researchers to explore this topic to a greater 
extent.  
 
After this brief introduction, Chapter 2 discusses the important concepts and theories that the readers 
must grasp before reading the papers compiled. This discussion aims at providing sufficient 
fundamentals before diving into the details. Chapter 3 briefs the summaries of each of the papers 
compiled. This chapter enables the readers to have an entire perspective of the development of this 
thesis. Additionally, an understanding of the context of each paper can be established by referring to 
this chapter. Chapter 4 summarizes the main findings and concluding remarks about this thesis. 
Several proposals are also mentioned in this chapter. Finally, since this thesis is paper collection-
based, all the relevant papers that contribute to this thesis are compiled at the end.  
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Chapter 2 
 
 
 

Background of Concepts 
 
 
 
This chapter aims at briefing the readers on the background of some concepts, which have been 
implemented to scaffold the framework of the methodology proposed in this work. Having a 
profound understanding of these concepts enables the readers to have a good rhythm of perusal of 
this thesis. Generally, this chapter begins with a general introduction to Reservoir Management. 
Thereafter, there is an explanation about other technological toolboxes, including numerical reservoir 
simulation and data-driven models, applied to resolve reservoir engineering issues. It also outlines 
other topics, such as data science, optimization, and decision analysis, that are used to facilitate the 
foundation of the framework.  
 
 
 

2.1 Reservoir Management 
 

Reservoir Engineering is a field that implements scientific knowledge to understand fluid flow 
through porous media and the physical properties of these media (Dake, 1978). Understanding the 
porous media enables the reservoir engineers to formulate a development plan to produce the 
reservoir fluids more effectively and economically. To accurately decipher the reservoir, we require 
multidisciplinary knowledge, including (but not limited to) fundamental physics and chemistry, 
thermodynamics, geology, and applied mathematics (Craft et al., 1991; Satter and Iqbal, 2016a).  
 
The combination of these knowledge domains yields different technological toolboxes to be utilized. 
These toolboxes are transient well test, log analysis, conventional core analysis, computed 
tomography scan, fluid analysis, reservoir simulation, decline curve analysis, material balance, 
stream tube model, geo-statistics, enhanced oil recovery (EOR) technology and screening, and so 
forth (Satter et al., 1998; Thakur, 1996). Having these toolboxes facilitates the reservoir engineers 
to perform their responsibilities, including interpretation and integration of a large amount of 
reservoir data, characterization of the geological properties, estimation of reserves, forecasting of 
production, economic analysis, visualization of reservoir fluid flow, and PVT analysis of reservoir 
fluid samples. The job scope of reservoir engineers is integral to field development planning as cost-
effective reservoir depletion schemes can be recommended to optimize the recovery.  
 
Concerning this, the definition of Reservoir Management (RM) is established not only to clearly 
reflect the responsibilities of reservoir engineers but also to illustrate the general approach that is 
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implemented to smoothen the process of managing a reservoir. RM shares different definitions by 
different authors (Robertson, 1989; Thakur, 1996; Wiggins and Startzman, 1998). However, its 
definition generally gravitates to the application of state-of-the-art technology, economic and labor 
resources to maximize the profit through the production of fluids from a reservoir and simultaneously 
minimize the operating and capital costs, starting from discovery phase to abandonment. As 
discussed in the literature (Satter and Iqbal, 2016b), the approach to RM is by formulating a strategy 
to achieve a purpose. This strategy is then accomplished by developing a plan, implementing, 
monitoring, and evaluating the results. In this aspect, the details of developing a plan for a reservoir 
are made up of different procedures as shown in Figure 1. As the plan is implemented, monitoring 
step ensures the plan is performed accordingly. The results of the plan would then be gathered. Upon 
assessing the results, if the reservoir engineers find them unsatisfactory, the revision of the plan is 
done (also known as updating step). This process is dynamic and as additional data is acquired, the 
RM plan is further enhanced with new corresponding changes. RM plan ought to be periodically 
updated to lead to better results.  
 
 
 

 
 

Figure 1. Different procedures of Reservoir Development Plan. Adapted from (Satter and Iqbal, 
2016b). 

 
 
Some elements of RM include production optimization, history matching, uncertainty analysis, 
production prediction, etc. The readers are referred to Figure 2 for other elements of RM. RM also 
involves selecting available options, for instance, whether to proceed with an EOR operation or not. 
This option selection process is simply decision-making (DM) for which the details are explained in 
Section 2.7. In addition, the global effort of carbon emission reduction and energy transition has 
tweaked the definition of RM in which Carbon, Capture, and Storage (CCS) is considered a “new” 
element of RM.  
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Figure 2. Reservoir Management. Adapted from (Satter et al., 1998). 
 
 
 

2.2  Waterflooding 
 
In this thesis, waterflooding analysis involves the use of reservoir simulation that is one of the main 
RM elements that would be focused on. Waterflooding is one of the Improved Oil Recovery methods 
that has long been used to improve hydrocarbon production. Waterflooding refers to injecting water 
into reservoirs to increase the recovery of hydrocarbon. The earliest waterflood could be traced back 
to an accidental incident that occurred due to poorly plugged wells or leaks from casing (Callaway, 
1959). The respective advantages harvested have motivated the operators to inject water intentionally. 
Thereafter, waterflooding has been practiced and standardized as its mechanism is better understood. 
Apart from maximizing the recovery, the economics of waterflood needs to be considered to make a 
waterflooding plan successful. Some pieces of literature (Brundred and Brudred  Jr., 1955; 
Muskat and Wyckoff, 1934; Paul Willhite, 1986; Satter and Iqbal, 2016c) discuss the theoretical 
framework and comprehensive economical assessment of waterflooding.  
 
The main challenge with waterflooding is fundamentally how to optimize it. Such an engineering 
problem is generally termed “waterflooding optimization”. Different techniques can be applied for 
waterflooding optimization and examples of these techniques are zonal water injection, changing the 
direction of water injection, water shut-off, subdivision of the injection-production unit, and cyclic 
water injection. The readers are encouraged to peruse this reference (Lu and Xu, 2017) for the 
relevant rich details of these techniques. In addition, finding an optimal set of controls on the injectors 
(and/or producers) under waterflooding process is another optimization example. This optimal set of 
controls enables the waterflooding plan to be more cost-effective considering the oil price and the 
relevant costs of initiating waterflooding. This optimization example is the focus of this thesis.  
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To successfully conduct waterflooding optimization, reservoir engineers need useful working tools 
to forecast hydrocarbon production. Throughout the development of the petroleum engineering, there 
have been mainly three tools built to predict hydrocarbon production, viz., material balance equation 
(MBE), decline curve analysis (DCA), and numerical reservoir simulation (NRS). In general, NRS 
is deemed more robust than both MBE and DCA in capturing the physical system in the reservoir as 
it can be utilized for one-, two-, and three-phase system (Odeh, 1969). Moreover, NRS is more 
pertinent and useful to be employed to analyze waterflooding plans because it can better describe the 
reservoir performance under different operating conditions. Hence, NRS is the primary tool applied 
in this thesis. The details about NRS will be revealed in the following section. Interested readers are 
referred to the suggested materials for a more comprehensive understanding of MBE (Craft et al., 
1991; Dake, 1978) and DCA (Agarwal et al., 1998; Arps, 1945). 
 
