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Abstract. It is suggested that a spherical harmonic representation of the geoidal heights using global 

Earth gravity models (EGM) might be accurate enough for many applications, although we know 

that some short-wavelength signals are missing in a potential coefficient model. A ‘direct’ method 

of geoidal height determination from a global Earth gravity model coefficient alone and an ‘indirect’ 

approach of geoidal height determination through height anomaly computed from a global gravity 

model are investigated. In both methods, suitable correction terms are applied. The results of 

computations in two test areas show that the direct and indirect approaches of geoid height 

determination yield good agreement with the classical gravimetric geoidal heights which are 

determined from Stokes’ formula. Surprisingly, the results of the indirect method of geoidal height 

determination yield better agreement with the global positioning system (GPS)-levelling derived 

geoid heights, which are used to demonstrate such improvements, than the results of gravimetric 

geoid heights at to the same GPS stations. It has been demonstrated that the application of correction 

terms in both methods improves the agreement of geoidal heights at GPS–levelling stations. It is also 

found that the correction terms in the direct method of geoidal height determination are mostly 

similar to the correction terms used for the indirect determination of geoidal heights from height 

anomalies.  
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1 Introduction   

 

An accurate solution of the boundary-value problem in physical geodesy has usually been found 

using Stokes’ well-known formula for the anomalous gravity potential, with the geoidal height 

calculated through Bruns’ formula. The geoid represents a vertical datum for orthometric heights 

used in many countries. An accurate geoid is also of interest in many other geophysical applications. 

However, with the increasing accuracy of the geopotential coefficients and the maximum degree of 

expansion to higher degree, the computation of geoidal heights from global gravity models has been 

an issue of increasing importance in the geodetic community. Rapp (1971, 1994a, 1994b) has 

examined different procedures for geoidal height computations using spherical harmonic coefficients 

of the global Earth gravity models. Rapp (1994a, 1994b, 1997) noted the use of height anomaly–

geoidal height (𝑁 − 𝜁) difference and a height anomaly gradient correction term, which will be called 

the ‘indirect’ method for geoidal height determination. The ‘direct’ method of geoidal height 

determination referred to in this study involves determining the geoid undulations from the 

geopotential coefficients model alone. Smith (1998) and Smith and Small (1999) have investigated 
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the use of direct and indirect geoid height determinations using EGM96 (Lemoine et al. 1997) 

geopotential coefficients.  

In determining the geoid undulations from geopotential coefficients with the direct method 

for geoid height computation, we must expect a bias from the external harmonic series when applied 

at the geoid within the topographic masses. Sjöberg (1977, 1994) pointed out this bias and Sjöberg 

(1994, 1995), Vanicek et al. (1995), and Nahavandchi and Sjöberg (1998) derived different terms to 

handle this bias, which is here called the topographic correction for potential coefficients. 

The purpose of this paper is to demonstrate the efficiency of geoidal height determinations 

from geopotential coefficient models using a set of GPS–levelling stations in two test areas in Iran. 

It will be suggested that the simple computation of topographical corrections and geoid heights with 

a set of spherical harmonics might be useful in practice, instead of the use of the very arduous 

procedure of classical gravimetric methods (Stokes’ integral) and topographic effects. However, 

computations in different test areas are suggested. Rapp (1997) compared the geoidal heights derived 

from 960 GPS–levelling stations with the geoid undulations derived with the indirect approach 

through height anomaly and the OSU91A model (Rapp et al. 1991) over the USA. The root-mean-

square (RMS) difference was ±56 cm. Smith and Small (1999) also computed the geoidal heights 

by applying high-frequency corrections to the EGM96 geopotential model in a remove–restore 

technique. An RMS difference of ±62  cm was found at the 31 GPS–levelling stations. 

