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Abstract

We study general Dirichlet series assuming different conditions on the frequency λ. In
particular we consider Dirichlet series belonging to the space Dext

∞ (λ) of all somewhere
convergent general Dirichlet series which allows a bounded and holomorphic extension to the
right half-plane [Re > 0]. We deduce quantitative results for the partial sums of Dirichlet
series belonging to Dext

∞ (λ), and show that frequencies under certain conditions satisfy Bohr’s
theorem, namely that the series converges uniformly on the right half-plane.

Sammendrag

Vi studerer generelle Dirichlet-rekker som antar forskjellige antakelser p̊a frekvensen λ.
Spesielt betrakter vi Dirichlet-rekker som tilhører rommetDext

∞ (λ) av alle noen steds konvergerende
generelle Dirichlet-rekker som tillater en begrenset og holomorf utvidelse til det høyre halvplan
[Re > 0]. Vi utleder kvantitative resultater for delsummene av Dirichlet-rekker som tilhører
Dext

∞ (λ), og viser at frekvenser under visse betingelser tilfresstiller Bohr’s teorem, nemlig at
rekken konvergerer uniformt p̊a det høyre halvplan.
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Introduction

We begin by giving a brief introduction to the topic at hand, by introducing Dirichlet series
and some convergence properties. We then give a short overview of each chapter.

Convergence of Dirichlet series

In this thesis we are concerned with general Dirichlet series, which is an infinite sum on the
form

∞∑
n=1

ane
−λns

Where an is a sequence of complex coefficients, and s is a complex variable on the form
s = σ + it, where σ and t are real variables. λ = (λn) is called the frequency, and is an
increasing sequence of real numbers tending to +∞. We observe that by letting λn = log n,
we obtain what is known as ordinary Dirichlet series.

∞∑
n=1

ann
−s

A famous example of an ordinary Dirichlet series is that with the coefficients all equal to
one, which is the Riemann zeta function

ζ(s) =
∞∑
n=1

n−s

A Dirichlet series is said to be convergent to f(s), if its sequence {SNf} of partial sums

SNf(s) =
N∑

n=1

ane
−λns

converges to f(s). That is,

f(s) = lim
N→∞

N∑
n=1

ane
−λns

We are interested in observing for which s a given Dirichlet series converges. Dirichlet series
may converge for all, none, or some s. It is well known from complex analysis that power
series converges inside disks of the complex plane. Dirichlet series converges on half-planes of
the complex plane, where they define holomorphic functions. The half-plane of convergence
is solely dependent on σ, the real value of s. For a given Dirichlet series f , the smallest
value of σ, such that the series is convergent in all of [Re s > σ], is called the abscissa of
convergence. The abscissa of convergence shall be denoted by σc



2

σc = inf
{
θ ∈ R : f converges in [Re s > θ]

}
σc need not be finite. If a given Dirichlet series converges everywhere in the complex plane,
we set σc = −∞, and we say that the series is everywhere convergent. On the contrary, if a
given Dirichlet series diverges everywhere in the complex plane, we set σc = +∞, and we say
that the series is nowhere convergent. We say that a Dirichlet series whose corresponding
abscissa of convergence is not +∞, is a somewhere convergent Dirichlet series. Dirichlet series
also define half-planes in which they are, respectively, uniformly convergent, and absolutely
convergent. In general, the size of these half-planes differ. We define the abscissa of uniform,
and absolute convergence

σu = inf
{
θ ∈ R : f converges uniformly in [Re s > θ]

}
σa = inf

{
θ ∈ R : f converges absolutely in [Re s > θ]

}
Harald Bohr was interested in finding the maximal width of the strip for which an ordinary
Dirichlet series converges uniformly, but not absolutely.

S := sup
{
σa(f)− σu(f) : f(s) =

∞∑
n=1

ann
−s
}

where the supremum is taken over all ordinary Dirichlet series. Bohr was able to show that
S ≤ 1/2 but without being able to produce any examples where this value was obtained. H.
F Bohnenblust and E. Hille was able to show some years later, with a nontrivial proof, that
in fact S = 1/2. We are going to see that boundedness of a function defined by a Dirichlet
series and uniform convergence of the series is closely related. We define a fourth abscissa,
which defines the half-plane for which a somewhere convergent Dirichlet series is bounded.

σb = inf
{
θ ∈ R : f converges and defines a bounded function [Re s > θ]

}
Clearly, every σ that defines a half-plane for which a Dirichlet series converges uniformly
implies that the limit function is bounded in the same half-plane. For the case of the ordinary
Dirichlet series, Bohr showed in [5] that the abscissaes coincide, that is,

σu(f) = σb(f) , f(s) =
∞∑
n=1

ann
−s

This result is known as Bohr’s theorem, and an equivalent statement is that for any ordinary
Dirichlet series which is somewhere convergent and extends to a bounded and holomorphic
function on the half-plane [Re s > 0], then the Dirichlet series converges uniformly on every
smaller half-plane [Re s > ε], where ε > 0, and therefore σu ≤ 0. We define the space
H∞ of all somewhere convergent ordinary Dirichlet series with a bounded and holomorphic
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extension to [Re s > 0]. Bohr’s theorem extends to the general Dirichlet series. The natural
domain of Bohr’s theorem is the space Dext

∞ (λ) of all somewhere convergent general Dirichlet
series which has a bounded and holomorphic extension to [Re s > 0]. The frequency λ is
said to satisfy Bohr’s theorem if every f ∈ Dext

∞ (λ) converges uniformly on [Re s > ε], for
every ε > 0. This raises the following question.

For which frequencies λ does Bohr’s theorem hold?.

As we just saw, this is the case for λn = log n. Examples show that any concrete frequency
may or may not satisfy Bohr’s theorem. We are going to see multiple classes of frequencies
for which Bohr’s theorem holds, and give their proof with the help of fundamental theorems
of general Dirichlet series.

Bohr theorem for the case of the ordinary Dirichlet series, was in 2006, by Balasubramanian,
Calado, and H. Queffélec, improved by what can be seen as a quantitative version of Bohr’s
theorem

||SNf(s)||∞ ≤ C logN ||f ||∞

This result shows the behavior of the partial sums of a Dirichlet series belonging to H∞ is
well-controlled. We deduce similar bounds for general Dirichlet series belonging to Dext

∞ (λ)
which depends on the restrictions on λ. Bohr proved, in 1913, that frequencies which satisfy
the following property

λn+1 − λn ≥ Ce−δλn

where C and δ are positive constants, satisfies Bohr’s theorem. We refer to this condition
as Bohr’s condition. Using a generalized version of the Perron-Landau formula

A(x) =
1

2πi

∫ ρ+iT

ρ−iT

f(s)
xs

s
ds+O

[
xρ

T

∑
n≥1

|an|
nρ| log(x/n)|

]

we’re able to deduce the following bound for the partial sums where λ satisfies Bohr’s
condition.

||SNf(s)||∞ ≤ CλN ||f ||∞

Edmund Landau discovered, in 1921, a different class of frequencies which satisfies Bohr’s
theorem

λn+1 − λn ≥ C exp(−eδλn)
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where C and δ are positive constants. Using a summation method of Riesz means we can
similarly to that of Bohr’s condition, obtain a quantitative variant for frequencies satisfying
Landau’s condition. This summation method was first introduced by Marcel Riesz, who
extended the domain of definition for a Dirichlet series by introducing what is now known
as Riesz means. If f is a general Dirichlet series, then the Riesz means of f of order k is
defined as follows

Rk
x(f) =

∑
λn<x

ane
−λns

(
1− λn

x

)k

We show, with the help of fundamental results inspired by M. Riesz and Hardy’s classical
monograph [18], that a Dirichlet series which belongs to Dext

∞ (λ) is the uniform limit of its
Riesz means of order k on every half-plane [Re s > ε], for all ε > 0. Meaning that, for every
k ≥ 0

lim
x→∞

∑
λn<x

ane
−λns

(
1− λn

x

)k

=
∞∑
n=1

ane
−λns

In [19], Schoolmann gives an estimate of ||SNf || without assuming any condition on λ

||SNf ||∞ ≤ C
Γ(k + 1)

k

(
λN+1

λN+1 − λN

)k

||f ||∞

Using this estimate, we’re able to deduce the following bound for frequencies under the
condition of Landau

||SNf ||∞ ≤ CeδλN ||f ||∞

This thesis is mainly inspired by classical works of Bohr, Hardy, and M. Riesz. As well as
more recent works of Defant, Schoolmann, H. Queffélec, and M. Queffélec.
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Overview of the thesis

Chapter 1. The first chapter is an introduction to classical theorems regarding the convergence
domain of Dirichlet series. We give a proof of Abel’s partial summation formula, and we prove
results regarding maximal distance between the abscissa of simple, uniform, and absolute
convergence.

Chapter 2. The second chapter introduces the space H∞ of all somewhere convergent
ordinary Dirichlet series whose limit function has a bounded and holomorphic extension to
[Re > 0]. We show some important properties of series which belongs to this space, as well
as proving the Perron-Landau formula. We then use a quantitative result for the partial
sums of an ordinary Dirichlet series to prove Bohr’s theorem.

Chapter 3. In the third chapter we introduce the space Dext
∞ (λ) of all somewhere convergent

general Dirichlet series whose limit function has a bounded and holomorphic extension to
[Re > 0]. We study Bohr’s theorem for general Dirichlet series belonging to this space, and
in particular we prove that a frequency λ which satisfies Bohr’s condition, satisfies Bohr’s
theorem.

Chapter 4. In the fourth chapter we introduce the summation methods by typical means
invented by Riesz. We show that a general Dirichlet series belonging to Dext

∞ (λ) is the uniform
limit of its Riesz means of order k. And in particular we show that frequencies satisfying
Landau’s condition, and frequencies which are Q-linearly independent, both satisfies Bohr’s
theorem.
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1 General Theory of ordinary Dirichlet series

We define the space D of all somewhere convergent ordinary Dirichlet series

D =

{
f(s) =

∞∑
n=1

ann
−s | σc(f) < ∞

}
As stated in the introduction, the domain of convergence for Dirichlet series is defined by
half-planes.

Theorem 1.1. Let f(s) =
∑∞

n=1 ann
−s be a somewhere convergent ordinary Dirichlet series.

Then it converges on the half-plane [Re s > σc] and diverges on the half-plane [Re s < σc].

Before we give the proof of this statement, we introduce Abel’s partial summation formula,
which shall be used for multiple purposes throughout the thesis. We introduce the following
function for partial summation of Dirichlet coefficients

A(x) =
∑
n≤x

an

Lemma 1.2 (Abel’s partial summation formula). Abel’s partial summation formula relates
a discrete sum to a continuous integral. Let f(x) be a smooth complex-valued function, then∑

x<n≤y

anf(n) = A(y)f(y)− A(x)f(x)−
∫ y

x

A(t)f ′(t)dt

Proof. Since A(x) is defined over the integers, we set N = ⌊x⌋ and M = ⌊y⌋

∑
x<n≤y

a(n)f(n) =
M∑

N+1

a(n)f(n) =
M∑

N+1

[A(n)− A(n− 1)]f(n)

=
M∑

N+1

A(n)f(n)−
M−1∑
N

A(n)f(n+ 1)

= A(M)f(M)− A(N)f(N + 1) +
M−1∑
N+1

A(n)[f(n)− f(n+ 1)]

Noticing that
∫ n+1

n
f ′(t)dt = f(n+ 1)− f(n), we get that

∑
x<n≤y

a(n)f(n) = A(M)f(M)− A(N)f(N + 1)−
M−1∑
N+1

A(n)

∫ n+1

n

f ′(t)dt
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Since A(t) = A(n) over the interval [n, n+ 1), we can move A(n) inside the integral

∑
x<n≤y

a(n)f(n) = A(M)f(M)− A(N)f(N + 1)−
M−1∑
N+1

∫ n+1

n

A(t)f ′(t)dt

= A(M)f(M)− A(N)f(N + 1)−
∫ M

N+1

A(t)f ′(t)dt

Adjusting integral limits back to [x, y]∫ y

x

A(t)f(t)dt =

(∫ N+1

x

+

∫ M

N+1

+

∫ y

M

)
A(t)f ′(t)dt

−
∫ M

N+1

A(t)f ′(t)dt =

(∫ N+1

x

+

∫ y

M

−
∫ y

x

)
A(t)f ′(t)dt

Now we use the fact that A(t) = A(x) over [x,N + 1), and that A(t) = A(y) over [M, y]

−
∫ M

N+1

A(t)f ′(t)dt = A(x)[f(N + 1)− f(x)] + A(y)[f(y)− f(M)]−
∫ y

x

A(t)f ′(t)dt

which yields that∑
x<n≤y

anf(n) = A(M)f(M)− A(N)f(N + 1) + A(x)f(N + 1)

− A(x)f(x) + A(y)f(y)− A(y)f(M)−
∫ y

x

A(t)f ′(t)dt

finally, since A(x) = A(N), and A(y) = A(M)∑
x<n≤y

anf(n) = A(y)f(y)− A(x)f(x)−
∫ y

x

A(t)f ′(t)dt

We are now ready to state the following theorem, which relates the domain of convergence
for Dirichlet series to half-planes. The proof is inspired by Titchmarsh [20, section 9.11],
with the help of lemma 1.2.