 
 

2.3 Numerical Reservoir Simulation 
 
Simulation generally means the representation of physical models through salient mathematical 
equations. In the oil and gas industry, the simulation models are circumscribed to hydrocarbon 
reservoirs. The term “Reservoir Simulation” hereby has been coined in the past few decades. 
Reservoir simulation fundamentally applies well-known reservoir engineering equations, which are 
solved by numerical methods, to model the fluid flow through discretized grid blocks in a subsurface 
reservoir (Odeh, 1969). This tool is alternatively known as NRS. Before proceeding to NRS, a 
reservoir model needs to be established and reservoir modeling fundamentally pertains to the 
description of properties (rock and fluid) related to subsurface (Odeh, 1982).  
 
On closer scrutiny, a reservoir model is made up of numerous grid blocks in which the modeling 
highly relies upon static and dynamic data. In retrospect, this reference (Satter and Iqbal, 2016b) 
outlined a good discussion about these static and dynamic aspects. On the static component, the 
configuration of a reservoir model consists of the number of grid blocks, shapes of grid blocks, 
number of layers, model geometry, and boundaries. These properties, along with other geological 
and geophysical characteristics like porosity and permeability, are considered static. Assignments of 
PVT properties, capillary pressure, and relative permeability to specified regions of the reservoir 
model are also conducted. These assignments along with the predefined static properties are generally 
known as “model realization” which serves as part of the input data to the reservoir simulator.  
 
The dynamic component is mainly associated with changes in fluid saturation and pressure in the 
reservoir. Other dynamic data include well production rate and bottomhole pressure (BHP) over the 
production period of the reservoir. Therefore, dynamic data is perceived as part of input as well as 
output for NRS. Besides that, other input data required by the reservoir simulator consists of initial 
conditions, well location, well constraints, simulation time intervals, and solution convergence 
criteria. In tandem with “model realization”, this input data contributes to the establishment of a 
“simulation model”. In the context of reservoir engineering, there are two simulation schemes, 
namely the black oil model and the compositional model (Coats et al., 1998). To have a more 
profound knowledge of NRS, the readers can refer to these materials (Aziz and Settari, 1979; 
Ertekin et al., 2001; Mattax and Dalton, 1990). In this thesis, E100, which acts as a black oil 
simulator (Schlumberger, 2019), is primarily implemented for the simulation of waterflooding.  
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2.4 Data Science 
 
With the modernization of digital computers, the growth of the field of “Data Science” has extended 
to the petroleum industry, particularly reservoir engineering. Data Science fundamentally refers to a 
multidisciplinary study that implements scientific methods and mathematical algorithms to derive 
useful information and insight from data across a wide range of applications (Cao, 2017; Chen et 
al., 2018; Cleveland, 2014; Dhar, 2013). Data Science gains much attention in reservoir engineering 
due to its useful and robust applicability in handling and managing reservoir data. A lot of data can 
be generated or acquired during the production period. Comprehensive use of the obtained data can 
generate insights for reservoir engineers to make decisions.  
 
The birth of Data Science contributes to the establishment of other terms, for instance, Data Analytics, 
Data Mining, and Data Engineering. Albeit these words are occasionally used interchangeably, they 
have different meanings. These words are formulated under the umbrella of Data Science. Of this, 
Data Analytics denotes approaches that allow the interpretation of data to retrieve meaningful 
patterns or relationships for the extraction of knowledge (Cao, 2017) whereas Data Mining implies 
the respective process of extraction (Han et al., 2012). Besides that, Data Engineering regards the 
transformation of raw data into usable one for Data Analytics (Reis and Housley, 2022). Further, 
application of Data Science and Analytics has been demonstrated to help resolve the RM problem in 
a few references (Mohaghegh, 2018, 2017a, 2017b). In the thesis, a similar illustration will be 
presented to highlight the robustness of Data Science and Analytics in reservoir engineering.  
 
 

2.4.1 Data-Driven Modeling Techniques  
 
Using NRS to resolve RM issues can induce computational challenges if the geology of the reservoir 
model or the nature of the engineering problem (or both) is sophisticated. Hence, to increase the 
efficiency of computation, numerous solutions have been proposed, including applying high-
performance computers, formulating simplifications of physics, having assumptions on the 
engineering problem, and developing data-driven models. In this thesis, we would mostly shed light 
on the application of data-driven modeling. Data-driven modeling is a part of Data Science and 
Analytics. As its name implies, data is the main building block of data-driven modeling. 
Fundamentally, data-driven modeling is fathomed as building a relationship between input data and 
output data that aims to reflect a physical system or process. Then, these models are implemented for 
predictive analysis.  
 
There are two main classes of data-driven modeling, namely mathematics/statistics-based and 
machine learning-based (ML-based). One of the examples of mathematics/statistics-based techniques 
is the response surface model (RSM). RSM pertains to the approximate construction of the output 
yielded (also known as a response) from any process or relationship (to be modeled). Polynomial 
regression is well-received to build the response surface. For more information about RSM, interested 
readers can peruse these references (Box and Wilson, 1951; Gunst et al., 1996). RSM has been 
widely discussed to build data-driven models in different petroleum engineering applications as 
explained in these papers (Afari et al., 2022; Slotte and Smørgrav, 2008). Despite being convenient 
to be employed, this method is still subject to difficulty in capturing the highly nonlinear relationships. 
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Apart from RSM, kriging is another popular mathematics/statistics-based technique. Kriging is 
formulated under the context of geo-statistics (Meik and Lawing, 2017). It fundamentally acts as an 
interpolation method that is based upon the Gaussian process, which is governed by prior mean and 
covariance (Kleijnen, 2009). Kriging has also illustrated extensive applications in petroleum 
engineering (Fursov et al., 2020). Nevertheless, it has evident disadvantages that include the need 
for assumption, e.g., linearity and singularity. This undermines the implementation of 
mathematics/statistics-based techniques to develop data-driven models in comparison with ML-
based ones.  
 
Statistical-based approaches are not the main point of discussion in this thesis. ML-based techniques 
are in lieu given more emphasis to construct data-driven models. ML is defined as a computer 
program that is developed to draw inferences from patterns exhibited by data by implementing 
algorithms (Tom Mitchell, 1997). It is commonplace that ML has been mentioned interchangeably 
with the words “Artificial Intelligence” (AI). Nevertheless, they are different in that AI refers to the 
use of technology that enables a machine to emulate human behavior (Russell and Norvig, 2010). 
So, ML can be thought of as one of the catalysts for the success of AI. In the case of data-driven 
modeling, as discussed in (Mohaghegh, 2018, 2017a), ML does not require any simplification of 
physics and assumptions. Besides that, these techniques illustrate the successful implementation in 
capturing high nonlinearity (Golzari et al., 2015). Under the context of ML, there are three tasks of 
ML, namely supervised learning, unsupervised learning, and reinforcement learning.  
 
