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Summary

This thesis presents contributions to the mathematical modeling of underwater vehi-
cles and nonlinear hybrid feedback control. We present a matrix Lie group formulation
of the standard model describing the motion of rigid underwater vehicles. Furthermore,
we introduce monotone dissipativity, a specialization of the standard notion of dissipa-
tivity, which is useful for the stability analysis of underwater vehicle control systems.
It is shown that common formulations of hydrodynamic damping experienced by un-
derwater vehicles are not merely dissipative, but in fact monotonically dissipative. We
then investigate a fundamental relationship between convexity properties of Rayleigh
dissipation functions and monotonically dissipative hydrodynamic damping models.
The Lie group formulation of the underwater vehicle dynamics also makes possible a
complete and precise description of vehicle shape symmetry, and its role in simplifying
the modeling of hydrodynamic inertia and damping effects.

An extension of the aforementioned modeling framework to underwater vehicles
that are multibody systems with a kinematic tree structure is subsequently formulated.
This class of underwater vehicles includes not only conventional underwater vehicle-
manipulator systems, but also a large number of experimental and prototype designs
such as articulated intervention autonomous underwater vehicles. A global matrix-
form of the vehicle kinematics and dynamics which is well-suited to stability analysis
of model-based control laws is derived. Furthermore, we introduce a generalized in-
verse dynamics algorithm that simplifies the implementation of such control laws. The
forward dynamics problem is addressed in an efficient manner with a composite-rigid-
body algorithm.

Hybrid feedback control laws typically comprise a collection of continuous state
feedback control laws in conjunction with a state-based switching logic that deter-
mines which control law from the collection is utilized. We employ hybrid feedback
control to circumvent topological obstructions to robust global stabilization which are
associated, for example, with the rotational degrees of freedom of marine vehicles.
In particular, we formulate globally asymptotically stabilizing proportional-derivative
(PD), output feedback, and proportional-derivative-integral (PID) hybrid feedback
control laws, which solve the tracking problem globally and robustly for a class of
mechanical control systems defined on matrix Lie groups. These control laws are con-
structed from so-called synergistic functions, which have already been derived for the
Lie groups that describe the configuration space of many important engineering sys-
tems. The presented control laws therefore have immediate and wide applicability.

We also present specialized adaptive hybrid feedback control laws for marine sur-
face and underwater vehicles, which we derive from a slightly more general class of
functions than the aforementioned synergistic ones. The introduced control laws can
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be loosely characterized as being of dynamic sliding-surface type, and ensure global
asymptotic path-following for the marine vehicles in the presence of parametric mod-
eling uncertainties. In contrast to conventional synergistic backstepping control laws,
the sliding surface formulation results in a switching logic which is independent of the
vehicle velocities. While this feature comes at the cost of a minor increase in dynamic
order of the control law, it permits the estimation of the vehicle’s inertial parame-
ters. Experimental validation of the derived control laws are presented for surface and
underwater vehicles.

We subsequently introduce hysteretic control Lyapunov functions (HCLFs). A fam-
ily of HCLFs consists of several locally defined control Lyapunov functions. A switching
logic with hysteresis is encoded in three finite covers of the state-space on which the
control Lyapunov functions satisfy certain decrease conditions. We investigate the re-
lationship between HCLFs and synergistic control Lyapunov functions (SCLFs), and
show that a family of HCLFs generalizes an SCLF whose synergy gap is bounded away
from zero. Furthermore, given an HCLF family, we derive sufficient conditions for the
existence of globally asymptotically stabilizing hybrid feedbacks. Lastly, we provide
a constructive optimization-based design procedure for such stabilizing hybrid feed-
backs.

The last chapter of this thesis presents a generalization of synergistic Lyapunov
function and feedback (SLFF) pairs, which in turn are a generalization of the afore-
mentioned synergistic functions. In particular, we allow the logic variable paramount
to traditional synergistic control to possess flow dynamics, thereby translating SLFF
pairs into SLFF triples. The generalized logic state is referred to as a synergy variable,
for which we introduce the two modified jumping strategies optional jumping and in-
dependently triggered jumping. Moreover, it is shown that SLFF triples, like SLFF
pairs, are amenable to integrator backstepping. We demonstrate the usefulness of the
proposed framework by constructing a globally stabilizing synergistic maneuvering
control law for surface vessels that allows optional jumps of the path parameter.
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Chapter 1

Introduction

In this thesis, we present contributions to the mathematical modeling of underwater
vehicles and hybrid feedback control of nonlinear systems. While all presented results
on hybrid feedback control can be directly applied to the control of underwater vehi-
cles, they are much more general in their area of application. The thesis is therefore
divided into two parts, the first treating modeling of underwater vehicles, and the sec-
ond treating hybrid feedback control. The usefulness of the devised hybrid feedback
control approaches to the design of underwater vehicle control systems is illustrated
with simulation studies and experiments.

1.1 Modeling of Underwater Vehicles

The first part of this thesis considers the mathematical modeling of underwater vehi-
cles. A mathematical model of an underwater vehicle is a system of ordinary differential
equations that describes the response of the vehicle, represented by its configuration
and its velocity, to an input, represented by a force-moment pair applied to the ve-
hicle or by a control signal sent to the thrusters and control surfaces of the vehicle.
Most models of this type are either devised to serve as simulation models, or to be
used in the stability analysis and design of feedback control laws and observers. While
these two objectives are not mutually exclusive, certain modeling aspects that are rel-
evant to simulation models are typically neglected in models used for the design and
stability analysis of feedback control systems. Examples of such unmodeled features
are thruster dynamics and saturation, the detailed modeling of the effect of ocean
currents, and, if present, the influence of an umbilical cable.

Simulation models of underwater vehicles typically constitute one part of a larger
simulation suite with the purpose of simulating full operations. Such simulation suites
also comprise, for instance, sensor models, models to describe the intricacies of under-
water communication, and contact models for manipulation. Although experimental
verification of the control systems of underwater vehicles is necessary, it can be a la-
borious and costly task. This is especially so when the experiments are conducted in
the field. Simulations, on the other hand, can establish a measure of confidence in the
vehicle control system with minimal risk to equipment and personnel. The ability to
thoroughly test the vehicle control system through simulations before moving on to
laboratory or field experiments is therefore of great value.
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1. Introduction

Model properties derived from physical principles are frequently taken advantage
of in the stability analysis and design of nonlinear feedback control laws and observers
for underwater vehicles. These are often considerations related to the evolution of the
underwater vehicle’s energy. In particular, Lyapunov functions inspired by the total
energy of the vehicle can simplify the overall stability analysis, and the dissipativity of
the hydrodynamic forces acting on the vehicle can be directly exploited in the design
of feedback control laws and observers.

1.1.1 Modeling of Rigid Underwater Vehicles

The theoretical investigation into the general motion of a rigid body through an in-
viscid and irrotational fluid of constant density and infinite extent was pioneered by
Kirchhoff and Thomson [1, 2] in the 1870s. In these works, a Cartesian reference frame
is attached to the body, and subsequently its equations of motion expressed in this this
frame derived through energy considerations [3]. It is shown that the hydrodynamic
force and moment exerted by the fluid on the body are described solely in terms of the
body velocity, the body acceleration, and at most 21 coefficients that depend on the
fluid density and body shape. This result is surprising, because the fluid, even though
assumed ideal, nonetheless constitutes an infinite-dimensional system. It is therefore
not at all obvious that its effects on the body can be completely described in terms of
variables pertaining to the body motion and a finite number of coefficients. The works
[1, 2] thereby introduce the modern theoretical concept of rigid body hydrodynamic
inertia, also referred to as added mass.

The theoretical endeavor of determining the force and moment acting on a rigid
body undergoing general motion is much more difficult if a more realistic fluid model is
utilized. The case of a rotational and linearly viscous fluid of constant density and infi-
nite extent is treated in [4], building on important contributions from the earlier works
[5–7]. The acting hydrodynamic force and moment depend in an intricate manner on
the specifics of the flow field, and the aforementioned reduction of variables describing
them is no longer possible. Nonetheless, the hydrodynamic inertia effects as conceived
by Kirchhoff and Thomson can still be cleanly separated from other contributions to
the force and moment, such as free vorticity and skin friction. Numerical simulations
also indicate that the added mass effect can be properly defined in constant density
linearly viscous flow [8]. It must in this case be defined in terms of the instantaneous
change of hydrodynamic force and moment produced by a corresponding change in
body acceleration.

An early effort to produce a low-dimensional modeling framework for the general
motion of rigid underwater vehicles, specifically submarines, is found in [9]. The model
combines added mass and hydrostatic effects with memoryless nonlinear modeling of
hydrodynamic damping. The mathematical expressions for the hydrodynamic damp-
ing force and moment are a combination of second-order polynomial functions and
second-order modulus functions of the submarine velocities. Such expressions were
previously utilized to devise maneuvering models of ships in [10, 11]. The model pre-
sented in [9] undergoes minor modifications in [12] to more accurately describe the
motion of an autonomous underwater vehicle (AUV), and is utilized as the basis for
AUV-autopilot design. The model of [12] also forms the basis for the sliding-mode
AUV-autopilot design reported in [13]. A complete modeling framework for remotely
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1.1. Modeling of Underwater Vehicles

operated underwater vehicles is provided in [14, 15]. The hydrodynamic damping force
and moment are modeled as a third-order polynomial function of the velocities.

Inspired by modeling work on robot manipulators as presented for instance in [16],
the works [17–19] introduce a matrix-form of the equations of motion for rigid un-
derwater and surface vehicles. The matrix-form of the equations is mathematically
equivalent to the earlier models in component-form, but allows easier exploitation of
physical system properties in the control design process. Additionally, the novel model
structure allows the direct application of control algorithms devised for robot manipu-
lators, such as the celebrated adaptive control law of Slotine and Li [20], to underwater
vehicles. One early example of such an adaptive control law for underwater vehicles is
presented in [21]. Further refinements of the modeling paradigm are introduced [22].
This class of models forms the basis for the textbooks on ocean vehicle modeling and
control [23, 24], and consequently, for the modern approach to the subject.

