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Preface

This thesis is written to fulfill the requirement for the Ph.D. in Petroleum Engineering at the
Department of Geoscience and Petroleum, Norwegian University of Science and Technology
(NTNU). The research work discussed in this thesis was conducted for the past 3 years, from
November 2019 until November 2022. It is a part of BRU21 — NTNU Research and Innovation
Program on Digital Automations for the Oil and Gas Industry under the program area of Reservoir
Management and Production Optimization. This research is carried out under the supervision of
Associate Professor Dr. Ashkan Jahanbani Ghahfarokhi from the Department of Geoscience and
Petroleum and the co-supervision of Professor Dr. Lars Struen Imsland from the Department of
Engineering Cybernetics at NTNU. The main goal of this study is to formulate a fundamental
methodology that can be implemented to build data-driven models with the aid of machine learning
techniques to solve reservoir management issues. Therefore, most of the case studies presented are
discussed in the context of petroleum reservoir engineering. This doctorate thesis is prepared in
paper-based format in which 8 research journal articles are compiled. It consists of 4 chapters that
aim at providing clear ideas about some important concepts to the readers before perusing the journal
papers.
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Abstract

This Ph.D. thesis consists of 8 papers that summarize the main contents of the research work done
over the past 3 years. Due to the ability of machine learning (ML) in capturing high nonlinearity, the
thesis mainly touches upon its use in data-driven modeling to provide aids in reservoir management.
Data-driven models are referred to as “proxy models™ as they act on behalf of the reservoir simulator.
Proxy models are deemed practically useful if they can provide fast and desirably accurate solutions.

In this thesis, a survey on the use of ML and metaheuristic algorithms in developing proxy models
for reservoir simulation was presented to enlighten the readers. We also explained the methodology
of proxy modeling with an associated case study, viz. the waterflooding process. The proxy modeling
of a synthetic reservoir model was first formulated on which further works were done as
improvements. These improvements, including the integration of sampling techniques and the use of
more complex reservoir models, proposed the fundamentals of the proxy modeling methodology in
more realistic application cases. Upon the completion of these steps, adaptive sampling and retraining
were applied to address the geological uncertainties. Also, two classes of proxy modeling, namely
local and global proxy modeling, were implemented to handle optimization problems with higher
dimensions.

Furthermore, additional works were illustrated to provide a scaffold for the maturity of the
methodology. These works pertain to research on applying ML methods in predictive modeling and
a decision analysis framework. One of them illustrated the establishment of ML-based predictive
models with splendid predictability. The work also includes a discussion about the steps of predictive
modeling for well production forecast based on real field data. The other one displayed coupling of
ML with a mathematical algorithm to approximate the Value of Information that was used for
optimization under uncertainties. These studies are not only related to those described earlier but also
illustrate the robust application of machine learning. In summary, this research project portrayed the
establishment of a methodology that could yield proxy models to facilitate the resolution of reservoir
management issues with less computational efforts as compared with reservoir simulator without
compromising the accuracy.



Chapter 1

Introduction

This Ph.D. thesis is a summary of the results obtained from research work done over the past 3 years.
This research work is part of the BRU21 program that aims at generating a value chain throughout
the oil and gas industry by providing digital and automation solutions. The title of this thesis is Data-
Driven Reservoir Modeling: Application of Proxy Models in Reservoir Management under the
program area of Reservoir Management and Production Optimization of BRU21. As the title implies,
the overall goal of the research work is to outline a framework of methodology that offers an
alternative solution to reservoir management (RM). This alternative solution is targeted to be fast and
within a good level of accuracy. Therefore, this solution (using machine learning) can provide
convenience especially if the RM plan needs to be updated quite frequently. Apart from this, this
research places a certain degree of emphasis upon the investigation of the use of machine learning in
predictive modeling and resolving sequential decision problems. The relevant details will be
uncovered later.

With the rapid development of digitalization in STEM (science, technology, engineering, and
mathematics), many researchers and engineers have begun exploring and researching machine
learning as one of their research domains. This motivates the employment of machine learning, an
epitome of data-driven methods, as an alternative approach to resolve any sophisticated engineering
problem. In this case, solving optimization problems in reservoir management generally have a high
computational footprint. Data-driven modeling was thereafter suggested to provide a computationally
cheap and desirably accurate solution. Therefore, a term called “proxy modeling” has been coined to
represent these data-driven models. In the context of reservoir simulation, these proxy models act on
behalf of the reservoir simulators to yield fast solutions.

In Paper 1, a survey of the use of ML and metaheuristic algorithms in building machine learning-
based proxy models for reservoir simulation was conducted. Machine learning-based proxy model
was termed intelligent proxy model in the paper. Numerous literature that considered the
implementation of machine learning and metaheuristic algorithms in intelligent proxy modeling in
different applications of reservoir simulations were discussed. For the pertinent details, refer to Paper
1. Then, Paper 2 generally illustrated the proxy modeling of a fractured reservoir model, which was
considered a plain-vanilla case, on which further works were done as parts of Papers 3 to 6 to achieve
higher maturity. In these four papers, the sampling techniques were demonstrated to be integrated
into proxy modeling to do well control optimization with a relatively higher level of complexity as
compared to Paper 2. Besides that, in Papers 3 and 4, a more sophisticated reservoir model was
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utilized as compared to Paper 2. Metaheuristic algorithms were also incorporated in the whole
framework to do the well control optimization.

Upon developing a general workflow of methodology that considers the training of proxy models
and optimization, small steps of improvements were performed to increase its applicability. One of
the refinements done was to consider geological uncertainty in which adaptive sampling was
employed to modify the training database and retraining was conducted iteratively. Refer to Paper 5
for the relevant information. In addition, under the circumstance of a more realistic reservoir model
and optimization problem with higher dimensions, two classes of proxy modeling were proposed in
which the initially established proxy models were coupled with optimization algorithms to generate
a new database to develop new proxy models. Paper 6 presents the respective details.

It is of great importance to remind the readers that proxy modeling can be used for predictive
modeling. This is because proxy models need to possess satisfying prediction performance to be
ready for further use, including optimization. So, in this Ph.D. research, we are also motivated to
further investigate the use of machine learning to leverage its potential in creating predictive models
that can be insightful to the overall methodology of proxy modeling. Paper 7 is the product of this
investigation in which, the developed predictive models were trained based on real field data by using
derivative-based and derivative-free algorithms for in-depth comparative studies. Moreover, another
intriguing task was done to harvest the potential of ML for the analysis of Value of Information (VOI:
an important decision analysis tool to resolve sequential decision problems). VOI served as a
guidance to identify the optimal time to initiate waterflooding in different geological settings of a
benchmark reservoir model. Paper 8 consists of the corresponding explanation and details.

In most of the tasks presented in this thesis, considering a practical illustration of the methodology
of proxy modeling, we selected waterflooding optimization case study problem that is primarily
associated with reservoir management. By doing so, we hope that reservoir engineers and researchers
can be inspired to fathom the usefulness of machine learning in reservoir engineering. Despite having
refinements throughout this Ph.D. journey, limitations were explained with possible
recommendations to offer insights to other engineers and researchers to explore this topic to a greater
extent.

After this brief introduction, Chapter 2 discusses the important concepts and theories that the readers
must grasp before reading the papers compiled. This discussion aims at providing sufficient
fundamentals before diving into the details. Chapter 3 briefs the summaries of each of the papers
compiled. This chapter enables the readers to have an entire perspective of the development of this
thesis. Additionally, an understanding of the context of each paper can be established by referring to
this chapter. Chapter 4 summarizes the main findings and concluding remarks about this thesis.
Several proposals are also mentioned in this chapter. Finally, since this thesis is paper collection-
based, all the relevant papers that contribute to this thesis are compiled at the end.



Chapter 2

Background of Concepts

This chapter aims at briefing the readers on the background of some concepts, which have been
implemented to scaffold the framework of the methodology proposed in this work. Having a
profound understanding of these concepts enables the readers to have a good rhythm of perusal of
this thesis. Generally, this chapter begins with a general introduction to Reservoir Management.
Thereafter, there is an explanation about other technological toolboxes, including numerical reservoir
simulation and data-driven models, applied to resolve reservoir engineering issues. It also outlines
other topics, such as data science, optimization, and decision analysis, that are used to facilitate the
foundation of the framework.

2.1 Reservoir Management

Reservoir Engineering is a field that implements scientific knowledge to understand fluid flow
through porous media and the physical properties of these media (Dake, 1978). Understanding the
porous media enables the reservoir engineers to formulate a development plan to produce the
reservoir fluids more effectively and economically. To accurately decipher the reservoir, we require
multidisciplinary knowledge, including (but not limited to) fundamental physics and chemistry,
thermodynamics, geology, and applied mathematics (Craft et al., 1991; Satter and Iqbal, 2016a).

The combination of these knowledge domains yields different technological toolboxes to be utilized.
These toolboxes are transient well test, log analysis, conventional core analysis, computed
tomography scan, fluid analysis, reservoir simulation, decline curve analysis, material balance,
stream tube model, geo-statistics, enhanced oil recovery (EOR) technology and screening, and so
forth (Satter et al., 1998; Thakur, 1996). Having these toolboxes facilitates the reservoir engineers
to perform their responsibilities, including interpretation and integration of a large amount of
reservoir data, characterization of the geological properties, estimation of reserves, forecasting of
production, economic analysis, visualization of reservoir fluid flow, and PVT analysis of reservoir
fluid samples. The job scope of reservoir engineers is integral to field development planning as cost-
effective reservoir depletion schemes can be recommended to optimize the recovery.

Concerning this, the definition of Reservoir Management (RM) is established not only to clearly
reflect the responsibilities of reservoir engineers but also to illustrate the general approach that is
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Chapter 2: Background of Concepts

implemented to smoothen the process of managing a reservoir. RM shares different definitions by
different authors (Robertson, 1989; Thakur, 1996; Wiggins and Startzman, 1998). However, its
definition generally gravitates to the application of state-of-the-art technology, economic and labor
resources to maximize the profit through the production of fluids from a reservoir and simultaneously
minimize the operating and capital costs, starting from discovery phase to abandonment. As
discussed in the literature (Satter and Iqbal, 2016b), the approach to RM is by formulating a strategy
to achieve a purpose. This strategy is then accomplished by developing a plan, implementing,
monitoring, and evaluating the results. In this aspect, the details of developing a plan for a reservoir
are made up of different procedures as shown in Figure 1. As the plan is implemented, monitoring
step ensures the plan is performed accordingly. The results of the plan would then be gathered. Upon
assessing the results, if the reservoir engineers find them unsatisfactory, the revision of the plan is
done (also known as updating step). This process is dynamic and as additional data is acquired, the
RM plan is further enhanced with new corresponding changes. RM plan ought to be periodically
updated to lead to better results.

Acquisition of Data

Depletion Strategy

Economic Optimization
Environmental Issues (Regulations)
Facilities Requirements

Geological and Numerical Modeling
Management Approval

Production forecast

Reserves Estimation

Reservoir Development

Reservoir
Development Plan

VVVVVVVVYVYY

Figure 1. Different procedures of Reservoir Development Plan. Adapted from (Satter and Iqbal,
2016b).

Some elements of RM include production optimization, history matching, uncertainty analysis,
production prediction, etc. The readers are referred to Figure 2 for other elements of RM. RM also
involves selecting available options, for instance, whether to proceed with an EOR operation or not.
This option selection process is simply decision-making (DM) for which the details are explained in
Section 2.7. In addition, the global effort of carbon emission reduction and energy transition has
tweaked the definition of RM in which Carbon, Capture, and Storage (CCS) is considered a “new”
element of RM.
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Data
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» Land/Legal
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Figure 2. Reservoir Management. Adapted from (Satter et al., 1998).

2.2 Waterflooding

In this thesis, waterflooding analysis involves the use of reservoir simulation that is one of the main
RM elements that would be focused on. Waterflooding is one of the Improved Oil Recovery methods
that has long been used to improve hydrocarbon production. Waterflooding refers to injecting water
into reservoirs to increase the recovery of hydrocarbon. The earliest waterflood could be traced back
to an accidental incident that occurred due to poorly plugged wells or leaks from casing (Callaway,
1959). The respective advantages harvested have motivated the operators to inject water intentionally.
Thereafter, waterflooding has been practiced and standardized as its mechanism is better understood.
Apart from maximizing the recovery, the economics of waterflood needs to be considered to make a
waterflooding plan successful. Some pieces of literature (Brundred and Brudred Jr., 1955;
Muskat and Wyckoff, 1934; Paul Willhite, 1986; Satter and Iqbal, 2016c) discuss the theoretical
framework and comprehensive economical assessment of waterflooding.

The main challenge with waterflooding is fundamentally how to optimize it. Such an engineering
problem is generally termed “waterflooding optimization”. Different techniques can be applied for
waterflooding optimization and examples of these techniques are zonal water injection, changing the
direction of water injection, water shut-off, subdivision of the injection-production unit, and cyclic
water injection. The readers are encouraged to peruse this reference (Lu and Xu, 2017) for the
relevant rich details of these techniques. In addition, finding an optimal set of controls on the injectors
(and/or producers) under waterflooding process is another optimization example. This optimal set of
controls enables the waterflooding plan to be more cost-effective considering the oil price and the
relevant costs of initiating waterflooding. This optimization example is the focus of this thesis.

6
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To successfully conduct waterflooding optimization, reservoir engineers need useful working tools
to forecast hydrocarbon production. Throughout the development of the petroleum engineering, there
have been mainly three tools built to predict hydrocarbon production, viz., material balance equation
(MBE), decline curve analysis (DCA), and numerical reservoir simulation (NRS). In general, NRS
is deemed more robust than both MBE and DCA in capturing the physical system in the reservoir as
it can be utilized for one-, two-, and three-phase system (Odeh, 1969). Moreover, NRS is more
pertinent and useful to be employed to analyze waterflooding plans because it can better describe the
reservoir performance under different operating conditions. Hence, NRS is the primary tool applied
in this thesis. The details about NRS will be revealed in the following section. Interested readers are
referred to the suggested materials for a more comprehensive understanding of MBE (Craft et al.,
1991; Dake, 1978) and DCA (Agarwal et al., 1998; Arps, 1945).

2.3 Numerical Reservoir Simulation

Simulation generally means the representation of physical models through salient mathematical
equations. In the oil and gas industry, the simulation models are circumscribed to hydrocarbon
reservoirs. The term “Reservoir Simulation” hereby has been coined in the past few decades.
Reservoir simulation fundamentally applies well-known reservoir engineering equations, which are
solved by numerical methods, to model the fluid flow through discretized grid blocks in a subsurface
reservoir (Odeh, 1969). This tool is alternatively known as NRS. Before proceeding to NRS, a
reservoir model needs to be established and reservoir modeling fundamentally pertains to the
description of properties (rock and fluid) related to subsurface (Odeh, 1982).

On closer scrutiny, a reservoir model is made up of numerous grid blocks in which the modeling
highly relies upon static and dynamic data. In retrospect, this reference (Satter and Igbal, 2016b)
outlined a good discussion about these static and dynamic aspects. On the static component, the
configuration of a reservoir model consists of the number of grid blocks, shapes of grid blocks,
number of layers, model geometry, and boundaries. These properties, along with other geological
and geophysical characteristics like porosity and permeability, are considered static. Assignments of
PVT properties, capillary pressure, and relative permeability to specified regions of the reservoir
model are also conducted. These assignments along with the predefined static properties are generally
known as “model realization” which serves as part of the input data to the reservoir simulator.

The dynamic component is mainly associated with changes in fluid saturation and pressure in the
reservoir. Other dynamic data include well production rate and bottomhole pressure (BHP) over the
production period of the reservoir. Therefore, dynamic data is perceived as part of input as well as
output for NRS. Besides that, other input data required by the reservoir simulator consists of initial
conditions, well location, well constraints, simulation time intervals, and solution convergence
criteria. In tandem with “model realization”, this input data contributes to the establishment of a
“simulation model”. In the context of reservoir engineering, there are two simulation schemes,
namely the black oil model and the compositional model (Coats et al., 1998). To have a more
profound knowledge of NRS, the readers can refer to these materials (Aziz and Settari, 1979;
Ertekin et al., 2001; Mattax and Dalton, 1990). In this thesis, E100, which acts as a black oil
simulator (Schlumberger, 2019), is primarily implemented for the simulation of waterflooding.

7
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2.4 Data Science

With the modernization of digital computers, the growth of the field of “Data Science” has extended
to the petroleum industry, particularly reservoir engineering. Data Science fundamentally refers to a
multidisciplinary study that implements scientific methods and mathematical algorithms to derive
useful information and insight from data across a wide range of applications (Cao, 2017; Chen et
al., 2018; Cleveland, 2014; Dhar, 2013). Data Science gains much attention in reservoir engineering
due to its useful and robust applicability in handling and managing reservoir data. A lot of data can
be generated or acquired during the production period. Comprehensive use of the obtained data can
generate insights for reservoir engineers to make decisions.

The birth of Data Science contributes to the establishment of other terms, for instance, Data Analytics,
Data Mining, and Data Engineering. Albeit these words are occasionally used interchangeably, they
have different meanings. These words are formulated under the umbrella of Data Science. Of this,
Data Analytics denotes approaches that allow the interpretation of data to retrieve meaningful
patterns or relationships for the extraction of knowledge (Cao, 2017) whereas Data Mining implies
the respective process of extraction (Han et al., 2012). Besides that, Data Engineering regards the
transformation of raw data into usable one for Data Analytics (Reis and Housley, 2022). Further,
application of Data Science and Analytics has been demonstrated to help resolve the RM problem in
a few references (Mohaghegh, 2018, 2017a, 2017b). In the thesis, a similar illustration will be
presented to highlight the robustness of Data Science and Analytics in reservoir engineering.

2.4.1 Data-Driven Modeling Techniques

Using NRS to resolve RM issues can induce computational challenges if the geology of the reservoir
model or the nature of the engineering problem (or both) is sophisticated. Hence, to increase the
efficiency of computation, numerous solutions have been proposed, including applying high-
performance computers, formulating simplifications of physics, having assumptions on the
engineering problem, and developing data-driven models. In this thesis, we would mostly shed light
on the application of data-driven modeling. Data-driven modeling is a part of Data Science and
Analytics. As its name implies, data is the main building block of data-driven modeling.
Fundamentally, data-driven modeling is fathomed as building a relationship between input data and
output data that aims to reflect a physical system or process. Then, these models are implemented for
predictive analysis.

There are two main classes of data-driven modeling, namely mathematics/statistics-based and
machine learning-based (ML-based). One of the examples of mathematics/statistics-based techniques
is the response surface model (RSM). RSM pertains to the approximate construction of the output
yielded (also known as a response) from any process or relationship (to be modeled). Polynomial
regression is well-received to build the response surface. For more information about RSM, interested
readers can peruse these references (Box and Wilson, 1951; Gunst et al., 1996). RSM has been
widely discussed to build data-driven models in different petroleum engineering applications as
explained in these papers (Afari et al., 2022; Slotte and Smergrav, 2008). Despite being convenient
to be employed, this method is still subject to difficulty in capturing the highly nonlinear relationships.
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Apart from RSM, kriging is another popular mathematics/statistics-based technique. Kriging is
formulated under the context of geo-statistics (Meik and Lawing, 2017). It fundamentally acts as an
interpolation method that is based upon the Gaussian process, which is governed by prior mean and
covariance (Kleijnen, 2009). Kriging has also illustrated extensive applications in petroleum
engineering (Fursov et al., 2020). Nevertheless, it has evident disadvantages that include the need
for assumption, e.g., linearity and singularity. This undermines the implementation of
mathematics/statistics-based techniques to develop data-driven models in comparison with ML-
based ones.

Statistical-based approaches are not the main point of discussion in this thesis. ML-based techniques
are in lieu given more emphasis to construct data-driven models. ML is defined as a computer
program that is developed to draw inferences from patterns exhibited by data by implementing
algorithms (Tom Mitchell, 1997). It is commonplace that ML has been mentioned interchangeably
with the words “Artificial Intelligence” (AI). Nevertheless, they are different in that Al refers to the
use of technology that enables a machine to emulate human behavior (Russell and Norvig, 2010).
So, ML can be thought of as one of the catalysts for the success of Al In the case of data-driven
modeling, as discussed in (Mohaghegh, 2018, 2017a), ML does not require any simplification of
physics and assumptions. Besides that, these techniques illustrate the successful implementation in
capturing high nonlinearity (Golzari et al., 2015). Under the context of ML, there are three tasks of
ML, namely supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning is a task of ML in which the data needs to be properly labeled whereas
unsupervised learning pertains to the use of unlabeled data. Supervised learning is perceived as
developing a function that can map a relationship between input and output data based on data
provided (Kroese et al., 2019). In addition, supervised learning is typically implemented to conduct
regression or classification of data. Hence, it is evident that the data used in this ML task needs to be
labeled. One of the main differences between regression and classification tasks is that the output
data for regression is numerical whereas that for classification is categorical (Kroese et al., 2019).
Concerning this, examples of regression problems are the prediction of commodity prices, the
forecast of revenue of a company, etc. For classification, one of the typical examples in geoscience
pertains to deciding types of lithofacies from well logs. Techniques of supervised learning consist of
artificial neural network (ANN), support vector machine (SVM), gradient boosting regressor (GBR),
genetic programming (GP), k-nearest neighbor (k-NN) algorithm, and random forest (RF). In this
aspect, some intriguing articles (Ozbayoglu et al., 2021; Tian and Horne, 2017) discussed the
employment of supervised learning in petroleum engineering.

Unsupervised learning is understood as a type of algorithm that learns the relationship or pattern
through unlabeled data (Kroese et al., 2019). Therefore, it is normally utilized to cluster the data
provided. In this context, unsupervised learning exhibits the good capability to form different groups
of data in which each group shares similar traits. Hierarchical clustering, k-mean clustering, and
Gaussian Mixture Model are among the popular techniques of unsupervised learning. ANNs can also
be used for unsupervised learning despite their more ubiquitous application in supervised learning.
A few relevant examples of ANN-based unsupervised learning are autoencoders (Goodfellow et al.,
2016) and restricted Boltzmann machines (Hinton et al., 2006; Tieleman, 2008). Several real-life
cases that require unsupervised learning are the segmentation of customers for business strategies,
DNA clustering for analysis of biological exploration, and so forth. In the oil and gas industry,
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unsupervised learning has started gaining attention and has been discussed in several research articles
(Alakeely and Horne, 2022; Alatrach et al., 2020; Jiang et al., 2022).

Reinforcement learning is comparatively more advanced than both supervised and unsupervised
learning. Reinforcement learning is fundamentally developed as a Markov Decision Process, and it
involves the use of agent, environment, and reward. The agents will take action in an environment to
maximize the relevant reward (Joshi et al., 2021; van Otterlo and Wiering, 2012). Techniques of
reinforcement learning are typically Q-learning and Deep Q learning. Reinforcement learning has
been exemplary in carrying out various tasks, such as robot control, backgammon, and Alpha Go.
However, to the best of my knowledge, its use in the oil and gas industry still does not succumb to
wider exploration. Despite this fact, several papers (Hourfar et al., 2019; Ma et al., 2019) discussed
the application of reinforcement learning in reservoir engineering to reflect its good potential to be
extensively investigated and researched.

Upon understanding the types of ML tasks, readers are to be informed that this thesis will focus on
the use of supervised learning. This is mainly because the nature of the engineering problem to be
solved resonates better with supervised learning. In this case, the prediction of hydrocarbon
production and waterflooding optimization can be perceived as a type of regression problem.
Additionally, ANN is the ML technique that has been primarily considered to develop data-driven
models. Figure 3 illustrates the schematic of a typical ANN. There are different variants of ANN
being implemented in this thesis, such as feedforward neural network (FNN), also known as
multilayer perceptron (MLP), Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU).
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Figure 3. Schematic of Typical Artificial Neural Network. Adapted from (Mohaghegh, 2000).

In general, ML-based data-driven models need to be trained to be able to give a prediction. Training
of the ML models pertains to the adjustment of parameters to yield the most optimal prediction. There
is a distinct difference between parameters and hyperparameters. By definition, parameters known
as “model parameters”, are the configurations that are embedded in the ML whereas hyperparameters
are variables that are modified to regulate the training process and optimize the performance (Feurer
and Hutter, 2019). Some examples of parameters consist of weights and biases in ANN and support
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vectors in SVM. Hyperparameters include the learning rate, number of epochs, batch size, etc. in
ANN and kernel in SVM. It can be baffling to consider hyperparameter optimization (HPO, defined
as determining the best hyperparameters) as training. Precisely speaking, model parameter
optimization (MPO) is considered training. However, HPO is performed before MPO or training and
prevalent methods of HPO are random grid search and Bayesian Optimization. Despite increasing
the chance of better predictability, HPO would increase the computational burden in addition to ML
training.

2.5 Proxy Models as Replica of Numerical Reservoir
Simulation

In the context of reservoir simulation, data-driven models can be treated as proxy models (also
understood as surrogate models). Proxy models generally act as replica of reservoir simulation
models. Aside from data-driven approaches, reduced physics modeling is another type of proxy
modeling that requires assumptions and the simplification of physics. So, its applicability might not
be considered robust in complex systems. As an example, Capacitance-Resistance Model (CRM)
was proposed in the paper (Bruce, 1943) according to the idea of capacitors and resistors. Its
implementations have been discussed in petroleum engineering, specifically in production
optimization (Hong et al., 2017; Liang et al., 2007; Sayarpour et al., 2009). In addition, DCA is
another option for proxy modeling that is mathematics-based. Nevertheless, DCA is deemed less
sensitive to output prediction given changes in parameters (Mohaghegh, 2017a).

Based on the discussion in (Mohaghegh, 2022, 2017a), the preference for a data-driven ML-based
approach has been verified to establish proxy models. Before delving into the details of the data-
driven ML-based approach, we note that one of the main advantages of applying such proxy models
is generally low computational footprint in tandem with results with high accuracy (compared with
reservoir simulation). The objective of the proxy models should also be first identified and hence, the
modeler would have a clear direction of how to develop proxy models. In addition, the source of data
for proxy modeling originates either from real field data or reservoir simulation data (or a
combination of both). Despite the source of data, the implementation of the ML-based approach
remains unaltered.

2.5.1 Source of Database

About the source of data, one of the very important reminders is ensuring that the database used for
training the ML-based proxy models correctly reflects the physics being modeled. In general, the
ML-based proxy models that use the real field data are termed “Top-Down Models” (TDM). This
modeling approach marginalizes any simplification of physics or assumption by only leveraging the
use of real field data (Mohaghegh, 2017a). Thus, everything starts with data and it is usually
implemented in brown fields for which data is available. When only simulated data is considered, the
proxy models are normally known as “Smart Proxy Models” (SPM) as demonstrated in some articles
(Shahkarami and Mohaghegh, 2020; Vida et al., 2019). The SPM approach is mainly employed
as another alternative for NRS when it comes to field development and planning for lower
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computational footprints. Under the umbrella of TDM and SPM, there are three subcategories of
modeling regarding the scale: Field-based (Matthew, 2021), Well-based (Mohaghegh et al., 2012b),
and Grid-based (Mohaghegh et al., 2012a).

These three subcategories are associated with the scale of output data that has been used for proxy
modeling. Therefore, a grid-based proxy model will yield any output parameter on the grid scale.
The common output parameters in the grid scale comprise pressure and fluid saturation in each grid
block. Such modeling subcategory has portrayed an extensive application in the domain of carbon,
capture, utilization, and storage (CCUS) as being comprehensively discussed in (Mohaghegh, 2018).
This is because, for in-depth analysis of efficient CO» storage, pressure and saturation values in grid-
scale are deemed useful. Regarding both well-based and field-based modeling, they are usually
employed for EOR or any production optimization process. Data in field-scale or well-scale usually
consists of production rate, injection rate, and pressure. The selection of the subcategories is indeed
case-dependent and highly relies upon the objective of the proxy models.

The type (or behavior) of data is another important issue that requires attention. Examples of static
data include geological properties, such as permeability, porosity, and net-to-gross ratio whereas
dynamic data comprise pressure, fluid saturation, production rates, and injection rates. Selection of
input and output data can be performed either based upon the domain knowledge of the modelers or
by applying the input feature selection method, viz. fuzzy logic (Mohaghegh, 2017a) which has been
proven efficient in this domain. Besides, the insufficiency of data will impede the application of TDM.
However, this can be overcome through the combination of both real field and simulated data. This
hybridization approach can considerably be employed as one of the solutions for handling the
insufficiency of real field data.

Upon perceiving the database, it is helpful to grasp an overview of the general methodology of proxy
modeling. When the database is ready, it will be partitioned into three different datasets, viz., training,
validation, and testing. There is no specific rule to set the ratio of partitioning, but it is usually either
7:1.5:1.5 or 8:1:1. After partitioning, the training dataset is primarily used to build the ML-based
proxy model whereas the validation dataset is employed to ensure that the overfitting issue is
circumvented during the training. Besides that, the testing dataset is applied to justify the
predictability of the models. As illustrated in some literature (Amini and Mohaghegh, 2019; He et
al., 2016; Masoudi et al., 2020), there is an additional step of further verifying the performance of
models, which is known as “blind validation”. In practice, an additional database will be created to
serve the purpose of blind validation. Unless the result of blind validation is considered good, the
whole process of proxy modeling needs to be repeated.

2.5.2 Sampling Technique

About the use of simulation data, the key is to apply sampling techniques to generate different
simulation scenarios from which a large database can be created. The sampling techniques that have
been attempted in this work include Latin Hypercube sampling (LHS), Hammersley Sequence
sampling (HSS), and Sobol Sequence sampling (SSS). LHS is considered an example of stratified
sampling (McKay et al., 1979), formulated to overcome a limitation of Monte Carlo sampling. Such
limitation pertains to inadequate sampling from the events with low probability, viz. P1 and P99
(Bratvold and Begg, 2010). As briefly highlighted in the cited book, LHS enables the division of
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the Cumulative Distribution Frequency of input variables into a number of strata. This number is
equal to the total number of iterations needed in which “sampling without replacement” is practiced.
LHS is efficient to enhance the accuracy of Probability Density Function reproduction for a specified
number of samples. Also, it decreases the number of samples required for a certain degree of accuracy
and hence, it improves computational speed.

Besides that, random samples created from Monte Carlo sampling illustrate clustering of points,
which leads to wasteful samples being retrieved. This is due to gaps in sample space. Therefore, low
discrepancy sequences have been proposed to leverage the use of more uniformly distributed samples
(Cheng and Druzdzel, 2000; Niederreiter, 1992). Concerning this, discrepancy denotes a measure
of nonuniformity of data points (Wong et al., 1997). In this context, the employment of low-
discrepancy sequences in the creation of samples for Monte Carlo sampling is termed quasi-Monte
Carlo. HSS (Hammersley and Handscomb, 1964) and SSS (Sobol’, 1967) are the families of the
quasi-Monte Carlo technique. Regarding HSS, as its name implies, it is a sampling technique that
performs based on the Hammersley sequence. Concisely speaking, the Hammersley sequence is
generated with the aid of prime numbers and radical inverse function. Interested readers are highly
encouraged to refer to (Cheng and Druzdzel, 2000; Niederreiter, 1992; Wong et al., 1997) for a
better understanding of the mathematical formulation of HSS.

SSS is another sampling method that has been approached. As briefed in (Cheng and Druzdzel,
2000), the Sobol sequence is created from a set of binary fractions of length w in which vij are known
as direction numbers where i = 1, ...,wand j = i, ..., d, where d refers to the dimension of problem.
In this case, a more efficient version of Sobol sequence, which was based on Gray code, was

introduced in (Antonov and Saleev, 1979), and along with its employment was described in (Bratley
and Fox, 1988).

2.5.3 Reservoir Case Study

In this thesis, the focus is placed on the development of SPM (field-based) to optimize the
waterflooding process, which is an example of a dynamic problem. The source of data that we utilize
is mainly from the simulation of different benchmark models, including the Egg Model (Jansen et
al., 2014), the UNISIM-I-D model (Schiozer et al., 2019), and the OLYMPUS model (Fonseca et
al., 2020). The details of these models will be correspondingly briefed in the papers compiled.
Different reservoir models were attempted in this research work due to the intention of assessing the
flexibility and applicability of the methodology proposed. Also, the real field data from Volve
(Equinor, 2018) has been applied to justify the methodology of proxy modeling proposed here.
Figure 4, Figure 5, and Figure 6 respectively show Egg Model, UNISIM-I-D, and OLYMPUS.
These figures were prepared by using the visualization software called ResInsight (Ceetron Solution
AS, 2020). The color bar for these three figures denotes the horizontal permeability value in the x-
direction. The warmer color indicates higher permeability.
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Figure 4. The architecture of the Egg Model with its well configurations (One of the realizations)

Figure 5. The architecture of the UNISIM-I-D Model with its well configurations.
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Figure 6. The architecture of the OLYMPUS Model with its well configurations (One of the
realizations).

2.6 Optimization

Mathematical optimization (simply known as optimization) is defined as finding the best solution
that can either minimize or maximize a given function subject to certain conditions. In this aspect,
there are three main components in optimization, which refer to objective function (cost function),
decision variables (control parameters), and constraints. Therefore, under predefined constraints,
optimization is determining the best decision variables that can yield the best result of the objective
function. As discussed in (Boyd and Vandenberghe, 2004), an optimization problem is expressed
in standard form as follows:

minimize f(x)
(1)

subjectto [; < x; < u;, i=1,2,..,n

where x refers to the variables. The constraints are termed variable bounds. The displayed expression
is for minimization. In the case of maximization, it can be done by negating the arbitrary function
f(x).
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In the context of optimization, there are two essential concepts to be perceived: exploration and
exploitation. Exploration regards locating the best solution over the solution (search) space whereas
exploitation pertains to a more in-depth search for the best solution within a region where the best
solution is believed to locate (Yang, 2014). Solutions can be divided into local and global optima.
The global optimum denotes the best solution over the entire search space whereas the local optimum
refers to the best solution within certain parts of the search space. Perfect optimization is to reach the
global optimum. However, in a real-world application, it is nearly impossible to reach the “true”
global optima. Thus, the ideal outcome of optimization is via the balance between exploration and
exploitation in which convergence (as close as possible) to the global optima can be attained.

Two main types of mathematical algorithms can be employed for optimization, namely derivative-
based and derivative-free. About the derivative-based algorithms, examples are the steepest descent
(ascent) algorithm, Adaptive Estimation Moment (Adam), Newton-Raphson approximation,
Levenberg-Marquardt algorithm (LMA), and conjugate gradient. One of the main challenges of
applying derivative-based algorithms is the approximation of the gradient function. When complexity
of the objective function increases, the gradient function can be computationally prohibitive to be
estimated. Additionally, derivative-based algorithms demonstrate good performance in terms of
exploitation. Therefore, this results in their higher tendency to converge to the local optima as
compared with derivative-free algorithms.

Derivative-free algorithms are generally population-based and nature-inspired. These algorithms are
also known as metaheuristics and comprise (but are not limited to) Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), Grey Wolf Optimization (GWO), etc. These algorithms are presented
to have good capability to elude premature convergence to local optima because they achieve a good
balance between exploration and exploitation (Ezugwu et al., 2020; Yang, 2014). Also, these
derivative-free algorithms can create diverse solutions over the search space through the exploration
component. Apart from these, the derivative-free algorithms possess practical and convenient
implementation (as compared with the derivative-based) because approximation of gradients is not
required. This explains the preference for this type of algorithm to perform production optimization.

In the context of reservoir engineering, choices of objective function generally include net present
value (NPV), hydrocarbon production (oil or gas), and water cut. In this thesis, NPV is the selected
objective function to be maximized by locating the optimal decision variables. The general formula
of NPV is expressed in Equation (2). In this equation, t is the period when the cash flow takes place
whereas CF; refers to the net cash flow over period t. Then, D means the interest rate. The net cash
flow is mainly contributed by oil production minus the cost component that is made up of any
possible cost that corresponds to conducting waterflooding. This will be explained more
comprehensively in the published papers. To achieve production optimization under waterflooding,
optimization algorithms are employed. In this work, emphasis is placed on nature-inspired algorithms.
Moreover, the decision variables are mainly associated with the control rates of injectors (and the
bottomhole pressure of producers). For more details, each paper briefs the background of the
optimization problem.

v CF

16



Chapter 2: Background of Concepts

It is also vital to perceive that there are two different variants of optimization discussed in this thesis,
namely ML training and production optimization. To avoid confusion, the term “optimization” used
in this thesis (particularly in the published papers) only refers to “production optimization” unless
specified. In essence, ML training is considered optimization because it involves determining the
best learnable parameters to yield the best outcome of a cost function, and this requires the use of
optimization algorithms. One of the pertinent epitomes is the backpropagation process of an artificial
neural network to find the best weights and biases. For this, some of the commonly used algorithms
for training during the backpropagation process, which are derivative-based, include LMA, SGD
(Stochastic Gradient Descent), RMSProp (Root Mean Squares Propagation), and Adam. In this work,
derivative-based algorithms, especially LMA and Adam, were primarily implemented to train the
ML models as their implementations have been readily embedded in the programming package used.
For the details, refer to (Gavin, 2019) for LMA and (Kingma and Ba, 2015) for Adam. When it
comes to optimization tasks, derivative-free algorithms were preferred, including PSO, GWO, and
GA. The explanation of these algorithms can be found in the compiled papers. These algorithms were
respectively coupled with NRS and proxy models to optimize the waterflooding process.

2.7 Decision Analysis

Numerous approaches of RM aim at optimizing the recovery from a hydrocarbon reservoir for higher
profits. Hence, engineers cannot be circumvented from making a decision that is considered better
under the context of RM. Unfortunately, such a decision-making (DM) process is never easy because
it needs an assessment of many sophisticated and uncertain factors. To assist every decision maker
in enhancing their DM process, the definition of decision analysis (DA) has been coined and
discussed in different resources. Nonetheless, its definition generally gravitates to a process of
transforming an opaque decision problem into a more transparent one through a series of transparent
steps (Howard, 1980). In the context of DA, it is essential to understand that good decision does not
always yield good outcomes.

Uncertainty is an inalienable element of DM. In the domain of RM, we often pursue the idea of
uncertainty quantification or reduction to result in decisions with higher quality. However,
quantifying or reducing uncertainty does not necessarily increase the quality of a decision. It has
thereby been a common misconception among the engineering community that a higher reduction in
uncertainty implies better decision outcomes. Such misconception encourages many engineers to
include as much information or details as possible in their DM process. Regarding this, uncertainty
quantification is only meaningful (or creates values) if it could change a decision that would have
been made otherwise. It can be profligate use of resources to further reduce the uncertainty especially
when the decision is clear.

To evaluate if the uncertainty quantification is valuable, a DA tool, namely Value-of-Information
(VOI) was established. Information or data acquisition is commonplace in RM to quantify
uncertainty. It is then important to know if these information acquisition activities will produce any
improvement in DM considering their costs. Concerning this, VOI appears to be useful as it has been
implemented to assess the benefits of gathering additional data before the data is collected for the
DM process. The idea of VOI was first implemented for business decisions as introduced in
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(Schlaifer, 1959). Its application was proposed in the petroleum industry through (Grayson, 1960).
Thereafter, a comprehensive review of its use in the petroleum industry was presented in (Bratvold
et al., 2009). This provided a good overview of the development of the VOI concept in the oil and
gas industry. On closer scrutiny, VOI has started to gain attention and be researched more extensively
over the past decade in areas of the industry (Dutta et al., 2019; Eidsvik et al., 2017). VOI
framework aids decision makers to embrace uncertainty by valuing the information obtained within
a decision context and so, its applicability subsides without a clear decision context (Hong et al.,
2018).

Determination of the VOI can be performed by employing the simulation-regression approach.
Different insightful references have explained the use of simulation-regression approaches in terms
of VOI computation. In hindsight, Least-Squares Monte Carlo (LSM) algorithm is the epitome of
simulation-regression approaches. LSM was initiated in (Longstaff and Schwartz, 2001) to value
American options in the financial industry. Thanks to its robust application, LSM has begun to be
well-received for real option valuation in the petroleum industry. One of them pertained to the valuing
of oil and gas options as discussed in (Willigers and Bratvold, 2009). It has also been proven useful
to help with the resolution of the sequential DM problems as demonstrated in (Hong et al., 2019;
Tadjer et al., 2021), and RM is the epitome of sequential DM problem.
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Contributions and Summaries of Papers

This chapter provides brief discussions about contributions and summaries of the 8 manuscripts
compiled in this thesis. The papers contributed to the frameworks developed to establish proxy
models for the waterflooding process. Each of the papers is overviewed as follows:

Paper 1 — A Survey on Application of Machine Learning and Metaheuristic Algorithms
for Intelligent Proxy Modeling in Reservoir Simulation

Authors: Cuthbert Shang Wui Ng, Menad Nait Amar, Ashkan Jahanbani Ghahfarokhi, Lars Struen
Imsland

Status: Published in Computers and Chemical Engineering

In this paper, we conducted a survey on the use of ML and metaheuristic algorithms in the
development of intelligent proxy models in the domain of reservoir simulation. The word “intelligent”
here implies the involvement of ML techniques to reinforce the predictability of the models built.
This paper explained a general workflow of conducting intelligent proxy modeling, which can be a
guide for the readers to start exploring the use of ML in reservoir simulation. Besides that, we realized
that metaheuristic algorithms have begun playing an important role in formulating proxy models.
These algorithms were mainly used to solve optimization problems, but their use in training the proxy
models was also discussed. Therefore, we investigated numerous literature which expounded on the
application of these algorithms in tandem with intelligent proxies. This survey paper provided
insights into the current trend of development of ML-based proxy modeling. Regarding this, the
paper offered an overview of how the intelligent proxy models functioned in different aspects of
reservoir simulation, namely well placement, monitoring production parameters (e.g., oil and gas
production rates), carbon, capture, and storage (CCS), history matching, waterflooding, miscible gas
injection, water-alternating-gas (WAG) injection, and other enhanced oil recovery (EOR) techniques.
We also outlined discussions and summarized a few opinions of ours on the use of ML and
metaheuristic algorithms in reservoir simulation. This survey paper supplied an inspiration for the
development and further improvement of the methodology discussed in the next papers.
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Paper 2 — Smart Proxy Modeling of a Fractured Reservoir Model for Production
Optimization: Implementation of Metaheuristic Algorithm and Probabilistic Application

Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi, Menad Nait Amar, Ole Torsater
Status: Published in Natural Resources Research

This paper was written as a result of research work done in the Ph.D. course “PG8605 - Dual Porosity
Reservoirs” at NTNU. This paper laid out a foundation that helped in the development of a smart
proxy model. In this aspect, a synthetic dual porosity / dual permeability model was built and
waterflooded as a case study. Also, the prevalent variant of ANN, which is the feedforward neural
network, was the selected ML technique in this work. Steps of developing the proxy models,
including database generation and training of the models, were holistically discussed. Furthermore,
two types of algorithms, viz, backpropagation algorithm and PSO, were investigated and
implemented to train the proxy models for comparative studies. The details of these two algorithms
were presented to enable the readers to understand how they are related to ML training. SGD and
Adam were both used to conduct the backpropagation algorithm. Probabilistic analysis was also
incorporated to better perceive the performance of the proxy models established. The work performed
in this paper was an important precursor for the rest of the papers. It enabled further improvement to
be embedded for applications with closer proximity to real-life cases.

Paper 3 — Application of nature-inspired algorithms and artificial neural network in
waterflooding well control optimization

Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi, Menad Nait Amar
Status: Published in Journal of Petroleum Exploration and Production Technology

This paper displayed how smart proxy modeling, introduced in Paper 1 and implemented in Paper
2, could be extended to a more realistic reservoir model and sophisticated application. Feedforward
neural networks were again implemented in this study. Also, in this work, the renowned Egg Model
was used as the benchmark, and production optimization was conducted via well control under the
waterflooding process. Sampling techniques were incorporated here to generate a database to train
the proxy models. This database aimed to cover the solution space in which the optimal well control
could be located. With this, the data was partitioned and employed to enable the proxy models to
learn the relationship between the input and output data given. When it came to the optimization part,
nature-inspired algorithms, viz. PSO and GWO were chosen. To further confirm the accuracy of the
results, optimization was also carried out by coupling these algorithms with the NRS. This was to
check if the proxy models would be able to yield the optimal result that was close to that of NRS.
Upon completing the whole workflow, the methodology was inferred to be practically reliable to
resolve the optimization problem discussed.
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Paper 4 — Production optimization under waterflooding with Long Short-Term Memory
and metaheuristic algorithm

Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi, Menad Nait Amar
Status: Published in Petroleum

This paper is considered a continuation of Paper 3 in which a different variant of ANN was
approached. In this aspect, LSTM, one of the examples of RNN, was selected. This was because, to
the best of our knowledge, LSTM has not been much studied in the domain of proxy modeling for
the resolution of RM issues. This motivated the formulation of the work presented in this paper.
Fundamentally, the methodology discussed in Paper 3 was implemented to develop the proxy
models. Nevertheless, the optimization results attained by having RNN were shown to have slightly
higher accuracy as compared with that discussed in Paper 3.

Paper 5 — Adaptive Proxy-based Robust Production Optimization with Multilayer
Perceptron

Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi
Status: Published in Applied Computing and Geoscience

In this paper, the methodology presented in Paper 3 and Paper 4 was further refined to consider
geological uncertainty. About this, 10 different geological realizations of the Egg model were
embedded in the generation of the database for proxy modeling. Multilayer perceptron (MLP), an
alternative term for feedforward neural networks, was applied as the ML technique to conduct the
modeling. The refinement done here was to integrate the adaptive sampling into the whole framework.
This implied that an additional sample, which was the optimal control obtained from the optimization
with the developed proxy models, would be included in the initial database for retraining. Such
integration would improve the training database as samples with better quality were added. For this,
a criterion check was employed to verify the quality of the samples. After fulfilling the criterion,
these samples were considered a new addition to the database. By doing so, the database was able to
comprise more diverse samples which enabled proxy models with better performance to be
established. Despite having adaptive training in the whole methodology, computational efficiency
was ensured considering optimization under geological uncertainty.
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Paper 6 — Fast Well Control Optimization with Two-Stage Proxy Modeling
Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi, Wilson Wiranda
Status: Published in Energies

Complementary work: EAGE Conference Extended Abstract entitled “Fast well control
optimization using machine learning based proxy models”.

This paper provided another viable enhancement to the established methodology. It is worth
mentioning that the reservoir model used was the UNISIM-I-D model. In this context, two phases of
proxy modeling, viz. global and local proxy modeling, were carried out. Fundamentally, the initially
sampled database was used to build the global proxy models. Thereafter, global proxy models were
coupled with optimization algorithms to create a new database that was used to train the local proxy
models. By comparing the training results, local proxy exhibited an improvement in accuracy.
Furthermore, the optimization results of local proxy models were deemed closer to the “ground truth”
(or the optimization results obtained by NRS) in comparison with global proxy models. Significant
computational efficiency was also attained. Hence, this version of methodology was illustrated to
have the ability to solve an optimization problem with higher dimensions involving 200 optimization
variables. This paper was inspired by the contemporary study done for a conference abstract that was
presented at EAGE Conference on Digital Innovation for a Sustainable Future.

Paper 7 — Well production forecast in Volve field: Application of rigorous machine
learning techniques and metaheuristic algorithm

Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi, Menad Nait Amar
Status: Published in Journal of Petroleum Science and Engineering

In this paper, we used the real well production data from Volve to establish predictive models with
the aid of ML. It was basically another extensive illustration of the methodology discussed in Paper
1. This work involved the use of different neural networks and SVR. The neural networks included
ANN trained by Adam and PSO, simple RNN, LSTM, and GRU. The developed models were
implemented to give predictions of well production rate, which serves as one of the important
parameters for RM. Conventionally, DCA has been one of the most common methods for this
purpose. In this work, it has been showcased that ML-based models could be considered as another
alternative. Besides that, comparative studies were done to investigate the performance of each of
the models mentioned. Through the investigation, we gained better ideas and insights to establish
proxy models.
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Paper 8 — Optimizing initiation time of waterflooding under geological uncertainties with
Value of Information: Application of simulation-regression approach

Authors: Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi
Status: Published in Journal of Petroleum Science and Engineering

This paper was a demonstration of the coupling between DA tool and ML methods. In another word,
it displayed the potential of ML to be used under the framework of DA for RM purposes. In this
context, VOI analysis, which is a priori analysis, is the DA tool chosen. This paper presented how
VOI could be computed through a simulation-regression approach, namely the modified Least-
Square Monte Carlo (LSM) algorithms. It is vital to be cognizant that VOI is a tool that helps
decision-makers to improve the quality of a decision by embracing uncertainties instead of reducing
uncertainties. The case study used here was the OLYMPUS benchmark model under waterflooding
process, in which geological uncertainties were considered. As the name of LSM implies, linear
regression is one of its components. In addition, ML techniques, including Gaussian Process
Regression (GPR) and Support Vector Regression (SVR), were employed under the paradigm of
LSM. The application of LSM in resolving the RM issues is generally termed Sequential Reservoir
Decision-Making (SRDM). The incorporation of ML into LSM for the illustration of SRDM
portrayed high applicability and usefulness not only in terms of proxy modeling but also in the
resolution of the RM problem.

This 3-year doctorate research contributed to the formulation of other research works apart from the
journal articles discussed. As a result, I have been able to investigate more about the robust
application of ML in other aspects of reservoir engineering, such as modeling of interfacial tension,
WAG injection, and wax deposition. The results of these works are published in the following papers
which are not considered as elements of this thesis.

Ng, Cuthbert Shang Wui; Djema, Hakim; Nait Amar, Menad; Jahanbani Ghahfarokhi, Ashkan. (2022)
Modeling interfacial tension of the hydrogen-brine system using robust machine learning
techniques: Implication for underground hydrogen storage. International Journal of Hydrogen
Energy. Volume 47 (93), 1 December 2022, Pages 39595-39605

Nait Amar, Menad; Jahanbani Ghahfarokhi, Ashkan; Ng, Cuthbert Shang Wui; Zeraibi, Noureddine.
(2021) Optimization of WAG in real geological field using rigorous soft computing techniques
and nature-inspired algorithms. Journal of Petroleum Science and Engineering. Volume 206,
November 2021, 109038

Nait Amar, Menad; Jahanbani Ghahfarokhi, Ashkan; Ng, Cuthbert Shang Wui. (2021) Predicting

wax deposition using robust machine learning techniques. Petroleum. Volume 8 (2), June 2022,
Pages 167-173
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Due to COVID-19 Pandemic, I was subject to some travel restrictions for the past 2 years. Hence,
my opportunity to physically join conferences only came in my third year of Ph.D. study. With this,
I was able to take part in three conferences and present my research works. One of these works is
linked with my Paper 6. These three conferences are:

Jahanbani Ghahfarokhi, Ashkan; Ng, Cuthbert Shang Wui; Nait Amar, Menad. (2022) Artificial
Intelligence / Machine Learning for Sustainable Utilization of the Subsurface. EAGE GET.
EAGE; The Hague, The Netherlands. 2022-11-07 - 2022-11-09.

Ng, Cuthbert Shang Wui; Jahanbani Ghahfarokhi, Ashkan. (2022) Fast well control optimization
using machine learning based proxy models. EAGE Conference on Digital Innovation for a

Sustainable Future. EAGE; Bangkok, Thailand. 2022-09-13 - 2022-09-15.

Ng, Cuthbert Shang Wui. (2022) Application of Data-Driven Models in Reservoir Management.
BRU21 Conference. NTNU; Trondheim, Norway. 2022-06-01 - 2022-06-03.
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Chapter 4

Concluding Remarks and Recommendations

This chapter summarizes the main findings of this Ph.D. research work and discusses the limitations
as well as possible extensive works in the future. In general, this research work has achieved its goal
in which a fundamental workflow of methodology has been established to develop proxy models.
The proxy modeling was performed in the context of reservoir simulation. Also, the proxy models
are mainly data-driven in which ML techniques are the primary ingredient. Nevertheless, it has been
reckoned that possible future works are still required to further reinforce the maturity of this
framework to consider more robust applications. These applications, for instance, include more
pertinent uncertainties, specifically for geological properties, relatively more sophisticated
optimization problems and reservoir models that are geologically more complex.

Albeit the main research pertains to proxy modeling, it is necessary to understand that having good
predictive ability is the initial step to successful proxy modeling. In essence, this thesis also enclosed
a framework to yield data-driven models with good prediction performance. This explicitly
contributed to the formulation of the fundamental methodology in the aspect of proxy modeling.
Overall, the thesis aims at offering a scaffold to the foundation of the proxy modeling framework in
reservoir engineering and providing insights into its further reinforcement. This thesis also targets to
illustrate a robust embedment of ML in a more systemic context of DA. Despite still being subject to
several limitations, the results garnered from this work signify that the milestones have been
accomplished.

The main findings and contributions of this thesis are presented as follows:

1. Providing a survey on the application of ML and metaheuristic algorithms in reservoir simulation,
particularly in proxy modeling. Paper 1 overall portrayed the role of ML and metaheuristic
algorithms hitherto in facilitating proxy modeling. Through this survey, an in-depth
understanding of the potential of ML and metaheuristic algorithms can be obtained.

2. Contributing to a workflow of building proxy models that can help to solve RM issues,
particularly for waterflooding. Most of the papers compiled in this thesis illustrated step-by-step
explanation of the methodology for better enlightenment about the principles of proxy modeling
with ML.
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3. Presenting and discussing how the developed proxy models can be coupled with metaheuristic
algorithms to handle the optimization problems under the context of RM. To achieve
waterflooding optimization, these algorithms were also implemented along with a reservoir
simulator for comparison purposes. Via this comparative analysis, the accuracy of proxy models
was confirmed.

4. Offering an alternative solution that can provide a fast evaluation for RM and further analyses.
Computational efficiency was attained by performing proxy modeling in which much less
computational time was required to conduct the optimization.

5. Demonstrating how several extensions can be performed to tackle more sophisticated engineering
problems. Paper 5 and Paper 6 discussed the approaches taken to enhance the methodology
presented in Paper 2, Paper 3, and Paper 4. In this case, Paper 5 emphasized geological
uncertainties whereas Paper 6 focused on problems with higher dimensionality and a more
complex reservoir model.

6. Displaying how ML can play a part in predictive modeling. In this context, proxy modeling can
be used for predictive modeling. Paper 7 briefed about the application of ML techniques to build
predictive models for production rate based on real field data. The good prediction performance
of these models was highlighted, as a successful application of proxy modeling methodology.

7. Illustrating the potential of ML to be incorporated with DA tools for VOI analysis. Paper 8
expounded on how some selected ML methods could be integrated into the LSM algorithm for
VOI analysis, such as finding the best initiation time of waterflooding.

Some limitations have been discussed thoroughly in the papers. Also, some recommendations have
been proposed as possible future works to address these limitations. Other ideas or recommendations
are also outlined to enhance the methodology. In general, these recommendations are considered to
further tweak the fundamental framework to elevate its maturity. These recommendations are as
follows:

1. Integration of more geological uncertainties for proxy modeling: it is of great importance to
understand that including as many geological uncertainties as possible is deemed impractical.
Thus, a balance between practicality and uncertainty consideration needs to be honored. In this
aspect, embedding a clustering technique (Salehian et al., 2021) into the proxy modeling
methodology can be done to ensure the representativeness of geological realizations and
computational efficiency.

2. Consideration of economic uncertainty: waterflooding optimization discussed in this thesis
primarily involved constant economic parameters. Stochastic price modeling approaches, such as
the Two Factor Price Model (Jafarizadeh and Bratvold, 2013), can be embedded as future
works. Encapsulating the model of economic uncertainty enables the stochasticity of price to be
considered in terms of optimization. This serves a step closer to real-life applications and
certainly matures the whole methodology.
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Hyperparameter optimization: an embodiment of hyperparameter optimization would increase
the total time of computation. Nonetheless, neglecting it in some cases might produce suboptimal
results for ML training. In this work, a trial-and-error approach was employed. In this aspect,
including a more robust technique of hyperparameter optimization is certainly applaudable. It is
inspiring if a pipeline of an automated workflow (with much higher computational efficiency)
that considers hyperparameter optimization and ANN training, as illustrated in this paper (Olson
et al., 2016) as a Tree-based Pipeline Optimization Tool, can be yielded in future.

Dimensionality reduction: the increase in the dimension of data in this work mainly stemmed
from the number of input parameters and the number of realizations. To address the former,
several existing methods of input parameter selection, such as fuzzy logic and mutual information
method (Thanh et al., 2022) that is based on Shannon entropy in information theory (Shannon,
1948), can be included. Also, regarding the number of realizations, clustering technique that
selects useful realizations as explained in (Salehian et al., 2021) can be pondered to concisely
consider the geological uncertainty.

Creation of a better coupling between proxy models and DA tool: to this end, under the context
of the simulation-regression approach, a proxy model with high fidelity can act as the source of
simulation whereas different ML techniques can “replace” the regression component. This serves
as a step forward in better application of DA in reservoir engineering that leverages the use of
data-driven approaches, particularly ML.

Role of unsupervised and reinforcement learning: the potential of unsupervised and
reinforcement learning is worth being researched and studied to explore further possible
breakthroughs in proxy modeling and its functionality in the resolution of RM issues.

Contributing to the energy transition: upon maturing the methodology discussed here, extending
it to the areas in energy transition, viz. CCS, HS and geothermal energy storage is recommended.
Achieving energy transition optimally and economically involves different optimization
problems and DM processes. Hence, this methodology can play an important part in the future
applications.
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Machine Learning (ML) has demonstrated its immense contribution to reservoir engineering, particularly
reservoir simulation. The coupling of ML and metaheuristic algorithms illustrates huge potential for application
in reservoir simulation, specifically in developing proxy models for fast reservoir simulation and optimization
studies. This is conveniently termed the coupled ML-metaheuristic paradigm. Generally, proxy modeling has
been extensively researched due to the expensive computational effort needed by traditional Numerical Reser-
voir Simulation (NRS). ML and the abovementioned coupled paradigm are effective in establishing proxy models.
We conduct a survey on the employment of ML and the coupled paradigm in proxy modeling of NRS. We present
the respective successful applications as reported in the literature. The benefits and limitations of these methods
in intelligent proxy modeling are briefly explained. We opine that some study areas, including sampling tech-
niques and dimensionality reduction methods, are worth investigating as part of the future research development

of this technology.