 

2 Direct geoidal height determination from a geopotential coefficients model alone 

 

In modern methods of determining the geoidal undulations, the long-to-medium-wavelength 

components are frequently obtained from a global geopotential model in the modified Stokes 

formula. The short-wavelength information is then computed from Stokes’ integral. In this study, 

these short-wavelength signals are disregarded and the geoidal heights (N) are determined from 

EGM96 geopotential coefficients using spherical harmonic representations by the following 

expansion that is complete to degree M (=360 in this study)(Heiskanen and Moritz 1967, Chaps. 1 

and 2): 

𝑁(𝑅, 𝜑, 𝜆) =
𝐺𝑀3

𝑅𝛾
∑ (

𝑎1

𝑅
)

𝑛
∑ [(

𝐺𝑀1

𝐺𝑀3
𝐶𝑛𝑚 −

𝐺𝑀2

𝐺𝑀3
(
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𝑎1
)

𝑛
𝐶′𝑛𝑚) cos 𝑚𝜆 +𝑛

𝑚=0
𝑀
𝑛=0

+
𝐺𝑀1

𝐺𝑀3
𝑆𝑛𝑚 sin 𝑚𝜆] 𝑃𝑛𝑚(sin 𝜑) −
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𝛾0
(𝑊0 − 𝑈0)      (1) 

 

where  

R  = mean geoid radius 

(φ, λ)  = spherical latitude and longitude of the computation point 

𝛾0   = normal gravity at the ellipsoid to which the geoidal height N will refer 

a1  = equipotential scale factor of EGM96 (6378.1363 km) 

a2  = equipotential radius of GRS-80 (6378.137 km) 

GM1  = gravity-mass constant of EGM96 (3.986004415× 1014 m3 /s2) 

GM2  = gravity-mass constant of GRS-80 (3.986005000× 1014 m3 /s2) 

GM3  = best estimate of gravity-mass constant for the Earth (3.986004418× 1014 m3 /s2) 

W0  = adopted gravity potential on the geoid (62636856.88 m2 /s2) 

U0  = defined normal gravity potential on the ellipsoid (62636860.85 m2 /s2) 

Cnm and Snm = fully normalized geopotential coefficients of degree n and order m of EGM96 in       

non-tidal system (C00=1.0; S00=0.0; C1m=S1m=0.0; C20=non-tidal; S20=0.0)  
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C'nm and S'nm = fully normalized normal potential coefficients of degree n and order m of GRS-80 

in non-tidal system (C'00=1.0; S'00=0.0; C'1m=S'1m=0.0; C'20=non-tidal; S'20=0.0). We 

have also made use of the fact that S'nm=0.0 for all n and m.  

Pnm  = fully normalized Legendre functions. 

 

The geoid undulation given by Eq. (1) defines the absolute level of the geoid through the value of 

W0 (Bursa 1995). It also adopts the GRS-80 ellipsoid (Moritz 1988) as the reference ellipsoid. A 

best global value of gravity-mass constant (GM3) (Bursa 1995) is also adopted. Definition of these 

parameters allows us to determine the geoid undulation with Eq. (1) in 30′ × 30′ grids relative to the 

GRS-80 ellipsoid. The tide system in which the geoid height model is to be given is a non-tidal 

system to be more consistent with EGM96. 

In employing the geopotential coefficients for the geoidal height computations (direct 

method), the assumption is that the external harmonic series expansion is convergent on the Brillouin 

sphere. The downward continuation of this series inside the sphere presents some problems of 

convergence, and Sjöberg (1977) emphasized this point. On the other hand, Jekeli (1981, 1982) 

pointed out that the convergence problem is non-existent for a finite series. Even if the convergence 

problem is negligible we must expect a bias for external harmonic series when applied at the geoid 

within the topographic masses. This bias can be estimated by removing the topographic masses (such 

that we can now continue the external harmonic series of the geopotential downwards to the geoid – 

they are now harmonic between the geoid and the topography), and then restore the masses. The 

removal and restoration of topography implies a direct and indirect topographic correction on the 

geopotential. Nahavandchi and Sjöberg (1998) used the second Helmert condensation method for 

handling the topographic masses and derived the following formula for the direct topographical 

correction on the geoid to the third power of elevation: 