Theorem 1.3. If a Dirichlet series f(s) =
∑∞

n=1 ann
−s is convergent for some s0 = σ0+ it0,

then it is uniformly convergent throughout the region defined by the inequality | arg(s−s0)| ≤
π
2
− δ.

Proof. Assume that f(s0) =
∑∞

n=1 ann
−s0 is convergent. This implies that f(s0) has bounded

partial sums, i.e that for all N ≥ 1, |
∑N

n=1 ann
−s0| ≤ M , for some M > 0. For s ∈
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| arg(s − s0)| ≤ π
2
− δ we have that Re s > Re s0. Let bn = ann

−s0 , and let f(n) = ns0−s.
From Abel’s partial summation formula we have that∑

x<n≤y

ann
−s =

∑
x<n≤y

bnf(n) = B(y)f(y)−B(x)f(x)−
∫ y

x

B(t)f ′(t)dt

Using the triangle inequality, and the fact that |B(x)| ≤ M, ∀x∣∣∣∣ ∑
x<n≤y

ann
−s

∣∣∣∣ ≤ ∣∣Mys0−s
∣∣+ ∣∣∣∣Mxs0−s

∣∣∣∣+ ∣∣∣∣M(s− s0)

∫ y

x

ts0−s−1dt

∣∣∣∣
≤ Myσ0−σ +Mxσ0−σ +M |s− s0|

(
yσ0−σ − xσ0−σ

σ0 − σ

)

Since y > x, and σ > σ0, we get that

Myσ0−σ +Mxσ0−σ ≤ 2Mxσ0−σ

as well as
|yσ0−σ − xσ0−σ| = xσ0−σ − yσ0−σ ≤ xσ0−σ ≤ 2xσ0−σ

which results in ∣∣∣∣ ∑
x<n≤y

ann
−s

∣∣∣∣ ≤ 2Mxσ0−σ + 2Mxσ0−σ

(
|s− s0|
σ − σ0

)
= 2Mxσ0−σ

(
1 +

|s− s0|
σ − σ0

)
which tends to zero as x tends to infinity, this implies that∣∣∣∣ ∑

x<n≤y

ann
−s

∣∣∣∣ = |Syf(s)− Sxf(s)| → 0

the series is Cauchy, and we have convergence for σ > σ0. Furthermore, if

| arg s− s0| = arctan

(
t− t0
σ − σ0

)
≤ 1

2
π − δ

then (
t− t0
σ − σ0

)
≤ tan

(
1

2
π − δ

)
= cot δ

and

|s− s0|
σ − σ0

=

√
1 +

(t− t0)2

(σ − σ0)2
≤

√
1 + cot2 δ = csc δ
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hence we have that ∣∣∣∣ ∑
x<n≤y

ann
−s

∣∣∣∣ ≤ 2Mxσ0−σ(1 + csc δ)

which is independent of s, and we therefore have uniform convergence in the region defined
by | arg(s− s0)| ≤ π

2
− δ.

We give the following remark, which can be seen as a consequence of Theorem 1.3

Remark. The limit function f : [Re > σc(D)] → C, given by

f(s) =
∞∑
n=1

ann
−s

is holomorphic

Proof. We observe that any compact set in [Re > σc(f)] can be included within some angular
set with vertex in any point of the abscissa [Re = σc(f)] by taking a wide enough angle.
This implies that the series converges uniformly on every compact set in [Re > σc(f)].
By Weierstrass convergence theorem [1, Theorem 1, page 176], we then have that f is
holomorphic.

Theorem 1.3 extends to the general Dirichlet series as well, the proof is fairly similar to that
of ordinary Dirichlet series, and can be found in [11, theorem 2.1].

1.1 Abscissa of absolute convergence

A Dirichlet series is said to be absolutely convergent on the half-plane [Re > σ], if the series
formed from it by replacing each term by its absolute value is convergent.

∞∑
n=1

|ann−(σ+it)| =
∞∑
n=1

|an|n−σ < ∞ for all s ∈ [Re > σ]

The abscissa of absolute convergence is the smallest value of σ such that the series is
absolutely convergent. Same as for the abscissa of simple convergence, we define the abscissa
of absolute convergence

σa = inf {θ ∈ R : f converges absolutely in [Re > θ]}

which separates the complex plane into a half-plane of absolute convergence, and a half-plane
of where the series does not absolutely converge.

Remark. If a Dirichlet series f is absolutely convergent, it is convergent, i.e

σc(f) ≤ σa(f) (1.1)
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This can be seen easily, since f is absolutely convergent, by a Cauchy criterion, we know
that any given ε > 0, there exists an N0 such that for all N and M each greater than N0

M∑
n=N+1

|an|n−σ < ε

and since we know that the absolute value of a sum never exceeds the sum of the absolute
values ∣∣∣∣ M∑

n=N+1

ann
−s

∣∣∣∣ ≤ M∑
n=N+1

|an|n−σ < ε

so the absolute convergence of f implies the convergence of f , as stated.
Lemma 1.4 introduces a maximum for the difference between the abscissa of absolute and
simple convergence.

Lemma 1.4. Let f(s) =
∑∞

n=1 ann
−s ∈ D be a somewhere convergent ordinary Dirichlet

series. Then 0 ≤ σa(f)− σc(f) ≤ 1

Proof. Let ε > 0. Convergence of
∑∞

n=1 ann
−(σc+ε) implies the following upper bound

sup
n

|an|
nσc+ε

< ∞

which again implies that
∞∑
n=1

|an|
nσc+1+ε

< ∞

We therefore have that σa(f) ≤ σc(f)+1+ ε, from which the result follows by letting ε tend
to zero.

1.2 Abscissa of uniform convergence

A Dirichlet series is said to be uniformly convergent to f(s) on the half-plane [Re > σ], if
for an arbitrary positive ε there exists an N0(ε), independent of s, such that

|SNf(s)− f(s)| < ε, for all N > N0(ε), and for all s ∈ [Re > σ]

In the same manner as we defined σc, we also define the abscissa of uniform convergence, as
the smallest value of σ, such that the series is uniformly convergent in all of σ. The abscissa
of uniform convergence shall be denoted by σu

σu = inf {θ ∈ R : f converges uniformly in [Re > θ]}
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Example. For the Riemann zeta function, ζ, the abscissa of simple, uniform, and absolute
convergence overlap, that is, σc(ζ) = σu(ζ) = σa(ζ) = 1. While for the alternating zeta
function, also known as the Dirichlet eta function

η(s) =
∞∑
n=1

(−1)n+1n−s

The abscissa of simple convergence lies at σc(η) = 0, while the abscissa of uniform and
absolute convergence lies at σu(η) = σa(η) = 1.

As we saw in the example of the Dirichlet eta function, the relation 0 ≤ σa − σc ≤ 1 is
optimal. By theorem 1.4 and the fact that σc ≤ σu ≤ σa, we also achieve the following upper
bound

σa − σu ≤ 1 (1.2)

Harald Bohr was interested in determining the maximal with of the strip, S, where an
ordinary Dirichlet series converges uniformly, but not absolutely.

S := sup{σa(f)− σu(f) : f(s) =
∞∑
n=1

ann
−s}

Bohr found in [5], with a nontrivial proof, that this strip is less than one half. But even
though he proved this, he had no examples of Dirichlet series for which this value was
attained. In fact, he knew of no Dirichlet series where the abscissa of uniform and absolute
convergence differed. In 1914, Toeplitz [21] was able to bound the maximal value of the strip
from below, and showed that S ≥ 1/4. He did this by considering Dirichlet series where
an ̸= 0, only when n is the product of two primes, and was able to construct examples for
which the strip attained the width of one fourth. Nothing happened on the problem of Bohr
for a few decades, until Bohnenblust and Hille [3], in 1931, showed that the strip is in fact
equal to one half.

S =
1

2

(1.2) can therefore immediately be improved by the following result.

Theorem 1.5. For any Dirichlet series f(s) =
∑∞

n=1 ann
−s, we have the inequality

σa ≤ σu +
1

2

Before we prove theorem 1.5 we need the two following lemmas. The first of which is
originally due to Carlson [9], and gives an expression for the square sum of the Dirichlet
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coefficients for an arbitrary Dirichlet series, we shall give a proof which is due to Defant et
al. [10, prop 1.11]. The second lemma gives upper bounds for the abscissa of uniform and
absolute convergence, and was originally shown by Cahen in [8].

Lemma 1.6. If f(s) =
∑∞

n=1 ann
−s is absolutely convergent in [Re > 0], then the following

identity holds

N∑
n=1

|an|2 = lim
T→∞

1

2T

∫ T

−T

∣∣∣∣ N∑
n=1

ann
it

∣∣∣∣2dt (1.3)

Proof. First, lets consider the integral

1

2T

∫ T

−T

(
n

m

)it

dt =
1

2T

∫ T

−T

eit log
n
mdt =

{
1 if n = m
1

2iT

sin(T log n
m
)

log n
m

if n ̸= m

When taking the limit as T tends to infinity, we get that

lim
T→∞

1

2T

∫ T

−T

(
n

m

)it

dt =

{
1 if n = m

0 if n ̸= m

lim
T→∞

1

2T

∫ T

−T

∣∣∣∣ N∑
n=1

ann
it

∣∣∣∣2dt = lim
T→∞

1

2T

∫ T

−T

( N∑
n=1

ann
it

)( N∑
m=1

amm
−it

)
dt

= lim
T→∞

1

2T

∫ T

−T

N∑
n=1

N∑
m=1

anam

(
n

m

)it

dt

= lim
T→∞

1

2T

∫ T

−T

N∑
n=1

|an|2dt =
N∑

n=1

|an|2

Lemma 1.7. Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series. Then

σu(f) ≤ lim sup
N→∞

log(supt∈R |
∑N

n=1 ann
−it|)

logN
(1.4)

σa(f) ≤ lim sup
N→∞

log
(∑N

n=1 |an|
)

logN
(1.5)

Proof. For the proof of (1.4), we follow the lines of [16, theorem 4.2.1], and put

a = lim sup
N→∞

log(supt∈R |
∑N

n=1 ann
−it|)

logN
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Let ε > 0 and AN(t) =
∑N

n=1 ann
−it, such that A0(t) = 0, and |AN(t)| ≤ CεN

a+ε. Take
s = σ + it such that σ ≥ a+ 2ε. We then have that

N∑
n=1

ann
−s =

N∑
n=1

[An(t)− An−1(t)]n
−σ

=
N∑

n=1

An(t)n
−σ −

N∑
n=1

An−1(t)n
−σ

=
N∑

n=1

An(t)n
−σ −

N−1∑
n=1

An(t)(n+ 1)−σ

= AN(t)N
−σ +

N−1∑
n=1

An(t)[n
−σ − (n+ 1)−σ]

The first term tends to zero since

|AN(t)N
−σ| ≤ CεN

a+εN−a−2ε = CεN
−ε N→∞−−−→ 0

We estimate the telescoping part

[n−σ − (n+ 1)−σ] = σ

∫ n+1

n

t−σ−1dt ≤ σn−σ−1

and therefore get that the general term for the series

f(s) =
∞∑
n=1

An(t)[n
−σ − (n+ 1)−σ] ≤

∞∑
n=1

Cεn
a+εσn−σ−1 ≤ Cεσ

∞∑
n=1

1

nε+1

which converges for all ε > 0. Therefore σu(f) ≤ a+ 2ε, and σu(f) ≤ a as ε tends to zero.
For the second inequality, we put

a = lim sup
N→∞

log
(∑N

n=1 |an|
)

logN

let ε > 0, then there exists Nε ∈ N such that

log
(∑N

n=1 |an|
)

logN
≤ a+ ε

for all N ≥ Nε. For the finite number of N < Nε we let Cε > 0 be a constant such that

log
(∑N

n=1 |an|
)

logN
≤ a+ ε+

logCε

logN
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for all N ∈ N. This implies that

N∑
n=1

|an| ≤ CεN
a+ε

We use lemma 1.2, where we let

an = |an| and f(t) = t−σ

N∑
n=1

|an|n−σ =
A(N)

Nσ
− A(1)− σ

∫ N

1

A(t)

tσ+1
dt ≤ Cε

(
Na+ε

Nσ
+ σ

∫ N

1

ta+ε

tσ+1
dt

)
We let σ = a+ 2ε, and get that

N∑
n=1

|an|n−σ ≤ Cε

(
1

N ε
+ σ

∫ N

1

1

tε+1
dt

)
= Cε

(
1

N ε
+

σ

ε

(
1− 1

N ε

))
≤ Cε

(
1

N ε
+

σ

ε

)
hence the series is absolutely convergent for s = σ which implies that σa(f) ≤ a + 2ε, and
furthermore that σa(f) ≤ a as ε tends to zero.