1. Introduction

As global technology advances, the energy demand continues to
evolve exponentially (Tillerson, 2008). This noticeable demand has
made fossil fuels the dominant link in the energy subject area despite the
continuous efforts made by the industrial sector to promote the vision
and importance of renewable energies (British Petroleum, 2021). This
source of energy, i.e., fossil fuels mainly from oil and gas reservoirs, goes
through a step-by-step process to achieve the most desirable recovery
factors. As a result, exploitation and development methods have been
distinguished and classified into three categories, namely primary, sec-
ondary and tertiary recovery techniques (Ahmed, 2018). Fundamen-
tally, these two latter techniques are designed to ensure the continuous
production of hydrocarbons given the inefficacy of primary recovery.
During primary recovery, the driving mechanism of hydrocarbon pro-
duction originates from the natural source of energy associated with the
rock and fluids in the reservoir. The mechanisms include expansion of
liquids and reservoir rock, natural energy from aquifers and gas caps,
expansion of dissolved gas, and gravity drainage. Secondary recovery
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processes are often implemented by injecting water into the aquifer or
injecting gas into the gas cap, to maintain the reservoir pressure. Re-
covery factors after primary drainage mechanisms and the imple-
mentation of secondary recovery techniques are generally moderate
(Enick et al., 2012), hence there is a need for tertiary recovery tech-
niques (Enhanced Oil Recovery, EOR) (Ahmadi et al., 2018). The latter
aim to improve the recovery by acting on fluids and reservoir rock. Some
of the most successful tertiary recovery techniques include water alter-
nating gas injection, miscible CO, injection, polymer and surfactant
injection, etc. (Afzali et al., 2018; Ahmadi et al., 2016; Dai et al., 2014;
Ghriga et al., 2019; Vahdanikia et al., 2020; Xu, 1998). In addition to
these three famous recovery stages of hydrocarbon reservoirs, other
intervention strategies can be considered during the lifecycle of oil and
gas reservoirs, mainly by infill drilling as well as the conversion of wells
(e.g. producers into injectors, or vertical into horizontal) (Ding et al.,
2020; Jesmani et al., 2020; Redouane et al., 2019).

The optimization of the recovery processes during the different re-
covery stages is crucial to optimize the techno-economic parameters
such as Net Present Value (NPV) while taking into account the different
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constraints linked to production systems (pressure types such as Mini-
mum Miscibility Pressure (MMP) and Bottom Hole Pressure (BHP) in
miscible gas injection, as well as other production parameters such as
water cut and Gas Oil Ratio (GOR), etc.) and the cost of the operation
(cost of water injection, gas injection, well intervention operations, etc.)
(Dai et al., 2014; Nait Amar et al., 2020c; Nait Amar and Zeraibi, 2019;
You et al., 2020a, 2020b). Given the non-linearity of differential equa-
tions and thermodynamic models describing the different recovery
processes, as well as the irregularity and heterogeneity of geometry
(computational domain), the description and prediction of the evolution
of key design parameters are commonly done numerically by using very
powerful computing tools (Nait Amar et al., 2018a; Shahkarami et al.,
2014a, 2014b). In this context, several commercial software such as
Eclipse™ and CMG™ have been developed in the petroleum industry to
allow a rigid optimization of the different tasks related to development
strategies of reservoirs and production, while integrating advanced
computing paradigms such as black oil, compositional, and streamline
approaches. However, the optimization of a process described by a
highly non-linear model with non-linear constraints and dependent on a
significant number of parameters is very complex even using these
advanced simulation tools (Panjalizadeh et al., 2015). Carrying out a
direct simulation scenario with the latter for cases close to reality takes
time and very efficient computing means (multiprocessors, parallel
computing, etc.).

All the aforementioned technical constraints have led a great part of
the petroleum community to investigate new alternatives which enable
the same problems to be solved with considerable precision but with
means that are not binding in terms of calculation time (Ertekin and
Sun, 2019; Mohammadi and Ameli, 2019). Among these alternatives,
Data-Driven Modeling (DDM) has gained increasing interest in the field
of reservoir simulation. Approaches to DDM are generally
statistics-based (or mathematics-based), e.g., the surface response
method, and Machine Learning (ML) based. DDM may alternatively be
known as proxy modeling while proxy model development englobes
other approaches such as reduced-order modeling which mainly involve
simplification of problems and are not purely data-driven.

The word proxy means to act on behalf of another. This definition has
a projection on the technical or numerical sense of proxy models (also
known as surrogate models). These are models built from data exploited
from numerical simulations, capable of reproducing the simulator’s re-
sponses with very high precision at a speed of execution that is in the
order of a few seconds (Zubarev, 2009). These models have had vast use
since the beginning of the 21st century in various areas. The use of proxy
models has quickly been proposed in the field of reservoir engineering
where there is a wide application of proxy models as substitutions for
commercial software in various vital tasks such as well placement
optimization (Hassani and Sarkheil, 2011; Sayyafzadeh, 2015a; Zarei
et al., 2008), history matching (Sayyafzadeh, 2015b; Shahkarami et al.,
2014b), and uncertainty studies (Mohaghegh et al., 2012a, 2006).

As proxy modeling can be regarded as a kind of pattern recognition
and functionality identification, the model construction can be done
with interpolation methods and Artificial Intelligence (AI) and ML
methods. In this aspect, Al can be perceived as technology or tools that
simulate the human brain and logic to perform analysis or any assigned
task whereas ML denotes the application of computer algorithms to
enable learning through data (Mohaghegh, 2018, 2017a, 2017b). Thus,
ML is the subset of Al. The effectiveness of a proxy is very dependent on
the robustness of the technique used for its elaboration (Na-udom and
Rungrattanaubol, 2015; Zubarev, 2009). The robustness of an ML
technique can touch upon various aspects, specifically the training
procedure including the evolved relevant model parameters to improve
the training and the considered mathematical operators (e.g., back-
propagation process) in the calculation process. Artificial Neural Net-
works (ANNSs), Support Vector Machines (SVM), kriging, and Response
Surface Models (RSM) are among the widely applied techniques for
building proxy models in the oil industry. In general, the first two
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approaches are ML-based whereas the last two are statistics-based. In
this paper, our focus is on the ML-based proxy, also known as an intel-
ligent or smart proxy'. It is worth mentioning that before proceeding to
the building stage of the proxy, a primordial step consisting of gener-
ating a set of points or a database should be done properly. The judicious
choice for sampling of the points will bring precision and generalization
to the built model because the chosen sampling method tries to capture a
wide variety of information about the inputs/responses of the simulators
(Yeten et al., 2005). Design of Experiments (DoE) is the statistics branch
assembled with proxy models through its methods (Crombecq, 2011;
Forrester et al., 2008; Zubarev, 2009). Several works comparing
different DoE methods have been published (Crombecq, 2011; Viana,
2016; Yeten et al., 2005). The main conclusion that can be retrieved
from applying DoE in the building phase of proxy models is that
space-filling techniques, such as Latin Hypercube Design (LHD), are one
of the most efficient methods for building rigorous proxy paradigms. The
details of the paradigm of intelligent proxy will be delineated later.

The optimization of different complex processes in the oil industry,
such as EOR techniques, is a crucial step in reservoir management that
significantly affects the efficiency and production strategy (Yazdanpa-
nah and Hashemi, 2012). Several time-dependent parameters and the
management procedure should be optimized in such projects (Yazdan-
panah and Hashemi, 2012). Thus, traditionally the optimization
methods evaluate hundreds or even thousands of potential scenarios to
search for the optimal solution, using time-consuming numerical simu-
lations. To deal with this issue which includes the significant calculation
time and the considerable number of simulation runs, coupling meta-
heuristic algorithms with a powerful clustering-based proxy model is
generally considered a better alternative for non-linear and multidi-
mensional problems (Onwunalu et al., 2008). Metaheuristic algorithms
are population-based optimization techniques that consider a pre-
defined criterion (fitness function) to distinguish between the perfor-
mance of the individuals mimicking the scenarios of the problem. The
gain of this kind of coupling is ensured by the exploitation of the ad-
vantages of the two approaches, namely the reduced calculation time of
the proxy models, and the oriented and targeted runs to perform based
on the fitness function of the metaheuristic algorithms. As discussed in
this reference (Onwunalu et al., 2008), a proxy model is employed to
approximate the objective function values of different scenarios. When
the estimated values exceed a certain threshold, the respective scenario
will be chosen for simulation and optimization. Besides, it is worth
mentioning that a smart proxy that is built using a significant number of
numerical simulations can be used for dealing with uncertainties as the
generated information is generally widespread and it involves an
extensive number of interactions between the main parameters of the
model for covering this kind of tasks.

Metaheuristic algorithms are the optimization algorithms we would
like to emphasize in this work. Metaheuristics algorithms can be defined
as mathematical frameworks with advanced searching mechanisms in
the solution space (Gogna and Tayal, 2013; Wong and Ming, 2019; Yang
et al., 2014). The advanced searching mechanisms of metaheuristic al-
gorithms consist of the exploration and exploitation steps which involve
specific operators that help the orientation of the optimization process
towards regions of interest within the search space (Hemmati-Sar-
apardeh et al., 2020b). Exploration refers to inspecting the unexplored
parts of the search space, while exploitation corresponds to the search of
the neighborhood of the promising area (Tilahun, 2019). In general,
these algorithms are derivative-free and nature-inspired. Examples of
these algorithms include Genetic Algorithm (GA), Differential Evolution
(DE), Particle Swarm Optimization (PSO), Ant Colony Optimization
(ACO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Imperialist
Competitive Algorithm (ICA), Simulated Annealing (SA), Gray Wolf

1 To avoid confusion, “intelligent proxy” (or intelligent model) and “smart
proxy” models share the same definition in this paper.
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Optimization (GWO), Cuckoo Optimization Algorithm (COA), etc. These
algorithms have demonstrated their robustness in many areas of appli-
cation, including prediction of stocks, image processing, bioinformatics,
etc. (Gogna and Tayal, 2013).

In terms of reservoir simulation, metaheuristic algorithms have been
extensively and successfully employed not only to train different types of
proxies but also to solve optimization problems (coupled with either
numerical models or proxies). For clearer perusal, implementation of
metaheuristic algorithms in the establishment of ML-based proxies and
resolution of optimization problem is conveniently termed the coupled
ML-metaheuristic paradigm. Based on our studies (Nait Amar et al.,
2021, 2020¢; Ng et al., 2021a), the paradigm illustrated excellent results
of implementation in developing ML-based proxy models where the
metaheuristic algorithms were used for training. Additionally, optimi-
zation problems can be handled efficiently by applying the coupled
ML-metaheuristic paradigm where this paradigm achieves optimum
results within reasonable calculation time. Therefore, it is important to
have a survey of how useful ML methods are to establish intelligent
proxies when being solely employed or coupled with metaheuristic al-
gorithms. Moreover, we opine that there is a necessity to provide this
survey since there is not much available discussing these domains
together.

This survey paper covers a wide range of research studies related to
the application of ML techniques and the coupled ML-metaheuristic
paradigm in intelligent proxy modeling. This work will contribute to
the research and development related to various reservoir simulation
applications mainly by shedding light on the smart schemes and intel-
ligent methods based on ML and metaheuristic algorithms that were
implemented for reducing the calculability efforts associated.

The rest of the paper is formulated as follows: Section 2 provides a
brief discussion regarding some of the previous literature and reviews on
the relevant topics. Section 3 demonstrates the general framework that
can be employed to develop an intelligent model. Thereafter, Section 4
briefs several examples of the application of intelligent proxies and the
coupled ML-metaheuristic paradigm in the context of reservoir simula-
tion. Section 5 outlines the benefits and limitations of these paradigms as
well as the associated challenges in the research domain before ending
this survey paper with concluding remarks.

2. Previous Works

As briefly mentioned, Data-Driven Modeling (DDM) is considered
another modeling approach aside from traditional physics-based
modeling. The availability of a large database in petroleum engineer-
ing (Mohammadpoor and Torabi, 2020) has, to a certain extent,
contributed to the prevalence of data-driven models as data is one of the
main building blocks for the use of ML (Mohaghegh, 2022). Explicitly
speaking, these data are applied to develop a model that can provide
useful insights to petroleum engineers to do some engineering judg-
ments. In the domain of reservoir engineering, DDM has provided a fast
and efficient alternative for reservoir simulation (Mohaghegh, 2017a).
More intriguingly, the coupling of the metaheuristic algorithms with
ML-based data-driven models is another topic that is worth a discussion.
To have a better outlook on the development of ML and metaheuristic
algorithms” in the oil and gas industry, we will briefly discuss some
relevant previous works and review papers.

2 Based upon our survey of the literature, there are not many papers that
solely discuss the coupling of metaheuristic algorithms with ML in the petro-
leum industry. Thus, in this survey paper, apart from explaining the use of ML,
one of our discussions is intended to focus on how metaheuristic algorithms can
be effectively implemented along with ML mostly in the context of reservoir
simulation.
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2.1. Proxy Modeling

DDM is considered proxy modeling in the aspect of reservoir simu-
lation. Using the proxy model as the substitute for Numerical Reservoir
Simulation (NRS) has been applauded due to its quick computation and
satisfactory accuracy of results (Mohaghegh, 2022; Nait Amar et al.,
2021; Ng et al., 2022a). A simple illustration is displayed in Fig. 1 to
outline the relationship between proxy modeling and other terminol-
ogies that would be expounded on in the following subsections. The
terminologies, such as Subsurface Data Analytics, Top-Down Modeling
(TDM), and Smart Proxy Modeling (SPM), will be explained in detail in
Section 2.3. ML is one of the approaches to proxy modeling. Zubarev
(2009) provided a comparative analysis regarding the effectiveness of
four different techniques of proxy modeling as the substitute for com-
plete reservoir simulations. These methods included polynomial
regression, multivariate kriging, thin-plate splines, and ANNs. He
inferred that in history matching, the proxy models could perform
reasonably well in a deterministic case but not in a probabilistic fashion.
In the optimization of infill-drilling, the proxy models also illustrated
reasonable performance, but the solutions were not optimal. Neverthe-
less, these models demonstrated excellent performance in terms of
prediction of initial hydrocarbons in-place and oil recovery. In general,
he stated that kriging models outperformed the others but induced the
highest computational footprint. There was another constructive
comment that the proxy modeling methods heavily relied upon the so-
phistication of the model, size of the design space, and quality of input
data. This gives us a very well-established cognizance of the limitations
or constraints that proxy modeling methods are subject to (Zubarev,
2009). He also opined that the option of proxy modeling methods was
problem-dependent and quantifying the errors induced by proxy
modeling techniques was needed for quality assurance.

Moreover, Jaber et al. (2019a) conducted a detailed review of the
application of proxy modeling in NRS. They summarized that there were
two general approaches employed to develop proxy models, which
included virtual intelligence and statistical method. Fundamentally, the
proxy models were aimed at simplifying the complexity of the physical
process regarding uncertain variables and assessing the responses
rapidly with reasonable accuracy (Jaber et al., 2019a). The authors
expounded that ANN, Fuzzy Logic, and GA were among the prevalent
virtual intelligence methods used to build proxy models whereas RSM
was the common statistical method in this context. In addition, they
discussed several pieces of literature that illustrated the successful ap-
plications of virtual intelligence-based proxy models in assisted history
matching and forecasting reservoir performance, and statistics-based
proxy models in uncertainty analysis and prediction of reservoir
response. They also outlined the proper step for validating and evalu-
ating the quality of models. They further argued that virtual intelligence
methods coupled with NRS were unable to simultaneously capture the
effect of interactions among different uncertain variables. Hence, they
opined that statistics-based proxies in general outperformed virtual
intelligence-based proxies. More rivetingly, they shared the same
opinion with Zubarev (2009) that understanding the use of a proxy was
essential in choosing the right method, and evaluating the quality of
proxies was highly recommended.

2.2, Implementation of ML

Apart from review papers about proxy modeling, several works
expound on the general trend of the implementation of ML in the oil and
gas industry. Li et al. (2020) provided an interesting insight into how
rapidly the transition from digital oilfield to Al oilfield has taken place.
Concerning this, they further outlined the pros and cons of different ML
algorithms, including ANN, PSO, Fuzzy Logic, SVM, and GA. Thereafter,
they discussed the efficient employment of Al in different aspects of the
petroleum industry, e.g., history matching, dynamic prediction of pro-
duction, optimization of a development plan, identification of oilfield
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Fig. 1. Schematic of the relationship between proxy modeling and other terminologies.

development, detection of fracture, and EOR. In general, they inferred
that compared to the other Al algorithms, ANN was the most prevalently
used in the petroleum industry. Appropriate selection of the algorithm
was also the solution to certain limitations of the algorithms. They
further added that Al algorithms were too data-oriented and marginal-
ized the physics of the process. More importantly, they pointed out that
having the capacity to use and integrate big data of the oilfield with
intelligent models at different phases was pivotal to ensuring the success
of the Al oilfield.

Moreover, Ertekin and Sun (2019) conducted a painstaking status
check on the implementation of Al in reservoir engineering. They pre-
sented different reservoir engineering-related research works, for
instance, proxy modeling, Al-assisted history matching, and optimiza-
tion of project design, which highlighted the robustness of the AI system.
From this, they opined that the formulation of AI models could be
divided into two distinet categories: forward and inverse-looking
models. Additionally, data could be categorized into three groups,
namely reservoir characteristics, project design parameters, and field
responses. Perceiving the types of formulation and the associated data
could provide a clearer understanding to the reservoir engineers in
applying the Al approaches. Nonetheless, they arose the lack of astute-
ness of Al methods in completely replacing the traditional reservoir
engineering models. Thus, they encouraged the hand-shaking protocol
between the traditional modeling and the intelligent paradigm to fully
exploit the respective advantages of each method and produce a more
robust solution to reservoir engineering problems.

Furthermore, Balaji et al. (2018) evaluated the status and imple-
mentation of data-driven approaches, including ML, in the oil and gas
industry. They first explained different data-driven techniques: linear
regression, principal component analysis (PCA), decision tree, SVM,
ANN, Fuzzy rule-based systems, GA, and Bayesian Belief Networks.
Then, they showed how these methods were used in cases like subsur-
face characterization and petrophysics, drilling, production, reservoir
studies and EOR, facilities, remediation and management, and pipelines.
Pros and cons in tandem with the reasons for acceptance (as well as
rejection) of these methods in the industry were also touched upon.
More specifically, Alkinani et al. (2019) provided a review of the
employment of ANN in the industry. They showed the basic steps in ANN
modeling: collection and selection of input data, partitioning of data,
normalization of data, and determination of the number of hidden layers
and training algorithm. Also, they discussed the successful application of
ANN in exploration, drilling, production, and reservoir engineering. In
addition, Hanga and Kovalchuk (2019) thoroughly discussed the
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applications of ML and Multi-Agent Systems (MAS) in the petroleum
industry. ML was proven to be effective in production, anomaly detec-
tion, and price detection while MAS was applied successfully in pro-
duction, safety and maintenance, and supply chain management. They
also stated how ML and MAS could be used interchangeably in various
petroleum industry tasks and discussed the hybridization of both for
better implementation. Apart from these, Otchere et al. (2021) did a
detailed review of different pieces of literature to compare the appli-
cation of ANN and SVM models in the forecasting of properties of pe-
troleum reservoirs (mainly seismic and well log applications). They
inferred that in the domain of reservoir characterization with limited
data and in terms of coupling with other algorithms, SVM was found to
outperform ANN.

2.3. Subsurface Data Analytics

Despite still having a lack of astuteness, the application of Al in pe-
troleum engineering, especially for reservoir engineering, has gradually
achieved enviable breakthroughs and maturity thanks to the contribu-
tion of the research group led by Dr. Shahab Mohaghegh. In this aspect,
Mohaghegh (2011) explained the complete workflow that has been
formulated to exploit the pattern recognition capabilities of Al in
building an Al-based model that could act as a substitution for NRS. In
this work, a constructive comment that was different from that of Li
et al. (2020) regarding the use of physics was presented. He articulated
that the use of physics was preserved through the generation of a
spatio-temporal database. In simpler terms, it was denoted that the
physics of the system was represented by the data. Hence, applying data
with the help of Al to develop a model does not ignore physics. He
further stated that the existing physical models (and statistical ap-
proaches) involved a lot of underlying assumptions which could have
simplified the physics of the real problems. He has been consistently
championing the utilization of data and Al because of his strong belief
that the oil industry is heading toward the fourth paradigm of science,
which is data-intensive science (Mohaghegh, 2020, 2011). Thus, he has
systematized the whole idea of employing petroleum-related data in the
establishment of models and coined it “Subsurface Data Analytics”. In
general, the benefits of Subsurface Data Analytics over NRS, including
circumvention of preconceived notions, biases, and simplifications of
problems, have been highlighted. Mohaghegh (2020) expounded a deep
concern regarding the hybrid models (combination of physics-based and
Al-based approaches) and opined that hybrid modeling was the con-
ventional statistical approach. The reasons for building hybrid models
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were assumed the lack of ability in developing good models by only
applying ML techniques, employing it as a marketing tool, lack of ability
in explaining the results produced by the ML-based models, and lack of
ability in responding to the challenges imposed by the conventionalists
in the industry.

Under the umbrella of Subsurface Data Analytics, there are two main
classes of modeling, which are Smart Proxy Modeling (SPM) and Top-
Down Modeling (TDM). According to Mohaghegh (2018, 2017a,
2017b), the formulations of both TDM and SPM share the same funda-
mental idea and methodology. Both models are defined as an ensemble
of Neuro-Fuzzy systems that can learn and recognize the hidden pattern
of the data provided. The only subtle difference is the source of the data
used. For SPM, the data come from the spatio-temporal database
generated by NRS whereas the spatio-temporal database for TDM orig-
inates either from the field data or the combination of field and simu-
lation data. Regarding the functionalities of these two types of proxies,
the smart proxy model is mainly implemented to reduce the computa-
tional effort induced by NRS while producing outputs within a satis-
factory level of accuracy (Mohaghegh, 2018, 2022). This rapid and
accurate assessment can help reservoir engineers to elude wasting extra
time in making some reservoir management-related decisions. Besides
that, the relevant details of TDM have been outlined in this literature
(Mohaghegh, 2017a). It is a completely different method of modeling a
subsurface as compared to NRS using a bottom-up approach. In general,
TDM is applied to develop a model that can better decipher the behavior
of the reservoir system. Both SPM and TDM are useful in different
reservoir engineering tasks, including history matching (He et al., 2016;
Shahkarami et al., 2018), COz storage and sequestration (Mohaghegh,
2018), CO,-EOR (Shahkarami and Mohaghegh, 2020; Vida et al., 2019),
and shale analytics (Mohaghegh, 2013). There is also an associated
challenge with both TDM and SPM in which the curse of dimensionality
will happen as the size of the spatio-temporal database increases. In this
case, Mohaghegh (2018, 2017a, 2017b) initiated the use of fuzzy pattern
recognition to determine the degree of influence of each possible
parameter on the output in terms of Key Performance Index (KPI). The
ranked KPIs aid in selecting the input variables. Using fuzzy logic is
preferred when calculating the KPIs of input variables because it can
model uncertainties associated with vagueness or lack of information as
discussed in these references (Mohaghegh, 2018, 2017a, 2017b; Ross,
2010).

The generation of massive data, fathomed as “Big Data”, in the up-
stream and downstream petroleum industry has also played an integral
part in the emerging trend of the use of ML in the industry. In this case,
Mohammadpoor and Torabi (2020) illustrated a comprehensive review
of how Big Data analytics has been effectively utilized in the industry.
They expounded on six characteristics of Big Data that included volume,
velocity, variety, veracity, value, and complexity. They outlined the
general methodology of Big Data and explained the tools that could be
used to perform Big Data analytics. They also presented different ex-
amples to demonstrate how it was implemented in different aspects of
upstream, such as exploration, drilling, reservoir engineering, and pro-
duction engineering. Examples of downstream were also provided, e.g.,
refining, oil and gas transportation, and health and safety execution.
Besides that, Temizel et al. (2016) explained the general steps involved
in Data Mining and the development of data-driven models through the
illustration of a synthetic case. Apart from briefly explaining the use of
statistics-based and ML-based methods in Data Mining, they also
conveyed the fundamental thought of how data could be useful in terms
of modeling if being systematically used. More intriguingly, Ani et al.
(2016) discussed the importance of applying uncertainty analysis
(probabilistic approaches) in reservoir modeling compared with the
deterministic approach. In this context, they added that the use of ML
would have a significantly positive impact on the future trend of un-
certainty analysis.
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2.4. Application of Metaheuristic Algorithms

Based on our investigation, the literature comprehensively reviewed
the successful use of metaheuristic algorithms in different domains.
However, there are only a handful of studies that examined their
application along with ML, especially in the field of petroleum engi-
neering. The metaheuristic algorithms discussed in this paper are mainly
nature-inspired. We opine that these algorithms are robust in terms of
implementation. They are not only widely used in optimizing the
hyperparameters of the intelligent models (Hemmati-Sarapardeh et al.,
2020a; Nait Amar et al., 2018b; Nait Amar and Zeraibi, 2018; Ng et al.,
2022b, 2021c), but also in solving petroleum engineering-related opti-
mization problems (Nait Amar et al., 2021, 2018a; Ng et al., 2021b;
Wang et al., 2021). Hemmati-Sarapardeh et al. (2020b) included an
extensive explanation of the mechanism of different metaheuristic al-
gorithms, such as GA, PSO, ACO, ABC, FA, and GWO. They also illus-
trated how these algorithms could be coupled with different intelligent
models and employed in different domains like reservoir and production
engineering, drilling engineering, and exploration. Moreover, Plaksina
(2019) performed a similar review but with more emphasis on evolu-
tionary computation, swarm intelligence, fuzzy logic, different types of
ML, and ANN. She included a lot of petroleum-related applications
concerning the abovementioned areas to illustrate the robustness of Al
approaches. Also, Rahmanifard and Plaksina (2019) reviewed and
explained different optimization approaches, such as GA, DE, and PSO in
tandem with ANN and fuzzy logic. They also provided some discussions
to outline the applications of these methods in the petroleum industry.

3. Paradigm of Intelligent Proxy Development

In this section, we will brief the general framework used in estab-
lishing intelligent proxy models in the context of reservoir simulation.
This framework is a product of assimilating different workflows pro-
posed in several pieces of literature (Hemmati-Sarapardeh et al., 2020b;
Mohaghegh, 2017a; Russell and Norvig, 2010). In this aspect, when ML
methods are implemented to perform proxy modeling, it can be termed
as either “smart” or “intelligent”. The word “smart” or “intelligent” in-
dicates the capability of the model to learn and decipher the hidden
pattern or relationship between the input and output data provided
using the ML methods. Metaheuristic algorithms can act as training al-
gorithms to help the models learn better. Their robustness is demon-
strated as they can conveniently be coupled with the built intelligent
models to solve optimization problems. As mentioned earlier, data act as
the most essential element required to build the intelligent proxy model.
Hence, it is of paramount importance that the data provided to the proxy
correctly capture and represent the physics of the system being modeled.
Besides that, we need to understand that the intelligent proxy is never a
one-size-fits-all model. The fundamental paradigm of building an
intelligent proxy is summarized in Fig. 2.

The first step of the paradigm is to identify the purpose of the proxy
and carefully formulate the problem. This is important because it pro-
vides a clear idea regarding the type of database that needs to be
generated or extracted. Having defined the optimization problem
clearly, the reservoir engineer would have a better perception of the data
needed to develop the corresponding proxy model. It is also vital to
emphasize that the number of proxy models required depends upon the
complexity of the formulated problem. The important takeaway of this
step is that one should be cognizant of the problem to be solved, define it
clearly, and ensure the proper variables or parameters needed to build
the proxy. Besides that, selecting the appropriate Al methods is another
consideration in this step. Such appropriateness can be determined by
the capability of the selected method to mathematize the relevant en-
gineering problem as a functional relationship.

There are two main categories of input variables for reservoir
simulation, namely static and dynamic input data. Examples of static
data include porosity, permeability, and thickness of the formation
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Fig. 2. Paradigm of Intelligent Proxy Development.

layer. Dynamic data consist of production rate, well bottom hole pres-
sure, and saturation. It is important to understand that if a dynamic
parameter is considered one of the input variables, one might require to
develop a proxy that can forecast this dynamic variable. Thereafter, the
predicted dynamic parameter should be fed into the initial proxy to
reduce the dependency on the use of NRS. This type of proxy design is
termed “cascading design™ (Mohaghegh, 2017a). Nonetheless, one
should be aware of the possibility of accumulation of prediction error
when the “cascading design” is employed. Therefore, these points of
discussion ought to be pondered ahead during the phase of problem
formulation to ensure a smooth process of proxy development in later
stages.

Then, as we proceed to Data Management, we need to understand
the types of data that should be obtained and identify the sources of data
to retrieve the database (NRS, field measurements, or both). In this
paper, our discussion concentrates on the use of data generated by NRS.
To generate the database from NRS, we need to design several scenarios
of simulation runs. Thus, we implement a sampling strategy to extract
several samples (of for example rates) within the predefined operational
range and define them as simulation scenarios. Each scenario is equiv-
alent to one simulation run. Based on our survey, there is no specified
number of runs required to create the database. Theoretically, the higher
the number of simulation scenarios, the higher the chances that the
solution space of the optimization problem is covered. Nonetheless, this
will cause the curse of dimensionality. So, the choice of sampling
strategy plays a vital role in ensuring the success of proxy modeling.
Examples of renowned sampling methods include Latin Hypercube
sampling (McKay et al., 1979), Halton sequence (Halton, 1960), Sobol
sequence (Sobol’, 1967), and Hammersley sequence (Hammersley and
Handscomb, 1964). The selection of input data (also termed feature
selection) is another consideration in this step. During problem formu-
lation, we would have known the output data that our developed proxy
models can generate. It is important to identify the input variables with a
larger degree of influence on the output. In terms of NRS, the selection of
useful input variables is indeed essential because including too many of
them will induce the curse of dimensionality. There are three ap-
proaches to this selection, namely empirical selection, statistical
methods, and Al-based methods. The first selection relies upon common
knowledge of reservoir engineering. Moreover, several statistical met-
rics, e.g., percentile of the highest score, k highest score, and chi-squared
test are employed to select the useful input parameters. Al-based ap-
proaches such as fuzzy pattern recognition have shown successful and
robust applications in choosing the input variables (Mohaghegh, 2018,
2017a, 2017b, 2011). According to our investigation, any of these three
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methods can contribute to the successful development of proxy models.
However, Mohaghegh (2018, 2017a, 2017b) opined that fuzzy pattern
recognition outperformed the statistics-based approaches in this
context.

Before feeding the database into the model, data cleansing occa-
sionally might be needed to remove any noisy data or outliers which can
affect the learning of the models. This is normally done on real field
data. For NRS, data cleansing is not needed. Data normalization is
another highly recommended step before proceeding to the training of
intelligent models, where the values of the database will be rescaled
within a smaller range of values, generally either [0, 1] or [-1, 1]. Our
survey based upon numerous papers (Hemmati-Sarapardeh et al.,
2020b; Nait Amar et al., 2019, 2018b) confirms that data normalization
is very common to ensure that the intelligent models can capture the
pattern induced by the database. In this case, we highly suggest con-
ducting “categorical normalization”. For instance, when there are
several columns of input data indicating the same category of data such
as porosity, the maximum and minimum values of the datapoint should
be chosen from the same category for normalization. After the
completion of this phase, the database is deemed ready to be imple-
mented for training the intelligent proxy models.

In the step of building intelligent models, the fundamental idea is to
enable the intelligent models® to learn and capture the physics of the
system. Concerning this, it is important to perceive the definitions of
model parameters and model hyperparameters (Yang and Shami, 2020).
Model parameters refer to the ones that can be initialized and updated
through the training process (viz. weights and biases for ANN). Model
hyperparameters must be initialized before training and are related to
the architecture of ANN, for instance, the number of hidden layers and
nodes, learning rate, and dropout rate (Yang and Shami, 2020).
Searching for the optimal model hyperparameters, alternatively known
as hyperparameter optimization, can be performed to ensure better
learning ability of an intelligent model during training. The algorithm
selected to perform such optimizations will iteratively tune the model
parameters and model hyperparameters to minimize a predefined loss
function until a stopping criterion is met. Examples of the loss function
can be the Mean Squared Error (MSE), Mean Absolute Error (MAE),
Average Percent Relative Error (APRE), and Average Absolute Percent
Relative Error (AAPRE). In general, the algorithms used are categorized
into two groups, including derivative-based and derivative-free. Exam-
ples of derivative-based algorithms include stochastic gradient descent,

3 An example of intelligent models of interest here is ANN. However, the
methodology also applies to other ML-based models.
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scaled conjugate gradient, Levenberg Marquardt, and Adaptive Moment
Estimation whereas derivative-free  algorithms are mainly
nature-inspired, such as Genetic Algorithms and Particle Swarm Opti-
mization. Also, combining both can be another option (Nait Amar et al.,
2018¢, 2018b).

The database needs to be partitioned into for instance three different
sets, namely training, validation, and testingq. Albeit there is no rule for
partitioning ratio, most of the literature (He et al., 2016; Mohaghegh,
2017a; Ng et al., 2022b, 2021c; Shahkarami and Mohaghegh, 2020)
used either the ratio of 7:1.5:1.5 or 8:1:1. After the partitioning is done,
the training data should be fed into the intelligent model to undergo the
training phase. During this phase, for every iteration, the performance
metrics of validation are evaluated to check if the overfitting issue oc-
curs. Regarding this, we can infer that the overfitting issue is eluded if
decreasing trends of loss function for both training and validation data
are observed. If such a trend is not noted, training needs to be repeated.
Refer to Shahkarami and Mohaghegh (2020) for the pertinent details.
Nonetheless, before repeating the training, the dataset can be
re-partitioned to evaluate if better training results can be yielded.
However, such re-partitioning is regarded as bad practice by Russell and
Norvig (2010). Thus, the whole training process can be performed by
either adding new data points or using a completely new set of data
(termed data re-structure)’. When the overfitting issue is assured to be
prevented, we can deduce that the trained intelligent model has passed
the first stage of quality assessment.

Training and validation performance can be assessed using the
metrics used as the loss function in addition to the coefficient of deter-
mination, R% The use of APRE and AAPRE needs attention, especially
during the establishment of a proxy model that predicts the water pro-
duction rate. This is because the water production rate is zero just before
the water breakthrough, given the initial water saturation is equal to the
immobile water saturation. Thus, it can be cumbersome to implement
APRE and AAPRE to evaluate the performance of proxy models before
the water breakthrough. In this case, the testing data is fed into the
model to evaluate the testing phase performance. This phase is to ensure
that the trained model portrays a good level of predictability before
being blind-validated, which is the last stage of quality evaluation. In
blind validation, it is important to note that the blind data should not
have been part of the training, validation, and testing data. Additionally,
it is highly recommended to ensure that the blind validation dataset falls
within the range of the previously generated database. This is because
according to some literature (Barnard and Wessels, 1992; Haley and
Soloway, 2003; Xu et al., 2020), intelligent models generally perform
well in interpolation but not in extrapolation. If the result of blind
validation is excellent, then it denotes that the model has good pre-
dictability to serve its purpose and is ready for practical application.
Nevertheless, if the blind validation results are not satisfactory, data
re-partitioning or data re-structuring can be considered. Generally, these
three phases of the quality assessment provide insights to confirm that
the model can serve its objective.

For the case of hyperparameter optimization, based on our study (Ng
et al., 2021a), using the weighted sum of the training, validation, and
testing errors are recommended. The respective weighting factors can be
treated as additional parameters to be optimized. Also, one needs to
understand that performing such optimization tasks will require addi-
tional time, proportional to the size of the database (Shahkarami and
Mohaghegh, 2020). Therefore, there is a trade-off to consider when it
comes to conducting the optimization. It is also important to know that
the models can be divided into static and dynamic types. Static proxy

* Alternatively, Mohaghegh (2017a) uses the terms calibration and validation
datasets for validation and testing dataset, respectively.

5 1t relies upon personal preference if re-partitioning of data should be
attempted. In this work, our objective is to outline a general workflow that
helps the readers to apply the approaches.
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models are usually built to predict specific variables over a whole
period. For instance, a model that forecasts the NPV of a certain pro-
duction period considering several input variables. This type of proxy is
not robust in terms of application despite the ability to speed up the
computation. Dynamic proxy models are established to forecast vari-
ables at certain timesteps. Albeit building them can be more laborious
than static proxies, dynamic proxies offer higher flexibility in terms of
application, including prediction of specified output and optimization
(Nait Amar et al., 2018a). It is, therefore, necessary to highlight the
distinction between these two types of proxies that helps one to have a
better perception at the beginning of proxy modeling. Some examples of
practical applications will be discussed in Section 4.

4. Survey of Applications

Applications of ML and coupled ML-metaheuristic paradigm in
different domains of reservoir engineering, mainly in the areas that
implement reservoir simulation, will be discussed here. Fig. 3 illustrates
the examples of domains that are surveyed in this section. Due to the
limited use of coupled ML-metaheuristic paradigm, emphasis is on ML in
several application examples. A few interesting works (discussing only
the use of metaheuristic algorithms or their applications with other
variants of proxy models, e.g., reduced-order modeling) have also been
included in this section. The summary of the collected literature is
demonstrated at the end of each subsection along with the methods used
as well as the assumptions and limitations discussed in each work. Refer
correspondingly to Table 1 to & for the summary of the literature on each
subsection.

4.1. Well Placement

Optimizing well placement is one of the most challenging tasks in
field development planning. This is because multiple scenarios of NRS
need to be run to determine the best location to place the wells. The
computational efforts will increase when the geological uncertainty of
the reservoir being modeled is considered for better decision-making.
The optimization task can be cost-effective if the computational time
can be shortened. Several pieces of the literature suggest the application
of ML approaches as the potential solution. Additionally, the coupling of
the simulation models or the respective proxy models (built using ML)
with the metaheuristic algorithms has shown some promising results.

Nwachukwu et al. (2018a) performed a handful of NRS to generate
training data and implemented the Extreme Gradient Boost (XGBoost)
approach to establish a model that could provide a fast forecast of the
responses of a reservoir based upon the locations of injectors. In addi-
tion, they employed the Fast-Marching Method (FMM) to introduce the
well-to-well connectivity to the model and this enhanced the results
significantly. The methodology was used in the cases of waterflooding
and CO; flooding. Thereafter, Nwachukwu et al. (2018b) extended this
ML approach to optimize the location of wells and the parameters of
WAG injection by coupling the model with a novel optimization algo-
rithm, namely Mesh Adaptive Direct Search (MADS). Xiong and Lee
(2020) applied the ANN modeling to build a model to estimate the
production of fluids based on reservoir heterogeneity and well locations.
Then, they used this model to determine the optimal location of injectors
in the case of waterflooding. Chu et al. (2020) discussed the use of
Convolutional Neural Network (CNN) to develop three different models,
single-, dual-, and multi-modal CNNs, in the optimization of infill well
locations. They also compared these models with a Feedforward Neural
Network (FNN). Jang et al. (2018) proposed the sequential employment
of ANNs to determine the optimal well location in a coalbed methane
(CBM) reservoir. They inferred that the sequential ANNs computation-
ally outperformed the direct use of PSO algorithms in the same opti-
mization problem.

Sayyafzadeh (2015a) presented a self-adaptive surrogate-assisted
evolutionary algorithm to determine the optimal location of wells. This
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algorithm was established by partially or fully replacing the original
fitness function (OFF) with the approximate function (AF), which was
represented by ANN. Then, two surrogates were used to stochastically
decide whether OFF or AF would be applied. This methodology per-
formed well on GA for the problem of optimizing well placements.
Redouane et al. (2019) successfully suggested a newly enhanced intel-
ligent framework that involved GA, design of sampling, and proxy model
to achieve optimization of well placement in a fractured unconventional
reservoir. Busby et al. (2017) illustrated the use of K-medoid algorithm
to select the features to run the corresponding simulation and applied
the data to train the ML algorithms such as neural networks, gradient
boosting, and random forest. This data analytics workflow was suc-
cessfully applied to a synthetic green field and showed that the location
of wells could be optimized under uncertainty. In the work of Mousavi
et al. (2020), XGBoost was shown to outperform the central composite
design (CCD) method in determining the best location of wells under
different reservoir scenarios. In other words, XGBoost could converge to
the optimal solution compared with CCD. Kristoffersen et al. (2020)
discussed how the methodology of Automatic Well Planner (AWP) could
be employed in a specific type of neural network, known as Neuro
Evolution of Augmenting Topologies (NEAT). By coupling the neural
network model with a derivative-free algorithm, namely Asynchronous
Parallel Pattern Search (APPS), the well placement decision was made
optimally.

The potential implementation of metaheuristic algorithms is not
limited to the above-mentioned pieces of literature. Pouladi et al. (2017)
suggested the use of Fast Marching Method (FMM) to develop a proxy
model and coupled the proxy with PSO to optimize multiple production
well placements, Hassani et al. (2011) developed three different proxy
models, such as quadratic model, multiplicative model, and radial basis
function of a fractured reservoir in the west of Iran, and coupled the
proxies with GA to optimize the horizontal well placement. Morales
et al. (2010) also performed horizontal well placement optimization in
gas condensate reservoirs with a modified genetic algorithm. They
extended the use of the algorithm by considering a similar optimization
problem under geological uncertainties (Morales et al., 2011). The
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literature on Well Placement is summarized in Table 1.

4.2. Monitoring Production Parameters

In reservoir engineering, hydrocarbon and water productions play a
pivotal role in determining the economic feasibility of a field develop-
ment project. In this context, hydrocarbon production parameters such
as oil and gas production rates must be monitored carefully to ensure
substantial financial returns for the plan. Water production needs to be
monitored to avoid unnecessary handling costs. Therefore, it is essential
to develop a model that can monitor and predict these production pa-
rameters. However, solely applying the conventional physical and
mathematical approaches to build the model is indeed challenging. The
reason is that the complexity of the system has been simplified by some
assumptions to justify the validity of the physical model. This is where
ML methods can be applied to elude the use of these simplifications.
Some literature have illustrated the successful applications of ML in
monitoring and forecasting production parameters. Some applications
also highlighted the development of the models by coupling the ML
methods with metaheuristic algorithms.

One of the traditional approaches in production forecasting is decline
curve analysis (DCA). However, Mohaghegh (2017a) explained that
DCA might be insensitive to some changes in operational conditions
during implementation. Therefore, ML has been preferred as an alter-
native for monitoring and production forecast. Sun et al. (2018)
implemented the Long Short-Term Memory (LSTM) algorithm to
develop a data-driven model to predict the production rate of multiple
wells by only employing the production history and tubing head pres-
sure as the input variables. Thereafter, they compared the yield of the
data-driven model with three DCA models, which are Duong model,
Power Law Exponential Decline (PLE), and Stretched Exponential
Decline (SEPD). The comparison illustrated that the LSTM model pro-
duced the production forecast with higher accuracy. Alkhalaf et al.
(2019) successfully demonstrated the application of ANN in well pro-
duction forecasting by feeding the real-time data into the model. They
also performed the grid search method to optimize the architecture and
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Table 1 Table 1 (continued)
Summary of Literature in the Domain of Well Placement. Literature Methods Remarks Assumptions /
Literature Methods Remarks Assumptions / Limitations
Limitations e
the well placement optimization
Nwachukwu XGBoost With different well ~ Augmentation of optimization problem, infill
etal. configurations, ML predictor variables problem with an wells were located
(2018a) models with due to the improvement in at an equal
connectivities were sophistication of accuracy. distance.
built to predict response surface. The methodology
different responses, The proposed is yet subject to
viz. total profit, ‘methodology verification of real-
cumulative oil/gas requires further life cases.
production, or net verification in Redouane Gaussian Process/ An adaptive Fixed cost of
CO, stored with less  terms of etal. GA surrogate reservoir drilling and
computational optimization. (2019) modeling was location
effort. displayed to independent costs.
Nwachukwu XGBoost / MADS An extended work Augmentation of manage well The methodology
et al. Algorithm of Nwachukwu predictor variables placement is yet to be tested
(2018b) etal. (2018a) in due to the problems in a real- for other field
which ML models sophistication of life fractured development
were made to offer response surface. reservoir model. problems.
reservoir responses Case-sensitive Formulation of
corresponding to application. different
well locations and The proposed constraints,
control during WAG ~ methodology was including well
under geological implemented on a length, inter-well
uncertainty. MADS synthetic case. distance, reservoir
was then used for bound, and well
joint optimization. orientation.
Xiong and ANN ML models were Updating of Busby et al. Neural Networks, Data analytics Limited interaction
Lee (2020) built to forecast models is needed (2017) Random Forests, workflow was between the wells
fluid production as ‘when new data is Gradient Boosting / shown to determine to reduce the
a function of available in the K-medoid the locations of number of
heterogeneity and case of actual field algorithms wells for a green combinations.
the location of the data. field. Limited
injector with an Verification of the application to real
improvement of suggested field cases.
prediction accuracy methodology with Mousavi et al. XGBoost An ML model was Operational
by using data from other strategies is (2020) established to constraints of field
injectors and required. predictthe NPVofa  development
producers. The well placement strategies were
selection of problem through considered for the
optimized injection different scenarios reservoir scenarios.
well placement was for optimization Only three
done with the aid of purposes. scenarios were
P90 and P50. implemented.
Chu et al. FNN/ CNN Multi-modal CNN The study was only Kristoffersen ANN/ APPS, PSO Automatic Well Formulation of
(2020) outperformed FNN focused on a single et al. Planner (AWP) was constraints, such as
in terms of finding ~ vertical infill well. (2020) developed to length, dog-leg
the optimal infill Dynamic increase the severity, and
well placement. properties utilized efficiency of well deviation of well.
as input data were placement The spatial
obtained at the optimization under distribution of self-
time of infill geological selected properties
drilling. uncertainty. is assumed to be
The exponential defined within the
increase of the size reservoir model as
of search space if property maps.
‘horizontal drilling Wells were drilled
is considered. at the beginning
Jang et al. Sequential ANN/ Sequential ANN The study was only and at the same
(2018) PSO modeling was conducted on a cost.
implemented to coalbed methane Fixed prices.
refine the model (CBM) reservoir. Pouladi et al. FMM/ PSO FMM-based proxy Darcy flux is
developed. It The performance (2017) *Although FMM is models were assumed negligible
outperformed the of the sequential not considered ML, coupled withPSOto  for the volumetric
coupled paradigm ANN is influenced this paper showed resolve well pressure drop
between the by its parameters the potential placement estimation by
simulator and PSO ‘which are meant to implementation of optimization with a FMM.
in terms of the be tuned. PSO in terms of very good It appeared to be
number of coupling with any computational impractical to
simulation runs. type of proxy model, efficiency. illustrate the final
Sayyafzadeh FNN/ GA A self-adaptive The study was only which is worth pressure map for
(2015a) surrogate-assisted conducted on the reading. problems with
evolutionary PUNQ-3S more than one
algorithm was Teservoir. well,
introduced to solve For this Hassani et al. Quadratic, A proxy modeling Models (to

(2011) multiplicative, and approach was estimate
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45



C.S.W. Ng et al.

Table 1 (continued)

Literature Methods Remarks Assumptions /
Limitations
Radial basis employed to enable cumulative oil) are
function / GA the optimization of assumed to be a
horizontal well function of the
placement to be location, direction,
handled more and length of a new
quickly. horizontal well.
The proposed
methodology is yet
to be tested for
‘multiple geological
realizations.
Morales et al GA A modified GA was  The wellbore was
(2010) employed to set as eight grids in
optimize a length.
horizontal well Deterministic
placement in a Gas approach.
Condensate Published data of
reservoir. The the field is limited.
Minimal Variation
(MiniVar) was
modified in this
case.
Morales et al. ~ GA Published data of
(2011) Aslight extension of  the field is limited.

Morales et al Assumption of the

(2010) in which probability of
geological success and
uncertainty was weights
considered. assignments to

each realization.

hyper-parameters in modeling the ANN. Masini et al. (2019) showed the
successful use of XGBoost to build a data-driven model to replace DCA.
In their work, clustering techniques such as Random Forest and
Density-based clustering had been used to cluster the data points with
close operational conditions before training the model to conduct DCA.
More intriguingly, Omrani et al. (2019) applied the hybrid approach,
which was the combination of a physical model (nodal analysis) and
ANN, to predict well production. They inferred that the hybrid approach
performed better for long-term production forecasts (production of
several years).

The use of ML approaches is extended to other domains of production
engineering. Khan et al. (2019) employed ANN, SVM, and Artificial
Neuro-Fuzzy Inference Systems (ANFIS) to estimate the oil rate in the
artificial gas lift wells. They observed that ANN yielded much better
results compared with SVM, ANFIS, and other empirical models.
Furthermore, ML methods can be implemented to forecast measure-
ments obtained from virtual flow metering and permanent downhole
gauges. Bikmukhametov and Jaschke (2020) examined different ap-
proaches to hybridizing ML with first principles models of process en-
gineering to successfully predict the volumetric flow from Virtual Flow
Meter. Additionally, Tian and Horne (2017) utilized the information
from permanent downhole gauges to develop a data-driven model to
forecast reservoir performance via the application of recurrent neural
network (RNN). Alakeely and Horne (2020) showed the potential of
RNN by employing it to simulate the behavior of reservoir model. CNN
was also implemented and demonstrated good results. Yang et al. (2019)
illustrated a novel method in which advanced mud gas data was used to
develop an ML model to estimate GOR effectively. The model comprised
a combination of different techniques such as Gaussian Process, Uni-
versal Kriging, Random Forest, K-Means Regressor, and Elastic
Net-regularized linear regression model. Chen et al. (2019) proved the
excellent integration of ANN modeling with conventional reservoir
analog studies to conduct recovery forecasts. The unsupervised ML
method, autoencoders (AE), was shown useful by Alatrach et al. (2020)
in predicting well production events. In this work, a 6-layered AE-NN
model demonstrated positive results and could detect the deviation
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from the expected behavior of a well.

There are also some literature discussing the use of ML techniques in
unconventional resources. Rahmanifard et al. (2020) performed a
design of experiment to develop an ANN model that accurately
approximated the well production in Montney Formation, a shale gas
formation. Cross et al. (2020) successfully built a decision tree-based ML
model to forecast the water production of a well in Williston Basin.
Another ML technique, which was the partial least square (PLS) algo-
rithm, was employed by Al-Alwani et al. (2019) to predict the produc-
tion performance in Marcellus shale based on parameters obtained from
stimulation and completion. ANN modeling was employed by Cao et al.
(2016) to develop data-driven models for two different scenarios,
namely prediction of future production of an existing well and produc-
tion forecast of a new well. They demonstrated that by incorporating the
geological features, the production forecast of new wells produced
excellent results. Amaechi et al. (2019) applied ANN and Generalized
Linear Model (GLM) to estimate the initial gas production rate from tight
gas reservoirs in Ordos basin. They implemented Garson Algorithm in
ANN and Variable Importance in GLM to identify the KPI of each feature
used in the development of models. The robustness of ML techniques in
unconventional resources has been further validated when Urban--
Rascon and Aguilera (2020) used ML to build models to achieve opti-
mization in stimulated reservoir volume (SRV) characterization,
discretization of fracture systems, and production prediction. In their
work (Urban-Rascon and Aguilera, 2020), a self-organizing map (SOM)
was utilized to map the hydraulic fracturing stages with microseismic
data. (2021) used a hybrid model of
convolution-recurrent neural network (c-RNN) to forecast the produc-
tion from multi-stage horizontal well whereas Hassan et al. (2019)
employed ANN to estimate the well productivity of fishbone wells. This
literature highlighted the wide applicability of ML in production engi-
neering. These ML methods can also be coupled with metaheuristic al-
gorithms to be more fruitful. Han and Bian (2018) developed a hybrid
model of SVM and PSO to estimate the oil recovery factor in a tight
reservoir. Panja et al. (2018) applied PSO to optimize the hyper-
parameters of SVM and the weights and biases of ANN, which were used
to predict the production from shale plays including Eagle Ford, Nio-
brara, and Bakken in United States. Refer to Table 2 for the summary of
the literature on Monitoring Production Parameters.

Chaikine and Gates

4.3. Waterflooding

Waterflooding is a common secondary recovery method because of
its low cost of implementation. It involves injecting water into the
reservoir to increase the production of oil. It is important to carefully
design a waterflooding project to ensure that the oil recovery is achieved
economically and optimally. Thus, designing a waterflooding project
can be formulated as an optimization problem. In this aspect, one of the
common practices of optimizing the waterflooding design is to adjust the
well control rate or BHP over some time to achieve the targeted oil
production that maximizes the objective function, e.g., NPV. Employing
different types of algorithms to optimize waterflooding has been
extensively researched in reservoir engineering. Optimization of
waterflooding can induce high computational footprints especially
when the investigated reservoir models are geologically complex. This is
where the ML techniques have flourished as they could alleviate this
computational challenge as discussed in several pieces of literature.

Mohaghegh (2011) showed that surrogate reservoir model (SRM) or
smart proxy model (SPM), which represents a Neuro-Fuzzy system
developed by using the database of an oil field, could be used to inves-
tigate which wells should undergo the rate constraint relaxation to
ensure low water cut from waterflooding. Mohaghegh et al. (2012c) also
applied SRM to a waterflooded onshore green field in Saudi Arabia to
perform uncertainty quantification. Mohaghegh et al. (2012b) further
extended the methodology to build well-based SRM and implemented it
in two waterflooded offshore fields in Saudi Arabia for uncertainty
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Table 2

Summary of Literature in the Domain of Monitoring Production Parameters,

Literature Methods Remarks Assumptions /
Limitations
Sun et al. (2018) RNN-LSTM Comparing the Assumption of
production constant tubing
forecast of head pressure.
multiple wells Assumption of
between DCA and initial production
RNN-LSTM. for a few years in a
few wells.
Alkhalaf et al. ANN Using ANN to The process of
(2019) predict the flow retraining is limited
rates. to a predefined
threshold or every
ten new real-time
measurements.
Masini et al. Random Forest, Demonstrating Requiring the
(2019) XGBoost automated DCA by  specification of
using ML methods.  parameters for every
new data set.
Limitation of data
set: only choke data
available.
Omrani et al. ANN Hybridizing the Limited training
(2019) first principle sets.
model and ANN to Assumption of
predict the short-, production and
mid-, and long- operational
term production. conditions,
Khanetal. (2019)  ANFIS, ANN, Applying ML to Limitation of the
SVM predict the oil rate  number of epochs to
in the artificial gas ~ 400.
lift. Limited data sets.
Bikmukhametov Gradient Combining the ML Simplification of the

and Jéschke
(2020)

Tian and Horne
(2017)

Alakeely and

Horne (2020)

Yang etal. (2019)

Chen etal. (2019)

Alatrach et al.
(2020)

Boosting, ANN,
LSTM

RNN

CNN, RNN

Gaussian
Process,
Kriging,
Random Forest,
K-Mean, Elastic
Net

ANN

Autoencoders

models with the
physics of process
engineering to
forecast the
multiphase flow
rates.

Employing RNN
for the data
analysis of
permanent
downhole gage.

Using CNN and
RNN to simulate
the reservoir
responses.

Implementing
machine learning
to predict gas oil
ratio based on
advanced mud gas
data.

Forecasting the
reservoir recovery
by using ANN
based on the
analog study.

Predicting the
event of well
production by
using
autoencoders.

first principle
models.
Assumption of
steady-state flow
and negligible effect
of the acoustic
wave.

Assumption of
model
parameterization.
Models were for
case-specific
applications.
Limited amount of
data.

Models were for
case-specific
applications.
Limited gas input
data.

Limited data
collection.

Limited application
to formation-wise
model.

The number of ANN
hidden layers was
limited to 3.
Assumption of the
development of
reservoir database
through a large
number of well
patterns.

Data from limited
wells.

Occurrence of false
positive prediction
(training was
conducted on some
missed events of
production).
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Literature Methods Remarks Assumptions /
Limitations
Rahmanifard ANN Forecasting the Models were for
et al. (2020) ‘well performance case-specific
in Montney applications.
Formation.
Cross et al. Decision tree- Prediction of Lacking information
(2020) based model ‘water, gas, and oil about water-related

Al-Alwani et al.
(2019)

Cao et al. (2016)

Amaechi et al.
(2019)

Urban-Rascon
and Aguilera
(2020)

Chaikine and
Gates (2021)

Hassan et al
(2019)

Han and Bian
(2018)

Panja et al.
(2018)

Partial Least
Squares (PLS)

ANN

ANN, GLM

SOM

c-RNN

ANN, Fuzzy
Logic, RBF-NN

SVM, ANN/
PSO

ANN, LSSVM

production at a
timestep of 30 days
for the first two
years in the
Williston Basin.

Estimating the
performance of
production in
Marcellus Shale
from stimulation
and completion
parameters.

Production
forecast using ML
in unconventional
reservoirs.

Estimating the
initial gas
production rate
from tight
reservoirs.
Production
prediction in low
permeability
Teservoirs.

Using c-RNN to
forecast the
production from
multi-stage
hydraulically
fractured
horizontal wells.
‘Well productivity
forecast from
fishbone wells
using ML methods.

Estimating the oil
recovery factor of a
low permeability
reservoir by using
the SVM-PSO
model.
Determining the
production from
shales using ML
methods.

geology features for
more robust
modeling.

Models were for
case-specific
applications.

Limitations in the
database, including
percentage
parameters
exceeding 100%.
Limited use of P10,
P50, and P90
production forecast.
Data consisting of
operational
constraints.
Production history
of the well was
needed as a starting
point in the case of
ANN.

Models were for
case-specific
applications.

Assumed that
earthquake showing
self-similar behavior
in fracture scaling.
Models were for
case-specific
applications.
Limiting the number
of variables used.
Limited sample
sizes.