 

𝛿𝑁Dir = −
2𝜋𝜇

𝛾
∑ ∑
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                 (2) 

    

and for the indirect topographical correction on the geoid to the third power of elevation 

(Nahavandchi and Sjöberg 1998) 

 

𝛿𝑁Ind = −
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      (3)  

 

 

where 𝑀′ is the maximum degree of height coefficients in a spherical harmonic representation, 𝜇 =
𝐺𝜌, 𝜌 being the density of crust considered constant, and 𝑌𝑛𝑚 are fully normalized spherical 

harmonics obeying the following rule: 

 
1

4𝜋
∫ ∫ 𝑌𝑛𝑚𝑌𝑛′𝑚′𝜎

𝑑𝜎 = {1            if 𝑛 = 𝑛′   and 𝑚 = 𝑚′
0                                  Otherwise

          (4) 

 

and 
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(𝐻𝜐)𝑛𝑚 =
1

4𝜋
∫ ∫ 𝐻𝑃

𝜐𝑌𝑛𝑚𝜎
𝑑𝜎;         𝜐 = 2,3             (5) 

 

𝐻𝑃
𝜐 = ∑ (𝐻𝜐)𝑛𝑚𝑛,𝑚 𝑌𝑛𝑚                (6) 

 

 
           

3 Indirect geoidal height determination through height anomaly 

 

Geoidal height can also be determined from the height anomaly (𝜁) by the well-known approximate 

formula (Heiskanen and Moritz 1967, p. 327) and an additional term dependent on 𝐻2 (Sjöberg 

1995) 

𝑁𝑃(𝜑, 𝜆) = 𝜁𝑃(𝑟, 𝜑, 𝜆) +
(Δ𝑔𝐵)𝑃

𝛾̅
𝐻𝑃 +

𝐻𝑃
2

2𝛾̅
(

𝜕∆𝑔𝐹

𝜕𝐻
)

𝑃
       (7) 

    

 

where Δ𝑔𝐵 and ∆𝑔𝐹 are the Bouguer and free-air anomalies, respectively, and (Heiskanen and Moritz 

1967) 

 

(
𝜕∆𝑔𝐹

𝜕𝐻
)

𝑃
=

𝑅2

2𝜋
∫ ∫

∆𝑔𝐹−∆𝑔𝑃
𝐹

ℓ0
3𝜎

𝑑𝜎 −
2

𝑅
∆𝑔𝑃

𝐹;         𝜐 = 2,3        (8) 

 

where ℓ0 is the spatial distance between the computation point P and the running point, 𝜎 is the unit 

sphere, 𝐻𝑃 is the orthometric height at P, and 𝛾̅ is an average value of normal gravity between 𝑄′ 
(corresponding to P) on the ellipsoid and the point 𝑄′′ (corresponding to P) on the telluroid. The 

geoidal height given by Eq. (7) is the separation between a reference ellipsoid and Earth’s gravity 

equipotential surface (geoid). Rapp (1997) rewrote Eq. (7) in terms of computer efficiency in the 

following form (although he neglected the term dependent on 𝐻2 which is given below): 

 
𝑁(𝜑, 𝜆) = 𝜁0(𝑟, 𝜑, 𝜆) + 𝐶1(𝜑, 𝜆) + 𝐶2(𝜑, 𝜆)              (9) 

 

where (Rapp 1997) 

 

𝐶1(𝜑, 𝜆) =
𝜕𝜁

𝜕𝑟
𝐻 +

𝜕𝜁

𝜕𝛾

𝜕𝛾

𝜕ℎ
𝐻        (10) 

 

𝐶2(𝜑, 𝜆) =
Δ𝑔𝐵

𝛾̅
𝐻 +

𝐻2

2𝛾̅
(

𝜕∆𝑔𝐹

𝜕𝐻
)        (11) 

 

The 𝜁0 value can be computed from (Heiskanen and Moritz 1967) 

 

𝜁0(𝑟𝑒 , 𝜑, 𝜆) =
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1
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(𝑊0 − 𝑈0)          (12) 

 

where 𝑟𝑒 is the ellipsoid radius, 𝛾 is the normal gravity at the telluroid (i.e. normal height), and the 

same notations and explanations as for Eq. (1) are used.  