Supervised learning is a task of ML in which the data needs to be properly labeled whereas 
unsupervised learning pertains to the use of unlabeled data. Supervised learning is perceived as 
developing a function that can map a relationship between input and output data based on data 
provided (Kroese et al., 2019). In addition, supervised learning is typically implemented to conduct 
regression or classification of data. Hence, it is evident that the data used in this ML task needs to be 
labeled. One of the main differences between regression and classification tasks is that the output 
data for regression is numerical whereas that for classification is categorical (Kroese et al., 2019). 
Concerning this, examples of regression problems are the prediction of commodity prices, the 
forecast of revenue of a company, etc. For classification, one of the typical examples in geoscience 
pertains to deciding types of lithofacies from well logs. Techniques of supervised learning consist of 
artificial neural network (ANN), support vector machine (SVM), gradient boosting regressor (GBR), 
genetic programming (GP), k-nearest neighbor (k-NN) algorithm, and random forest (RF). In this 
aspect, some intriguing articles (Ozbayoglu et al., 2021; Tian and Horne, 2017) discussed the 
employment of supervised learning in petroleum engineering.  
 
Unsupervised learning is understood as a type of algorithm that learns the relationship or pattern 
through unlabeled data (Kroese et al., 2019). Therefore, it is normally utilized to cluster the data 
provided. In this context, unsupervised learning exhibits the good capability to form different groups 
of data in which each group shares similar traits. Hierarchical clustering, k-mean clustering, and 
Gaussian Mixture Model are among the popular techniques of unsupervised learning. ANNs can also 
be used for unsupervised learning despite their more ubiquitous application in supervised learning. 
A few relevant examples of ANN-based unsupervised learning are autoencoders (Goodfellow et al., 
2016) and restricted Boltzmann machines (Hinton et al., 2006; Tieleman, 2008). Several real-life 
cases that require unsupervised learning are the segmentation of customers for business strategies, 
DNA clustering for analysis of biological exploration, and so forth. In the oil and gas industry, 
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unsupervised learning has started gaining attention and has been discussed in several research articles 
(Alakeely and Horne, 2022; Alatrach et al., 2020; Jiang et al., 2022).  
 
Reinforcement learning is comparatively more advanced than both supervised and unsupervised 
learning. Reinforcement learning is fundamentally developed as a Markov Decision Process, and it 
involves the use of agent, environment, and reward. The agents will take action in an environment to 
maximize the relevant reward (Joshi et al., 2021; van Otterlo and Wiering, 2012). Techniques of 
reinforcement learning are typically Q-learning and Deep Q learning. Reinforcement learning has 
been exemplary in carrying out various tasks, such as robot control, backgammon, and Alpha Go. 
However, to the best of my knowledge, its use in the oil and gas industry still does not succumb to 
wider exploration. Despite this fact, several papers (Hourfar et al., 2019; Ma et al., 2019) discussed 
the application of reinforcement learning in reservoir engineering to reflect its good potential to be 
extensively investigated and researched.  
 
Upon understanding the types of ML tasks, readers are to be informed that this thesis will focus on 
the use of supervised learning. This is mainly because the nature of the engineering problem to be 
solved resonates better with supervised learning. In this case, the prediction of hydrocarbon 
production and waterflooding optimization can be perceived as a type of regression problem. 
Additionally, ANN is the ML technique that has been primarily considered to develop data-driven 
models. Figure 3 illustrates the schematic of a typical ANN. There are different variants of ANN 
being implemented in this thesis, such as feedforward neural network (FNN), also known as 
multilayer perceptron (MLP), Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU).  
 
 

 
Figure 3. Schematic of Typical Artificial Neural Network. Adapted from (Mohaghegh, 2000). 

 
 
In general, ML-based data-driven models need to be trained to be able to give a prediction. Training 
of the ML models pertains to the adjustment of parameters to yield the most optimal prediction. There 
is a distinct difference between parameters and hyperparameters. By definition, parameters known 
as “model parameters”, are the configurations that are embedded in the ML whereas hyperparameters 
are variables that are modified to regulate the training process and optimize the performance (Feurer 
and Hutter, 2019). Some examples of parameters consist of weights and biases in ANN and support 
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vectors in SVM. Hyperparameters include the learning rate, number of epochs, batch size, etc. in 
ANN and kernel in SVM. It can be baffling to consider hyperparameter optimization (HPO, defined 
as determining the best hyperparameters) as training. Precisely speaking, model parameter 
optimization (MPO) is considered training. However, HPO is performed before MPO or training and 
prevalent methods of HPO are random grid search and Bayesian Optimization. Despite increasing 
the chance of better predictability, HPO would increase the computational burden in addition to ML 
training. 
 
 
 

2.5 Proxy Models as Replica of Numerical Reservoir 
Simulation  
 
In the context of reservoir simulation, data-driven models can be treated as proxy models (also 
understood as surrogate models). Proxy models generally act as replica of reservoir simulation 
models. Aside from data-driven approaches, reduced physics modeling is another type of proxy 
modeling that requires assumptions and the simplification of physics. So, its applicability might not 
be considered robust in complex systems. As an example, Capacitance-Resistance Model (CRM) 
was proposed in the paper (Bruce, 1943) according to the idea of capacitors and resistors. Its 
implementations have been discussed in petroleum engineering, specifically in production 
optimization (Hong et al., 2017; Liang et al., 2007; Sayarpour et al., 2009). In addition, DCA is 
another option for proxy modeling that is mathematics-based. Nevertheless, DCA is deemed less 
sensitive to output prediction given changes in parameters (Mohaghegh, 2017a).  
 
Based on the discussion in (Mohaghegh, 2022, 2017a), the preference for a data-driven ML-based 
approach has been verified to establish proxy models. Before delving into the details of the data-
driven ML-based approach, we note that one of the main advantages of applying such proxy models 
is generally low computational footprint in tandem with results with high accuracy (compared with 
reservoir simulation). The objective of the proxy models should also be first identified and hence, the 
modeler would have a clear direction of how to develop proxy models. In addition, the source of data 
for proxy modeling originates either from real field data or reservoir simulation data (or a 
combination of both). Despite the source of data, the implementation of the ML-based approach 
remains unaltered.  
 