Assumed input
parameters.

Limits were imposed
on the maximum
and minimum
values of
parameters.

Models were for
case-specific
applications.

Homogeneity in
reservoir properties.
A limited number of
iterations due to
time constraints.

analysis. Alenezi and Mohaghegh (2017) also successfully developed an
SPM for the numerical simulation model of the waterflooded SACROC
unit that accurately predicted the pressure and oil saturation values at
the grid block level. To estimate the production under waterflooding,
Negash and Yaw (2020) used Bayesian regularization algorithm as the



C.S.W. Ng et al.

training algorithm to develop an artificial neural network (ANN)-based
proxy of a reservoir in Malay basin. Moreover, Zhong et al. (2020) used a
more advanced ML method, conditional deep convolutional generative
neural network (cDC-GAN), to build a proxy of a 2D oil-water system
reservoir to forecast the field production rates under waterflooding.
They also used this proxy to conduct optimization and uncertainty
quantification.

Artun (2017) did a comparative study between ANN model and
Capacitance Resistance Model (CRM) for the determination of interwell
connectivity in waterflooded reservoirs. He stated that ANN has better
flexibility in terms of modeling and data requirements since CRM is a
reduced-physics model. Kalam et al. (2020) employed three approaches

Computers and Chemical Engineering 170 (2023) 108107

including non-linear regression (NLR), ANN, and adaptive neuro-fuzzy
to forecast the performance of waterflooding of a stratified reservoir.
They concluded that ANN yielded the best prediction. Deng and Pan
(2020) also demonstrated the development of a proxy that consisted of
Echo State Network (ESN) coupled with an empirical relationship of
water fractional flow. This model was then used for production opti-
mization in a closed-loop manner. SVR was also effectively employed to
predict the production of a reservoir under different geostatistical re-
alizations (da Silva et al., 2020). In another work, Bai and Tahmasebi
(2020) built four different models using ANN, RNN, deep gated recur-
rent unit (GRU), and LSTM to predict the water coning, which has been
an important issue to be handled in waterflooding. Jia and Deng (2018)

Table 3

Summary of Literature in the Domain of Waterflooding.

Literature

Methods

Remarks

Assumptions / Limitations

Mohaghegh
(2011)

Mohaghegh et al.
(2012¢)

Mohaghegh et al.
(2012b)

Alenezi and
Mohaghegh
(2017)

Negash and Yaw
(2020)

Zhong et al.
(2020)

Artun (2017)

Kalam et al
(2020)

Deng and Pan
(2020)

da Silva et al
(2020)

Bai and
Tahmasebi
(2020)

Jia and Deng
(2018)

Guo and Reynolds
(2018)

Hourfar et al
(2019)

Ma et al. (2019)

Chen et al. (2020)

Jia et al. (2020)

ANN/ GA/ Fuzzy Logic

ANN

Conditional deep convolutional
generative neural network (cDC-GAN),
adversarial neural network

ANN

ANN/ Adaptive neuro-fuzzy

Echo State Network

SVR

LSTM

Clustering technique

SVR

RL

RBF Network / DE

Machine learning algorithm/ PSO

Introducing Al-based modeling by using a case study
of waterflooding.

Using Al technique to develop a Surrogate Reservoir
Model (SPM) for an Onshore Green Field under
waterflooding in Saudi Arabia.

Extending the methodology to well-based SRM to two
offshore fields in Saudi Arabia.

Building a smart proxy model for the waterflooded
SACROC unit.

Production prediction of the waterflooding process by
using ANN.

Forecasting the field production rates of three
waterflooding cases by using the neural network
models.

Implementing ANN and reduced physics model to
characterize the inter-well connectivity in a
waterflooded reservoir.

Estimating the oil recovery of waterflood by using AT
methods in four cases: two real field cases, analytical
and semi-analytical models.

Embedding ML technique in Closed-Loop Reservoir
Management (CLRM) for a waterflooded mature field.

Predicting production from reservoir considering
geostatistical realizations.

Forecasting the water breakthrough by using LSTM.

Employing streamline clustering technique to identify
waterflooding flowing area in oil reservoirs.

Performing waterflooding optimization by using SVR-
based proxy models.
Applying RL to conduct waterflooding optimization.

Conducting Global and Local surrogate modeling to
optimize waterflooding with DE.

Illustrating the combined use of ML and PSO to
perform data-driven optimization of water injection
plans.

Models developed were case-specific.

Existence of noise in the data collected.

Models built were case-specific.

Limitations caused by material balance and difficulty of
splitting production among producers increased the
uncertainty of final results.

The synthetic reservoir was set at a maximum BHP of
5000 psia.

Communication between layers was assumed to be
valid for the first category but not for the second.
Immiscible and piston-like displacement without
gravity effects.

In this methodology, the produced water contained
water coning from the injector.

All producers were under BHP control whereas all
injectors were under rate control.

The reservoir model was assumed to undergo 5 years of
production before the start of the workflow.
Assumption of data acquisition frequency.

The use of the dimensionality reduction method might
be needed in the proposed work for much more
complex cases.

A large variance of the training dataset.

The flow of reservoir fluids was assumed to be along the
streamline at a particular timestep.

Limited total number of simulation runs for training.
The constraint of well control by simple bounds.
Voidage replacement assumption.

Operational constraints, like minimum and maximum
injection rate, and an upper limit of the cumulative
injection at each time step.

Limitation of RL: delayed reward assignment, a trade-
off between exploration-exploitation, and curse of
dimensionality.

Assumption of production period of 1080 days.
The maximum production rate was 1500 STB/day and
the minimum BHP of the producer was 1000 psi.

A limited number of training data points.

A limited number of injection plans were used.
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used the streamline clustering Al method to identify the flowing area of
waterflood in an oil field. In this work, having a reasonable number of
clusters was important to have accurate clustering results. To achieve
this, density peak clustering was used.

Production optimization under waterflooding of a reservoir has been
frequently done with different algorithms. Guo and Reynolds (2018)
developed a proxy model of a channelized reservoir by considering
different geological scenarios and performed the optimization by using
the stochastic simplex approximate gradient (StoSAG). Hourfar et al.
(2019) employed reinforcement learning (RL) method to optimize pro-
duction through waterflooding. About this, Ma et al. (2019) used deeper
RL algorithms to conduct a similar optimization under geological un-
certainties. They considered deep Q-network (DQN), double DQN,
dueling DDON, and deep deterministic policy gradient (DDPG). They
inferred that in terms of maximization of NPV, DQN was able to perform
better than the rest and as well as PSO. Furthermore, other works
highlighted the useful application of metaheuristic algorithms in opti-
mizing waterflooding. Chen et al. (2020) introduced a new methodology
that was global and local surrogate-model-assisted differential evolution
(GLSADE) to optimize waterflooding production. GLSADE was shown to
be able to attain higher NPV than the conventional evolutionary algo-
rithm based on three different models, such as two 100-dimensional
benchmark functions, a three-channel model, and Egg model. Jia
et al. (2020) suggested a data-driven optimization that included ML
clustering technique and PSO for waterflooding in a complex reservoir
in eastern China. ML clustering algorithm was used to identify the effi-
ciency of waterflood performance at different layers. Then, PSO was
used to conduct the optimization of the water injection plan. Peruse
Table 3 for the summary of the literature on Waterflooding.

4.4. Water-Alternating-Gas (WAG)

WAG injection is one of the most prevalent EOR techniques. It in-
volves injecting water and gas alternately (in a cyclic manner) over a
period to increase sweep efficiency to contribute to higher oil recovery.
The injected gas can be CO» or a mixture of COy and hydrocarbon gas.
Optimization of WAG parameters has been widely researched because it
is essential to ensure a high economic return. As stated by Mohaghe-
ghian et al. (2018), the WAG parameters generally include water and gas
injection rates, BHP of producers, cycle time, cycle ratio, composition of
the injected gas, total time of WAG, etc. In this context, they illustrated
the successful use of metaheuristics algorithms like GA and PSO to tune
the WAG parameters in Norne field to maximize the NPV and incre-
mental recovery factor (IRF). In addition, other literature recommended
the implementation of ML methods to provide fast analysis of WAG
injection.

Regarding the employment of ML and metaheuristic algorithms in
optimizing the WAG process, Nait Amar et al. (2018a) illustrated the
development of dynamic proxy using time-dependent multi-ANN to
predict the total field oil production. Then, this dynamic proxy was
coupled with GA and ACO to determine the optimal WAG parameters. In
addition to this, Nait Amar et al. (2020c) successfully applied SVR to
build the dynamic proxy of a field in Algeria and coupled it with GA to
optimize the water-alternating CO- gas parameters. More interestingly,
the hyperparameters of SVR were optimally adjusted by GA before being
used (Nait Amar et al., 2020c). Nait Amar et al. (2021) implemented two
different proxies of Gullfaks field, namely Multilayer Perceptron (MLP)
and Radial Basis Function Neural Network (RBFNN). Thereafter, GA and
ACO were used along with these proxies to optimize the WAG process.
Nwachukwu et al. (2018b) employed XGBoost to establish a proxy of a
reservoir model under different geological realizations. This proxy was
coupled with MADS to not only optimize the well locations but also find
the optimal WAG parameters.

Belazreg et al. (2020) applied a random forest algorithm to build a
model based on a database from 28 WAG pilot projects worldwide to
forecast the IRF during the WAG process. Belazreg et al. (2019) also
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efficiently attempted the use of GMDH to develop the IRF predictive
model, which was a function of horizontal and vertical permeabilities,
fluid properties, mobility of fluids, WAG injection scenario, residual oil
saturation to gas, trapped gas saturation, injected gas volume, and
reservoir pressure. Moreover, in the work of Belazreg and Mahmood
(2020), GMDH was employed to predict WAG IRF based on the data
from 33 WAG projects from 28 fields in the world. Furthermore, the
methodology of top-down modeling (TDM) was used by Yousef et al.
(2020) to build a model to estimate the reservoir performance of a
mature oil field in Middle East under WAG injection. This model also
provided a rapid medium for the optimization of WAG parameters.
Jaber et al. (2019b) implemented Central Composite Design (CCD) to
establish a proxy of a reservoir in Subba oilfield to approximate the
incremental oil recovery during the miscible CO2-WAG process.

Nait Amar and Zeraibi (2019) established three different MLPs
trained by LMA, BR, and SCG. After that, these MLPs were coupled with
Non-Dominated Sorting Genetic Algorithm version 11 (NSGA-II) to
conduct multi-objective optimization of the CO,-WAG process. Enab and
Ertekin (2020) also demonstrated how ANN could be built and used for
the screening and optimization of the CO,-WAG process and the struc-
tures of fish-bone well in low permeability reservoirs. The case study
presented was a reservoir from Sirri A field. Read Table 4 for the sum-
mary of the literature on WAG.

4.5. Miscible Gas Injection

Miscible gas flooding has been one of the well-known EOR methods
applied in the petroleum industry. Examples of gasses usually applied in
miscible gas flooding include carbon dioxide (CO3), nitrogen (N2), nat-
ural gas, etc. CO; has been preferred over other gasses because imple-
menting miscible CO; gas injection not only increases oil recovery but
also reduces greenhouse gas emissions. Therefore, the literature survey
in this section will focus mainly on miscible CO; gas flooding. In
miscible gas injection, minimum miscibility pressure (MMP) is one of
the most significant parameters that can affect the efficiency of the in-
jection process. Accurate modeling of MMP thus has been extensively
researched and application of ML in this context has also been proven
successful.

Tatar et al. (2013) employed the RBFNN to estimate the MMP of pure
and impure COp-reservoir oil. 147 data sets from different pieces of
literature were used to generate the database for the modeling. Apart
from RBFNN, other approaches like GA-based Backpropagation Algo-
rithm Neural Network (GA-BPNN) were also efficiently applied by Chen
et al. (2014) to develop the predictive model of MMP in the CO,-EOR
process. GA-BPNN outperformed other existing correlations as discussed
in Chen et al. (2014). In addition to BPNN, Bian et al. (2016) illustrated
that GA could be coupled with SVR to develop a model that could
determine COz-0il MMP in both pure and impure streams of COj.
GA-SVR was demonstrated to yield more accurate results of MMP than
other correlations. Karkevandi-Talkhooncheh et al. (2018) used the
hybrid models of RBFNN and five different metaheuristic algorithms:
GA, PSO, DE, Imperialist Competitive Algorithm (ICA), and ACO. These
models were able to forecast the MMP under pure and impure CO in-
jection conditions. In their study (Karkevandi-Talkhooncheh et al.,
2018), ICA-RBFNN outperformed other hybrid models.

Furthermore, Nait Amar et al. (2018c¢) established a hybrid model of
ANN and DE to forecast MMP for a pure CO»-0il system. The initial best
weight and bias parameters of ANN were optimized by employing DE.
Then, this DE-optimized ANN undergoes backpropagation training
again to be used as a predictive model. Nait Amar and Zeraibi (2018)
also successfully tuned the hyperparameters of SVR by using ABC and
applied it as a model to predict MMP in COs flooding. SVR-ABC yielded a
more accurate result than the SVR optimized via trial and error and
other correlations. Dargahi-Zarandi et al. (2020) utilized more ML
methods to develop three intelligent models to do the same prediction.
These methods include Group Method of Data Handling (GMDH), MLP,
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Table 4

Summary of Literature in the Domain of WAG,

Literature Methods Remarks Assumptions /
Limitations
Mohagheghian GA, PSO Optimizing WAG in Economic constraints
et al. (2018) Norne field with comprise a lower
evolutionary limit on oil
algorithms. production (10 Sm3/
day) and upper limits
on water cut (0.95)
and GOR (500 vol/
vol).
Variables, apart from
cycle ratio, cycle
time, and total WAG,
were assumed to be
continuous.
Nait Amar et al ANN/ GA, Optimizing WAG in a Imposing different
(2018a) ACO, synthetic field with constraints to the
ANN and nature- design parameters.
inspired algorithms. The database was
Nait Amar et al. SVR/ GA Optimizing CO,-WAG generated based on
(2020c¢) in a synthetic field multiple runs of the
with ANN and nature-  simulation.
inspired algorithms.
Nait Amar et al ANN/ GA, Optimizing WAG in
(2021) ACO Gullfaks field with
ANN and nature-
inspired algorithms.
Nwachukwu XGBoost/ An extended work of Augmentation of
et al. (2018b) MADS Nwachukwu et al. predictor variables
Algorithm (2018a) in which ML due to the
models were built to sophistication of
offer reservoir response surface.
responses Case-sensitive
corresponding to well  application.
locations and control The proposed
during WAG under methodology was
geological implemented on a
uncertainty. MADS synthetic case.
was then used for
joint optimization.
Belazreg et al. Random Predictive Modeling Modeling was done
(2020) Forest of Incremental based on limited/
Recovery Factor of missing data.
CO-WAG.
Belazreg et al. GDMH. Predictive Modeling WAG was assumed to
(2019) ANN of Recovery Factor of  begin after 10 years of
WAG. waterflooding.
Belazreg and Predictive Modeling Modeling was done
Mahmood of WAG Incremental based on limited data.
(2020) Recovery Factor of The recovery factor of
WAG through pilot the pilot tests ranged
projects. from 5 to 10%.
Yousef et al. ANN Implementing ANN A limited number of
(2020) for top-down pressure tests are
modeling in the available.
prediction of Reservoir
reservoir performance  characteristics were
under WAG, slightly modified and
assumed to be
reasonably accurate
for TDM.
History data (initial
injection rate) was
assumed to be the
benchmark to assess
the efficiency of
injection.
Jaber et al. CCD Employing a data- 7 independent
(2019b) driven proxy to variables were

evaluate the
incremental oil
recovery of the CO,-
WAG process.

assumed in the study.
The database was
generated based on
multiple runs of the
simulation.
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Table 4 (continued)

Literature Methods Remarks Assumptions /
Limitations
Nait Amar and ANN/ Multiobjective The daily oil
Zeraibi (2019) NSGA-II optimization of WAG-  production rate was
CO; in a synthetic limited to 8500 Sm®/
field. day.

Total Field Oil
Recovery and Total
Field Water
Production were
assumed as objective
functions.

The database was
generated based on
multiple runs of the

simulation.
Enab and ANN Applying ANN to Limitations were
Ertekin (2020) screen and optimize imposed by defining
CO,-WAG and the the range of each
structures of fish-bone  variable.
wells in reservoirs Limitations on
with low drilling and
permeability. completions were not
considered.

and Adaptive Boosting SVR (AdaBoost SVR). Sinha et al. (2020b) built
four models, linear SVM, K-Nearest Neighbor regression (KNN), Random
Forest Regression (RF), and ANN, to determine the MMP. They deduced
that RF worked best compared with the other models. Thereafter, they
substantially enhanced the RF model to become an ensemble model
(hybridization of available correlation and RF) which they termed the
super-learner method.

Dong et al. (2019) integrated the use of L2 regularization (which acts
as a penalty term to prevent overfitting during the training phase) and
dropout as a step in improving the ANN-based model that was employed
to forecast MMP. This improvement could prevent the overfitting issue
and further strengthen the predictive capability of the model. Other than
estimating MMP, the Fuzzy Logic method was shown by Karacan (2020)
capable of determining the recovery factor of miscible CO; gas flooding.
This fuzzy-based model (with the Mamdani-type inference system) was
developed by using the data from 24 major USA field projects. You et al.
(2019b) also implemented a hybrid method that considered the coupling
of ANN with PSO to perform multi-objective optimization of CO,-EOR.
The objective functions included CO; storage, oil recovery factor, and
NPV. The literature on Miscible Gas Injection is summarized in Table 5.

4.6. Other EOR techniques

EOR methods can be fathomed as tertiary recovery techniques used
to retrieve the remaining oil from hydrocarbon reservoirs. These tech-
niques will be initiated after the exhaustion of both primary and sec-
ondary recovery methods. Examples include surfactant flooding,
polymer flooding, any other chemical flooding, nitrogen gas injection,
in-situ combustion, Steam-Assisted Gravity Drainage (SAGD), cyclic
steam injection, fire-flooding, microbial flooding, and so forth. The cost
of implementation of these methods is relatively higher than primary
and secondary recovery methods. Therefore, careful design and opti-
mization of the tertiary recovery methods are important to elude any
unnecessary waste of expenditure and ensure the profitability of the
project. Several works have illustrated the application of ML methods in
the context of the employment of different tertiary recovery techniques.

Rezaian et al. (2010) applied experimental methods to examine the
effect of Poly Vinyl Acetate (PVA) on the rheology of crude oil and
water. This was because they wanted to study the effectiveness of PVA to
be used in polymer flooding. Thereafter, they demonstrated the suc-
cessful implementation of ANN in developing a predictive model based
on the experimental data. Zerafat et al. (2011) illustrated the use of
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Table 5
Summary of Literature in the Domain of Miscible Gas Injection.
Literature Methods Remarks Assumptions
/ Limitations
Tatar et al. (2013) RBFNN Modeling of Models were
Chen et al. (2014) Backpropagation the CO- developed
Neural Network /  reservoir oil based on
GA minimum available
miscibility experimental
pressure. data.

Bian et al. (2016) SVR / GA Built based on
Modeling of available
CO,-0il experimental
minimum data.
miscibility Separate
pressure with models for
pure and pure and
impure CO,. impure CO;.

Karkevandi-Talkhooncheh Radial Basis Models were

et al. (2018) Function extended on a
Networks / GA, basis of
PSO, ICA, ACO, limited data
DE points.

Nait Amar et al. (2018c) ANN / DE Developing Models were
the predictive  built based on
model of data from a
minimum few
miscibility experiments.
pressure in a Choice of
pure CO-oil input
system. parameters

Nait Amar and Zeraibi SVR / ABC Building the was assumed.

(2018) predictive
model of
minimum
miscibility
pressure in
the COx-EOR
process.
Dargahi-Zarandi et al. Adaptive Predictive Predicting the
(2020) Boosting SVR, Modeling of limited range
GDMH, MLP MMP of pure of MMP
and impure between 1000
COy-crude oil  psia and 4900
systems. psia.
Dataset
limitation.
Sinha et al. (2020b) Linear SVM/ K- Predictive Data set
Nearest Neighbor ~ Modeling of limitation.
Regression/ MMP of CO»- Further
Random Forest crude oil applicability
regression/ ANN systems. of models was
limited.

Dong et al. (2019) ANN

A limited
number of
field cases.
Input
variables
were assumed
based on the
availability of
data,

Karacan (2020) Fuzzy Logic Forecasting The model
of recovery was
factor of constructed
miscible CO- by only using
EOR. data from 24

U.S. field
projects.

You et al. (2019b) ANN/ MO-PSO Applying Only 4 input
ANN for parameters:
multi- water cycle,
objective gas cycle,
optimization BHP of
of CO2-EOR. producer, and
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Table 5 (continued)

Literature Methods Remarks Assumptions
/ Limitations

water
injection rate,
were
considered.

Bayesian network analysis to screen for an efficient EOR method. They
applied different data sets from seven different EOR methods, like
miscible Ny injection, miscible hydrocarbon injection, miscible and
immiscible CO injection, polymer flooding, in-situ combustion, and
steam injection. Siena et al. (2016) further built a novel EOR screening
tool by using the Bayesian approach. The approach they implemented
included Bayesian Hierarchical Clustering (BHC) algorithm and PCA,
which could be understood as a two-step algorithm. PCA was used to
reduce the dimensionality of data and provide accurate distance metrics
regarding the similarity among the projects. The database they used
generally comprised thermal EOR, chemical EOR, and gas/WAG injec-
tion that were derived from different worldwide projects and literature.

parada and Ertekin (2012) applied ANN modeling to establish a new
screening tool for four different recovery methods including water-
flooding, miscible N, injection, miscible CO, injection, and steam in-
jection, Khazali et al. (2019) presented the use of a fuzzy decision tree in
the assessment of EOR screening. They stated that the fuzzy decision tree
could perform the simultaneous ranking and classification of different
EOR techniques. Hence, an expert system could be designed to generate
the EOR rules. In their work, the decision tree was applied to the dataset
of 548 observations related to ten different EOR methods. Sun and
Ertekin (2020) showed that ANN-based proxies could be established to
do the screening of polymer flooding. Then, they coupled the proxies
with PSO to optimize the polymer flooding process to maximize the
NPV. In the domain of optimization, Ma and Leung (2020) designed a
hybrid workflow that integrated multi-objective optimization (MOQ)
and proxy modeling in the case of injection of warm solvent into het-
erogeneous heavy oil reservoirs. In their work (Ma and Leung, 2020),
NSGA-II was used to perform the MOO.

Regarding recovery performance forecasting, Ehsan et al. (2014)
applied PCA to decrease the dimensionality of the input data before
modeling the ANN. The ANN was used to estimate the production
induced by the SAGD process in heterogeneous reservoirs. Ersahin and
Ertekin (2020) also conducted the development of ANN of cyclic steam
injection (CSI) in naturally fractured reservoirs. The ANN models
developed included a forward model and two inverse models. The for-
ward model was used to estimate the cumulative oil production and
changes in viscosity near the wellbore, About the inverse-looking
models, the first one was used to find out the ideal design of injection
variables whereas the second one was used for the characterization of
some reservoir properties. Abdullah et al. (2019) developed five ANN
models to be implemented in chemical EOR in a sandstone reservoir.
These models were applied to estimate reservoir performance, forecast
reservoir properties, determine the design parameters for known per-
formance and properties, and find out the design parameters for a tar-
geted cumulative oil production and project period. Refer to Table 6 for
the summary of the literature on other EOR techniques.

4.7. Carbon Capture and Storage (CCS)

The increasing amount of carbon dioxide (CO) gas in the atmo-
sphere is one of the main factors contributing to climate change today.
Nevertheless, CO, emission is an inevitable consequence of different
types of industrial and commercial activities required to fulfill our daily
practical needs. Therefore, awareness has arisen among researchers to
look for an efficient strategy to reduce CO» emissions. One of the pro-
posed strategies to assure that emission of CO2 will remain at a low level
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Table 6 Table 6 (continued)
Summary of Literature in the Domain of Other EOR Techniques. Literature Methods Remarks Assumptions /
Literature Methods Remarks Assumptions / Limitations
Limitations train the ANN and
Rezaian ANN ML models were built to ~ Data was only from one determine its optimum
et al predict the effect of experiment and this design.
(2010) Poly Vinyl acetate on might limit the Abdullah ANN Applying ANN to design  The surfactant was in
the rheology of water applicability of the etal. and model the the aqueous phase.
and crude oil in EOR. models developed. (2019) implementation of Data available was
The experiment was chemical EOR. assumed to be reservoir
done under predefined characteristics, project
conditions. duration aimed, and
Zerafat Bayesian The model was created  The study was done cumulative oil volume.
et al Network as a tool for EOR without considering
(2011) screening based on data  economic limitations.
from 10 Iranian Models were case- is Carbon Capture and Storage (also known as Carbon Capture and
) southwest reservoirs. specific. Sequestration) (CCS). Fundamentally, CCS is performed by injecting the
Siena etal. - Bayesian A novel EOR screening - Evaluation of captured CO; into geological formations and ensuring it is safely trapped
(2016) Clustering/ tool was established. probability based upon i
PCA the fundamental underground. Much research has been done on the domain of CCS and
assumption of Bayesian one of the most cutting-edge topics is the coupling of ML techniques with
clustering. CCS. Several pieces of literature also discussed the application of met-
Id”lmﬁ‘?““_" i’f N aheuristic algorithms along with the ML methods in CCS.
tal to t . . .
:::czsg;fz vialio the Sipocz et al. (2011) developed two different ANN models to predict
implementation of this the CO; capturing processes. The difference between the models was the
methodology. training algorithm used where one was trained using scaled conjugate
Parada and  ANN An ANN-based EOR Ability to predict gradient (SCG) algorithm whereas the other training algorithm
T sereening toolwas built. - reservolr response 10 employed was Levenberg Marquardt algorithm (LMA). They deduced
within certain limits. that these models could provide results not only much faster than pro-
Four different cess simulator CO2SIM but also within an acceptable level of accuracy.
compositions of Miscibility of CO2 in formation fluids is another important aspect of CCS.
hyd‘_‘;ca";"“ were Mesbah et al. (2018) illustrated the implementation of a multilayer
considered. . N
Khaali Fuszy EOR screening The proposed method perceptlton neural network (MLPNN) by employing 1386 g){perlmentjal
et al. Decision evaluation by using a works best with data points to forecast the miscibility of CO, and supercritical COy in
(2019) Tree fuzzy decision tree. sufficient data. ionic liquid. During the development of the model, they performed
Economic issues were outlier diagnostics to ensure the quality of data used. Furthermore,
mt, cs)n}cerne'd.' Sinha et al. (2020a) used ML methods, like random forest and multilayer
Sun and ANN The ANN-based model Salinities of injected .
Ertekin was created to screen and in-situ water were feedforward neural network (MFNN), to build models for leakage
(2020) and optimize polymer assumed the same. detection in a carbon sequestration project in Cranfield reservoir, Mis-
flooding. Gravitational forces and sissippi, USA. The models were made based on time series signals from
cap‘“a?{ Pr‘;ss“re were the pressure pulse test. Vo Thanh et al. (2020) also successfully showed
assumed to be . .
negligible. the use of ANN to estimate the performance of CO»-EOR and storage in a
Existence of upper and residual oil zone located in Permian basin.
lower limits of the Metaheuristic algorithms were also proven to be useful to be coupled
search space of design with ML techniques in CCS. You et al. (2019a) provided a framework to
. parameters. conduct co-optimization on CO; storage, the performance of CO»-EOR,
Ma and ANN/ NGSA- Hybridization of ANN Assumption of uniform d th f th . he f X d il
Leung 11 and NSGA-II for multi- properties within each and the NPV of the project. In the framework, RBFNN and multilayer
(2020) objective optimization facies. neural network modeling were implemented to build the proxies of the
of warm solvent Only sand was assumed reservoir model. Then, PSO was used to do the co-optimization. After
Injection in to exist at the well grid that, You et al. (2020c¢) also developed ANN to establish a proxy of the
heterogeneous heavy cell. P . .
. B sandstone reservoir in Pennsylvanian Upper Morrow to estimate the
oil reservoirs. Only bottom-hole N . . . . )
pressures were chosen time series of cumulative oil production and CO, storage. PSO was again
as design parameters, applied to co-optimize CO storage, the performance of CO2-EOR, and
Excessive startup time the NPV of the project. In addition to proxy modeling, other interesting
and slow extraction rate literature have discussed the use of ML to predict important parameters
limited the application. 1 ccs. Th lubili £ CO in f ion fluid i ial
Ehsan ANN/ PCA An integrated approach The study was limited relevant to - e S.O bl lt}’ ol 210 ({rmatmn uid Is an essentia
et al. of ANN and PCA for the  to the database that was parameter to be considered in CCS. In this context, Nait Amar et al.
(2014) prediction of SAGD created from the (2019) applied MLP and RBFNN to make predictive models of CO,
performance in combinations of the solubility in brine. More intriguingly, LMA was employed to train MLP
heterogeneous attributes of N N
A ) whereas GA, ABC, and PSO were used to train RBFNN. In their study,
reservoirs, heterogeneous reservoir )
as input. RBFNN-ABC outperformed the other models. Hemmati-Sarapardeh
Separate ANNs were et al. (2020a) also used four ML techniques, including RBFNN, MLP,
required for better Least-Squares Support Vector Machine (LSSVM), and Gene Expression
results. B 15 : s
Programming (GEP), to model the solubility of COy in water at high
Ersahin ANN Using ANN to model the  Oil behaves as 8 8 C d ) R h y, . 2h f b gk
and Cyelic Steam Injection Newtonian fluid. temperature and pressure. During the training phase, four back-
Ertekin Process in Naturally A trial-and-error propagation algorithms were used in the modeling of MLP whereas four
(2020) Fractured Reservoirs. approach was needed to nature-inspired algorithms were used in the modeling of RBFNN and

LSSVM. These nature-inspired algorithms included PSO, GA, FA, and
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DE.

In addition, Nait Amar and Jahanbani Ghahfarokhi (2020) presented
how white-box ML methods could be used to estimate CO, diffusivity in
brine. These white-box ML techniques were GMDH and GEP. These
models could be applied to predict the diffusivity coefficient of CO3 in
brine as functions of temperature, pressure, and viscosity of the solvent.
Also, Nait Amar et al. (2020a) utilized MLP, GMDH, and GEP to build
predictive models of CO viscosity at high temperature and pressure.
Four backpropagation algorithms, LMA, SCG, Bayesian Regularization
(BR), and Resilient Backpropagation (BR), were used to train the MLP.
The thermal conductivity of carbon dioxide is another important
parameter in CCS projects. Regarding this, Nait Amar et al. (2020b) first
established some MLP-based models and RBFNN trained by PSO to
forecast the thermal conductivity of carbon dioxide. After that, the two
best models were coupled with two Committee Machine Intelligent
Systems (CMIS) via the weight averaging method and GMDH. Peruse
Table 7 for the summary of the literature on CCS.

4.8. History Matching (HM)

History Matching (HM) can be understood as a task that involves
tuning or adjustment of any parameter that is used in reservoir modeling
to enable a reservoir model to yield results that match the observed real-
field data. It can be understood that HM can be very laborious and time-
consuming. To mitigate this computational challenge, several works
propose the application of ML techniques in establishing the proxies of
the numerical reservoir models to be employed in HM. Besides that, HM
is considered an optimization problem as it involves the minimization of
the error between the predicted data and observed data. In this aspect,
metaheuristic algorithms have widely contributed to the successful and
efficient deployment of HM. More intriguingly, some literature high-
lighted the coupling of proxies with metaheuristic algorithms in per-
forming HM. Thus, ML and metaheuristic algorithms show great
potential to be further improved in the future implementations of HM.

Sampaio et al. (2009) presented the fundamental use of FNN as the
nonlinear proxy model of a numerical and synthetic heterogeneous
model. Then, they applied it in HM and showed very positive results.
However, they opined that the complexity of the reservoir model could
be increased to illustrate the robustness of ML. Shahkarami et al.
(2014b) proposed the use of a surrogate reservoir model (SRM), which
was represented as a Neuro-Fuzzy system, in the HM phase. They termed
it Al-assisted HM (AHM) and successfully showed that it could reduce
the computational time induced by the conventional approach of HM
using a very heterogeneous model. Masoudi et al. (2020) employed a
similar methodology to conduct HM on a very complicated and mature
offshore oilfield in Malaysia. However, the SRM used was the decon-
volutional neural network. Also, they applied top down modeling (TDM)
that included the data from the real field in designing the SRM used for
HM. Illarionov et al. (2020) studied different approaches to HM of a
real-field model on an FNN-based proxy termed as Neural Differential
Equations based Reduced Order Model (NDE-b-ROM). The HM methods
considered a variation of reservoir model parameters, an adaptation of
neural network architecture, and an adaptation of latent space of model
parameters. They inferred that latent space adaptation would yield the
best result.

More advanced techniques were also used in proxy modeling along
with HM. Chaki et al. (2020) employed deep neural networks (DNN) and
RNN to build proxy models of Brugge reservoir and conducted an
exhaustive search of HM using the models. Honorio et al. (2015) also
included a novel ML method to study the prior information on geology
and use pluri-principal-component-analysis (pluri-PCA) to rebuild a
model. Fundamentally, they implemented pluri-PCA to transform the
geological models to Gaussian PCA coefficients and tuned them in HM.
Rammay et al. (2020) examined different algorithms used for HM of
imperfect subsurface models. These algorithms included HM without
considering model error, HM with an update of total error covariance
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Summary of Literature in the Domain of CCS,

Literature Methods Remarks Assumptions /
Limitations

Sipocz et al. (2011) ANN ML was employed  Limited to 5000
for the modeling epochs due to low
and prediction of computational
the COy capture space.
process plant. Each input

parameter was
assumed and
underwent
sensitivity analysis
to assess its
dependence on the
output.

Mesbah et al. (2018) MLP ML was used to Input parameters
develop predictive  used for modeling
models of were assumed.
miscibility of COy The methodology
and supercritical is yet subject to the
CO, in ionic verification of
liquid. other databases.

Sinha et al. (2020a) Multilayer ML models were Simplistic ML

FNN. established for techniques
Random leakage detection showed limited
Forest, in a carbon sufficiency in
Linear Sequestration capturing the
models project. details.
The window of
1000 samples was
not decided
through a
comprehensive
analysis.

Vo Thanh et al. (2020) ANN/ PSO ANN was applied The model
to forecast the developed is case-
performance of specific.

CO, EOR and The selection of

storage in a the range of

residual oil zone. uncertainty
parameters
requires more
attention.

You et al. (2019a) RBFNN, An optimization Production

Multilayer framework, pressure is limited
Neural considering ML to 4000 psia
Networks / and PSO, was whereas injection
PSO proposed to co- pressure is 5000
optimize CO> EOR  psia.
and storage in a Three different
sandstone development
Teservoir. strategies were
assumed.

You et al. (2020¢) ANN / PSO A part of the Production
extended work of pressure is limited
You et al. (2019a). to 4000 psia
An ML-assisted whereas injection
computational pressure is 5000
workflow was psia.
introduced to Operational cost is
optimize a primarily
CO,-WAG influenced by the
injection plan that ~ amount of COa.
considers CO,
sequestration and
hydrocarbon
recovery.

Nait Amar et al. (2019) MLP, Different ML Limited to the

RBFNN / models were built  database used for

GA. PSO, to determine the modeling

ABC solubility of CO, (robustness still
in brine, which is needs to be
important to the verified).
application of Input data

CCs.

parameters were

(continued on next page)
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Table 7 (continued)

Literature Methods Remarks Assumptions /
Limitations
Hemmati-Sarapardeh LSSVM, GEP  Numerous ML assumed for
et al. (2020a) / PSO, GA, methods were developing the
DE, FA implemented to models
estimate the
solubility of COz
in water at high
pressure and
temperature.
Nait Amar and GMDH, Models that could
Jahanbani GEP, forecast CO5
Ghahfarokhi (2020) Decision diffusivity in brine
Trees, were established
Random with the aid of
Forests. ML.
Nait Amar et al MLP, GEP, Numerous ML
(2020a) GDMH methods were
employed to
predict the
viscosity of CO, at
high pressure and
lemperature.
Nait Amar et al MLP, Models that could
(2020b) RBFNN, forecast COz
CMIS, CMIS- thermal
GMDH conductivity were

established with
the aid of ML.

matrix through iteration, HM with PCA-based error model, HM with
PCA-based error model and noise covariance matrix, HM with
PCA-based error model and considering second-order errors, and HM
with PCA-based error model and update of total error covariance matrix
through iteration. They deduced that the last three algorithms yielded
models with high fidelity. Liu and Durlofsky (2020) also illustrated the
use of optimization-based PCA (O-PCA) and CNN-based PCA as
geological parametrization techniques to represent the model properties
of complex reservoirs. These techniques were coupled with the MADS to
do HM. Also, the proxy-based Markov Chain Monte Carlo algorithm was
successfully employed with the Embedded Discrete Fracture Model
(EDFM) to conduct AHM on the oil well in Vaca Muerta shale (Dacha-
nuwattana et al., 2018), An ensemble smoother neural network (ES-NN)
that comprised ensemble smoother (ES) and convolutional autoencoder
(CAE) was built and used to HM the channelized reservoirs by Kim et al.
(2020). They stated that the ES-NN produced better performance than
the ensemble smoother-multiple data assimilation (ES-MDA).

As discussed before, metaheuristic algorithm has been efficiently
proven successful as an optimization algorithm in HM. Schulze-Riegert
et al. (2002) applied evolutionary algorithms to conduct HM of a so-
phisticated synthetic reservoir model of a North Sea reservoir. Karimi
etal. (2017) used GA along with the proxy model, which was the RSM of
a 3D giant reservoir model, to do HM. Kriging proxy modeling and Sobol
sampling sequence were applied by Shams et al. (2019) to do AHM by
implementing three metaheuristic algorithms such as Firefly Optimiza-
tion (FFO), Bee Colony Optimization (BCO), and Harmony Search
Optimization (HSO). Shahkarami et al. (2018) illustrated the AHM by
implementing the technology of pattern recognition. They established
SRM of PUNQ-S3 reservoir model by applying ten realizations and
coupled the SRM with DE to perform the AHM. In addition, He et al.
(2016) applied a similar methodology to develop a proxy model of
SACROC unit (Scurry Area Canyon Reef Operational Committee) which
was the main part of the Kelly Snyder field in the Permian Basin. They
also successfully coupled the proxy with DE to do AHM. Riazi et al.
(2016) demonstrated the use of LSSVM to develop a proxy model of a
fractured reservoir. Thereafter, they successfully implemented PSO and
ICA to do AHM. Rana et al. (2018) suggested applying Gaussian
Process-based Proxy Modeling and Variogram-based Sensitivity Analysis
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(GP-VARS) on the PUNQ-S3 reservoir to solve the HM problem. They
mentioned that this methodology was four times computationally less
demanding than using DE on the numerical simulation to do HM. The
literature on History Matching is summarized in Table 8.

5. Pros, Cons, and Other Discussions
5.1. Pros

As briefly mentioned, one of the main advantages of applying ML-
based approaches in the context of reservoir simulation, is the reduc-
tion of computational footprints. Even with the current improvements in
computational power, numerical simulation of a very sophisticated
reservoir model may take a few months in field development studies.
Therefore, it is essential to find alternatives that can speed up the
calculation. This is where the intelligent proxy can contribute. If an
intelligent proxy model with high fidelity is successfully established, any
decision problem related to reservoir management can be handled much
more quickly. Thus, further inconvenience can be avoided especially
when any relevant reservoir management plan needs to be updated at a
high frequency.

In addition, the mechanism of the ML-based methods is very
comprehensible as it generally does not involve complicated mathe-
matical equations. Hence, when it comes to application, we believe that
it will not pose any additional challenges. Albeit there are some
contretemps mentioning that ML-based methods are “black-box”, we do
not completely abide by this opinion as we think the formulations of ML-
based approaches are not as opaque as claimed. Fundamentally, these
methods are explainable through mathematics. For instance, the
mechanism of ANN is established by treating the nodes as neurons in the
human brain. Thereafter, the weights and biases which connect the
nodes in different layers are continuously adjusted using any algorithm
to enable the ANN to achieve learning. From this, if we can perceive how
the ML-based methods work mathematically, the implementation
should be convenient. Another benefit of implementing the ML-based
models, particularly in the case of TDM, pertains to the exclusion of
assumptions and simplifications of physics. This is different from
applying the physics-based models that might still require a few as-
sumptions to forecast the production from a reservoir which can be
problematic in dealing with real field data. In other words, the complex
physics of the system might not be captured well with assumptions. In
this context, data acts as a guide to the solution.

Based on the previously discussed literature, the petroleum industry
is gradually gaining maturity in this domain of technology. ML-based
methods offer high robustness in terms of application. Robustness here
indicates that these methods can generally solve any kind of engineering
problem if the problem is well-formulated, and the data are properly
prepared. Aside from reservoir engineering, the use of ML-based
methods in drilling engineering (Barbosa et al., 2019; Mahmoud et al.,
2021; Tunkiel et al., 2020), production engineering (Huang and Chen,
2021; Wei et al., 2021; Zhong et al., 2020), petrophysics (Ali et al., 2021;
Blanes de Oliveira and de Carvalho Carneiro, 2021; Osarogiagbon et al.,
2020), etc. has been successful. Thus, they have been termed panacea for
most problems. We would like to emphasize that the use of ML-based
methods ought to be upheld but should not be treated as the only so-
lution. In this case, we refer to the hand-shaking protocol proposed by
Ertekin and Sun (2019).

5.2. Cons

There are also some limitations associated with the use of ML-based
methods. One of them includes long training time caused by a large
database. One needs to consider a trade-off between the size of the
database and training time when he or she plans to build intelligent
proxies, We reckon that creativity is required in the phase of problem
formulation to avoid long training time in the later stages. The benefit of
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Table 8
Summary of Literature in the Domain of History Matching.
Literature Methods Remarks Assumptions /
Limitations
Sampaio et al. FNN Using FNN to Input parameters
(2009) perform History of FNN were
Matching. assumed.
The size of the
training group
was assumed.
The simplicity of
the case study.
Shahkarami et al. ~ FNN/ Fuzzy Logic ~ Implementing Models were
(2014b) SRM in the meant for case-

Masoudi et al
(2020)

Nlarionov et al
(2020)

Chaki et al.
(2020)

Honorio et al
(2015)

Rammay et al.
(2020)

Liu and
Durlofsky
(2020)

Deconvolutional
Neural Networks

FNN

Deep Neural
Network / RNN

Piecewise
Reconstruction
from a Dictionary
(PRaD)/ pluri-
PCA

PCA-based error
model

CNN-based PCA/
MADS

workflow of Al-
Assisted History
Matching in a
synthetic but
heterogeneous
reservoir model.
Applying TDM to
conduct History
Matching in a
highly
sophisticated field
in Malaysia.

Doing gradient-
based History
Matching with the
help of FNN on a
field model.

Performing
History Matching
on the Brugge field
model.

Developing an
assisted History
Matching with
PRaD and pluri-
PCA based on a
case study of
geologically
complex
Teservoirs.
Integrating
different
approaches to the
PCA-based error
model in the
History Matching
workflow on a case
study.

Proposing the use
of CNN-PCA for
geological
parameterization

specific
applications.
Alimited number
of uncertain
variables.

Models were
meant for case-
specific
applications.

No guideline on
determining the
sequence of
separate TDMs.
Assumption of
limited prior
knowledge of the
geological
parameters.
Adaptation of the
workflow
concerning
production rates
data was not
considered.
Testing of the
suggested
methodology was
required for a
more complex
reservoir model.
Limited input
parameters were
considered.
Assumption of
independence of
measurement
errors.

Limiting the test
setting, viz.
coarsened grids
and upscaled
geological
feature, to cases
with the
availability of
high-fidelity
model with model
discrepancy from
the historical
data.

The limited
capacity of the
error model.
Facies types and
log-permeability
values were
assumed to be
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Literature

Methods

Remarks

Assumptions /
Limitations

Dachanuwattana
et al. (2018)

Kim et al. (2020)

Schulze-Riegert
et al. (2002)

Karimi et al.
(2017)

Shams et al
(2019)

Shahkarami et al.
(2018)

K-NN algorithm/
Markov Chain
Monte Carlo
(MCMC)

Ensemble
Smoother-Neural
Network (ES-NN)

Evolutionary
Algorithm in a
multipurpose
Environment for
Parallel
Optimization
(MEPO)

Genetic
Algorithm

ANN/ GA, PSO,
Firefly Algorithm,
Bee Colony,
Harmony Search

FNN/ DE

in the workflow of
History Matching.

Demonstrating the
use of K-NN-based
and MCMC-based
proxies to history
match a shale oil
well.

Presenting the use
of ES-NN in the
workflow of
History Matching.

Tllustrating the
application of the
evolutionary
algorithm in the
context of MEPO
in the history
matching of a
complex black oil
model.

Incorporating GA
in the History
Matching with the
use of a proxy
model.

Introducing the
use of 3 nature-
inspired
algorithms in the
History Matching
along with a proxy
model.

Presenting the
coupling of SRM
and DE for History
Matching in
PUNQ-S3.

available in one of
the case studies.
Random noise
was assumed to
be independent.
Assumption of full
parallelization.
Assumption of
uniform
distribution of
uncertain
parameters.
Production of the
well was assumed
to be at a BHP of
500 psi for 8000
days.

Uniform
distribution of
fractures.
Assuming the
time of
measurement of
observation data
during History
Matching.

Each facies was
assumed to have a
constant
permeability
value.

Multi-
dimensional
search space was
assumed for the
reservoir studied.
Unavailability of
information on
reservoir beyond
geostatistical,
geological,
seismic, and
history data.
Independence of
measurement
errors.
Parameters were
correlated in the
region identified.
Homogeneous
porosity of 0.30.

The proposed
methodology
might not be
computationally
favorable with
reservoirs of more
than 20 wells.

Models were
meant for case-
specific
applications.

Reservoir
properties were
assumed to be
measured at well
locations.
Models were
meant for case-

(continued on next page)
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Table 8 (continued)

Literature Methods Remarks Assumptions /
Limitations
specific
applications.
He et al. (2016) Presenting the Models were
coupling of SRM meant for case-
and DE for History  specific
Matching in the applications.
SACROC unit.

Riazi et al. (2016) LSSVM/ PSO, ICA Establishing the Properties of

LSSVM-based
proxy and

fractures were
assumed to be

coupling it with homogeneous.
the algorithms for
History Matching
in a fractured
reservoir.
Ranaetal. (2018)  Gaussian Process Hlustrating the Lacking
Proxy / efficient assisted validation of the
Variogram-based History Matching proposed
sensitivity with Gaussian workflow in a
analysis Process proxy in more complex

PUNQ-S3. reservoir.

intelligent proxy modeling is better demonstrated in the case of very
complicated and heterogeneous reservoir models in which the simula-
tion time would exceed that of neural network training by certain orders
of magnitude (Mohaghegh, 2017a, 2011). This implies that having an
intelligent proxy for a simplistic case does not showcase its real poten-
tial. However, having an intelligent proxy to capture a sophisticated
physical relationship is noteworthy. The overfitting issue is another
problem that needs to be dealt with when ML-based methods are
applied. If the intelligent proxy is not well-trained, the data partitioning
and training will have to be repeated. Mitigating overfitting can be
laborious depending upon the complexity of the database. In addition,
building intelligent proxies requires a very clear objective. Thus, it is not
a one-size-fits-all model. This limitation may hinder some reservoir
engineers from tending to attempt intelligent modeling. In terms of
modeling with real field data, only the database from a brown field is
deemed reliable in developing a useful DDM. This is because the amount
of data should be sufficiently big to reflect the physics of fluid flow
throughout a long period of production. In this case, another limitation
also arises where there might be some missing data points during the
collection of real field data for establishing a DDM. Hence, as recom-
mended by Mohaghegh (2005), a viable solution is doing statistical
averaging.

5.3. Other Discussions

Our survey also touched upon the application of metaheuristic al-
gorithms along with intelligent models. Several studies (Nait Amar et al.,
2018b, 2018c) proposed that when the metaheuristic algorithms are
followed by conventional backpropagation algorithms in neural
network training, the respective ANN illustrates better predictability. In
addition, for intelligent proxy modeling, implementing metaheuristic
algorithms is relatively more explicit and convenient than employing
the derivative-based approaches because these algorithms do not
require the approximation of the gradient. Therefore, applying them can
be convenient if the corresponding mechanism can be mathematized
accordingly. Ezugwu et al. (2020) illustrated the benefits and drawbacks
of applying 12 metaheuristic algorithms: Cuckoo Search, DE, GA, PSO,
Symbiotic Organism Search, FA, ACO, Bat Algorithm, Flower Pollination
Algorithm, ABC Algorithm, Bee Algorithm, and Inverse Weed Optimi-
zation. In general, most of these algorithms have a better ability to
converge to the global optimum whereas some of them might have low
convergence rates and yield partially optimal results. Therefore, it is
recommended to understand both the advantages and disadvantages of
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any chosen metaheuristic algorithm before employment. According to
our studies, metaheuristic algorithms illustrate a very huge potential to
be extensively applied in different domains of reservoir engineering.

To further generalize the application of ML-based methods in
reservoir engineering, especially in the intelligent proxy modeling of
NRS, we have summarized a few areas which might need more scrutiny.
The first area is the sampling strategies. Our investigation reveals that a
more efficient sampling method can be used to enable the development
of more robust intelligent proxies. The efficiency of the sampling
methods is defined as its ability to retrieve samples that can cover the
solution space as extensively as possible. In this aspect, we opine that the
coupling of two different sampling strategies, namely Latin Hypercube
method and Sobol sequence, as initiated by Dige and Diwekar (2018),
can be treated as an alternative to assess whether a better intelligent
proxy can be developed. Exploring any better feature selection method
to mitigate the curse of dimensionality is also thinkable. About this,
Mohaghegh (2017a) has initiated the application of fuzzy pattern
recognition in selecting more useful input variables in proxy modeling.
However, we reckon that other approaches, viz. mutual information
method based on Shannon entropy in information theory (Shannon,
1948; Thanh et al., 2022), can be considered to verify whether
improvement can be achieved. We would like to emphasize that if an
intelligent proxy is developed upon the results of a numerical model, this
proxy can only act as a complement. This is because the source of data is
the NRS. When the data come from real field measurements, it is how-
ever a research question to investigate whether the intelligent proxy can
completely replace the NRS in solving reservoir management-related
problems. To the best of our knowledge, there are not many studies
that discuss the development of coupled ML-metaheuristic paradigm
while there are numerous discussions regarding the separate use of ML
and metaheuristic algorithms. We hope that this survey can provide
insights to the research community to further explore the potential of
coupled ML-metaheuristic paradigm in the context of reservoir
engineering.

6. Summary

In this work, we have surveyed the employment of ML methods and
coupled ML-metaheuristic paradigm in developing proxies of numerical
simulation models where only a limited number of literature studied the
latter. Nevertheless, the respective literature were included along with
other articles that mainly touched upon the employment of ML in the
domain of reservoir simulation to highlight the robustness of ML
methods. We illustrated the general framework and several suggestions,
including proper identification of the objective of proxies and data
normalization, that could be implemented to successfully develop an
intelligent proxy model. Albeit these recommendations seemingly
appear to be trivial, it happens that they could have been overlooked in
proxy modeling. In addition, we demonstrated and discussed the
application of ML approaches and the hybrid approach in different do-
mains of reservoir engineering such as well placement, monitoring
production parameters, miscible gas injection, waterflooding, CCS,
WAG, other EOR methods, and history matching. We also briefed on the
pros and cons of using ML approaches and metaheuristic algorithms. We
opined that several aspects associated with intelligent proxy modeling
need to be addressed to achieve further maturity in the application of
this technology. In general, we can infer that the ML methods and the
coupled paradigm provide useful insights into the resolution of reservoir
management issues. Furthermore, ANN is portrayed as very flexible to
be implemented to build intelligent proxies. Therefore, despite not being
a “one-size-fits-all” solution, these methods ought to be further explored
due to their huge potential. We also conclude that the potential of
coupled ML-metaheuristic paradigm can still be further investigated
mostly in the context of reservoir simulation. This survey paper aims at
inspiring and providing insights for other researchers and engineers
concerning this.
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Numerical reservoir simulation has been recognized as one of the most frequently used aids
in reservoir management. Despite having high calculability performance, it presents an acute
shortcoming, namely the long computational time induced by the complexities of reservoir
models. This situation applies aptly in the modeling of fractured reservoirs because these
reservoirs are strongly heterogeneous. Therefore, the domains of artificial intelligence and
machine learning (ML) were used to alleviate this computational challenge by creating a
new class of reservoir modeling, namely smart proxy modeling (SPM). SPM is a ML ap-
proach that requires a spatio-temporal database extracted from the numerical simulation to
be built. In this study, we demonstrate the procedures of SPM based on a synthetic fractured
reservoir model, which is a representation of dual-porosity dual-permeability model. The
applied ML technique for SPM is artificial neural network. We then present the application
of the smart proxies in production optimization to illustrate its practicality. Apart from
applying the backpropagation algorithms, we implemented particle swarm optimization
(PSO), which is one of the metaheuristic algorithms, to build the SPM. We also propose an
additional procedure in SPM by integrating the probabilistic application to examine the
overall performance of the smart proxies. In this work, we inferred that the PSO had a
higher chance to improve the reliability of smart proxies with excellent training results and
predictive performance compared with the considered backpropagation approaches.

KEY WORDS: Reservoir simulation, Dual-porosity dual-permeability, Smart proxy modeling, Back-
propagation algorithms, Particle swarm optimization.

INTRODUCTION

Hydrocarbons are among the primary sources
of energy in today’s world. This is proven by a sta-
tistical review conducted by British Petroleum
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(2020), which found that, in 2019, oil contributed to
the largest share of the world primary energy of
about 33.1%, whereas natural gas had the third
largest share of 24.2%. Hence, they play a pivotal
role in quenching the high demand of world energy
consumption and such demand will be likely in an
upward trend due to the increasing global popula-
tion (Gerald et al. 2014; International Energy
Agency 2018). In addition, the importance of
hydrocarbons is reflected by the significant influence
of their price on many other major economic do-
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mains (Lescaroux and Mignon 2009). This is illus-
trated clearly by the phenomenon of how many
other industries have been affected by the fluctua-
tion of oil price (Lescaroux and Mignon 2009).
Therefore, it is essential to have a sustainable
hydrocarbon production not only to fulfill the de-
mand for energy consumption, but also to maintain
the global economic growth. With respect to this,
carbonate reservoirs are one of the main sources of
hydrocarbons. These reservoirs make up approxi-
mately 60% of the global oil reserves and about 40%
of the global gas reserves (Schlumberger 2020b).
Most of these reservoirs are naturally fractured, and
hence, accurate modeling of fluid flow in these
reservoirs is one of the most critical steps to ensure
the sustainable production of hydrocarbons.

In general, modeling of fluid flow in porous
media can be perceived as a numerical reservoir
simulation. Reservoir simulation is one of the most
frequently used tools in reservoir management,
which is the application of technological, labor, and
financial resources to maximize the economic per-
formance and the hydrocarbon recovery of a reser-
voir (Wiggins and Startzman 1990). This is because it
has been implemented extensively to help predict
the performance of a reservoir as well as to provide
useful information for uncertainty analysis or any
optimization task that includes enhanced oil recov-
ery, hydraulic fracturing, and so forth. However, one
of the challenges of accurate modeling of fractured
reservoirs stems from a lack of underlying theory or
principle to describe the behavior of fluid flow in
these reservoirs. To mitigate this challenge, Bar-
renblatt (1960) established a theory pertaining to
fluid flow in fractured porous media. Based on this
theory, Warren and Root (1963) developed the dual-
porosity method, which has been one of the most
fundamental tools in simulating a fractured reser-
voir. However, this conventional model does not
sufficiently capture the realistic behavior of fluid
flow as fluid is assumed to move only through frac-
tures, whereas the matrix blocks only supply fluid to
fractures. Hence, this model was enhanced to the
dual-porosity dual-permeability (DPDP) model, in
which the transport of fluid between matrix blocks is
considered (Uleberg and Kleppe 1996). The details
regarding this model are explained further below.

Having developed the DPDP model implies
that fractured reservoirs can be simulated numeri-
cally. Nonetheless, another challenge in terms of

63

Ng, Ghahfarokhi, Amar, and Torsaeter

computational effort arises as the complexity of
simulated fractured reservoirs increases (including
as much details as possible to ““describe realistically”
a reservoir). Therefore, reservoir management
might not be sufficiently efficient to keep up with
sustainable hydrocarbon production. Fortunately, in
today’s world of digitalization, methods of artificial
intelligence and machine learning (AI&ML) have
come to the rescue. In this context, Ertekin and Sun
(2019) provided a very comprehensive review on the
implementation of AI&ML methods in the field of
reservoir engineering. They also proposed the use of
hand-shaking protocol that would combine the
advantages of both traditional and intelligent reser-
voir modeling to develop more powerful computa-
tional protocols. With this, the great potential and
extensive utilization of AI&ML-based methods have
also been demonstrated further in many technical
domains of the petroleum industry (Mohaghegh
2000a, b, ¢; Parada and Ertekin 2012; Nait Amar and
Jahanbani Ghahfarokhi 2020; Nait Amar et al.
2020). Moreover, with the help of AI&ML, Moha-
ghegh (2011) has coined a new class of reservoir
modeling, namely smart proxy modeling (SPM).
Fundamentally, SPM is the development of an arti-
ficial neural network (ANN) that receives both input
and output data from a reservoir simulation model
and undergoes a training phase. After the ANN has
been trained to recognize the pattern induced by the
data (relationship between input and output), it can
yield the estimated result that matches with that
produced by the reservoir model within a few sec-
onds or minutes. Therefore, this ANN is termed
“smart proxy.” Regarding this, the word ‘“smart”
reveals the ability to learn and capture the under-
lying physical behavior of a simulated reservoir
model through pattern recognition and the word
“proxy’” denotes to act on behalf of the original
model (Mohaghegh 2017, 2018).