The next step is to evaluate the 𝐶1 term. Using Eq. (12) we can evaluate the first term of 𝐶1 

from 
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𝜕𝜁

𝜕𝑟
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(
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The second term of Eq. (10) can obviously be rewritten as 

 

         
𝜕𝜁
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(
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𝑛𝑚) cos 𝑚𝜆 +
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1

𝛾2 (𝑊0 − 𝑈0]  (14) 

 

We next consider the evaluation of the 𝐶2 term. The Bouguer anomalies can be found with 

the following formula from free-air anomalies and a digital terrain model (DTM) (Heiskanen and 

Moritz 1967): 

 
Δ𝑔𝐵(𝜑, 𝜆) = Δ𝑔𝐹(𝜑, 𝜆) − 0.1119𝐻(𝜑, 𝜆)       (15) 

 

 

where it is assumed that the density of crust 𝜌 is a constant value equal to 2760 kg m-3. The free-air 

gravity anomaly in Eq. (15) can be computed from EGM96 potential coefficients using (Heiskanen 

and Moritz 1967) 

 

Δ𝑔𝐹(𝑟, 𝜑, 𝜆) =
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(
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2

𝑟
(𝑊0 − 𝑈0  (16) 

 

 

with the same notations and explanations as for Eq. (1).  

The digital elevation model in this study is available in a global grid. The evaluation of 

Bouguer anomaly can also be done in a global grid of mean values whose size is compatible with 

the maximum degree of expansion (in this study 360). The free-air anomalies are determined at the 

surface of the Earth. Thereafter the 𝐶1 and 𝐶2 values are computed on a grid with mean values in 

30 × 30 cells. These two corrections can also be computed at each desired point and then added to 

the 𝜁0 value calculated with Eq. (12), resulting in the geoidal height.  

It should also be mentioned that the direct method gives a spherical approximation of the 

geoid while the indirect method gives an ellipsoidal approximation of the geoid. Some differences 

between the two methods are caused by these different approximations, although we have used the 

two approximations locally in two test areas.  

 

 

4 Numerical investigations 

 
4.1 Data sources 

 

The first area of study is limited by latitudes 54⁰ N and 55⁰ N and longitudes 30⁰ E and 31⁰ E. The 

elevation in this area varies from 1400 to 2400 m. GPS–levelling stations are used to demonstrate 
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the efficiency of different procedures of geoidal height determination as an independent data set. 

There are 33 GPS–levelling stations in this area. The orthometric heights of GPS–levelling stations 

vary from 1431 to 2289 m. Although there is not enough information for assessing the accuracy of 

these orthometric heights, Hamesh (1991) has estimated that the accuracy of the orthometric heights 

is about 70 cm. He has also mentioned that the terrestrial gravity data have not been used in the 

determination of the orthometric heights. The accuracy of the ellipsoidal height computed from GPS 

is estimated to about 25 cm (Nilforoshan 1995). The gravimetric geoidal heights of these 33 stations 

are also known (Hamesh 1991). The gravimetric geoid heights are computed using a modification 

of Stokes’ formula combining the short-wavelength contributions from the terrestrial gravity (11 000 

grid observations in 110′′ × 160′′ cells) and height data (1 km × 1 km) with the long-wavelength 

contributions from a global geopotential model [OSU89B (Rapp and Pavlis 1990), to degree and 

order 360]. Topographic and atmospheric corrections are also applied. The intention of this study is 

to determine the geoidal heights with the direct and indirect methods from a global geopotential 

model and then to compare the results of these two procedures with the above-mentioned gravimetric 

geoid heights at 33 GPS–levelling stations. These comparisons will show us the efficiency of using 

very simple computations of the geopotential coefficient models compared with the classical formula 

of Stokes with the arduous computations of integral formulae including the topographic corrections. 