The mathematical models that describe underwater vehicle motion involve a large
number of hydrodynamic parameters that must be determined through experiments
or computational hydrodynamic analysis. Consequently, any principle that allows for
the reduction of model parameters and subsequent simplification of the equations of
motion is of great value. One way to reduce model complexity is to exploit the fact
that underwater vehicles usually have regular shapes, and consequently possess sym-
metries of reflection or proper rotation. For instance, the majority of ocean vehicles
possess port-starboard reflection symmetry. Certain types of underwater vehicles may
also possess fore-aft reflection symmetry, or may at least approximately be a solid of
revolution. The fact that symmetries of body shape can provide simplifications of the
hydrodynamic inertia coefficients is already recognized in the work [1] for the case
of a rigid body moving in an ideal fluid of infinite extent. The most comprehensive
description of the effects of symmetries on the hydrodynamic inertia forces and mo-
ments is to the authors’ best knowledge found in [25]. These results are also stated in
Lamb’s renowned work on hydrodynamics [26, Article 126]. Here, results are presented
for bodies that are regular polyhedra (for instance a platonic solid), for bodies whose
cross-section is any regular polygon, and for bodies with helicoidal symmetry (for in-
stance a propeller). In [11], port-starboard symmetry is used to reduce the number
of added mass parameters and hydrodynamic damping parameters for maneuvering
models of ships. Similar considerations for remotely operated underwater vehicles are
reported in [14].

1.1.2 Modeling of Multibody Underwater Vehicles

Mathematical models describing the motion of underwater vehicles that can be con-
sidered systems of several constrained rigid bodies are of interest mainly due to
their applicability to underwater vehicle-manipulator systems (UVMSs). Conventional
UVMSs comprise a clearly distinguished base on which one or two manipulator arms
are mounted. The arm dimensions and mass in relationship to the base vary, and with
them the dynamic influence that the manipulator has on the base. In cases where the
manipulator is relatively large, as is the case for instance for the Girona AUV [27] or
the Trident AUV [28], the manipulator and base system must be considered coupled.
An extreme example is the highly unconventional Eelume underwater vehicle [29],
which does not have a distinguishable base.

3



1. Introduction

Due to the considerable difference in shape between the base and manipulator,
different hydrodynamic modeling approaches are typically used for these components.
The base is modeled following the principles briefly outlined in the preceding sec-
tion. Since most manipulator arms comprise relatively slender links, it is customary
to model the acting hydrodynamic forces and moments by integrating cross-sectional
contributions along the link. Such approaches have a long history in the modeling of
slender-body hydrodynamics, exemplified by the work of Morison, O’Brien, Johnson,
and Schaaf for piles in waves (“Morison’s equation”) based mostly on empirical con-
siderations [30], and the work of Salvesen, Tuck, and Faltinsen for ships at forward
speed in waves based on the theory of potential flow [31]. For submerged robot ma-
nipulators, this modeling approach is used in a very similar manner in a large number
of works [32–37]. In [38], the sectional hydrodynamic inertia and damping coefficients
are taken to depend on the travel distance of the section to better model the effect of
shed vorticity. Experiments for a single degree-of-freedom manipulator are conducted
and show good agreement between theory and observation. However, it is not clear
how the model can be modified to describe the acting forces and moments for more
general motions.

The study of UVMSs as multibody systems has received considerable attention.
In [35], a complete forward dynamics algorithm for single-arm UVMSs based on the
articulated rigid body algorithm [39, 40] is presented. The algorithm complexity grows
linearly with the number of manipulator degrees of freedom. Consequently, it is partic-
ularly efficient for manipulators comprising many links. The work incorporates directly
the hydrodynamic and hydrostatic forces and moments acting on the base and manip-
ulator. It also considers the effect of a spatially uniform and unsteady ocean current.
Several works [32, 34, 41] present very similar inverse dynamics algorithms based
on the Newton-Euler formulation. In particular, the algorithms incorporate hydrody-
namic inertia, hydrodynamic damping, and hydrostatic effects directly in the recursive
inverse dynamics. Interestingly, [32, 34] also include the effect of oscillating lift forces
due to vortex shedding in their analysis. These are typically neglected because they
are, at least in an ideal setting, of relatively high frequency and have a mean value of
zero.

A matrix-form of the equations of motion, similar to the one introduced in [17–19]
for rigid underwater vehicles, is presented in [34, 42]. This approach to the equations
of motion is refined in [43], drawing on earlier work on free-flying robotic systems
presented in [44]. The matrix-form is of particular value for control design, where it
allows for easy exploitation of system properties. It forms the basis for most modern
textbooks that cover the control of UVMSs, in particular [45, 46]. Other derivations of
the matrix-form of the equations of motion are found in [36], which is based on Kane’s
method [47, 48], and in [49], which is based on the quasi-Lagrangian formulation
of Meirovitch [50]. The quasi-Lagrangian formulation of analytical dynamics is very
similar to a reformulation of the Lagrangian equations of motion attributed to Hamel
[51, 52]. See [53, Section 3.8] for a clear and modern exposition.

1.2 Hybrid Feedback Control

The basin of attraction of an asymptotically stable equilibrium point of a time-
invariant continuous-time system defined on a smooth manifold is diffeomorphic to
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Euclidean space [54, 55]. This result demonstrates that there is a fundamental topologi-
cal obstruction to global asymptotic point stabilization with continuous state-feedback
control laws on any manifold that can not be identified with Euclidean space. While
discontinuous state-feedback control laws can provide global asymptotic stability on
such manifolds, the resulting global attractivity property is not robust to arbitrarily
small measurement noise. It follows that there exist topological obstructions to robust
global stabilization for any mechanical system with rotational degrees of freedom, such
as underwater vehicles.

The topological obstructions to robust global asymptotic stabilization can be ef-
fectively overcome by employing a hybrid feedback control law [56]. A hybrid feedback
control law typically comprises a collection of continuous state feedback control laws
and a state-based switching logic that decides which feedback control law from the
collection is to be used. Examples of such control strategies are furnished by hybrid
patchy feedback control [57–59], the geometric approach proposed in [60] where the
switching logic is devised from an atlas of the manifold, and synergistic control. Syn-
ergistic control is a hybrid feedback control formalism that encodes the switching logic
directly in the value of a Lyapunov-like function [61, 62].

Synergistic potential functions are utilized to derive proportional-derivative (PD)
control laws for global asymptotic stabilization of rigid body orientation on the spe-
cial orthogonal group in [63]. The work also proposes a procedure for the construction
of synergistic potential functions by applying an angular warping transformation to
modified trace functions [64]. The synergistic control laws are extended to solve the
global asymptotic tracking problem for rigid body orientation in [65]. A smoothing
approach for the devised control laws is presented, which removes jumps in the con-
trol signal resulting from switching. The work also presents a procedure to construct
synergistic potential functions on the special orthogonal group through translation,
scaling, and biasing of modified trace functions. Results on synergistic tracking control
of rigid body orientation without angular velocity measurements are presented in [66].
Additionally, further results on the construction of synergistic potential functions with
angular warping applied to modified trace functions are established.

Global exponential synergistic control laws for the tracking problem on the special
orthogonal group are presented in [67]. The synergistic potential functions are con-
structed by applying an angular warping transformation to a class of local potential
functions first utilized for orientation control in [68]. A control law with integral action
that ensures global exponential tracking control of rigid body orientation in the pres-
ence of a constant and matched disturbance is presented in [69]. While not referred to
as such, the introduced potential functions are synergistic, and in fact closely related
to the ones proposed in [63]. The introduced switching mechanism is different than in
the aforementioned references as it depends explicitly on the value of the integral state.
Lastly, a generalized synergistic control strategy and an associated class of potential
functions is introduced in [70]. In particular, the logic variable that traditionally only
changes across jumps is also allowed to change along flows. The result is applied to
global tracking control of rigid body orientation and rigid body pose.

The synergistic control paradigm is applied to orientation tracking control for rigid
bodies utilizing unit quaternions in [71], where a globally asymptotically stabilizing
PD control law is derived. The work also introduces an output feedback modifica-
tion of this control law, as well as a modification utilizing biased angular velocity
measurements. The global output feedback quaternion tracking-problem for a rigid
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body is also addressed in [72], where a synergistic observer-controller scheme is pre-
sented. The aforementioned quaternion strategies have been refined and applied to
solve the global asymptotic tracking problem for translation-underactuated vehicles
such as AUVs and quad-rotors in [73].

The global stabilization problem on spheres of arbitrary dimension is addressed
within the synergistic framework in [74], generalizing results for the circle presented
in [75]. A PD control law ensuring global reduced orientation tracking for a rigid
body is derived. Moreover, a smoothing modification for the control law is devised
that removes the jumps in the control signal resulting from switching. The work also
presents a constructive procedure for synergistic potential functions on the sphere
based on scaling and biasing of local potential functions. Further results for the sphere
are presented in [76], where a new class of synergistic potential functions is introduced.
These potential functions are utilized in the design of novel global synergistic tracking
control laws for quad-rotors.

Synergistic potential functions are generalized to synergistic Lyapunov functions
and feedback (SLFF) pairs in [77]. It is proven that SLFF pairs are amenable to
integrator backstepping. Furthermore, a general smoothing modification for the re-
sulting control laws is presented. Several further refinements of the SLFF concept
are introduced in [78]. Utilizing converse hybrid Lyapunov theory [79, 80], it is also
shown that a wide class of systems can be stabilized by feedback derived from SLFF
pairs. Parameter-adaptive control within the SLFF framework is introduced in [81]
for systems with matched uncertainties.