Proof of Theorem 1.5
Let f(s) =

∑∞
n=1 ann

−s ∈ D, we may assume that σa(f) ≤ 0 (if this is not the case, just
take σ0 > σa(f), and consider the translation

∑∞
n=1 ann

−s−σ0). We use the Cauchy-Schwarz
inequality together with lemma 1.6 to get the following inequality

N∑
n=1

|an| ≤
( N∑

n=1

1

)1/2( N∑
n=1

|an|2
)1/2

= N1/2

( N∑
n=1

|an|2
)1/2

= N1/2

(
lim
T→∞

1

2T

∫ T

−T

∣∣∣∣ N∑
n=1

ann
it

∣∣∣∣2dt)1/2

≤ N1/2 sup
t∈R

∣∣∣∣ N∑
n=1

ann
it

∣∣∣∣
Using the Bohr-Cahen formulas for σa(f) and σu(f) obtained in lemma 1.7 we get that

σa(f) =
log

∑N
n=1 |an|

logN
≤

log
(
N1/2 supt∈R

∣∣∑N
n=1 ann

it
∣∣)

logN

=
logN1/2

logN
+

log
(
supt∈R

∣∣∑N
n=1 ann

it
∣∣)

logN

=
1

2
+

log
(
supt∈R

∣∣∑N
n=1 ann

it
∣∣)

logN
=

1

2
+ σu(f)
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2 Bohr’s theorem

In this chapter we are going to deduce a bound for the partial sums of an ordinary Dirichlet
series. Moreover we are going to observe that the partial sums of an ordinary Dirichlet
series which is somewhere convergent, and defines bounded functions in [Re > 0], are
well-controlled. In proving this we are going to require what is known as the Perron-Landau
formula, as well as a result that gives a uniform bound to the coefficients of a Dirichlet
series. We start by giving a definition of the space H∞, which is the space of all somewhere
convergent ordinary Dirichlet series, whose limit function has a holomorphic and bounded
extension to the right half-plane [Re > 0].

Definition 1. We define H∞ to be the space of all somewhere convergent ordinary Dirichlet
series, which allow a bounded and holomorphic extension to C0.

H∞ =
{
f(s) =

∞∑
n=1

ann
−s | f converges and defines a bounded function in [Re > 0]

}
The norm on H∞ is defined as the standard supremum-norm

||f ||∞ = sup
Re s>0

|f(s)|

We shall see that || · ||∞ if fact defines a norm on H∞ after the proof of theorem 2.2.

2.1 The Fourier-Bohr formulas

The classical Cauchy formula for calculating the coefficients of a Taylor series can be extended
to Dirichlet series. The coefficients of a Taylor series can be obtained by differentiating the
function f at a point a.

an =
f (n)(a)

n!

We can estimate the coefficients of a Dirichlet series in H∞ by the Fourier-Bohr formulas
defined below, the definition holds in fact for all ordinary Dirichlet series which are somewhere
convergent.

Lemma 2.1 (Fourier-Bohr formulas). Let f(s) =
∑∞

n=1 ann
−s ∈ D. Then for every ρ >

σa(f), and n ∈ N

an = lim
T→∞

1

2iT

∫ ρ+iT

ρ−iT

f(s)nsds (2.1)

ann
−ρ = lim

T→∞

1

2T

∫ T

−T

f(ρ+ it)nitdt (2.2)
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Proof. Fix T > 0, and let ρ > σa(f). We then have uniform convergence of f on the strip
{ρ+ it : −T ≤ t ≤ T}. Consider the integral

1

2iT

∫ ρ+iT

ρ−iT

f(s)msds =
1

2T

∫ T

−T

f(ρ+ it)mρ+itdt

=
1

2T

∫ T

−T

[ ∞∑
n=1

ann
−ρ−it

]
mρ+itdt

=
mρ

2T

∞∑
n=1

an
nρ

∫ T

−T

(
m

n

)it

dt

= am +
mρ

2T

∞∑
n=1
n̸=m

an
nρ

∫ T

−T

(
m

n

)it

dt

= am +mρ

∞∑
n=1
n̸=m

an
nρ

[
sin(T log(m

n
))

T log(m
n
)

]

We have the following inequality∣∣∣∣mρ

∞∑
n=1
n̸=m

an
nρ

[
sin(T log(m

n
))

T log(m
n
)

]∣∣∣∣ ≤ mρ

∞∑
n=1
n̸=m

|an|
nρ

1

T | log( m
m+1

)|
≤ C

T

∞∑
n=1

|an|
nρ

Where C is some constant. Since
∑∞

n=1 |an|n−ρ is convergent, this term tends to zero as
T −→ ∞, which leaves us with the identity

an = lim
T→∞

1

2iT

∫ ρ+iT

ρ−iT

f(s)nsds

Multiplying by n−ρ on both sides, and using ds = i dt, yields the second identity

ann
−ρ = lim

T→∞

1

2T

∫ T

−T

f(ρ+ it)nitdt

We estimate the coefficients of a Dirichlet series in H∞.

Theorem 2.2 (16, theorem 6.1.1). If f(s) =
∑∞

n=1 ann
−s ∈ H∞, then supn∈N |an| ≤ ||f ||∞,

∀f ∈ H∞, and σa(f) ≤ 1.

Proof. Since f ∈ H∞, we can choose ρ > σa(f), which means that
∑∞

n=1 |an|n−ρ < ∞
Denote by Γε, the rectangle with corners ε− iT , ε+ iT , ρ− iT , and ρ+ iT , where 0 < ε < ρ.
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By the Cauchy integral theorem for rectangles we have

0 = lim
T→∞

1

2iT

∫
Γε

f(s)nsds

= lim
T→∞

1

2iT

(∫ ε−iT

ε+iT

+

∫ ρ−iT

ε−iT

+

∫ ρ+iT

ρ−iT

+

∫ ε+iT

ρ+iT

)
f(s)nsds

Using (2.1), we get that

an = lim
T→∞

1

2iT

(∫ ε+iT

ε−iT

+

∫ ρ+iT

ε+iT

−
∫ ρ−iT

ε−iT

)
f(s)nsds

For the second and third integral we have

lim
T→∞

∣∣∣∣ 1

2iT

∫ ρ+iT

ε+iT

f(s)nsds

∣∣∣∣ ≤ lim
T→∞

ρnρ||f ||∞
2T

= 0

and

lim
T→∞

∣∣∣∣ 1

2iT

∫ ρ−iT

ε−iT

f(s)nsds

∣∣∣∣ ≤ lim
T→∞

ρnρ||f ||∞
2T

= 0

and for the first integral

lim
T→∞

∣∣∣∣ 1

2iT

∫ ε+iT

ε−iT

f(s)nsds

∣∣∣∣ ≤ nε||f ||∞

by lemma 2.1 it follows that |an| ≤ ||f ||H∞ as ε tends to zero. Moreover, having bounded
coefficients implies that the Dirichlet series is absolutely convergent for [Re s > 1 + ε], for
all ε > 0, and σa(f) ≤ 1.

We note that by theorem 2.2 it follows that the coefficients of a Dirichlet series are all equal
to zero provided that ||f ||∞ = 0, and H∞ is indeed a normed space.

2.2 The Perron-Landau formula

We will now prove an important result regarding estimating the summation function A(x) =∑
n≤x an of a Dirichlet series. Because the function f(s) is holomorphic in the half-plane of

absolute convergence, this can be done by looking at the behaviour of f(s) on some line Re
s = ρ, which lies in this plane.

Lemma 2.3 (Elementary Perron-Landau formulas). (14, p. 342) Let a > 0, and T → +∞,
then for 0 < y < 1:

1

2πi

∫ a+iT

a−iT

ys

s
ds = O(ya/T | log y|) (2.3)

and for y > 1:
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1

2πi

∫ a+iT

a−iT

ys

s
ds = 1 +O(ya/T log y) (2.4)

where the O’s are absolute

Proof. Let 0 < y < 1, c > a, and define by Γa the rectangle with corners c − iT , c + iT ,
a+ iT , and a− iT . Then, by Cauchy’s theorem for rectangles∫

Γa

ys

s
ds = 0

Using the triangle inequality∣∣∣∣ ∫ a+iT

a−iT

ys

s
ds

∣∣∣∣ ≤ ∣∣∣∣ ∫ c+iT

a+iT

ys

s
ds

∣∣∣∣+ ∣∣∣∣ ∫ c−iT

c+iT

ys

s
ds

∣∣∣∣+ ∣∣∣∣ ∫ a−iT

c−iT

ys

s
ds

∣∣∣∣
We bound the integrals∣∣∣∣ ∫ c+iT

a+iT

ys

s
ds

∣∣∣∣ ≤ ∫ c

a

|yu+iT |
|u+ iT |

du =

∫ c

a

yu√
u2 + T 2

du ≤ 1

T

∫ c

a

yudu =
yc − ya

T log y∣∣∣∣ ∫ c−iT

a−iT

ys

s
ds

∣∣∣∣ ≤ ∫ c

a

|yu−iT |
|u− iT |

du =

∫ c

a

yu√
u2 + T 2

du ≤ 1

T

∫ c

a

yudu =
yc − ya

T log y

∣∣∣∣ ∫ c−iT

c+iT

ys

s
ds

∣∣∣∣ ≤ ∫ T

−T

|yc+it|
|c+ it|

dt = yc
∫ T

−T

1√
c2 + t2

dt = −yc log

(
−T +

√
c2 + T 2

T +
√
c2 + T 2

)

This then yields that∣∣∣∣ ∫ a+iT

a−iT

ys

s
ds

∣∣∣∣ ≤ 2(yc − ya)

T log y
− yc log

(
−T +

√
c2 + T 2

T +
√
c2 + T 2

)
Which tends to 2ya/T log y when c tends to infinity. We therefore have that∣∣∣∣ ∫ a+iT

a−iT

ys

s
ds

∣∣∣∣ ≤ 2ya

T | log y|

and therefore ∣∣∣∣ 1

2πi

∫ a+iT

a−iT

ys

s
ds

∣∣∣∣ ≤ ya

πT | log y|

For 0 < y < 1, this results in
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1

2πi

∫ a+iT

a−iT

ys

s
ds = O(ya/T | log y|)

Now, let y > 1, and consider the rectangle Γa− with corners −c− iT , −c+ iT , a+ iT , and
a− iT . The point s = 0, which is a simple pole, lies within the rectangle, and we therefore
have, by the residue theorem, that ∫

Γa−

ys

s
ds = 2πi

Using the triangle inequality∣∣∣∣ ∫ a+iT

a−iT

ys

s
ds− 2πi

∣∣∣∣ ≤ ∣∣∣∣ ∫ −c+iT

a+iT

ys

s
ds

∣∣∣∣+ ∣∣∣∣ ∫ −c−iT

−c+iT

ys

s
ds

∣∣∣∣+ ∣∣∣∣ ∫ a−iT

−c−iT

ys

s
ds

∣∣∣∣
We bound the integrals as before, but this time we achieve the bounds∣∣∣∣ ∫ a−iT

−c−iT

ys

s
ds

∣∣∣∣ ≤ ya − y−c

T log y∣∣∣∣ ∫ −c+iT

a+iT

ys

s
ds

∣∣∣∣ ≤ ya − y−c

T log y∣∣∣∣ ∫ −c−iT

−c+iT

ys

s
ds

∣∣∣∣ ≤ y−c log

(
−T +

√
c2 + T 2

T +
√
c2 + T 2

)
and thus, when c tends to infinity, we have for y > 1∣∣∣∣ ∫ a+iT

a−iT

ys

s
ds− 2πi

∣∣∣∣ ≤ 2ya

T | log y|

And therefore ∣∣∣∣ 1

2πi

∫ a+iT

a−iT

ys

s
ds− 1

∣∣∣∣ ≤ ya

πT | log y|

which this results in
1

2πi

∫ a+iT

a−iT

ys

s
ds = 1 +O(ya/T log y)

Using the elementary Perron-Landau formulas, we are now ready to define what is known
as the Perron-Landau formula, for which we prove following the lines of [16, Theorem 4.2.3]
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Theorem 2.4 (Perron-Landau formula). Let f(s) =
∑∞

n=1 ann
−s be a somewhere convergent

Dirichlet series. Let ρ > max(0, σa), T ≥ 1 and let x ≥ 1, not an integer. Then:

A(x) =
1

2πi

∫ ρ+iT

ρ−iT

f(s)
xs

s
ds+O

[
xρ

T

∑
n≥1

|an|
nρ| log(x/n)|

]
(2.5)

Proof. Consider the integral
1

2πi

∫ ρ+iT

ρ−iT

f(s)
xs

s
ds

By lemma 2.3, and using the substitution y = x/n, we get that

1

2πi

∫ ρ+iT

ρ−iT

f(s)
xs

s
ds =

1

2πi

∫ ρ+iT

ρ−iT

∞∑
n=1

an
(x/n)s

s
ds

=
∑
n≤x

an

[
1 +O

(
(x/n)ρ

T log(x/n)

)]
+
∑
n>x

an · O
(

(x/n)ρ

T | log(x/n)|

)

= A(x) +

[ ∞∑
n=1

an · O
(

(x/n)ρ

T | log(x/n)|

)]

= A(x) +O

[
xρ

T

∑
n≥1

|an|
nρ| log(x/n)|

]

Rearranging the equation we end up with the Perron-Landau formula, which concludes the
proof.