 

2.5.1 Source of Database 
 
About the source of data, one of the very important reminders is ensuring that the database used for 
training the ML-based proxy models correctly reflects the physics being modeled. In general, the 
ML-based proxy models that use the real field data are termed “Top-Down Models” (TDM). This 
modeling approach marginalizes any simplification of physics or assumption by only leveraging the 
use of real field data (Mohaghegh, 2017a). Thus, everything starts with data and it is usually 
implemented in brown fields for which data is available. When only simulated data is considered, the 
proxy models are normally known as “Smart Proxy Models” (SPM) as demonstrated in some articles 
(Shahkarami and Mohaghegh, 2020; Vida et al., 2019). The SPM approach is mainly employed 
as another alternative for NRS when it comes to field development and planning for lower 
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computational footprints. Under the umbrella of TDM and SPM, there are three subcategories of 
modeling regarding the scale: Field-based (Matthew, 2021), Well-based (Mohaghegh et al., 2012b), 
and Grid-based (Mohaghegh et al., 2012a).  
 
These three subcategories are associated with the scale of output data that has been used for proxy 
modeling. Therefore, a grid-based proxy model will yield any output parameter on the grid scale. 
The common output parameters in the grid scale comprise pressure and fluid saturation in each grid 
block. Such modeling subcategory has portrayed an extensive application in the domain of carbon, 
capture, utilization, and storage (CCUS) as being comprehensively discussed in (Mohaghegh, 2018). 
This is because, for in-depth analysis of efficient CO2 storage, pressure and saturation values in grid-
scale are deemed useful. Regarding both well-based and field-based modeling, they are usually 
employed for EOR or any production optimization process. Data in field-scale or well-scale usually 
consists of production rate, injection rate, and pressure. The selection of the subcategories is indeed 
case-dependent and highly relies upon the objective of the proxy models.  
 
The type (or behavior) of data is another important issue that requires attention. Examples of static 
data include geological properties, such as permeability, porosity, and net-to-gross ratio whereas 
dynamic data comprise pressure, fluid saturation, production rates, and injection rates. Selection of 
input and output data can be performed either based upon the domain knowledge of the modelers or 
by applying the input feature selection method, viz. fuzzy logic (Mohaghegh, 2017a) which has been 
proven efficient in this domain. Besides, the insufficiency of data will impede the application of TDM. 
However, this can be overcome through the combination of both real field and simulated data. This 
hybridization approach can considerably be employed as one of the solutions for handling the 
insufficiency of real field data.  
 
Upon perceiving the database, it is helpful to grasp an overview of the general methodology of proxy 
modeling. When the database is ready, it will be partitioned into three different datasets, viz., training, 
validation, and testing. There is no specific rule to set the ratio of partitioning, but it is usually either 
7:1.5:1.5 or 8:1:1. After partitioning, the training dataset is primarily used to build the ML-based 
proxy model whereas the validation dataset is employed to ensure that the overfitting issue is 
circumvented during the training. Besides that, the testing dataset is applied to justify the 
predictability of the models. As illustrated in some literature (Amini and Mohaghegh, 2019; He et 
al., 2016; Masoudi et al., 2020), there is an additional step of further verifying the performance of 
models, which is known as “blind validation”. In practice, an additional database will be created to 
serve the purpose of blind validation. Unless the result of blind validation is considered good, the 
whole process of proxy modeling needs to be repeated.  
 
 

2.5.2 Sampling Technique 
 
About the use of simulation data, the key is to apply sampling techniques to generate different 
simulation scenarios from which a large database can be created. The sampling techniques that have 
been attempted in this work include Latin Hypercube sampling (LHS), Hammersley Sequence 
sampling (HSS), and Sobol Sequence sampling (SSS). LHS is considered an example of stratified 
sampling (McKay et al., 1979), formulated to overcome a limitation of Monte Carlo sampling. Such 
limitation pertains to inadequate sampling from the events with low probability, viz. P1 and P99 
(Bratvold and Begg, 2010). As briefly highlighted in the cited book, LHS enables the division of 



Chapter 2: Background of Concepts 

13 
 

the Cumulative Distribution Frequency of input variables into a number of strata. This number is 
equal to the total number of iterations needed in which “sampling without replacement” is practiced. 
LHS is efficient to enhance the accuracy of Probability Density Function reproduction for a specified 
number of samples. Also, it decreases the number of samples required for a certain degree of accuracy 
and hence, it improves computational speed.   
 
Besides that, random samples created from Monte Carlo sampling illustrate clustering of points, 
which leads to wasteful samples being retrieved. This is due to gaps in sample space. Therefore, low 
discrepancy sequences have been proposed to leverage the use of more uniformly distributed samples 
(Cheng and Druzdzel, 2000; Niederreiter, 1992). Concerning this, discrepancy denotes a measure 
of nonuniformity of data points (Wong et al., 1997). In this context, the employment of low-
discrepancy sequences in the creation of samples for Monte Carlo sampling is termed quasi-Monte 
Carlo. HSS (Hammersley and Handscomb, 1964) and SSS (Sobol’, 1967) are the families of the 
quasi-Monte Carlo technique. Regarding HSS, as its name implies, it is a sampling technique that 
performs based on the Hammersley sequence. Concisely speaking, the Hammersley sequence is 
generated with the aid of prime numbers and radical inverse function. Interested readers are highly 
encouraged to refer to (Cheng and Druzdzel, 2000; Niederreiter, 1992; Wong et al., 1997) for a 
better understanding of the mathematical formulation of HSS.   
 
SSS is another sampling method that has been approached. As briefed in (Cheng and Druzdzel, 
2000), the Sobol sequence is created from a set of binary fractions of length 𝑤𝑤 in which 𝑣𝑣𝑖𝑖

𝑗𝑗 are known 
as direction numbers where 𝑖𝑖 = 1, … ,𝑤𝑤 and 𝑗𝑗 = 𝑖𝑖, … ,𝑑𝑑, where 𝑑𝑑 refers to the dimension of problem. 
In this case, a more efficient version of Sobol sequence, which was based on Gray code, was 
introduced in (Antonov and Saleev, 1979), and along with its employment was described in (Bratley 
and Fox, 1988).  
 
 

2.5.3 Reservoir Case Study  
 
In this thesis, the focus is placed on the development of SPM (field-based) to optimize the 
waterflooding process, which is an example of a dynamic problem. The source of data that we utilize 
is mainly from the simulation of different benchmark models, including the Egg Model (Jansen et 
al., 2014), the UNISIM-I-D model (Schiozer et al., 2019), and the OLYMPUS model (Fonseca et 
al., 2020). The details of these models will be correspondingly briefed in the papers compiled. 
Different reservoir models were attempted in this research work due to the intention of assessing the 
flexibility and applicability of the methodology proposed. Also, the real field data from Volve 
(Equinor, 2018) has been applied to justify the methodology of proxy modeling proposed here. 
Figure 4, Figure 5, and Figure 6 respectively show Egg Model, UNISIM-I-D, and OLYMPUS. 
These figures were prepared by using the visualization software called ResInsight (Ceetron Solution 
AS, 2020). The color bar for these three figures denotes the horizontal permeability value in the x-
direction. The warmer color indicates higher permeability.  
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Figure 4. The architecture of the Egg Model with its well configurations (One of the realizations). 
 

 
 

Figure 5. The architecture of the UNISIM-I-D Model with its well configurations. 