1.3 Outline and Contributions

This thesis is organized into two parts and eight chapters. Chapter 2 covers briefly
some mathematical concepts that are utilized frequently throughout this work. We
summarize in the following the topic and contributions of each chapter in this thesis.

1.3.1 Part I: Modeling of Underwater Vehicles

Modeling of Rigid Underwater Vehicles (Chapter 3)

Chapter 3 introduces a matrix Lie group formulation of the standard Fossen-Sagatun
model for underwater vehicles [24, Chapter 8]. We include the effect of an unsteady
and uniform ocean current, and show that the presented model can be derived from
a variational principle. Various properties of this model that are of importance for
control design are derived utilizing principles from matrix Lie theory. We introduce
a stronger notion of dissipativity, monotone dissipativity, and shed light on a funda-
mental relationship between monotonically dissipative mappings and convex Rayleigh
dissipation functions. Lastly, we introduce a hydrodynamic symmetry principle based
on matrix Lie theory and provide several examples of its application. The chapter also
introduces a control model where unit quaternions are used to represent the vehicle’s
orientation.

The contributions of this chapter are threefold. Firstly, we present a Lagrangian
derivation of the equation of motion for an underwater vehicle in the presence of
unsteady ocean currents. In particular, we utilize a global and non-minimal represen-
tation of the Euclidean group to derive the equation of motion from the Lagrange-
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d’Alembert principle. Secondly, we introduce a stronger notion of dissipativity, namely
monotone dissipativity. We show that damping models which admit Rayleigh dissipa-
tion functions are monotonically dissipative if and only if their Rayleigh dissipation
functions are convex and have a minimum at the origin. Finally, the third contribution
is the introduction of a hydrodynamic symmetry principle stated in terms of matrix
Lie theory, which makes possible a systematic exploitation of vehicle symmetries to
simplify the modeling of hydrodynamic inertia and damping effects. This symmetry
principle allows us to drastically reduce the number of model parameters by exploiting
the symmetries of the vehicle geometry. Consequently, the possibility of overfitting is
reduced, and less experimental data may be needed to achieve an acceptable fit.

This chapter is based on the following work:

• H. M. Schmidt-Didlaukies, E. A. Basso, and K. Y. Pettersen, “Modeling of Un-
derwater Vehicles: Dissipativity and Symmetry”, submitted to the IEEE Trans-
actions on Robotics, 2023.

Modeling of Multibody Underwater Vehicles (Chapter 4)

Chapter 4 introduces a modeling framework based on matrix Lie theory for multibody
underwater vehicles with kinematic tree-structure. We derive the equations of motion
in a global matrix-form, and outline some of their properties that are of particular
importance for control design. We also present two recursive formulations of the equa-
tions of motion based on well-known multibody dynamics algorithms. In particular, a
generalized Newton-Euler algorithm for inverse dynamics and controller implementa-
tion, and a composite-rigid-body algorithm for forward dynamics.

The main contribution of this chapter is a modeling framework for multibody
underwater vehicles which possess a kinematic tree structure, the equations in matrix-
form, and the aforementioned recursive algorithms. The devised equations of motion
in matrix-form are based on Lie theory, and therefore global and singularity-free.
Furthermore, the generalized Newton-Euler algorithm is to the extent of our knowledge
novel. The forward dynamics algorithm includes the most important hydromechanical
effects, and serves as a base for simulators of multibody underwater vehicles.

Some of the presented results appeared in the following publication:

[82] H. M. Schmidt-Didlaukies, A. J. Sørensen and K. Y. Pettersen, Modeling of Ar-
ticulated Underwater Robots for Simulation and Control, Proc. 2018 IEEE/OES
Autonomous Underwater Vehicle Workshop, Porto, Portugal, Nov 6–9, 2018.

1.3.2 Part II: Hybrid Feedback Control

Synergistic PID and Output Feedback Control on Matrix Lie Groups
(Chapter 5)

Chapter 5 introduces multiple synergistic hybrid feedback control laws for mechanical
systems on matrix Lie groups with left-invariant metrics. With the goal of globally
asymptotically tracking a desired reference trajectory, we propose a full-state feedback
hybrid proportional-derivative (PD) type control law and a hybrid output feedback
type control law which only utilizes configuration measurements. We also show that
these controllers can be modified to not cancel certain potential forces appearing in the
system. Lastly, to ensure global asymptotic tracking in the presence of a constant and
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unknown disturbance in the system dynamics, we introduce two novel proportional-
integral-derivative (PID) type control laws with slightly different integral action. The
theoretical developments are validated through numerical simulation of an underwater
vehicle.

This chapter has three main contributions. First, we propose a baseline synergistic
PD control law ensuring global asymptotic tracking for mechanical systems on ma-
trix Lie groups with a left-invariant Riemannian metric. The second contribution is
a generalization of the synergistic output feedback control law proposed for orienta-
tion control in [71] to any system whose configuration space can be identified with
a matrix Lie group. Finally, we present two novel synergistic PID type control laws,
both of which ensure global asymptotic tracking in the presence of unknown constant
disturbances.

This chapter is based on the following publication:

[83] E. A. Basso#, H. M. Schmidt-Didlaukies#, K. Y. Pettersen and J. T. Gravdahl,
“Synergistic PID and Output Feedback Control on Matrix Lie Groups ”, Proc.
12th IFAC Symposium on Nonlinear Control Systems (NOLCOS), Canberra,
Australia, Jan. 4-6, 2023.

Global Asymptotic Tracking for Marine Vehicles (Chapter 6)

Chapter 6 presents an adaptive hybrid feedback control law for global asymptotic
tracking of a hybrid reference system for marine vehicles in the presence of parametric
modeling errors. The reference system is constructed from a parametrized loop and a
speed assignment specifying the motion along the path, which decouples the geometry
of the path from the motion along the path. During flows, the hybrid feedback consists
of a PD-action and an adaptive feedforward term, while a hysteretic switching mecha-
nism that is independent of the vehicle velocities determines jumps. The effectiveness
of the proposed control law is demonstrated through experiments.

The main contribution of this chapter is the development of an adaptive hybrid
feedback controller for global asymptotic tracking of a hybrid reference system for
marine vehicles subject to parametric uncertainties. In contrast to backstepping-based
hybrid adaptive control [81], the proposed approach permits estimation of the iner-
tia matrix, and the switching mechanism is independent of the system velocities. As
our approach is based on traditional Euler-Lagrange system models, the adaptive hy-
brid control law is applicable to other mechanical systems as well. In particular, it
can easily be extended to robot manipulators or, more generally, vehicle-manipulator
systems. The hybrid reference system is constructed from a parametrized loop and
a speed assignment for the motion along the loop. The main benefit of this formu-
lation is that it decouples the design of the path from the motion along the path,
allowing us to globally asymptotically track a given parametrized loop at a desired
and time-varying speed. The proposed reference system can be considered an adap-
tation of the maneuvering problem [84, 85] to a hybrid dynamical systems setting.
Preliminary results were presented in [86], and in this chapter we extend the hybrid
feedback control law from surface vehicles to a more general class of Euler-Lagrange
systems on SE(2) or SE(3) satisfying a set of general conditions on the switching mech-
anism and the potential functions. Moreover, we show that the potential functions and
switching mechanisms introduced in [86] and [71] satisfy these conditions, and these
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potential functions and switching mechanisms are subsequently employed to design
hybrid adaptive control laws for surface and underwater vehicles. Finally, we validate
the theoretical developments for surface and underwater vehicle applications through
experiments.

This chapter is based on the following publications:

[87] E. A. Basso#, H. M. Schmidt-Didlaukies#, K. Y. Pettersen and A. J. Sørensen,
“Global Asymptotic Tracking for Marine Vehicles using Adaptive Hybrid Feed-
back”, IEEE Transactions on Automatic Control, 2022.

[86] E. A. Basso#, H. M. Schmidt-Didlaukies#, K. Y. Pettersen and A. J. Sørensen,
“Global Asymptotic Tracking for Marine Surface Vehicles using Hybrid Feedback
in the Presence of Parametric Uncertainties,” Proc. 2021 American Control Con-
ference (ACC), Online/New Orleans, LA, USA, May 25-28, 2021.

Hysteretic Control Lyapunov Functions (Chapter 7)

Chapter 7 introduces hysteretic control Lyapunov functions (HCLFs) for hybrid feed-
back control of a class of continuous-time systems. A family of HCLFs consists of local
control Lyapunov functions defined on a finite cover of the state space which satisfy
certain decrease conditions. We present sufficient conditions for the existence of a sta-
bilizing hybrid feedback and show how such hybrid feedbacks can be constructed from
an HCLF family through an optimization-based procedure.

The main contribution of this chapter is the concept of a hysteretic control Lya-
punov function and its application to hybrid feedback control with global asymptotic
stability properties for nonlinear continuous-time systems. In particular, we show that
the existence of a family of HCLFs satisfying the small control property implies global
stabilizability of a compact set. We also prove that optimization-based hybrid feedback
laws, an extension of the pointwise minimum-norm control laws covered for instance
in [88, 89], can be constructed under minor assumptions on the objective functions.
The collection of optimization-based feedback laws are continuous, implying that the
hybrid basic conditions hold such that the stability is robust in the sense of [90]. As a
case study, we construct an HCLF family for tracking control of an underwater vehi-
cle through a backstepping approach. In contrast to traditional backstepping, we find
the control input that pointwise minimizes a strictly convex objective function from
the set of stabilizing control inputs defined by the HCLFs. The HCLF construction
is reminiscent of the backstepping-based synergistic Lyapunov functions constructed
for set-point regulation in [91]. However, we extend the work in [91] to the tracking
problem in terms of HCLFs, and exploit inherent stabilizing nonlinear terms through
online optimization.