2.3 Control of partial sums

We are now ready, by the help of the results deduced, to show that the partial sums of an
ordinary Dirichlet series is well-controlled. The result was originally proved by Balasubramanian,
Calado and Queffélec in [2].

Lemma 2.5. There is a constant C > 0 such that for all f ∈ H∞ and for all x ≥ 2

||Sxf ||∞ ≤ C log x||f ||∞ (2.6)

Proof. We have from the Perron-Landau formula

A(x) =
1

2πi

∫ ρ+iT

ρ−iT

f(s)
xs

s
ds+O

[
xρ

T

∑
n≥1

|an|
nρ| log(x/n)|

]

Assume that x = N + 1
2
, where N ∈ N∗.
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If n > x ∣∣∣∣ log x

n

∣∣∣∣ = log
n

x
≥ log

N + 1

N + 1
2

≥ 1

4(N + 1/2)

and if n < x

log
x

n
≥ log

N + 1

N
≥ 1

4N

Which means that | log x/n|−1 = O(x)
Since f ∈ H∞ we know that σa(f) ≤ 1, and we can therefore let ρ = 2. By the fact that
|an| ≤ ||f ||∞, we observe that

x2

T

∑
n≥1

|an|
n2| log(x/n)|

≤ x3

T

∑
n≥1

|an|
n2

= C||f ||∞

for some C > 0. Now, let 0 < ε < 2 and denote by Γε, the rectangle with corners ε − iT ,
ε+ iT , 2− iT , and 2 + iT . By the Cauchy integral theorem for rectangles we have

0 =

∫
Γε

f(s)
xs

s
ds

=

(∫ ε−iT

ε+iT

+

∫ 2−iT

ε−iT

+

∫ 2+iT

2−iT

+

∫ ε+iT

2+iT

)
f(s)

xs

s
ds

which yields∫ 2+iT

2−iT

f(s)
xs

s
ds =

(∫ ε+iT

ε−iT

+

∫ 2+iT

ε+iT

+

∫ ε−iT

2−iT

)
f(s)

xs

s
ds

=

∫ ε+iT

ε−iT

f(s)
xs

s
ds+

∫ 2

ε

f(u+ iT )
xu+iT

u+ iT
du−

∫ 2

ε

f(u− iT )
xu−iT

u− iT
du

If we let T = x3 ∣∣∣∣ ∫ 2

ε

f(u+ iT )
xu+iT

u+ iT
du

∣∣∣∣ ≤ ∣∣∣∣x2

T
||f ||∞

∣∣∣∣ = ||f ||∞
x∣∣∣∣ ∫ 2

ε

f(u− iT )
xu−iT

u− iT
du

∣∣∣∣ ≤ ∣∣∣∣x2

T
||f ||∞

∣∣∣∣ = ||f ||∞
x

For the remaining integral we use the substitution s = ε+ it∫ ε+iT

ε−iT

f(s)
xs

s
ds =

∫ T

−T

f(ε+ it)
xε+it

ε+ it
i dt ≤ xε||f ||∞

∫ T

−T

1√
ε2 + t2

dt

= 2xε||f ||∞
∫ T/ε

0

1√
u2 + 1

du

≤ 2xε||f ||∞
(
1 +

∫ T/ε

1

1

u
du

)
≤ xε||f ||∞ log(T/ε)
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Since ε is an arbitrary constant, we can let ε = 1/ log x, and we obtain

|A(x)| ≤ ||f ||∞ log(x3 log x) ≤ C||f ||∞ log x

Finally, fix some s0 ∈ C0, and define fs0(s) =
∑∞

n=1 ann
−s0n−s = f(s+ s0), we have that∣∣∣∣Sxf(s)

∣∣∣∣ ≤ C log x||fs0||∞ = C log x sup
Re s0>Re s

|f(s0)| ≤ C log x||f ||∞

||Sxf ||∞ ≤ C log x||f ||∞

2.4 Bohr’s theorem for ordinary Dirichlet series

We are going to see that boundedness and uniform convergence of a Dirichlet series is closely
related. We know that, clearly, if a Dirichlet series is uniformly convergent for some σ, then
it is also bounded, which shows the inequality

σb ≤ σu

Bohr proved for ordinary Dirichlet series which are somewhere convergent, that the abscissa
of boundedness, and the abscissa of uniform convergence, coincide.

σb = σu

This deep result is known a consequence of what is known as Bohr’s theorem, which we are
now ready to state in detail. It was originally proved by Bohr in [5], but we shall prove it
by the use of lemma 2.5.

Theorem 2.6. (Bohr’s Theorem). Let f(s) =
∑∞

n=1 ann
−s ∈ H∞. Then f converges

uniformly in [Re > ε] for all ε > 0.

Proof. Let f ∈ H∞ and let ε > 0. Then f converging uniformly in [Re > ε] is equivalent to∑∞
n=1 ann

−s−ε converging uniformly in [Re > 0] for all ε > 0. Let Sn(s) =
∑n

j=1 ajj
−s, with

S0(s) = 0. We then have the Abel transformation
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N∑
n=1

ann
−s−ε =

N∑
n=1

[(Sn(s)− Sn−1(s)]n
−ε

= SN(s)N
−ε +

N−1∑
n=1

Sn(s)[n
−ε − (n+ 1)−ε]

≤ C logN ||f ||∞
N ε

+
N−1∑
n=1

Cε log n||f ||∞
nε+1

The last step uses lemma 2.5, and the fact that

n−ε − (n+ 1)−ε = ε

∫ n+1

n

1

tε+1
dt ≤ ε

nε+1

This shows that
∑∞

n=1 ann
−s−ε is uniformly convergent in [Re > 0] since the bounds are

independent of s, and hence that σu(f) ≤ 0.

Corollary 2.6.1. For every ordinary Dirichlet series f(s) =
∑∞

n=1 ann
−s,

σb(f) = σu(f)

Proof. We first note that if a Dirichlet series is nowhere convergent,then

σb = σu = ∞

We then assume that the Dirichlet series is somewhere convergent. As stated previously, we
obiviously have that if a Dirichlet series is unformly convergent, then it is bounded. What
remains to show is then that

σu(f) ≤ σb(f)

Assume that f(s) converges and defines a bounded function on [Re s > s0], then the
translated Dirichlet series

fs0(s) =
∞∑
n=1

ann
−(s+s0)

converges and defines a bounded function on [Re s > 0]. By Bohr’s theorem this series
therefore is uniformly convergent on [Re s > ε] for every ε > 0. This implies that f(s) is
uniformly convergent on [Re s > s0+ε] for every ε > 0, and we obtain the desired inequality.
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3 Bohr’s condition

Bohr’s theorem also extends to the general Dirichlet series, and we are now going to generalize
the results from the previous chapter, where we considered the space H∞ of all somewhere
convergent ordinary Dirichlet series whose limit function has a holomorphic and bounded
extension to [Re > 0]. In this chapter we are going to consider the space Dext

∞ (λ) of all
somewhere convergent general Dirichlet series whose limit function has a holomorphic and
bounded extension to the half-plane [Re > 0].

Definition 2. The Dext
∞ (λ)-space

Dext
∞ (λ) =

{
f(s) =

∞∑
n=1

ane
−λns | σc(f) < ∞ , f has an holomorphic and bounded extension to C0

}

The norm on Dext
∞ (λ) is defined as the standard supremum-norm

||f ||∞ = sup
Re s>0

|f(s)|

Similarly to the case of H∞, we shall after lemma 3.5 see that || · ||∞ indeed defines a norm
on Dext

∞ (λ). We say that a frequency λ satisfies Bohr’s theorem if every f(s) ∈ Dext
∞ (λ)

converges uniformly in [Re > 0]. Bohr showed, in [5], that Bohr’s theorem holds for a class
of λ’s satisfying a condition that shall be referred to as Bohr’s condition:

Definition 3. (Bohr’s condition) We say that a frequency λ satisfies Bohr’s condition (BC)
if, there exists δ > 0, C > 0 such that for all n ∈ N:

λn+1 − λn ≥ Ce−δλn (3.1)

We start by showing a Bohr-Cahen type formula for the abscissa of uniform convergence
equivalent to that of lemma 1.7, but for general Dirichlet series. The proof follows the same
line as that for the ordinary Dirichlet series.

Lemma 3.1. Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series. Then

σu(f) ≤ lim sup
N→∞

log(supt∈R |
∑N

n=1 ane
−λnit|)

λN

(3.2)

Proof. We put

a = lim sup
N→∞

log(supt∈R |
∑N

n=1 ane
−λnit|)

λN

Let ε > 0 and AN(t) =
∑N

n=1 ane
−λnit, such that A0(t) = 0, and |AN(t)| ≤ Cεe

λN (a+ε). Take
s = σ + it such that σ ≥ a+ 2ε
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We then have that

N∑
n=1

ane
−λns =

N∑
n=1

[An(t)− An−1(t)]e
−λnσ

=
N∑

n=1

An(t)e
−λnσ −

N∑
n=1

An−1(t)e
−λnσ

=
N∑

n=1

An(t)e
−λnσ −

N−1∑
n=1

An(t)e
−λn+1σ

= AN(t)e
−λNσ +

N−1∑
n=1

An(t)[e
−λnσ − e−λn+1σ]

The first term tends to zero since

|AN(t)e
−λNσ| ≤ Cεe

λN (a+ε)e−λN (a+2ε) = Cεe
−λNε N→∞−−−→ 0

We estimate the telescoping part

e−λnσ − e−λn+1σ = σ

∫ λn+1

λn

e−tσdt ≤ σ(λn+1 − λn)e
−λnσ

and therefore get that the general term for the series

f(s) =
∞∑
n=1

An(t)[e
−λnσ − e−λn+1σ] ≤

∞∑
n=1

Cεσ(λn+1 − λn)e
λn(a+ε)e−λnσ ≤ Cεσ

∞∑
n=1

λn+1 − λn

eλnε

which converges for all ε > 0. Therefore σu(f) ≤ a+ 2ε, and furthermore that σu(f) ≤ a as
ε tends to zero.

3.1 Determination of somewhere absolute convergence

In lemma 1.4 from chapter 1, we saw that the distance between the abscissa of simple
and absolute convergence for ordinary Dirichlet series is at most one. This implies that if
an ordinary Dirichlet series is somewhere convergent, then it is also somewhere absolutely
convergent. This property also obviously implies, by definition, that all the defined abscissas
neatly lies inside a strip of width one for any somewhere convergent ordinary Dirichlet series.
This fact is not necessarily true for general Dirichlet series. We may have Dirichlet series
where the distance between the abscissa of simple and absolute convergence is not even
finite. In our proof for lemma 2.5 we relied on the fact that the Dirichlet series in question
had a finite abscissa of absolute convergence. In the following lemma we determine an
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upper bound for the distance between the abscissa of simple and absolute convergence for a
general Dirichlet series, and we shall later see that if a frequency λ satisfies Bohr’s condition,
then this distance is finite. And since we’re considering Dirichlet series which belong to the
D∞

ext(λ)-space of somewhere convergent general Dirichlet series, we’re can then confirm that
we have a finite abscissa of absolute convergence, and we’re able to apply similar techniques
as that in lemma 2.5 to proving such a frequency satisfies Bohr’s theorem.