 



Chapter 2: Background of Concepts 

15 
 

 

 
 

Figure 6. The architecture of the OLYMPUS Model with its well configurations (One of the 
realizations). 

 
 
 
 

2.6 Optimization 
 
Mathematical optimization (simply known as optimization) is defined as finding the best solution 
that can either minimize or maximize a given function subject to certain conditions. In this aspect, 
there are three main components in optimization, which refer to objective function (cost function), 
decision variables (control parameters), and constraints. Therefore, under predefined constraints, 
optimization is determining the best decision variables that can yield the best result of the objective 
function. As discussed in (Boyd and Vandenberghe, 2004), an optimization problem is expressed 
in standard form as follows: 
 

  
minimize f(x) 

 
subject to 𝑙𝑙𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖 ,          𝑖𝑖 = 1, 2, … ,𝑛𝑛  

 

 
 

(1) 

 
where x refers to the variables. The constraints are termed variable bounds. The displayed expression 
is for minimization. In the case of maximization, it can be done by negating the arbitrary function 
f(x).  
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In the context of optimization, there are two essential concepts to be perceived: exploration and 
exploitation. Exploration regards locating the best solution over the solution (search) space whereas 
exploitation pertains to a more in-depth search for the best solution within a region where the best 
solution is believed to locate (Yang, 2014). Solutions can be divided into local and global optima. 
The global optimum denotes the best solution over the entire search space whereas the local optimum 
refers to the best solution within certain parts of the search space. Perfect optimization is to reach the 
global optimum. However, in a real-world application, it is nearly impossible to reach the “true” 
global optima. Thus, the ideal outcome of optimization is via the balance between exploration and 
exploitation in which convergence (as close as possible) to the global optima can be attained.  
 
Two main types of mathematical algorithms can be employed for optimization, namely derivative-
based and derivative-free. About the derivative-based algorithms, examples are the steepest descent 
(ascent) algorithm, Adaptive Estimation Moment (Adam), Newton-Raphson approximation, 
Levenberg-Marquardt algorithm (LMA), and conjugate gradient. One of the main challenges of 
applying derivative-based algorithms is the approximation of the gradient function. When complexity 
of the objective function increases, the gradient function can be computationally prohibitive to be 
estimated. Additionally, derivative-based algorithms demonstrate good performance in terms of 
exploitation. Therefore, this results in their higher tendency to converge to the local optima as 
compared with derivative-free algorithms.  
 
Derivative-free algorithms are generally population-based and nature-inspired. These algorithms are 
also known as metaheuristics and comprise (but are not limited to) Genetic Algorithm (GA), Particle 
Swarm Optimization (PSO), Grey Wolf Optimization (GWO), etc. These algorithms are presented 
to have good capability to elude premature convergence to local optima because they achieve a good 
balance between exploration and exploitation (Ezugwu et al., 2020; Yang, 2014). Also, these 
derivative-free algorithms can create diverse solutions over the search space through the exploration 
component. Apart from these, the derivative-free algorithms possess practical and convenient 
implementation (as compared with the derivative-based) because approximation of gradients is not 
required. This explains the preference for this type of algorithm to perform production optimization.  
 
In the context of reservoir engineering, choices of objective function generally include net present 
value (NPV), hydrocarbon production (oil or gas), and water cut. In this thesis, NPV is the selected 
objective function to be maximized by locating the optimal decision variables. The general formula 
of NPV is expressed in Equation (2). In this equation, t is the period when the cash flow takes place 
whereas CFt refers to the net cash flow over period t. Then, D means the interest rate. The net cash 
flow is mainly contributed by oil production minus the cost component that is made up of any 
possible cost that corresponds to conducting waterflooding. This will be explained more 
comprehensively in the published papers. To achieve production optimization under waterflooding, 
optimization algorithms are employed. In this work, emphasis is placed on nature-inspired algorithms. 
Moreover, the decision variables are mainly associated with the control rates of injectors (and the 
bottomhole pressure of producers). For more details, each paper briefs the background of the 
optimization problem.  
 

  

NPV = �
CFt

(1 + D)t

n

t=0

  

 

 
 

(2) 
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It is also vital to perceive that there are two different variants of optimization discussed in this thesis, 
namely ML training and production optimization. To avoid confusion, the term “optimization” used 
in this thesis (particularly in the published papers) only refers to “production optimization” unless 
specified. In essence, ML training is considered optimization because it involves determining the 
best learnable parameters to yield the best outcome of a cost function, and this requires the use of 
optimization algorithms. One of the pertinent epitomes is the backpropagation process of an artificial 
neural network to find the best weights and biases. For this, some of the commonly used algorithms 
for training during the backpropagation process, which are derivative-based, include LMA, SGD 
(Stochastic Gradient Descent), RMSProp (Root Mean Squares Propagation), and Adam. In this work, 
derivative-based algorithms, especially LMA and Adam, were primarily implemented to train the 
ML models as their implementations have been readily embedded in the programming package used. 
For the details, refer to (Gavin, 2019) for LMA and (Kingma and Ba, 2015) for Adam. When it 
comes to optimization tasks, derivative-free algorithms were preferred, including PSO, GWO, and 
GA. The explanation of these algorithms can be found in the compiled papers. These algorithms were 
respectively coupled with NRS and proxy models to optimize the waterflooding process.  
 
 
 
 

2.7 Decision Analysis  
 
Numerous approaches of RM aim at optimizing the recovery from a hydrocarbon reservoir for higher 
profits. Hence, engineers cannot be circumvented from making a decision that is considered better 
under the context of RM. Unfortunately, such a decision-making (DM) process is never easy because 
it needs an assessment of many sophisticated and uncertain factors. To assist every decision maker 
in enhancing their DM process, the definition of decision analysis (DA) has been coined and 
discussed in different resources. Nonetheless, its definition generally gravitates to a process of 
transforming an opaque decision problem into a more transparent one through a series of transparent 
steps (Howard, 1980). In the context of DA, it is essential to understand that good decision does not 
always yield good outcomes.  
 
Uncertainty is an inalienable element of DM. In the domain of RM, we often pursue the idea of 
uncertainty quantification or reduction to result in decisions with higher quality. However, 
quantifying or reducing uncertainty does not necessarily increase the quality of a decision. It has 
thereby been a common misconception among the engineering community that a higher reduction in 
uncertainty implies better decision outcomes. Such misconception encourages many engineers to 
include as much information or details as possible in their DM process. Regarding this, uncertainty 
quantification is only meaningful (or creates values) if it could change a decision that would have 
been made otherwise. It can be profligate use of resources to further reduce the uncertainty especially 
when the decision is clear.  
 