For the past decade, SPM has been considered
as a technological breakthrough in the petroleum
industry as it has not only reduced the reservoir
simulation time significantly, but it also provided the
results within an acceptable range of accuracy. The
successful application of smart proxies has been
demonstrated in many literatures of the oil and gas
industry. Mohaghegh et al. (2006) developed surro-
gate reservoir model (the initial nomenclature of
SPM), which was an accurate representation of a
sophisticated full-field reservoir model, and used it
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for uncertainty analysis. With this breakthrough,
these surrogate models were implemented on dif-
ferent real fields in Saudi Arabia for geological
uncertainty analysis (Mohaghegh et al. 2012a, c).
Mohaghegh et al. (2012b, 2015) then reformulated
the concept of SPM by categorizing it as grid-based
and well-based. As the nomenclatures imply, grid-
based SPM is done for the analysis of numerical
model at grid block level, whereas well-based SPM
is for the analysis at well level. Grid-based SPM has
been applied in several real-life CO, sequestration
projects (Mohaghegh et al. 2012b), whereas well-
based SPM has been implemented for optimization
of production scheduling of a real field in United
Arab Emirates (Mohaghegh et al. 2015). Besides,
the application of SPM was then extended gradually
to other domains, such as history matching and en-
hanced oil recovery (EOR). He et al. (2016) coupled
the use of SPM with differential evolution (DE) to
perform automatic history matching. Alenezi and
Mohaghegh (2016) also built a SPM that reproduced
and forecasted the dynamic properties of a reservoir
that has been water-flooded. Moreover, Mohaghegh
(2018) discussed the utilization of SPM under the
context of CO,-EOR as a storage mechanism. Fur-
thermore, Parada and Ertekin (2012) applied SPM
to establish successfully a new screening tool for
four different improved oil recovery (IOR) meth-
ods, including waterflooding, miscible injection of
CO, and N,, and injection of steam. Therefore,
these literatures do not only show the high applica-
bility of SPM in oil and gas industry, but they also
highlight its potential for further enhancement.
Nevertheless, SPM still has few disadvantages.
One of them is that a smart proxy built can only be
applied to predict what the simulated reservoir
might estimate only if the physics assumed in the
numerical simulation is not changed. For instance, if
a smart proxy is developed on a reservoir model
with reservoir pressure of 4000 psia,' then it cannot
be applied to perform any estimation of parameters
when the reservoir pressure is not 4000 psia. To
handle this problem, another smart proxy needs to
be established. In addition to this, the spatio-tem-
poral database is considered as the backbone of the
SPM as it is the main component used to train the
ANN model. Thus, if another smart proxy is built (as

11 psia = 6894.75728 Pa.
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previously mentioned), then the database needs to
be prepared again. Despite having such inconve-
nience, the time spent on preparation of this data-
base is still much less than the time spent by
numerical simulation. Pertaining to this, the prepa-
ration of a spatio-temporal database might take
about few hours (or for few minutes with the help of
commercial software). However, for a sophisticated
reservoir simulation model, the computation might
take a few days. It is important to understand that
smart proxy is another example of data-driven
model as it is developed by analyzing the collected
data (Alenezi and Mohaghegh 2016, 2017). Hence,
careful attention is required when a spatio-temporal
database is created. If incorrect data are provided to
the smart proxy, it will “learn wrongly” and produce
unsatisfactory results. This complies with the short
phrase that goes “garbage in and garbage out.”

Although there are many literatures explaining
the theorctical basis of SPM, it is still treated as
“black-box™ as commercial software is mostly used
to build a smart proxy. Thus, in this work, one of the
objectives was to provide a more vivid illustration of
how SPM can be performed based on a synthetic
reservoir model. Besides, we present another alter-
native of training algorithm apart from the back-
propagation algorithm that is mostly used in SPM.
More intriguingly, we include a probabilistic appli-
cation to evaluate further the overall performance of
the developed SPMs. We opine that this integration
in SPM is insightful as it helps to better reflect the
performance of the proxy models. After this intro-
duction, we discuss briefly the mathematical con-
cepts of the DPDP model and how ANN operates.
Three different algorithms, which are two examples
of backpropagation algorithms, namely stochastic
gradient descent (SGD) and adaptive moment esti-
mation (Adam) algorithms, and particle swarm
optimization (PSO), were implemented as the
learning algorithm to train the ANN. Hence, the
fundamentals of these algorithms are discussed next.
Then, we explicate the background of the reservoir
model simulated based on the DPDP method and
the problem setting of the production optimization
case. We also explain how the respective SPM is
developed upon it and used in production opti-
mization. Then, the results and discussion will fol-
low. Prior to proceeding to conclusions, we also
provide another case study, which considers a
heterogeneous fractured reservoir model, to further
show the robustness of the methodology discussed in
this paper.
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METHODOLOGY
Fundamentals of DPDP Model

In the conventional dual-porosity model, a grid
block consists of two portions—the matrix block and
the fractures. In this model, the fluid flows mainly
through the fractures, whereas the matrix blocks
only provide fluids to the fracture (Uleberg and
Kleppe 1996). This phenomenon of fluid flow is
illustrated in a two-dimensional case as in Figure 1.

Assuming a one-dimensional and one-phase
flow case, the transport of fluid through the fracture
can be mathematically expressed as (Barrenblatt
1960; Warren and Root 1963):

d ( k [)P) +i g (@)

o\ T ae matrix_fracture — A, |

ox /"'B Ox fracture ' ot \B fracture
1)

where k is permeability, B is the formation volume
factor, u is viscosity of fluid, and (& is porosity. The
term qp.iix rracure indicates the supply of fluid to
fractures by the matrix block, and its mathematical
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Because the assumption of no fluid flow be-
tween the blocks of matrix is not realistic, the dual-
porosity model was extended to the DPDP model by
adding a flow term in Eq. (2) (Uleberg and Kleppe
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Figure 1. Fluid flow behavior in a dual-
porosity model for two-dimensional case.
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1996). Hence, the system of equations representing
the DPDP model is:

o (kopy o _a(0
ax \ ;B Ox fracture Amatrix_fracture = ot \B fracture

®3)

o (k oP N o (0
& ,LliBaiX atrix ~ Umatrix_fracture = a E atix

(4)

Regarding the exchange term, it can be further
represented as:

kma Tix
—matnx (p,

M &)

— Ymatrix_fracture — matrix — Pfracture)

where P denotes pressure, whereas ¢ is the shape
factor or the geometric factor. This shape factor
represents the geometry of the matrix block, and it
dictates the flow fluid between the matrix blocks and
the fracture system (Kazemi et al. 1976). There are
many mathematical formulations available in the
literature to describe this shape factor depending
upon the physical effects and mechanisms consid-
ered (Warren and Root 1963; Ahmad and Olivier
2008; Su et al. 2013). In this context, one of the most
widely applied forms is the one proposed by Kazemi
etal. (1976), and it was used in this study. Regarding
its formulation, Kazemi et al. (1976) discussed that
the shape factor can be computed in a three-di-
mensional case as:

1 1 1

6=4X |+ —=+—
2 ) 2
L, Ly L

(6)

where the L term refers to the dimension of the
matrix block in x-, y-, and z- directions.

ANN

ANN is a biologically inspired mathematical
model or algorithm that can predict any relevant
output within an acceptable range of accuracy after
learning the relationship between the inputs and
outputs provided (Wilamowski and Irwin 2011; Bu-
duma and Locasio 2017). This biological inspiration
stems from the imitation of learning method used in
human brains. ANN is very robust due to its high
generalization ability in capturing the nonlinearity
of any process investigated (Gharbi and Mansoori
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Input Layer Output Layer

Hidden Layer

Figure 2. Structure of an ANN.

2005; Wilamowski and Irwin 2011; Nait Amar et al.
2018b). Thus, ANN is better than any traditional
regression approach to solve complicated mathe-
matical problems (Gharbi and Mansoori 2005).
There are different types of ANN, such as feed-
forward neural network, convolutional neural net-
work (CNN), recurrent neural network (RNN).
Multilayer perceptron (MLP), which is an example
of feed-forward neural network,” was implemented
here. Regarding the architecture of MLP, it is made
up of three different types of layers, namely one
input layer, one or more hidden layers, and one
output layer (Wilamowski and Irwin 2011; Buduma
and Locasio 2017). Each of these layers comprises
simple calculating elements, which are known as
nodes, units, or artificial neurons (Gharbi and
Mansoori 2005). The output from each node in a
layer is multiplied by the weights (and biases). The
product enters the node in the next layer as input.
These inputs are then summed and applied to acti-
vation function, also known as transfer function, to
produce the output of the node. The structure or
topology of an arbitrary ANN that comprises one
input layer with three nodes, one hidden layer with
four nodes, and one output layer with two nodes is
shown in Figure 2.

2To avoid confusion, feed-forward neural network, artificial
neural network, multilayer perceptron, smart proxy model, smart
proxy, and proxy model technically share the same definition in
this paper. However, feed-forward neural network is considered
as a family of artificial neural network and it includes several
types such as multilayer perceptron, radial basis function network,
correlation filter neural network.
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Referring to Figure 2, the mechanism of ANN
can be expounded mathematically as follows. From
input layer to hidden layer, the output of the node is
computed as:

™

Ni
0 = F (Z WjiOH-bji)
i=1

Then, from hidden layer to output layer, the
output of the node is calculated as:

N]
ok = F( WgjOj + bkj)
=1

In Egs. (7) and (8), the subscript i denotes the
input layer, the subscript j means the hidden layer,
and the subscript k indicates the output layer, N
shows the number of nodes in each layer, o indicates
either the output of node in the current layer or the
input of node from previous layer (based upon the
subscript), w is a set of weights, and b is a set of
biases. Weights are considered as the fitting param-
eters in modeling of an ANN, whereas bias is an
extra node that provides more flexibility for the
ANN model to be trained. There are many forms of
activation functions F that are readily used in ANN
modeling. The major ones include sigmoid, rectified
linear unit (ReLU), and hyperbolic tangent (Budu-
ma and Locasio 2017). Here, the activation function
used was ReLU and it is represented as:

(8)

Oforx < 0
F(x) = { xforx >0 ®)
The derivative of the ReLU function is:
JF(x) _ [ Oforx < 0
ox { lforx >0 (10)

Mathematically, ANN learns the relationship or
recognizes the pattern between input and output
data through the tuning of the sets of weights and
biases between the two layers. Through a number of
epochs (or iterations), these weights and biases are
optimized by minimizing any predefined error
function (also known as loss or cost function), such
as mean squared error, average absolute percentage
error. There are different examples of algorithms
that can be used to optimize these weights and bia-
ses. Backpropagation algorithm has been commonly
used in this context. Examples of backpropagation
algorithm are gradient descent (GD), Gauss—New-
ton algorithm, Levenberg—-Marquardt algorithm
(LM), adaptive gradient algorithm (AdaGrad), root-
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mean-square propagation (RMSProp), Adam, and
so forth. Additionally, other metaheuristic algo-
rithms, like PSO, DE, genetic algorithm (GA), and
so forth, have also been proven useful for neural
network training (Nait Amar et al. 2018a, b). As
Bianchi et al. (2009) have counseled, metaheuristic
algorithm is a high-level mathematical algorithm
that is generally natural inspired and used to solve
more sophisticated optimization problems. In this
study, both backpropagation algorithm and meta-
heuristic approach have been employed to enable
the ANN to “learn.” The selected backpropagation
algorithm was GD, whereas PSO was the chosen
metaheuristic training algorithm.

Backpropagation Algorithm

For the workflow of the GD algorithm, both the
inputs and outputs are fed to the ANN as the
training phase starts. When the inputs enter the
ANN and proceed through the layers, they are
gradually processed to yield the predicted output.
Thereafter, the predicted output is compared with
the desired output. Errors are then propagated back
through the ANN. During this backpropagation, the
weights and biases are adjusted to minimize the er-
rors. Such process is repeated iteratively until either
the errors become less than the predefined tolerance
or the number of iterations is reached. The GD is an
algorithm that applies the first-order derivative for
computation. In this context, the first-order deriva-
tive of the error function is implemented to deter-
mine the minimum in the error space. The
calculation of gradient at iteration t can be ex-
pressed mathematically as:

OE OF OFE
Iwy 0wy Owsz,

0E
BWNJ

OE(x,w,)
= ow, (11)
where E indicates the error function, x the input
vector, and w the weight (and bias) vector. There-
after, the weights are updated by using the following
equations. The same idea applies to the updating of
the biases.

W1 = w, + Awy (12)

Wil =w, — (7 X &) (13)

In Egs. (12) and (13), the weights (and biases)
at iteration ¢ + 1 are updated using the weights (and
biases) at iteration r, the gradient at 7, and y, which is
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the learning rate or step size. Therefore, the gradient
is always computed at every iteration step to adjust
the weights (and biases). Pertaining to the compu-
tation of gradient of error function, it is highly
dependent on the forms of error function and acti-
vation function that were used. Here, the error
function used was the mean squared error, whereas
the activation function used was ReLU.

The mathematical formulation of the applica-
tion of GD as learning algorithm is as follows. For
the following derivation, the meaning of the sub-
scripts used here is the same as explained above. The
term ¢ means the target value or the actual output, P,
denotes the total number of training sets provided;
thus:

P
E(x, w,b) %kg tk — ok (14)

Having defined the error function, the back-
propagation algorithm starts by computing the
weight update between the hidden and output lay-
ers. To perform this computation, the gradient of the
error function with respect to the weights between
the hidden and output layers is determined. There-
after, the similar procedure is conducted to calculate
the weight update between the hidden and input
layer. This algorithm carries on iteratively until the
value of error function (obtained by using the up-
dated weights and biases) is less than a predefined
tolerance or the initialized number of epochs is
reached. For a more substantial understanding of
the mathematical formulation of the backpropaga-
tion algorithm, peruse Wilamowski and Irwin (2011)
and the relevant literatures. Here, the Keras mod-
ule, which was developed by Chollet (2019), had
been implemented with the help of the programming
language Python 3.8.1 and TensorFlow 2.1.0 to use
the GD algorithm to optimize the weights and bia-
ses. However, it is essential to note that in Keras
module, instead of using GD algorithm, the
stochastic gradient descent (SGD) algorithm is ap-
plied. The fundamentals of these two algorithms are
the same. The main difference is that, in SGD, the
gradient is only computed once at each iteration step
(by randomly selecting a sample from the training
set) and is used further (Buduma and Locasio 2017).
By inducing this stochastic behavior, the computa-
tional cost is reduced drastically. Apart from SGD,
Adam was another backpropagation algorithm used
here; it is a more advanced and robust variant of
SGD developed by Kingma and Ba (2015). Mathe-
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matically, it approximates the first and second mo-
ments of gradients to adaptively calculate the
learning rates for different parameters (Kingma and
Ba 2015). Refer to Kingma and Ba (2015) for the
details of Adam. Here, Adam was also implemented
using Python 3.8.1 and TensorFlow 2.1.0.

PSO

PSO was introduced by Kennedy et al. (1995)
based upon the simulation of the social behavior of a
flock of flying birds. As explained in several litera-
tures (Kennedy et al. 1995; Shi and Eberhart 1999;
Nait Amar et al. 2018a), mathematically, this algo-
rithm operates by having a population of particles,
which is also known as a swarm of particles. Each of
these particles corresponds to a potential position or
a solution in a search space. Then, the position of
each particle is updated iteratively according to its
position and velocity at previous timestep. The
movements of the particles in the search space are
controlled by their own best-known position (the
local best position) and their best-known position in
the entire swarm (the global best position). As this
process occurs iteratively, the particles in the swarm
will eventually converge to an optimal point, which
is deemed as the best solution in the search space.
The position and velocity for the j"™ particle in a N-
dimensional space at iteration t can be expressed,
respectively, as:

Xit = {Xj10 X0 X, - XN } (15)

(16)

Then, the velocity of each particle at next iter-
ation ¢ + 1 is updated as (Shi and Eberhart 1999):

Vit = {le,h Viz s Vizty - - -5 ij}

VN = ViNg + eir (PbES‘jN.t - XJN-I)

+ cor2 (gbestm — x,N,.) (17)

In Egs. (15), (16), and (17), vijn and Xjn; Tep-
resent the velocity of the jth particle at iteration ¢
and its corresponding position in N-dimension
quantity, respectively; pbestjy, corresponds to the
N-dimension quantity of the individual j at the best
position or the local best position at iteration r;
gbestn ¢ is the N-dimension quantity of the swarm at
the best position or the global best position at iter-
ation f; ¢ denotes the cognitive learning factor (also
known as cognitive weight), whereas ¢, means the
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social learning factor (also known as social weight);
r1 and r, are random numbers extracted between 0
and 1. Upon updating the velocity, each particle
moves to a new potential solution as:

XiNt+1 = XN+ ViN e+ (18)

A new parameter, inertial weight o introduced
by Shi and Eberhart (1998), was included in Eq. (17)
to improve the convergence condition. This also
gradually decreases the velocity of the particles to
have the swarm of particles under control (Nait
Amar et al. 2018a). In other words, it plays a part in
balancing the global search also known as explo-
ration, and the local search also termed as
exploitation (Shi and Eberhart 1998; Zhang et al.
2015):

ViNt+1 = @ViNt + C1T1 (PbeSth.l - XjN-‘)

+ cara (gbestm - XiN,l)- (20)

In the context of the minimization problem, an
objective function f to be minimized is defined.
Then, to determine the local best solution at itera-
tion ¢ + 1, the following formula is given (Nait Amar
et al. 2018a):

pbest;y ., iff (pbestyy ) = f(Xjnr1)

best. = .
POCStiN XjN 41, otherwise

(1)

Then, to find the global best solution at itera-
tion ¢ + 1, the following mathematical formulation is
presented:

gbestjy; = min {f(pbestmm)] (22)

In this study, the objective function was the
error function in the ANN modeling. To apply PSO
as the training algorithm of ANN, this can be simply
done by treating the weights and biases as the par-
ticles in the algorithm. Hence, the total number of
particles in a swarm is the total number of weights
and biases. Then, the optimization can be performed
using the abovementioned formulations. Here, the
package of PySwarms version 1.1.0, which was built
by Miranda (2019), was implemented by using the
programming language Python 3.8.1 to perform the
optimization. In comparison with the SGD algo-
rithm, one of the advantages of PSO is that it is a
derivative-free algorithm. This implies that it is more
robust as it can be utilized to optimize a mathe-
matical function that is not easily differentiable.
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Table 1. Essential parameters used to develop the DPDP reservoir model

Parameters Values Units
Initial reservoir pressure 347 x 107 Pa
Oil density 819.18 kg/m®
Water density 1041.20 kg/m?
Qil viscosity 0.0035 Pas
Water viscosity 0.0005 Pas

Initial water saturation

Matrix media

Fracture media

Layer 1 0.1922 0.000
Layer 2 0.1924 0.000
Layer 3 0.1926 0.000
Layer Matrix block height (m)  Matrix permeability (m?)  Effective fracture permeability (m?)  Porosity

Matrix media  Fracture media

1 9.144 9.869 x 1071°
2 6.096 1.974 x 107
3 12.192 1.480 x 10

1.480 x 1072
1.974 x 1072
2467 x 1072

0.210
0.230
0.250

0.0015
0.0020
0.0018

NUMERICAL SIMULATION MODEL

A three-dimensional, two-phase (black oil and
water) reservoir simulation model was built to rep-
resent the ‘“true” reservoir model. The ‘‘true”
reservoir is in fact inspired by the dual-porosity
model discussed in Firoozabadi and Thomas (1990),
which is a two-dimensional and three-phase model
(black oil, water, and gas—including free and dis-
solved gas). However, most of the reservoir param-
eters and relevant fluid properties were changed to
develop the “‘true” model. This ‘“‘true” reservoir
model supplied the necessary data for the develop-
ment of the respective SPM. This reservoir was a
DPDP model made up of three layers with uniform
thickness.” The top of this reservoir was set at the
depth of 305 m. About the geometry of this model,
each grid block had a length of 25 m, a width of
25 m, and a height of 15.2 m. Thus, the dimension of
the reservoir model was 1525 m x 1525 m x 45.7
m, which corresponds to the number of blocks being
61 x 61 x 3. Regarding the well configuration, it
was the five-spot pattern in which four injectors
were, respectively, set to penetrate near the corners
of this reservoir model and a producer was placed in

3 In the modeling of DPDP, if three layers are defined, then there
will be six resultant layers in which three of them correspond to
the matrix system and the remaining three layers correspond to
the fracture system. These fluid flow mechanisms of these two
systems are represented by extending Egs. (3), (4), and (5) to
three-dimensional and two-phase case.
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the center of the reservoir. The injectors (producer)
would inject water to (would produce from) all the
fracture layers. Besides that, the performance of
each well in this model was controlled by its
respective rate. The target of the field production
rate was set equal to the target of the field injection
rate for pressure maintenance. For instance, if the
target rate of the producer was 400 m*/day, then the
target rate of each of the injector was 100 m*/day
(totaling up to 400 m*/day of the target of the field
injection rate). The numerical simulation of this
DPDP reservoir model was conducted using
ECLIPSE 100 software Schlumberger (2020a).
Other details of this model are summarized in Ta-
ble 1.

For further clarification, as presented in Ta-
ble 1, the values of matrix block heights, matrix
permeability, and effective fracture permeability
were initialized for x-; y-, and z-directions. Addi-
tionally, the relative permeability curves and the oil-
water capillary pressure curves for matrix media are
illustrated in Figure 3. For the two-phase flow in
fracture, the linear relationship between relative
permeability and saturation, which is also known as
“X-curve™, is one of the most fundamental models
that was determined by Romm (1966). “X-curve”
has been used in several fracture-related researches
in petroleum industry (Van Golf-Racht 1982; Gil-
man and Kazemi 1983; Firoozabadi and Thomas
1990). Besides that, regarding the oil-water capillary
pressure in the fracture system, it is equal to zero as
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Figure 3. (a) Relative permeability curve. (b) Oil-water capillary pressure curve for the matrix media.
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Figure 4. Overview of the matrix system of the reservoir
model: (a) Layer 1; (b) Layer 2; (¢) Layer 3.

shown in the model discussed by Firoozabadi and
Thomas (1990). In short, we selected these models of
relative permeability curve and oil-water capillary
pressure in both matrix and fracture systems for
illustrative purpose. By using the software ResIn-
sight developed by Ceetron Solution AS (2020), this
reservoir model depicting oil saturation at the water
injection rate of 636 m’/day (after the injection
period of 5 years) is displayed correspondingly in
Figure 4 for the matrix system and in Figure 5 for
the fracture system.

Based on Figures 4 and 5, much more oil had
been swept toward the producers in Layer 3 for both
matrix and fracture media. Because the injectors

®) I ®
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(b)
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Figure 5. Overview of the fracture system of the reservoir
model: (a) Layer 1; (b) Layer 2; (¢) Layer 3.

were (the producer was) perforated in all the frac-
ture layers, this denoted that the injected water flo-
wed and swept the oil in (the oil was only produced
from) the fracture systems. Given the homogeneity
of every layer of the model and the high effective
permeabilities in z-direction for all the fracture
layers, the cross-flow of fluids between the fracture
layers was prominent to contribute to the high
sweeping of oil in Layer 3 of the fracture media. This
scenario also occurred to the matrix media because
it needed to supply the oil to the fracture system
where most of the oil has been swept and produced.
In this context, we reiterate that the DPDP reservoir
modeling was not the main goal of this work. In fact,
we intended to design a valid DPDP model to
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Figure 6. General workflow of SPM.

Table 2. Values of the economic parameters used in this example
of production optimization

Parameters Values Units
Oil price, P, 377.40 USD/m?
Cost of produced water, P, 44,02

Cost of injected water, Piy; 44.02

Monthly discounted rate 0.833 %

demonstrate that our developed proxy model was
functioning accurately.

PRODUCTION OPTIMIZATION

Smart proxy is widely developed in the petro-
leum industry because of its inexpensive computa-
tional effort. However, SPM is an objective-oriented
task, which implies that modelers need to first know
what the smart proxy is used for prior to developing
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Table 3. Simulation scenarios executed for SPM

Scenario Index Injection rate (m*/day)

1 636
2 676
3 715
4 755
5 795

it. After identifying the purposes or functions of the
model, modelers would have a well-established
understanding pertaining to the preparation of the
spatio-temporal database (input and output data)
used for neural network training. Regarding this, we
used an illustrative example of production opti-
mization as the objective of developing the smart
proxy. For this illustrative example, we assumed the
production lifetime of the reservoir model discussed
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Table 4. Selected input and output data

Inputs

Output

Simulation scenario
Grid block ith position
Grid block jth position
Grid block kth position
Porosity

Permeability

Matrix block height
Shape factor

Time

Bottom-hole pressure
Field water injection rate
Field oil production rate

Indexes
Static inputs

Dynamic inputs

Scenarios 1, 3, and 5
Well group (grid block kth denotes the
perforated kth grid block)

Field oil production rate at time ¢

Average values of layers with well perforation,
layers of matrix media, layer of fracture media
Matrix media (parameters in DPDP modeling)

Monthly basis (timestep 0 to timestep 360)
For 4 injectors and 1 producer at time
t at time ¢ at time 7 — 1

to be 30 years and the objective function to be the
net present value (NPV). In this case, we needed to
decide the target of the field injection rate that can
maximize the NPV throughout the production life-
time. The NPV for this optimization example can be

formulated as:
N PoQok — PyQuix — PijQinjixc
NPV = Y

(14 )k

(23)

where the subscripts o, w, and inj denote oil, water
(produced), and injected water, respectively; P is the
price (or cost) per standard barrel (the correspond-
ing unit is USD/m>), Q is total amount for a certain
timestep (the respective unit is m®), r is the discount
rate, and k is the timestep. To calculate @Q, the fol-
lowing equation was used:

Qicfowini}k = Dicfowinjjk X Ak (24)
where ¢ is the flow rate reported (either by the
numerical simulation or the developed SPM) on
monthly basis (the unit is m¥day) and Ary is the
number of months for timestep k. Here, the smart
proxy for the prediction of injection rates was not
developed as the injection rates remained constant
throughout the production period of the reservoir
model. Hence, for practical purpose, only two SPMs
were developed, which, respectively, predicted the
oil production rates and the water production rates
(both on monthly basis). With respect to this, it is
possible to develop a SPM that predicts simultane-
ously two outputs, namely both oil and water rates.
Nevertheless, the tuning of the weights and biases
can be more challenging. Thus, for better and more
fundamental demonstration of SPM, we decided not
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to go with this option in this work. Upon formulating
the objective function used in this example of pro-
duction optimization, the setting of the economic
parameters® used is presented in Table 2.

SMART PROXY MODELING

To build a SPM, the first step is to generate the
spatio-temporal database, which is used as the input
and output data to train, validate, and test the
model. This database is developed by retrieving the
essential data from the numerical reservoir simula-
tion. This step is very crucial because the data ex-
tracted will determine the usefulness of this proxy
model. For this work, the input and output data
selected from the “‘true” reservoir model are sum-
marized in Table 4 (the details are explained further
below). The database is considered as the backbone
of SPM because it is the source of the data used to
train the neural network.

Data Preparation and Analysis

To generate data used for the neural network
training, five different simulation scenarios, namely
the target of the injection rates at 636 m*/day, 676
rn3/day, 715 m3/day, 755 rnz’/day, and 795 rn3/day,
were run (the other parameters used in the numer-
ical reservoir simulation were kept constant). More

* We understand that the economic parameters used here might
not reflect the real-world case, but our goal here is to present the
application of the smart proxy via an illustrative optimization
task.
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precisely, only three of them were used for the
development of smart proxy, whereas the remaining
two were used as the blind cases, which are discussed
further below. Table 3 summarizes the five simula-
tion scenarios, of which scenarios 1, 3, and 5 were
used for SPM.

Upon running the simulations, the spatio-tem-
poral database was readily generated. This database
was developed by extracting the static and dynamic
data from the numerical simulation. In this context,
static data indicate that the data do not change with
time (e.g., porosity, permeability), whereas dynamic
data denote otherwise (e.g., instance, water injection
rate, oil production rate). One of the main chal-
lenges of SPM is the humongous size of the spatio-
temporal database. This occurs when the geological
properties (static properties) of the simulated
reservoir model are very heterogeneous (each of the
grid blocks in the reservoir model has different
values of porosity and permeability). The high geo-
logical heterogeneity will cause the SPM to be
impractical if all these static data are used. To alle-
viate this problem, several literatures (Mohaghegh
et al. 2012a, b, c, 2015; He et al. 2016; Alenezi and
Mohaghegh 2016, 2017) recommend the application
of tier system to delineate the reservoir model. In
this aspect, the Voronoi graph theory was imple-
mented to re-upscale these static properties through
the lumping of the reservoir layers. By doing so, the
size of the static inputs used in defining the structure
of the spatio-temporal database can be decreased.
However, here, despite having a total of 22,326 grid
blocks in the reservoir model, it was not considered
to be very complex because the porosity and per-
meability were homogenous per layer. Hence, the
reservoir model can be simply delineated by cate-
gorizing it into the matrix media and fracture media.

After resolving the issue of reservoir complex-
ity, the selection of input and output data needs to
be considered. For a real-life reservoir model, the
spatio-temporal database can still be gigantic to be
entirely used as the input and output for SPM. To
mitigate this challenge, the above-mentioned litera-
tures propose to use the key performance indicator
(KPI) coupled with fuzzy logic to help rank the de-
gree of influence of different properties in the
selection of input and output, and it is conducted
mostly by using commercial software. In this study,
for the purpose of illustration, the input and output
data for SPM were determined based upon our
knowledge of reservoir engineering. Thereafter, the
input and output data yielded the final database
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applied for training, validating, and testing the
neural network as summarized in Table 4, which
shows 54 static inputs and 8 dynamic inputs.

On the one hand, regarding static properties,
the scenario index, which helps the neural network
to identify which instance of the injection rates is
used, was one of them. Besides this, the well loca-
tions make up 25 out of 54 static inputs because
there were 5 wells in total and each of the locations
was represented as ith, jth, and kth positions of the
grid blocks (with all the fracture layers perforated).
This corresponded to one group of the static inputs
(Table 4). For both porosity and permeability, each
of them comprised 11 static inputs, and 5 of them
corresponded to the inputs of the average values of
grid block where the wells were perforated and the
remaining 6 corresponded to the inputs for the 3
layers in both matrix and fracture systems. There-
after, the heights of the matrix blocks and the shape
factors, respectively, contributed to 3 static inputs.

On the other hand, the bottom-hole pressures
of all 5 wells contributed to 5 of the 8 dynamic in-
puts. Besides that, the timestep also acted as one of
the dynamic inputs. The water injection rate at time
t (on monthly basis) was also a dynamic input. The
remaining dynamic input was the oil production rate
at time t—1 (on monthly basis), whereas the oil
production rate at time ¢ (on monthly basis) was
used as the output data instead of being treated as
input data in this neural network training. For the
development of smart proxy for the prediction of
water production rates, the input and output data
were essentially the same. However, only the oil
production rates at time r—1 and t needed to be
replaced with the water production rates at time
1 and t. Besides that, each of the simulation sce-
narios was run for 30 years. Since the oil production
rates were reported on monthly basis, this corre-
sponded to 360 months (30 years x 12 months/
year). By starting from timestep = 0, there were a
total of 361 timesteps for each scenario. This re-
sulted in a total number of 68,229 records (3 sce-
narios x 361  timesteps/scenario X 63
records/timestep) in the database, which was to be
fed into the neural network for training.

Neural Network Training

Training the neural network is the most essen-
tial part of SPM. Prior to feeding the input and
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Table 5. Ranges of values of training data
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Table 6. Topology of the SPM

Parameters Minimum  Maximum
value value

Time (months) 0 360

Simulation scenario index 1 5

Well location (grid block position) 4 46

Porosity 0.0015 0.2500

Permeability (m?) 9.869 x 107 2.467 x 10~
15 12

Matrix block height (m) 6.096 12.192

Shape factor (m) 0.0023 0.0091

Injector bottom-hole pressure (bar®) 334 355

Producer bottom-hole pressure (bar) 140 345

Field water injection rate (m*/day) 636 795

Field oil production rate at time t and 0 795

t—1 (m*/day)
Field water production rate at time t 0 619

and 1 —1 (m*/day)

1 bar = 100 kPa

output data into the ANN for training, the database
is normalized between 0 and 1, thus:

Xi — Xmin (25)

Xnormalized = T _
Xmax — Xmin
where X X,ormalized Means the normalized value of x;,
which is the initial data, whereas xp.x and Xpin,
respectively, indicate the maximum and minimum of
data in a group of properties (Table 4). Pertaining to
this, the ranges of the values of the training data
used are shown in Table 5. By normalizing the data,
the convergence condition can be further enhanced,
and the ANN is more likely to “learn better” the
relationship between the input and output data.
Apart from this, the topology of the ANN utilized
here is summarized in Table 6. The topology also
included two bias nodes, which are not listed in
Table 6. One of them was placed in between the
input layer and the hidden layer, whereas another
one was located between the hidden layer and the
output layer.

In addition, the relevant parameters required to
perform the backpropagation algorithms (SGD and
Adam) and PSO algorithms are presented in Ta-
ble 7. Regarding Adam, there are three other
essential parameters, such as exponential decay
rates of the estimates of the first and second mo-
ments, and constant of numerical stability. Here, the
values of these three parameters were, respectively,
assigned to be 0.9, 0.99, and 10~ For PSO, because
each of the weight (bias) is treated as one particle,
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Type of layers Number of layers Number of nodes

Input 1 62
Hidden 1 10
Output 1 1

Table 7. Essential parameters for the SGD and PSO algorithms

SGD and Adam PSO
Parameters Values parameters Values
Number of 2000 Number of Epochs 2000
Epochs
Step size 0.01 Number of particle 100
swarms
Inertial weight 0.800
Cognitive weight 1.005

Social weight 1.050

the number of particle swarms indicated the number
of sets of particles used in the neural network
training,.

Thereafter, the normalized database was parti-
tioned into three different sets, which are training,
validation, and testing.5 Here, 70% of the database
(47,760 records) was used for training, 15% (10,235
records) for validation, and 15% (10,234 records) for
testing. As the training set is fed into the ANN, it
enables ANN to capture the underlying physical
principles of the simulation by learning the rela-
tionship between input and output data. In addition,
the validation set ensures that its respective error
(loss) reduces, while the error produced by the
training set also decreases. This downward trend
reflects a healthy behavior of training process. In this
study, it was essential to clarify that the validation
set did not change the weights and biases (Mo-
haghegh 2018). It merely uses the weights and biases
optimized by the training set to evaluate whether the
training process is converging. In other words, the
training set was employed to prevent any over-
training or overfitting issue of the ANN (Mohaghegh
2018). Over-fitting occurs if the ANN memorizes the
pattern of the data provided and it is unable to give a

> Mohaghegh (2018) discussed that the spatio-temporal database
should be divided into three different sets, namely training,
calibration, and validation. In this paper, to elude confusion, the
calibration set was termed as the wvalidation set, whereas the
validation set was referred to as the testing set.
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Figure 7. Oil production rate: plots of loss function against
number of epochs for the smart proxy trained with (a) SGD,
(b) PSO, and (¢) Adam.

good prediction when other data are supplied. The
testing set assists in checking the predictability of the
trained neural network.

After the trained ANN was evaluated by the
testing set, it should be provided with a new set of
data (that were not from the database) to perform a
blind case run. This step is crucial to further confirm
the robustness of the developed SPM. Once the re-
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Figure 8. Water production rate: plots of loss function against
number of epochs for the smart proxy trained with (a) SGD,
(b) PSO, and (¢) Adam.

sults of the training and testing with a blind case run
are within acceptable accuracy, the SPM can be
employed for further analysis. The general workflow
of building a SPM is summarized in Figure 6. As
briefly discussed, the error function used in training
the ANN was the mean squared error. However, for
better evaluation of the performance of the ANN,
other metrics including average absolute percentage
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Table 8. Performance metrics of the smart proxy for oil rate prediction
AAPE (%) RMSE R
Stochastic gradient descent Training (758 data) 1.770 10.66 0.9954
Validation (163 data) 1.567 7.512 0.9977
Testing (162 data) 1.768 7.769 0.9971
Particle swarm optimization Training (758 data) 0.349 2.378 0.9998
Validation (163 data) 0.536 14.22 0.9934
Testing (162 data) 0.352 2.408 0.9998
Adam Training (758 data) 0.617 1.829 0.9999
Validation (163 data) 0.649 2.036 0.9998
Testing (162 data) 0.646 1.487 0.9999
Table 9. Performance metrics of the smart proxy for water rate prediction
AAPE (%) RMSE R?
Stochastic gradient descent Training (758 data) - 1.728 0.9998
Validation (163 data) 6.461 1.685 0.9998
Testing (162 data) 8.159 1.652 0.9999
Particle swarm optimization Training (758 data) 6.565 0.547 0.9999
Validation (163 data) - 0.864 0.9999
Testing (162 data) 7.629 0.761 0.9999
Adam Training (758 data) 6.753 0.475 0.9999
Validation (163 data) 4.914 0.262 0.9999
Testing (162 data) 6.504 0.389 0.9999

error (AAPE%), root-mean-squared error (RMSE),
and the correlation coefficient (R®) were also
implemented, and their corresponding formulas are:

N PR .
AAPE(%) = %Z ttio X100  (26)
i=1 1
RMSE = (27)
N a2
R it (tiz 00 (28)

SN (o -1

where N is total number of data in a set, f; is the
target or actual output value, o; is the estimated
output value, and —t is the mean of the actual output
values.

RESULTS AND DISCUSSION

As mentioned above, we built two SPMs to
correspondingly predict oil production rates and
water production rates at a certain target of injection
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rate. The topology presented in Table 6 was used to
develop these proxy models. For each of these proxy
models, the neural network training phase was per-
formed separately by implementing the SGD, PSO,
and Adam algorithms. Therefore, precisely speak-
ing, there were 6 SPMs built here. Aside from the
neural network training, the validation phase was
also done simultaneously to ensure that the trained
ANNSs have a better generalization capability. Fig-
ures 7 and 8 show how the cost function deteriorated
as the number of epochs increased in both training
and validation phases when SGD, PSO, and Adam
were utilized to train the ANN model. This
decreasing trend gave a higher confidence that these
trained ANN models had good performances in
terms of prediction. This decreasing trend further
confirmed that these ANNs were prevented from
merely memorizing the pattern of the database
provided. Thereafter, the testing phase was done to
further investigate the predictive performance of the
trained neural networks.

The results of the evaluation of the perfor-
mance of the ANNs are presented in Table 8 for oil
production rate prediction and Table 9 for the water
production rate prediction. The corresponding cross-
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Figure 9. Oil production rate: plots of correlation coefficient (RZ): for SGD (a) training, (b) validation, (c) testing; for PSO (d) training,
(e) validation, (f) testing; and for Adam (g) training, (h) validation, (i) testing.

plots between the actual output and the predicted
output for the training, validation, and testing sets
are illustrated in Figure 9 for oil production rate and
Figure 10 for water production rate. Pertaining to
the smart proxies for the prediction of oil rate, the

results shown in Table 8 indicate that Adam out-
performed SGD and PSO in the training, validation,
and testing phases in terms of RMSE and correla-
tion coefficient. However, regarding AAPE, PSO
had the best performance in all the three phases.
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Figure 9. continued.

Additionally, better performance of Adam is also
presented in Figure 9. As it can be observed, much
more data samples lie on the 45-degree line as the
Adam was used to develop the smart proxies com-
pared to the cases where the SGD and PSO were
utilized. Hence, Adam generally had the best per-
formance, whereas PSO performed better than
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SGD. Nonetheless, in the validation phase, SGD
performed better than the PSO in terms of the
minimization of RMSE and the maximization of the
correlation coefficient. This can be due to the exis-
tence of an over-estimated data point (an outlier) in
the validation phase of PSO (as shown in Figure 9e).
Because the healthy training process is illustrated in
Figure 7, it was deduced that any of these trained
models was sufficiently good to be applied to predict
the oil production rate. This is further justified by
the results of the performance metrics in Table 8,
which indicate that the correlation coefficients yiel-
ded by all the datasets exceeded 0.99 and both
AAPEs and RMSEs exhibited in all the phases were
considerably low.

For the prediction of water production rate (as
illustrated in Figure 10), it is difficult to infer whe-
ther the backpropagation algorithm or the PSO
yielded a better performance in the training, vali-
dation, and testing phases. However, according to,
Adam generally had the best results as compared
with SGD and PSO, whereas PSO performed better
than SGD. In addition, the results of AAPE were
not provided for the training phase of SGD and the
validation phase of PSO because, in these phases,
there were a few over-estimated data points (out-
liers) that caused the AAPE to be very large (more
than 1000%). This is because when these data points
were selected at the early stage of water break-
through, the actual water production rate was very
miniscule. Based on Eq. (26), if the numerator is in
the order of magnitude of 1 or 10, then the AAPE
will increase drastically. Thus, for practical reasons,
the results were not shown here. Despite this, this
scenario provided an insight that we needed to look
at different performance metrics during SPM to
determine whether the built proxy models func-
tioned satisfactorily. Besides, these outliers did not
affect the overall predictive capability of the smart
proxy built here as the model was still able to cap-
ture the general data pattern during the develop-
ment stage as presented in Figure 10.

After developing the SPMs, two blind cases
were run by using the target of the injection rates at
676 m*/day and 755 m¥day to provide more
insightful ideas regarding the usefulness of the
trained smart proxies. In other words, the spatio-
temporal databases when the target of the injection
rates was, respectively, at 676 m’/day and 755
m*/day created to be fed into the smart proxies to
observe how well they can make predictions. It is
essential to know that, in order to practically apply
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Figure 10. Water production rate: plots of the correlation coefficient (R?): for SGD (a) training, (b) validation, (c) testing; for PSO (d)
training, (e) validation, (f) testing; and for Adam (g) training, (h) validation, (i) testing.

the smart proxy, the dynamic inputs should in fact be
estimated by the smart proxy itself. For instance, the
smart proxy in this work was developed to predict
the oil production rates (also water production
rates). This denotes that the oil production rate

(water production rates) estimated at the timestep
t—1 should be used as one of the inputs to
approximate the rate at the timestep ¢. Therefore, if
there are more than one outputs to be predicted,
then those estimated outputs at the current timestep
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Figure 10. continued.

0 T
0 100 700

should be cascaded simultaneously to be the inputs
at the next timestep. Alternatively, different smart
proxy can be designed specifically to provide a pre-

¢ Building several smart proxies for estimating the dynamic inputs
can reduce the convenience of SPM. So, the resolution of this
issue will enable a smart proxy to be more tractable.
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Figure 11. Oil rate prediction by SGD: plots of the
comparison of rates for the results predicted by the trained
smart proxy for the two blind cases: (a) injection rate of 676
m?day; (b) injection rate of 755 m*/day.

diction of any of the outputs, which is used as the
input for another smart proxy. This situation reflects
another disadvantage® of the application of smart
Proxy.

Here, only smart proxies that estimated the
production rate were developed. For practical and
illustrative purposes, other dynamic data, which are
used as input data, were retrieved from the reservoir
simulation as these data were not used directly in the
optimization task discussed. Nevertheless, in this
case, the oil production rate estimated by the smart
proxy at the current timestep was cascaded to be the
input for the approximation of the rate at the next
timestep. The plots of the actual output (yielded by
reservoir simulator) and the predicted output (pro-
duced by SPM) at injection rates of 676 m*/day and
755 m*/day are illustrated in Figure 11 for oil rate
prediction using SGD, Figure 12 for oil rate pre-
diction using PSO, Figure 13 for oil rate prediction
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Figure 12. Oil rate prediction by PSO: plots of the comparison
of rates for the results predicted by the trained smart proxy for
the two blind cases: (a) injection rate of 676 m*day; (b)
injection rate of 755 m*/day.

100

using Adam, Figure 14 for water rate prediction
using SGD, Figure 15 for water rate prediction using
PSO, and Figure 16 for oil rate prediction using
Adam. The results of the performance analysis of
the two blind cases are presented in Table 10 for oil
rate prediction and in Table 11 for water rate pre-
diction. Figures 11, 12, and 13 demonstrate that
SGD results in a worse prediction at the beginning
of the production (at both targets of injection rate)
as compared to PSO and Adam. Despite this, the
developed SPMs (trained by both algorithms) for oil
rate prediction function were within an accept-
able range of accuracy. This is verified by the results
shown in Table 10. For water rate prediction,
according to Figures 14, 15 and 16, it is explicit that
the proxy trained with Adam yielded a better pre-
diction than the models trained with SGD and PSO.
However, it is challenging to determine whether
PSO was better than SGD. In this case, Table 11
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Figure 13. Oil rate prediction by Adam: plots of the
comparison of rates for the results predicted by the trained
smart proxy for the two blind cases: (a) injection rate of 676
m?/day; (b) injection rate of 755 m*/day.

100

shows that the model trained with PSO predicted
better. In this case, the AAPEs resulted from the
water rate prediction by using the model trained
with SGD were not provided due to the same reason
as discussed previously.

In general, when the two blind cases were em-
ployed, it was observed that the ANN models
trained with any of the three algorithms for both oil
and water rates prediction yielded results that are
within acceptable range of accuracy. Nevertheless,
the performance metrics illustrate that the SPMs
built here (for prediction of both oil and water rates)
trained by using Adam had a better predictive per-
formance as compared to the models trained by
SGD and PSO, whereas PSO outperformed SGD. In
addition, we noticed that the SPMs (trained by using
both algorithms) in this work had a better prediction
of the oil production rates than the prediction of the
water production rates. Hence, additional informa-
tion (e.g., water breakthrough time, total production
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Figure 14. Water rate prediction by SGD: plots of the
comparison of rates for the results predicted by the trained
smart proxy for the two blind cases: (a) injection rate of 676
m°*/day; (b) injection rate of 755 m*/day.

of water) can be included as input data to improve
the performance of the SPM for water rate predic-
tion.

After obtaining the flow rates predicted by the
built SPMs, we proceeded to the illustrative pro-
duction optimization task. As briefly discussed
above, the optimization task here was to select the
target of injection rate (between 676 m*/day and 755
m®/day) that maximizes the objective function in
Eq. (23). By using Eqs. (23) and (24) along with the
parameters listed in Table 2, the evolution of NPV
throughout the 30 years of production lifetime was
determined and is presented in Figure 17. The base
cases shown in Figure 17 correspond to the cases for
the flow rates derived from the numerical reservoir
simulation to determine the evolution of NPV. Both
proxy models can reproduce the general trend of the
NPV evolution that is close to the one generated by
the base cases. This observation is justifiable as all
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Figure 15. Water rate prediction by PSO: plots of the
comparison of rates for the results predicted by the trained
smart proxy for the two blind cases: (a) injection rate of 676
m?/day; (b) injection rate of 755 m*/day.

the proxy models yielded the general trends of both
oil and water production rates as discussed earlier.
Furthermore, from Table 12, all the models reached
to the same decision that having the target of
injection rate to be 755 m*/day for 30 years (without
termination of production during the period of
30 years) will result in the maximum value of NPV.
For the target rate of 676 m’/day, the percentage
error of the NPV resulted from the smart proxy of
SGD was about 2.67%, that of PSO was around
1.41%, and that of Adam was about 0.61%. For the
target rate of 755 m¥day, the percentage errors of
the NPVs resulted from both proxy models of SGD
and PSO were close, namely 1.38% for SGD and
1.33% for PSO. However, for Adam, the percentage
error was approximately 0.43%. In this case, the
smart proxy trained by using Adam was deemed
better. We understand that the economic model
used here might be insufficient to reflect the real-life
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Table 10. Performance metrics of the smart proxy for the two
blind cases (oil rate prediction)

Injection AAPE RMSE  R®
rate (%)

Stochastic gradient 676 m*/day 1.849 13.05  0.9924
descent 755 m*/day 1.978 1323 0.9932
Particle swarm opti- 676 m*/day 1.391 5.701 0.9985
mization 755 m/day 0.708 5695 09988
Adam 676 m*/day  0.999 2501 0.9997
755 m%/day 1.057 2830  0.9997

optimization case. However, we aimed to provide
insights regarding the use of SPMs in production
optimization on a fundamental level.

We also provide a brief discussion on the
computational time of these proxy models to high-
light the advantage of applying them. The compu-
tation here included all the training, validation,
testing phases as well as the prediction using the two
blind cases. It was done by using a PC with config-
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Table 11. Performance metrics of the smart proxy for the two
blind cases (water rate prediction)

2

Injection ~AAPE RMSE R”
rate (%)

Stochastic gradient 676 m*/day - 13.63  0.9917
descent 755 m*/day 12.97 0.9935
Particle swarm opti- 676 m*/day 8.623 8.454  0.9968
mization 755 m*/day 7.266 8975  0.9969
Adam 676 m*/day  8.049 2790 0.9996
755 m*fday  7.061 4385 0.9993

urations that included Intel® Core™ i9-9900 CPU
@3.10 GHz with 64.0 GB RAM. Here, the compu-
tation of one of the simulation scenarios listed in
Table 3 took about 160 s to finish. When all the five
simulation scenarios were run simultaneously, it
spent about 290 s to be fully completed. Neverthe-
less, for the SPM developed here, the computation
time of the proxy trained with SGD was about 110 s,
that of PSO was about 50 s, and that of Adam was
about 120 s.” In this aspect, the computation of the
proxy trained with backpropagation algorithm was
more expensive than that of PSO because PSO is a
derivative-free method. In general, we saw that
there was still a noticeable (even not very signifi-
cant) difference in the computational time between
the numerical simulation and the proxy models de-
spite the low complexity of the reservoir model used
here.

Further, we proposed and demonstrated the
probabilistic application to investigate further the
overall performance of the SPMs. In this case, one of
the performance metrics, namely correlation coeffi-
cient R?, was used for illustrative purpose in this part
of the work. To do this probabilistic study of the
built SPMs, we conducted the process of SPM iter-
atively for 200 times. This implies that there were
200 samples of R? for training phase, validation
phase, testing phase, and prediction for each of the
two blind cases. Thereafter, the normalized cumu-
lative frequency distribution (NCFD) for R? that
ranged between 0 and 1 was computed for the 200
samples. In this context, NCFD can be understood
as the cumulative number of times for a sample to be
within a range of values of R* over 200 times. The
plots of NCFD are presented in Figures 18, 19, 20,
21, and 22.

7 Computational time of the proxy built for oil rate prediction was
close to that of the proxy developed for water rate prediction.
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Figure 17. Evolution of NPV throughout the lifetime of

production: (a) SGD; (b) PSO: (¢) Adam.

Based on Figure 18, for the training phase of the
SPMs, the models trained with PSO had relatively
higher chance to result in a healthy training trend
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than the models trained with the backpropagation
algorithms. For the oil rate prediction, PSO had
0.5% chance to result in values of R? less than 0.90,
whereas SGD had 31% chance and Adam had
37.5% of chance. For the water rate prediction, PSO
had about 99% chance to yield values of R? that
ranged between 0.99 and 1, whereas SGD and
Adam, respectively, had only about 60% and 55%
chance to achieve that. According to these results,
we deduced that PSO was more likely to produce a
healthy trend of training compared to SGD and
Adam. This deduction is further justified by the re-
sults shown in Figure 19 for the validation phase.

For the testing phase, it was noted that the
proxy models trained by using PSO performed bet-
ter that those of SGD and Adam when the models
were evaluated against the testing dataset. As por-
trayed in Figure 20, for the case of oil rate, there was
26% chance that the model trained with PSO will
produce values of R” less than 0.99 in the testing
phase, whereas there was 76% chance that the
model trained with SGD will do so; for Adam, the
chance was about 47%. Besides, for the case of
water rate, PSO had 4% chance to have values of R?
less than 0.99, whereas SGD had 41.5% and Adam
had 45.5%. This provided more confidence that PSO
has a higher chance to yield a better predictive
performance than SGD when the models were tes-
ted with the dataset from a blind scenario.

For the prediction of rates against the datasets
from the two blind cases, it can be noticed that, in
general, the proxy models by PSO more likely had a
better predictive performance than those by SGD
and Adam despite the fact that the former had
slightly higher chance to produce R* values that are
less than 0.90 compared with that SGD had in terms
of oil rate prediction for injection scenario of
676 m’/day. This is because based on the prediction
of R? that ranged between 0.99 and 1, the models by
PSO were deemed more reliable than those by SGD
and Adam. Besides, in terms of oil rate prediction,
Adam statistically had a better chance than SGD in
yielding R® values between 0.99 and 1 for both
injection scenarios. However, for water rate predic-
tion, the chances of both algorithms were very close.
We have illustrated that, here, statistically speaking,
PSO had a better chance to perform better in
training and building the proxy model compared to
SGD and Adam. Because PSO is metaheuristics, in
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Table 12. Optimal NPVs generated by using all the models

Injection rates 676 m*/day 755 m*/day
models Simulator SGD PSO Adam Simulator SGD PSO Adam
NPVoptimar (million USD) 346.36 337.11 341.49 34427 357.35 35243 352.59 355.84
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Figure 18. NCFD of R’ for the training phase of the SPMs: (a)
oil rate; (b) water rate.

which both global search and local search are bal-
anced, it has a higher chance to have a more
exhaustive search in the solution space during the
neural network training. Nevertheless, we recom-
mend that this study is conducted using other per-
formance metrics for a more established
understanding regarding the outcomes of SPM.
Integration of this statistical study in SPM can pro-
vide insights about the reliability of an algorithm in
training a proxy model and the prediction accuracy
of the trained models.

o 01 02 03 04 05 06 07 08 09 10
Correlation Coefficient, R?
(b)

Figure 19. NCFD of R’ for the validation phase of the SPMs:
(a) oil rate; (b) water rate.

HETEROGENEOUS MODEL

To demonstrate further the robustness of the
methodology, we used another fractured reservoir
model as a second case study. The general archi-
tecture and fluid properties of this new model are
similar to those of the previous model. However, we
changed the values of some reservoir parameters,
including the height of matrix block and the porosity
values of both matrix and fracture media, and
introduced heterogeneity to the permeability fields
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Figure 20. NCFD of R? for the testing phase of the SPMs: (a)
oil rate; (b) water rate.

Table 13. Modified reservoir parameters for the heterogeneous

model
Layer Matrix block height (m) Porosity
Matrix med-  Fracture med-
ia ia
1 4.572 0.150 0.0050
2 10.67 0.400 0.0020
3 7.620 0.280 0.0015

of both media. In this case, the heterogeneity only
applies to permeability. The permeability values in
the x-, -y, and z- directions are the same. Thus, the
fractured model illustrated here is an isotropic
heterogeneous model. Refer to Table 13 for the new
values of the heights of matrix blocks and the
porosity values. Figure 23 shows the permeability
field of each layer in the unit of m?.
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Figure 21. NCFD of R” for the prediction of rate of the SPMs
when target rate was 676 m*/day: (a) oil rate; (b) water rate.

After building this new model by applying the
same methodology, the database was extracted and
used to develop the SPMs to correspondingly predict
the field oil and water production rates. The injec-
tion scenarios employed in this case study were the
same as in Table 3. The structure of ANN models
built here also remained the same as presented in
Table 6. This also applied to the use of essential
parameters of the three algorithms. For practical
and concise purposes, only two performance metrics,
namely RMSE and RZ, were implemented to eval-
uate the training and predictive performance of
these proxy models. Table 14 shows the results of
training, validation, and testing of the SPM for oil
production rate forecasting, whereas Table 15 pre-
sents those of the model for water production rate
prediction. Generally, the models trained by all the
three algorithms yielded excellent training results
for both oil and water production rates. Based on
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Table 14. Performance metrics of the smart proxy for oil rate
prediction based on training, validation, and testing sets

RMSE R’

Stochastic gradient des-  Training (758 data) 7.855  0.9977

cent Validation (163 4700 0.9992
data)

Testing (162 data) 8202  0.9978

Particle swarm optimiza- Training (758 data) 3.846  0.9995

tion Validation (163 3.918  0.9995
data)

Testing (162 data) 2.739  0.9997

Adam Training (758 data)  3.154  0.9997

Validation (163 2410 0.9998
data)

Testing (162 data) 3391 0.9996

Table 15. Performance metrics of the smart proxy for water rate
prediction based on training, validation, and testing sets

RMSE R’

Stochastic gradient des-  Training (758 data) 2401  0.9998

cent Validation (163 2273 0.9998
data)

Testing (162 data) 2379 0.9998

Particle swarm optimiza- Training (758 data)  1.869  0.9999

tion Validation (163 1.961  0.9999
data)

Testing (162 data)  1.824  0.9999

Adam Training (758 data)  0.540  0.9999

Validation (163 0478 0.9999
data)

Testing (162 data) 0422 0.9999

both RMSE and R?, Adam had the best results for
both oil and water production rates. Nevertheless,
for the testing phase in oil rate proxy model, PSO
outperformed the others. For illustrative purposes,
only the production profiles estimated by the smart
proxies trained by using Adam are presented; the oil
profiles are shown in Figure 24, whereas the water
profiles are presented in Figure 25.

Thereafter, these models also underwent the
blind validation phases by using the two blind cases
as explained before. Table 16 records the results of
blind validation for oil rate prediction, and Table 17
shows the results for water rate forecasting. For this
case study, the PSO outperformed the others when it
was used to train the predictive model of oil pro-
duction rate. However, for the estimation of water
production rate, Adam still yielded the predictive
model that produced the best results. Then, the
production optimization was also done by using the
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Figure 22. NCFD of R® for the prediction of rate of the SPMs
when target rate was 755 m*/day: (a) oil rate; (b) water rate.

same price setting as shown in Table 2 to highlight
the fundamental practicality of the models devel-
oped in this case study. The optimal NPVs obtained
by using each of the proxy models are tabulated in
Table 18.