Lemma 3.2 (18, Theorem 9). Let f(s) =
∑∞

n=1 ane
−λns. Then

L(λ) := lim sup
n→∞

log n

λn

≥ σa(f)− σc(f)

Proof. Assume that σc(f) > 0. The truth of the lemma is obviously independent of this
restriction since by a simple translation argument, we have that if

fs0(s) =
∞∑
n=1

= ane
λn(s+s0)

then
σa(f)− σc(f) = σa(fs0)− σc(fs0)

Given δ > 0, we can choose n0 ∈ N so that, for n > n0:

|A(n)| < e(σc+δ)λn

and

|an| = |A(n)− A(n− 1)| < |A(n)|+ |A(n− 1)| < 2e(σc+δ)λn < e(σc+2δ)λn

where the last inequality uses the fact that 2 < eδλn , which is obviously possible. Furthermore,
if n is sufficiently large in comparison to n0

n∑
1

|ai| <
n0∑
1

|ai|+ ne(σc+2δ)λn < ne(σ0+3δ)λn

and finally

σa ≤
log

∑n
1 |ai|

λn

<
log n

λn

+ σc + 3δ

σa − σc ≤ lim sup
n→∞

log n

λn
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An immediate consequence of this lemma is that if λ is a frequency such that L(λ) = 0,
then the abscissa of simple, and absolute convergence coincide, which again leads to the
implication that σb(f) = σu(f), or equivalently, λ satisfies Bohr’s theorem. We also note
that if λn = log n, which is that for ordinary Dirichlet series, then L(λ) = 1, which is the
result from lemma 1.4.

Lemma 3.3 (6, lemma 3). Let λ be a sequence of non negative real numbers tending to +∞,
then

L(λ) = lim sup
n→∞

log n

λn

= σc

(∑
e−λns

)
Before we prove lemma 3.6, we give the following result to show what if a frequency satisfies
Bohr’s condition, we have a finite abscissa of absolute convergence. The result is due to
Bohr [6, lemma 4]

Lemma 3.4. Let f(s) =
∑∞

n=1 ane
−λns ∈ D∞

ext(λ) and λ a frequency which satisfies (BC),
then L(λ) < ∞. And in particular f has a finite abscissa of absolute convergence.

Proof. Let f(s) =
∑∞

n=1 ane
−λns and assume that λ satisfies Bohr’s condition. By Lemma

3.3 it is sufficient to show that the series
∑∞

n=1 e
−λns converges for some σc < ∞. Since λ

satisfies Bohr’s condition we have that for some C, δ > 0

λn+1 − λn ≥ Ce−λnδ

Let N(ε) = N such that for all n ≥ N , and every ε > 0 we have that

λn+1 − λn ≥ e−λn(δ+
ε
2
)

It follows that for n ≥ N

e−λn+1(δ+ε) = e−λn+1
ε
2 e−λn+1(δ+

ε
2
)

≤ e−λn+1
ε
2 e−λn(δ+

ε
2
)

≤ e−λn+1
ε
2 (λn+1 − λn)

≤
∫ λn+1

λn

e−
ε
2
xdx

and

∞∑
n=1

e−λn+1(δ+ε) =
∞∑
n=1

∫ λn+1

λn

e−
ε
2
xdx =

∫ ∞

λ1

e−
ε
2
xdx

The right hand side is convergent for all ε > 0, and we therefore have that

σa(f)− σc(f) ≤ L(λ) = σc

( ∞∑
n=1

e−λns

)
< ∞
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3.2 The Fourier-Bohr formulas for general Dirichlet series

Lemma 3.5 (Fourier-Bohr formulas for general Dirichlet series). Let f(s) =
∑∞

n=1 ane
−λns ∈

Dext
∞ (λ). Then for every ρ > σa(f), and n ∈ N

an = lim
T→∞

1

2T

∫ ρ+iT

ρ−iT

f(ρ+ it)eλn(ρ+it)dt (3.3)

ane
−λnρ = lim

T→∞

1

2T

∫ T

−T

f(ρ+ it)eλnitdt (3.4)

for all σ > 0. In particular, supn∈N |an| ≤ ||f ||∞.

Proof. Fix T > 0, since f ∈ Dext
∞ (λ), we know that σa(f) < ∞. Let ρ > σa(f). We then

have uniform convergence of f on the strip {ρ+ it : −T ≤ t ≤ T}. Consider the integral

1

2iT

∫ ρ+iT

ρ−iT

f(s)eλmsds =
1

2T

∫ T

−T

f(ρ+ it)eλm(ρ+it)dt

=
1

2T

∫ T

−T

[ ∞∑
n=1

ane
−λn(ρ−it)

]
eλm(ρ+it)dt

=
eλmρ

2T

∞∑
n=1

an
eλnρ

∫ T

−T

(
eλm

eλn

)it

dt

= am +
eλmρ

2T

∞∑
n=1
n ̸=m

an
eλnρ

∫ T

−T

(
eλm

eλn

)it

dt

= am + eλmρ

∞∑
n=1
n ̸=m

an
eλnρ

[
sin(T (λm − λn)

T (λm − λn)

]

We have the following inequality

∣∣∣∣eλmρ

∞∑
n=1
n ̸=m

an
eλnρ

[
sin(T (λm − λn)

T (λm − λn)

]∣∣∣∣ ≤ eλmρ

∞∑
n=1
n̸=m

|an|
eλnρ

1

|T (λm − λm+1)|
≤ C

T

∞∑
n=1

|an|
eλnρ

Where C is some constant. Since
∑∞

n=1 |an|e−λnρ is convergent, this term tends to zero as
T −→ ∞, which leaves us with the identity

an = lim
T→∞

1

2T

∫ T

−T

f(ρ+ it)eλn(ρ+it)dt

Multiplying by e−ρλn on both sides, yields the second identity

ane
−λnρ = lim

T→∞

1

2T

∫ T

−T

f(ρ+ it)eλnitdt
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We make the remark that the previous lemma confirms that ||.||∞ in fact is a norm. This
follows from the observation that if ||f ||∞ = 0, then the coefficients |an| all vanish, and we
get the implication

||f ||∞ = 0 if and only if f(s) = 0

3.3 Bohr’s theorem under Bohr’s condition

We are now ready to prove the main result of this chapter. Namely that a frequency satisfying
Bohr’s condition (3.1) satisfies Bohr’s theorem. The proof follows similar lines as that of
lemma 2.5.

Lemma 3.6. Let λ be a frequency satisfying Bohr’s condition. Then λ satisfies Bohr’s
theorem.

Proof. Let f(s) =
∑∞

n=1 ane
−λns ∈ Dext

∞ (λ) , and assume λ satisfies Bohr’s condition. We
then need to show that f(s) converges uniformly in [Re > 0]. We first generalize the
Perron-Landau formula for general Dirichlet series

1

2πi

∫ ρ+iT

ρ−iT

f(s)
xs

s
ds =

1

2πi

∞∑
n=1

an

∫ ρ+iT

ρ−iT

(
xe−λn

)s
1

s
ds

=
∑

λn<log x

an

[
1 +O

((
xe−λn

)ρ
1

T log(xe−λn)

)]
+

∑
λn>log x

an

[
O
((

xe−λn

)ρ
1

T log |xe−λn|

)]

=
∑

λn<log x

an +O
[
xρ

T

∞∑
n=1

|an|
eρλn log(xe−λn)

]

Let log x = λN+1+λN

2
. If xe−λn < 1:

| log xe−λn| = | log x− λn| =
∣∣∣∣λN+1 + λN

2
− λn

∣∣∣∣ ≥ ∣∣∣∣λN+1 + λN

2
− λN

∣∣∣∣ = λN+1 − λN

2

and if xe−λn > 1:

log xe−λn ≥ λN+1 − λN

2

Since λ satisfies Bohr’s condition we have that

λn+1 − λn ≥ Ce−δλn
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Which shows that (log xe−λn)−1 = O(eδλN )
Since λ satisfies (BC), we know by lemma 3.4 that σa(f) < ∞, and we can therefore let
ρ > σa(f). By the fact that |an| ≤ ||f ||∞, we observe that

xρ

T

∞∑
n=1

|an|
eρλn log(xe−λn)

≤ Cxρ

T

∑
n≥1

|an|
eρλn

= C ′||f ||∞

for some C ′ > 0. Now, let 0 < ε < 2 and denote by Γε, the rectangle with corners ε − iT ,
ε+ iT , ρ− iT , and ρ+ iT . By the Cauchy integral theorem for rectangles we have

0 =

∫
Γε

f(s)
xs

s
ds

=

(∫ ε−iT

ε+iT

+

∫ ρ−iT

ε−iT

+

∫ ρ+iT

ρ−iT

+

∫ ε+iT

ρ+iT

)
f(s)

xs

s
ds

which yields∫ ρ+iT

ρ−iT

f(s)
xs

s
ds =

(∫ ε+iT

ε−iT

+

∫ ρ+iT

ε+iT

+

∫ ε−iT

ρ−iT

)
f(s)

xs

s
ds

=

∫ ε+iT

ε−iT

f(s)
xs

s
ds+

∫ ρ

ε

f(u+ iT )
xu+iT

u+ iT
du−

∫ ρ

ε

f(u− iT )
xu−iT

u− iT
du

If we let T = xρ+1, we have for the second and third integral∣∣∣∣ ∫ ρ

ε

f(u+ iT )
xu+iT

u+ iT
du

∣∣∣∣ ≤ ∣∣∣∣xρ

T
||f ||∞

∣∣∣∣ = ||f ||∞
x

∣∣∣∣ ∫ ρ

ε

f(u− iT )
xu−iT

u− iT
du

∣∣∣∣ ≤ ∣∣∣∣xρ

T
||f ||∞

∣∣∣∣ = ||f ||∞
x

For the remaining integral we use the substitution s = ε+ it∫ ε+iT

ε−iT

f(s)
xs

s
ds =

∫ T

−T

f(ε+ it)
xε+it

ε+ it
i dt ≤ xε||f ||∞

∫ T

−T

1√
ε2 + t2

dt

= 2xε||f ||∞
∫ T/ε

0

1√
u2 + 1

du ≤ 2xε||f ||∞
(
1 +

∫ T/ε

1

1

u
du

)
≤ xε||f ||∞ log(T/ε)

Since ε is an arbitrary constant, we can let ε = Te−λN , and we obtain∣∣∣∣ ∑
λn<log x

an

∣∣∣∣ ≤ CλN ||f ||∞ (3.5)
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Finally, fix some s0 ∈ C0, and define fs0(s) =
∑∞

n=1 ane
−λn(s+s0) = f(s+ s0), we have that∣∣∣∣SNf(s)

∣∣∣∣ ≤ CλN ||fs0||∞ = CλN sup
Re s0>Re s

|f(s0)| ≤ CλN ||f ||∞

||SNf ||∞ ≤ CλN ||f ||∞

It remains to show that we have uniform convergence in [Re s > ε], for all ε > 0. We use
our result from (3.5) together with lemma 3.1

σu(f) ≤ lim sup
N→∞

log ||SNf ||∞
λN

≤ lim sup
N→∞

logCλN ||f ||∞
λN

= 0

and λ satisfies Bohr’s theorem.

Landau later found, in [15], a weaker class of frequencies which satisfies Bohr’s theorem. In
the following chapter we shall give the definition of this condition, and give a proof that
frequencies satisfying this condition satisfies Bohr’s theorem.
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4 Riesz summability of general Dirichlet series

We have, until now, only been concerned with convergent Dirichlet series. The way of defining
the sum of series which is not convergent, but oscillating, was generalized by Cesàro, in which
the sum of the series is defined as the limit of the arithmetic mean of its first n partial sums,
since a series may not have a partial sum that converges to a given values, meanwhile the
series arithmetic means may converge. We say that a series is Cesàro summable to the sum
σ if

lim
n→∞

σn = lim
n→∞

1

n+ 1

∞∑
n=0

sn = σ

where

sn = a0 + a1 + · · ·+ an

Cesàros method of summation has shown to be useful in the study of, among other things,
theory of Fourier analysis. Joseph Fourier stated that almost any real valued function could
be represented by a trigonometric series on the form∑

n∈Z

ane
inx

It was believed for some time, that the Fourier series for some function f will converge to
the value of f(x), at all points of continuity of the function. However, in [12, p. 572], D.B
Reymond disproved this, when he showed that additional conditions were required for the
Fourier series to converge to its associated function. This weakened the reliability of the
theory of Fourier series. L. Fejer in [13, p. 51] reedemed the situation by showing that
the Fourier series of a continuous function is always summable by the method of arithmetic
means. That is, the expression

σN =
1

N + 1

N∑
0

Sn(x)

tends to f(x) with x tending to infinity. This result is known as Fejér’s theorem, and the
trigonometric polynomials σN(x) are often called the Fejér means of f .

Applications of Cesàro summability was shown to be useful in the study of Dirichlet series
as well, since the domain of convergence may be extended further than for that of the series
itself. A function which is continuous may not necessarily converge to its associated Dirichlet
series. Riesz and Bohr showed independently that the arithmetic means formed in Cesàro’s
manner from an ordinary Dirichlet series may have domains of convergence more extensive
than that of the series itself [18, p. 20]. To understand what the concept of summability
does for a Dirichlet series, let us again consider the example of the Dirichlet eta function.
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We know from earlier that this function converges for [Re s > 0], and diverges for all [Re
s < 0]. However, at the point s = 0, the series reduces to

N∑
n=1

(−1)n+1

the value of this series is either 0 or 1, depending on if N is even or odd. Therefore the series
is not convergent. It is however, Cesàro summable to the sum 1

2
.