To evaluate if the uncertainty quantification is valuable, a DA tool, namely Value-of-Information 
(VOI) was established. Information or data acquisition is commonplace in RM to quantify 
uncertainty. It is then important to know if these information acquisition activities will produce any 
improvement in DM considering their costs. Concerning this, VOI appears to be useful as it has been 
implemented to assess the benefits of gathering additional data before the data is collected for the 
DM process. The idea of VOI was first implemented for business decisions as introduced in 
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(Schlaifer, 1959). Its application was proposed in the petroleum industry through (Grayson, 1960). 
Thereafter, a comprehensive review of its use in the petroleum industry was presented in (Bratvold 
et al., 2009). This provided a good overview of the development of the VOI concept in the oil and 
gas industry. On closer scrutiny, VOI has started to gain attention and be researched more extensively 
over the past decade in areas of the industry (Dutta et al., 2019; Eidsvik et al., 2017). VOI 
framework aids decision makers to embrace uncertainty by valuing the information obtained within 
a decision context and so, its applicability subsides without a clear decision context (Hong et al., 
2018).  
 
Determination of the VOI can be performed by employing the simulation-regression approach. 
Different insightful references have explained the use of simulation-regression approaches in terms 
of VOI computation. In hindsight, Least-Squares Monte Carlo (LSM) algorithm is the epitome of 
simulation-regression approaches. LSM was initiated in (Longstaff and Schwartz, 2001) to value 
American options in the financial industry. Thanks to its robust application, LSM has begun to be 
well-received for real option valuation in the petroleum industry. One of them pertained to the valuing 
of oil and gas options as discussed in (Willigers and Bratvold, 2009). It has also been proven useful 
to help with the resolution of the sequential DM problems as demonstrated in (Hong et al., 2019; 
Tadjer et al., 2021), and RM is the epitome of sequential DM problem.  
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Chapter 3 
 
 
 

Contributions and Summaries of Papers 
 
 
 
This chapter provides brief discussions about contributions and summaries of the 8 manuscripts 
compiled in this thesis. The papers contributed to the frameworks developed to establish proxy 
models for the waterflooding process. Each of the papers is overviewed as follows:  
 
 
Paper 1 – A Survey on Application of Machine Learning and Metaheuristic Algorithms 
for Intelligent Proxy Modeling in Reservoir Simulation 
 
Authors: Cuthbert Shang Wui Ng, Menad Nait Amar, Ashkan Jahanbani Ghahfarokhi, Lars Struen 
Imsland  
 
Status: Published in Computers and Chemical Engineering  
 
In this paper, we conducted a survey on the use of ML and metaheuristic algorithms in the 
development of intelligent proxy models in the domain of reservoir simulation. The word “intelligent” 
here implies the involvement of ML techniques to reinforce the predictability of the models built. 
This paper explained a general workflow of conducting intelligent proxy modeling, which can be a 
guide for the readers to start exploring the use of ML in reservoir simulation. Besides that, we realized 
that metaheuristic algorithms have begun playing an important role in formulating proxy models. 
These algorithms were mainly used to solve optimization problems, but their use in training the proxy 
models was also discussed. Therefore, we investigated numerous literature which expounded on the 
application of these algorithms in tandem with intelligent proxies. This survey paper provided 
insights into the current trend of development of ML-based proxy modeling. Regarding this, the 
paper offered an overview of how the intelligent proxy models functioned in different aspects of 
reservoir simulation, namely well placement, monitoring production parameters (e.g., oil and gas 
production rates), carbon, capture, and storage (CCS), history matching, waterflooding, miscible gas 
injection, water-alternating-gas (WAG) injection, and other enhanced oil recovery (EOR) techniques. 
We also outlined discussions and summarized a few opinions of ours on the use of ML and 
metaheuristic algorithms in reservoir simulation. This survey paper supplied an inspiration for the 
development and further improvement of the methodology discussed in the next papers.  
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Paper 2 – Smart Proxy Modeling of a Fractured Reservoir Model for Production 
Optimization: Implementation of Metaheuristic Algorithm and Probabilistic Application 
 
Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi, Menad Nait Amar, Ole Torsæter 
 
Status: Published in Natural Resources Research  
 
This paper was written as a result of research work done in the Ph.D. course “PG8605 - Dual Porosity 
Reservoirs” at NTNU. This paper laid out a foundation that helped in the development of a smart 
proxy model. In this aspect, a synthetic dual porosity / dual permeability model was built and 
waterflooded as a case study. Also, the prevalent variant of ANN, which is the feedforward neural 
network, was the selected ML technique in this work. Steps of developing the proxy models, 
including database generation and training of the models, were holistically discussed. Furthermore, 
two types of algorithms, viz, backpropagation algorithm and PSO, were investigated and 
implemented to train the proxy models for comparative studies. The details of these two algorithms 
were presented to enable the readers to understand how they are related to ML training. SGD and 
Adam were both used to conduct the backpropagation algorithm. Probabilistic analysis was also 
incorporated to better perceive the performance of the proxy models established. The work performed 
in this paper was an important precursor for the rest of the papers. It enabled further improvement to 
be embedded for applications with closer proximity to real-life cases.  
 
 
Paper 3 – Application of nature-inspired algorithms and artificial neural network in 
waterflooding well control optimization 
 
Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi, Menad Nait Amar 
 
Status: Published in Journal of Petroleum Exploration and Production Technology  
 
This paper displayed how smart proxy modeling, introduced in Paper 1 and implemented in Paper 
2, could be extended to a more realistic reservoir model and sophisticated application. Feedforward 
neural networks were again implemented in this study. Also, in this work, the renowned Egg Model 
was used as the benchmark, and production optimization was conducted via well control under the 
waterflooding process. Sampling techniques were incorporated here to generate a database to train 
the proxy models. This database aimed to cover the solution space in which the optimal well control 
could be located. With this, the data was partitioned and employed to enable the proxy models to 
learn the relationship between the input and output data given. When it came to the optimization part, 
nature-inspired algorithms, viz. PSO and GWO were chosen. To further confirm the accuracy of the 
results, optimization was also carried out by coupling these algorithms with the NRS. This was to 
check if the proxy models would be able to yield the optimal result that was close to that of NRS. 
Upon completing the whole workflow, the methodology was inferred to be practically reliable to 
resolve the optimization problem discussed.  
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Paper 4 – Production optimization under waterflooding with Long Short-Term Memory 
and metaheuristic algorithm 
 
Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi, Menad Nait Amar 
 
Status: Published in Petroleum  
 
This paper is considered a continuation of Paper 3 in which a different variant of ANN was 
approached. In this aspect, LSTM, one of the examples of RNN, was selected. This was because, to 
the best of our knowledge, LSTM has not been much studied in the domain of proxy modeling for 
the resolution of RM issues. This motivated the formulation of the work presented in this paper. 
Fundamentally, the methodology discussed in Paper 3 was implemented to develop the proxy 
models. Nevertheless, the optimization results attained by having RNN were shown to have slightly 
higher accuracy as compared with that discussed in Paper 3.    
 