Based on Table 18, it was deduced that the
proxy models built by using Adam produced the
optimal NPV with the least percentage error under
two different injection scenarios, which were 0.117%
for injection rate of 676 m*/day and 0.329% for
injection rate of 755 m*/day. In addition, all the
proxy models reached the same option that the
injection rate of 755 m/day was economically
preferable. Apart from these, for illustrative and
succinct purposes, the probabilistic application was
only implemented to analyze the predictive perfor-
mance of each model. The results of this application
are demonstrated in Figure 26 for the target rate of
676 m’/day and in Figure 27 for the target rate of
755 m*/day. In general, for this case study, it can be
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Figure 23. Overview of the isotropic heterogeneous model. The matrix system
consists of (a) Layer 1, (b) Layer 2, and (¢) Layer 3. The fracture system comprises
(d) Layer 1, (e) Layer 2, (f) Layer 3.
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Table 16. Oil rate prediction: performance metrics of the smart proxy for the two blind cases

Injection rate RMSE R*
Stochastic gradient descent 676 m*/day 12.45 0.9939
755 m*/day 13.04 0.9944
Particle Swarm Optimization 676 m’/day 2.097 0.9998
755 m*/day 3.827 0.9995
Adam 676 m*/day 4.489 0.9992
755 m*/day 5.468 0.9990
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Figure 24. Oil rate prediction by Adam: plots of the results
predicted by the trained smart proxy for the two blind cases:
(a) injection rate of 676 m’/day; (b) injection rate of 755
m°/day.

deduced that PSO had a better chance than both
SGD and Adam to produce a predictive model with
higher accuracy level (i.e., R* exceeding 0.99).

CONCLUSIONS

Here, we have shown how SPM can be con-
ducted by using a synthetic fractured reservoir
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Figure 25. Water rate prediction by Adam: plots of the results
predicted by the trained smart proxy for the two blind cases:
(a) injection rate of 676 m?/day; (b) injection rate of 755
m*/day.

model. The purpose of this study was to provide
some insights and a more concrete demonstration
regarding the modeling of a smart proxy. We also
briefly discussed how the spatio-temporal database
can be generated, and we presented the selection of
input and output data which were used in the neural
network training. This procedure is of paramount
importance as a good database determines the suc-
cess of SPM. Apart from implementing the back-
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propagation algorithms, namely SGD and Adam, to
train the smart proxy, we also demonstrated how the
training of a smart proxy can be coupled with PSO.
Regarding this, for each training algorithm, we
developed two SPMs which correspondingly pre-
dicted oil production rate and water production rate.
During the development of the smart proxies, all the
three algorithms showed excellent training results.
However, for the proxy of water rate prediction
(trained with both SGD and PSO), some of the
resulting AAPEs were large due to the existence of
outliers. Despite this, the proxy still showed healthy
training and validation trend. In addition, both
models illustrated splendid predictive performance
as indicated by the results. This shows that the
overall predictive performance of the smart proxies
remains intact despite having outliers in the neural
network training. We consider this as one of the
important contributions derived from this work be-
cause most of the available literatures solely focus
on the use of traditional backpropagation algorithm
in SPM. Thereafter, we showed how these SPMs can
be used to optimize production through an illustra-
tive example. Besides, we used the performance
metrics of correlation coefficient (R?) for proba-
bilistic evaluation of the overall performance of the
SPMs. We summarize our main findings and results
derived from this work as follows.

Table 17. Water rate prediction: performance metrics of the
smart proxy for the two blind cases

Injection rate ~ RMSE R?
Stochastic gradient descent 676 m*/day 5723 0.9987
755 m*/day 10.25 0.9966
Particle swarm optimization 676 m*day 9.966  0.9961
755 m‘/‘day 7705 0.9981
Adam 676 m*/day 1589 0.9999
755 m*/day 1921 0.9999
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1. Based on the deterministic analysis con-
ducted for SPM of oil rate prediction, the
performance metrics (based on training,
validation, and testing) showed that Adam
generally yielded lower AAPE, RMSE, and
higher R? than SGD and PSO. However, for
the RMSE in the validation phase, PSO re-
sulted in the highest value due to the exis-
tence of outliers as previously discussed.
Besides, for SPM of water rate prediction,
the performance metrics portrayed that
Adam was also generally better than SGD
and PSO.

2. For oil rate prediction of the blind cases,
proxy model with Adam also had the lowest
AAPE, RMSE, and the highest R?. The same
results were obtained for water rate predic-
tion.

3. For the production optimization case, the
SPMs trained with all three algorithms
reached the same decision as what the base
case did, which was to select the target
injection rate to be 755 m’/day. However,
the NPVs calculated using the data obtained
from the proxy model built with Adam were
much closer to those estimated by using the
data from reservoir simulator.

4. According to the probabilistic analysis for
prediction of oil and water rates, it is inferred
that PSO has a higher chance to generate a
SPM that can result in excellent training and
predictive performance compared with SGD
and Adam.

5. The same methodology was also applied to
an isotropic heterogeneous fractured reser-
voir model to illustrate its robustness. For
this, it was generally found out that Adam
can outperform SGD and PSO in the
development of the SPMs. However, for oil
production rates, PSO produced a better
testing result. Regarding blind validation,
Adam also generally resulted in more accu-

Table 18. Optimal NPVs generated by using all the models

Injection rates 676 m*/day 755 m*/day
Models Simulator SGD PSO Adam Simulator SGD PSO Adam
NPV ptimar (million USD) 428.92 421.77 42431 429.43 44722 440.97 444.04 448.69
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Figure 26. NCFD of R? for the prediction of rate of the SPMs
when target rate was 676 m*/day: (a) oil rate; (b) water rate.

rate predictive models of water production
rates. Nonetheless, the predictive model of
oil rates established by using PSO estimated
the oil profile more accurately. Additionally,
PSO showed higher chance than SGD and
Adam to produce models with excellent
predictive ability.

Based on the findings presented, we conclude
that, in this work, a metaheuristic algorithm can be
applied aptly to train and build a good smart proxy
of a fractured reservoir model. Although it has been
demonstrated that PSO might not deterministically
outperform the considered backpropagation algo-
rithms in smart proxy modeling, statistically it still
has a better chance to yield a good performance in
this case study. Nonetheless, we understand that
there are still some shortcomings regarding these
SPMs. We hope that these proxies can be enhanced
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Figure 27. NCFD of R? for the prediction of rate of the SPMs
when target rate was 755 m*/day: (a) Oil rate’ (b) Water rate.

to be more tractable and robust® in terms of pre-
diction of any reservoir-related parameter. In short,
we believe that we have achieved the main goals of
this work, which include a vivid illustration of SPM,
an integration of metaheuristic algorithm in proxy
training, a presentation of practical use of the built
proxies in optimization on a fundamental level, and
an inclusion of a probabilistic application in evalu-
ating a proxy model.
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Abstract

With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models
that could be utilized to maximize the net present value of a waterflooding process by adjusting the well control injection
rates over a production period. These data-driven proxies were maneuvered on two different case studies, which included a
synthetic 2D reservoir model and a 3D reservoir model (the Egg Model). Regarding the algorithms, we applied two differ-
ent nature-inspired metaheuristic algorithms, i.e., particle swarm optimization and grey wolf optimization, to perform the
optimization task. Pertaining to the development of the proxy models, we demonstrated that the training and blind validation
results were excellent (with coefficient of determination, R being about 0.99). For both case studies and the optimization
algorithms employed, the optimization results obtained using the proxy models were all within 5% error (satisfied level of
accuracy) compared with reservoir simulator. These results confirm the usefulness of the methodology in developing the
proxy models. Besides that, the computational cost of optimization was significantly reduced using the proxies. This further
highlights the significant benefits of employing the proxy models for practical use despite being subject to a few constraints.

Keywords Waterflooding optimization - Machine learning - Artificial neural network - Data-driven proxy modeling -
Nature-inspired algorithms

Introduction due to the costs of water production and injection, it is essen-

tial for oil and gas companies to carefully plan the schemes
For the past decades, waterflooding or water injection has  of waterflooding to achieve higher economic returns. Such
been one of the most prevalent techniques applied to increase  planning is understood as a part of production optimiza-
the hydrocarbon production. Waterflooding is termed as the  tion which is a very vital aspect in reservoir management
secondary production method that is conducted following  (Thakur 1996; Udy et al. 2017). Therefore, optimization of
the primary production, which is also known as natural  waterflooding has been one of the most widely researched
depletion. During the phase of natural depletion, hydrocar-  topics in the field of petroleum engineering (Van Essen et al.
bon fluid is recovered from the reservoirs by natural forces, 2009; Zhang et al. 2014; Ogbeiwi et al. 2018; Hong et al.
such as expansion of fluid and rock, and influx of aquifer. ~ 2019).

Besides that, tertiary recovery methods, which are known Fundamentally, waterflooding optimization involves the
as enhanced oil recovery (EOR), can be another option if  adjustment of some relevant variables to maximize the pre-
secondary recovery is not effective to produce the remain-  defined objective function, like net present value (NPV),

ing hydrocarbon. Examples of EOR methods include steam  total oil production, etc., over a period. Additionally, this
injection and polymer flooding. Pertaining to waterflooding,  period can be at least in the horizon of several years or dec-
ades. Hence, it is considered as a long-term optimization

Cuthbert Shang Wui Ng problem. More ir.ltri‘guiggly, different types of algorithms can
cuthbert.s.w.ng @ntnu.no perform this optimization as discussed in Udy et al. (2017).

1 In general, these algorithms can be either derivative based or
Department of Geoscience and Petroleum, Norwegian derivative free. Udy et al. (2017) further expounded the ben-
University of Science and Technology, Trondheim, Norway . .. . ..

) efits and drawbacks of implementing derivative-based algo-
Département Etudes Thermodynamiques, Division rithm, like adjoint method and derivative-free algorithms,
Laboratoires, Sonatrach, Boumerdes, Algeria
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including particle swarm optimization (PSO), simulated
annealing (SA), and genetic algorithm (GA). Moreover,
waterflooding optimization can in general be categorized
into three different types, namely well control optimization
(generally comprising either bottom-hole pressure (BHP) or
rates optimization) (Sarma et al. 2008; Zhang et al. 2014; Lu
et al. 2017), well placement optimization (Guyaguler et al.
2002; Forouzanfar and Reynolds 2013; Volkov and Bellout
2017), and combination of these methods together or with
other variables, such as number of wells (Bellout et al. 2012;
Forouzanfar and Reynolds 2014; Pouladi et al. 2020). In
this context, the potential of waterflooding optimization for
continuous improvement for more practical applications has
been demonstrated.

Numerical reservoir simulation (NRS) is one of the most
standardized tools utilized in the oil and gas industry to
conduct the subsurface or reservoir modeling. NRS can be
conveniently (and is also frequently) coupled with any math-
ematical algorithm to optimize waterflooding or any EOR
techniques. This has also been one of the most common
practices in the industry as highlighted in some literatures
(Peaceman 1977, Jansen et al. 2009; Ertekin and Sun 2019;
Baumann et al. 2020). Nonetheless, as perceived, NRS is
developed based upon the physics to model the behavior of
fluid flow in porous media. Therefore, when the system mod-
eled becomes more complex, e.g., increased heterogeneity
of the reservoir, the transport of fluid in porous media will
be more difficult to be solved mathematically (Mohaghegh
2017a). This implies that the time required to complete
the computation of NRS will increase drastically. Conse-
quently, this might lead to certain level of economic loss.
Fortunately, thanks to the establishment of proxy modeling,
the computational challenge can be mitigated. In this aspect,
the word “proxy” denotes “to act on behalf of another.” This
denotes that proxy models are the replica of numerical res-
ervoir models which can be readily employed for practical
applications in the industry (Mohaghegh 2011; Ertekin and
Sun 2019).

With respect to this, proxy models are alternatively
known as data-driven models because their building blocks
are made up of different sets of data. Hence, proxy models
are believed to be able to replicate the results of NRS accu-
rately if the data used to develop them are representative
of the physics being modeled. As Mohaghegh (2017b) has
counseled, there are two main classes of proxy modeling,
which are reduced-order models (ROMs) and response sur-
face models (RSMs). For ROMs, the simplification of the
physics is involved and one of the most used examples of
ROMs is capacitance resistance models (CRMs). CRMs
were developed by Bruce (1943) and reinitiated by Yousef
et al. (2006) to determine inter-well connectivity. Applica-
tion of CRMs in waterflooding has also been proven to be
useful in some literatures (Liang et al. 2007; Sayarpour et al.
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2007; Hong et al. 2017). Besides that, RSMs are considered
as statistical approaches which attempt to develop a pre-
defined form of mathematical function, e.g., linear, poly-
nomial, etc., based on the data given (Mohaghegh 2017b).
There are also some papers (Valladao et al. 2013; Babaei and
Pan 2016) that discuss the use of RSMs in waterflooding.
Despite this, Mohaghegh (2017a, b) has opined that these
classes of proxy modeling involve underlying assumptions
and simplifications that can impede capturing the actual
physics from pattern recognition of data provided. Thus,
he has coined another class of proxy modeling that is built
based upon machine learning (ML) techniques and artificial
intelligence (AI), which has been named as “smart proxy
modeling” (SPM). The word “smart” indicates the ability of
the models to learn the pattern of the data provided through
the ML and Al techniques. He has also initialized the term
“Petroleum Data Analytics” (PDA) that focuses on the use of
data-driven analytics and big data in the upstream of petro-
leum industry (Mohaghegh 2017a, b) and SPM is undeni-
ably a part of PDA. According to Mohaghegh (2017b), smart
proxy models consist of an ensemble of neuro-fuzzy systems
that can duplicate the results yielded by NRS and readily
to be utilized for different purposes, like history matching
(He et al. 2016; Shahkarami et al. 2018; Shahkarami and
Mohaghegh 2020), uncertainty quantification (Mohaghegh
2006; Mohaghegh et al. 2006, 2012), utilization of CO,
(Shahkarami et al. 2014; Amini and Mohaghegh 2019; Vida
et al. 2019; Shahkarami and Mohaghegh 2020), waterflood-
ing (Alenezi and Mohaghegh 2017), and analysis of shales
(Kalantari-Dahaghi and Mohaghegh 2011; Mohaghegh
2013; Mohaghegh et al. 2017). Also, it is very important to
understand that SPM is an objective-directed task in which
the purpose of the proxies needs to be notified first prior to
development. Having this understanding will help the mod-
elers to have a better idea of what data can be useful in the
development of proxy models.

There are also other interesting literatures (Nait Amar
et al. 2018, 2020; Navratil et al. 2019; Alakeely and Horne
2020; Ng et al. 2021) that discuss and present the use of ML
methods in the establishment of proxies of numerical models
in petroleum domain, especially for reservoir engineering.
Regarding this, there is a riveting insight being provided
by Nait Amar et al. (2018) about the modeling of proxies,
which is the difference between static and dynamic proxy
models. They discussed that in static proxies, the models
were not developed as the function of time. Hence, these
models were built to yield the results of a predefined vari-
able, such as NPV and total oil production at a particular
time (normally at the end of simulation). In this context,
Guo and Reynolds (2018) applied support vector regression
(SVR) to build a static proxy model that predicted the NPV
as a function of control sets by considering different geologi-
cal realizations. Then, the static proxy was maneuvered to
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Data Partitioning is
done on ratio of 8:1:1

Generate a geological
realization using multivariate
normal distribution and
60 different injection
scenarios using
LHS + SSS + HSS to build
the data-driven proxy model
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Fig. 1 General workflow of the methodology of data-driven proxy modeling and optimization

perform robust production optimization. Moreover, Wang
et al. (2021) presented the application of PSO in tuning the
hyperparameters of SVR that was developed as static proxies
to forecast the NPV and cumulative oil production. Thereaf-
ter, this PSO-SVR model was coupled with non-dominated
sorting genetic algorithm-II (NSGA-II) to conduct the Pareto
optimization. Albeit the use of static proxies has been suc-
cessfully shown, they articulated that the dynamic proxies
(established as a function of time) offered more practical
applicability and flexibility to be used, notably under time-
dependent constraints (Nait Amar et al. 2018). In the context
of waterflooding, Golzari et al. (2015) applied artificial neu-
ral network (ANN) modeling to build a dynamic proxy and
coupled it with GA to optimize the production. They also
integrated cross-validation and Jackknife Variance to evalu-
ate the quality of the proxies and perform adaptive sampling
to add new training data if necessary. Also, Teixeira and Sec-
chi (2019) employed ANN to develop two dynamic proxies:
one that could forecast the oil production rates as a function
of injection rates and past oil rates and another one was to
approximate the same output by having injection rates and
BHP of producers as inputs.

In this paper, one of the goals is to present how dynamic
proxy models can be developed based upon the data gen-
erated by the NRS models. There are two different NRS
models, 2D and 3D reservoirs, being analyzed in this work.
The purpose of the proxies is to be employed to carry out
the well control optimization. About the proxy modeling, the
ML technique that has been applied is ANN and the corre-
sponding training algorithm is adaptive moment estimation
(Adam). Furthermore, we couple these proxies with two dif-
ferent nature-inspired metaheuristic algorithms, namely par-
ticle swarm optimization (PSO) and grey wolf optimization
(GWO) to run the respective optimization. These algorithms
would also be utilized with the NRS models for comparative
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analysis. After this introduction, we will explicate the for-
mulation of the optimization problem and the methodology
used to establish the proxies. In this aspect, we also provide
brief discussion about ANN, PSO, and GWO. Thereafter, we
explain the background of the reservoir models and illustrate
the respective results of the ANN training as well as the
optimization study. The discussion will then follow prior to
proceeding to the conclusions.

Methods

The entire workflow utilized to build and apply the data-
driven models for the optimization of waterflood is summa-
rized in Fig. 1. The workflow can be classified into two main
parts, which include neural network training (also known as
proxy modeling) and optimization routine. Prior to devel-
oping the data-driven proxies, it is essential to identify the
purpose of these models as proxy modeling is an objective-
directed task. In this paper, the objective is to maximize the
NPV of a waterflooding project by adjusting the control of
injection rate of each well periodically (every 150 days) over
3000 days. Besides that, the control of each injector is tuned
within the range of 40 m*/day and 100 m*/day.

The NPV is expressed as shown in Eq. (1). Since the
reservoir models presented in this paper are only oil-water
systems, gas production rate is not considered in the formu-
lation of NPV.

- (Qin(u)PU - Q e, - ini(u)Cwi) X Ay
NPV(u) = )
=1

(1+b)¥/P
M

u= [ul,uz,u3,...,uM]T 2)
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where u is the control vector (e.g., control rates or BHP), M
is the number of control variables, Q];) is the field oil produc-
tion rate at timestep j, Q! is the field water production rate
at timestep j, Q’Wl is the field water injection rate at timestep
J» At;is the time difference between timestep j and previous
timestep, t;is the cumulative time until timestep j that is used
to discount the cashflow, and D is the reference period for
discounting. In this paper, D is set to be 365 days because
interest rate, b is in the unit of fraction per year and the
cashflow is discounted every day. P,, C,, and C,,; corre-
spondingly mean oil price, cost of water production, and
cost of water injection. According to Eq. (1), there are two
important parameters we aim to obtain, either directly or
indirectly, from the proxy models. These parameters are field
oil and water production rates. Based on our analysis and
investigation, we established two different proxy models,
where one could predict the field liquid production rates at
a specific timestep whereas the other one could estimate the
field water cut at a particular timestep.

For both proxies, the input variables include the num-
ber of days at each timestep j, t;; the harmonic mean of
grid absolute permeability for each reservoir layer, k; the
standard deviation of grid absolute permeability for each
reservoir layer, kgp; the permeabilities of perforated grid
blocks (injectors), Kipjeeior: the permeabilities of perforated
grid blocks (producers), Ky qaucer; the field water injection
rate (control vector); the output at the previous timestep,
¥j-1- The mathematical formulation of the proxies’ built in
this paper in general can be expressed as Eq. (3). Besides
that, the harmonic mean of permeability for each reser-
voir layer is presented as Eq. (4). Nonetheless, regarding
the input variables of the permeabilities of perforated grid
blocks (producers and injectors), they are case-dependent
in this paper. This implies that we have applied different
approaches of formulation to incorporate them as parts of
the inputs relying upon the reservoir models investigated. It
will be discussed in detail later. In this work, the data-driven
models were represented as the ANNs. The topologies of the
ANNSs developed here will be divulged in the next section.

yj =f ([y E’ kSD’ kinjecmr’ kpmducer’ u, yvi—l ) (3)
- XL
k=25
n L (4)
Zl=l r

! The permeability used here is the horizontal permeability. The data
of the vertical permeability can also be included in the development
of the proxies here. However, it has not been considered in this paper
as the current formulation already yielded very good results.
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where n is the number of grid blocks, L; is the depth at the
top of grid block i, and k; is the grid absolute permeability.

About the development of the proxies, the first step is to
generate the spatiotemporal database. To develop the data-
base, we apply three different sampling techniques, which
are Latin Hypercube sampling (LHS), Sobol Sequence sam-
pling (SSS), and Hammersley Sequence sampling (HSS) to
generate 60 sets of samples of control rates (each set con-
sists of 20 injection rates which corresponds to one injec-
tion scenario). Respectively, peruse McKay et al. (1979),
Sobol’ (1967), and Hammersley and Handscomb (1964) for
more information about LHS, SSS, and HSS. Each sampling
method is implemented to, respectively, generate 20 sets of
samples. Thereafter, each set would be fed into the reservoir
simulator to yield the reservoir responses. This denotes that
60 reservoir simulations are run in total. After finishing the
simulations, we extract the dynamic inputs and combined
them with the static inputs to create the spatiotemporal data-
base. It is of paramount importance to have the database
normalized and arrange in a consistent format before it is
supplied to the neural network for training. The fundamental
ideas of the neural network training will be delineated later.
Before the neural network training commences, the nor-
malized database is partitioned into three different groups,
namely training, validation, and testing, based on a ratio of
8:1:1. In this case, only the training data is used to build
the data-driven models. However, after each epoch (itera-
tion) of training, validation data would be simultaneously
fed into the neural network to elude the issue of overfitting
(Mohaghegh 2017a; Shahkarami and Mohaghegh 2020). A
heathy training can be ensured by having the simultaneous
decreasing trends of the training and validation errors as
shown in Fig. 2. After the training is completed, the test-
ing data would be used to evaluate the predictability of the
models.

Upon the completion of these three stages, the data-
driven proxies ought to undergo the blind validation before
being practically employed. The data used in blind valida-
tion should not be part of the above-mentioned spatiotem-
poral database. Therefore, to conduct the blind validation,
we utilize LHS, SSS, and HSS to generate other 80 sets of
samples of control rates. Then, 80 reservoir simulations are
run to produce the outputs of field liquid production rates
and field water cut. These outputs are compared with the
predicted outputs yielded by the proxy models. Only when
the comparative study shows excellent results, we can safely
infer that the proxy models can practically be employed. By
having successfully established these two proxies, the field
oil and water production rates required for the optimiza-
tion purpose can be obtained. In this paper, we implemented
PSO and GWO to optimize the well control. The information
about the algorithms and the parameters used to carry out
the optimization will be presented later. We did not only
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Fig.2 Comparison between healthy trend of training and overfitting issue. Adapted from Shahkarami and Mohaghegh (2020)

couple these algorithms with the proxies developed here,
but also applied them along with the numerical reservoir
simulation. The optimal well controls resulted from the two
approaches were then compared. Additionally, the proxy-
optimized well controls were fed into the reservoir simulator
to yield the results that could be used to further illustrate the
robustness of the proxy models.

Artificial neural network

ANN is a famous ML method that is established based on
the inspiration from the working process of the biological
neural networks in human brains. ANN consists of a lot of
computing elements which are termed as nodes or artificial
neurons. It has been proven to be useful and effective in cap-
turing and learning the sophisticated relationship between
input and output data derived from any physical process as
in traditional regression approaches. Examples of ANNs
include feedforward neural network (FNN), convolutional
neural network, recurrent neural network, radial basis func-
tion networks, and adaptive neuro-fuzzy inference system.
Different types of activation functions can also be employed
to develop an ANN and the common ones are the sigmoid
function, the hyperbolic tangent, and the rectified linear unit
(ReLU) function (Buduma and Locascio 2017).

In this paper, FNN with the ReLU function as its acti-
vation function was utilized. In general, FNN, also called
multilayer perceptron (MLP), has three layers, e.g., the input
layer, the hidden layer, and the output layer. To guarantee
that the MLP can study the relationship between input and
output data provided, it must undergo the training stage.
During the training stage, the learning ability of the MLP
is achieved by adjusting the sets of weights and biases to
reduce the predefined loss function, including mean squared
error (MSE) and mean absolute percentage error. In this
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paper, MSE was chosen as the loss function. Such optimi-
zation is generally conducted through the backpropagation
(BP) approaches. These methods involve the application of
different derivative-based algorithms, for instance, steepest
descent gradient, the Levenberg—Marquardt algorithm, the
Powell-Beale conjugate gradient, and Adam. In this work,
Adam was applied as the training algorithm. For the details
of Adam, refer to this literature (Kingma and Ba 2015). The
relevant parameters used for the training of all the neural
network proxies in this paper are tabulated in Table 1.

Prior to entering the MLP, the data have to be normalized
to improve the training performance of the MLP as recom-
mended in Hemmati-Sarapardeh et al. (2020). In this paper,
we used Eq. (5) to normalize the data between 0 and 1. After
normalization of data, the forward propagation of the input
data will happen to compute the outputs. The resulting out-
put data will thereafter be compared with the actual output
data to determine the errors. After this, the errors are propa-
gated back through the MLP to iteratively tune the weights
and biases to reach the optimal point. The architecture of
an arbitrary FNN is demonstrated in Fig. 3 in which the red
node acts as the bias node between the input and hidden lay-
ers whereas the node between the hidden and output layers
is shown in green.

Table 1 Parameters used to conduct neural network training using
Adam

Adam parameters Values
Number of iterations (epochs) 2000
Learning rate 0.001
Exponential decay rates for the 1st moment estimates, 0.9
Exponential decay rates for the 2nd moment estimates, 3, 0.999
Numerical stability constant, & 1077
et it 4\ Springer
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Hidden Layer

Input Layer

Output Layer

Fig.3 The structure of a simple FNN model

X _ Xi = Xmin ®)
norm
Xmax ~ Xmin

where X, represents the normalized data point, x; refers to
a data point, X,,;, corresponds to the data point with the low-
est value, and x,,, is the data point with the highest value.
To assess the quality of the prediction done by the proxies,
we used coefficient of determination, R? as the performance

metrics. The respective formula is shown in Eq. (6).

2
N real d
N Zj:l (yj * - yjpm )
S T ®
Jeel
Zj:l (Y_? - ym})

pre:
predicted data point, y*a! refers to the mean]of all the actual
data points, and N is the total number of data points. As
explained, we have built four neural network proxies in this
paper, two for each of the reservoir models studied. The
topologies of the neural proxies are presented in Table 2 for
2D reservoir model and Table 3 for 3D reservoir model.
These architectures were determined via the trial and error
approach.

where y;“" means the actual data point, y ¢ denotes the

Particle Swarm Optimization

The PSO algorithm is one of the most popular swarm-based
metaheuristic algorithms that has been initiated by Kennedy
and Eberhart (1995) through simulating the social habit of
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Table2 The architecture of ANN for 2D Reservoir Model

Layers Field liquid production rate  Field water cut
Number of ~ Number of ~ Number of ~ Number
layers nodes layers of nodes
Input 1 23 1 23
Hidden 1 100 2 50
Output 1 1 1 1

Table 3 The architecture of ANN for 3D Reservoir Model

Layers Field liquid production rate  Field water cut
Number of Number of Number of Number
layers nodes layers of nodes
Input 1 29 1 29
Hidden 1 100 2 50
Output 1 1 1 1

flying birds. Mathematically, this flock of birds is repre-
sented as a population of particles known as a swarm of par-
ticles. Each particle indicates a potential position (solution)
in a search space and it is updated iteratively according to its
position and velocity at previous iteration step. The motions
of the particles are regulated by their own most optimal posi-
tion (the local best position) and their most optimal position
in the entire swarm (the global best position). After some
iterations, the convergence of the particles in the swarm to
an optimal point (the best solution) will occur. The position
and velocity of the j particle in a k dimensional space at
step t are formulated as follows:

X = {le,x- Xiz oo Xjzts e oe s xjk,t} (7)

Vi) (8)

Vit = {le,wvjz.n Vigg -

Thereafter, the velocity of each particle at next step t+ 1
is updated based on Eq. (9) and the position of a particle at
the next iteration t+ 1 is updated by using Eq. (10).

Vikt+1 = OVjge +017p (pheStij - jk.r) + 0y (gbesty | — jk,t)
9)

X1 = Xkt T Vi1 (10)

where vj , and x;, , indicate the velocity of the jth particle
at step t and its corresponding position in the kth dimension
quantity, respectively. Apart from this, pbest; , refers to the
kth dimension quantity of the individual j at the local best
position at iteration t. gbesty , is the kth dimension quantity
of the swarm at the global best position at iteration t. ¢, and
c,, respectively, denote the cognitive and social learning fac-
tors. w is known as the inertial weight which was introduced

100
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by Shi and Eberhart (1998) to enhance the convergence con-
dition. r; and r, are randomly retrieved between 0 and 1. In
terms of the minimization problem, a cost function f (to
be minimized) is defined. Then, to find out the local best
solution at t+ 1, Eq. (11) is used. To determine the global
optimal solution at t+ 1, Eq. (12) is applied.

! _ J pbesty . if £ (pbesty, ) < f(xj4.1)
pbesty g = { Xjiq + 1, Otherwise an
gbesty ., =min[f(pbesty, ., )]. (12)

The procedure described above is repeated until the stop-
ping condition is satisfied. During the optimization process,
15 particle swarms were initially generated, 100 iterations
were run, and the values of o, ¢, and c, were, respectively,
settobe 0.8, 1.1, and 1.1.

Grey wolf optimization

The GWO is another well-known metaheuristic algorithm
that was established by Mirjalili et al. (2014). This algorithm
was developed in accordance with the natural inspiration
derived from the social hierarchy of leadership and hunt-
ing style of grey wolves (Mirjalili et al. 2014). Pertaining
to the paradigm of this algorithm, it is essential to recog-
nize that the population of grey wolves is divided into four
different classes, such as alpha (), beta (), delta (8), and
omega (). Based upon the social hierarchy, ® wolves are
the lowest among others and they are preceded by 6, p, and
a. To mathematize the mechanism of GWO, a population
of wolves is expressed as a set of random solutions. The
fitness value of this set of solutions is then calculated and
assessed by applying a predefined objective function (Xu
et al. 2020). After that, the wolves’ populations are divided
into the four previously stated classes based on the computed
fitness value. When the optimization takes place, the three
most optimal wolves: a, B, and &, would eventually guide
the other o wolves toward the prey that acts as the global
solution in the search space. This procedure is carried out
via the iterative update of the positions of the wolves as
shown below:

D = [CX,0 - X a3
Xit+1) = |Xi(t) —KA_D') 14
A=2ar -3 15
C=15; (16)

where t means the current iteration step, X implies the posi-
tion of a grey wolf, fp' is the position of the prey, @ is nor-
mally lowered from 2 to 0. Also, 1; and T, are the random
vectors between 0 and 1. In GWO, the position of the prey
(the global optimal solution) is not exactly known. Hence, it
is assumed that the positions of a, f, and § are considered as
the optima. Then, the other » wolves re-calibrate their posi-
tions with respect to those of a, 3, and § as follows:

D, = [T/ X0 - X0 (17)
Dy = [ X0 - X0 (18)
D; = [ X0 - X0 (19)

where Z(t) corresponds to the position of o wolves at step
t, Yﬁ(t) is the position of p wolves at step t, and X—S(l) rep-
resents the position vector of & wolves at iteration t. o, B,
and & wolves will then update their positions at iteration
t+ 1 based on Egs. (20), (21), and (22). The position of the
solution at step t+ 1 is thereafter determined based upon
Eq. (23).

X, =X, -4, D, 20)
X; = [X;0 - 4,0y @
X; = [X;0 - A, D5 22)
X(t+l)=—'+§+—z (23)

These steps are repeated until the stopping condition is
met. During the optimization process, 15 populations of grey
wolves were initially generated, and 100 iterations were run.

Results
Case study 1: 2D reservoir model

We first illustrate the development of a data-driven proxy
model of a 2D heterogeneous and 2-phase (water and black
oil) reservoir model. The heterogeneity only applies to the
permeability in this case study. Besides that, the horizontal
permeabilities in both x and y directions are assumed to be
the same whereas the vertical permeability is set to be 10
times smaller. Also, homogeneity applies to porosity and it
is assumed to be 0.4. Regarding the size of the grid blocks,
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Fig.4 The overview of the 2D reservoir model. The color bar indi-
cates the values of horizontal permeability in x-direction in the units
of millidarcy (mD)

itis 10 mx 10 mx 10 m and the total number of grid blocks
is 40x 40 x 1. Therefore, the dimension of the whole model
is 400 mx 400 mx 10 m. Its top is at the depth of 1500 m.
Pertaining to the configuration of well, there are only two
wells being drilled, namely one horizontal injector and one
horizontal producer. The injector is drilled at the left edge
whereas the producer is placed at the right edge. The 2D res-
ervoir model is illustrated in Fig. 4. As briefly discussed, the
performance of the injector is controlled by the rate within
the range of 40 m*/day and 100 m*/day whereas the producer
is controlled by the BHP with the lower limit of 180 bar.
Regarding the perforation in the x-direction, the injector is
perforated at the 1* grid block whereas the producer is per-
forated at the 40th grid block. However, for y-direction, both
wells are completed at 1st, 5th, ..., 35th, 40th grid blocks.
Permeabilities of these grid blocks (constituting 18 variables
in total) are directly retrieved and used as the input param-
eter for neural network training. The numerical simulation
is performed using ECLIPSE 100 software Schlumberger.
After running the required numerical reservoir simula-
tions and extracting the input and output data, the neural
network training was correspondingly performed on the
data-driven proxies of field liquid rate and field water cut
by using the specification listed in Table 2. Based on Eq. (3)
and Table 2, there are 23 input parameters applied to train
the proxies. The performances of training, validation, and
testing of both proxies are evaluated by using the coefficient
of determination, R%, and shown in Table 4. Besides that,
for the blind validation phase, the proximity of the actual
and targeted outputs is assessed by applying 80 injection
schedules. Thereafter, the mean of the respective coefficient
of determination is calculated for each proxy and tabulated
in Table 5. For illustration purpose, only the result for a
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Table4 R? of training, validation, and testing results of the data-
driven proxies

Dataset Field liquid production rate Field water cut
Training 0.9999 0.9999
Validation 0.9999 0.9999
Testing 0.9999 0.9999

Table 5 Mean R? of blind validation of proxies based on different
sampling techniques

Sampling methods Field liquid production rate  Field water cut

LHS 0.9999 0.9995
SSS 0.9999 0.9995
HSS 0.9999 0.9995

randomly selected injection schedule of blind validation
(out of 80) is demonstrated for each sampling method. In
this case, the comparison between the actual and the pre-
dicted field liquid production rates (also field water cuts) is,
respectively, plotted as shown in Fig. 5 for LHS, in Fig. 6
for SSS, and in Fig. 7 for HSS. According to these results,
it is inferred that these proxy models are ready for practical
application.

In this aspect, we defined the economic parameters as
depicted in Table 6 to be used in the optimization process.
As mentioned earlier, PSO and GWO would be employed
to conduct the optimization of NPV. The optimized controls
of field water injection rates are, respectively, illustrated in
Fig. 8 for PSO and in Fig. 9 for GWO. Pertaining to this,
the resulted optimal NPV of three different scenarios is
demonstrated in Table 7 in which Scenario 1 represents the
optimization by only using the reservoir simulator (NPV ),
Scenario 2 denotes the optimal NPV obtained by feeding the
proxy-optimized control into the simulator (NPV g, oo 0),
and Scenario 3 means the optimization by only using the
proxies (NPV ). Pertaining to the optimal NPVs yielded
from three different scenarios, it can be noted that the data-
driven proxies have in general overestimated the optimal
NPV for both algorithms, However, the absolute percentage
error between NPV .. and either NPV ., or NPV
is miniscule.

For PSO, the absolute percentage error between NPV,
and NPV, is around 0.14%. This shows that when the
data-driven proxies are coupled with PSO, they can yield
reasonable results to approximate the NPV calculated with
the results from simulator. Furthermore, to understand
whether the proxies produce accurate results for the calcu-
lation of NPV, the absolute percentage error between NPV ; |
and NPV, 0. is found out to be about 0.13%. Addition-
ally, the absolute percentage error between NPV, nd

sim-proxy

sim-proxy al
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Fig.5 Results of blind valida-

tion of data-driven proxies of 100 1
LHS sample set 11 (out of 80).
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NPV .o, is 0.27%. This proves the reliability of the devel-
oped proxies. Thereafter, for GWO, the absolute percent-
age error between NPV, and NPV .. is 0.34% while it
is 0.40% between NPV, and NPV, ... Also, the abso-
lute percentage error between NPV, o and NPV, s
0.74%. Despite the higher accuracy of optimization results
portrayed by PSO, it can be noted that GWO generally per-

forms better than PSO in the context of optimization in this

1000 1500 2000 2500 3000
Days

(b)

case study. To further demonstrate the high proximity of the
data-driven models, the plots of PSO-optimized and GWO-
optimized field water production rates of Scenario 2 against
Scenario 3 are correspondingly illustrated in Figs. 10 and
11. R? obtained for Fig. 10 is 0.9998 whereas that of Fig. 11
is 0.9989. The similar plots for field oil production rates are
presented for PSO in Fig. 12 and GWO in Fig. 13 Then, the
values of R* calculated for Figs. 12 and 13 are 0.9999.
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Fig.6 Results of blind valida-
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Case study 2: 3D reservoir model (Egg Model)

To further demonstrate the methodology of proxy modeling
proposed in this paper, we present the use of a more sophis-
ticated reservoir model as another case study. The model
was initiated by Jansen et al. (2014) and termed as “Egg
Model.” It was employed as case study in several papers

jallase Cllal &y .
fuc;rlaianlq mﬁ @ Springer
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Days

(b)

(Van Essen et al. 2009; Hong et al. 2017). In general, it
is considered as a channelized depositional model where
the heterogeneity only pertains to permeability. However,
porosity is homogeneous and set to be 0.2. Besides that,
the initial water saturation is 0.1 and it applies to all grid
blocks. The size of the grid blocks is 8 mX 8 mx4 m and
the total number of grid blocks is 60 x 60 x 7. However, the
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Fig.7 Results of blind valida-
tion of data-driven proxies of
HSS sample set 69 (out of 80).
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total number of active grid blocks is 18533. The horizon-
tal permeability map of Egg Model is illustrated in Fig. 14.
The details of the geological properties of this model can be
found in Jansen et al. (2014). Besides that, the model com-
prises eight vertical injectors and four vertical producers.
The only modification done on the Egg Model to fulfill the
need of the analysis here is changing the control of injectors.
Since there are eight injectors and each of them is controlled

by the rate within the range of 40 m®/day and 100 m*/day,
the field injection rates are altered between 320 m*/day and
800 m*/day. Regarding the four producers, each of them is
controlled by the BHP with the lower limit of 395 bar.
About the completion, all the wells are perforated in
seven layers. If we apply the formulation presented in the
case study of 2D reservoir model to include the grid block
permeability as the input variables, then this will result in 84
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Fig.8 Optimized control
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implementation of PSO 90 1
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variables of Kiyjecior and Kprgycer- Thus, for practical purpose
of eluding the curse of dimensionality, we determined the
arithmetic mean of the permeability of the perforated grid

Table 6 Economics parameters used for NPV calculation

Variables Values Units blocks for each well. This could reduce the number of per-

Oil price, P, 314.50 USD/m’® meability variables from 84 to 12. Given there are 7 layers in

Cost of produced water, C,, 37.50 USD/m? this Egg Model, there will be a total of 14 variables of k and

Cost of injected water, C,; 37.50 USD/m?3 kgp. According to Eq. (3), there are 29 input variables to be

Discount rate 0.10 per year included to train the neural network. By employing the same
%ﬁsﬁ;ﬁ @ Springer
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Table7 Optimization results

. Optimization Algorithm Scenario 1 Scenario 2 Scenario 3
of three scenarios for PSO and
GWO GWO PSO GWO PSO GWO PSO
NPV i (million USD) 16.52 16.26 16.46 16.24 16.58 16.29

Fig. 10 Plot of PSO-optimized =
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methodology as explained earlier and the specifications pre-  Performance metrics of training, validation, and testing of
sented in Table 3, the neural network training is conducted.  the proxies of the Egg Model are presented in Table 8. Also,
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Fig. 12 Plot of PSO-optimized
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the mean of the corresponding coefficient of determination is
computed for each proxy and shown in Table 9. For illustra-
tion purpose, like Figs. 5, 6, and 7, the graphs of the com-
parison between the actual and the predicted field liquid pro-
duction rates (also field water cut) are shown in Fig. 15 for
LHS, in Fig. 16 for SSS, and in Fig. 17 for HSS. To perform
the optimization of NPV, different economic parameters, as
shown in Table 10, are used because using the parameters in
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Table 6 will result in a mathematically trivial solution in this
case study. Table 11 illustrates the results of optimization
of the three scenarios. The optimized controls of field water
injection rates are shown in Fig. 18 for PSO and in Fig. 19
for GWO. In this case study, the overestimation of NPV by
the data-driven proxies for both algorithms is also noticed.
Nevertheless, this overestimation is practically infinitesimal
in which the application of these proxies is still feasible.
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Cell Results:
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Fig. 14 The overview of the 3D Egg Model. The color bar indicates
the values of horizontal permeability in x-direction in the units of
millidarcy (mD)

Table8 R? of training, validation, and testing results of the data-
driven proxies

Dataset Field liquid production rate Field water cut
Training 0.9999 0.9999
Validation 0.9999 0.9999
Testing 0.9999 0.9999

Table9 Mean R? of blind validation of proxies based on different
sampling techniques

Sampling methods Field liquid production rate  Field water cut

LHS 0.9999 0.9992
SSS 0.9999 0.9990
HSS 0.9999 0.9990

During the optimization using PSO, the absolute percent-
age error between NPV, and NPV, is approximately
2.43%. Given the higher complexity of the Egg Model, the
results produced are within satisfactory level of accuracy
to approximate the NPV .. Also, the absolute percentage
error between NPV, and NPV, ... which is determined
to be about 0.68%, portrays a higher confidence in the use-
fulness of the results obtained by the proxies. Besides that,
the absolute percentage error between NPV, ... and
NPV, xy is 3.13%. It can be inferred that the proxies of Egg
Model are deemed reliable as well. For the case of GWO,
the absolute percentage error between NPV, and NPV roxy
is 2.72% while it is 1.81% between NPV, and NPV g, ooy
Also, the absolute percentage error between NPV, .. and
NPV oy 15 4.62%. In this case study, GWO can achieve
a higher accuracy of optimization than PSO. In addition,
GWO generally outperforms PSO in terms of optimization,

except for Scenario 2. The high proximity of these data-
driven models is also captured through the demonstration of
the plots of PSO-optimized field water production rates of
Scenario 2 against Scenario 3 in Fig. 20 and those for GWO
in Fig. 21. R? computed for Fig. 20 is 0.9986 whereas that of
Fig. 21 is 0.9978. The similar plots for field oil production
rates are also shown for PSO in Fig. 22 and GWO in Fig. 23.
Then, R? determined for Fig. 22 i5 0.9991 whereas that of
Fig. 23 is 0.9981.

To demonstrate the accuracy and robustness of the
approaches proposed in this study, the plots of field water
(and oil) production rates under Scenario 2 against those
under an unoptimized scheme are provided. To elude any
confusion, the optimized rates used to produce these plots
are derived from simulator. The unoptimized scheme, which
is also known as “base case,” comprises a constant field
injection rate of 560 m3/day over the whole production
period. The corresponding NPV of base case is determined
to be 152.57 million USD. Refer to Table 11 for the NPVs
of the optimized cases (Scenario 2). Figure 24 illustrates the
plot of PSO-optimized field water production rates (Scenario
2) against that of base case whereas Fig. 25 portrays the
similar plot for field oil production rates. For GWO method,
the plots for field water and oil production rates are, respec-
tively, shown in Figs. 26 and 27. According to these four
figures, we can fairly deduce that the optimization schemes
have been performed practically well in the case study of
Egg Model.

Discussion

About the results of NPV optimization in Tables 7 and 11, it
is observed that in all three scenarios for both case studies,
GWO reached a higher optimal NPV than PSO, except for
Scenario 2 in Egg Model. This shows that GWO generally
outperforms PSO to yield better optimization results based
upon the analysis conducted in this paper. Despite this, the
underperformance of GWO in Scenario 2 of Egg Model can
be due to the lack of efficiency in the sampling of data for the
neural network training. This means that the data sampled
might not be efficiently extensive to cover the solution space
of optimization induced by GWO. Nonetheless, based on
the results presented, the data-driven proxies are still able to
practically serve their objective when coupled with GWO.
The sampling strategy used in this paper is deemed straight-
forward and still has room for improvement. This domain is
not emphasized much as it is not the focus of our study here.
In this aspect, the efficient sampling algorithm initiated by
Dige and Diwekar (2018) can be taken into account as future
work to enhance the sampling strategy in this paper.

There are a few limitations about the data-driven prox-
ies developed in this paper. One of them pertains to the
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Fig. 15 Results of blind valida-
tion of data-driven proxies of
LHS sample set 11 (out of 80).
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applicability of the models. As discussed in several litera-
tures (Mohaghegh 2011, 2017a, 2017b; Ng et al. 2021), the
data-driven model is only relevant to the reservoir model
being studied. This denotes that it cannot be implemented
as the substitute for another reservoir. In addition, the devel-
oped proxy models are only able to capture the physics of the
reservoir system that is represented by the spatiotemporal
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b 4455 61 Springer
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(b)

database. For instance, if the proxy is established for a reser-
voir model that is waterflooded, then it cannot be employed
for the analysis of other enhanced oil recovery (EOR) meth-
ods, such as CO, injection and water-alternating-gas (WAG).
The elimination of the control switch problem is considered
as another limitation. This means that the reservoir simula-
tion system is designed in a way that for the injectors, the
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control will not switch from injection rates to BHP during
the optimization process. The similar condition also applies
to the producers (but BHP is the control for producers).
Moreover, for the case study of Egg Model, the well rate is
determined by equally dividing the field rate by the number
of wells. This implies that the optimization problem pre-
sented here is slightly simplified for illustration purpose.

The aspect of computational cost is the catalyst for the
rapid development of the proxy models. As discussed earlier,
NRS can induce high computational footprints especially
when the reservoir model is geologically very sophisti-
cated. Therefore, applying proxy models for further analy-
sis is undeniably time saving. To further demonstrate this
advantage, we compare the computation time required by
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Fig. 17 Results of blind valida-
tion of data-driven proxies of
HSS sample set 69 (out of 80).
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performing the optimization on both reservoir and proxy
models. It was conducted on a PC which has the specifi-
Parameters Values Units cation of Intel® Core™ i9-9900 CPU @3.10 GHz with
64.0 GB RAM. In this context, the time used by both PSO

Table 10 Economics parameters used for NPV calculation

Oil price, P, 440.30 USD/m’? .

c ': lf Huced water. C 1,58 M and GWO are very close. For the 2D reservoir model, the
0st of produced walter, . . m” .. . . . .
Cost fp ccted water. C N 1258 USD/m’® optimization took about 3 h whereas its respective proxies

Ost ol Injected water, L, = m g . ~ . . . .
Di 1J ) ! 0.10 P utilized about 1 h and 40 min to finish the optimization.
iscount rate . er year

Therefore, it is seen that the proxy models were able to save
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Table 11 Optimization results

i Optimization algorithm Scenario 1 Scenario 2 Scenario 3
of three scenarios for PSO and
GWO GWO PSO GWO PSO GWO PSO
NPV i (million USD) 157.14 155.78 154.29 154.73 161.42 159.57
Fig. 18 Optimized control 800 4
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about 50% of the whole computational time. More intrigu-
ingly, this advantage is more obvious for the case study of
Egg Model. When applying the optimization algorithm on

113
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the Egg Model, it took about 13 h to run the optimization.
However, the corresponding proxies only needed 2 h to do
s0. This illustrates that the data-driven proxies were 6 times
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faster than the initial Egg Model in terms of optimization
time.

There is also an important concern about the number
of reservoir simulations required for building the proxy
models. Some literatures (Mohaghegh 2011; He et al.
2016; Vida et al. 2019; Shahkarami and Mohaghegh
2020) suggested a rule of thumb that 10 to 15 simulations
could be sufficient for the development of robust proxy
models. Nonetheless, Nait Amar et al. (2018) had run 75

pjellae Clial &y .
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simulations to generate the necessary database to develop
the proxy models. Moreover, Golzari et al. (2015) even
performed 200 simulations to build the data-driven models.
Therefore, there is no strict rule of how many simulations
are exactly needed to establish the spatiotemporal database.
It is widely dependent upon the purpose of application of
the data-driven models. Also, the bigger the database,
the more accurate the data-driven model can be. Despite
this, we need to understand that there is always a trade-off
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between the size of the database and the computational
time. When the database is humongous, it means that the
neural network training might take longer time to complete.
This challenge is termed as the curse of dimensionality. In
this paper, we empirically selected to run 60 simulations as
explained to establish our spatiotemporal database. Upon
building the proxies, we performed blind validation with
80 new data samples as discussed. Based on the results

shown, it can be deduced that this database was deemed
to be practically sufficient to yield useful proxies. As pre-
sented in other literatures (Nait Amar et al. 2018; Amini
and Mohaghegh 2019; Shahkarami and Mohaghegh 2020),
the number of blind validation cases usually is about 10 or
even less. In our work, we presented 80 blind validation
cases to further demonstrate the higher feasibility of practi-
cal application of our data-driven proxies.
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Conclusions

In this work, we implemented ML technique to build
dynamic proxy models and conduct the optimization of
well control rates on two waterflooding case studies, i.e., a
2D synthetic reservoir model and the 3D Egg Model. The
main objective was to achieve the maximization of NPV by
determining the optimal control rate with the help of two
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metaheuristic algorithms, which include PSO and GWO. In
order to do that, for each case study, we maneuvered the
modeling of ANN to build two proxy models in which one
could predict the field liquid production rates at a certain
time, and another could forecast the field water cut. Thereaf-
ter, we successfully coupled these models with the optimiza-
tion algorithms to perform the waterflooding optimization.
Based upon our investigation, GWO generally outperformed

116



Journal of Petroleum Exploration and Production Technology (2021) 11:3103-3127 3125

Fig. 26 Plot of GWO-optimized
field water production rates
(Scenario 2) and those of unop-
timized case
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PSO in the context of optimization. However, the accuracy
of results (prediction of optimized field liquid production
rates and field water cut) was slightly higher when the prox-
ies were coupled with PSO. This could be due to the sam-
pling strategy applied in this study. Nonetheless, we con-
clude that the data-driven proxies have successfully served
their purpose of application. Also, the results derived from
this study verify the validity of the methodology presented
in data-driven proxy modeling.
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In petroleum domain, optimizing hydrocarbon production is essential because it does not only ensure the
economic prospects of the petroleum companies, but also fulfills the increasing global demand of energy.
However, applying numerical reservoir simulation (NRS) to optimize production can induce high
computational footprint. Proxy models are suggested to alleviate this challenge because they are
computationally less demanding and able to yield reasonably accurate results. In this paper, we
demonstrated how a machine learning technique, namely long short-term memory (LSTM), was applied
to develop proxies of a 3D reservoir model. Sampling techniques were employed to create numerous
simulation cases which served as the training database to establish the proxies. Upon blind validating the
trained proxies, we coupled these proxies with particle swarm optimization to conduct production
optimization. Both training and blind validation results illustrated that the proxies had been excellently
developed with coefficient of determination, R? of 0.99. We also compared the optimization results
produced by NRS and the proxies. The comparison recorded a good level of accuracy that was within 3%
error. The proxies were also computationally 3 times faster than NRS. Hence, the proxies have served

their practical purposes in this study.
© 2022 Southwest Petroleum University. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/[4.0/).

1. Introduction

for energy, but also to ensure their higher economic returns. One of
the approaches of increased production is to perform waterflooding

In petroleum industry, reservoir management (RM) is one of the
domains that has been emphasized by many oil and gas companies.
According to Wiggins and Startzman [1], RM is termed as the
employment of available technology, financial and labor resources
to optimize the economic performance and recovery of a reservoir.
They [1] further expounded that RM could be fathomed as a
sequence of operations from its initial discovery of a reservoir to its
final abandonment. In this case, production optimization is one of
the pivotal parts in RM. Oil and gas companies attempt to optimize
hydrocarbon production not only to fulfill the increasing demand

* Corresponding author.
E-mail address: cuthberts.wng@ntnuno (CS.W. Ng).
Peer review under responsibility of Southwest Petroleum University.

FLSEVIER Production and Hosting by Elsevier on behalf of KeAi

https://doi.org/10.1016/j.petlm.2021.12.008

or water injection. Waterflooding is generally implemented to
produce additional volume of hydrocarbon after primary recovery
which relies upon natural mechanisms such as gas cap drive and
gravitational drainage [2]. Additionally, careful planning and
implementation of waterflooding are important to avoid any un-
necessary expenditure during the implementation phase. Hence,
waterflooding optimization has been emphasized in the research
field [3—7] for years to help the oil and gas companies to improve
their application of this technique.

To be more precise, waterflooding optimization is considered
as one of the engineering problems that requires some mathe-
matical algorithms to come up with some design parameters,
which either maximize or minimize any predefined objective
function [2,8]. Regarding this, these design parameters include
well production rates, well injection rates, bottomhole pressure of
well, initiation time of waterflooding, and so forth. More
intriguingly, waterflooding problem can also be formulated into a
multi-objective problem in which more than one objective

2405-6561/© 2022 Southwest Petroleum University. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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function is optimized [9—11]. This formulation provides more
useful insights to the chemical or petroleum engineers as it has
closer proximity to the real-life problem. Additionally, numerical
reservoir simulation {NRS} is one of the most widely applied tools
of reservoir modeling during the field development stage. NRS can
be conveniently employed along with other algorithms to solve
any problem related to production optimization. However, one of
its drawbacks is that more computational effort is required if it is
used to model a geologically sophisticated reserveir [12,13]. This is
because NRS uses mathematical equations and physics-based
approach to model the flow of fluid in the subsurface. Thus, the
computational time of the fluid flow modeling undeniably in-
creases as the complexity of the reservoir modeled increases.
Mitigating this computational challenge has been one of the most
prevalent research topics.

Thanks to data-driven technology, the computational challenge
can be alleviated. Data-driven technology is a framework that ap-
plies any input and output data provided to establish a relationship
among them [13]. A model that is yielded from this technology is
known as “data-driven model”. In this aspect, the main building
block of this technology is data. More importantly, machine
learning (ML) is one of the techniques used for data-driven
medeling. Examples of ML generally include artificial neural
network, suppert vector machine, random forest, extreme gradient
boosting, and so on. In addition, data-driven model has displayed
its ability to be used as a proxy or surrogate model of NRS.
Regarding this, a proxy or surrogate model in general acts as a
substitute of NRS and is computationally faster and able to replicate
the results of NRS within satisfied level of accuracy. In this context,
Dr. Shahab Mohaghegh is one of the pioneers in the petroleum
industry to have coined the term of smart proxy model (SPM}. SPM
is a proxy model that comprises an ensemble of numerous inter-
linked neuro-fuzzy systems, which are trained to understand the
fluid flow behaviors from NRS [13,14]. SPM has been demonstrated
to be successful in different fields of application, induding uncer-
tainty analysis [15,16], CO; sequestration and utilization [17,18],
history matching [19,20], waterflooding [21], and unconventional
resources [22,23]. Apart from these, there are other captivating
literatures [24—33] discussing the use of ML-based models in the
petroleum domains. These literatures in general also elaborated on
the high applicability of ML techniques to be employed as a sub-
stitute of NRS. Nevertheless, one of the limitations of ML-based
proxy modeling is the sufficiency of data. This is because the
established ML-based model might not be able to “learn properly”
without being supplied with sufficient data. However, when it is
provided with too much data, this might undermine the signifi-
cance of proxy modeling as a lot of simulation runs have to be
performed.

Other than being used as proxy models, ML techniques have
portrayed their value in the develepment of predictive models. In
this case, Talebkeikhah et al. [34] successfully implemented seven
ML methods, based on 1000 experimental points from some Ira-
nian crude samples, to develop the predictive models of viscosity
at reservoir conditions. These methods include radial basis func-
tion neural network, multilayer perceptron, support vector
regression, adaptive neuro-fuzzy inference system, decision trees,
and random forest. Besides that, Nait Amar et al. [35] illustrated
how the best two out of various developed ML-based models were
chosen and combined under the paradigm of committee machine
intelligent system (CMIS) to develop a model that could forecast
thermal conductivity of carbon dioxide. They further showed the
use of weight average approach and group method of data
handling (GDMH) to establish the CMIS models. A similar
approach was employed and discussed by Mehrjoo et al. [36] to
create a predictive model of interfacial tension of methane-brine
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systems at high pressure and salinity conditions. Also, based on
1985 experimental points, Nait Amar et al. [37] successfully
applied gene expression programming to perform the modeling of
density of binary and tertiary mixtures of ionic liquids and mo-
lecular solvents.

In this work, we have used an advanced ML technique that is
long short-term memory {LSTM) to build two proxy medels, which
are correspondingly applied to predict field liguid production rate
(FLPR) and field water cut (FWCT). It is essential to point out that
the proxy moedels built here are considered as “dynamic proxies”,
which are time-dependent. As Nait Amar et al. [24] stated, time-
dependent proxies offer higher flexibility in terms of application
under time-dependent constraints. As the two abovementioned
dynamic proxies were developed, they were coupled with particle
swarm optimization (PSO) to conduct the waterflooding optimi-
zation. The details would be presented in the next few sections.
After this introduction, the paper is followed by the theoretical
framework that generally briefs the techniques involved and the
general methodology used in this work. Thereafter, results and
discussion about the main findings of this work are presented. The
paper then ends with some conclusive remarks derived from this
work.