4.1 Riesz means

Riesz worked on the problem of extending the domain of definiton for a Dirichlet series by
substituting summability in the place of convergence as the criterion. He found that the
arithmetic means shown above are not very well adapted to the study of general Dirichlet
series as certain other means formed in different manners, which led to the following generalization
to that of Cesàro’s means, which is known as Riesz means. [22, p.27]. For f(s) =

∑∞
n=1 ane

−λns

a Dirichlet series, Riesz defined the summation method

S1
N(f) = λN

N∑
n=1

ane
−λns −

N∑
n=1

λnane
−λns =

N∑
n=1

ane
−λns(λN − λn) (4.1)

and more generally

Sk
N(f) =

N∑
n=1

ane
−λns(λN − λn)

k (4.2)

where k is known as the order of summability. In [17], Riesz modified his method of
summation by introducting a continuous parameter x > 0, and express the sum as

Sk
x(f) =

∑
λn<x

ane
−λns(x− λn)

k = k

∫ x

0

St(f)(x− t)k−1dt (4.3)

where

St(f) = S0
t (f) =

∑
λn<t

ane
−λns (4.4)

and

Rk
x(f) =

Sk
x(f)

xk
=

∑
λn<x

ane
−λns

(
1− λn

x

)k

=
k

xk

∫ x

0

St(f)(x− t)k−1dt (4.5)

are said to be the Riesz means of f of order k. If limx→∞Rk
x(f) = f(s), we say that

∑
ane

−λns

is (λ, k)-Riesz summable to f . This leads us to the following proposition, which states that,
given any order k > 0, then on every half-plane [Re > ε], ε > 0, the limit function of a
Dirichlet series f ∈ Dext

∞ (λ) is the uniform limit of its Riesz means of order k.
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Proposition 1 (19, Proposition 3.4). Let f(s) =
∑∞

n=1 ane
−λns ∈ Dext

∞ (λ) with extension f̃ .
Then for all k > 0 the Dirichlet polynomials

Rk
x(f) =

∑
λn<x

ane
−λns

(
1− λn

x

)k

converge uniformly to f̃ on [Re > ε] as x → ∞ for all ε > 0.

Before we prove this statement, we first deduce expressions for, respectively, increasing and
decreasing the order of a summatory function Sk

x(f).

Lemma 4.1 (18, Lemma 6). Let f be a Dirichlet series. If k > 0, µ > 0, then

Sk+µ
x (f) =

Γ(k + µ+ 1)

Γ(k + 1)Γ(µ)

∫ x

0

Sk
u(f)(x− u)µ−1du

and if k > 0, µ < 1, µ ≤ k, then

Sk−µ
x (f) =

Γ(k − µ+ 1)

Γ(k + 1)Γ(1− µ)

∫ x

0

d

du
Sk
u(f)(x− u)−µdu

Proof. For the first identity we use the expression for Sk
λ(u) given in 4.3∫ x

0

Sk
u(f)(x− u)µ−1du =

∫ x

0

k

(∫ u

0

St(f)(u− t)k−1dt

)
(x− u)µ−1du

= k

∫ x

0

St(f)

∫ x

t

(u− t)k−1(x− u)µ−1dudt

We use the expression deduced in A.6, and get that

k

∫ x

0

St(f)

∫ x

t

(u− t)k−1(x− u)µ−1dudt = k
Γ(k)Γ(µ)

Γ(k + µ)

∫ x

0

St(f)(x− t)k+µ−1dt

=
k

k + µ

Γ(k)Γ(µ)

Γ(k + µ)
Sk+µ
t (f)

=
Γ(k + 1)Γ(µ)

Γ(k + µ+ 1)
Sk+µ
x (f)

by rearranging the formula we get the desired result.
For the second part of the lemma, we use the following identity, which is a consequence of
[11, Lemma 4.1]

d

dx
Sk−µ+1
x (f) = (k − µ+ 1)Sk−µ

x (f)



4.1 Riesz means 35

Since −µ+ 1 > 0, we can use the first part of the lemma to get that

Sk−µ+1
x (f) =

Γ(k − µ+ 2)

Γ(k + 1)Γ(1− µ)

∫ x

0

Sk
u(f)(x− u)−µdu

which yields that

Sk−µ
x (f) =

1

k − µ+ 1

Γ(k − µ+ 2)

Γ(k + 1)Γ(1− µ)

d

dx

∫ x

0

Sk
u(f)(x− u)−µdu

=
Γ(k − µ+ 1)

Γ(k + 1)Γ(1− µ)

d

dx

∫ x

0

Sk
u(f)(x− u)−µdu

For the integral we use integration by parts

∫ x

0

Sk
u(f)(x− u)−µdu =

[
Sk
u(f)(x− u)1−µ

µ− 1

]x
0

+
1

1− µ

∫ x

0

d

du
Sk
u(f)(x− u)1−µdu

=
1

1− µ

∫ x

0

d

du
Sk
u(f)(x− u)1−µdu

and finally we get that

Sk−µ
x (f) =

Γ(k − µ+ 1)

Γ(k + 1)Γ(1− µ)

d

dx

1

1− µ

∫ x

0

d

du
Sk
u(f)(x− u)1−µdu

=
Γ(k − µ+ 1)

Γ(k + 1)Γ(1− µ)

∫ x

0

d

du
Sk
u(f)(x− u)−µdu

and we are done.

We define the following abscissa, which characterizes the largest possible half-plane on which
f is uniformly (λ, k)-Riesz summable.

σk
u(f) = inf

{
θ ∈ R : f uniformly (λ, k)-Riesz summable in [Re > θ]

}
The upper bound for this abscissa can be determined for 0 < k ≤ 1 by a Bohr-Cahen type
formula, which is deduced in [19, lemma 3.8]

σk
u ≤ lim sup

x→∞

log(||Rk
x(f)||∞)

x
(4.6)
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Theorem 4.2. If the series is summable (λ.k), where k > 0, and ρ > Re s0,∑
λn<x

ane
−λns0(x− λn)

k =
Γ(k + 1)

2πi

∫ ρ+i∞

ρ−i∞

f(s)

(s− s0)k+1
ex(s−s0)ds

Proof. Let ρ > 0. We consider the integral

1

2πi

∫
γ

es

sk+1
ds

where γ is the path shown in Figure 1. We know by Cauchy’s integral theorem that

1

2πi

∫
γ

es

sk+1
ds = 0

H

D

F

ρ− iT

A

ρ+ iT

C
x

y

E

G

I

B

R

O

r

Figure 1: The path γ

We let r → 0, T → ∞, and notice that R tends to +∞ with T . We start by considering the
circular paths connecting the points ABC and DEF . Let s = Reiθ, and
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I1 =

∫
BC

es

sk+1
ds =

∫ π

π/2

eR(cos θ+i sin θ)

(Reiθ)k+1
Rieiθdθ

For R large and k > −1 we have that ∣∣∣∣ 1

(Reiθ)k+1

∣∣∣∣ < ε

for some ε > 0, and therefore

|I1| < εR

∫ π

π/2

eR cos θdθ = εR

∫ π/2

0

e−R sinαdα

where θ = α + π/2. We use the inequality obtained in (A.1), and so

|I1| < εR

∫ π/2

0

e−
R2α
π dα =

επ

2
(1− e−R)

We therefore get that, for k > −1: when R → ∞, ε → 0, and so I1 → 0. In evaluating the
integral along DE we obtain the same type bound. We may replace the arc AB by a line
from B perpendicular to the line AF . Thus, we let s = x+ iy

I2 =

∫
AB

es

sk+1
ds = −

∫ ρ

0

ex+iy

sk+1
ds

|I2| ≤ eρ
∫ ρ

0

1

|x+ iy|k+1
dx ≤ ρeρε

which, for k > −1, goes to zero as R → ∞ and ε → 0. A similar result is obtained for the
arc EF . What we’re now left with is, for k > −1:

lim
T→∞

1

2πi

∫ ρ+iT

ρ−iT

es

sk+1
ds = − 1

2πi

(∫
CG

+

∫
GHI

+

∫
ID

)
es

sk+1
ds

For the integral around the smaller circle GHI, let s = reiθ = r(cos θ + i sin θ)

− 1

2πi

∫
GHI

es

sk+1
ds =

1

2πi

∫ π

−π

er(cos θ+i sin θ)

(reiθ)k+1
ireiθdθ =

1

2π

∫ π

−π

er(cos θ+i sin θ)−iθkr−kdθ

which for k < 0, tends to zero as r → 0. For the path CG, we let s = teiπ

I3 = − 1

2πi

∫
CG

es

sk+1
ds =

e−πik

2πi

∫ ∞

0

e−t

tk+1
dt

For the path DI, we let s = te−iπ

I4 = − 1

2πi

∫
DI

es

sk+1
ds =

−eπik

2πi

∫ ∞

0

e−t

tk+1
dt
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We sum I3 and I4

I3 + I4 =
sin(−kπ)

π

∫ ∞

0

e−tt−k−1dt = −sin(kπ)

π
Γ(−k)

we use Eulers reflection formula given in lemma A.1, and get that, finally

1

2πi

∫ ρ+i∞

ρ−i∞

es

sk+1
ds =

Γ(−k)

Γ(−k)Γ(1 + k)
=

1

Γ(k + 1)
(4.7)

For which our result is only valid for −1 < k < 0. We consider the improper integral, and
apply integration by parts

lim
T→∞

1

2π

∫ T

−T

eρ+it

(ρ+ it)k+1
dt = lim

T→∞

1

2π

([
eρ+it

i(ρ+ it)k+1

]T
−T

+ (k + 1)

∫ T

−T

eρ+it

(ρ+ it)k+2
dt

)
= lim

T→∞

k + 1

2π

∫ T

−T

eρ+it

(ρ+ it)k+2
dt =

1

Γ(k + 1)

We substitute back in s = ρ+ it, divide both sides by k + 1, and use (A.3)

1

2πi

∫ ρ+i∞

ρ−i∞

es

sk+2
ds =

1

Γ(k + 2)

Which is valid for −1 < k < 0, and if we let k̃ = k + 1, then we get the same expression as
(4.7), which is now valid for 0 < k̃ < 1. Hence by an induction argument, and the fact that
1/Γ(k + 1) is analytic for all k, (4.7) can be extended and is valid for k > −1.
We wish to replace s by xs. We let ω = xs, and η = xρ, with x > 0 and consider

1

2πi

∫ η+i∞

η−i∞

eω

ωk+1
dω =

1

2πi

∫ ρ+i∞

ρ−i∞

exs

(xs)k+1
xds =

x−k

2πi

∫ ρ+i∞

ρ−i∞

exs

sk+1
ds =

1

Γ(k + 1)

multiplying both sides by xk gives

1

2πi

∫ ρ+iT

ρ−iT

exs

sk+1
ds =

xk

Γ(k + 1)

and for x ≤ 0:

1

2πi

∫ ρ+iT

ρ−iT

exs

sk+1
ds = 0

and we therefore get that
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1

2πi

∫ ρ+i∞

ρ−i∞

exs

sk+1
ds =

{
xk

Γ(k+1)
if x > 0

0 if x ≤ 0

The next part of the proof follows similar lines to that of the Perron-Landau formula given
in theorem 2.4. We consider the following integral, where f(s) =

∑∞
n=1 ane

−λns

1

2πi

∫ c+i∞

c−i∞
f(s)

exs

sk+1
ds =

∞∑
n=1

an
1

2πi

∫ c+i∞

c−i∞

es(x−λn)

sk+1
ds =

∑
λn≤x

an
(x− λn)

k

Γ(k + 1)

multiplying both sides by Γ(k + 1) gives the identity∑
λn≤x

an(x− λn)
k =

Γ(k + 1)

2πi

∫ c+i∞

c−i∞

f(s)

sk+1
exsds

And more generally we have, for ρ > Re s0∑
λn<x

ane
−λns0(x− λn)

k =
Γ(k + 1)

2πi

∫ ρ+i∞

ρ−i∞

f(s)

(s− s0)k+1
ex(s−s0)ds

Proof of Proposition 1
We first show that Rk

x(f) is convergent. Let x > 0 and ε = 1
x
. We fix some s0 = σ0 + it0,

σ0 > 0. c = σ0 + ε. Applying theorem 4.2, we get that

sup
σ0>0

∣∣∣∣ ∑
λn<x

ane
−λns0

(
1− λn

x

)k∣∣∣∣ ≤ ∣∣∣∣Γ(k + 1)

2πi

1

xk

∫ c+i∞

c−i∞

f(s)

(s− s0)k+1
ex(s−s0)ds

∣∣∣∣
≤ ||f ||∞

Γ(k + 1)

π

exε

xk

∫ ∞

0

1

|ε+ it|k+1
dt

≤ ||f ||∞
e

π

Γ(k + 1)

k
(4.8)