This chapter is based on the following publication:

[92] E. A. Basso#, H. M. Schmidt-Didlaukies# and K. Y. Pettersen, “Hysteretic Con-
trol Lyapunov Functions with Application to Global Asymptotic Tracking for
Underwater Vehicles,” Proc. 59th Conference on Decision and Control (CDC),
Online/Jeju island, Republic of Korea, Dec. 8-11, 2020.
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Synergistic Lyapunov Functions and Feedback Triples (Chapter 8)

Chapter 8 generalizes results on synergistic hybrid feedback control. Specifically, we
propose a generalization of synergistic Lyapunov functions and feedback (SLFF) pairs,
in which the logic variable in traditional synergistic control is allowed to change along
flows. This flowing logic variable is called the synergy variable, and an SLFF triple
comprises an SLFF pair in addition to the flow map of the synergy variable. We intro-
duce synergy gaps relative to components of product sets, which enable us to define
modified synergistic jump conditions for different components of the synergy variable.
Furthermore, we show that SLFF triples are amenable to backstepping. Finally, we
give an example of how our generalized theory can be used to combine traditional
synergistic control with ship maneuvering control by introducing optional jumps in
the path parameter.

The main contribution of this chapter is the extension of the SLFF definition
introduced in [77, 78]. The generalized notion of synergy and the modified jumping
conditions allow us to show that the quaternion output feedback control law for rigid-
body orientation presented in [71] is synergistic. The proposed generalization also
encompasses the results for SO(3) and SE(3) in [70], in which the logic variable is
also allowed to change during flows. However, our proposed framework also includes
path-following control scenarios in which the path variable exhibits jump dynamics,
such as instantaneously moving the desired state closer to the actual state. As a
result, ship maneuvering control as outlined in [84] and [85] can be augmented with
a jumping path parameter and a traditional synergistic control approach to solve the
maneuvering problem.

This chapter is based on the following publication:

[93] H. M. Schmidt-Didlaukies#, E. A. Basso#, A. J. Sørensen and K. Y. Pettersen,
“A Generalization of Synergistic Hybrid Feedback Control with Application to
Maneuvering Control of Ships”, Proc. 61st Conference on Decision and Control
(CDC), Cancún, Mexico, Dec. 6-9, 2022.
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Chapter 2

Mathematical Preliminaries

This chapter introduces mathematical preliminaries and notation relevant to the rest
of this thesis.

2.1 Analysis in Rn

We here introduce several fundamental properties of mappings between subsets of
Euclidean spaces. Furthermore, we introduce manifolds and matrix Lie groups.

2.1.1 Mappings

Let X ⊂ Rn and Y ⊂ Rm. We write f : X → Y to denote a mapping that associates
with every x ∈ X an element y ∈ Y . The set X is called the domain of f , and we
write dom f = X. The set Y is called the codomain. The range of f , denoted rge f , is
defined as the set of all y ∈ Y for which there exists x ∈ X such that f(x) = y, that
is,

rge f := {y ∈ Y : ∃x ∈ X s.t. f(x) = y}. (2.1)

The codomain can be used to convey information about the mapping. For instance,
a non-negative function f : X → R can be written as f : X 7→ R≥0, and a positive
function f : X → R as f : X 7→ R>0. Some important properties of mappings utilized
often in this thesis follow.

Definition 2.1 (Continuous mapping). Let X ⊂ Rn and f : X → Rm. The mapping
f is continuous at x ∈ X if for every ε > 0, there exists δ > 0 such that for every
z ∈ X satisfying |z − x| ≤ δ, it holds that |f(z) − f(x)| ≤ ε. The mapping f is
continuous if it is continuous at every x ∈ X.

Definition 2.2 (Proper mapping). Let X ⊂ Rn, Y ⊂ Rm, and f : X → Y . The
mapping f is proper if it is continuous and f−1(K) is compact for every compact set
K ⊂ Y .

We remark that a set K ⊂ Rn is compact if and only if it is closed and bounded.
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Definition 2.3 (Continuously differentiable mapping). Let X ⊂ Rn be open and
f : X → Rm. The mapping f is continuously differentiable if there exists a continuous
mapping Df : X → Rm×n such that for every x ∈ X and every v ∈ Rn,

Df(x)v = lim
s→0

f(x+ sv)− f(x)

s
(2.2)

If X is not open, then we say that f : X → Rm is continuously differentiable if there
exists an open set O ⊂ Rn containing X and a continuously differentiable mapping
g : O → Rm such that g(x) = f(x) for every x ∈ X. We then define Df : X → Rm×n

by the restriction Df := Dg|X .

For a continuously differentiable function f : X → R, we use the gradient vector
∇f : X → Rn defined by ∇f(x) := Df(x)T. A consequence of Definition 2.3 is that
the derivative is not necessarily uniquely defined if X is not open (consider for instance
the case f : {0} → {0}). When conditions are placed on Df in this case, there must
exist a single extension g of f such that Df = Dg|X satisfies all conditions. For
mappings whose argument is a matrix, that is, f : X → Rm where X ⊂ Rn×n, we
write Df(x, v) to mean the derivative of f along v ∈ Rn×n.

2.1.2 Manifolds in Rn

For our purposes, it suffices to think of manifolds as smooth surfaces in Rn [94, 95].
An introduction to the abstract theory of manifolds is found in [96].

Definition 2.4 (Manifold). A set M ⊂ Rn is a k-manifold, where 0 ≤ k ≤ n, if the
following equivalent conditions hold:

1. For each x ∈ M, there exists an open neighborhood U of x, an open set V ⊂
Rk, and a smooth immersion φ : V → Rn such that φ : V → M ∩ U is a
homeomorphism.

2. For each x ∈ M, there exists an open neighborhood U of x and a smooth sub-
mersion ϑ : U → Rn−k such that {x ∈ U : ϑ(x) = 0} = M∩ U .

Definition 2.4 presents two equivalent characterizations of a k-manifold in Rn. In
particular, item 1 characterizes the manifold in terms of local parametrizations, and
item 2 in terms of local defining mappings. A manifold M ⊂ Rn is said to be properly
embedded if it is a closed set.

Definition 2.5 (Tangent space). Let M ⊂ Rn be a k-manifold. The tangent space to
M at x is a k-dimensional vector subspace of Rn. The following characterizations are
equivalent:

1. The tangent space to M at x is the set of vectors v ∈ Rn for which there exists
a smooth curve c : R → M such that c(0) = x and c′(0) = v, that is,

TM(x) = {v ∈ Rn : ∃c : R → M smooth, s.t. c(0) = x, c′(0) = v}.

2. For (U,φ) as in item 1 in Definition 2.4 and x ∈ M∩ U ,

TM(x) = {v ∈ Rn : w ∈ Rk, v = Dφ(φ−1(x))w}.

3. For (U, ϑ) as in item 2 in Definition 2.4 and x ∈ M∩ U ,

TM(x) = {v ∈ Rn : Dϑ(x)v = 0}.
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2.1.3 Matrix Lie Groups

This section gives a very brief overview of the theory of matrix Lie groups. The material
is mostly based on [96, 97]. A matrix group is a subset of

GL(n) := {g ∈ Rn×n : det g ̸= 0} (2.3)

that is closed under matrix inversion and multiplication. Since GL(n) is open in Rn×n,
it may be regarded as an n2-dimensional manifold in Rn×n. A matrix Lie group is a
matrix group that is also a submanifold of GL(n).

Definition 2.6 (Matrix Lie group). A matrix group is a set G ⊂ GL(n) satisfying

1. if g ∈ G, then g−1 ∈ G;
2. if g ∈ G and h ∈ G, then gh ∈ G.

A matrix Lie group is a matrix group that is a submanifold of GL(n).

A very useful result is the following: A matrix group G ⊂ GL(n) is a submanifold of
GL(n) if and only if it is a relatively closed subset of GL(n) [96, Theorem 7.21 and
Theorem 20.12].

With every matrix Lie group, one can associate a particular algebra, known as the
Lie algebra of the matrix Lie group.

Definition 2.7 (Lie algebra of a matrix Lie group). Let G ⊂ GL(n) be a matrix Lie
group. The Lie algebra g of G is the tangent space to G at the identity equipped with
the matrix commutator [ · , · ] : g× g → g defined by

[X,Y ] := XY − YX. (2.4)

It follows from the properties of the tangent space of a manifold that the Lie
algebra g is a vector space in Rn×n with dimension k equal to the dimension of G as a
manifold. In the robotics literature, e.g. [98–100], it has become commonplace to work
in Rk instead of g. This is accomplished by choosing a basis (X1, . . . , Xk) for g and
defining the vector space isomorphism ·̂ : Rk → g by

ν̂ :=

k∑
i=1

Xiνi. (2.5)

We write ν̂g instead of ν̂ if it is not clear from context which Lie algebra isomorphism
is meant. For each g ∈ G and ν ∈ Rk, we define the adjoint mappings Adg ∈ Rk×k
and adν ∈ Rk×k by

Âdgµ := gµ̂g−1,

âdνµ := [ν̂, µ̂].
(2.6)

It can be shown that for each g ∈ G, there exists an open set V ⊂ Rk such that the
mapping φ : V → GL(n) defined by φ(x) := g exp x̂, where exp : Rn×n → GL(n) is
the matrix exponential, is a local parametrization of a neighborhood of g, as utilized
in item 1 of Definition 2.4.
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Definition 2.8 (Continuously differentiable mapping, matrix Lie group). Let G ⊂
GL(n) be a matrix Lie group of dimension k and f : G → Rm. The mapping f is
continuously differentiable if there exists a continuous mapping df : G → Rm×k such
that for every g ∈ G and every ν ∈ Rk,

df(g)ν = lim
s→0

f(g exp(sν̂))− f(g)

s
. (2.7)

A mapping f : G → Rm is continuously differentiable in the sense of Definition 2.8 if
and only if it is continuously differentiable in the sense of Definition 2.3, and df(g)ν =
Df(g, gν̂) for all (g, ν) ∈ G × Rk. We remark that we throughout this thesis use the
operator d as a Lie group analogue to both D and ∇. It will be clear from context
which one is meant.