2. Theoretical framework
2.1. Long short-term memory (LSTM)

LSTM is a more advanced version of recurrent neural network
(RNN) that is developed to process sequential data, such as texts,
sentences, and so on [38]. A simple RNN is generally designed to
preserve and deliver information from the current step to the next
one [38]. However, a simple RNN suffers the problem of vanishing
gradient in which a long-term information cannot be fully utilized
[39]. Thus, large amount of previous information is unable to be
stored to perform forecast within higher level of accuracy. To elude
the problem of vanishing gradient, Hochreiter and Schmidhuber
[39] built the LSTM in 1997. The fundamental topology of the LSTM
used in this study is demonstrated in Fig. 1. The mathematical
formulation of LSTM is shown below:

fi=0 (fot + Ughe_g + bf) (1)
it = o (Wixe + Uhg 1 + by (2)
& = v (Wext + Uch_q + bo) (3)
¢ =frxcq+ It x & (4)
or = 0 (WoXt + Uohy_1 + bo) )
he = o x ¥ (o) (6)

The mechanism of LSTM revolves around a cell state c.. Around
the cell state, information is either added or removed via three
gates, for instance forget gate f;, input gate i;, and output gate o
These gates evaluate if the sequential input data should be retained
to save pertinent information to the latter stages. Thereafter, ac-
cording to Equation (1), the forget gate decides on the addition or
omission of information. Regarding this, the information in terms of
input and hidden state will be saved (removed) if f; is close to cne
(zero). Besides that, the input gate is calculated to update the cell
state. Via this update, the evaluation of the importance of the input
delivered to the next cell is done. Furthermore, the output gate
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LST™M LST™M LSTM

(b)

Fig. 1. Architecture of Long short-term memory (LSTM}: (a) general topology of LSTM.
(b) detailed structure of LSTM.

computes the output for the hidden states based on equation (6). It
can be noticed that the activation function and the recurrent acti-
vation function used in LSTM are respectively hyperbolic tangent
function (indicated as tanh) and sigmoid function (denoted as o).

2.2. Particle swarm optimization (PSO)

In 1995, Kennedy and Eberhart [40] established an optimization
algorithm which was known as PSO. In this case, PSO is considered
as an example of nature-inspired algorithms because it is formu-
lated by simulating the behavior of flying stock of birds. Mathe-
matically speaking, a swarm of particles indicates several possible
solutions to an optimization problem. The status of each particle is
computed according to its position and velocity. In this context, the
dimension of both position and velocity is the same as the number
of optimization parameters. In general, the algorithm commences
through the random initialization of the position and velocity of
each particle. A cost function, like mean squared error (MSE), is
then employed to determine the fitness of each particle. After that,
pbest and gbest are computed and saved to update the velocity at
current iteration based on equation (7). In this context, pbest and
gbest are found out for every iteration. pbest is the best position of a
particle in the dimensional space and gbest is the overall best po-
sition of a particle hitherto in the whole swarm. Upon determining
the velocity at next iteration, the position of a particle for the next
iteration is updated as captured by equation (8). After a predefined
number of iterations, each particle updates its position by mini-
mizing the fitness value until the convergence of the optimal po-
sition occurs.
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Vi, t41 = Wik ¢ + C171 (PbESfjk,r — Xk, t)

+ G (gbeka,t - Xjk, t) (7)

(8)

In equation (7), vy, , corresponds to the velocity of the jth par-
ticle at step t in kth dimension. x;, . is its respective position. ¢y and
cy correspondingly represent the cognitive and social learning
factors that regulate the local and global search of the optimal so-
lution. These parameters are selected by trial-and-error approach.
rq and ry are random numbers extracted from uniform distribution
of (0, 1). w is inertial weight that was suggested by Shi and Eberhart
[41] to better handle the convergence issue.

Apart from PSO, we would like to reiterate that there are several
other metaheuristic algorithms that can be employed to perform
modeling and optimization tasks. Examples of these algorithms
[42] include, but are not limited to, genetic algorithm, differential
evolution, simulated annealing, and ant colony optimization. In this
aspect, PSO has been selected due to its computational efficiency
and perceivable concept as being briefed in the literature [43]. Also,
it has exhibited good results in some of our previous works
[29,31,44].

Xik, t41 = Xjk ¢t T Vik, 141

2.3. Formulation of optimization problem and dynamic proxy

One of the most important perceptions about developing a
proxy model is that it is an objective-oriented task. This implies
that the background of the optimization problem must be clearly
understood to provide better insights of proxy modeling. By
perceiving the optimization problem, the modelers would know
what variables or design parameters should be involved in creating
the relevant proxies. Hence, formulation of optimization problem is
indeed necessary in the development of proxies. In this work, the
selected objective function is net present value (NPV), and it is
mathematically shown in equation (9).

> (Qia)Ps — Qi (wPw — QL WP ) x At

NPV(w) = (1 + interest rate)t/D

9)

i=1

where u is the vector of optimization parameters, Q! is the field
production (injection) rate at timestep i and P represents price or
cost. The subscripts of o, w, and wi respectively indicate oil, water,
and water injected. In this work, P, is 70 USD/bbl whereas both Py
and Py, are 2 USD/bbl. Also, the optimization parameter used here
is the field injection rate. Therefore, the optimization problem
pertains to the adjustment of field water injection rate per 150 days
for the period of 3000 days. Moreover, At; is the difference of time
between current and previous timestep. Besides that, t; is the
elapsed time from beginning until step i and D is the reference time
for discounting. D is 365 days as interest rate has a unit of fraction
per year and discounting of cash flow is done daily. The interest rate
used here is 0.1 per year.

It is noticeable that the dynamic proxies developed here need to
yield two parameters, which are field oil and water production
rates (FOPR and FWPR). Therefore, by implementing LSTM method,
we built two different dynamic proxy models, which respectively
predict FLPR and FWCT at a specific timestep. Moreover, the input
parameters are the number of days at every timestep i, t;; the
harmonic mean of grid absolute permeability for every layer of
formation, Knarmonic; the standard deviation of grid absolute
permeability for each formation layer, Kstq pey; the permeabilities of
completed grid blocks (injectors and producers), K(inj,prod); the field
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water injection rate, u; the output value at previous timestep, yi-1.
The mathematical formulation of the proxies' is illustrated in
equation (10). The harmonic mean of permeability for every for-
mation layer is given by equation (11).

Vi= f <tia kharmonicv l(Std Dev: k{inj, prod}» u, yi—l) (10)
P ¥

Kharmonic = =2 (11)
m L
SR

where L; represents the depth at the top of grid block j, k; refers to
the grid absolute permeability, and m denotes the number of grid
blocks. Regarding the inputs of the permeabilities of completed grid
blocks (injectors and producers), the reservoir model studied here
is the “egg model” that was developed by Jansen et al. [45]. There
are 7 layers in the reservoir model with 8 injectors and 4 producers.
To avoid the curse of dimensionality, the arithmetic mean of the
permeability of the completed grid blocks for every well is calcu-
lated and this will yield 12 permeability variables. There are also 14
variables of Knarmonic and Kkstd pev given egg model has 7 layers. In
total, there are 29 input variables used to train the dynamic proxies.

About the geological properties of egg model, its permeability is
heterogeneous whereas its porosity is homogeneous with a value of
0.2. The initial water saturation for each grid block is 0.1. The
dimension of each block is 8 m x 8 m x 4 m with a total number of
60 x 60 x 7 (only 18533 grid blocks are active). The horizontal
permeability distribution of egg model is illustrated in Fig. 2. Refer
to Jansen et al. [45] for the remaining details of the geological
properties of this model. To be able to conduct the studies here, the
control of both injectors and producers has been altered. In this
aspect, the eight injectors are identical, and the rate is within the
range of 40 m3/day and 100 m?3/day. Hence, the optimization
problem considering the constraint is summarized as shown
below:

maxNPV (FWIR)
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Cell results:
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Fig. 2. Permeability distribution of egg model.

For illustrative purposes, the summary of the database is pre-
sented in Table 1. It is essential to highlight that the statistical pa-
rameters provided in Table 1 are determined “categorically”. For
instance, for the variable of knarmonic, the maximum and minimum
values are determined by finding the highest and lowest values of
all the 7 variables of Knarmonic (knowing that there are 7 layers). By
following this logic, the pertinent mean and standard deviation are
computed.

Then, when the database is ready, it is normalized between
0 and 1 “categorically” using the following formula:

Xn — Xmin

Xmax — Xmin

(13)

normalized —

where X;ormatized implies the normalized value of X, whereas Xmax
and X, correspondingly represent the maximum and minimum
values of X. Then, the database was divided into training set (80% of
the points), validation (10% of the data), and testing sets (the
remaining 10%). Validation set is employed to prevent any over-
fitting issue during training whereas testing set is used to evaluate

subject to{ 320 Smg/day < Field Water Injection Rate < 800 Sm3/day (12)

Bottomhole Pressure of Each Producer > 395 bar

24. Data preparation, neural network training, and blind
validation procedure

After completing the formulation of optimization problem
and dynamic proxy modeling, we have a clearer idea of input
and output variable types. Thereafter, we employ the method-
ology discussed and used in Ref. [31] to conduct the proxy
modeling. With respect to this, a database needs to be generated
and formatted that can be used to train the dynamic proxies. To
create this database, we generate 60 different injection sched-
ules by employing three sampling techniques, such as Latin
Hypercube Sampling [46], Hammersley Sequence Sampling [47],
and Sobol Sequence Sampling [48]. Each technique constitutes
20 schedules. Thereafter, each of the schedules is fed into the
reservoir simulator to provide the necessary information to
build the database.

! The permeability refers only to the horizontal permeability, here. Also, the
permeability in both x- and y-directions are the same.

the predictability of the model prior to proceeding to blind vali-
dation phase. If excellent performance is illustrated during training,
validation, and testing stages, then we would proceed to generate
the database of blind validation. In this case, we reapply each of the
three abovementioned sampling methods to respectively create
additional 80 injection scenarios. Thereafter, we evaluate if the
prediction performance of the dynamic proxies is within satisfied
level of accuracy. Upon finishing the blind validation phase, the
proxies are prepared for application. In this paper, we have utilized
two statistical metrics to evaluate the training and prediction per-
formance of the models, namely coefficient of determination and
root mean squared error. The formula of each metrics is corre-
spondingly displayed as Equations (14) and (15).

SN2
n TOX)
1- Ei:] (YF V- YiS‘m)

R®=
SHCER

(14)
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Table 1
Summary of database.

Petroleum 9 (2023) 53—60

Types of data Number of data points Maximum value Minimum value Mean value Standard deviation
Static data
5] 1 x 6000 3000 30 1515 865.98
Kharmonic 7 x 6000 632.21 593.84 616.18 15.29
Ksed Dey 7 x 6000 145826 660.57 101098 262.06
Kinj 8 x 6000 1890.14 333.03 783.62 47159
kprod 4 x 6000 3759.54 36141 1332.09 140451
Dynamic data
u 1 x 6000 800 320 559.76 13851
yi-1 and y; (FLPR) 2 x 6000 800.04 0 556.82 143.66
yi1 and y; (FWCT) 2 x 6000 1 0 0.710 0.319
Table 2
n <YPme B Y_Sim) 2 Training, validation, and testing performances of the dynamic proxies.
RMSE — it N SR S A (15) LSTM-FLPR LSTM-FWCT
n Training R? 0.9999 0.9999
YR . . RMSE 0.2447 0.0021
where Y; indicates the output value, the super‘scrlpts proxy and sim Validation R 0.9999 0.9999
represent the proxy model and reservoir simulator model, RMSE 0.2565 0.0020
respectively, Y is the mean value of the output, and n is the number Testing R 09999 0.9999
RMSE 0.2361 0.0016

of data points.

3. Results and discussion

Before proceeding to the results of our dynamic proxy models, it
is essential to briefly explain that the trial-and-error approach has
been implemented to determine the topology of our proxies. In this
case, the dynamic proxy of FLPR has been built with one input layer,
one hidden layer, and one output layer. There are 50 nodes used in
the hidden layer. Besides that, the dynamic proxy of FWCT has the
similar architecture as that of FLPR but with an additional hidden
layer. Both hidden layers consist of 50 nodes. Besides that, one of
the backpropagation algorithms, namely adaptive moment esti-
mation (Adam), has been applied to train both proxies. Peruse King
and Ba [49] for details. Pertaining to the parameters considered for
Adam, the number of training iterations is 2000, the learning rate is
0.001, exponential decay rate for the 1st moment estimates is 0.9,
that fo7r the 2nd moment estimates is 0.999, and numerical stability
is 1077,

Fig. 3 illustrates the cross plot between the actual values and the
predicted values for both proxies of FLPR and FWCT. Based on this
plot, it is deducible that albeit the proxy of FLPR slightly out-
performs that of FWCT, both proxies have undergone an excellent
training phase. This is further supported by the results of training,
validation, and testing performance displayed in Table 2. With
respect to this, it can be confirmed that the overfitting issue has
been prevented as the validation performances of both proxies are

as good as those of training. This also proves that both proxies have
gone through a healthy trend of training. It is often important to
ensure that the proxies have been trained “healthily”. Otherwise,
the developed proxies will have a very weak predictability by only
“memorizing” and being able to predict the data from the training
set within satisfied level of accuracy. In addition, it is demonstrated
that both proxies have good prediction ability as they have shown
splendid testing results. Nevertheless, both proxies still must pro-
ceed to blind validation stage to further evaluate their predictability
before being practically applied to perform optimization in this
work.

To conduct the blind validation, three different sampling
methods have been used to correspondingly create 80 additional
injection schedules as mentioned earlier. Hence, each of these
schedules will yield a set of performance metrics for each proxy. To
provide a better evaluation of blind validation performance, the
mean of the metrics for each sampling technique is shown instead
in Table 3. Based upon the results, it can be inferred that both
proxies have been successfully blind validated and are prepared to
be used for optimization. However, for illustrative purpose, the
blind validation results of one of the samples retrieved by using
Latin Hypercube method are displayed in Fig. 4. Although the blind
validation dataset has not been used to develop the models, the
models can still predict the outputs reasonably well. This further

800
2 700
2 600

500

— Training

400
— Validation
S — Testing

1.0

— Training
— Validation
— Testing

300
300 400 500 600 700 800

Actual field liquid production rate/m'-day

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Actual field water cut/fraction

(b)

Fig. 3. Cross plot between actual and predicted values considering training, validation, and testing sets: (a) FLPR. (b) FWCT.
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Table 3
Blind validation performances of the dynamic proxies considering three sampling techniques.
LSTM-FLPR LSTM-FWCT
Latin hypercube Mean R? 0.9999 0.9992
Mean RMSE 0.2513 0.0078
Sobol sequence Mean R? 0.9999 0.9989
Mean RMSE 0.2109 0.0093
Hammersley sequence Mean R? 0.9999 0.9989
Mean RMSE 0.2040 0.0092
800 10
- 08 /”—
| £ 06 7
0 . 2 7
. £ o
[ 204 o
500 H g 5
1 = I
i P J
- ¥ 0. J
400 Ve ----Reservoir simulator
A A Dynamic proxy 00 & Dynamic proxy
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Days Days

(a)

(b)

Fig. 4. Blind validation of Latin Hypercube sample set 32 {out of 80): (a) FLPR. (b) FWCT.

provides higher confidence regarding the integrity of the proxies
built in this paper.

As it has been explained, both proxies of FLPR and FWCT have
been coupled with PSO to conduct the waterflooding optimization.
In this aspect, the FWIR would be periodically tuned to maximize
the NPV for a certain period of production. Regarding the param-
eters of PSO, the inertial weight is 0.8 whereas both the social and
cognitive learning factors are 1.05. Also, the number of iterations is
initialized to be 100 in tandem with 15 particle swarms per itera-
tion. The case in which the optimization is done by applying both
proxies, is termed as “dynamic proxies”. Thereafter, to assess the
proximity of results of optimization, the optimized FWIRs resulted
from the case of “dynamic proxies” are fed into the simulator to
compute its respective NPV. Such case of optimization is known as
“simulator-dynamic proxies” in this paper. To have a more
comprehensive comparison, the reservoir simulator has also been
coupled with PSO to conduct the optimization. This case is labeled
as “simulator”.

Upon completing these three cases, the optimal NPV obtained
from each case is recorded in Table 4. In general, it is noticeable that
the proxies have illustrated practically accurate results. When
comparing the NPVs of “simulator-dynamic proxies” and “dynamic
proxies”, the error is calculated to be 2.6%. Furthermore, the error
between “simulator” and “dynamic proxies” is determined to be
1.6%. For illustrative purpose, the optimized FWIRs derived from
“simulator” and “dynamic proxies” are plotted in Fig. 5. More
interestingly, regarding the strength of the models, the computa-
tional time for “dynamic proxies” is about 4 h whereas that of
“simulator” is about 12 h. Hence, the dynamic proxies are 3 times
faster than the simulator for optimization in this study. This high-
lights the significance of the application of dynamic proxies. To

Table 4
Optimal NPV considering three cases.

Models Simulator  Simulator-dynamic proxies Dynamic proxies

NPV optimal 155.89 154.39 158.34

(million USD)
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Fig. 5. Optimized FWIRs derived from Simulator and Dynamic Proxies.

further check the integrity of these proxies, the plot of optimized
field water (oil) production rates between “simulator-dynamic
proxies” and “dynamic proxies” is illustrated in Figs. 6-7. The
respective statistical evaluation is also tabulated in Table 5. Based
on these results, both proxies have practically served their purposes
of application by reaching satisfied level of accuracy with less
demanding computational effort.

Nonetheless, there are a few limitations about the models
developed in this work. As mentioned earlier, one of the limitations
includes the application of the models. In this aspect, proxy
modeling is an objective-driven task. Therefore, the established
models can only be aptly employed to solve the optimization
problem outlined. Besides that, there is a concern about the
behavior of the training database as noise, which is an important
issue to flow rate signal, is not considered in the data used. Hence,
the models might not demonstrate high applicability when noisy
data is introduced for optimization purpose. This is indeed part of
the future works that is worth investigating.
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Fig. 7. Optimized FWOR derived from Simulator-Dynamic Proxies and Dynamic
Proxies.

Table 5
Statistical evaluation of optimized FWPR and FOPR.
Optimized FWPR Optimized FOPR
Optimization R? 0.9990 0.9993
RMSE 5.531 5.604

4. Conclusions

In this study, we applied the LSTM approach to develop two
dynamic proxies, which correspondingly could predict FLPR and
FWCT based upon a 3D reservoir model known as the “Egg Model”.
One of the main objectives of this investigation was to study the
applicability of LSTM to be employed as proxy models for produc-
tion optimization. According to the training and blind validation
results, it could be deduced that these two proxies could accurately
emulate the outputs yielded by the reservoir simulator. Moreover,
we coupled these dynamic proxies with PSO to conduct the opti-
mization. From the results of optimization and comparative anal-
ysis, the dynamic proxies were able to yield optimal results close to
simulator only within 3% error, but 3 times faster. This finding
further highlights the significance of dynamic proxies in terms of
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application. Although these proxies are case-dependent, they have
excellently served their purpose of use in this study. Besides that,
these summarized findings also confirm the cogency of the meth-
odology used to establish these dynamic proxies. Finally, we also
believe that there is still room for improvement of the methodology
discussed in this paper. One of them includes the consideration of
noise-handling ability as highlighted earlier. Besides that, the
introduction of decision variables with higher dimensionality and
the application of multi-objective optimization are parts of possible
future studies. As the methodology achieves a satisfactory level of
maturity, its potential use can later be extended to optimization of
CO; storage and/or EOR.
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Machine learning (ML) has been a technique employed to build data-driven models that can map the relationship
between the input and output data provided. ML-based data-driven models offer an alternative path to solving
optimization problems, which are conventionally resolved by applying simulation models. Higher computational
cost is induced if the simulation model is computationally intensive. Such a situation aptly applies to petroleum
engineering, especially when different geological realizations of numerical reservoir simulation (NRS) models are
considered for production optimization. Therefore, data-driven models are suggested as a substitute for NRS. In
this work, we demonstrated how multilayer perceptron could be implemented to build data-driven models based
on 10 realizations of the Egg Model. These models were then coupled with two nature-inspired algorithms, viz.
particle swarm optimization and grey wolf optimizer to solve waterflooding optimization. These data-driven
models were adaptively re-trained by applying a training database that was updated via the addition of extra
samples retrieved from optimization with the proxy models. The details of the methodology will be divulged in
the paper. According to the results obtained, we could deduce that the methodology generated reliable data-
driven models to solve the optimization problem, as justified by the excellent performance of the ML-based
proxy model (with a coefficient of determination, Rr? exceeding 0.98 in training, testing, and blind validation)
and accurate optimization result (less than 1% error between the Expected Net Present Values optimized using
NRS and proxy models). This study aids in an enhanced understanding of implementing adaptive training in
tandem with optimization in ML-based proxy modeling.

1. Introduction engineering optimization plays a pivotal role.

In the domains of FD and RM, engineering optimization of decision

At the dawn of 21st century, energy has become an essential part of
daily life due to its significant contribution and utilization in different
sectors of human activities. The importance of energy had been further
illustrated when the global energy demand in 2021 generally was ex-
pected to increase by 4.6%, which would exceed that of the pre-COVID-
19 level, as reported by International Energy Agency (2021). Hence,
meticulous planning of energy extraction and usage is required to ensure
that the increasing global population can be commensurate with the
availability of energy. In this aspect, petroleum is considered one of the
primary sources of energy. Different technological methods, viz.
enhanced oil recovery (EOR), artificial lift, hydraulic fracturing, etc.,
have been developed and employed to guarantee a sufficient supply of
energy. Nevertheless, to produce petroleum sustainably and economi-
cally, oil and gas companies often incorporate a thorough blueprint of
field development (FD) and reservoir management (RM). This is where
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variables has been ubiquitous and user-friendly because of the rapid
development of today’s technology. In petroleum engineering, these
decision variables include, but are not limited to, EOR initiation time,
the number of wells, well control, well placement, well trajectory, etc. In
tandem with the growth of computing power, the transport of fluid flow
in porous media can be modeled with ease by using numerical reservoir
simulation (NRS). Thereafter, petroleum engineers can utilize NRS to
perform optimization more conveniently. Moreover, the results yielded
by running different cases on NRS provide additional insight for the
engineers to formulate their plans for FD and RM. Despite this, NRS
encounters computational issues when the reservoir modeled is
geologically sophisticated. This implies that running one scenario of
NRS is computationally expensive and this might cause inconvenience to
obtain a fast solution for RM when plans are updated at a high fre-
quency. Moreover, this computational challenge will be further
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exacerbated if several geological realizations are needed for robust
production optimization, which means production optimization under
geological uncertainty as discussed in Hong et al. (2017). Therefore, to
reduce the computational cost, proxy modeling is suggested as one of the
alternative solutions.

Proxy modeling, which is also surrogate modeling or meta-modeling
(Zubarev, 2009), is the development of one or more models that can be
applied as a substitute for a base model (NRS). Also, proxy modeling is
mostly data-driven, and its building block mainly stems from data.
Therefore, data must be acquired before proceeding to the establishment
of proxy models. This explains why proxy modeling can alternatively be
termed data-driven modeling. Besides that, there are generally two
classes implemented to establish data-driven models, namely
statistics-based and machine learning-based (ML-based) methods. The
use of the statistical method in proxy modeling has been extensively
discussed in different petroleum-related pieces of literature and the
relevant examples comprise response surface methodology (also known
as polynomial regression) (Babaei and Pan, 2016; Olabode et al., 2018)
and kriging (Fursov et al., 2020; Hamdi et al., 2021). Apart from
data-driven methods, the reduced physics approach is another option for
proxy modeling. Regarding the reduced physics approach, the capaci-
tance resistance model, proposed by Bruce (1943), is one of the epit-
omes. It has been extensively investigated and employed in petroleum
engineering as discussed in several works of literature (Hong et al.,
2017; Yousefi et al., 2021). Albeit these approaches have demonstrated
fruitful results, some literature (Mohaghegh, 2017; Zubarev, 2009) also
briefed their limitations in proxy modeling. Mohaghegh (2017)
expounded that the reduced physics method requires simplification of
the physics and assumptions in terms of modeling an actual system.
Zubarev (2009) investigated the performance of 4 different proxy
modeling techniques, such as response surface method, thin-plate
splines, kriging, and artificial neural network. He deduced that in
terms of proxy modeling, kriging would require higher computational
effort whereas the response surface method would decrease the preci-
sion of prediction.

This paper mainly sheds light on the application of ML-based
methods. ML is defined as a computer algorithm that can enhance the
performance of a model through experience, reflected by data (Mitchell,
1997). Examples of ML are, but are not circumscribed to, artificial
neural network, gradient boosting machine, support vector machine,
k-nearest neighbor, and random forest. ML has been evidenced to be
useful in different domains of knowledge, including speech recognition
(Nassif et al., 2019; Seehapoch and Wongthanavasu, 2013) and image
analysis (Komura and Ishikawa, 2018; Poostchi et al., 2018). Further-
more, the implementation of ML has been widely generalized in
different aspects of petroleum engineering, specifically reservoir and
production engineering. In this context, ML has displayed successful
applications in numerous pertinent areas, such as the design of well
trajectory (Kristoffersen et al., 2021, 2022), COy sequestration (Nait
Amar et al., 2020a; Nait Amar and Jahanbani Ghahfarokhi, 2020; Vo
Thanh et al., 2022), history matching (He et al., 2016; Jo et al., 2022),
and flow assurance issue (Benamara et al., 2019; Nait Amar et al.,
2021a). ML-based proxy models have also been efficiently coupled with
mathematical optimization algorithms in performing production opti-
mization. In this aspect, some articles (Guo and Reynolds, 2018; Sen
et al., 2021) have illustrated the application of ML techniques in robust
production optimization. Besides that, the employment of
derivative-free mathematical algorithms, which are generally
nature-inspired, has been studied in some works (Nait Amar et al.,
2020b, 2021b; Ng et al., 2021a). These nature-inspired algorithms have
broadly been used due to their ability to converge to the global optimum
in solution space (Ezugwu et al., 2020; Yang, 2014).

For further details, developing or training the ML-based proxy
models is considered “learning”. Precisely speaking, these models are
attempting to learn by discovering the pattern of the data supplied. If the
database provided is not updated throughout the process of
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development, such training is generally termed “offline learning”. Proxy
models constructed from “offline learning™ can occasionally yield a less
optimal solution to an optimization problem due to lower prediction
accuracy. Such an issue has been highlighted by Salehian et al. (2022) in
which proxy models built from “online learning” are recommended as a
possible improvement. According to Geng and Smith-Miles (2015), on-
line learning shares the same definition as adaptive learning or incre-
mental learning. This terminology expounds that this method involves a
continuous update of the database. The fundamental idea lies in
selecting the “useful” candidate to be added to the database used to train
the data-driven model. Generally, generating this candidate involves
sampling the data that fulfills predefined infill criteria (Forrester et al.,
2008; Liu et al., 2012, 2018; Xu et al., 2012). The metrics of these
criteria include, but are not limited to, Expected Improvement, Lower
Confidence Bound, and Probability of Improvement. Adaptive proxy
modeling has been a common practice exercised during the imple-
mentation of a statistical-based approach as briefed and demonstrated in
some published works (Forrester et al., 2008; Li et al., 2015; Liu et al.,
2018; Redouane et al., 2019). Nonetheless, as Golzari et al. (2015)
pointed out, for managing higher dimensional problems, ML-based
methods generally illustrate higher aptitude in handling non-linearity
in terms of time-series prediction. Therefore, in this work, we choose
to utilize ML-based proxy models.

The workflow presented in this paper can be considered as a variant
of surrogate-based global optimization (SBGO), perceived as the
simultaneous application of adaptive sampling and optimization with
the aid of a global optimizer (Ye and Pan, 2019), In simpler terms, it
performs as a hybridization of training and optimization. As outlined in
Ye and Pan (2019), SBGO revolves around the employment of statistical
approaches to develop the proxies and derivative-free algorithms as
optimizers. However, we discuss and illustrate the use of ML-based
proxy models here instead. Concerning this, the ML technique demon-
strated in this work consists of multilayer perceptrons (MLP). Moreover,
the developed proxy models aim to conduct robust production optimi-
zation under waterflooding. Therefore, these models are coupled with
nature-inspired algorithms to conduct the optimization. Two examples
of nature-inspired algorithms were selected, viz. particle swarm opti-
mization (PSO) and grey wolf optimizer (GWO). As discussed in this
paper (Yang, 2014), nature-inspired algorithms generally achieve a
balance between exploration and exploitation over the search space.
Exploration means the diversification of solutions in the search space
whereas exploitation refers to a more focused search on a local region. A
good combination of both, which is generally achieved by
nature-inspired algorithms (considering the algorithms are optimally
tuned), usually avoids the convergence to local optima. Slightly different
from the general practice in SBGO, the candidate (adaptively chosen to
be added to the database) is retrieved from the results of the iterative
optimization with the proxy model. Concerning this, based on our
studies done in this work, using these optimal results, which are ob-
tained from the proxy model with the help of nature-inspired algo-
rithms, to re-train the proxy model has the potential to increase its
fidelity. The pertinent details will be revealed under the section of Re-
sults and Discussion.

After this introduction, the paper is formulated as shown: Section 2
briefs the basic theoretical concepts of MLP, PSO, and GWO regarding
some of our previous works (Ng et al., 2021a, 2021b, 2022a, 2022b).
Thereafter, section 3 provides a comprehensive explanation of the
methodology applied to develop the proxy models in this work. Section
4 expounds on the results yielded and the relevant discussion. Then, the
main findings are conclusively summarized.

2. Previous related works
The methodology presented in this work was established based on

the insights gained from our previous works (Ng et al., 2021a, 2021b,
2022a, 2022Db). Since this paper is considered an extension of these
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Fig. 1. General workflow implemented in this work.

previous works, the 3D Egg Reservoir Model that has been used in Ng
et al. (2021a) was selected as the reservoir model for proxy modeling
here. However, the proxy models built here consider 10 different
geological realizations. With geological uncertainty (only about
permeability), well control optimization is conducted under water-
flooding. The methodology was developed using Python (Van Rossum
and Drake, 2009). For the modeling of MLPs, they were developed with
the help of the Scikit-learn package (Pedregosa et al., 2011). PSO was
formulated by applying the toolkit built by James V. Miranda (2018)
whereas GWO was constructed with the toolkit by Lickevic and Bar-
toshevic (2021).

2.1. Multilayer perceptron (MLP)

It is unassailable that artificial neural network (ANN) is one of the
most prominent ML techniques used in a wide variety of domains
(Lopez-Garcia et al., 2020; Runge and Zmeureanu, 2019). The method
has demonstrated its excellent performance in learning how the input
data is related to output data for any physically sophisticated process.
Biological neural networks in the brain are mainly the inspiration for its
formulation (Rosenblatt, 1958). MLP is one of the most widely employed
variants of ANN in building data-driven models (Buduma and Locascio,
2017). In essence, MLP consists of many artificial neurons or calculating
nodes. MLP also comprises three types of layers, viz. the input layer, the
hidden layer, and the output layer. Each layer has its neurons in which
these neurons are interconnected with the use of weights and biases. For
more information about the mathematical implementation of MLP, refer
to our previous works (Ng et al., 2021a, 2021b, 2022b). The training
process for MLP typically involves finding the optimal values of weight
and bias sets to minimize the predefined loss function, such as mean
squared error (MSE) and mean absolute percentage error. MSE was
selected as the loss function whereas Adam (Adaptive Moment Estima-
tion) was applied for training. For the details of Adam, peruse the
literature (Kingma and Ba, 2015).

2.2. Nature-Inspired Algorithms

Kennedy and Eberhart (1995) proposed PSO that attempts to simu-
late the behavior of flying stock of birds. A swarm of particles mathe-
matically represents some possible solutions to an optimization
problem. The status of each particle is calculated by using its position
and velocity. About the mechanism of PSO, random initialization of the
position and velocity of each particle is first done. Thereafter, to
calculate the fitness of every particle, a cost function is required. Upon
computing the fitness, the local and global best positions of a particle are
determined to update the velocity at the current step. After assessing the
velocity at the next iteration, the position of a particle for the next
iteration is updated. As several iterations complete, each particle up-
dates its position by minimizing the fitness value until the convergence
of the optimal position occurs.

Mirjalili et al. (2014) developed GWO based on the inspiration of the
leadership hierarchy and hunting behavior of grey wolves. Fundamen-
tally, the population of grey wolves is divided into four different groups,
e.g., alpha (), beta (p), delta (5), and omega (). Among all, ® wolves
are the most inferior and preceded by &, p, and a. Mathematically, a wolf
population represents a set of random solutions. Thereafter, the fitness
value of each solution set is evaluated by using a predefined objective
function (Xu et al., 2020). According to the fitness value, the population
of wolves is divided into the four previously mentioned groups. As
optimization commences, the three best wolves: «, B, and &, would
gradually lead the other w wolves towards the prey, which is treated as
the global solution in the search space. This is done by iteratively
updating the positions of the wolves. These algorithms are preferred in
this work due to their good performance in our previous studies (Ng
et al.,, 2021a, 2022a), where they demonstrated improved optimization
results compared to the base case when they were coupled with the
proxy models. For more details about the algorithms of both PSO and
GWO, please peruse these articles (Kennedy and Eberhart, 1995; Mir-
jalili et al., 2014; Ng et al., 2021a; Xu et al., 2020).

Generate 60 injection scenarios
for each realization by using
LHS and run the simulator to
create the database for proxy

modeling.

Use the hyperparameters
(determined by trial-and-error
1o train the machine lea
based data-criven proxies.

Retrieve relevant data for proxy
development according to

Proxy-FLPR

Blind validate the model with the
data retrieved from 10 other
injection scenarios for each
realization by applying LHS

Performance of
Proxies

Re-{raining of Model

Modeling
formulation of problem. Accomplished
Normalize and divide the data
based on a ratio of 9:1
respectively for the purposes of
training and testing Yes

Criterion fulfilled ?

No

Adding additional training data (Adaptive Training)

Fig. 2. Details of the main framework (Backbone of AP-ROpt).
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Fig. 3. Diagram of input and output parameters.

3. Methods and materials

For convenient articulation, the methodology proposed here is
termed “Adaptive Proxy-based Robust Production Optimization” (AP-
ROpt). The general workflow of implementing the AP-ROpt is illustrated
in Fig. 1, consisting of 4 steps. The Main Framework can be further
categorized into 2 parts, viz. Establishment of Proxy Models and Opti-
mization. The details of the Main Framework are illustrated in Fig. 2.

3.1. Formulating the optimization problem

A database is one of the most essential elements in data-driven
modeling. Before acquiring the database, it is of great importance for
modelers to clarify and define the functionality of the data-driven
models since data-driven proxy modeling is objective-oriented. There-
fore, modelers should perceive what engineering problem is to be solved
via the use of proxy models. In this paper, the engineering problem
defined is the optimization of well control under waterflooding which is
similar to the one discussed in Ng et al. (2021a). Thus, only the field
water injection rate is considered as the control parameter. The objec-
tive function used in the optimization is the expected net present value
(ENPV) as shown:

i ("Z‘ 0@y ()Poit— Qs pro (WPt ot~ Qi iy (WPoss -m))
¢

ENPV(u) == i

= (1interest rate)i/

@
n

Based on the objective function, n, is the total number of realizations

which is 10 here, u represents the control vector, Q; indicates the field

rates of produced oil, produced and injected water at timestep i, P means

Table 1
Summary of the initial database for the development of proxy models.

the respective price. In addition, At; (unit in days) is the time difference
between timestep i and previous timestep, t; (unit in days) is the cu-
mulative time until timestep i, and the reference period for discounting
cash flow is 365 days. The oil price is 440.3 USD/m°, the cost of
handling water produced, and water injection is 12.58 USD/m?, and the
interest rate is 0.10 per year.

3.2. Design of proxy models

Having explicitly defined the optimization problem, modelers would
have better insights into what parameters can be yielded by the proxy
models, directly or indirectly. More importantly, the decision variables
(optimization parameters) are treated as one of the inputs of the proxy
models. According to Eq. (1), the parameters required from the proxies
are field oil and water production rates whereas field water injection
rates act as decision variables. To attain this goal, we followed the ideas
based on our previous studies and investigation in which two different
proxy models were built. One of them can forecast the field liquid pro-
duction rates (FLPR) at a certain timestep given a timeframe whereas
another one has the same functionality in terms of field water cut pre-
diction (FWCT). For both proxies, the input parameters comprise the
cumulative days until timestep i, self-defined geological parameters,
field water injection rate (decision variables), and the output at the
previous timestep, yi.j. About the self-defined geological parameters,
they comprise the harmonic mean (and standard deviation) of grid ab-
solute permeability for every reservoir layer as well as the arithmetic
mean of permeabilities of perforated grid blocks (injectors and pro-
ducers). This corresponds to 29 input parameters and 1 output param-
eter. The input parameters were selected based on our knowledge of

Types of Data Number of Data Points ~ Maximum Value ~ Minimum Value  Mean Value  Standard Deviation
Static Data

Cumulative days until timestep i 1 % 60,000 3000 30 1515 865.98

Harmonic mean of grid absolute permeability 7 x 60,000 749.41 577.57 641.71 37.88

Standard deviation of grid absolute permeability 7 x 60,000 1701.24 654.44 1149.07 252.72

Arithmetic mean of permeabilities of perforated grid blocks (injectors) 8 x 60,000 3994,57 132,99 1109.78 963.85

Arithmetic mean of permeabilities of perforated grid blocks (producers) 4 x 60,000 5000 200 1581.12 1372.47
Dynamic Data

TField Water Injection Rate 1 % 60,000 800 320 559.96 138.34

Previous Output and Current Qutput (FLPR) 2 x 60,000 798.67 0 557.24 143.43

Previous Output and Current Qutput (FWCT) 2 x 60,000 1 0 0.7067 0.3401
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Fig. 4. Horizontal permeability distribution of Realization 1 of 3D Egg Model
with labeled well locations. The same locations apply to all realizations. The
warm color indicates higher horizontal permeability whereas the cold color
implies the otherwise.

reservoir engineering and insights gained from previous studies. Refer to
Fig. 3 for the diagram of input and output parameters and Table 1 for the
initial database used for training. The number 60000 in Table 1 was
determined by having 60 injection scenarios x 100 timesteps x 10 re-
alizations. According to the insights gained from our previous works (Ng
et al., 2021a, 2022a), 60 scenarios have been illustrated to be adequate
to produce the proxy models with a good degree of accuracy. Therefore,
the same number of scenarios is applied in this study. Readers are also
referred to Ng et al. (2021a) for more comprehensive information about
the formulation of the proxy models.

3.3. Outlining architecture of reservoir model

As mentioned, the reservoir model implemented in this paper is the
Egg Model and the simulation was performed using the Eclipse 100
software (Schlumberger, 2019). This model is a benchmark case,
developed by Jansen et al. (2014) for research purposes. The Egg Model
has 7 layers, and it is built as a channelized depositional system. It also
has eight injectors and four producers in which the trajectory of each
well is vertical. The well configuration is shown in Fig. 4. Peruse Jansen
etal. (2014) and Ng et al. (2021a) for the details of the topology of the
reservoir model. Regarding the details of optimization, it involves
adjustment of field water injection rates within 320 and 400 Sm®/day
(each injector has an equal allocation of the total rate) by having the
maximum bottomhole pressure of each producer set at 395 bars. This
adjustment is done every 150 days over 3000 days of the production
period. This results in 20 control variables. However, the proxy models
have been designed to consider a timestep of 30 days and every control
variable remains the same for 5 timesteps (150 days). Therefore, during
optimization, 100 variables are involved. We have considered 10 re-
alizations in this work and the corresponding reservoir architecture of
each realization is presented in Fig. 5.

3.4. Main Framework

3.4.1. Establishment of proxy models
In the establishment of proxy models, the generation of a training

Applied Computing and Geosciences 16 (2022) 100103

database often comes first. Here, we implemented Latin Hypercube
sampling (LHS) to create 60 sample sets of control rates in which one set
represents one injection scenario. In this case, these 60 scenarios are the
same for every realization. Peruse McKay et al. (1979) for the details of
LHS. Each scenario was then sent to the reservoir simulator to produce
the simulation outputs. Upon the completion of 600 simulations, the
dynamic inputs were retrieved and merged with the static inputs to
develop the database. Normalization of the database is a highly rec-
ommended practice before being fed into the training phase of ML
models. The database was normalized between 0 and 1 according to the
formula below:

X = X
Knormalized = X—mm

max = Ximin @
where Xnormalized iS the normalized value of X. Xpax and Xmin correspond
to the maximum and minimum values of X, respectively. It is important
to note that during the adaptive training, an additional sample has been
included in the training database. Therefore, the values of Xyax and Xpin
also need to be updated (considering all input and output parameters)
and normalization is repeated. Thereafter, the normalized database was
partitioned into training and testing with a ratio of 9:1. Regarding this
partition of data, only the training data is employed to establish the
models. Since the package of scikit-learn was selected, within the
training data, a portion of it would be extracted to conduct the valida-
tion phase. Concerning this, MLP would undergo a validation phase in
which 1/9 of the 90% training data was treated as the validation set.
Nevertheless, evaluation of the developed models was performed
meticulously to ensure that the overfitting issues had been eluded.

Regarding the topology of proxy models and hyperparameters used
in the training, the values were slightly different for both FLPR and
FWCT. For FLPR, the learning rate was 0.001, the number of hidden
layers was 4 (each layer had 50 hidden nodes), and tolerance was 107,
For FWCT, the learning rate was 0.005, the number of hidden layers was
4 (each layer had 15 hidden nodes), and tolerance was 10"°. Rectified
Linear Unit (ReLU) was implemented as an activation function for all
layers. Considering an arbitrary function of f(x), ReLU is mathematically
expressed as f(x) = max (x, 0). The maximum number of iterations for
both models was defined as 1000 in which the early stopping mecha-
nism was activated. These setting parameters were decided via a trial-
and-error approach. After the training and testing phases, the data-
driven proxies must be blind-validated before being practically
employed. In this aspect, data of blind validation should be independent
of the above-mentioned database. Hence, we implemented LHS to
generate 10 other injection scenarios for each realization (a total of 100
blind validation cases) to be fed into the reservoir simulator to yield the
relevant outputs, which would then be compared with the outputs
predicted by the proxy models. The comparative result is a deciding
factor to evaluate if the proxies should either undergo re-training or
proceed to optimization. If the performance of proxies is not up to
certain quality, then re-training will be done. In this paper, two statis-
tical metrics were chosen to assess the performance of proxies, viz. co-
efficient of determination (Rz) and root mean squared error (RMSE). The
formula of metrics is as follows in Eqs. (3) and (4).

z“; (Y:)wl _ Y:—em)l
RP=1-"— (3)
(v = v)°
=1

o 2
5 (v )

RMSE = 4

n

where n represents the total number of data points, i denotes the index of
data points, Y; is the corresponding output, the superscripts pred and
real represent the proxy model and reservoir simulator model, respec-
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U] @

Fig. 5. Horizontal permeability distribution of 10 different geological realizations of the 3D Egg Model. The warm color indicates higher horizontal permeability
whereas the cold color implies the otherwise. (a) to (j) respectively refer to Realization 1 to 10.

tively. Also, Y indicates the mean value of output. Re-training is only
needed if the mean R? values of blind validation' for FLPR and FWCT are
less than predefined values. In this case, the predefined values for FLPR
and FWCT were decided to be 0.998 and 0.970, respectively via trial-
and-error.

3.4.2. Optimization with proxy models and reservoir simulation

In the phase of optimization, PSO and GWO were applied to deter-
mine the optimal well control. In the case of proxy models, as the
optimization iterations were completed, the proxy-optimized control
would be obtained and treated as a new injection scenario to be fed into
the reservoir simulator. The response of the simulator was again
compared with that of the proxy. If the criterion check was satisfied,
then the whole workflow was considered complete. Otherwise, the
optimal control would be treated as a new dynamic input to be added to
the training database. The loop of workflow would then start again. It

1 Mean R? of blind validation refers to the arithmetic average of 100 R*
values (each calculated over 100 timesteps) as 10 blind validation scenarios are
considered for each of the 10 realizations.

would only cease if the criterion were fulfilled, or the number of addi-
tional simulations exceeded a predefined value. In this study, the
average between the mean” R? of FWPR and FOPR was used as the
criterion check. The predefined threshold was arbitrarily set as 0.994.
About the parameters used in PSO, the inertia weight was 0.80 whereas
the cognitive and social learning factors were 1.05. r; and rp were
sampled from a uniform distribution of (0, 1). For GWO, the default
parameters set by Lickevic and Bartoshevic (2021) were applied. For
PSO (GWO), 100 iterations and 20 swarm particles (100 iterations and
20 populations) were employed. These optimization algorithms were
not only implemented in this workflow for proxy models but also
coupled with the reservoir simulator. The details of the results would be
presented and discussed in the following section.

4. Results and Discussion

Before outlining a holistic discussion about the findings of this work,

2 The term “mean R?” refers to the arithmetic mean of 10 values of R? as 10
realizations were used to develop the proxy models.
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Table 2
Results of training, testing, and blind validation of the developed proxy models.

ROpt- MLP-FLPR ROpt-MLP-FWCT

Training R? 0.9999 0.9995
RMSE 0.9288 0.0073
Testing R? 0.9999 0.9995
RMSE 0.9485 0.0074
Blind Validation R? 0.9999 0.9872
RMSE 0.9459 0.0328

we illustrate the results of the training, testing, and blind validation
phases as shown in Table 2 to provide a better insight into the perfor-
mance of the developed proxy models. Table 2 consists of two statistical
metrics, namely R? and RMSE, that have been useful to reflect the ac-
curacy of the proxy models built in this work. For better illustrative
purposes, the cross plots between the actual and predicted data in each
phase of proxy modeling are demonstrated in Fig. 6 for FLPR and in
Fig. 7 for FWCT. In terms of training, testing, and blind validation, MLP-
FLPR generally displays better performance than MLP-FWCT. Despite
this, the results obtained by MLP-FWCT have sufficiently confirmed its
reliability for further employment.

Upon completing the modeling part, these models are readily
employed for adaptive learning and optimization. In this aspect, the
models would be correspondingly coupled with PSO and GWO to
determine the optimal field injection rates within the range as previ-
ously explained. For benchmarking, we also coupled these two algo-
rithms with E100 software to perform the optimization with NRS
models. The optimal control determined using the simulator and proxy
models are correspondingly shown in Figs. 8 and 9. Though there may
be low proximity between the optimal control yielded by these two
approaches, we would like to emphasize that the main objective here is
to create substitute models that can achieve an optimized objective
function close to the “ground truth” (generated by the NRS) at much less
computational cost.

800

700

600

5004

400

Predicted Field Liquid Production Rate (m*/day)
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Thereafter, the proxy-optimized control rates were fed back into the
reservoir simulator to yield the necessary parameters for the calculation
of ENPV. By acquiring the results, the ENPVs for three cases of reservoir
simulator, simulator-proxies (referring to the results in which the
optimal control derived from only using the proxy models, is fed back to
the simulator), and proxies are computed and recorded in Table 3. Under
an assumption of a base case with a maximum constant field injection
rate, the ENPV of the base case is 155.76 million USD. During the
optimization with the reservoir simulator, GWO resulted in a better
improvement on ENPV with 3.75% as PSO only enhanced the ENPV by
2.76%. A similar outcome is also illustrated in the case of simulator-
proxies. In terms of optimization, this generally shows that GWO
slightly outperforms PSO in this study. For better purposes of illustration
and comparison, the optimized NPVs of each realization for the cases of
simulator and simulator-proxies (considering cases that involve the use
of simulator) are correspondingly illustrated in Figs. 10 and 11.

Regarding the accuracy of results, it can be noted that GWO records a
lower percentage error between the two ENPVs produced by simulator-
proxies and dynamic proxies, which is about 0.20% whereas that of
MLP-PSO is 0.90%. For both algorithms, the differences between the
ENPVs of simulator and simulator-proxies are practically small. Never-
theless, GWO records ENPV of simulator-proxies that is closer to the
“ground truth” (ENPV of reservoir simulator). Thus, proxy models
coupled with GWO yielded slightly more accurate results than those of
PSO in this work. Despite this, PSO still portrayed promising applica-
bility due to its practically good accuracy of the result attained. This
further enlightens us that the proxy models built here have sufficient
capability to provide solutions for this optimization problem. For illus-
trative purposes, the plots of the optimized field water and oil rates for
each optimization case considering 10 realizations are presented in
Figs. 12 and 13, respectively.

Table 4 is displayed for closer scrutiny in both Figs. 8 and 9. These
metrics are calculated by correspondingly comparing FWPR and FOPR
generated by simulator-proxies and proxy models. According to Table 4,
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Fig. 6. Cross plot between the actual FLPR and FLPR predicted by the proxy model. a) Training, b) Testing, and ¢) Blind Validation (only illustrating 1 blind

validation scenario in Realization 2).
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Fig. 8. Optimized control of Field Water Injection Rate (FWIR) resulted by coupling reservoir simulator with nature-inspired algorithms.

it can be opined that the worst performing realizations in the cases of
FWPR and FOPR still produced results within a satisfactory level of
accuracy. This confirmed the good applicability of the workflow pro-
posed here. Considering all 10 realizations, Table 5 presents the mean R?
and RMSE (considering 10 different geological realizations) between the
optimized FWPR (and FOPR) generated by simulator-proxies and proxy
models. Based on these results, MLP-GWO showed a closer approxima-
tion of the results. Also, these results proved that the developed proxy
models successfully served their purpose of application.

The proxy modeling and optimization were done by using a PC with
Intel® Core™ i9-9900 CPU @3.10 GHz (64.0 GB RAM) (Ng et al,
2021a). Regarding computational time, both MLP-GWO and MLP-PSO
have exhibited excellent computational efficiency. In this case,
MLP-GWO spent about 13 h performing adaptive training and optimi-
zation whereas MLP-PSO used about 16 h. In addition, about the number
of additional simulations induced, MLP-PSO has adaptively employed
66 additional simulations for the extension of the training database. For
MLP-GWO, it adaptively created 54 other simulations. For the
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Fig. 9. Optimized control of Field Water Injection Rate (FWIR) resulted by coupling proxy models with nature-inspired algorithms.

Table 3
Optimized ENPV of three cases considering PSO and GWO (in the unit of million
UsD).

Optimization Reservoir Simulator- Dynamic
Algorithm Simulator Proxies Proxies
PSO 160.06 158.93 160.37
GWO 161.60 159.80 159.48

optimization with the simulator E100, PSO required 159 h and GWO
needed 238 h. Based upon this, GWO generally reflects a more signifi-
cant added value of the application of proxy models in this work.

We would like to reiterate that the primary aim of the established
proxy models is to locate the optimal solution to the waterflooding
optimization problem. In this case, the optimal solution provided by
these data-driven models results in an objective function that is close to

the one obtained by applying only the reservoir simulator. We also
fathom that there are a few limitations regarding the workflow proposed
here. Hyperparameter (topology of MLP) optimization is one of them.
During adaptive training, when additional data is retrieved from addi-
tional simulation and added to the training database for proxy modeling,
there is a possibility that the predefined hyperparameters are less reli-
able in achieving more accurate training results. However, integrating
hyperparameter optimization can certainly induce higher computa-
tional effort. Despite having excellent results in this work, achieving a
good trade-off between accuracy and computational time (considering
hyperparameter optimization) certainly needs to be researched to in-
crease the applicability of this methodology. Besides that, another
shortcoming concerns the tuning parameters of the algorithms. These
parameters were decided via a trial-and-error approach which could be
subject to a degree of limited sensitivity. There is also another discussion
about the impact of random number generators on the whole

PSO - Reservoir Simulator - Optimal NPV of each realization (million USD)

170
- 160
- 150
1 2 3 4 5 6 7 8 9 10
Realization
GWO - Reservoir Simulator - Optimal NPV for each realization (million USD)
- 170
- 160
- 150

1 2 3 4 "] 6 7 8 9 10
Realization

Fig. 10. Optimized NPV of each realization (reservoir simulator).
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Fig. 11. Optimized NPV of each realization (simulator-proxies).
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Fig. 12. Plots of the optimized FWPR considering 10 realizations. The black dashed lines indicate the case of simulator-proxies whereas the blue lines imply the cases

of proxy models. a) PSO and b) GWO.

framework. Therefore, an in-depth study on tuning parameters and
random number generators is needed to further reinforce the maturity of
the workflow discussed here.

Apart from these, we only considered 10 realizations in this work
since there is an apparent computational challenge arisen when more
realizations are included in the methodology of the workflow. Hence,
integrating the dimensionality reduction technique (for instance, as
proposed in this paper (Salehian et al., 2021) through the selection of
representative realization via clustering method) into the workflow
proposed here is another domain that can be pondered upon in the
future. Also, the additional training data is generated “online” via
optimization with proxy models. Albeit this additional data is gotten
through nature-inspired algorithms, the accuracy of proxy models might
cause premature convergence to local optima. The accuracy of proxy

models is influenced by the complexity of the optimization problem
being solved. Thus, this subject is upon consideration for further
research when it comes to more sophisticated real-life applications.
Furthermore, proxy models are often case-dependent and hence, the
models built here can only be implemented to solve the optimization
problem discussed here. Hence, modifications of the methodology are
likely inevitable and require further investigation to instill higher con-
fidence in application in future studies. In short, through this study, we
aimed at developing a methodology that serves as a foundation for
further enhancement in the future,

5. Summary and Conclusions

In this paper, we implemented the AP-ROpt that adaptively retrieved
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Table 4

Performance metrics of the best and worst performing realizations of FWPR and

FOPR under the case of proxy models along with PSO and GWO.

R? RMSE

MLP-PSO (FWPR) Best Realization: 6 0.9983 7.44
Worst Realization: 5 0.9651 34.63

MLP-PSO (FOPR) Best Realization: 7 0.9995 5.42
Worst Realization: 5 0.9756 34.64

MLP-GWO (FWPR) Best Realization: 8 0.9989 6.30
Worst Realization: 9 0.9898 18.67

MLP-GWO (FOPR) Best Realization: 8 0.9992 6.12
Worst Realization: 9 0.9930 18.66

Table 5

Mean R” and RMSE of optimized FWPR (and FOPR) generated by comparing the

results of simulator-proxies and proxy models.

ROpt-FWPR ROpt-FOPR
MLP-PSO Mean R 0.9932 0.9954
Mean RMSE 13.59 13.11
MLP-GWO Mean R? 0.9956 0.9972
Mean RMSE 11.21 11.31

the optimal control (resulted from optimization with the established
proxy models) and added it to the training database to further enhance
the performance of the proxy models. This methodology is inspired by
some of our previous works. The whole workflow of the methodology
was performed in a closed-loop manner. Regarding this, by using 10
different realizations of the 3D Egg Model as the reservoir model, we
employed MLP, an ML technique, to build two different proxy models
which respectively forecast FLPR and FWCT. Then, they were coupled
with PSO and GWO to optimize ENPV through the adjustment of FWIR.

We first implemented a trial-and-error approach to determine the
optimal topology of these proxy models. Based on the training, testing,
and blind validation results, the performance of these models was vali-
dated to be apt for further application. After the execution of the
methodology, the results confirmed that a near-optimal solution (as
compared with the solution from optimization with only reservoir

11

simulation) could be achieved with much less computational demand.
For PSO, the computation was improved by nearly 10 times whereas for
GWO, it has become about 18 times faster. High reduction in compu-
tational efforts is the main advantage attained in this work. Neverthe-
less, we are still cognizant of the limitations of this methodology,
including consideration of only geological uncertainty, integration of
hyperparameter optimization, and limited applicability to other opti-
mization problems, viz. CO, sequestration and history matching.

‘With this, we would like to summarize that a fundamental method-
ology has been built upon which further improvement can be maneu-
vered, and this highlights the benefit garnered from this work. Also, the
proxy models established here have sufficiently achieved their goal of
the application. About this, integrating adaptive training with optimi-
zation, which yields an excellent result of proxy modeling under
geological uncertainty, is considered the key finding here. We hereby
opine that this workflow can be practically useful to improve any
developed data-driven model that yields optimization results with a low
satisfying level of accuracy. Nonetheless, refinements can still be done
when dealing with more real-life applications.
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Abstract: Waterflooding is one of the methods used for increased hydrocarbon production. Water-
flooding optimization can be computationally prohibitive if the reservoir model or the optimization
problem is complex. Hence, proxy modeling can yield a faster solution than numerical reservoir
simulation. This fast solution provides insights to better formulate field development plans. Due to
technological advancements, machine learning increasingly contributes to the designing and building
of proxy models. Thus, in this work, we have proposed the application of the two-stage proxy
modeling, namely global and local components, to generate useful insights. We have established
global proxy models and coupled them with optimization algorithms to produce a new database.
In this paper, the machine learning technique used is a multilayer perceptron. The optimization
algorithms comprise the Genetic Algorithm and the Particle Swarm Optimization. We then imple-
mented the newly generated database to build local proxy models to yield solutions that are close
to the “ground truth”. The results obtained demonstrate that conducting global and local proxy
modeling can produce results with acceptable accuracy. For the optimized rate profiles, the R? metric
overall exceeds 0.96. The range of Absolute Percentage Error of the local proxy models generally
reduces to 0-3% as compared to the global proxy models which has a 0-5% error range. We achieved
a reduction in computational time by six times as compared with optimization by only using a
numerical reservoir simulator.

Keywords: global and local proxy modeling; machine learning; derivative-free optimization; reservoir
simulation

1. Introduction

Numerical reservoir simulation (NRS) is one of the most essential aspects of reservoir
engineering. NRS is highly relied upon for the modeling of fluid flow in porous media. This
implies that a reservoir is better when sufficient data are acquired to develop a reservoir
model through NRS. Using NRS, fluids can be more efficiently extracted from the under-
ground to meet the global energy demand. However, NRS suffers from computational
issues, despite today’s advanced computing power. This limitation is still not entirely ad-
dressed, especially when many details are included in building the NRS model. Concerning
this, numerous measures are proposed, including proxy modeling.