 
Paper 5 – Adaptive Proxy-based Robust Production Optimization with Multilayer 
Perceptron  
 
Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi 
 
Status: Published in Applied Computing and Geoscience  
 
In this paper, the methodology presented in Paper 3 and Paper 4 was further refined to consider 
geological uncertainty. About this, 10 different geological realizations of the Egg model were 
embedded in the generation of the database for proxy modeling. Multilayer perceptron (MLP), an 
alternative term for feedforward neural networks, was applied as the ML technique to conduct the 
modeling. The refinement done here was to integrate the adaptive sampling into the whole framework. 
This implied that an additional sample, which was the optimal control obtained from the optimization 
with the developed proxy models, would be included in the initial database for retraining. Such 
integration would improve the training database as samples with better quality were added. For this, 
a criterion check was employed to verify the quality of the samples. After fulfilling the criterion, 
these samples were considered a new addition to the database. By doing so, the database was able to 
comprise more diverse samples which enabled proxy models with better performance to be 
established. Despite having adaptive training in the whole methodology, computational efficiency 
was ensured considering optimization under geological uncertainty.  
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Paper 6 – Fast Well Control Optimization with Two-Stage Proxy Modeling 
 
Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi, Wilson Wiranda 
 
Status: Published in Energies 
 
Complementary work: EAGE Conference Extended Abstract entitled “Fast well control 
optimization using machine learning based proxy models”.  
 
This paper provided another viable enhancement to the established methodology. It is worth 
mentioning that the reservoir model used was the UNISIM-I-D model. In this context, two phases of 
proxy modeling, viz. global and local proxy modeling, were carried out. Fundamentally, the initially 
sampled database was used to build the global proxy models. Thereafter, global proxy models were 
coupled with optimization algorithms to create a new database that was used to train the local proxy 
models. By comparing the training results, local proxy exhibited an improvement in accuracy. 
Furthermore, the optimization results of local proxy models were deemed closer to the “ground truth” 
(or the optimization results obtained by NRS) in comparison with global proxy models. Significant 
computational efficiency was also attained. Hence, this version of methodology was illustrated to 
have the ability to solve an optimization problem with higher dimensions involving 200 optimization 
variables. This paper was inspired by the contemporary study done for a conference abstract that was 
presented at EAGE Conference on Digital Innovation for a Sustainable Future. 
 
 
Paper 7 – Well production forecast in Volve field: Application of rigorous machine 
learning techniques and metaheuristic algorithm 
 
Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi, Menad Nait Amar  
 
Status: Published in Journal of Petroleum Science and Engineering  
 
In this paper, we used the real well production data from Volve to establish predictive models with 
the aid of ML. It was basically another extensive illustration of the methodology discussed in Paper 
1. This work involved the use of different neural networks and SVR. The neural networks included 
ANN trained by Adam and PSO, simple RNN, LSTM, and GRU. The developed models were 
implemented to give predictions of well production rate, which serves as one of the important 
parameters for RM. Conventionally, DCA has been one of the most common methods for this 
purpose. In this work, it has been showcased that ML-based models could be considered as another 
alternative. Besides that, comparative studies were done to investigate the performance of each of 
the models mentioned. Through the investigation, we gained better ideas and insights to establish 
proxy models.  
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Paper 8 – Optimizing initiation time of waterflooding under geological uncertainties with 
Value of Information: Application of simulation-regression approach 
 
Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi 
 
Status: Published in Journal of Petroleum Science and Engineering  
 
This paper was a demonstration of the coupling between DA tool and ML methods. In another word, 
it displayed the potential of ML to be used under the framework of DA for RM purposes. In this 
context, VOI analysis, which is a priori analysis, is the DA tool chosen. This paper presented how 
VOI could be computed through a simulation-regression approach, namely the modified Least-
Square Monte Carlo (LSM) algorithms. It is vital to be cognizant that VOI is a tool that helps 
decision-makers to improve the quality of a decision by embracing uncertainties instead of reducing 
uncertainties. The case study used here was the OLYMPUS benchmark model under waterflooding 
process, in which geological uncertainties were considered. As the name of LSM implies, linear 
regression is one of its components. In addition, ML techniques, including Gaussian Process 
Regression (GPR) and Support Vector Regression (SVR), were employed under the paradigm of 
LSM. The application of LSM in resolving the RM issues is generally termed Sequential Reservoir 
Decision-Making (SRDM). The incorporation of ML into LSM for the illustration of SRDM 
portrayed high applicability and usefulness not only in terms of proxy modeling but also in the 
resolution of the RM problem.  
 
 
This 3-year doctorate research contributed to the formulation of other research works apart from the 
journal articles discussed. As a result, I have been able to investigate more about the robust 
application of ML in other aspects of reservoir engineering, such as modeling of interfacial tension, 
WAG injection, and wax deposition. The results of these works are published in the following papers 
which are not considered as elements of this thesis.  
 
Ng, Cuthbert Shang Wui; Djema, Hakim; Nait Amar, Menad; Jahanbani Ghahfarokhi, Ashkan. (2022) 
Modeling interfacial tension of the hydrogen-brine system using robust machine learning 
techniques: Implication for underground hydrogen storage. International Journal of Hydrogen 
Energy. Volume 47 (93), 1 December 2022, Pages 39595-39605  
 
Nait Amar, Menad; Jahanbani Ghahfarokhi, Ashkan; Ng, Cuthbert Shang Wui; Zeraibi, Noureddine. 
(2021) Optimization of WAG in real geological field using rigorous soft computing techniques 
and nature-inspired algorithms. Journal of Petroleum Science and Engineering. Volume 206, 
November 2021, 109038 
 
Nait Amar, Menad; Jahanbani Ghahfarokhi, Ashkan; Ng, Cuthbert Shang Wui. (2021) Predicting 
wax deposition using robust machine learning techniques. Petroleum. Volume 8 (2), June 2022, 
Pages 167-173 
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Due to COVID-19 Pandemic, I was subject to some travel restrictions for the past 2 years. Hence, 
my opportunity to physically join conferences only came in my third year of Ph.D. study. With this, 
I was able to take part in three conferences and present my research works. One of these works is 
linked with my Paper 6. These three conferences are:    
 
Jahanbani Ghahfarokhi, Ashkan; Ng, Cuthbert Shang Wui; Nait Amar, Menad. (2022) Artificial 
Intelligence / Machine Learning for Sustainable Utilization of the Subsurface. EAGE GET. 
EAGE; The Hague, The Netherlands. 2022-11-07 - 2022-11-09. 
 
Ng, Cuthbert Shang Wui; Jahanbani Ghahfarokhi, Ashkan. (2022) Fast well control optimization 
using machine learning based proxy models. EAGE Conference on Digital Innovation for a 
Sustainable Future. EAGE; Bangkok, Thailand. 2022-09-13 - 2022-09-15. 
 