A Lie group homomorphism is a smooth mapping from one Lie group to another
that preserves the group structure. If a homomorphism is also diffeomorphism, that
is, a bijection with a smooth inverse, then it is called an Lie group isomorphism, and
the two Lie groups are called isomorphic.

Definition 2.9 (Lie group homomorphism, isomorphism). Let G and H be matrix Lie
groups. A Lie group homomoprhism is a smooth mapping φ : G → H such that for all
g1, g2 ∈ G, it holds that φ(g1)φ(g2) = φ(g1g2). If φ is also a diffeomorphism, then φ
is a Lie group isomorphism.

Finally, the bilinear map ∇M : Rk × Rk → Rk induced by the symmetric and
positive definite matrix M ∈ Rk×k is defined by [101, Theorem 5.40 (iii)]

∇M
ν µ := 1

2 adν µ− 1
2M

−1[adTν Mµ+ adTµMν]. (2.8)

Observe that M∇M
ν ν = − adTν Mν. Furthermore, ∇M has the following skew-property.

Lemma 2.1. For all (ν, µ) ∈ Rk × Rk, it holds that

⟨M∇M
ν µ, µ⟩ = 0. (2.9)

Proof. It follows from (2.8) that

⟨M∇M
ν µ, µ⟩ = 1

2 ⟨M adν µ− adTν Mµ− adTµMν, µ⟩
= 1

2 ⟨M adν µ, µ⟩ − 1
2 ⟨M adν µ, µ⟩ − 1

2 ⟨M adµ µ, ν⟩
= 0,

(2.10)

where it was used that adµ µ = 0 for all µ ∈ Rk.

2.2 Set-Valued Analysis in Rn

This section provides a brief introduction to basic aspects of set-valued analysis. It is
mostly based on [102, 103].
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2.2.1 Tangent Cone

We already encountered tangent vectors in the context of smooth manifolds. It is
possible to generalize tangents to arbitrary subsets of Rn. The set of tangents at a
point are then not guaranteed to be a vector space. Instead, they will form a closed
cone. A cone is a set C ⊂ Rn such that v ∈ C implies that αv ∈ C for every α ≥ 0.

Definition 2.10 (Tangent cone). The tangent cone to a set X ⊂ Rn at a point x ∈ Rn,
denoted TX(x), is the set of all vectors v ∈ Rn for which there exist xi ∈ X, τi > 0
with xi → x, τi ↘ 0, and

v = lim
i→∞

xi − x

τi
. (2.11)

If the set X is a manifold, then the tangent cone to X at x coincides with the
tangent space to X at x, as illustrated in [102, Example 6.8].

2.2.2 Set-Valued Mappings

A set-valued mapping is denoted by a double arrow, S : Rn ⇒ Rm. We define the
domain, range and graph of a set-valued mapping S by

domS := {x ∈ Rn : S(x) ̸= ∅}, (2.12)
rgeS := {y ∈ Rm : ∃x ∈ Rn such that y ∈ S(x)}, (2.13)
gphS := {(x, y) ∈ Rn × Rm : y ∈ S(x)}. (2.14)

The inverse mapping of S, S−1 : Rm ⇒ Rn, is defined by

S−1(y) := {x ∈ Rn : y ∈ S(x)}. (2.15)

Moreover, we define the image of a set X ⊂ Rn under S and the inverse image of
a set Y ⊂ Rm under S, respectively, by

S(X) :=
⋃
x∈X

S(x) = {y ∈ Rm : S−1(y) ∩X ̸= ∅}, (2.16)

S−1(Y ) :=
⋃
y∈Y

S−1(y) = {x ∈ Rn : S(x) ∩ Y ̸= ∅}. (2.17)

2.2.3 Semicontinuity and Local Boundedness

Continuity properties of set-valued mappings are described in terms of the following
concepts.

Definition 2.11 (Outer and inner semicontinuous set-valued mapping). Let S : Rn ⇒
Rm and X ⊂ Rn.

1. S is outer semicontinuous relative to X at x ∈ X if for every y /∈ S(x) there are
neighborhoods U of x and V of y such that X ∩ U ∩ S−1(V ) = ∅.

2. S is inner semicontinuous relative to X at x ∈ X if for every y ∈ S(x) and
every neighborhood V of y there exists a neighborhood U of x such that X ∩U ⊂
S−1(V ).
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S is outer (inner) semicontinuous relative to X if it is outer (inner) semicontinuous
relative to X at every x ∈ X. S is continuous relative to X at x ∈ X if it is both outer
semicontinuous and inner semicontinuous relative to X at x. S is continuous relative
to X if it is continuous relative to X at every x ∈ X.

Inner semicontinuity is also known as lower semicontinuity in the literature, e.g.
in [103]. Outer semicontinuity of a set-valued mapping can be characterized in terms
of the graph of the mapping.

Lemma 2.2 ([90, Lemma 5.10]). A set-valued mapping S : Rn ⇒ Rm is outer semi-
continuous relative to X ⊂ Rn if and only if gphS ∩ (X × Rm) is relatively closed in
X × Rm.

Another widely used notion of continuity in the set-valued analysis literature is upper
semicontinuity [103].

Definition 2.12 (Upper semicontinuous set-valued mapping). Let S : Rn ⇒ Rm and
X ⊂ Rn. S is upper semicontinuous relative to X at x ∈ X if for every open set O ⊂
Rm such that S(x) ⊂ O, there exists a neighborhood U of x such that F (X ∩U) ⊂ O.
S is upper semicontinuous relative to X if it is upper semicontinuous relative to X at
every x ∈ X.

We also require a notion of local boundedness for set-valued mappings.

Definition 2.13 (Locally bounded set-valued mapping). Let S : Rn ⇒ Rm and
X ⊂ Rn. S is locally bounded relative to X at x ∈ X if there exists a neighborhood U
of x such that S(X ∩ U) is bounded. S is locally bounded relative to X if it is locally
bounded relative to X at every x ∈ X.

An equivalent characterization of local boundedness of S : Rn ⇒ Rm relative to
X ⊂ Rn is that for every compact set K ⊂ X, the image S(K) is bounded. The notion
of local boundedness allows us to formulate a relation between outer semicontinuity
and upper semicontinuity of set-valued mappings. If S : Rn ⇒ Rm is upper semi-
continuous relative to X ⊂ Rn and bounded-valued on X, then S is locally bounded
relative to X. This follows directly from Definition 2.12 because O now can be cho-
sen as a bounded set. Furthermore, if S is upper semicontinuous relative to X and
closed-valued on X, then S is outer semicontinuous relative to X (see for instance
[104, Proposition 5.2.18] or [89, Proposition 2.5]). It follows that if S is upper semi-
continuous relative to X and compact-valued on X, then S is outer semicontinuous
relative to X and locally bounded relative to X. The converse to this statement also
holds (see for instance [102, Theorem 5.19] which can be invoked relative to a set
X ⊂ Rn).

2.2.4 Selections

Lastly, we shall introduce results from the theory of selections. Given a set-valued
mapping S : Rn ⇒ Rm, a selection s of S is a single-valued mapping s : domS → Rm
such that s(x) ∈ S(x) for every x ∈ domS. The following famous theorem states
sufficient conditions for the existence of a continuous selection of a given set-valued
mapping S.
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Theorem 2.14 ([105, Theorem 3.2’’]). Let S : Rn ⇒ Rm. If S is inner semicontinuous
relative to domS, and S is closed-convex-valued, then S admits a continuous selection.

Remark 2.15. The stated theorem is more specialized than the cited one. Here we
have used that X ⊂ Rn with the subspace topology is a metric space, and therefore T1
and paracompact. The set-valued mapping S maps into Rm, which is a Banach space.

2.3 Hybrid Systems

In this section, we introduce the notion of a hybrid dynamical system. This introduc-
tion is by no means complete, and the reader is referred to the excellent resources [61,
90, 106] for more details.

2.3.1 Data of a Hybrid System

A hybrid dynamical system, or hybrid system, allows for both continuous-time and
discrete-time evolution of the state. In this thesis, we employ the hybrid systems
framework of [61, 90, 106]. In those works, a hybrid system H is defined by four
objects (C,F,D,G), the data of the hybrid system, and represented by

H :

{
ẋ ∈ F (x), x ∈ C

x+ ∈ G(x), x ∈ D
(2.18)

where x ∈ Rn is the state, the set-valued mapping F : Rn ⇒ Rn is the flow map, the
set-valued mapping G : Rn ⇒ Rn is the jump map, the set C ⊂ Rn is the flow set,
and the set D ⊂ Rn is the jump set.

We will typically consider hybrid systems for which the data satisfies the following
three basic assumptions [90, Assumption 6.5].

Assumption 2.16 (Hybrid basic conditions).

(A1) C and D are closed subsets of Rn;
(A2) F : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to C, C ⊂

domF , and F is convex-valued on C;
(A3) G : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to D, and

D ⊂ domG.

It should be emphasized that when F is a single-valued and continuous mapping,
the differential equation ż = F (z) corresponds to a hybrid system satisfying the hybrid
basic conditions.

2.3.2 Solution Concept

A solution ϕ to H is called a hybrid arc and is parametrized by the elapsed time
t ∈ R≥0 and the number of jumps j ∈ Z≥0 that have occurred. To formally define a
hybrid arc, we require the notion of a hybrid time domain [90, Definition 2.3].
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Definition 2.17 (Hybrid time domain). A subset E ⊂ R≥0×Z≥0 is a compact hybrid
time domain if

E =

J−1⋃
j=0

([tj , tj+1], j) (2.19)

for some finite sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tJ . It is a hybrid time domain if
for all (T, J) ∈ E,E ∩ ([0, T ]× {0, 1, . . . , J}) is a compact hybrid time domain.