Proxy modeling pertains to the modeling of a substitute for a base paradigm, namely
NRS. Such an approach can provide a fast solution when the decision-making is urgent.
There are different examples of proxy modeling available for employment. In this case,
the machine learning (ML) technique is one of them. In general, ML can be perceived as
a computer algorithm that is built to deduce a pattern or relationship between the input
variables and the output provided [1]. Some prevalent examples of ML include artificial
neural networks, support vector machines, and gradient boosting machines. These methods
have been demonstrated to be successful in establishing proxy models. Regarding this,
some literature presented the use of an ensemble of neuro-fuzzy networks as ML-based
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proxy models in several aspects of reservoir engineering, including carbon, capture, and
storage [2] and shale analytics [3].

Apart from these, a variant of the gradient boosting machine, e.g., extreme gradient
boosting machine (XGBoost), was implemented for fast analysis of well placements in a
heterogeneous reservoir [4]. The articles [5,6] also discussed the use of some more advanced
ML methods in simulating the behavior of reservoirs and production trends, which is an
important criterion to be manifested by a proxy model. The potential implementation of
ML methods in proxy modeling was also further highlighted in the domain of secondary
recovery. Waterflooding is one of the most prevalent secondary recovery techniques.
Aside from its economical employment [7], it has been well-received in the oil and gas
industry due to its ability to maintain the reservoir pressure, prevent subsidence, and
simultaneously increase the oil recovery from oil fields. Regarding the technicality of
waterflooding, “voidage replacement” has been a common parameter to guide water
injection, where the total volume of production is equal to the total volume of injection. The
challenge of using a voidage replacement ratio (ratio of the injected to the produced fluid
volumes) with a fixed injector location is the allocation of the water injection for each well.

Changing the injection operations can optimize the waterflooding performance. These
operations include the well control adjustment in which the net present value (NPV) is
set to be the objective function. Conventionally, NRS is used to obtain the result for each
water injection scenario. For a full-field scenario, using NRS will be time-consuming to
maximize the objective function, especially if the geology of the reservoir is sophisticated
or the dimension of optimization variables is high. Therefore, ML-based proxy models
are suggested to mitigate the computational challenges. Several previous works [8,9] have
established a methodology in this context. Nonetheless, the efficiency of the methodology in
resolving the optimization problem with higher dimensionality still requires improvement.
One of the potential solutions lies in the establishment of two different classes of proxy
models, namely global and local proxy models, as discussed in [10,11]. Fundamentally,
local proxy models aim at refining the quality of proxy models in which solutions closer to
the “true” optimal can be determined.

Furthermore, to conduct a successful waterflooding optimization, an optimization
algorithm is another essential tool. There are two main types of algorithms, e.g., gradient-
based and gradient-free. In recent studies of optimization algorithms, gradient-free al-
gorithms have gained increasing attention due to their ability to converge to the global
optimal [12]. The nature-inspired algorithm is the epitome of gradient-free algorithms.
Its successful integration with the ML-based proxy models has been displayed in several
pieces of literature in reservoir and production engineering [13-15]. In this study, two
optimization algorithms are used: the Genetic Algorithm (GA) and the Particle Swarm
Optimization (PSO). These algorithms are only applied to determine the optimal sets of
well control under waterflooding. These algorithms also illustrated good potential to be
used as training algorithms in data-driven modeling [16,17].

In this paper, we aim to illustrate how ML and nature-inspired algorithms can be
coupled with the two-stage proxy modeling to optimize waterflooding. A benchmark
model (UNISIM-I-D) was used to demonstrate that global and local proxy modeling could
be used to replicate the behavior of a real reservoir. The UNISIM-I-D model was created
based on Namorado Field, located in Campos Basin in Brazil. The proxy models are
developed using the multi-layer perceptron (MLP). These proxy models were initiated
to replicate the NRS and coupled with the above-mentioned algorithms for well control
optimization. The proxy models were built using selected geological properties, time, and
output from the NRS. Using the Latin Hypercube Sampling (LHS) method, which was
proposed by McKay et al. [18], multiple injection scenarios were created and divided into the
training set and the blind validation set. NRS was performed on the injection scenarios to
obtain the simulation results. After a successful training and the validation test of the proxy
models, the simulation results could be generated without using NRS. Using the results
from the global proxy model, the local proxy model was trained based on the retrieved
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samples of optimization results. With this method, the optimization result was obtained
by using the local proxy model without the requirement to run the repetitive process of
optimization. Using the global and local proxy models, the optimized water injection
control for the UNISIM-I-D model was determined with higher computational efficiency.
Following this introduction, Section 2 of this paper discusses the details of the UNISIM-
[-D model. Sections 3 and 4 respectively explain the algorithms and the ML method applied.
Thereafter, Section 5 expounds the integration of the concepts presented to scaffold the
establishment of the methodology presented. Section 6 comprises a discussion on the
results obtained from this work. The concluding remarks can be found in Section 7.

2. Reservoir Description

The UNISIM-I-D model was created on the Namorado Field, located in the Campos
Basin in Brazil with known properties [19]. With the benchmark model, it is possible
to ensure the applicability of developed reservoir management methodologies to real
reservoirs. In this study, we used the upscaled model to decrease the computational effort
for multiple scenarios. The grid cell resolution of the upscaled model is 100 x 100 x 8 m,
discretized into a corner point grid 81 x 58 x 20 cells, with a total of 36,739 active total cells.

2.1. Static Properties Description

The UNISIM-I-D model facies distribution is reflected based on the net-to-gross dis-
tribution. The original fine model has the following rules to set the net-to-gross (NTG)
based on the facies shown in Table 1. The facies modeling is defined using the Sequential
Indicator Simulation with a vertical trend [20].

Table 1. Facies and Net to Gross rules.

Facies Net to Gross
0 1.0
1 0.8
2 0.6
3 0.0

Class 0 is defined as reservoir facies with good properties whereas classes 1 and 2 are
the medium reservoir properties. Class 3 is defined as non-reservoir. The reservoir active
grid is upscaled and results in a continuous distribution of the NTG (Figure 1).

(b)

Figure 1. UNISIM-I-D NTG distribution: (a) Fine grid and (b) Upscaled model [19].

Figure 1 shows that after upscaling, the NTG became continuous due to the nature of
the arithmetic volume-weighted method. The method is used to maintain the hydrocarbon
volume constant during flow simulation.
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Core Description: Porosity vs Permeabilitiy

The effective porosity model is derived from the density log and shaliness of the
properties. After the effective porosity is modeled from log data, it is distributed to the
whole model using the Sequential Gaussian Simulation (SGS) [21]. After the porosity is
modeled on the fine grid, it is upscaled using the same method as NTG upscaling. The
results of upscaled porosity are shown in Figure 2.
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Figure 2. UNISIM-I-D upscaled porosity results.

The permeability model was initially derived from the core analysis data, and a re-
lationship between porosity and permeability was established (Figure 3). This horizontal
permeability is distributed to the model using the correlation, while the vertical perme-
ability is defined by using a multiplier (which ranges from 0 to 1.5) times the horizontal
permeability. The permeability was upscaled by using the flow-based upscaling technique,
FLOWSIM [22]. The results of the porosity and the horizontal permeability relationship of
the upscaled case is depicted in Figure 3b.

Upscaled: Porosity vs Permeability
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Figure 3. Porosity versus permeability: (a) Core analysis data [19] in which the blue dot refers to the
core sample whereas the red line refers to the equation and (b) Upscaled model.

Due to the upscaling method, the horizontal permeability has slightly different values
inTIand J directions. Meanwhile, the relationship between the vertical and the horizontal
permeability is scattered due to the different grid resolution in vertical direction. Figure 4
shows the relationship between the horizontal and the vertical permeabilities.
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Figure 4. Upscaled permeability relationship in: (a) I-J direction; (b) I-K direction.

The final static properties used in this study are shown in Figure 5.
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Figure 5. Static properties used for simulation (a) Porosity, (b) Net-to-Gross, (¢) Permeability
I-direction, and (d) Permeability K-direction.

2.2. Dynamic Properties Description

In this section, the fluid properties and fluid-rock interaction properties used in the
simulation are defined. The fluid model used in the simulation is the Black Oil model with
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the initialization of the oil phase, the dissolved gas and the water phase. Figure 6 shows
the oil properties and Figure 7 demonstrates the gas properties used in the model.
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Figure 6. Oil properties used for simulation.
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Figure 7. Gas properties used for simulation.
The water properties are defined in Table 2.
Table 2. Water phase properties.
Properties Value
Reference pressure 0.98067 bara

Water formation volume factor at reference pressure

1.021 rm?/sm3

Water compressibility

48579 x 1075 bar~!

Water viscosity

0.3 cP

Water viscosibility

Obar™!

The fluid-rock interaction is defined by the relative permeability and the capillary
pressure curves in the simulation. The relative permeabilities used in the simulation are
presented in Figure 8 and capillary pressure curves are illustrated in Figure 9.
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Figure 8. Relative permeability (a) Oil-Water and (b) Oil-Gas.

Another dynamic rock property is rock compaction. The rock compaction used is
the standard model, based on the equations of Newman 1973 [23], Hall [24], and Van Der
Knaap [25], to generate rock compaction tables based on the known rock compressibility at
a reference pressure, as shown in Table 3.

Table 3. Rock compressibility at reference pressure.

Properties Value
Rock compressibility 5.4 % 1072 bar~!
Reference pressure 315.77 bara
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Figure 9. Oil-water capillary pressure.

2.3. Initialization

The initialization of the model is conducted by defining two regions with different
water-oil contacts. The region boundary is defined by the normal fault shown in Figure 10a.
The horst (blue area) has a higher water-oil contact at the depth —3100 m than the graben
(magenta are) with water-oil contact at the depth —3174 m, as shown in Figure 10. The
initial pressure is defined based on the reference point at depth of 3000 m where the
pressure is 320.68 bara. Figure 10b shows the distribution of the initial fluid saturation with
the different water-oil contacts for both regions.

WOC: =3100m

PRO4

Saturation:
0il Saturation (SOIL)

Gas Saturation (SGAS) Water Saturation (SWAT)

(a) (b)

Figure 10. Water-oil contact (WOC) definition: (a) Region definition (b) Distribution of initial fluid
saturation.

With all the parameters from the static, dynamic, and initialization of the reservoir
model, the initial in-place volume is presented in Table 4. It is confirmed, with the in-place
volume mentioned in the original UNISIM-I-D benchmark model [19], that the model used
in this study is unmodified.
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Table 4. Initial in-place volumes.

Properties Value
Initial Oil In Place 130 MM Sm?
Initial Dissolved Gas In Place 14.7 B Sm®

3. Algorithms

Regarding the selection of mathematical algorithms, nature-inspired algorithms, specif-
ically the Genetic Algorithm (GA) and the Particle Swarm Optimization (PSO), were
preferred due to their structural simplicity and successful implementation in several arti-
cles [8,9,14]. These algorithms are derivative-free, implying that computation or approxima-
tion of gradient is unnecessary. They also present a good capability of eluding premature
convergence. This is because they accomplish a good balance between exploration and
exploitation in optimization. Exploration aims at diversifying the solution over the search
space. Exploitation targets to leverage the search for solution over the local region (a more
refined search space).

GA, proposed by Holland [26], is one of the population-based metaheuristic algo-
rithms. Its formulation relies heavily upon the Darwinism Theory of Evolution. GA, in
general, implements different types of genetic operators when it comes to the exploration
and exploitation of the solution (search) space. Fundamentally, an individual solution is
encoded as a string, that is known as a chromosome. Therefore, an initial population of
chromosomes will be generated as potential solutions. The quality of each chromosome is
evaluated by employing an objective function (also known as fitness). These chromosomes
will undergo the genetic operators, for instance, selection, crossover, elitism, and mutation
over several iterations. During the selection process, several chromosomes are chosen as
parents to yield new offspring. Then, elitism ensures the survival of the best chromosome
(highest fitness) which can be inherited in the next generation. Crossover involves the
exchange of certain parts (also termed “genes”) of chromosomes to produce new ones. Mu-
tation modifies certain genes of chromosomes to elude convergence to the local optima [27].
Mathematically, the chromosome population will be subject to these genetic operators for
some iterations until the stopping criterion is met. The final chromosome with the highest
fitness is treated as the final solution.

PSO is another example of the population-based algorithms that was implemented in
this work. PSO was formulated by Kennedy and Eberhart [28], according to the simulation
of a moving stock of birds or a school of fish. In this aspect, an individual solution is
perceived as the particle, in which the initial population of particles (a swarm of particles)
is randomly generated as potential solutions. The quality of each particle is assessed using
an objective function. As PSO commences, the position and velocity of each particle are
randomly initialized. Throughout the iterations, a particle recognizes the previous optimal
value of the objective function. The respective position vector is the local best position
(pbest). The global best position (gbest) is the best position of particles achieved hitherto
in the swarm. At every iteration, the motion of particles is dictated by three parameters,
namely cognitive factors, social factors, and inertia weight. Generally, the cognitive factor
enables the attraction of particles towards the pbest. The social factor aids in attraction
towards the gbest. Inertia weight could be initialized to improve convergence. The pbest
and gbest are determined iteratively to update the velocity at the current step. As the
velocity at the next iteration is evaluated, the update on the position of a particle at the
next iteration is performed. Over some iterations, each particle updates its position via the
minimization of the objective function until the stopping criterion is reached.

4. Machine Learning

Machine learning (ML) is defined as a computer algorithm that can derive inferences
in the pattern of data provided. There are numerous examples of ML techniques, including
support vector machines, random forests, and artificial neural networks (ANN). ANN is
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NPV (u) = Z

one of the most popular methods of ML that has been applied extensively. Its mechanism
primarily resembles the neural system in human brains. Mathematically, it comprises
different fundamental components, including layers, activation functions, and nodes.
The layers are input, hidden, and output. Each layer consists of several nodes that are
represented by weights and biases. Starting from the input layer, weights and biases are
consecutively interconnected layer to layer. Thereafter, the respective product will be fed
into a preselected activation function to yield a new value that will propagate to the next
layer. This process of propagation continues until it reaches the output layer. For the
relevant details, refer to the literature [29]. Application of ANN generally gravitates to the
development of data-driven models which are used for prediction and/or optimization.
There are also different variants of ANN, such as multilayer perceptron (MLP), recurrent
neural network (RNN), and convolutional neural network (CNN). In this work, only MLP
is considered due to its successful use in resolving engineering problems.

5. Proxy Modeling and Optimization Problem

To establish proxy models, we need to be cognizant of the functions of the proxy
models before proceeding into the development phase. In our study, we formulate a
waterflooding optimization problem, in which the pertinent objective function is set to be
the net present value (NPV). This NPV function is mathematically expressed in Equation (1).
The control vector is represented by u and the field rates are indicated by Q, in which the
subscripts refer to the types of fluids. P refers to the price or cost of fluid produced/injected.
Niotal 15 the total number of timesteps whereas t; refers to the cumulative time until timestep
i. At; refers to the timestep difference between the time i and the previous timestep. Such
an optimization problem resonates with some of our previous works [8,9]. However, one
of the distinctive differences pertains to the number of optimization variables (decision
variables) included. In the case of this optimization, NPV is maximized every 365 days by
optimally adjusting each injection rate (within the range of 0 Sm3/day and 2500 Sm?/day)
and bottomhole pressure (BHP) of each producer (within 175 bar and 200 bar). The total
production period lasts for 9125 days.

Miotal At]' X (Qi,oil(u)Poil - Qi,wat pmd(u)Pwat prod — Qi/wat ini(u)Pwat inj + Qi,gas (u)PgﬂS)

(1 + interest rate)t‘/ 365 o

Since the UNISIM-I-D reservoir model comprises four injectors and four producers,
this results in 200 variables (8 variables/timestep x 25 timesteps) to be optimized to achieve
a higher NPV. Based on the NPV function, we assume that the produced gas will be sold.
Regarding the economic parameters, the oil price is 503.2 USD/m3, the cost of handling
produced water and injecting water are 62.9 USD/ m?3 and 50.32 USD/m?, respectively, and
the gas price is 0.265 USD/m°. The interest rate is 0.10 per year. From the NPV function,
we need to develop models that can predict the values of the Field Oil Production Rate
(FOPR), Field Water Production Rate (FWPR), Field Water Injection Rate (FWIR), and Field
Gas Production Rate (FGPR) at each timestep. Keeping in mind our investigation and
previous studies [8,17,30], we decided to build three different proxy models, which can
forecast Field Liquid Production Rate (FLPR), Field Water Cut (FWCT), and FWIR. FLPR
and FWIR are in the units of Sm>/day whereas FWCT is expressed in a fraction. These
proxy models provide the necessary values to compute the NPV. It is essential to know that
FGPR (Sm®/day) can be obtained by multiplying FOPR by the constant gas-oil-ratio R,
which is 113.45 Sm3/Sm?3.

Proxy modeling can be perceived as establishing a relationship between the input and
the output variables. Our previous studies and some literature suggest that integrating
static and dynamic properties can increase the reliability of the proxy models. Therefore, we
have formulated the mathematical function of the proxy models, as shown in Figure 11. In
Figure 11, k {xy,z) Tepresents the arithmetic mean of grid block permeability for each layer in
x-, y-, and z-directions. By, , ,) refers to the arithmetic mean of grid block porosity for every
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layer. E{LP} and & ;) respectively correspond to the arithmetic mean of permeability and
porosity of the perforated grid blocks for each injector and producer. Parameters u and At
respectively refer to control variables and cumulative time (days) until the current timestep.
yi_1 and y,_; correspond to output at previous and current timestep. As discussed, there
are 20 layers and 8 wells in the UNISIM-I-D model, and this yields 112 static inputs.
Considering the dynamic inputs, such as the number of days, 8 control variables, and
output at the previous timestep, there are 122 input variables.

(6 ) o

Multilayer Perceptron

Vi

Figure 11. Relationship between input parameters and output for the proxy models.

Understanding the objective of the optimization problem and the formulation of proxy
models provides a clear direction to proceed into the workflow, as shown in Figure 12. This
workflow involves the design of two types of proxy models which we correspondingly
term as the Global Proxy Models and the Local Proxy Models. As displayed in the work-
flow, Latin Hypercube Sampling (LHS) is initiated to create 310 control scenarios. These
300 scenarios are fed into NRS to generate a training database for Global Proxy Modeling.
The other 10 scenarios are applied to create the database for blind validation. The maxi-
mum NPV resulting from these scenarios is 5456.70 million USD. Before proceeding to the
training process, the database is normalized to be between 0 and 1 based on the maximum
and minimum data, as discussed in [9]. After developing the global proxy models, they are
coupled with GA or PSO to generate the database for local proxy modeling. The topologies
of global and local proxy models are decided via a trial-and-error approach, which is
portrayed in Table 5. The terms “Local Proxy-GA” and “Local Proxy-PSO” in the table
imply that the local proxy models are built from the database generated using the global
proxy models coupled with GA and PSO for optimization, respectively. In Table 5, the
number of hidden nodes applies to each hidden layer. Moreover, the activation function in
the output layer for each proxy model is linear. The training uses the algorithm Adam, also
known as Adaptive Moment Estimation [31], iterations of 2000, a learning rate of 0.001, and
a tolerance of 1076. The eatly stopping feature is activated. The validation fraction is set to
1/9. The remaining parameters are the default values, as suggested in Scikit-Learn [32].

The inertia weight is 0.80 whereas the cognitive and social learning factors are both
parameterized as 1.05. r; and r, are sampled from a uniform distribution between 0 and 1.
For the GA, the crossover probability is 0.8, the mutation probability is 0.8, the elite ratio is
1/30, the parents’ portionis 0.6, and the type of crossover is two-point. The abovementioned
parameters for both GA and PSO were initialized via a trial-and-error approach. For both
algorithms, the number of optimization iteration is 200 and the population size is 30.
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Definition of Objective
Function, NPV

Generation of Injection Scenarios
(300 - training & 10 - blind validation)

l

NRS for generating dynamic data &
Extraction of dynamic data

LHS -~

Combination of dynamic data and static 'F"fal .
roperties (Training Database) Optimization
e - (GA or PSO)

Global Proxy Modeling

Creation of 110 proxy-based Optimal Solutions
(100 - training & 10 - blind validation)

Local Proxy Modeling

GA or PSO - = - »|

Figure 12. Workflow of the proposed methodology.

Table 5. Topology of the MLP.

Type of Proxy Models Number of Hidden Layers Number of Hidden Nodes Activation Functions (Hidden Layers)
FLPR
Global Proxy Model 3 250 ReLU
Local Proxy-GA 3 250 ReLU
Local Proxy-PSO 3 200 ReLU
Type of Proxy Models Number of Hidden Layers Number of Hidden Nodes Activation Functions (Hidden Layers)
FWCT
Global Proxy Model 3 150 ReLU
Local Proxy-GA 3 150 ReLU
Local Proxy-PSO 3 150 ReLU
Type of Proxy Models Number of Hidden Layers Number of Hidden Nodes Activation Functions (Hidden Layers)
FWIR
Global Proxy Model 3 200 ReLU
Local Proxy-GA 3 200 ReLU
3 200 ReLU

Local Proxy-PSO

As the training and blind validation results of global proxy models illustrate good re-
sults, these models are coupled with metaheuristic algorithms to conduct the waterflooding
optimization. The optimization is run 110 times (indicating 110 optimal scenarios in which
100 scenarios are for training and the other 10 are for blind validation) and the resulting
optimal solutions (control variables) are sent back to the simulator to create a training
database for local proxy modeling. For this, the calculated NPV is ensured to exceed the
abovementioned maximum NPV. When the local proxy models illustrate good results of
training and blind validation, these models are implemented for the final optimization.
The final optimization is performed 200 times for further analysis. The relevant findings
are summarized and discussed in the following section.
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6. Results and Discussion

The MLP was chosen as the ML technique to develop the proxy models in this work.
The proxy modeling was performed using the Scikit-Learn with the aid of Python program-
ming language [33]. As explained in the workflow, there are two stages of proxy modeling.
To assess the reliability of these proxy models, we implemented three statistical metrics,
namely Coefficient of Determination (R?), Root Mean Squared Error (RMSE), and Average
Absolute Percentage Error (AAPE). Different examples of statistical metrics in tandem with
their formulations can be referred to in [34]. The training and testing results of the first
stage of proxy modeling (global proxy modeling) are presented in Table 6. In addition, the
boxplots of the Absolute Percentage Error (APE) for the training and testing data points are
demonstrated in Figures 13 and 14.

Table 6. The training and testing results of global proxy modeling.

Models (Training) R? RMSE AAPE
FLPR 0.9510 150.06 3.357
FWCT 0.9933 0.0074 3.196
FWIR 0.9982 54.93 0.842
Models (Training) R? RMSE AAPE
FLPR 0.9516 153.01 3.440
FWCT 0.9920 0.0081 3.435
FWIR 0.9980 59.37 0.874
0.40 °
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— °
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Figure 13. Boxplot of the Absolute Percentage Error of the training data points (global proxy modeling).
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Figure 14. Boxplot of the Absolute Percentage Error of the testing data points (global proxy modeling).

From the boxplots, it can be seen that MLP-FWIR displays the smallest range of APE
as compared to MLP-FLPR and MLP-FWCT, in terms of training and testing. Furthermore,
the statistics on R? and AAPE provided in Table 6 also confirm the better performance
of MLP-FWIR for training and testing. This better performance does not undermine
the predictability of MLP-FLPR and MLP-FWCT. Numerous outliers are noticed in the
boxplots for all the three models. Hence, the predictability of these models needs to be
further justified by applying blind validation cases. To conduct this justification, ten blind
validation cases were generated, as explained in Figure 12. The performance metrics of
the proxy models for these blind validation cases are displayed in Table 7. The results
consist of the mean of all the ten blind validation cases. It is observed that MLP-FWIR
still outperforms the other two models. In MLP-FLPR, the mean R?, the mean RMSE, and
the mean AAPE might be less satisfactory. From Tables 6 and 7, it is worth noting that
MLP-FLPR generally illustrates relatively poor performance. This could be due to the
complexity of the reservoir model used. This implies that the database provided might not
adequately reflect the physics of the reservoir. In MLP-FWCT too, a similar issue can be
observed in terms of the AAPE. Despite this fact, these models are still considered practical
to generate insightful optimal solutions for local proxy modeling.

Table 7. The blind validation results of global proxy modeling.

(Blmg’[“;ﬁ?;ﬁon) Mean R? Mean RMSE Mean AAPE
FLPR 0.9267 183.18 4274
FWCT 0.9892 0.0092 4.075
FWIR 0.9974 64.03 1.169

Upon completion of the first stage of proxy modeling, the proxy models are readily
employed for optimization with the GA and the PSO. However, optimization at this phase
aims at creating a “useful” database for the training of local proxy models. This database
consists of the data that have a closer proximity to the “true” optimal solution. When the
new “training” database is ready, it can be applied to establish the local proxy models.
In this case, two different algorithms result in two different databases. It is anticipated
that the performance metrics of the local proxy models demonstrated more improvement
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as compared with the global proxy models. For illustrative purposes, the corresponding
boxplots of the APE in the training and testing phases are portrayed in Figures 15 and 16
for GA as well as in Figures 17 and 18 for PSO, respectively. For a more comprehensive
evaluation, the training and testing results of the second stage of proxy modeling (local
proxy modeling) are demonstrated in Table 8 for GA and Table 9 for PSO. The statistics in
Tables 8 and 9, highlight an improvement in terms of R?, RMSE, and AAPE as compared
with the results from Table 6. This fulfills the goal of conducting the second stage of proxy
modeling. In terms of blind validation, ten additional cases were created. The statistics
displayed in Tables 10 and 11 for blind validation, also show a good level of enhancement
in the mean R2, the mean RMSE, and the mean AAPE as compared with those shown
in Table 7.

0.20

0.15

0.10

Absolute Percentage Error (fraction)

0.00

Field Liquid Production Rates Field Water Cut Field Water Injection Rates

Figure 15. Boxplot of the Absolute Percentage Error of the training data points (local proxy
modeling-GA).

0.12

= °
g 0.10 8
51 °
g : '
5 008 3
= <
Eﬂ °
‘_;-51 0.00
2 °
==
L}
3 oo .
2
< °

0.02

o T 1

Field Liquid Production Rates Field Water Cut Field Water Injection Rates

Figure 16. Boxplot of the Absolute Percentage Error of the testing data points (local proxy
modeling-GA).

158



Energies 2023, 16, 3269

16 of 26

o

0.20
T
=
2 0.15
£
<]
& ‘ g
& ° o o
£ 010 *
3
5
£ °
L )
Z §
fr:; 0.05

0.00 1 L é

Field Liquid Production Rates Field Water Cut Field Water Injection Rates

Figure 17. Boxplot of the Absolute Percentage Error of the training data points (local proxy

modeling-PSO).
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Figure 18. Boxplot of the Absolute Percentage Error of the testing data points (local proxy

modeling-PSO).
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Table 8. The training and testing results of local proxy modeling (GA).

Models (Training) R? RMSE AAPE
FLPR 0.9660 108.69 1.959
FWCT 0.9961 0.0086 2.403
FWIR 0.9975 43.08 0.534
Models (Testing) R? RMSE AAPE
FLPR 0.9659 119.79 2123
FWCT 0.9956 0.0094 2.774
FWIR 0.9978 46.51 0.588
Table 9. The training and testing results of local proxy modeling (PSO).
Models (Training) R? RMSE AAPE
FLPR 0.9632 124.66 2.383
FWCT 0.9962 0.0076 2276
FWIR 0.9974 52.09 0.620
Models (Testing) R? RMSE AAPE
FLPR 0.9630 128.53 2.442
FWCT 0.9953 0.0086 2.396
FWIR 0.9962 66.73 0.666
Table 10. The blind validation results of local proxy modeling (PSO).
(Bnn:[\?s:li i) Mean R? Mean RMSE Mean AAPE
FLPR 0.9578 118.80 2.262
FWCT 0.9935 0.0105 3.037
FWIR 0.9975 42.46 0.581
Table 11. The blind validation results of local proxy modeling (GA).
(Bun:{“,’:l‘;i tion) Mean R? Mean RMSE Mean AAPE
FLPR 0.9418 152.38 3.012
FWCT 0.9905 0.0112 3.155
FWIR 0.9971 51.76 0.681

One of the main goals of this work, which was achieving significant computational
efficiency in tandem with good accuracy of results, was attained. For both the GA and
the PSO algorithms, the framework (considering global and local proxy modeling as well
as optimization) took about two days to complete. However, when the optimization was
conducted with the reservoir simulator, both algorithms required about twelve days to
finish. This demonstrates that the proposed framework can reduce the computational time
by six times. It is essential to note that the framework runs the optimization 100 times in the
case of global proxy modeling and 200 times for local proxy modeling. Nevertheless, the
optimization with the reservoir simulator was only performed once. For this, the optimized
NPVs obtained using the simulator coupled with GA and PSO are 6054.61 million USD

and 5832.55 million USD, respectively.
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To further highlight the improvement of accuracy attained by conducting the two-
stage proxy modeling, the cumulative density frequency (CDF) of absolute percentage error
between the actual NPV and the NPV predicted by both global and local proxy models are
plotted in Figures 19 and 20, respectively. Due to the expensive computational demand of
the reservoir simulator for the optimization task as explained above, the actual NPVs are
calculated by feeding the optimized control variables obtained using the corresponding
proxy model into the reservoir simulator. As the CDF plots display, the range of the APE
yielded by local proxy models reduces as compared with that of global proxy models. Most
of the resulting samples lie within the APE range of 0%-3% for both types of local proxy
models. This verifies that local proxy modeling permits higher accuracy of optimal results.
Additionally, proxy models coupled with PSO exhibit a higher chance of achieving results
within a more desired level of accuracy (compared with GA). In terms of NPV calculation,
the GA produces bigger values than the PSO. This is confirmed by the CDF plots of the
NPVs in Figure 21, which show the actual NPVs obtained from the local proxy models.

The details highlighted in Figure 21 were obtained when the optimization was run
200 times. For each optimization run, there are 200 iterations. Thereafter, as explained
previously, for each run, the resultant optimal control variables are fed into the reservoir
simulator. This denotes that there will be 200 optimal NPV samples. With this, the
highest NPV achieved (out of the 200 optimal solutions) is 6105.79 million USD for the
GA. Using the respective control only in tandem with proxy models, the resulting NPV
is 6131.79 million USD. In the case of the PSO, by feeding the 200 proxy-optimized solutions
into the simulator, the highest NPV obtained is 5976.20 million USD. The computed NPV, by
only employing proxy models, is 5854.37 million USD. The aforementioned scenario with
the highest NPV of 5456.70 USD million was assumed to be the base case. By considering
the NPVs obtained using the proxy models, it can be noticed that the GA resulted in an
improvement of 12.4% (over the base case) whereas the PSO enhanced it by 7.29%. This
shows that the optimality of the solution can be refined through the framework presented.
Nonetheless, more studies need to be conducted to comprehensively discern if conducting
further local proxy modeling enables a closer approximation to the “ground truth”.

1.0 — GA
PSO

S o e
K =N 3

Cumulative Density Function (CDF)

S
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1 2 3 4 5 6 7 8
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Figure 19. Cumulative Density Frequency plot of absolute percentage error between actual NPV and
predicted NPV (global proxy modeling).
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Figure 20. Cumulative Density Frequency plot of absolute percentage error between actual NPV and
predicted NPV (local proxy modeling).
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Figure 21. Cumulative Density Frequency plot of NPVs.

Plots of GA-optimized FOPR, FWPR, FWIR, and FGPR are shown in Figure 22. The cor-
responding metrics are tabulated in Table 12. PSO-optimized rates are shown in Figure 23
and the respective metrics are tabulated in Table 13. Based on these tables, it can be con-
cluded that the values of RMSE and AAPE in general correspond less satisfactorily to the
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Optimized Field Water Production Rate (Sml/day)

values of R%. This is reflected by the error estimation shown by several data points in
both Figures 22 and 23. Despite this fact, the proxy models still successfully capture the
production profiles and serve their practical purposes. For illustration, only the cases with

the highest NPV are shown in the plots. To avoid confusion, the term “simulator-proxies”

'

refers to the results obtained from the reservoir simulator by implementing the optimal
control produced by local proxy models. Based on these plots, the predictability of the local
proxy models is further validated. The FOPR, FWPR, FWIR, and FGPR profiles obtained

by the local proxy models generally match well with the profiles of simulator-proxies.

6000 1

5000 ¢

4000 4

3000 A

2000 4

—— Simulator-Proxies

@ Proxies

0 2000 4000 6000 8000

Time (days)
(a)

2500 A

2000 4

1500 A

1000 -

5001

—— Simulator-Proxies
¢ Proxies
0 2000 4000 6000 8000
Time (days)
(b)

Figure 22. Cont.

163



Energies 2023, 16, 3269

21 of 26

2 8000 - -
= —— Simulator-Proxies
= ¢ Proxies
1)

2 7000 1

=]

&

=

2

g 6000 1

)

5

5

Z 5000 4

=

]

2

=

R 4000+

E

|,

o T T T T

0 2000 4000 8000
Time (days)
()

=

§ 700,000 —— Simulator-Proxies
“g ®  Proxies
2

2 600,000

I3

-4

=1

2

S 500,000

=

o

<]

&

2 400,000

Q

=

.8

s 9y

~ 300,000

8

=

g 200,000

0 2000

4000
Time (days)

(d)

8000

Figure 22. Plots of GA-optimized rates: (a) FOPR, (b) FWPR, (c) FWIR, and (d) FGPR.

Table 12. Performance metrics of GA-optimized rates.

Optimized Rate R? RMSE AAPE
FOPR 0.9808 150.89 0.042
FWPR 0.9656 120.59 6.746
FWIR 0.9888 138.05 1.398
FGPR 0.9808 17,118.74 4.207
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Figure 23. Plots of PSO-optimized rates: (a) FOPR, (b) FWPR, (¢) FWIR, and (d) FGPR.

Table 13. Performance metrics of PSO-optimized rates.

Optimized Rate R? RMSE AAPE
FOPR 0.9777 155.81 3.608
FWPR 0.9648 88.79 6.278
FWIR 0.9902 125.97 1472
FGPR 0.9777 17,677.16 3.608

In general, the proposed framework has showcased good practical applications, con-
sidering the trade-off between accuracy and computational efficiency. Nonetheless, it is still
subject to several limitations that are worth investigating further. The models developed
from this framework are not “one-size-fits-all”. They are case-specific to serve the objective
of the optimization problem under study. Furthermore, the proposed framework is yet to be
verified in different optimization problems, such as well placement and choke optimization.
This framework is limited to a geological realization and its maturity still needs to be
justified considering geological uncertainty. Moreover, the proposed framework displays
a good path to solving an optimization problem with 200 decision variables (a problem
with a considerably high dimension). However, in terms of handling problems with even
higher dimensionality, as reflected by most real-life applications, it is evident that several
approaches can be integrated into this framework to reduce the pertinent dimension to
increase its practicality. To the best of our knowledge, conducting production optimization
with an efficiently reduced dimension of optimization variables, is still subject to extensive
research. Regarding real-life applications, the proposed framework can also be extended
to the paradigm of Top-Down Modeling [35] that only considers real field data to build
the models.

Integrating another step of parameter optimization regarding both the structure of
MLP and the variables of the nature-inspired algorithms will certainly be insightful. At-
tempting other advanced ML techniques, including Tree-based Pipeline Optimization
Tool [36], can be researched to integrate the use of automated hyperparameter optimiza-
tion in its workflow. In terms of solving a more sophisticated optimization problem, e.g.,
multi-objective optimization, the integration of NSGA-II (Non-dominated Sorting Genetic
Algorithm II), suggested by Deb et al. [37], into the proposed framework can be considered.
Some detailed studies are thus needed to achieve such enhancement by honoring the
balance between computational speed and the accuracy of results predicted by the proxy
models. Additionally, a combination of nature-inspired algorithms and derivative-based
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algorithms can also be studied and possibly used instead of only applying the nature-
inspired algorithms. This has a good potential to improve the exploitation component of
optimization as the exploration is taken care of by nature-inspired algorithms [38].

7. Conclusions

In this work, we have presented a framework of methodology that couples proxy
models with derivative-free algorithms to conduct waterflooding optimization. The ap-
proach of proxy modeling has been modified by introducing two different stages, namely
global and local proxy modeling. Global proxy models were developed using a database
that was generated by employing the sampling technique and reservoir simulation. Upon
developing the global proxy models, an optimization algorithm was employed with these
models to create a new database. This new database was then applied to develop more
refined proxy models (the local proxy models). We have selected MLP as the ML method
to develop the proxy models. For each stage of proxy modeling, we built three models
to predict the output of FLPR, FWCT, and FWIR at every timestep. These output values
were then utilized to compute the NPV for optimization purposes. The optimization was
performed using GA and PSO. It is important to note that FGPR is also involved in the
computation of NPV. However, for the optimization problem, the profile of FGPR is sim-
ilar to that of FOPR since the solution gas oil ratio, Rs, remains constant for the whole
production period.

The results obtained suggest that the two-stage proxy modeling can improve optimal
solution. Such improvement is noticeable in terms of training, testing, blind validation,
and optimization. Additionally, the computational efficiency of this framework is higher
than solely relying on the reservoir simulator for optimization. The accuracy of results
is not sacrificed upon attaining such a higher computational efficiency. This signifies the
benefit of this framework for practical purposes. The primary objective of the proposed
framework has been accomplished, although there are several limitations associated with it,
such as lack of generalization and consideration of geological uncertainty. Nonetheless, a
rudimentary framework has been successfully developed here, and further improvements
should be considered for more real-life and robust applications. Detailed studies, including
identifying the impact of each step of the framework (such as training of models and
optimization), are recommended to strive for higher maturity of its employment.
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Developing a model that can accurately predict the hydrocarbon production by only employing the conventional
mathematical approaches can be very challenging. This is because these methods require some underlying as-
sumptions or simplifications, which might cause the respective model to be unable to capture the actual physical
behavior of fluid flow in the subsurface. However, data-driven methods have provided a solution to this chal-
lenge. With the aid of machine learning (ML) techniques, data-driven models can be established to help fore-
casting the hydrocarbon production within acceptable range of accuracy. In this paper, different ML techniques
have been implemented to build the models that predict the oil production of a well in Volve field. These
techniques comprise support vector regression (SVR), feedforward neural network (FNN), and recurrent neural
network (RNN). Particle swarm optimization (PSO) has also been integrated in training the SVR and FNN. These
developed models can practically estimate the oil production of a well in Volve field as a function of time and
other parameters: on stream hours, average downhole pressure, average downhole temperature, average choke
size percentage, average wellhead pressure, average wellhead temperature, daily gas production, and daily water
production. All these models illustrate splendid training, validation, and testing results with correlation co-
efficients, R? being greater than 0.98. Moreover, these models show good predictive performance with R2

exceeding 0.94. Comparative analysis is also done to evaluate the predictability of these models.

1. Introduction

Accurate prediction of hydrocarbon production is necessary to
ensure that the petroleum engineers have useful information to perform
economic evaluation and optimization routines. Nonetheless, achieving
high accuracy in production prediction is very challenging due to the
sophistication of the subsurface conditions. Furthermore, the non-
linearity between hydrocarbon production and any relevant petro-
physical parameter often adds complexity to the modeling of production
forecasting. Despite having successfully modeled the relationship be-
tween hydrocarbon production and any of these petrophysical param-
eters, lack of these data in real life raises additional difficulty (Ma and
Liu, 2018). Therefore, developing a reliable predictive model of hy-
drocarbon production based upon available data has been one of the
research interests in petroleum domain for few decades. This is because
with such models, petroleum engineers will have a more profound un-
derstanding of the reservoir performance to solve any reservoir
management-related issue.

* Corresponding author.
E-mail address: cuthbert.s.w.ng@ntnu.no (C.S.W. Ng).
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One of the classical approaches in forecasting the hydrocarbon pro-
duction is the decline curve analysis (DCA). This method was first
developed by Arps (1945) and its application has been extended in the
oil and gas industry (Fanchi et al., 2013; Hong et al., 2019; Jochen and
Spivey, 1996). Due to its simple implementation, it is widely used as
only historical production data is required. However, this illustrates that
decline curve model is not robust as other important data, such as bot-
tomhole pressure, wellhead pressure, choke size, etc. that affect the
production are not considered. Being empirical in nature, it is also
insufficient to fully reflect the physics of the fluid flow in subsurface and
might either underestimate or overestimate the production estimate
(Mohaghegh, 2017, 2020). Apart from DCA, numerical reservoir simu-
lation (NRS) is another alternative applied to forecast the hydrocarbon
production. Nonetheless, the predictive performance of the NRS is
highly dependent on how the history matching (HM), which is a labo-
rious task, is done (Liu et al., 2019). Additionally, NRS requires different
data, including geological data, fluid properties, location of wells, etc. As
new data is available in real time, the simulation model needs to be
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updated via HM to have a higher accuracy in production forecasting.
Thus, the shortcomings of these methods are evident.

With the advancement of computing technology and data analytics,
data-driven modeling has become another solution to hydrocarbon
production forecasting. This method is not only simple to be imple-
mented but can also capture the complex relationship between input and
output of datasets provided. Data or measurement from real field is a
representation of the “physics” that deciphers the “actual system” in the
reservoir (Mohaghegh, 2017, 2020). Therefore, underlying assumption
is not needed to simplify the physics in building a data-driven model that
forecasts the production. In this context, the data-driven models learn
the relationship between hydrocarbon production and other data ob-
tained from real field through machine learning (ML) techniques: arti-
ficial neural network (ANN), support vector regression (SVR), etc. In
recent years, the coupling of these ML methods with data analytics has
achieved a great milestone in different domains of reservoir engineering,
such as prediction of bottomhole pressure (Nait Amar et al., 2018; Nait
Amar and Zeraibi, 2020), prediction of essential parameters needed in
CO2-EOR (Nait Amar et al., 2020a; Nait Amar and Jahanbani Ghahfar-
okhi, 2020; Nait Amar and Zeraibi, 2018), optimization in water alter-
nating CO5-EOR (Nait Amar et al., 2020b; Nait Amar and Zeraibi, 2019),
waterflooding optimization (Ng et al., 2021a, 2021b), and forecast of
hydrocarbon production (Aydin, 2015; Cao et al., 2016; Elmabrouk
et al., 2014; Frausto-Solis et al., 2015; Zanjani et al., 2020).

Apart from these, coupling the application of metaheuristic algo-
rithms with the ML techniques in data-driven modeling is another
intriguing research domain. Metaheuristic algorithms are generally
nature-inspired and derivative-free. Hence, their implementation is not
only considered to be simplistic, but also powerful in terms of conver-
gence to the global optimum (Ezugwu et al., 2020). Their employment in
data-driven modeling has exhibited positive results as discussed by
several literatures (Akande et al., 2017; Han and Bian, 2018; Nait Amar
et al., 2018; Nait Amar and Zeraibi, 2020; Panja et al., 2018). On the
other hand, a more advanced ANN technique: RNN, which Li et al.
(2019) termed as deep learning, could also efficiently simulate the
reservoir behaviors. Alakeely and Horne (2020) successfully imple-
mented these deep learning methods to perform the estimation of bot-
tomhole pressure. Moreover, Calvette et al. (2020) illustrated that RNN
could be implemented to approximate the smart well production based
upon a synthetic case study. The robustness of RNN was further
demonstrated when it could also be coupled with ensemble Kalman filter
(EnKF) to predict production of a waterflooded synthetic model (Bao
et al., 2020). Besides, several literatures (Lee et al., 2019; Zhan et al.,
2020) also highlighted the usefulness of RNN in forecasting the pro-
duction from unconventional reservoirs. Thus, the use of ML in reservoir
engineering shows a great potential.

Besides reservoir engineering, there are some contemporary works
done on the employment of ML in the domains of production and drilling
engineering. About production engineering, Mamudu et al. (2020)
illustrated a dynamic risk analysis of petroleum production by devel-
oping ANN based on different geological realizations to help predicting
the production. Bayesian network was also built to evaluate the risk of
production. Moreover, Kondori et al. (2021) successfully established the
connectionist models to evaluate the recovery performance of low water
salinity injection. The connectionist models were developed with least
squares support vector machine coupled with simulated annealing al-
gorithm and adaptive network-based fuzzy inference system. Syed et al.
(2020) also discussed how ML methods could be applied to optimize and
conduct preventive maintenance on the artificial lift system. There are
also other insightful literatures (Crnogorac et al., 2020; Khamis et al.,
2020; Lin et al., 2020; Zhong et al., 2020) touching upon the imple-
mentation of ML in the production domain. For drilling engineering,
Adedigba et al. (2018) conducted a risk assessment of offshore drilling
operations with the help of data-driven model that is the Bayesian Tree
Augmented Naive Bayes algorithm. Fundamentally, this model could
forecast the probability of kick that was updated in real time and utilized

Journal of Petroleurn Science and Engineering 208 (2022) 109468

to model the time dependent blowout risk. Additionally, Ozbayoglu
et al. (2021) demonstrated the development of ANN by using the
experimental data gathered and employed this ANN to optimize flow
rate and speed of pipe rotation under effective cutting transport.
Furthermore, there are other interesting contemporary literatures (Alali
etal., 2021; Barbosa et al., 2019; Gan et al., 2020; Muojeke et al., 2020;
Olukoga and Feng, 2021) about the application of ML in the drilling
aspect.

This paper aims at applying different ML methods to develop data-
driven models for the forecast of hydrocarbon production. Regarding
the dataset, it is from a real-life well in Volve field (one of the latest
databases released by Equinor (2020) to the public for research pur-
poses) used to build the models. The details regarding the data will
follow later. A portion of the data from the well is employed to develop
the models whereas the remaining part of the data is used as the blind
case to further verify the predictive performance of the models. About
the ML methods, we first consider applying SVR and FNN. Also, we have
employed particle swarm optimization (PSO) in the training of FNN and
SVR models. Since hydrocarbon production is an example of time series
data, RNN approach is also considered as it has been proven useful to
forecast time series data (Alom et al., 2019; Connor et al., 1994; Zhang
and Xiao, 2000). In terms of RNN modeling in this paper, three different
types of RNNs: the simple RNN, Long Short-Term Memory (LSTM), and
Gated Recurrent Units (GRU), are developed. In total, seven data-driven
models, which comprise FNN with backpropagation algorithm
(FNN-BP), FNN trained with PSO (FNN-PSO), SVR tuned with
trial-and-error approach (SVR-TE), hybrid model of SVR and PSO
(SVR-PSO), simple RNN, LSTM, and GRU, have been established for
comparative analysis on their respective predictive capabilities.

The paper is followed by some brief explanations regarding the
theory of SVR, FNN, PSO, RNN, LSTM, and GRU. The next section dis-
cusses the methodology involved and explains how the available data is
pre-processed and utilized in developing these models. The procedures
in the development of the models are also expounded. The results and
discussion will then follow prior to proceeding to conclusions that
summarize the main findings of this work.

2. Theory
2.1. Support vector regression (SVR)

SVR is a subset of support vector machine that is an advanced su-
pervised machine learning method that uses data for regression analysis,
which was proposed by Vapnik (1995). It develops a function that can
estimate the relationship between the desired outputsy = {y1, y2, ..., yi}
defined on R, and inputs x = {x1, X, ..., Xk} in which x; € R and k is the
number of data points. The function can be formulated as shown below:

f(x) = w-¥(x) +b (€8]

¥(x) refers to the function that maps the input space vector x into a
high dimensional feature space to enable the initial non-linear problem
to be expressed and conveniently solved as a linear regression function.
w denotes the weight vector whereas b is the bias term. To determine w
and b, the minimization of the following regularized risk function should
be done as recommended by Vapnik (1995):

E(C) = %

k
SoL(EG) — ) + 51 @
=1
In equation (2), the first term indicates the empirical error, and the
second term means the degree of flatness of the function. Pertaining to
this, the constant C acts as the penalty parameter that governs the trade-
off between the complexity of the model and the empirical error. To
solve for the empirical error, Vapnik (1995) suggested to use e-insensi-
tive loss function which is represented below:
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Fig. 1. The structure of an FNN model.
. _Jo, if |f(x)—y|<e
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¢ is the error tolerance. Thereafter, the parameters can be optimized
in the following equation through the formulation of the constrained
optimization problem (Forrester et al., 2008):

k
mincz(f,; + f,j) + %kuz

yi— (w(x) +b) <e+& )

subjectto = ¢ (W'P(x) +b) —y; e+ &

G5 20j=12..k

& and & are non-negative slack variables. To solve this constrained
optimization problem, the optimization function can be transformed
into dual space by using Lagrange multipliers (Shawe-Taylor and Cris-
tianini, 2004). The obtained solution is shown below:

k
£ = 3 (o — o )K(x,xa) +b (5)
j=1
In equation (5), (xjanduj‘ are Lagrange multipliers which must fulfill
the constraints of 0 < j and j < C whereas the term K (x;, xm) denotes the
kernel function. In the literature (Forrester et al., 2008), there are
different kernel functions available, but the commonly used ones
include, but not limited to, radial basis function (RBF), polynomial
function, and Gaussian function as illustrated in several literatures
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(Chiroma et al., 2014; Kavzoglu and Colkesen, 2009; Qu and Zhang,
2016). In this paper, RBF is used as the kernel function and defined as
shown below:

K (s xn) = exp(( = vlxixn]) ®

where y is the kernel parameter. The performance and accuracy of SVR is
heavily influenced by the combination of y, C, and ¢. Therefore, imple-
menting metaheuristic algorithms to optimize these parameters can be
done to achieve an ideal performance of SVR. In addition, this can also
overcome any inconvenience due to the use of traditional trial and error
approach in tuning the parameters.

2.2. Feedforward neural network (FNN)

FNN is a ML algorithm that is formulated based on the functionalities
of the biological neural networks. FNN comprises many calculating units
which are known as artificial neurons or nodes. It has been demon-
strated to be more successful in approximating the complex non-linear
relationships between input and output vectors of a database than the
conventional regression methods (Gharbi and Mansoori, 2005). There
are different types of activation function used in FNN modeling, but the
classical ones are the sigmoid function, the hyperbolic tangent, and the
rectified linear unit (ReLU) function (Buduma and Locascio, 2017). In
this paper, FNN, which is one of the most widely used ANNs as
demonstrated in some literatures (Amini and Mohaghegh, 2019;
Mohaghegh, 2011; Senthilkumar, 2010), is the chosen network with
ReLU function as its activation function. It is also known as multilayer
perceptron (MLP) and is made up of three layers, namely the input layer,
the hidden layer, and the output layer. The topology of an arbitrary FNN
is shown in Fig. 1. The green node is the bias node between the input and
hidden layers whereas the orange node is the bias node between the
hidden and output layers.

To ensure that the MLP learns the relationship between the input and
output vectors of the database supplied, the MLP needs to undergo the
training phase. Fundamentally, this training phase aims at optimizing
the sets of weights and biases which minimize the pre-defined cost
function, such as mean squared error (MSE). One of the classical
methods of training is the backpropagation (BP) approach and it in-
volves use of different algorithms, like steepest descent gradient, the
Levenberg-Marquardt algorithm, the Powell-Beale conjugate gradient,
Adam, and so on. In principle, after the forward propagation of the MLP,
the resulting outputs will be compared with the targeted outputs. Errors
are propagated back through the MLP in which the weights and biases
are iteratively tuned and updated to achieve the optimum level. Apart
from the conventional backpropagation algorithm, the metaheuristic
algorithms can also be implemented to train the MLP. Therefore, in this
paper, both backpropagation and metaheuristics algorithms are used to
do the neural network training. Adam is the chosen backpropagation
algorithm (Kingma and Ba, 2015) whereas Particle Swarm Optimization
(PSO) is the metaheuristic algorithm used.

2.3. Particle swarm optimization (PSO)

PSO is an example of the metaheuristic population-based optimiza-
tion algorithms that was proposed by Kennedy and Eberhart (1995)
according to the social behavior of flying birds. The fundamental idea
regarding the mechanism of PSO is that each particle corresponds to a
potential solution to an optimization problem. The status of the particle
is determined based upon its position and velocity in a dimensional
space that is equal to the number of unknown parameters being opti-
mized. Thereafter, the fitness value of the particle is computed by using
a cost function such as MSE. Through several iterations, each particle
updates its position until it converges to the optimum position through
the minimization of the fitness value. In this context, pbest and gbest are
determined at every iteration step. pbest refers to the local best position
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Fig. 2. Illustration of three types of RNN used in this study (a) simple RNN (b) LSTM (c) GRU.

Table 1 Table 2
Data provided for each well in the Volve field. Selected input and output data for data-driven modeling.

Abbreviation from Database Description Parameters

DATEPRD Date of Record Input Data Units

ON_STREAM_HRS On stream hours Time Days

AVG_DOWNHOLE_PRESSURE Average Downhole Pressure On stream hours hours

AVG_DOWNHOLE_TEMPERATURE Average Downhole Temperature Average Downhole Pressure bar

AVG_DP_TUBING
AVG_ANNULUS PRESS
AVG_CHOKE SIZE_P
AVG_WHP_P
AVG_WHT P
BORE_OIL_VOL
BORE_WAT_VOL
BORE_GAS_VOL
BORE_WI_VOL
FLOW_KIND

WELL _TYPE

Average Differential Pressure of Tubing
Average Annular Pressure

Average Choke Size Percentage
Average Wellhead Pressure

Average Wellhead Temperature

Oil Volume from Well

‘Water Volume from Well

Gas Volume from Well

Water Volume Injected

Type of Flow (production or injection)
Type of Well (oil production or water
injection)

Average Downhole Temperature
Average Choke Size Percentage
Average Wellhead Pressure
Average Wellhead Temperature
Gas Volume from Well

Water Volume from Well

Output Data
0il Volume from Well

°C (degree Celsius)
%

bar

°C (degree Celsius)
m® (daily)

Units

m? (daily)

or the best position of a particle in the dimensional space (the lowest
fitness value in this case) whereas gbest indicates the global best position
or the overall best position of a particle hitherto in the entire population.
The algorithm starts by randomly initializing the position and velocity of
each particle. Thereafter, the respective fitness of each particle is
computed in which pbest and gbest are determined and recorded. The
velocity at current iteration step is then updated based on equation (7).
The position of a particle for the next iteration step is updated based on
equation (8). In the subsequent steps, positions and velocities of parti-

cles are updated iteratively by the pbest and gbest.

Viki+1 = @V, + CiTy (PheSHk.x - XJU) + Carp (gbeslh - xka)

Xiktt1 = Xjko + ViK1

Table 3

Mean and standard deviation of input and output parameters of the production

case considering all the data points.

Baseline Information

Input and Output Mean Standard Deviation
Time 547 315.67
On stream hours 23.02 3.89
Average Downhole Pressure 261.01 15.54
Average Downhole Temperature 99.38 5.14
Average Choke Size Percentage 90.44 21.88
Average Wellhead Pressure 30.73 4.21
Average Wellhead Temperature 86.25 8.47
Gas Volume from Well 49,263.63 30,342.37
(@) Water Volume from Well 3171.60 674.34
0il Volume from Well 326.88 204.97
8)
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Fig. 3. Oil production of the well NO159-F-14H.

Table 4

Parameters used in neural network training for both Adam and PSO.
Adam Parameters Values
Number of iterations 2000
Learning rate 0.01
Exponential decay rates for the 1st moment estimates, 3, 0.9
Exponential decay rates for the 2nd moment estimates, p 0.999
Numerical stability constant, & 107
PSO Parameters Values
Number of iterations 2000
Number of particle swarms 100
Inertial Weight, @ 0.8
Cognitive Learning Factor, ¢; 1.05
Social Learning Factor, ¢z 1.05

Table 5

Optimized hyperparameters in SVR modeling.
Models v C € K1 Ko K3
SVR-TE 0.5000 89.00 0.001000 - - -
SVR-PSO 0.4028 89.27 0.001802 0.4072 0.0171 0.5757

Table 6

Performance metrics of the results estimated using the training, validation, and
testing sets.

Datasets Models R? RMSE
Training SVR-TE 0.9951 13.88
SVR-PSO 0.9944 14.68
FNN-BP 09948 14.00
FNN-PSO 0.9945 14.92
Simple RNN 0.9945 14.46
LSTM 0.9962 12.03
GRU 0.9962 1217
Validation SVR-TE 0.9880 21.37
SVR-PSO 0.9889 20.79
FNN-BP 0.9911 19.13
FNN-PSO 0.9923 15.75
Simple RNN 0.9921 18.27
LSTM 0.9910 19.51
GRU 0.9940 15.75
Testing SVR-TE 0.9764 30.83
SVR-PSO 0.9936 16.61
FNN-BP 0.9936 16.44
FNN-PSO 09898 19.91
Simple RNN 0.9941 15.37
LSTM 0.9922 17.64
GRU 0.9915 18.24
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In equation (7), vj, refers to the velocity of the _iﬂ' particle at iteration
tin k™ dimension whereas X, Tepresents its corresponding position. c;
and cy respectively refer to the cognitive and social learning factors
which govern the local and global search of the best position. They are
determined by trial-and-error approach. r; and r; are random numbers
retrieved from uniform (0, 1). o is inertial weight that was recom-
mended by Shi and Eberhart (1998) to enhance the convergence
performance.