Ng, Cuthbert Shang Wui. (2022) Application of Data-Driven Models in Reservoir Management. 
BRU21 Conference. NTNU; Trondheim, Norway. 2022-06-01 - 2022-06-03. 
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Chapter 4 
 
 
 

Concluding Remarks and Recommendations 
 
 
 
This chapter summarizes the main findings of this Ph.D. research work and discusses the limitations 
as well as possible extensive works in the future. In general, this research work has achieved its goal 
in which a fundamental workflow of methodology has been established to develop proxy models. 
The proxy modeling was performed in the context of reservoir simulation. Also, the proxy models 
are mainly data-driven in which ML techniques are the primary ingredient. Nevertheless, it has been 
reckoned that possible future works are still required to further reinforce the maturity of this 
framework to consider more robust applications. These applications, for instance, include more 
pertinent uncertainties, specifically for geological properties, relatively more sophisticated 
optimization problems and reservoir models that are geologically more complex.  
 
Albeit the main research pertains to proxy modeling, it is necessary to understand that having good 
predictive ability is the initial step to successful proxy modeling. In essence, this thesis also enclosed 
a framework to yield data-driven models with good prediction performance. This explicitly 
contributed to the formulation of the fundamental methodology in the aspect of proxy modeling. 
Overall, the thesis aims at offering a scaffold to the foundation of the proxy modeling framework in 
reservoir engineering and providing insights into its further reinforcement. This thesis also targets to 
illustrate a robust embedment of ML in a more systemic context of DA. Despite still being subject to 
several limitations, the results garnered from this work signify that the milestones have been 
accomplished.  
 
The main findings and contributions of this thesis are presented as follows:  
 
1. Providing a survey on the application of ML and metaheuristic algorithms in reservoir simulation, 

particularly in proxy modeling. Paper 1 overall portrayed the role of ML and metaheuristic 
algorithms hitherto in facilitating proxy modeling. Through this survey, an in-depth 
understanding of the potential of ML and metaheuristic algorithms can be obtained.  

 
2. Contributing to a workflow of building proxy models that can help to solve RM issues, 

particularly for waterflooding. Most of the papers compiled in this thesis illustrated step-by-step 
explanation of the methodology for better enlightenment about the principles of proxy modeling 
with ML.  
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3. Presenting and discussing how the developed proxy models can be coupled with metaheuristic 
algorithms to handle the optimization problems under the context of RM. To achieve 
waterflooding optimization, these algorithms were also implemented along with a reservoir 
simulator for comparison purposes. Via this comparative analysis, the accuracy of proxy models 
was confirmed.  

 
4. Offering an alternative solution that can provide a fast evaluation for RM and further analyses. 

Computational efficiency was attained by performing proxy modeling in which much less 
computational time was required to conduct the optimization.  

 
5. Demonstrating how several extensions can be performed to tackle more sophisticated engineering 

problems. Paper 5 and Paper 6 discussed the approaches taken to enhance the methodology 
presented in Paper 2, Paper 3, and Paper 4. In this case, Paper 5 emphasized geological 
uncertainties whereas Paper 6 focused on problems with higher dimensionality and a more 
complex reservoir model. 

 
6. Displaying how ML can play a part in predictive modeling. In this context, proxy modeling can 

be used for predictive modeling. Paper 7 briefed about the application of ML techniques to build 
predictive models for production rate based on real field data. The good prediction performance 
of these models was highlighted, as a successful application of proxy modeling methodology.  
 

7. Illustrating the potential of ML to be incorporated with DA tools for VOI analysis. Paper 8 
expounded on how some selected ML methods could be integrated into the LSM algorithm for 
VOI analysis, such as finding the best initiation time of waterflooding.  

 
 
Some limitations have been discussed thoroughly in the papers. Also, some recommendations have 
been proposed as possible future works to address these limitations. Other ideas or recommendations 
are also outlined to enhance the methodology. In general, these recommendations are considered to 
further tweak the fundamental framework to elevate its maturity. These recommendations are as 
follows:  
 
1. Integration of more geological uncertainties for proxy modeling: it is of great importance to 

understand that including as many geological uncertainties as possible is deemed impractical. 
Thus, a balance between practicality and uncertainty consideration needs to be honored. In this 
aspect, embedding a clustering technique (Salehian et al., 2021) into the proxy modeling 
methodology can be done to ensure the representativeness of geological realizations and 
computational efficiency. 
 

2. Consideration of economic uncertainty: waterflooding optimization discussed in this thesis 
primarily involved constant economic parameters. Stochastic price modeling approaches, such as 
the Two Factor Price Model (Jafarizadeh and Bratvold, 2013), can be embedded as future 
works. Encapsulating the model of economic uncertainty enables the stochasticity of price to be 
considered in terms of optimization. This serves a step closer to real-life applications and 
certainly matures the whole methodology.  
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3. Hyperparameter optimization: an embodiment of hyperparameter optimization would increase 
the total time of computation. Nonetheless, neglecting it in some cases might produce suboptimal 
results for ML training. In this work, a trial-and-error approach was employed. In this aspect, 
including a more robust technique of hyperparameter optimization is certainly applaudable. It is 
inspiring if a pipeline of an automated workflow (with much higher computational efficiency) 
that considers hyperparameter optimization and ANN training, as illustrated in this paper (Olson 
et al., 2016) as a Tree-based Pipeline Optimization Tool, can be yielded in future.  

 
4. Dimensionality reduction: the increase in the dimension of data in this work mainly stemmed 

from the number of input parameters and the number of realizations. To address the former, 
several existing methods of input parameter selection, such as fuzzy logic and mutual information 
method (Thanh et al., 2022) that is based on Shannon entropy in information theory (Shannon, 
1948), can be included. Also, regarding the number of realizations, clustering technique that 
selects useful realizations as explained in (Salehian et al., 2021) can be pondered to concisely 
consider the geological uncertainty. 

 
5. Creation of a better coupling between proxy models and DA tool: to this end, under the context 

of the simulation-regression approach, a proxy model with high fidelity can act as the source of 
simulation whereas different ML techniques can “replace” the regression component. This serves 
as a step forward in better application of DA in reservoir engineering that leverages the use of 
data-driven approaches, particularly ML.  

 
6. Role of unsupervised and reinforcement learning: the potential of unsupervised and 

reinforcement learning is worth being researched and studied to explore further possible 
breakthroughs in proxy modeling and its functionality in the resolution of RM issues.  

 
7. Contributing to the energy transition: upon maturing the methodology discussed here, extending 

it to the areas in energy transition, viz. CCS, HS and geothermal energy storage is recommended. 
Achieving energy transition optimally and economically involves different optimization 
problems and DM processes. Hence, this methodology can play an important part in the future 
applications.  
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Equation (28) 
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∑ (ti − oi)2N
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∑ (ti − t)̅2N
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Equation (6) 
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∑ �yjreal − yj

pred�
2

N
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2N

j=1
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Equation (14) 
 

R2 = 1 −
∑ �Yisim − Yi

proxy�
2n

i=1

∑ �Yisim − Y��
2n

i=1
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∑ �qj

exp − qjcal�
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“Alles hat ein Ende, nur die Wurst hat zwei.” 
 

(Everything has an end, only the sausage has two.) 