Hence we have that Rk
x(f) is convergent, and by (4.6) we have that f(s) is (λ, k)-Riesz

summable for 0 < k ≤ 1.
Now, let k > 1 , and k = k′ + l, where l ∈ N, and 0 < k ≤ 1. By lemma 4.1 we have that

Rk
x(f) =

Sk′+l
x (f)

xk
=

Γ(k + 1)

Γ(k′ + 1)Γ(l)

1

xk

∫ x

0

( ∑
λn<u

ane
λns(u− λn)

k′
)
(x− u)l−1du

We use the definition of the Beta function (A.4), and the relation between the Beta and the
Gamma function (A.5) to see that
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Γ(k′ + 1)Γ(l)

Γ(k + 1)
= β(k′ + 1, l) =

1

xk

∫ x

0

uk′(x− u)l−1du :=
1

C

Furthermore, we again use lemma 4.1, and consider

Rk
x(f)− f(s) = Rk

x(f)− f(s)
C

xk

∫ x

0

uk′(x− u)l−1du

=
C

xk

∫ x

0

( ∑
λn<u

ane
λns(u− λn)

k′
)
(x− u)l−1du− f(s)

C

xk

∫ x

0

uk′(x− u)l−1du

=
C

xk

∫ x

0

uk′(x− u)l−1

(
Rk′

λ (u)− f(s)

)
du

We take the absolute value, and separate the integral at some finite point x0

|Rk
x(f)− f(s)| =

∣∣∣∣Cxk

(∫ x0

0

+

∫ x

x0

)
uk′(x− u)l−1

(
Rk′

λ (u)− f(s)

)
du

∣∣∣∣
≤ sup

y≥0
||Rk′

y (f)− f(s)||∞
C

xk

∫ x0

0

uk′(x− u)l−1du+ ε
C

xk

∫ x

x0

uk′(x− u)l−1du

≤ ||f ||∞
C

xk
x0 sup

u∈[0,x0]

uk′(x− u)l−1 + ε
C

xk
(x− x0) sup

u∈[x0,x]

uk′(x− u)l−1

≤ ||f ||∞
C

xk
x0x

k−1 + ε
C

xk
xk = C

(
||f ||∞

x0

x
+ ε

)

Which finally shows that

lim
x→∞

Rk
λ(x) = f(s)

4.2 Boundedness of partial sums

We introduce the following lemma, which gives a bound of the partial sums for a general
Dirichlet series

Lemma 4.3 (19, Lemma 3.5). If f(s) =
∑∞

n=1 ane
−λns, and 0 < k ≤ 1, we have for all

N ∈ N ∣∣∣∣ N∑
n=1

an

∣∣∣∣ ≤ 3

(
1

λN+1 − λN

)k

sup
0≤x≤λN+1

∣∣∣∣ ∑
λn<x

an(x− λn)
k

∣∣∣∣ (4.9)

Before we give the proof, we need the following lemma
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Lemma 4.4 (18, Lemma 7). If an is real for all n, 0 ≤ x ≤ ω, and 0 < k ≤ 1, then∣∣∣∣k ∫ x

0

∞∑
n=1

an(ω − t)k−1dt

∣∣∣∣ ≤ sup
0≤t≤x

|Ak
t (f)| (4.10)

where Ak
t (f) =

∑
λn<t an(t− λn)

k

Proof of lemma 4.3.∣∣∣∣ N∑
n=1

an

∣∣∣∣(λN+1 − λN)
k =

∣∣∣∣ N∑
n=1

an

∣∣∣∣ k ∫ λN+1

λN

(λN+1 − t)k−1dt

=

∣∣∣∣k ∫ λN+1

λN

At(f)(λN+1 − t)k−1dt

∣∣∣∣
=

∣∣∣∣k(∫ λN+1

0

−
∫ λN

0

)
At(f)(λN+1 − t)k−1dt

∣∣∣∣
≤

∣∣∣∣ N∑
n=1

an(λn+1 − λn)
k

∣∣∣∣+ ∣∣∣∣k ∫ λN

0

At(f)(λN+1 − t)k−1dt

∣∣∣∣
≤ sup

0≤x≤λN+1

∣∣∣∣ ∑
λn≤x

an(x− λn)
k

∣∣∣∣+ ∣∣∣∣k ∫ λN

0

At(f)(λN+1 − t)k−1dt

∣∣∣∣
the fourth step uses (4.3) and the triangle inequality. We bound the integral as follows

∣∣∣∣k ∫ λN

0

At(f)(λN+1 − t)k−1dt

∣∣∣∣ ≤∣∣∣∣k ∫ λN

0

( ∑
λn<t

Re an

)
(λN+1 − t)k−1dt

∣∣∣∣+ ∣∣∣∣k ∫ λN

0

( ∑
λn<t

Im an

)
(λN+1 − t)k−1dt

∣∣∣∣
Since |Re an| ≤ |an| and |Im an| ≤ |an|, for all n, and using (4.10), we get that

∣∣∣∣k ∫ λN

0

At(f)(λN+1 − t)k−1dt

∣∣∣∣ ≤ 2 sup
0≤x≤λN+1

|Ak
x(f)|

= 2 sup
0≤x≤λN+1

∣∣∣∣ ∑
λn<x

an(x− λn)
k

∣∣∣∣
which finally yields that∣∣∣∣ N∑

n=1

an

∣∣∣∣ ≤ 3

(
1

λN+1 − λN

)k

sup
0≤x≤λN+1

∣∣∣∣ ∑
λn≤x

an(x− λn)
k

∣∣∣∣
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Lemma 4.5 (19, theorem 3.2). For all 0 < k ≤ 1, N ∈ N and f(s) =
∑∞

n=1 ane
−λns ∈

Dext
∞ (λ) we have

sup
[Re>0]

∣∣∣∣ N∑
n=1

ane
−λns

∣∣∣∣ ≤ C
Γ(k + 1)

k

(
λN+1

λN+1 − λN

)k

||f ||∞

where C > 0 is a universal constant and Γ denotes the Gamma function.

Proof. For 0 < k ≤ 1 we have the following inequality when λN ≤ x ≤ λN+1

(x− λN)
k ≤ λk

N+1

(
1− λN

x

)k

Furthermore we get that

sup
0≤x≤λN+1

∣∣∣∣ ∑
λn<x

ane
−λns(x− λn)

k

∣∣∣∣ ≤ λk
N+1 sup

0≤x≤λN+1

∣∣∣∣ ∑
λn<x

ane
−λns

(
1− λn

x

)k∣∣∣∣
≤ λk

N+1

e

π

Γ(k + 1)

k
||f ||∞

Where the last step uses the bound obtained in (4.8). This result together with lemma 4.3
gives us that

sup
[Re>0]

∣∣∣∣ N∑
n=1

ane
−λns

∣∣∣∣ ≤ 3
e

π

Γ(k + 1)

k

(
λN+1

λN+1 − λN

)k

||f ||∞

4.3 Bohr’s theorem under Landau’s condition

We are now ready to give the definition of Landau’s condition.

Definition 4. (Landau’s condition) We say that a frequency λ satisfies Landaus’s condition
(LC) if, for all δ > 0, there exists C > 0, so that for all n ∈ N:

λn+1 − λn ≥ C exp(−eδλn)

Having established a bound for the norm of the partial sums of a given Dirichlet series, we
use this together with our bound for the abscissa of uniform convergence given in (3.1) to
prove that the condition of Landau satisfies Bohr’s theorem.

Lemma 4.6. Let λ be a frequency satisfying (LC). Then λ satisfies Bohr’s theorem.
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Proof. Let f(s) =
∑∞

n=1 ane
−λns be a Dirichlet series, and assume w.l.o.g that λn+1−λn ≤ 1

for all n. If λn+1−λn > 1 for some n, we define a new frequency λ2, by the method described
in [19, page 17], which satisfies (LC) and λn+1 − λn ≤ 1. Let δ > 0, and set kN = e−δλN . By
lemma 4.5 we have that

||SNf ||∞ ≤ C
Γ(kN + 1)

kN

(
λN+1

λN+1 − λN

)kN

||f ||∞

Since λ satisfies (LC), we have that

C exp(−k−1
N ) ≤ λN+1 − λN ≤ 1

for some C > 0. We have the following bounds

Γ(kN + 1) ≤ 1

(
λN+1

λN+1 − λN

)kN

≤
(

λN+1

C exp(−kN
−1)

)kN

=

(
1

C
λN+1 exp (e

δλN )

)kN

=
1

CkN
λkN
N+1e

supλkN
N+1 = lim

δ→0
(λN + 1)e

−δλN = λN + 1

sup
1

CkN
= max

(
1

C
, 1

)
= K

for some constant K. We therefore have the bound

||SNf ||∞ ≤ C
K

kN
||f ||∞ = C1e

δλN ||f ||∞ (4.11)

where C1 is some positive constant. It remains to show that we have uniform convergence
in [Re s > ε], for all ε > 0. We use our result from (4.11) together with lemma 3.1

σu(f) ≤ lim sup
N→∞

log ||SNf ||∞
λN

≤ lim sup
N→∞

logC1e
δλN ||f ||∞
λN

= lim sup
N→∞

δλN + logC1||f ||∞
λN

= δ + lim sup
N→∞

logC1||f ||∞
λN

= δ

Letting δ tend to zero we get that
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σu(f) ≤ 0

and λ satisfies Bohr’s theorem.

4.4 Kronecker’s approximation theorem

We give another application to that of Riesz-means of first kind, which is that λ’s which
are Q-linearly independent satisfies Bohr’s theorem. We first give the definition of Q-linear
independence.

Definition 5. (Q-linearly independent) We say that a frequency λ = (λn) is a Q-linearly
independent frequency if for all rational sequences q = (qn)∑

qnλn = 0

implies that qn = 0 for all n.

Bohr showed in [4] that for general Dirichlet series where λ is a Q-linearly independent
frequency satisfies the identity

σext
b = σa (4.12)

where

σext
b = inf

{
θ ∈ R : f allows a holomorphic and bounded extension to [Re > θ]

}
and since we have the general relation σext

b ≤ σb ≤ σu ≤ σa, we have that λ satisfies Bohr’s
theorem. Before we show that Bohr’s theorem holds for linearly independent frequencies, we
give a famous result shown originally by Kronecker, but we shall give a proof which is due
to Bohr and Jessen. [7]

Lemma 4.7. (Kronecker’s approximation theorem). Let λ1, λ2, . . . , λN be real, linearly-independent
numbers, and let µ1, µ2, . . . , µN be a sequence of real numbers. Then there exists t ∈ R and
a sequence g1, g2, . . . , gN of integers such that for all ε > 0, and for all n = 1, 2, . . . , N

|tλn − µn − gn| < ε

Proof. The lemma is equivalent to the statement that the complex number

e2πi(λnt−µn)

differ by less than ε from e0 = 1, for all n = 1, 2, . . . , N . We define the function f as
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f(t) = 1 +
N∑

n=1

e2πi(λit−µi) (4.13)

and define it’s upper bound by Γ
sup
t∈R

|f(t)| = Γ

we immediately notice that Γ ≤ N + 1. We need to show that Γ ≥ N + 1.
The Fejér kernel is defined as follows

FN(t) =
1

N

N−1∑
k=0

Dk(x) = 1 +
n− 1

n
(e−it + eit) + . . .