2.4. Recurrent neural network (RNN)

RNN is a subset of ANN, which is established to handle the input data
that has sequential characteristics (Alakeely and Horne, 2020; Alom
etal., 2019). Examples of these sequential inputs include sets of words or
sentences, document texts, stock price, etc. Fundamentally, RNN can
preserve any previous information to the current task and such ability
widens its application in different aspects, including speech recognition
(Amberkar et al., 2018; Graves et al., 2013) and language processing
(Guan et al., 2019; Sutskever et al., 2014). The fundamental mechanism
of a basic RNN is that information can be preserved and sent from the
current to the successive step (Alom et al., 2019) as illustrated by its
architecture as shown in Fig. 2a. Apart from this simple RNN, there are
also other representations of RNN, such as Hopfield network, Echo state,
Bi-directional, LSTM, GRU, and so forth. In this paper, we applied three
examples of RNNs, including the simple RNN, LSTM, and GRU, to
perform the well production forecast. The details regarding LSTM and
GRU will be expounded later. The simple RNN used in this study consists
of one hidden layer and one output layer and the respective mathe-
matical formulation is presented below:

he = y(Whx, + Uphe g +by) [©)]
Y, = y(Wyh[ + by) (10)

where h; is known as the vector of hidden-state or hidden layer. It is
computed as shown in equation (9) by summing up three terms and
placing the summation into the activation function that is represented as
y- In this work, the activation function used is the hyperbolic tangent.
Also, y; is the output vector that is determined by adding two terms into
the activation function as shown in equation (10). For the other terms, x;
is the input vectors, W and U represent the weights, and b is the bias
term. It is important to know that the subscripts t and t-1 correspond-
ingly refer to the current and previous timesteps. The subscript h in-
dicates the properties of the hidden layer whereas the subscript y
represents those of the output layer. The use of these notations also
applies to the mathematical formulations of LSTM and GRU in the
following sections. For LSTM, the subscriptsf, i, ¢, and o correspondingly
denote the relevant properties of forget gate, input gate, cell state and
output gate. For GRU, the subscripts u and r respectively mean the
properties of update gate and reset gate. The pertinent details will follow
later.

2.5. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

Albeit the simple RNN can be practically robust, it still has a limi-
tation, namely having the problem of vanishing gradient (Alom et al.,
2019; Hochreiter and Schmidhuber, 1997; Li et al., 2019). This limita-
tion circumvents the simple RNN from exploiting the long-term infor-
mation (Alom et al., 2019; Hochreiter and Schmidhuber, 1997; Li et al.,
2019). This implies that it is unable to store large amount of information
from previous iterations for a more accurate prediction of the outputs.
Therefore, more complicated versions of RNN, which are LSTM and
GRU, have been utilized. LSTM was first developed by Hochreiter and
Schmidhuber (1997) to ensure the long-term dependencies on the pre-
vious information. The architecture of the LSTM employed in this study
is portrayed in Fig. 2b. The respective formulas are expressed below:
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Fig. 4. Cross plot of the actual and predicted oil production (a) SVR-TE (b) SVR-PSO (c) FNN-BP (d) FNN-PSO (e) simple RNN (f) LSTM (g) GRU.
hy = o, x y(c, 16
Table 7 = o % y(e) (16)
Performance metrics of the results estimated by using the blind case. The fundamental idea of LSTM revolves around a cell state ¢ (shown
Datasets Models R? RMSE as the horizontal top line in Fig. 2b) in which the addition or removal of
- A any information is conducted through three gates, namely forget gate f,
Blind Validation SVR-TE 0.9476 7.34 N R i
SVR-PSO 0.9644 6.04 input gate iy, and output gate o (Alom et al., 2019). These gates make
FNN-BP 0.9538 6.89 assessments as if the sequential input data is valuable or not to be kept
FNN-PSO 0.9574 6.61 (Alom et al., 2019; Li et al., 2019). By doing so, relevant information can
Simple RNN 0.8665 5.87 be preserved to the downstream. First, the forget gate plays a pivotal role
LSTM 0.9712 5.45 ide if inf : hould be ke itted based .
GRU 0.9700 56 to decide if information should be kept or omitted based upon equation
(11). In this aspect, the information in the form of input and hidden state
will be discarded (retained) if f; approximates zero (one) (Li et al.,
f, = 6(Wix + Uth; + by) a1 2019). Pertaining to the input gate, it is computed to update the cell
state and through this update, the importance of the input being sent to
i = 6(Wix, + Uih; + by) (12) the next cell is assessed. Moreover, about the output gate, it determines
the output for the hidden states as shown in equation (16). It can be
€ =y(Wex, + Uch; +b,) (13) noticed that the recurrent activation function used in LSTM is a sigmoid
B function that is denoted as 6.
a=fixen+ Lxe a4 GRU is another development of RNN, which was initiated by Cho
etal. (2014), that is employed in this paper. As compared to LSTM, GRU
0 = 0(WoX: + Ushi +bo) as
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Fig. 5. Oil production profile (a) SVR-TE (b) SVR-PSO (c) FNN-BP (d) FNN-PSO (e) simple RNN (f) LSTM (g) GRU.
Table 8 U= (Wux; + Uiy +by) a7
Performance metrics of all seven models considering all data points,
" = o(Wix, + Uhe g +by) (18)
Datasets Models R RMSE
All SVR-TE 0.9935 16.52 bre = Y(Wax + Upfre % hey] + by ) (19)
SVR-PSO 0.9952 14.21
FNN-BP 0.9956 13.65 _
FNN-PSO 0.9952 1415 he= (1= u) xhey +uxche (20)
Simple RNN 0.9957 13.51
LSTM 0.9961 12.69 3. Methodology
GRU 0.9964 12.28

only consists of two gates, which are the reset gate ry and the update gate
u;. The function of the reset gate is to evaluate as if new information
should be passed, which is like those of forget and input gates (Li et al.,
2019). Thereafter, the reset gate decides on how extensively the previ-
ous information should be forgotten. According to the formulas of GRU
shown below, it can be inferred that its simpler framework enables it to
be more computationally favorable as compared to LSTM (Alom et al.,
2019).

Having a good model that helps predicting hydrocarbon production
is crucial in reservoir management. As mentioned previously, we have
developed seven models in this work: FNN-BP, FNN-PSO, SVR-TE, SVR-
PSO, simple RNN, LSTM, and GRU. To build these data-driven models,
we need to first know the source of data because it is the main building
blocks of these models. The details regarding the data will follow.
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Fig. 6. Relative effect of each input parameter on the output predicted by each model considering all data points (a) SVR-TE (b) SVR-PSO (c) FNN-BP (d) FNN-PSO

(e) simple RNN (f) LSTM (g) GRU.
3.1. Field data

In this work, the data from Volve field (Equinor, 2018) on the Nor-
wegian Continental Shelf was utilized. According to the field develop-
ment plan report retrieved from Equinor (2020), Volve field is a 2 km by
3 km oil-bearing reservoir and is located at a depth between 2750 m and
3210 m below sea level. It comprises sandstone and has average prop-
erties with permeability of about 1000 mD (from well testing), porosity
of 0.21, and net-to-gross ratio of 0.93. The water saturation of
oil-bearing zone is on average 0.2. At the depth of 3060 m, the reservoir

pressure and temperature are 340 bar and 110 °C, respectively. Per-
taining to the characteristics of crude oil from Volve field, according to
ExxonMobil (2018), the API gravity is 29.1°, the specific gravity is
0.881, and the viscosity at 20 °C is 22.5 cSt. For more details, kindly
peruse the crude oil assay released by ExxonMobil (2018).

Equinor (2018) has released this database to public in May 2018 for
the purpose of research and development. In this aspect, there are
different types of data in the database, including seismic data, well log
data, reservoir simulation model, etc. However, only the real-field
production data is used in this study. Regarding the production data,
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Fig. 7. Distribution of errors (a) SVR-TE (b) SVR-PSO (c) FNN-BP (d) FNN-PSO (e) simple RNN (f) LSTM (g) GRU.

it consists of the data of 7 wells, namely NO15/9-F-1 C, NO15/9-F-11H,
NO15/9-F-12H, NO159-F-14H, NO15/9-F-15D, NO15/9-F-4AH, and
NO15/9-F-5AH. Each well consists of the data as shown in Table 1:

The production data was recorded daily. For illustrative purpose,
only the well NO159-F-14H is used in this study. For this well, the
production period lasts from February 2008 to September 2016. How-
ever, for practical purpose, only the data between July 2013 and July
2016, which lasts for 1093 days, is used. In addition to this, not all the
data provided will be used and the selected data used for data-driven
modeling is presented in Table 2. The selection of input and output
data was done based upon knowledge of reservoir and production en-
gineering, but it can be conveniently done by using feature selection
method (Zanjani et al., 2020). To further facilitate the readers’ under-
standing of the production scenario, the mean and standard deviation of
each parameter are determined and presented in Table 3. In addition,
the oil production profile of the well NO159-F-14H between July 2013
and July 2016 is plotted in Fig. 3. The dashed vertical line in Fig. 3 will
be explained later.

3.2. Model development

The data needs to be pre-processed before it is used to build the
models. As explained earlier, there are 10 types of data being utilized
and each type contributes to 1093 data points. Hence, this sums up to
10,930 data points. Each data point is then normalized as follows:

(21)

Xinormalized =

In equation (21), Xj, normalized is the normalized value of x; that is any
data point out of the 1093 data points under each type of data as shown
in Table 2 Xmax and Xmin denote the maximum and minimum values
under each data type in Table 2. Thereafter, the normalized data points
are divided into two different sets, namely the modeling set and the
prediction set, based on a ratio of 7.5:2.5. This implies that the first 8190
data points out of 10,930 data points will be employed to develop the
data-driven models whereas the remaining 2740 data points are used as
the blind case to evaluate the predictive performance of the models. It is
essential to divulge that the division for modeling and prediction sets is
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done arbitrarily for practical purposes. It relies upon the consideration
of the modeler about the size of the dataset preserved for prediction. For
a more vivid illustration, the modeling set corresponds to the data points
on the left of the dashed vertical line in Fig. 3 whereas the prediction set
corresponds to the right of the line. Besides, 70% of the data points from
the modeling set is used as the training set and the remaining 30% is
equally divided into the validation and testing sets. In this context, only
the training set is utilized to develop and train the models. The valida-
tion set is employed to prevent the overfitting of the models whereas the
testing set ensures that the models have a good predictive performance
prior to being verified by the data from the blind case (Mohaghegh,
2017). The performance of the models is determined by using two
different metrics, which are the correlation coefficient R? and the root
mean squared error (RMSE). The formulas of the performance metrics
are presented as follows:

6" )
0 (22)

(23)

where N means the total number of data, gj’”

at timestep j, qJ“' is the oil production estimated by the models at

is the actual oil production

timestep j, and q is the mean actual oil production. For the development
of FNN-BP, FNN-PSO, and the three RNNs, the data from the training set
is fed into the neural network to enable the network to learn the rela-
tionship between input and output data. Pertaining to this, the pre-
defined cost function implemented in the neural network training is
the MSE. Therefore, during the training phase, the weights and biases
will be iteratively adjusted as explained to minimize the cost function.

Pertaining to the specifics of the data-driven models, the architec-
tures of both FNNs are the same, which include one input layer with 9
nodes, one hidden layer with 30 nodes, and one output layer with only
one node. For the three RNNs, each of them also comprises only one
hidden layer and one output layer. Besides that, each of the three RNN
representations also has 30 hidden nodes and 1 output node. The
number of hidden nodes and layers for both FNNs and RNNs is deter-
mined by using the trial-and-error approach. The relevant parameters
used to conduct this neural network training phase are presented in
Table 4. From Table 4, it is better to reiterate that Adam has only been
implemented to train all the RNNs and FNN-BP. For FNN-PSO, since
each of the weights (biases) is represented as one particle, the number of
particle swarms is the number of sets of particles employed in the
training phase.

Regarding the development of SVR and SVR-PSO, it is important to
achieve the optimum values of the hyperparameters y, C, and & to
develop models with good performance. For SVR-PSO, the hyper-
parameters are tuned such that the objective function will be minimized.
The objective function consists of the corresponding MSE of the training,
validation, and testing sets, and it is expressed as shown in equation
(24). For SVR-PSO, there are three additional parameters to be adjusted,
namely the weighting factors « 1, « 9, and « 3 for each MSE. To conduct
the tuning with PSO, 200 iterations and 20 particle swarms are used.
Furthermore, the inertial weight used here is 0.40 while both learning
factors are 1.05. Refer to Table 5 for the values of these optimized
hyperparamters,

MSEsvr pso = K1 X MSErrining + k2 X MSEvaiigaion + K3 X MSEreuing ~ (24)

To generate the initial population of the swarm particles, we used the
distribution of uniform (0.01, 1.5) for y, uniform (12, 90) for C, uniform
(0.0001, 0.1) for &, uniform (0, 0.5) for x; and uniform (0, 0.5) for « 3.
Without determining the initial x 3, we optimized it by subtracting the
sum of optimized « ; and « 3 at each iteration from 1.
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4, Results and discussion

‘We have established seven data-driven models to predict the daily oil
production of a real-field well. To determine if these models will exhibit
excellent predictive performance, their corresponding training perfor-
mance need to be evaluated first. Pertaining to this, the models with
excellent training results will generally be able to produce predictions
within a good level of accuracy. In this work, the training performance
of each of the seven models is presented in Table 6. In addition to the
performance metrics computed using the training data, those calculated
using the validation and testing data are also shown. During the devel-
opment stage, if the models demonstrate good performance with the
validation data, it implies that the overfitting issue may be eluded.
Thereafter, the predictability of the models can be evaluated using the
testing data. It is important to understand that only the training data is
employed to build the models. The other data is utilized to provide
useful insights regarding the training process.

From Table 6, it is inferred all the seven models demonstrate excel-
lent results of training, validation, and testing with R> exceeding 0.99
and RMSE being at most 30.83. To be more precise, LSTM has the best
training performance in terms of R? and RMSE compared to the other
models. However, when the models are fed with the validation data,
GRU exhibits the best results. In addition to this, as the models are
verified with the testing data, simple RNN performs the best. Therefore,
RNN-based models generally illustrate better outcomes than both SVR-
based and FNN-based models in terms of training, validation, and
testing. Despite these better results exhibited by these RNN-based
models, the performances of SVR-based and FNN-based models are
deemed to be practically excellent. Nevertheless, the performance
metries shows that all models have undergone an excellent development
phase. We need to be cognizant that having satisfactory modeling
outcome does not necessarily imply that the models can directly be used.
They still must be evaluated by the data from the blind case to further
verify their robustness.

The cross-plots of the actual and the predicted oil production are
presented for SVR-TE in Fig. 4a, SVR-PSO in Fig. 4b, FNN-BP in Fig. 4c,
FNN-PSO in Fig. 4d, simple RNN in Fig. 4e, LSTM in Fig. 4f, and GRU in
Fig. 4g. In general, most of the data points lie on the 45° line which
indicates high accuracy. Nevertheless, Iig. 4a exhibits that there is an
outlier of the validation data being less than zero and another outlier of
the testing data being highly overestimated. This implies that the overall
training performance can still be improved albeit the performance
metrics suggest otherwise. Moreover, Fig. 4d shows that there are some
outliers from the training data that are underestimated by FNN-PSO.
These outliers do not greatly affect the overall training performance of
the model but contribute to the relatively less satisfying training per-
formance compared with FNN-BP. For the RNN-based models, these
plots generally add more confidence that the overall training perfor-
mance of each of the three models is practically excellent. Additionally,
there is no obvious outlier being detected in the plots, which are pro-
duced by using these models.

After the modeling phase is completed, we need to provide data from
the blind case to justify if the models are ready to be employed. As
explained, the data from the blind case is retrieved from the data points
of the remaining 274 days. When these data are supplied into the built
models, their performance metrics are calculated and recorded in
Table 7. For a more vivid illustration, all the data points (1093 data
points of oil production) are plotted alongside the prediction yielded by
all the seven models in Fig. 5. For clarification, the statistics provided in
Table 7 only consider the data points on the right side of the vertical
dashed line in the figures. Based on Table 7, it can be observed that the
use of PSO improves the predictive performance of the models in this
work. For SVR, using PSO to tune the hyperparameters improves the R?
by 1.77% and the RMSE by 17.7%. Therefore, using a metaheuristic
algorithm to tune the hyperparameters does not only reduce the
computational effort, but also helps to attain a higher accuracy of
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prediction. For FNN modeling, when PSO is utilized to conduct the
training, the R? and RMSE are respectively enhanced by 0.38% and
4.06%. Albeit the improvement is not significant, it provides useful
insight that the application of metaheuristic algorithm is viable in
modeling FNN and can have a good predictive performance.

Moreover, it is deduced that LSTM has the best performance with R?
being greater than 0.97 and RMSE being about 5.4. However, it is also
important to observe that in this study, the performance of LSTM is
slightly better than those of GRU and simple RNN. With respect to
simple RNN, LSTM correspondingly improves R? and RMSE by 0.49%
and 7.2% whereas the enhancements induced by GRU are respectively
0.36% and 5.3%. In other words, the improvement of prediction accu-
racy is not very significant by applying more complicated representation
of RNN. Therefore, from Fig. 5, the robustness of ML techniques in
capturing the fluctuating trend of the data is clearly portrayed. In this
context, the conventional DCA approach is only able to perform the
“curve fitting” and reflect the general declining trend of the data. In
addition to this, for the purpose of more comprehensive comparison, the
performance metrics considering all the 1093 data points are calculated
and tabulated in Table 8 for each model. As the result shows, GRU
outperforms the other models. In general, all the models can capture the
overall trend of the data points. Nonetheless, for SVR-TE, it can be noted
that there are both overestimation and underestimation of values in two
of the data points. This corresponds to the outliers mentioned earlier.
Despite this, SVR-TE still performs reasonably well in estimating the
output of the data from the blind case.

Furthermore, the relevancy factor (r) has been implemented to
evaluate the relative importance of these input variables on the pre-
dicted output by the models. In this case, higher absolute value of r
indicates more significant relative effect on the output (Chen et al.,
2014; Nait Amar, 2020; Nait Amar et al., 2021). The relevancy factor can
be mathematically expressed as follows:

(I, q) =0, (Im - i.) (4 —q)

@;. (1

In equation (25), the data point index (or timestep in this case) is
indicated as j, Iy denotes the kth input parameter, and I, means the
respective average value. Besides that, q and q correspondingly repre-
sent the predicted output value and its average. The relevancy factor of
each input parameter is depicted in Fig. 6. As shown, gas volume from
well (or gas production) has the most influential impact on the output,
which is oil volume from well (oil production). Distribution of the errors
corresponding to the predictions (of all data points) performed by all the
seven models are also demonstrated as histogram in Fig. 7. It can be
observed that all seven models display a normal distribution that has a
center being close to errors with zero values. Such distribution provides
extra confidence to the integrity and robustness of the models developed
in this paper.

(25)

j)zzjix (¢ -9’

5. Conclusions

In this work, SVR-TE, SVR-PSO, FNN-BP, FNN-PSO, simple RNN,
LSTM, and GRU models have been developed to predict the oil pro-
duction of a well in Volve field. These models have been trained, vali-
dated, and tested to ensure that they have learnt the relationship
between input and output models before being blind validated.

Generally, RNN-based models outperformed the SVR-based and
FNN-based models in terms of training and prediction. To be more
specific, LSTM outperformed the other six models in the case of training.
Besides that, GRU performed the best in the validation phase whereas
simple RNN yielded the best outcome in the testing phase. However, the
training performance and predictability of SVR-based and FNN-based
models are still practically excellent. Apart from these, we can infer
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that PSO contributes to the enhancement of SVR modeling in terms of
training, but not in the case of FNN modeling due to the existence of
several outliers. Nevertheless, we illustrated that the application of PSO
in data-driven modeling could induce improvements although such
improvements might not be significant for FNN modeling. Additionally,
during the prediction phase, LSTM produced the most accurate results.
Also, when considering all the data points, the performance metrics
computed by using the results estimated by GRU were the best. Finally,
the resemblance of the error distribution produced by each predictive
model to a normal distribution with center close to zero further dis-
played the reliability of the models built in this work.
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ARTICLE INFO ABSTRACT

Keywords: Reservoir Management (RM) is an example of sequential decision problems in the oil and gas industry. Therefore,
DEC‘S';“ ﬂd“alyﬂs implementing Decision Analysis (DA) tool to systematically resolve such problems has been a common practice.
Waterflooding

The value of Information (VOI) framework acts as one of these tools that helps reservoir engineers to manage RM
problems. Regarding this, the Least-Squares Monte Carlo (LSM) algorithm, which is one of the simulation-
regression approaches, has been employed to estimate VOI for a better quality of decision-making (DM). Inte-
gration of the LSM algorithm in RM is coined as “Sequential Reservoir Decision-Making” (SRDM). This
approximate method is essential to resolve a sequential decision problem with high dimensionality caused by
many possible outcomes of uncertainties. This challenge is generally known as the “curse of dimensionality”. In
this work, a modified LSM algorithm has been applied under the SRDM paradigm to optimize the waterflooding
initiation time considering geological uncertainties. The modification considers the effects of information ac-
quired previously and at the current decision time before a decision is made. The reservoir model used in this
work is the OLYMPUS benchmark model. Apart from utilizing Linear Regression (LR) in the LSM algorithm, the
use of two machine learning (ML) techniques, viz. Gaussian Process Regression (GPR) and Support Vector
Regression (SVR), have been illustrated to estimate the VOI. Based on the results, LR, GPR, and SVR corre-
spondingly estimate the VOI as 11.52 million USD, 11.17 million USD, and 12.46 million USD. This means that
SVR displays an improvement of 8.18% compared to the VOI assessed by LR. This shows its good applicability in
VOI estimation and it can be concluded that integrating ML techniques into the SRDM paradigm demonstrates
high potential for RM applications.

Value of information
Simulation-regression approach
Machine learning

Optimization under uncertainty

1. Introduction technique is formulated to evaluate if the improvement in DM by

acquiring the information is worth the cost required to gain it. In another

Decision Analysis (DA) is one of the knowledge domains that has
been ubiquitous in different aspects of engineering studies. According to
Howard (1980), DA can be understood as a systematic methodology that
transforms an opaque (hard to understand) decision problem into a
transparent (easy to perceive) one via a series of transparent steps.
Concerning this, Value of Information (VOI) is one of the most prevalent
decision-making (DM) tools. VOI is the approximation of additional
value induced when information is brought to a decision problem
(Howard, 1966). Despite having such a lucid definition of DA, many
engineers are still subject to misconception. They tend to include as
many details as possible when they are developing their DM tool,
including VOI. This might not be a good practice because only important
or pertinent factors should be considered in DM models.

Furthermore, it is enlightening for engineers to realize that the VOI

* Corresponding author.
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https://doi.org/10.1016/j.petrol.2022.111166

word, the VOI analysis is an a priori analysis that quantitatively assesses
the benefits of obtaining additional information before the data is
gathered and a decision is made (Hong et al., 2018). As Bratvold and
Begg (2010) have counseled, for an information-gathering activity to be
worthwhile, its VOI should exceed the cost of the activity itself. Also, it
must have the ability to change the decision maker’s beliefs about un-
certainty and the decisions made otherwise. Hence, engineers ought to
be cognizant that VOI does not in fact “reduce uncertainty”, but it fa-
cilitates the adjustment of the decisions concerning underlying uncer-
tainty. Thus, VOI is often coupled with uncertainty and DM, in which
information cannot be valued without a specific decision context
(Bratvold et al., 2009; Hong et al., 2018).

The use of the VOI methodology has been growing in the oil and gas
industry, especially in the aspects of reservoir management (RM), for the
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past decade. RM refers to the employment of available technology, labor
resources, and financial assets to maximize economic returns through
hydrocarbon production from a reservoir (Satter et al., 1998; Wiggins
and Startzman, 1998). RM generally entails a series of operations and
decisions, stemming from the initial phase of field discovery to the final
phase of field abandonment. Furthermore, most of the DM problems are
considered sequential and involve a lot of uncertainties. This implies
that information is continuously acquired to enhance the quality of DM.
Therefore, the VOI framework aptly applies in the resolution of such
sequential DM problems. Nevertheless, the real-world challenge in this
context is to determine the analytical solution of VOI.

One of the methods to approximately compute the VOI is by applying
a decision tree (DT), which is a part of dynamic programming. DT is
efficient for visualization and communication of the frame of a
sequential decision. Fundamentally, a sequential decision problem can
be represented as a DT and solved by rolling back the DT itself. For a
more comprehensive implementation of DT, refer to these books (Brat-
vold and Begg, 2010; Howard and Abbas, 2016). Unfortunately, the DT
method will encounter the “curse of dimensionality” if it is used to solve
a more sophisticated decision problem (Powell, 2011). In this aspect,
three main sources of the “curse of dimensionality” comprise the num-
ber of possible outcomes (or uncertainties), the number of decision
points (time where a decision needs to be made), and the number of
alternatives at each decision point (Powell, 2011). Least-Squares Monte
Carlo (LSM) algorithm that was developed by Longstaff and Schwartz
(2001) can replace DT in resolving a more complex problem, but it is
only efficient to handle sequential decision problems with many un-
certain quantities and limited number of alternatives. The increase in
the number of alternatives and decision points causes an exponential
increase in computational effort and thus, the “curse of dimensionality”
arises.

LSM is placed under the umbrella of the simulation-regression
approach in terms of the determination of VOI. As the name of the
approach implies, it can be perceived that there are two main frame-
works, namely simulation and regression analysis. Monte Carlo simu-
lation (MCS) is one of the standard practices to capture the effect of
uncertainties on the production profile. In reservoir engineering, un-
certainties generally pertain to the geological properties of a reservoir.
Hence, numerical reservoir simulation (NRS) can leverage MCS to
perform forward modeling to generate production data under un-
certainties for any RM decision problem. Thereafter, regression analysis
is conducted in the form of backward calculation to estimate the VOIL
The details of this analysis will follow later. Linear Regression (LR) has
been used to perform the regression analysis. However, as the research
domain has been developing, modifications or improvements to the LSM
algorithm] have been done to resolve different sequential decision
problems. More detailed descriptions will follow.

The application of VOI analysis in the oil and gas industry has been
overviewed by Bratvold et al. (2009). In addition, several articles have
illustrated the implementation of the simulation-regression approach
under the VOI paradigm. Willigers and Bratvold (2009) performed the
valuation of real options in an oil and gas project through the imple-
mentation of LSM. Stemming from this work, LSM was further employed
for the valuation of swing contracts in the field of natural gas and
electricity (Willigers et al., 2011). Alkhatib et al. (2013) discussed the
use of LSM to yield an optimal policy of surfactant flooding in both
homogeneous and heterogeneous reservoirs considering geological un-
certainty. Hong et al. (2019) further extended the use of LSM by
coupling this algorithm with a proxy model, known as the Two-Factor
Production Model that was comprehensively discussed (Parra Sanchez,

1 LSM is precisely a combined application of MCS and LR. The use of sam-
pling techniques other than MCS for the generation of different realizations of
simulation and other data-driven methods as substitutes for LR is better termed
as simulation-regression method.
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2010) to evaluate the optimal switch time of waterflooding. The LSM
algorithm was modified to integrate the dependency of both currently
and previously measured data. Therefore, the algorithm was named
modified LSM. Based upon the formulation of modified LSM, Tadjer
et al. (2021a) evaluated the VOI under polymer flooding. Besides LR,
they successfully utilize machine learning (ML) techniques (nonlinear
regression), including neural network regressor and Tree-based Pipeline
Optimization Tool (TPOT), which was proposed by Olson et al. (2016),
as an alternative. Dutta et al. (2019a) also displayed how Principal
Component Regression and Partial Least-Squares Regression could be
implemented as a nonlinear regression approach to assess VOI for
sequential spatial data collection in subsurface energy application.
There are also other papers (Dutta et al., 2019b; Eidsvik et al., 2017)
expounding on the application of simulation-regression approaches for
the estimation of VOI.  Furthermore, these nonlinear
simulation-regression approaches have been illustrated in other inter-
esting tasks with the emphasized application in Carbon, Capture, and
Storage (CCS). Tadjer et al. (2021b) implemented TPOT as the regres-
sion technique to determine the VOI of performing carbon storage in
Utsira formation. Also, Anyosa et al. (2021) applied some ML-based
regression methods, including k-Nearest Neighbors, Random Forest,
and Convolution Neural Networks, to do VOI analysis to evaluate the
value of seismic monitoring of CO; storage at Smeaheia site.

The work that is conducted here is inspired by a previous work (Ng,
2019). In this paper, the modified LSM algorithm is implemented to
determine the optimal initiation time of waterflooding in the OLYMPUS
reservoir model under geological uncertainties. This initiation is decided
based on the acquisition of information from both oil and water pro-
duction data. Moreover, 50 different geological realizations have been
employed to capture the uncertainties in the DM process. The pertinent
details will follow in later sections. Apart from the conventional LR
approach for regression analysis, other nonlinear regression techniques
are also utilized. Examples of the nonlinear techniques (alternatively
termed ML-based methods) chosen in this work consist of Gaussian
Process Regression and Support Vector Regression. The corresponding
computed VOI and the decisions to be made for each geological reali-
zation by incorporating different regression methods are then analyzed
and compared for further discussion.

After this introduction, the paper is structured by having the
following sections, Section 2 provides the theoretical framework of VOI
in which the mathematical implementation of VOI estimation is pre-
sented. The background of the decision problem and the details of the
OLYMPUS reservoir model as well as the economic model employed are
thereafter briefed under Section 3. Then, Section 4 discusses the
mechanism of the modified LSM along with its integration into
“Sequential Reservoir Decision-Making” (SRDM). Section 5 explains the
other nonlinear regression ML-based methods used in this work.
Thereafter, Section 6 highlights the results and relevant discussions.
Some concluding remarks are summarized in Section 7.

2. Value of Information (VOI)

In any information acquisition activity, VOI relies upon two impor-
tant uncertainties, namely distinction of interest and observable
distinction (Bratvold et al., 2009). The distinction of interest is not
observable and aimed to be learned. Therefore, any information ob-
tained in the form of any test result is considered as the observable
distinction that helps the decision makers to perceive better the
distinction of interest. In the context of RM, specifically production
optimization, the production data gained until time t (when the decision
is to be made) is treated as an observable distinction. It is computa-
tionally challenging to analytically represent the distribution of
observable distinction due to its high dimension. Therefore, the use of
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Monte Carlo sampling plays a role to remediate this issue. Based on the
assumption of risk neutrality”, VOI can be mathematically represented
as follows:

Value of Information = max{0, y}
Expected Value with Expected Value without (&)

= Information } - { Information
The estimated y under a decision problem can be negative. Negative
v denotes that it is not economically feasible to acquire information.
Hence, the lower limit of VOI is always treated as zero. Besides that, for
Expected Value without Information (EVWOI), the corresponding deci-
sion without information (DWOI) is the alternative that optimizes the EV
over all the realizations. For Expected Value with Information (EVWI),
the respective optimal decision is Decision with Information (DWI). The
mathematical formulations of EVWOI and EVWI are respectively dis-

played as:

EVWOI = maxaea [ [ pe(x,a) p(x) dx ] = maxes (Ni, N; p(x",a) )

. (2
where a;’,’;“','(';’l’] = arg maxec (E ; #(x", a) )
. 1 N
EVWI = [ maxoca[E(u(x,a)ly )] p(¥) dy =~ 7 3 maxacs E[(u(x,a)ly")]
optimal 1 ¢ r
where aghimal — ﬂ.rgﬁy ;maxaf,\ E[(u(x,a)[y")]
3

According to the formulations above, p(x) is a prior probability
distribution of distinction of interest that is represented as an ensemble
of x = {x!, x%,...,x™}. a is used to denote the available alternatives,
which are from a set of possible alternatives, A. Furthermore, u(x", a) is
the function that yields the prospect values corresponding to a specific
realization and selected alternatives. y is a collection of observable data,
in which y = {y', ¥?,...,y™} and p(y) is the marginal probability dis-
tribution. For each realization of x', forward modeling can be done to
determine y'.

VOI can also be understood as VOII (Value of Imperfect Information)
because it is very challenging to acquire perfect information regarding a
DM context in real life. Information is perfect if it is always true.
Equation (3) portrays the estimation of EVWIL Thus, in RM, perfect
information is the information that reveals the true properties of a
reservoir and the impacts of the recovery mechanism. Besides that, the
value of perfect information (VOPI), which is the difference between
Expected Value with Perfect Information (EVWPI) and EVWOIL, acts as
the upper limit of VOI. In this context, the decision with perfect infor-
mation (DWPI) corresponds to an alternative that optimizes the relevant
objective function for each realization based upon prior distributions.
Finding the average of such values of the objective function over all the
realizations yields EVWPI as follows:

EVWPI = [ maxaea [u(x,a)] p(x) dx =~ NL i maxaea [u(x", a)]
N “@

i 1
optimal MaXacs f(x",a)
1

where apwpr :argﬁ

[
=

2 Risk neutrality is a risk attitude apart from risk-averse and risk-seeking.
Please refer to this literature (Hillson and Murray-Webster, 2017) for more
explanation of risk attitudes. In a simpler term, a risk-neutral decision maker
applies the Expected Value (EV) in the process of DM. This implies that the
decision maker will have the same preference over two alternatives with the
same EV.
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3. Background of the decision problem and models
3.1. Problem setting

The decision problem discussed here is a part of RM and similar
problems have been briefed in several pieces of literature (Hong et al.,
2019; Ng, 2019; Tadjer et al., 2021a). Fundamentally, this decision
problem involves the optimization of the initiation time of water-
flooding in a 3D reservoir model (the benchmark model OLYMPUS). In
the framework of this sequential decision problem, the production
period of the OLYMPUS model is assumed to be 10 years. Thereafter,
each year, a decision is needed if it is better to switch from primary
recovery to waterflooding (in other term, to start waterflooding) or
continue only with primary recovery. The termination time of produc-
tion (under both primary recovery and waterflooding) is then optimized
too. Concerning these, the initiation of waterflooding and termination of
production can only occur once.

3.2. Reservoir model

The reservoir model implemented in this paper is the OLYMPUS
model and simulation is performed by using the Eclipse 100 software
(Schlumberger, 2019). This benchmark case, a synthetic field model
developed by Fonseca et al. (2020), mainly consists of an oil-water
system and has an approximate dimension of 9 x 3 km. The geolog-
ical properties of this model have a typical resemblance to those of the
North Sea field with Brent-type oil. The model has a thickness of 50 m
with two different zones separated by an impermeable shale layer. In
addition, the model is made up of 341,728 grid blocks in which the
average dimension of each block is 50 x 50 x 3 m. However, the total
number of active grid blocks are 192,750.

Moreover, to resolve the sequential decision problem as explained
earlier, an ensemble of 50 realizations is used to capture the effect of
uncertainty in this context. The uncertain variables consist of facies,
porosity, permeability, net-to-gross ratio, initial water saturation, and
transmissibility across the faults. For further details of the geological and
petrophysical aspects of OLYMPUS, please peruse Fonseca et al. (2020).
About the well configuration in this model, there are 7 injectors and 11
producers. Each of the injectors is controlled by keeping the maximum
well rate of 2000 sm®/day with bottomhole pressure target of 250 bars.
Besides that, each of the producers is controlled by having the maximum
bottomhole pressure at 150 bars. With these sets of control, the initiation
time of all the injectors is optimized by applying the VOI analysis. The
architecture (permeability in x-direction, PERMX in the unit of mD) of
one of the realizations of the OLYMPUS model used here is presented in
Fig. 1.

3.3. Economic model

The economic model used in this work is represented by net present
value (NPV), which is illustrated as follows:

(5)

— “Z At (Poq), — Pogl, — Pydl,) — CAPEX,

=} (1 + interest rate)"

Based on the NPV equation above, P indicates the price in which the
subscripts o, w, and wi respectively mean oil, water produced, and water
injected. qi indicates the production (or injection) rates at timestep i. At;
is the difference between timesteps i and i-1. The timestep is on yearly
basis. CAPEX denotes capital expenditure. In addition, the values of
economic variables applied in this paper are tabulated in Table 1. Based
on Table 1, it can be noted that in the case of waterflooding, there are
three types of CAPEX, such as capital expenditure for having only pri-
mary recovery, additional capital expenditure for starting waterflooding
after primary recovery, and capital expenditure for starting water-
flooding without having primary recovery.
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Fig. 1. Top view of Realization 5 of OLYMPUS.

Table 1
Values of economic variables used in this work.
Variables Values Units
0il Price 408.85 usD/m?*
Water Production Price 50.32
‘Water Injection Price 50.32
CAPEX (Primary Recovery) 40 million USD
Additional CAPEX 30
CAPEX (Waterflooding) 85
Interest Rate 6% per year

4. Simulation-regression paradigm

In general, EVWII under a specific decision context can be estimated
by using the simulation-regression approach. This approach leverages
MCS and regression analysis to determine the conditional EV upon given
data. By implementing MCS, it is possible to alleviate the curse of
dimensionality induced by the number of uncertain outcomes. Upon the
completion of MCS, the backward induction is conducted with the aid of
regression analysis to approximate the conditional EV of each alterna-
tive. The following are the details of the mechanisms corresponding to
MCS and regression analysis (backward induction):

Monte Carlo simulation (MCS):

1) MCS is implemented to generate several realizations with different
state variables (for instance, permeability, porosity, net-to-gross
ratio, and so on) that can be understood as x".

2) Forward modeling of these realizations is done to create data (cor-
responding to oil/water production rates as well as water injection
rates) to which noise will be added by using the statistics of the
measurement errors. The noise is modeled by using zero mean and
standard deviation of 0.15 here.

3) NPV of each decision alternative y(x",a) is computed and EVWOI is
thereafter determined by using equation (2).

Regression Analysis:

1) Beginning from the last decision point in time, NPVs are regressed on
the generated data y* (considering only g, and qy) to determine the
expected NPV (ENPV) of decision alternative a being conditional on
the data, y*. This procedure corresponds to the calculation of the
term E|[(u(x,a)|y")] as demonstrated on the right-hand side of equa-
tion (3).

2) The step above is repeated for every decision alternative.

3) The best decision alternative, a;"v'vi';;"l is made by selecting the deci-
sion alternative that yields the maximum conditional ENPV given the
known data for every realization, and EVWII is computed based on
equation (3). VOI is then calculated by using equation (1).

4.1. Sequential Reservoir Decision-Making (SRDM)

Regarding the details of regression techniques used, if the technique
employed is the least-squares method (or LR), then it is termed the LSM
algorithm as mentioned before. In this aspect, Hong et al. (2019) have
discussed the application of LSM in the resolution of the initiation time
of Improved Oil Recovery as an epitome of SRDM. On closer scrutiny, as
LSM is employed for SRDM, the termination time given a specific initi-
ation time of waterflooding must be first determined. Due to its nature of
backward induction, the algorithm commences in Year 10.

In (the beginning of) Year 10, the optimal termination time is found
by assuming that waterflooding has been started at this time. Therefore,
there are only two available options (or decision alternatives), which are
“terminate in Year 10" and “continue with waterflooding in Year 10".
Therefore, the NPVs corresponding to these two options are regressed on
the production data ranging from Year 1 to Year 9 given that water-
flooding has started in Year 10. Thereafter, between these two options,
that of higher estimated NPV is the optimal option in this case for each
realization. Averaging the NPVs of these options over all realizations
results in the ENPV of waterflooding initiation in (the beginning of) Year
10.

‘When the time rolls back to (the beginning of) Year 9, given water-
flooding started the same year, there are three available options, namely
“terminate in Year 9”, “continue with waterflooding in Year 9 but
terminate in Year 10, and “continue with waterflooding at Year 10”.
The last option corresponds to those determined in the previous step.
Hence, the NPVs of the last two options are first regressed on the pro-
duction data from Year 1 to Year 9 (these two options are regressed first
due to the availability of data from Year 1 to Year 9). Based upon these
estimated NPVs, the two options are compared and the respective
optimal NPV is recorded for each realization. Then, the chosen option
for every realization is compared with the option of “terminate in Year
9” through another regression analysis using the production data
ranging from Year 1 to Year 8. This whole step will determine the ENPV
of waterflooding initiation in (the beginning of) Year 9. The same logic is
conducted every previous year. This procedure assists us to select the
optimal stopping time for each year by assuming that waterflooding is
initiated in that particular year.

Upon completing this procedure, the optimal option of waterflooding
initiation considering termination has been determined Then, these
options are compared with the option of “continuing only with primary
recovery”. In this case, in (the beginning of) Year 10, the NPVs of
“initiating waterflooding in Year 10 with its respective optimal termi-
nation time” and “continuing only with primary recovery” are regressed
on the production data from Year 1 to Year 9. The higher approximated
NPV is then used to select the optimal option for each realization.

Then, in (the beginning of) Year 9, the NPVs of these optimal options
in Year 10 and the option of “continuing only with primary recovery” in
Year 9 are again regressed on the production data from Year 1 to Year 8.
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The same workflow is implemented until the time becomes Year 1. Other
techniques can also be used in this context. Two other approaches,
namely Gaussian Process Regression (GPR) and Support Vector
Regression (SVR) are chosen in addition to Linear Regression. GPR and
SVR will be briefed in the following section.

5. Machine learning techniques
5.1. Gaussian Process Regression (GPR)

GPR is a non-parametric ML approach that can be employed to
perform data-driven modeling based on the Bayesian principle and
Gaussian process. In a more technical sense, the Gaussian process (GP)
can be perceived as a collection of random variables which possesses a
multivariate joint distribution. In GPR, there is a function that can yield
the output at certain inputs, in which the Gaussian noise with the normal
distribution is included. GP acts as a distribution over functions and is
defined by a mean function and covariance function. The covariance
function (also known as kernel function) captures the dependence be-
tween different values of the function at their respective inputs. In this
work, the employed kernel function is a squared exponential function.
By having defined the mean and covariance functions, GP can be
employed to retrieve a priori function values and posterior function
values that are conditioned on the observed variables.

When it comes to the prediction of function values at new inputs, the
joint distribution of the observed values and function values at these
new points can be developed. Thereafter, GPR can be used to derive the
“updated” posterior distribution by conditioning on these observed
values. By doing so, the respective mean function can be determined by
the posterior distribution and is treated as the prediction of regression.
So, it is important to understand that GPR does not result in a deter-
ministic model that best fits the data provided. However, it yields the
predicted output by embracing the probability. For more comprehensive
details of GPR, please counsel the following literature (Liu et al., 2020;
Rasmussen and Williams, 2018). The modeling of GPR in this work is
performed with the aid of Statistics and Machine Learning Toolbox in
MATLAB R2021b (MathWorks, 2022). The hyperparameters are set at
default values apart from the initial value for the noise standard devi-
ation of GP which is set at 4.

5.2. Support Vector Regression (SVR)

SVR is another popular example of supervised learning techniques
that is applied to approximate the relationship between inputs and the
respective outputs with the weight vector and the bias term as the pa-
rameters. In general, SVR involves the mapping of the input space vector
into feature space with higher dimensionality. This is to transform the
initial non-linear problem into a more conveniently solvable linear
regression function. Then, the regularized risk function can be mini-
mized to estimate the weight vector and the bias term. To achieve this,
the constrained optimization problem is established by introducing the
non-negative slack variables (Forrester et al., 2008), This optimization
function can be transformed into dual space by using Lagrange multi-
pliers for the resolution of the constrained optimization problem (Sha-
we-Taylor and Cristianini, 2004). In this paper, the Gaussian function is
used as the kernel function. Regarding the development of the SVR
model, it is done by applying Statistics and Machine Learning Toolbox in
MATLAB R2021b (MathWorks, 2022). The default hyperparameters are
used, but standardization of data is implemented.

6. Results and discussion

Under the problem setting discussed, the DWOI consists of 2 years of
primary recovery and then 8 years of waterflooding. This yields a field
production of 10 years. DWOI corresponds to the alternative with the
highest ENPV over all realizations. The respective EVWOI is 1479.06
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million USD. This denotes that without acquiring any production data,
the net profit considering all the realizations is 1479.06 million USD if
there are 2 years of primary recovery followed by 8 years of water in-
jection. Furthermore, DWPI corresponds to the alternative with the
highest NPV for each realization. Averaging these NPVs results in EVWPI
and it is calculated to be 1625.54 million USD. Then, VOPI is 146.47
million USD. This implies that if the cost of the information-gathering
activity exceeds 146.47 million USD, this activity needs to be
abandoned.

Also, the normalized frequency distributions (NFD) and the
normalized cumulative frequency distributions (NCFD) of DWPI for the
lifetime of primary recovery, those of secondary recovery (water-
flooding), and a total lifetime of production are illustrated correspond-
ingly in Fig. 2. Based on Fig. 2a, the NFD displays that about 30% of 50
geological realizations result in 1 and 2 years of primary recovery, which
sums up to 60% of total realizations. On scrutiny, the NCFD portrays that
88% of the realizations recommend the lifetime of primary recovery to
be equal to or less than 2 years. Thus, a considerably short lifetime of
primary recovery is essential to achieve EVWPI. Additionally, about
36% of realizations yield 8 years of waterflooding as shown by the NFD
plot in Fig. 2b. In this context, 70% of all the realizations propose water
injection for at most 8 years. Around 56% of realizations proceed with a
total of 10 years of production as demonstrated in Fig. 2c. In the case of
NCFD, 44% of the realizations propose having a total lifetime of at most
9 years. It means that more than 50% of the realizations suggest 10 years
of total lifetime.

Regarding the DWII of waterflooding for each realization, it has been
previously expounded that 3 different techniques are employed to
perform the backward induction (regression analysis) in the modified
LSM algorithm to provide an SRDM solution. Out of these 3 techniques,
GPR and SVR are generally considered ML-based. The regression anal-
ysis in the modified LSM algorithm can be treated as an example of a
training process for ML techniques. Therefore, to elude the issue of
overfitting during the training process, 5-fold cross-validation is used
during regression analysis. Fig. 3 portrays the plots of observed NPV
against approximated NPV for each alternative during regression anal-
ysis at each decision point in time with LR, GPR, and SVR.

As illustrated in Fig. 3, the Pearson Correlation Coefficients, p
respectively obtained for LR, GPR, and SVR are 0.9634, 0.9772, and
0.9296. To further assess the quality of proximity, coefficient of deter-
mination, R for LR, GPR, and SVR are correspondingly computed to be
0.9281, 0.9549, and 0.8642. According to these results, it is noticeable
that GPR has outperformed both LR and SVR in terms of NPV approxi-
mation. On closer serutiny, LR in the modified LSM algorithm yields an
EVWII of 1490.58 million USD. GPR and SVR resulted in the corre-
sponding EVWIIs of 1490.23 million USD and 1491.52 million USD.
Moreover, VOIs of LR, GPR, and SVR are respectively 11.52 million USD,
11.17 million USD, and 12.46 million USD. Despite having the highest
R, GPR results in the lowest VOT in this case. This shows that the higher
accuracy of the approximated NPV (vs. observed NPV) for each alter-
native is unable to avoid the suboptimality of alternatives at certain
paths (or realizations). Besides that, as compared with the case of LR,
SVR enhances the VOI estimation by 8.18%. This reflects a good po-
tential for VOI enhancement by implementing a nonlinear method under
the framework of LSM.

Besides that, it can be deduced from these results that EVWIIs are
higher than EVWOIs and this implies that it is worthwhile to include the
effect of future information in decision-making. In this case, applying LR
in the modified LSM algorithm would enhance the ENPV by 0.78%. An
increase by 0.76% and 0.84% is also attained through the imple-
mentation of GPR and SVR, respectively. This practically illustrates the
benefit of acquiring additional data in lieu of abiding by the initial plan
as suggested by DWOI. Moreover, the NFD and NCFD of DWII for the
lifetime of primary recovery, those of secondary recovery (water-
flooding), and the total lifetime of production are illustrated corre-
spondingly in Fig. 4 for LR, Fig. 5 for GPR, and Fig. 6 for SVR. Based on
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Fig. 3. Plots of observed NPV against approximated NPV for each alternative with (a) LR, (b) GPR, and (c) SVR.

the NCFD plots, it can be observed that only 20% of the realizations
result in at most 1 year of primary recovery in the case of LR. Thus, there
is 80% chance that 2 years of primary recovery produces the optimal
results. For the lifetime of secondary recovery, 90% of all the re-
alizations propose a water injection duration of at most 8 years. This
results in 66% chance of 10 years of total lifetime.

Besides that, in the case of GPR, the NCFD plot illustrates that 36% of
the realizations recommend the primary recovery of at most 1 year. In
addition, there is 84% chance that the water injection should take place
for at most 8 years. Regarding the total lifetime, GPR results in a total
period of 10 years with 58% chance. When it comes to the NCFD plot of
SVR, 98% of the realizations result in primary recovery for at most 2
years whereas 94% of those suggest a waterflooding of at most 8 years.
Thereby, 62% of all the realizations result in 10 years of total lifetime. In
general, these three techniques (LR, GPR, and SVR) would mostly result
in the optimal decision of 2 years of primary recovery and 8 years of
waterflooding that contribute to a total of 10 years of production. As it
has been explained, DWPIs as suggested in Fig. 2 signify the most
optimal decisions. So, if the distribution of DWII is closer to that of
DWPI, there is a better chance for the respective EVWII to be higher.
Nonetheless, the distributions of DWII for the Lifetime of Primary Re-
covery estimated by using LR, GPR, and SVR are considerably different
from that of DWPL. This also explains the obvious difference between
each of the EWIIs and EWPL

Fig. 7 compares the cumulative distribution function (CDF) of the

NPVs corresponding to DWOI, DWII (considering all 3 techniques), and
DWPI. According to Fig. 7, the more rightward the CDF curve is, the
higher the ENPV is. The CDF of NPVpwo; and the three CDFs of NPV
are close to each other. This proximity resonates with the slight
improvement (less than 1%) in the EVWOI for the determination of VOI,
as discussed earlier. This can be due to the suboptimality of alternatives
made for some realizations as the ML-based regressions used are
approximate methods.

Fig. 8 (Fig. 9) shows the plot of the mean oil (water) production rate
corresponding to DWOI and DWII of 3 different techniques. In the case of
DWOI, the mean oil production rate starts increasing after Year 2
because waterflooding is initiated at that time. This is also reflected by
the increase in the mean water production rate after Year 2 as shown in
Fig. 9. For DWIIs of the three techniques, the initiation time of water-
flooding is generally different for different realizations based on the
acquisition of information under the framework of SRDM. In this aspect,
the issue of suboptimality, as discussed earlier, would occur, and affect
the trends of the plots. A tremendous increase after Year 2 is observed.
This can be explained by referring to Figs. 4-6, from which more than
50% of the NFD (optimal decision policy) correspond to the lifetime of
primary recovery for 2 years.

Despite being limited by the curse of dimensionality due to the in-
crease in the number of alternatives, this work successfully displays the
integration of NRS into the framework of modified LSM for optimization
of the initiation time of waterflooding under uncertainties. Different
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Fig. 4. Distribution of DWII for lifetime of primary recovery, lifetime of secondary recovery (waterflooding), and total lifetime in LR.
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geological uncertainties are considered as previously mentioned to in-
crease the verisimilitude of the case study. Including other types of
uncertainty, such as economic uncertainty, is another viable part of
future works that can further reinforce the practicality of this method-
ology. In that case, prices or costs can be modeled by employing a sto-
chastic approach, viz. Two-Factor Price Model (Jafarizadeh and
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Bratvold, 2013). Nevertheless, for practical purposes, decision makers
need to honor the trade-off between uncertainties and the availability of
resources (e.g., financial or labor). This is to ensure that limited re-
sources will not be exhausted to include as many uncertainties as
possible.

Some possible extensive applications can be considered in the future



C.S.W. Ng and A. Jahanbani Ghahfarokhi

06

e
o

1
S

e
o

Normalized Frequency Distribution
° o
- w

0 2

Lifetime of Primary Recovery (years)

(4
@

4 6

8

10

o e
o ~

e
o

[
w

Normalized Frequency Distribution
o °
n S

o

0 " "

0 2

Lifetime of Secondary Recovery (years)

0.7

4 6

8

10

Normalized Frequency Distribution
o ° o o o
9 b = o >

e

4 6
Total Lifetime (years)

(@)

(b)

(c)

Normalized Cumulative Frequency Distribution
s © © o o = o o o
2 8 &8 2 & & 2 & & 4

o

Journal of Petroleum Science and Engineering 220 (2023) 111166

2 4 6 8 10
Lifetime of Primary Recovery (years)

Normalized Cumulative Frequency Distribution
e e o 2 © o o o
R w R B > N ®» o -

e

o

Normalized Cumulative Frequency Distribution
e ted Fd e 4 4 e H4 4
2 8 &8 % & & 2 & & .

o

2 4 6 8 10
Lifetime of Secondary Recovery (years)

2 4 6 8 10
Total Lifetime (years)

Fig. 6. Distribution of DWII for lifetime of primary recovery, lifetime of secondary recovery (waterflooding), and total lifetime in SVR.

for the work presented here. One of them includes the application of

smart proxy models (Mohaghegh, 2022), as substitutes for NRS, under
the framework of the modified LSM algorithm. In general, NRS is
considered one of the prevalent tools when it comes to RM issues on a

field scale. Nonetheless, using NRS, a geologically complex reservoir
model is likely to be computationally prohibitive to be coupled with the
modified LSM algorithm. Concerning this, the application of smart proxy
models in tandem with the algorithm can be a good recommendation to

10
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Fig. 8. Plot of mean oil production rate corresponding to DWOI and DWII of all
three techniques.

be considered in the future. This demonstrates not only the versatility of
the algorithm but also reduces the computational efforts induced by NRS
under the paradigm of the SRDM. In this context, the good computa-
tional reduction capability of the smart proxy models has been
demonstrated in several pieces of literature (Nait Amar et al., 2020,
2021; Ng et al.,, 2021a, 2021b, 2022).

This work mainly sheds light on the use of supervised learning in the
context of the SRDM framework. The robustness of ML can be further
highlighted if the use of a more advanced technique, namely rein-
forcement learning (RL), is embedded in this framework. RL (van Otterlo
and Wiering, 2012), generally expounds on the interaction between an
intelligent model (an agent) and an environment (a problem setting) to
take actions based on the reward. In other words, RL can be perceived as
a DM tool. It is thereby worth investigating how RL can be combined
with the LSM algorithm for wider applications to improve DM in the
aspects of RM. Additionally, the SRDM approach discussed here can also
be extended to other domains of reservoir and production engineering,
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Fig. 9. Plot of mean water production rate corresponding to DWOI and DWII of
all three techniques.

such as water-alternating-gas injection, well-placement optimization,
and inflow control valve optimization. These optimization problems, to
certain extents, are perceived as an example of switching problems,
which have been proven to be efficiently resolved by employing the
modified LSM algorithm.

7. Summary and conclusions

In this work, it has been illustrated and expounded on how the
modified LSM algorithm, an epitome of the simulation-regression
approach, can be implemented as an SRDM approach to resolve a
sequential decision problem in reservoir engineering. Concerning this,
optimization of the initiation time of waterflooding in the OLYMPUS
reservoir model under geological uncertainties is chosen as the pertinent
sequential decision problem. Being different from the initial LSM algo-
rithm proposed by Longstaff and Schwartz (2001), this modified variant
integrates the dependency on previously and currently acquired data. In
this aspect, the effect of information is shown to be integrated into the
context of DM. To enlighten the readers, the mathematical formulations
to compute VOI have been concisely explained. There is also a discussion
and illustration of how the modified LSM algorithm (as a variant of the
simulation-regression approach) can play a part in determining VOI,
which is one of the most prevalent DM tools. Besides that, it has been
discussed how this algorithm can be implemented as an SRDM approach
to resolve the issue of waterflooding initiation time. LR has been the
conventional technique of the LSM algorithms. Apart from LR, two other
ML-based techniques, viz. GPR and SVR are employed to conduct the
regression analysis. Based on our investigation, the DWOI is 2 years of
primary recovery followed by 8 years of waterflooding, and the resulting
EVWOI is 1479.06 million USD. With the aid of the SRDM approach, the
VOIs that are correspondingly estimated by using LR, GPR, and SVR are
11.52 million USD, 11.17 million USD, and 12.46 million USD. There-
after, the EVWIIs which are estimated by LR, GPR, and SVR, correspond
to 1490.58 million USD, 1490.23 million USD, and 1491.52 million
USD, respectively. Thus, SVR improves ENPV by the highest percentage,
which is 0.84% despite displaying the lowest accuracy during regression
analysis. VOI that is approximated by GPR (with the highest accuracy of
regression analysis) shows a slightly inferior result, that is improvement
of the ENPV by 0.76%. This can be generally explained by the sub-
optimality of decisions due to approximation error. Nevertheless, SVR
illustrates an improvement of the estimated VOI.

Albeit it is demonstrated that employing non-linear regression ML-
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based techniques does not guarantee an improvement of VOI in this
work (as compared with the VOI approximated by using LR), it provides
an insightful demonstration regarding the application of these ML
techniques in the context of VOI determination. Also, applying this
SRDM approach to the OLYMPUS model can serve as a step closer to the
resolution of real-world sequential decision problems. Despite the pos-
itive results garnered from this study, several limitations, especially on
computational cost due to the forward modeling of a more sophisticated
reservoir and the higher number of alternatives, are to be addressed to
further improve this methodology. Uncertainty modeling of prices and
integration with RL are also considered to improve the robustness of this
methodology in the future.
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Correction to Typing Error (Errata Sheet)

Notes: A few typing errors are notified in the equations in some of the papers. The corrected equations
were actually implemented in the calculation and analysis of these papers. Therefore, the results of
the studies are not affected. These corrected equations are presented below. The authors have
contacted the respective journal to issue the corrigenda.

Paper 2: Smart Proxy Modeling of a Fractured Reservoir Model for Production Optimization:
Implementation of Metaheuristic Algorithm and Probabilistic Application.

Equation (22)

gbesty; = min[f(pbestiy 1))

Equation (28)

Zy=1(ti - 0;)?

RZ=1-
%\Izl(ti - E)Z

Paper 3: Application of nature-inspired algorithms and artificial neural network in waterflooding
well control optimization.

Equation (6)

N real _ _pred 2
- Yiz1 (Yj Vi )
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Paper 4: Production optimization under waterflooding with Long Short-Term Memory and
metaheuristic algorithm.

Equation (14)
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Paper 5: Adaptive Proxy-based Robust Production Optimization with Multilayer Perceptron.
Equation (3)

n real pred)?
i=1(Yi - Y )

(v - Y)°

RP=1-

Paper 7: Well production forecast in Volve field: Application of rigorous machine learning
techniques and metaheuristic algorithm.

Equation (22)

N exp cal 2
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Equation (25)
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“Alles hat ein Ende, nur die Wurst hat zwei.”

(Everything has an end, only the sausage has two.)
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