If E is a hybrid time domain, we define Ij(E) := {t ∈ R≥0 : (t, j) ∈ E}. Ij(E) can
be thought of as the largest time interval that can be associated with the jump j for
the hybrid time domain E. It should be noted that Ij(E) can be a singleton or empty.

The notion of a hybrid arc is introduced in the following definition [90, Definition
2.4].

Definition 2.18 (Hybrid arc). A mapping ϕ : domϕ → Rn is a hybrid arc if domϕ
is a hybrid time domain and if for each j ∈ Z≥0, the mapping t 7→ ϕ(t, j) is locally
absolutely continuous on Ij(domϕ).

If ϕ is a hybrid arc, then, for every j ∈ Z≥0, the derivative ϕ̇(t, j) exists at every
t ∈ Ij(domϕ) except on a set of Lebesgue measure zero (that is, it is differentiable at
almost every t ∈ Ij(domϕ)). The solution to a hybrid system is defined as follows.

Definition 2.19 (Solution to a hybrid system). A hybrid arc ϕ is a solution to the
hybrid system H if ϕ(0, 0) ∈ C ∪D, and

(S1) for every j ∈ Z≥0 such that Ij(domϕ) has nonempty interior,

ϕ(t, j) ∈ C for every t ∈ Ij(domϕ)◦,

ϕ̇(t, j) ∈ F (ϕ(t, j)) for almost every t ∈ Ij(domϕ),
(2.20)

(S2) for all (t, j) ∈ domϕ such that (t, j + 1) ∈ domϕ,

ϕ(t, j) ∈ D,

ϕ(t, j + 1) ∈ G(ϕ(t, j)).
(2.21)

A solution ϕ to H is said to be complete if domϕ is unbounded and maximal if ϕ
is not the truncation of another solution.

Conditions for the existence of solutions for a hybrid system satisfying the hybrid
basic conditions can be stated as follows [90, Proposition 6.10].

Proposition 2.20 (Basic existence of solutions). Let the hybrid system H satisfy
Assumption 2.16. If F (x) ∩ TC(x) ̸= ∅ for every x ∈ C \ D, then there exists a
nontrivial solution to H from every initial point in C∪D, and every maximal solution
to H satisfies exactly one of the following conditions:

(a) ϕ is complete;
(b) domϕ is bounded and the interval IJ(domϕ), where J = supj domϕ, has nonempty

interior and t 7→ ϕ(t, J) is a maximal solution to ż ∈ F (z), in fact limt→T |ϕ(t, J)| =
∞, where T = supt domϕ;

(c) ϕ(T, J) /∈ C ∪D, where (T, J) = sup domϕ.

Furthermore, if G(D) ⊂ C ∪D, then (c) above does not occur.
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2.3.3 Stability of Sets

This section introduces stability concepts for a closed set A ⊂ Rn. We will require two
classes of comparison functions.

Definition 2.21 (Comparison functions).

• A function α : R≥0 → R≥0 is a class-K∞ function, also written α ∈ K∞, if α is
zero at zero, continuous, strictly increasing, and unbounded.

• A function β : R≥0×R≥0 → R≥0 is a class-KL function, also written β ∈ KL, if
it is nondecreasing in its first argument, nonincreasing in its second argument,
limr↘0 β(r, s) = 0 for each s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0.

Uniform global pre-asymptotic stability of a closed set A ⊂ Rn for a hybrid system
is defined following [90, Definition 3.6].

Definition 2.22 (Uniform global pre-asymptotic stability). A closed set A ⊂ Rn is
said to be

• uniformly globally stable for H if there exists a class K∞ function α such that
any solution ϕ to H satisfies |ϕ(t, j)|A ≤ α(ϕ(0, 0)) for all (t, j) ∈ domϕ;

• uniformly globally pre-attractive for H if for each ϵ > 0 and r > 0 there exists
T > 0 such that, for any solution ϕ to H with |ϕ(0, 0)|A ≤ r, (t, j) ∈ domϕ and
t+ j ≥ T implies |ϕ(t, j)|A ≤ ϵ;

• uniformly globally pre-asymptotically stable for H if it is both uniformly globally
stable and uniformly globally pre-attractive.

The prefix pre is employed to emphasize the fact that maximal solutions are not
required to be complete.

Uniform global pre-asymptotic stability according to Definition 2.22 is equivalent
to a stability characterization in terms of a KL-bound [90, Theorem 3.40].

Theorem 2.23. A closed set A ⊂ Rn is uniformly globally pre-asymptotically stable
for H if and only if there exists β ∈ KL such that any solution ϕ to H satisfies

|ϕ(t, j)|A ≤ β(|ϕ(0, 0)|A, t+ j) (2.22)

for all (t, j) ∈ domϕ.

If A is compact and the hybrid system satisfies the hybrid basic conditions, then
uniform global pre-asymptotic stability is equivalent to global pre-asymptotic stability
[90, Theorem 7.12] defined as

Definition 2.24 (Global pre-asymptotic stability). Let H be a hybrid system satisfy-
ing Assumption 2.16. A compact set A ⊂ Rn is said to be

• stable for H if for every ε > 0 there exists δ > 0 such that every solution ϕ to
H with |ϕ(0, 0)|A ≤ δ satisfies |ϕ(t, j)|A ≤ ε for all (t, j) ∈ domϕ;

• globally pre-attractive for H if every solution ϕ to H is bounded and, if ϕ is
complete, then limt+j→∞|ϕ(t, j)|A = 0;

• globally pre-asymptotically stable for H if it is both stable and globally pre-
attractive for H.
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2.3.4 Hybrid Systems with Input

A hybrid system with input H is also defined by four objects (C,F,D,G),

H :

{
ẋ ∈ F (x, u), (x, u) ∈ C

x+ ∈ G(x, u), (x, u) ∈ D
(2.23)

where x ∈ Rn is the state of the system, u ∈ Rm is the input to the system, the set-
valued mapping F : Rn × Rm ⇒ Rn is the flow map, G : Rn × Rm ⇒ Rn is the jump
map, and C ⊂ Rn × Rm and D ⊂ Rn × Rm are the flow and jump sets, respectively.

We will typically consider hybrid systems with input that satisfy the following
three basic assumptions [61, Definition 2.20].

Assumption 2.25 (Input hybrid basic conditions).

(A1) C and D are closed subsets of Rn × Rm;
(A2) F : Rn × Rm ⇒ Rn is outer semicontinuous and locally bounded relative to C,

C ⊂ domF , and F is convex-valued on C;
(A3) G : Rn × Rm ⇒ Rn is outer semicontinuous and locally bounded relative to D,

and D ⊂ domG.

It should be remarked that the conditions (x, u) ∈ C and (x, u) ∈ D as they ap-
pear (2.23) can be recast as explicit input constraints such as in the modeling frame-
work of [89]. In particular, define the set XC := π1(C) and the set-valued mapping
UC(x) := {u ∈ Rm : (x, u) ∈ C}. Then domUC = XC and gphUC = C. It now follows
that (x, u) ∈ C if and only if x ∈ XC and u ∈ UC(x). The condition (A1) in Assump-
tion 2.25 stating that C is closed then amounts to UC being outer semicontinuous by
Lemma 2.2. Similar results are found for the jump set D.

The definition of a hybrid input is as follows [61, Definition 2.27].

Definition 2.26 (Hybrid input). A mapping ψ : domψ → Rm is a hybrid input if
domψ is a hybrid time domain and for each j ∈ Z≥0, the mapping t 7→ ψ(t, j) is
Lebesgue measurable and locally essentially bounded on Ij(domψ).

A mapping is locally essentially bounded if it is equal to a locally bounded mapping
except on a set of Lebesgue measure zero. Consequently, an essentially locally bounded
mapping is locally bounded almost everywhere in this sense. We are now equipped to
introduce the solution concept for hybrid systems with input.

Definition 2.27 (Solution to a hybrid system with input). A pair (ϕ, ψ), where
ϕ is a hybrid arc and ψ is a hybrid input, is a solution to the hybrid system H if
ϕ(0, 0) ∈ C ∪D, domϕ = domψ, and

(S1) for every j ∈ Z≥0 such that Ij(domϕ) has nonempty interior,

(ϕ(t, j), ψ(t, j)) ∈ C for every t ∈ Ij(domϕ)◦,

ϕ̇(t, j) ∈ F (ϕ(t, j), ψ(t, j)) for almost every t ∈ Ij(domϕ),
(2.24)

(S2) for all (t, j) ∈ domϕ such that (t, j + 1) ∈ domϕ,

(ϕ(t, j), ψ(t, j)) ∈ D,

ϕ(t, j + 1) ∈ G(ϕ(t, j), ψ(t, j)).
(2.25)
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Modeling of Underwater Vehicles
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Chapter 3

Modeling of Rigid Underwater
Vehicles

In this chapter, we present a modeling framework for rigid underwater vehicles utiliz-
ing matrix Lie theory. The fundamental kinematic relations for the vehicle are derived
directly on the Euclidean group and its Lie algebra. We subsequently derive the vehicle
dynamics, where we incorporate hydrodynamic inertia effects, hydrodynamic damp-
ing effects, and the hydrostatic wrenches. Additionally, the effect of a uniform and
unsteady ocean current is considered. We then introduce the novel concept of mono-
tone dissipativity that has applications when designing model-based feedback control
laws for underwater vehicles. Finally, a hydrodynamic symmetry principle is intro-
duced which can be utilized to reduce the number of hydrodynamic parameters in the
model.