The GPS–levelling geoidal heights are computed by the following well-known formula with 

the combination of the ellipsoidal height h, computed from GPS, and the orthometric height H, 

computed from precise levelling: 

 
𝑁 = ℎ − 𝐻        (17) 

 

The statistics of differences between the gravimetric and GPS–levelling geoidal height models at the 

33 GPS stations are shown in Table 1. A maximum difference between these two geoid models of 

1.238 m is computed. The main reasons for these differences between gravimetric and GPS–levelling 

geoid heights might be the systematic errors in orthometric heights and the terrestrial gravity 

observation errors (Hamesh 1991). Another other reason could be the fact that the terrestrial gravity 

data are not used to determine the orthometric heights. 
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4.2 Direct geoidal height determination from the EGM96 geopotential model alone 

 

Equation (1) is used to compute the geoidal heights in the 33 GPS–levelling stations. The global 

EGM96 to degree and order 360 is used in these computations. The statistics of the differences 

between the geoidal heights computed from EGM96 and from GPS–levelling data are shown in 

Table 2. A maximum difference of 1.692 m is observed between these two geoidal height models. 

The short-wavelength information missing from EGM96 can account for some of the high-frequency 

differences with the GPS–levelling geoidal heights. However, the large bias comes mainly from the 

fact that the computation points lie inside the topographic masses. This large bias will be treated 

below. 

In the next step the direct topographic correction [Eq. (2)] and indirect topographic correction 

[Eq. (3)] are evaluated in the first test area. To do this, the height coefficients (𝐻2)𝑛𝑚 and (𝐻3)𝑛𝑚 

are determined from Eqs. (5) and (6). For this, a 30′ × 30′ DTM is generated using the Geophysical 

Exploration Technology (GETECH) 5′ × 5′ DTM (GETECH 1995). This 30′ × 30′ DTM is averaged 

using area weighting. Since the interest is in continental elevation coefficients and we are trying to 

evaluate the effect of the masses above the geoid, the heights below sea level are all set to zero. The 

spherical harmonic coefficients of topographic heights are computed to degree and order 360. 

Parametric definitions are as follows: 𝜇 = 𝐺𝜌, where 𝐺 = 6.673 × 10−11𝑚3𝑘𝑔−1𝑠−2 and 𝜌 = 2670 

𝑘𝑔 𝑚⁄ 3
, R=6371 km, and 𝛾 = 981 Gal. The topographic corrections are computed to degree and 

order 360 so that the corresponding cell size is 30′ × 30′. Figures 1 and 2 show respectively the direct 

and indirect topographic corrections in the first test area. The statistics of the direct and indirect 

topographic corrections on the geoid are shown in Tables 3 and 4. An absolute maximum value of 

0.367 m for the direct effect and an absolute maximum value of 0.139 m for the indirect effects on 

the geoid are found. Thereafter, the geoidal heights computed with Eq. (1) are corrected for the effect 

of topographic masses and compared with the 33 GPS–levelling geoidal heights. Table 5 shows the 

statistics of differences between these two geoidal height models. As can be seen from the values 

given in Table 5, better results are surprisingly obtained with the geoid derived from the geopotential 

coefficients model and corrected for topographic effects, compared with the results for the 

gravimetric geoidal heights at 33 GPS–levelling stations. The RMS of the difference between 

gravimetric geoidal height and the 33 GPS–levelling geoidal heights is ±0.7 m, while it is computed 

as ±0.718 m for EGM96 geoidal heights, which is a good result considering that the short-wavelength 

contributions must be missing in the EGM96 geoid. This interesting result was also reported by 