Where Dk(x) denotes the k’th order Dirichlet kernel. The Fejér kernel has the property that
it is always non-negative, as well as for all t ∈ R the mean

lim
T→∞

1

2T

∫ T

−T

FN(t)dt = 1

We define the composed kernel

Kn(t) =
N∏

n=1

FN(2π(λnt− µn))

Since λ is linearly independent, we obtain by multiplying out

Kn(t) = 1 +
n− 1

n
(e−2πi(λ1t−µ1) + e−2πi(λ2t−µ2) + · · ·+ e−2πi(λN t−µN )) +R(t)

whereR(t) is a trigonometric polynomial whose exponents are all different from 0,−2ıλ1, . . . ,−2πλN .
Hence we have that

F (t)Kn(t) = 1 +
n− 1

n
N + S(t)

where S(t) is a trigonometric polynomial whose exponents are all different from zero. Same
as for the Fejér kernel, the composed kernel has the property that it is always non-negative,
as well as for all t ∈ R the mean

lim
T→∞

1

2T

∫ T

−T

Kn(t)dt = 1

1 +
n− 1

n
N = lim

T→∞

1

2T

∫ T

−T

F (t)Kn(t)dt ≤ max
t∈R

|F (t)| lim
T→∞

1

2T

∫ T

−T

Kn(t)dt = Γ

and finally

1 +N = lim
n→∞

(
1 +

n− 1

n
N

)
≤ Γ
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We also need the following lemma, which is due to Bohr [4, Theorem 2b]

Lemma 4.8. Let f(s) =
∑∞

n=1 ane
−λns, where λ is a Q-linearly independent frequency. Let

σ0 > σa(f), then for every ε > 0, there exists t0 ∈ R such that

∞∑
n=1

|an|e−λnσ0 −
∣∣∣∣ ∞∑
n=1

ane
−λn(σ0+it0)

∣∣∣∣ < ε

Proof. Let qn = |an|e−λnσ0 , and since f(s) is absolutely convergent for σ0, we can set∑∞
n=1 qn = R. We define a domain D as follows;

If for some qi, i = 1, 2, . . . , we have that

qi >
∑
n ̸=i

qn = R− qi

we let

D :=

{
z ∈ C : r ≤ |z| ≤ R

}
where r = qi −

∑
n̸=i qn = 2qi −R

Else, we let

D :=

{
z ∈ C : |z| ≤ R

}
We can see that |f(s0 + it0)| takes values in D, since if we have case 1,

r = qi −
∑
n ̸=i

qn ≤
∣∣∣∣ ∞∑
n=1

ane
−λn(σ0+it0)

∣∣∣∣ ≤ ∞∑
n=1

qn = R

and if case 2, ∣∣∣∣ ∞∑
n=1

ane
−λn(s0+it0)

∣∣∣∣ ≤ R

Need to show that
∑∞

n=1 qn is dense in D. For any z ∈ D, δ > 0, we need to show existence
of some T ∈ R such that

|f(σ0 + iT )− z| < δ

Pick N ∈ N such that
∞∑

n=N+1

qn < δ

we now use a result which we shall not prove, but whose details can be found in [4, Lemma
1]. The result states that there exists a sequence ϕ1, ϕ2, · · · ∈ R such that the series

∞∑
n=1

qne
iϕn
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is dense in D. We therefore set this series equal to z. So for any t ∈ R, it follows that

|f(σ0 + it)− z| =
∣∣∣∣ ∞∑
n=1

ane
−λn(σ0+it0) −

∞∑
n=1

qne
iϕn

∣∣∣∣ ≤ ∣∣∣∣ ∞∑
n=1

|an|eiαne−λn(σ0+it0)

∣∣∣∣
≤

∣∣∣∣ N∑
n=1

|an|e−λnσ0

(
ei(αn−λnt) − eiϕn

)∣∣∣∣+ ∣∣∣∣ ∞∑
n=N+1

|an|e−λnσ0

(
ei(αn−λnt) − eiϕn

)∣∣∣∣
≤

∣∣∣∣ N∑
n=1

|an|e−λnσ0ei(αn−λnt)

∣∣∣∣+ ∣∣∣∣ N∑
n=1

|an|e−λnσ0eiϕn

∣∣∣∣+ 2δ

3

≤
N∑

n=1

|an|e−λnσ0

∣∣∣∣ei(αn−λnt)

∣∣∣∣∣∣∣∣1− ei(ϕn+λnt−αn)

∣∣∣∣+ 2δ

3

=
N∑

n=1

|an|e−λnσ0

∣∣∣∣1− exp

(
2πi

(
λnt

2π
− αn − ϕn

2π

))∣∣∣∣+ 2δ

3

finally, by lemma 4.7, we know that there exists g1, g2, · · · ∈ N, and t ∈ Z, such that for all
ε > 0 ∣∣∣∣λnt

2π
− αn − ϕn

2π
− gn

∣∣∣∣ < ε

which means that the exponent is arbitrarily close to an integer for all n, and we finally get
that

N∑
n=1

|an|e−λnσ0

∣∣∣∣1− exp

(
2πi

(
λnt

2π
− αn − ϕn

2π

))∣∣∣∣ < δ

3

and
|f(σ0 + iT )− z| < δ

4.5 Bohr’s theorem under linearly-independent frequencies

We are now ready to prove that for Q-linearly independent frequencies, we have the identity
from (4.12)

Lemma 4.9 (4, Theorem 6). Let f(s) =
∑∞

n=1 ane
−λns, where λ is a Q-linearly independent

frequency. Then f(s) is absolutely convergent for σ > σext
b (f)
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Proof. Assume that f is somewhere absolutely convergent. Let β = σext
b (f). We then have

that for [Re s > β]:

|f(s)| < K

for some real K. Let δ > 0, we want to prove that f(s) is absolutely convergent for [Re
s ≥ β + δ]. Let s0 = β + δ + it
By Cauchy’s integral formula for the n’th derivative

f ′(β + δ + it) =
1

2πi

∮
C

f(s)

(s− (β + δ + it))2
ds

where C is the circle with center β+δ+it, and radius δ. We use the substitution s = s0+δeiθ

|f ′(β + δ + it)| ≤ K

2π

∫ 2π

0

1

δ2
δdθ =

K

δ
= K ′

Now, let γ > β + δ, where γ > σa(f). Let T ∈ R, x > 1, and s0 = β + δ + iT . We have by
lemma 4.2 for k = 1:

1

2πi

∫ γ+i∞

γ−i∞

f(s)

(s− s0)2
ex(s−s0)ds =

∑
λn<x

ane
−λnso(x− λn)

define by Γ the rectangle with corners β − iV , β + iV , γ + iV , and γ − iV . We set

F (s) =
f(s)

(s− s0)2
ex(s−s0)

and use the limit formula for higher-order poles

1

2πi

∫
Γ

F (s)ds = Res (F (s), s0) = lim
s→s0

d

ds
(s− s0)

2F (s)

= lim
s→s0

f ′(s)ex(s−s0) + xf(s)ex(s−s0) = f ′(s0) + xf(s0)

We separate the integral

1

2πi

∫ γ+iV

γ−iV

F (s)ds =
1

2πi

(∫ β−iV

γ−iV

+

∫ β+iV

β−iV

+

∫ γ+iV

β+iV

)
F (s)ds+ f ′(s0) + xf(s0) (4.14)

We have the following bounds for the integrals parallell to the real axis∣∣∣∣ ∫ β−iV

γ−iV

F (s)ds

∣∣∣∣ ≤ ∣∣∣∣ ∫ β−iV

γ−iV

K

(t− T )2
ex(γ−(β+δ))dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ β−iV

γ−iV

K

(t− T )2
dt

∣∣∣∣
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which tends to zero as V tends to infinity, we get the same bound for the integral between
β + iV and γ + iV . For the remaining integral

∣∣∣∣ 1

2πi

∫ β+iV

β−iV

F (s)ds

∣∣∣∣ = ∣∣∣∣ 12π
∫ V

−V

f(β + it)

(β + it− (β + δ + iT ))2
ex(β+it−(β+δ+iT ))dt

∣∣∣∣
≤ Ke−xδ

2π

∫ V

−V

1

δ2 + (t− T )2
dt =

Ke−xδ

2π

∫ V−T

−V−T

1

δ2 + u2
du

≤ K1e
−xδ < K1

By (4.14) and 4.2 we’re left with

∣∣∣∣ ∑
λn<x

ane
λns0(x− λn)

∣∣∣∣ = 1

2πi

∫ β+iV

β−iV

F (s)ds+ f ′(s0) + xf(s)

< K1 +K ′ + xK < x(K1 +K ′ +K) = xK2

where K2 is independent of T and x. By lemma 4.8 we have that

∞∑
n=1

|an|e−λn(β+δ)(x− λn)−
∣∣∣∣ ∞∑
n=1

ane
−λn(β+δ+it0)(x− λn)

∣∣∣∣ < ε

and for t0 = T

∞∑
n=1

|an|e−λn(β+δ)(x− λn) < ε+ xK2 < x(ε+K2) = xK3

furthermore

∑
λn<

x
2

|an|e−λn(β+δ)

(
x

2

)
≤

∑
λn<

x
2

|an|e−λn(β+δ)(x− λn) ≤
∞∑
n=1

|an|e−λn(β+δ)(x− λn) ≤ xK3

∑
λn<

x
2

|an|e−λn(β+δ) ≤ 2K3 = K4

for all x > 1. Since K4 is independent of x, we can let x tend to infinity, and we finally get
that

∞∑
n=1

|an|e−λn(β+δ) ≤ K4 < ∞

and hence f(s) is absolutely convergent for all s such that [Re s > σext
b (f)], and moreover,

λ satisfies Bohr’s theorem.
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A Appendix

Proposition 2. If θ ∈ [0, π/2], then

sin θ ≥ 2θ

π
(A.1)

Proof. Let θ ∈ [0, π/2] and y = sin θ/θ, then

dy

dθ
=

θ cos θ − sin θ

θ2

and
d

dθ
(θ cos θ − sin θ) = −θ sin θ ≤ 0

Thus we have that θ cos θ − sin θ decreases from zero when θ increases. So dy/dθ < 0 when
θ ∈ [0, π/2] , hence y decreases in this range, and since limθ→0 y = 1 > 2/π, the result
follows.

A.1 The Gamma function

Definition 6. (The Gamma function) Let s = σ + it. We define the gamma function for
σ > 0 as

Γ(s) =

∫ ∞

0

e−tts−1dt (A.2)

Proposition 3. Let s be a complex variable not equal to a nonnegative integer, then the
following identity holds

sΓ(s) = Γ(s+ 1) (A.3)

Proof. Using integration by parts, one sees that

Γ(s+ 1) =

∫ ∞

0

e−ttsdt =

[
− e−tts

]∞
0

+

∫ ∞

0

se−tts−1dt

= lim
t→∞

[−e−tts] + s

∫ ∞

0

e−tts−1dt = s

∫ ∞

0

e−tts−1dt = sΓ(s)

Definition 7. (The Beta function) Let s1, s2 be complex variables. We define the beta
function for Re(s1), Re(s2) > 0 as

β(s1, s2) =

∫ 1

0

ts1−1(1− t)s2−1dt (A.4)

Remark. The beta function is symmetric, meaning that

β(s1, s2) = β(s2, s1)

for all inputs s1 and s2.
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Proposition 4. Let s1 and s2 be complex variables. For Re(s1), Re(s2) > 0 the following
identity holds

β(s1, s2) =
Γ(s1)Γ(s2)

Γ(s1 + s2)
(A.5)

Proof.

Γ(s1)Γ(s2) =

∫ ∞

u=0

e−uus1−1du

∫ ∞

v=0

e−vvs2−1dv

=

∫ ∞

v=0

∫ ∞

u=0

e−u−vus1−1vs2−1dudv

Using the change of variables u = kt and v = k(1− t), one sees that

Γ(s1)Γ(s2) =

∫ ∞

s=0

∫ 1

t=0

e−k(kt)s1−1(k(1− t))s2−1kdtdk

=

∫ ∞

k=0

e−kks1+s2−1ds

∫ 1

t=0

ts1−1(1− t)s2−1dt = Γ(s1 + s2)β(s1, s2)

Dividing both sides by Γ(s1 + s2) gives the desired result.

Remark. We consider the beta function where we shift the integral limits by x, and substitute
x+ 1 by k to get the following expression

β(s1, s2) =

∫ 1

0

ts1−1(1− t)s2−1dt =

∫ x+1

x

(t− x)s1−1(1− t+ x)s2−1dt

=

∫ k

x

(t− x)s1−1(k − t)s2−1dt = (k − x)s1+s2−1β(s1, s2)

and therefore ∫ k

x

(t− x)s1−1(k − t)s2−1dt = (k − x)s1+s2−1Γ(s1)Γ(s2)

Γ(s1 + s2)
(A.6)

Lemma A.1. (Euler’s reflection formula) Let k ∈ C/Z, then

Γ(k)Γ(1− k) =
π

sin πk
(A.7)

Proof. We use the Weierstrass definition of the gamma function, which is valid for all complex
numbers k except for the non-positive integers.

Γ(k) =
e−γk

k

∏
n≥1

(
1 +

k

n

)−1

ek/n (A.8)
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where

γ = lim
N→∞

( N∑
k=1

1

k
− logN

)
denotes the Euler-Mascheroni constant. Since Γ(1− k) = −kΓ(−k) we consider

− kΓ(−k) = eγk
∏
n≥1

(
1− k

n

)−1

e−k/n (A.9)

Multiplying (A.8) and (A.9) gives

Γ(k)Γ(1− k) =
1

k

∏
n≥1

(
1− k2

n2

)−1

Euler’s product formula for sine is given by

sin k = k
∏
n≥1

(
1− k2

π2n2

)
(A.10)

We replace k by πk, and divide both sides by π

sin πk

π
= k

∏
n≥1

(
1− π2k2

π2n2

)
cancelling the π’s and taking the inverse on both sides yields the desired result.

π

sin πk
=

1

k

∏
n≥1

(
1− k2

n2

)−1

= Γ(k)Γ(1− k)



Bibliography

[1] Lars Ahlfors. Complex analysis mcgraw-hill. Inc., New York, 1979.

[2] Ramachandran Balasubramanian, Bruno Calado, and Hervé Queffélec. The bohr
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