3.1 Introduction

The mathematical modeling of underwater vehicles is of tremendous importance in
the design and stability analysis of underwater vehicle feedback control laws, and
for verification of underwater vehicle control systems. Unfortunately, the formulation
of sufficiently accurate and mathematically tractable models is severely impeded by
the complexity of the hydrodynamic forces and moments acting on the vehicle. Out
of this challenge a fairly standardized modeling approach has arisen, which is well
described in [24, Chapter 8]. It is in general necessary to neglect the infinite degrees of
freedom that the fluid possesses, and to model the acting hydrodynamic wrenches in
terms of variables describing the motion of the vehicle only. Such modeling approaches
attempt to capture the mean effect that the fluid has on the vehicle over a wide range
of operating conditions.

The remainder of this chapter is organized as follows. In Section 3.2, we present a
kinematic analysis of rigid underwater vehicles on the Euclidean group. In particular,
the kinematic quantities of interest and their transformation rules under a change of
reference frame are introduced. We then present the equations of motion in Section 3.3.
Dissipativity, monotone dissipativity, and Rayleigh dissipation functions are treated
in Section 3.4. Then, Section 3.5 covers vehicle symmetry and the hydrodynamic sym-
metry principle. Lastly, a control model utilizing a quaternion attitude representation
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is introduced in Section 3.6.

3.2 Vehicle Kinematics

To effectively describe the kinematics of a rigid underwater vehicle, we will first intro-
duce a few matrix Lie groups and their properties. The three-dimensional orthogonal
group, O(3), is defined by

O(3) := {R ∈ R3×3 : RT = R−1} ⊂ GL(3). (3.1)

The elements of this group are called rotation matrices. A rotation matrix R ∈ O(3) is
called proper if detR = 1, and improper if detR = −1. The difference between them
lies in the fact that improper rotations contain a reflection through some plane. It is
usually not necessary to consider improper rotations in the field of robotics, and most
references therefore only consider the three-dimensional special orthogonal group,

SO(3) := {R ∈ O(3) : detR = 1} ⊂ GL(3), (3.2)

which is the Lie subgroup of O(3) comprising all proper rotations. However, improper
rotations are necessary when describing reflection symmetries of underwater vehicles,
which we must consider when formulating the hydrodynamic symmetry principle in
Section 3.5.

The Lie algebra of O(3) is denoted o(3), and comprises all skew symmetric matrices
in R3×3,

o(3) := {Ω ∈ R3×3 : ΩT = −Ω}. (3.3)

We identify o(3) with R3 through the vector space isomorphism ( · )× : R3 → o(3)
defined by

ω× :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (3.4)

The adjoint operators formulated relative to the isomorphism (3.4) can then be shown
to be

Ad
O(3)
R := det(R)R, (3.5)

ado(3)ω := ω×. (3.6)

We note that the special orthogonal group and the orthogonal group have the same
Lie algebra, that is so(3) = o(3).

The three-dimensional Euclidean group is the semidirect product R3 ⋊O(3),

E(3) :=

{(
R p
0 1

)
: p ∈ R3, R ∈ O(3)

}
⊂ GL(4). (3.7)

This group comprises all translations and rotations in three dimensions. The repre-
sentation (3.7) is somewhat cumbersome, and we therefore often write an element
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g ∈ E(3) as a pair g = (p,R). The Euclidean group acts on R3 via rotation and trans-
lation, which we for r ∈ R3 write as g · r := p + Rr. The mapping g · : R3 → R3 is
easily shown to be a smooth diffeomorphism. In the robotics literature, one usually
only encounters the three-dimensional special Euclidean group,

SE(3) :=

{(
R p
0 1

)
: p ∈ R3, R ∈ SO(3)

}
⊂ GL(4). (3.8)

This is the matrix Lie subgroup of E(3) where the rotations are restricted to be proper.
The Lie algebra of E(3) is denoted e(3), and defined by

e(3) :=

{(
Ω v
0 0

)
: v ∈ R3, Ω ∈ o(3)

}
. (3.9)

We identify e(3) with R6 by utilizing the vector space isomorphism ·̂ : R6 → e(3)
defined by

ν̂ :=

(
ω× v
0 0

)
where ν =

(
v
ω

)
(3.10)

The following proposition establishes the adjoint operators on E(3) and e(3) relative
to this isomorphism.

Proposition 3.1. The adjoint operators on E(3) and e(3) relative to the isomorphism
(3.10) are given by

Adg :=

(
R det(R) p×R
0 det(R)R

)
, (3.11)

adν :=

(
ω× v×

0 ω×

)
, (3.12)

respectively.

Proof. To characterize Adg, we first compute,

gν̂g−1 =

(
R p
0 1

)(
ω× v
0 0

)(
R p
0 1

)−1

=

(
Rω×RT Rv −Rω×RTp

0 0

)
.

(3.13)

The skew operator satisfies

Rω×RT = (det(R)Rω)× (3.14)

for all (R,ω) ∈ O(3)× R3. Consequently,

−Rω×RTp = det(R)p×Rω. (3.15)

The operator Adg is therefore characterized by

Adg :

(
v
ω

)
7→
(
Rv + det(R)p×Rω

det(R)Rω

)
, (3.16)
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which admits the matrix representation in (3.11). To characterize adν , we first compute
the Lie bracket,

[ν̂1, ν̂2] =

(
ω×
1 v1
0 0

)(
ω×
2 v2
0 0

)
−
(
ω×
2 v2
0 0

)(
ω×
1 v1
0 0

)
=

(
ω×
1 ω

×
2 − ω×

2 ω
×
1 ω×

1 v2 − ω×
2 v1

0 0

)
. (3.17)

It follows from the Jacobi-identity of the skew operator that

ω×
1 ω

×
2 − ω×

2 ω
×
1 = (ω×

1 ω2)
×. (3.18)

Since −ω×
2 v1 = v×1 ω2, we find that

[ν̂1, ν̂2] =

(
(ω×

1 ω2)
× v×1 ω2 + ω×

1 v2
0 0

)
. (3.19)

Consequently, the operator adν1 is characterized by

adν1 :

(
v2
ω2

)
7→
(
v×1 ω2 + ω×

1 v2
ω×
1 ω2

)
(3.20)

which admits the matrix representation in (3.12).

The special Euclidean group and the Euclidean group have the same Lie algebra,
se(3) = e(3).

By introducing a world-fixed Cartesian reference frame and a vehicle-fixed Carte-
sian reference frame, the configuration of an underwater vehicle can be identified with
E(3). In particular, g = (p,R) ∈ E(3) relates the vehicle coordinate r ∈ R3 and the
world coordinate x ∈ R3 of an arbitrary point via x = g ·r, as illustrated in Figure 3.1.
Consequently, denoting by R ⊂ R3 the set of vehicle coordinates that describe the

Figure 3.1: The world coordinate x and vehicle coordinate r of a point.

physical points comprising the vehicle, g ·R = {Rr + p : r ∈ R} describes the corre-
sponding set of world coordinates. In this context, p ∈ R3 is the vehicle position, and
R ∈ O(3) the vehicle orientation. The position p should be understood as the vector
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from the world frame origin to the vehicle frame origin expressed in the world frame.
The orientation R describes the axes of the vehicle frame expressed in the world frame.
Moreover, R is a proper rotation (detR = 1) if the world frame and vehicle frame have
the same handedness, and R is an improper rotation (detR = −1) otherwise.

We denote by v ∈ R3 and ω ∈ R3 the linear and angular velocity, respectively, of
the vehicle frame relative to the world frame expressed in the vehicle frame. These
are sometimes referred to as body velocities, e.g. in [98, Chapter 2, Section 4], or
convective velocities, e.g. in [107, Chapter 15, Section 2]. Furthermore, we denote by
a ∈ R3 and ϖ ∈ R3 the linear and angular vehicle accelerations, respectively. The
differential second-order kinematics are then described by

ṗ = Rv

Ṙ = Rω×

v̇ = a

ω̇ = ϖ

 (p,R, v, ω, a,ϖ) ∈ R3 ×O(3)× R3 × R3 × R3 × R3, (3.21)

where a and ϖ are considered inputs. By introducing the vehicle velocity ν = (v, ω) ∈
R6 and the vehicle acceleration α = (a,ϖ) ∈ R6, the kinematic system (3.21) can be
equivalently stated as

ġ = gν̂

ν̇ = α

}
(g, ν, α) ∈ E(3)× R6 × R6, (3.22)

where α is considered an input.
A generalized force acting on a rigid underwater vehicle comprises a linear compo-

nent, a pure linear force l ∈ R3, and an angular component, a pure moment κ ∈ R3.
Such a force-moment pair is typically referred to as a wrench, and represented as a
vector f = (l, κ) ∈ R6. We consider wrenches to be expressed in the vehicle frame.
In particular, a wrench f contracts naturally with the vehicle velocity ν to form the
instantaneous work done by the wrench, W = ⟨f, ν⟩ = ⟨l, v⟩+ ⟨κ, ω⟩.

A change of world frame can be encoded in a rigid transformation h = (b, S) ∈ E(3)
that describes the configuration of the old world frame relative to the new world frame.
In particular, b ∈ R3 describes the origin of the old world frame expressed in the
new world frame. Furthermore, S ∈ O(3) describes the axes of the old world frame
expressed in the new world frame. The introduced kinematic quantities then transform
as

g∗ = hg,

ν∗ = ν,

α∗ = α,

f∗ = f.