Hamesh (1991). He compared the gravimetric geoid at 55 GPS–levelling stations in Iran. The RMS 

error was computed to ±1.5 m. The RMS of differences reduced to ±0.95 m at the same GPS stations 

when the gravimetric geoidal heights were computed only by the OSU89B model and topographic 

corrections (the ‘direct’ method in this study). Finally, the values given in Tables 2 and 5 demonstrate 

that the application of the direct and indirect topographical corrections to geoidal heights computed 

from EGM96 coefficients yield a better fit of geoidal heights to GPS–levelling data than if no 

topographical corrections were applied. 
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4.3 Indirect geoidal height determination through the height anomaly 

 

The height anomaly is firstly computed with Eq. (12) from EGM96 coefficients at the 33 GPS–

levelling stations. The degree and order of expansion is 360. The height anomalies are then compared 

with the GPS–levelling–derived geoidal heights. The statistics of the differences are shown in Table 

6. A maximum difference of 1.571 m is observed between these two geoid height models. The main 

reason for the large differences is the height anomaly–geoidal height difference. 

The next step is the calculation of the 𝐶1 and 𝐶2 correction terms. Equation (10) is used to 

compute the 𝐶1 term in the test area. The 30′ × 30′ height information (mentioned above) and global 

EGM96 model to degree and order 360 are used to estimate this term. This means that the 𝐶1 term 

will be computed in a 30′ × 30′ cell size. Figure 3 shows the 𝐶1 term in the first test area. An absolute 

maximum value of 0.16 m is found for this term. To compute the 𝐶2 term, the Bouguer anomalies 

are computed from free-air anomalies and the DTM using Eqs. (15) and (16). The EGM96 model to 

degree and order 360 and the 30′ × 30′ height information are used to evaluate this term. The 𝐶2 term 

is computed in a 30′ × 30′ cell size. In order to compute the second term of 𝐶2 in Eq. (11), i.e. the 

term dependent on 𝐻2, we have employed Eq. (8). To do this the integration area is extended to 20 

from the computation points (see Nahavandchi 1998) and the free-air gravity anomalies are 

computed in this extended area from EGM96 to degree and order 360. The results of computations 

of this second term in 𝐶2 (depending on 𝐻2) show that this term has at most 21% of the magnitude 

of the 𝐶2 term, resulting in 0.092 m in this study. Figure 4 depicts the 𝐶2 term in the test area. An 

absolute maximum value of 0.44 m is computed. The statistics of 𝐶1 and 𝐶2 terms are also given in 

Table 7. 

Comparing Figs. 1 and 2 with Figs. 3 and 4, we find that Fig. 1 (the direct topographic 

correction) is mostly similar with Fig. 4 (the 𝐶2 term) in shape and magnitude. Also, Fig. 2 (the 

indirect topographic correction) is mostly similar in shape and magnitude with Fig. 3 (the 𝐶1 term). 

This means that the correction terms in either of the two direct and indirect methods of geoidal height 
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determination mostly have the same shape and magnitude in this study. However, these results 

should be tested in other areas. 

 

 
 

Finally, the geoidal heights are computed using Eq. (9), including the 𝐶1 and 𝐶2 correction 

terms, and compared with the GPS–levelling–derived geoidal heights. Table 8 shows the statistics 

of differences between these two geoidal height models. The values given in Tables 6 and 8 show 

that the application of the two-correction term (𝐶1 and 𝐶2) to height anomalies computed from a 

geopotential model yields geoidal heights that fit better to GPS–levelling data than if no correction 

terms were applied. A maximum difference of 1.114 m is computed between the geoidal height 

derived through height anomalies and GPS–levelling geoid heights. Table 8 also shows very good 

results at GPS–levelling stations compared with the results of gravimetric geoidal heights fitting at 

the same stations. Surprisingly, the RMS difference between geoidal heights determined through 

height anomaly (including two correction terms) and the GPS–levelling geoid is computed to be 

±0.612 m, while it was ±0.7 m with the gravimetric geoid heights compared at the same stations. 
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In order to obtain further insight into the comparison results, another test area in Iran has 

been chosen. This second area is limited by latitudes 49⁰ N and 51⁰ N and longitudes 33⁰ E and 35⁰ 

E. The elevation in this area varies from 1900 to 2450 m. Twenty-three GPS-levelling stations are 

used for the comparisons. GPS-levelling heights are determined with the same procedure and 

accuracy as for the first test area. The same results for the comparisons as for the first area are 

obtained, with minor differences. Comparisons of the gravimetric geoid height at these 23 GPS-

levelling stations show an RMS of ±0.682 m, while the RMS difference was computed to ±0.772 m 

by the direct method and ±0.601 m by the indirect method of geoidal height determination at the 

same stations. However, we recommend these computations be carried out in other test areas with 

different gravimetric geoid models. These results show that, at least in the test areas of this study, 

the estimation of the geoidal heights with very simple computations of the height anomaly (including 

correction terms) from the spherical harmonic representations of the geopotential, topography, and 

height anomaly–geoidal height difference agrees better with the GPS-levelling geoid undulations 

than the very arduous computations of geoidal heights with Stokes’ integral and topographic 

corrections.  

It is shown that the direct and the indirect presentation of the geoidal height from the 

geopotential coefficient models differ from each other at the GPS stations. However, Figs. 1–4 depict 

that the correction terms in both methods are mostly similar in shape and magnitude (in this study). 

Therefore, one possible reason for the differences between these two methods is the procedure used 

for computation of the geoidal height itself. In fact, the indirect method of computation [Eq. (12)] 

gives better results than the direct method of computation with Eq. (1) in this study. The reason 

might be the convergency problem in Eq. (1), which is mentioned in Sect. 2, as the computation 

points lie inside the topographic masses. However, these computations must be tested in other areas. 

 

5 Discussions and conclusions 

 

Two different procedures to determine the geoidal heights from a geopotential coefficient model are 

presented. In the first method the geoidal heights are computed directly at the geoid inside the 

topographic masses from a geopotential model alone, and thereafter the effects of topographic 

masses (direct and indirect topographic effects) are corrected. In the second approach, the height 

anomalies are calculated first. Subsequently, the height anomalies are converted to the geoidal 

heights using two correction terms, one of them representing the height anomaly gradient term and 

the second one the height anomaly–geoidal heights difference. Both of these approaches use the 

spherical harmonics to estimate the geoidal heights and correction terms and are very suitable and 

simple to use from the computational point of view compared to the classical gravimetric approach 

of geoidal height determination using the Stokes formula, which requires very arduous integral 

computations including the topographical corrections.  

The two methods of geoidal height determination from the geopotential coefficient model 

and the gravimetric geoid computed with Stokes’ formula are investigated at 33 and 23 GPS-
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levelling stations respectively in two test areas. The results show very good agreement of the two 

methods of this study with the GPS-levelling data compared with the gravimetric method, in terms 

of a few centimetres. Surprisingly, better results are obtained with the indirect computations of 

geoidal heights through height anomaly at GPS stations than the gravimetric geoid heights at the 

same stations. This means that, at least in the areas of this study, the use of the geopotential model 

agrees better with GPS-levelling data than the gravimetric method for geoid height determination. 

However, the gravimetric geoid heights of this study might be not accurate enough and these 

computations should be done in other test areas too.  

It is found that the correction terms in the direct approach of geoidal height determination 

(i.e. topographic corrections) are mostly similar in shape and magnitude to the correction terms in 

the indirect method of geoidal height determination (i.e. the height anomaly – geoidal height 

difference and the height anomaly gradient term). Therefore, the better result of the second method 

is caused by better treatment of the geoidal height computations in the indirect method with the 

computation points at the Earth’s surface than in the direct method of geoidal height computations 

with the computation points at the geoid inside the topographic masses. The convergency problem 

is suggested out as the reasons for this.  

Geoidal height determination through height anomaly (indirect method) has demonstrated 

good agreement with the GPS-levelling data of this study, although we know that some high-

frequency information (local contributions) is missing in this approach. The results could be 

improved in the near future by increasing the accuracy of the potential coefficient models and the 

maximum degree of expansion.  
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