(3.23)

In particular, g∗ is the configuration of the vehicle frame relative to the new world
frame, ν∗ and α∗ are the vehicle frame velocity and acceleration relative to the new
world frame expressed in the vehicle frame, respectively, and f∗ is the transformed
vehicle wrench. Evidently, the latter three quantities are independent of the world
frame placement.
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A change of vehicle frame is in turn facilitated by a transformation h = (b, S) ∈
E(3) that describes the configuration of the new vehicle frame relative to the old vehicle
frame. Here, b ∈ R3 is the origin of the new vehicle frame expressed in the old vehicle
frame. The rotation matrix S ∈ O(3) describes the axes of the new vehicle frame
expressed in the old vehicle frame. The introduced kinematic quantities transform as

g∗ = gh,

ν∗ = Ad−1
h ν,

α∗ = Ad−1
h α,

f∗ = AdTh f.

(3.24)

Here, g∗ is the configuration of the new vehicle frame relative to the world frame, ν∗
and α∗ are the velocity and acceleration of the new vehicle frame relative to the world
frame expressed in the new vehicle frame, respectively, and f∗ is the wrench expressed
in the new vehicle frame.

3.3 Vehicle Dynamics

We will in this section derive the equations that describe the motion of the underwater
vehicle. To this end, the following assumptions are made.

Assumption 3.2.

1. The world frame is an inertial reference frame.
2. R is a nonempty compact regular domain in R3 [96, Page 120].

The first assumption is from an empirical standpoint necessary to ensure that
the derived equations of motion describe the vehicle motion. The second assumption
ensures that the vehicle has a smooth surface and nonzero volume, such that we can
guarantee the existence of certain hydrodynamic quantities.

In the following, we start out with a brief treatment of rigid body dynamics before
turning our attention to the modeling of the acting hydromechanical wrenches. It is
customary to separate the contributions to the hydromechanical wrench that act on
an underwater vehicle into three basic components,

1. the hydrodynamic inertia wrench;
2. the hydrodynamic damping wrench;
3. the hydrostatic wrench.

We remark that the hydrodynamic wrench acting on a submerged rigid body un-
dergoing general motion is extremely challenging to model accurately. The fluid is
a highly complicated infinite-dimensional dynamical system coupled with the finite
dimensional underwater vehicle. Consequently, the acting wrench would realistically
depend on the motion history of the vehicle. To derive a manageable set of governing
equations for the rigid body, this aspect of the hydrodynamic wrench is typically ne-
glected in modeling practice. In particular, the hydrodynamic wrench acting on the
body at an instant in time is taken to depend solely on the configuration, velocity,
and acceleration of the body at that instant in time. Such hydrodynamic models are
referred to as memoryless, and are the sole focus of this chapter.
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3.3. Vehicle Dynamics

3.3.1 Rigid Body Dynamics

The tendency of a body to resist a change of its velocity is commonly referred to as
inertia. The central principles of analytical mechanics relate the inertial properties of
a rigid body to its kinetic energy. Let us consider an arbitrary material point with
vehicle coordinate r ∈ R. The corresponding world coordinate is given by x = g · r.
Consequently, the velocity of the material point as seen from the world frame is

ẋ = ġ · r
= Rv +Rω×r

= R
(
I −r×

)
ν.

(3.25)

The underwater vehicle is taken to have a density measure ρd3r with support equal
to R. It follows that the kinetic energy of the underwater vehicle, TR : R6 → R, can
be computed by

TR(ν) :=
1

2

∫
r∈R

|ġ · r|2 ρ(r)d3r

=
1

2

∫
r∈R

〈(
I −r×
r× −r×r×

)
ν, ν

〉
ρ(r)d3r

=
1

2
⟨MRν, ν⟩.

(3.26)

The vehicle inertia matrix MR can be written as

MR :=

(
mI −r×m
r×m JR

)
, (3.27)

where the vehicle mass m, the vehicle center of mass rm, and the vehicle rotational
inertia matrix JR, are defined by

m :=

∫
r∈R

ρ(r)d3r, (3.28)

rm :=
1

m

∫
r∈R

r ρ(r)d3r, (3.29)

JR :=

∫
r∈R

(|r|2I − r ⊗ r) ρ(r)d3r. (3.30)

We here used the fact that r×r× = r ⊗ r − |r|2I for every r ∈ R3 to define JR. The
vehicle inertia matrix MR is symmetric and positive definite.

The rigid body equation of motion for the vehicle is given by

MRα− adTν MRν = f, (3.31)

where f is a placeholder for other wrenches acting on the vehicle. In fact, (3.31) can
be derived directly from the kinetic energy (3.26) in a variational setting, as done for
instance in [101, Section 5.3.3] and [107, Chapter 15]. It is also possible to arrive at
(3.31) with Newtonian mechanics, as done for instance in [98, Section 4.2.4] and [24,
Section 3.3].
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3. Modeling of Rigid Underwater Vehicles

3.3.2 Hydrodynamic Inertia

A moving submerged body disturbs the surrounding water, and in this manner sets
mass into motion. Consequently, the submerged body has different inertial properties
in water than it would have in vacuum. While this is also true for a rigid body sub-
merged in a fluid such as air, it is the high density of water that makes it particularly
important to consider this additional hydrodynamic inertia in the modeling process.
From a theoretical perspective, the hydrodynamic inertia wrench is typically derived
under the following additional assumptions.

Assumption 3.3.

1. The underwater vehicle is the only bounding surface of the fluid.
2. The fluid motion is globally described by a potential.
3. The fluid density, ϱ > 0, is constant.
4. The fluid is at rest far away from the vehicle.

The fluid motion induced by the vehicle can then be described by a collection of
harmonic functions introduced by Kirchhoff in [1].

Definition 3.4. A classical Kirchhoff potential for R is a mapping φ : R3 \ R → R6

satisfying the following three conditions:

1. φ is continuously differentiable on R3 \ R and each component of φ is harmonic
on R3 \ R;

2. φ satisfies the Neumann boundary condition

Dφ(r)n(r) =

(
n(r)

r × n(r)

)
(3.32)

on ∂R, where n : ∂R → S2 is the outwards-pointing unit normal of R;
3. |φ(r)| → 0 as |r|R → ∞.

Since R is assumed to be a compact regular domain, it follows from [108, Theorem
6.10.6] that there exists a unique classical Kirchhoff potential φ for R. Furthermore, it
follows from [108, Proposition 2.17.3] that the decay of |φ| is O(|r|−1

R ), and the decay
of ∥Dφ∥ is O(|r|−2

R ).
A Kirchhoff potential encodes the velocity of every material particle in the fluid.

In particular, the fluid particle that at some instant in time has the vehicle coordinate
r ∈ R3 \R and world coordinate x = g ·r, has at that instant in time the world frame
velocity

ẋ = RDφ(r)Tν, (3.33)

which can be viewed as an analogue to the expression (3.25). It follows that the kinetic
energy of the fluid is given by

TH(ν) :=
1

2

∫
r∈R3\R

|RDφ(r)Tν|2 ϱd3r

=
1

2

∫
r∈R3\R

⟨Dφ(r)Dφ(r)Tν, ν⟩ ϱd3r

=
1

2
⟨MHν, ν⟩,

(3.34)
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where the hydrodynamic inertia matrix is defined by

MH :=

∫
r∈R3\R

Dφ(r)Dφ(r)T ϱd3r. (3.35)

Due to the aforementioned rapid decay of ∥Dφ∥ at large distances from the body, the
integral (3.35) is guaranteed to converge. It should be remarked that several references
define the hydrodynamic inertia matrix as

MH = −
∫
r∈∂R

φ(r)⊗
(

n(r)
r × n(r)

)
ϱd2r. (3.36)

The expression (3.36) is equivalent to (3.35) under Assumption 3.3. A proof of this
fact can be found in [109, Section 4.14].

It is seen directly from the development (3.34) that the hydrodynamic inertia
matrix is symmetric and positive semidefinite. While the rigid body inertia matrix
MR is determined by 10 independent coefficients, the hydrodynamic inertia matrix
is determined by the maximum number of 21. Fortunately, symmetry of the vehicle
shape can be used to bring this number down substantially. We will investigate this
topic further in Section 3.5.

The acting hydrodynamic inertia wrench is denoted fH : R6 × R6 → R6, and
defined by

fH(ν, α) := −MHα+ adTν MHν. (3.37)

This can be proven by utilizing TH directly in a variational principle, as was done
originally in [1]. Furthermore, it can also be shown that direct integration of the
dynamic pressure induced by the Kirchhoff potentials over the vehicle surface yields the
same result [109, Chapter 4, equations (115-116)]. Consequently, the stated form (3.37)
of the hydrodynamic inertia wrench is uncontroversial provided that Assumption 3.3
is satisfied.

We shall now state the necessary changes to (3.37) when the vehicle is in the
presence of a spatially uniform and unsteady ocean current, thereby alleviating the
fourth item in Assumption 3.3. The fluid velocity and acceleration associated with
the current are denoted vc ∈ R3 and ac := v̇c ∈ R3, respectively. These quantities are
expressed in the world frame. Furthermore, we define

νc := Ad−1
g

(
vc
0

)
=

(
RTvc
0

)
, (3.38)

αc := ν̇c = Ad−1
g

(
ac
0

)
− adν νc =

(
RTac − ω×RTvc

0

)
.

It is seen that νc is the current velocity treated as a vector in R6 and expressed in
the vehicle frame. Furthermore, αc is the derivative of νc and therefore contains not
only the current acceleration rotated into the vehicle frame, but also a coupling term
involving the vehicle angular velocity resulting from the motion of the vehicle frame.

The current wrench acting on the vehicle in potential flow is derived in [110, 111],
and found to be given by the mapping fC : E(3)× R6 × R3 × R3 → R6 defined by

fC(g, ν, vc, ac) :=MHαc + adTνc MHνc − adTν MHνc

− adTνc MHν +

(
ϱυI
ϱυr×υ

)
RTac.

(3.39)
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The last term present in (3.39) is referred to as the acceleration-reaction wrench. It
can be identified as the wrench acting on the vehicle in a uniform and unsteady flow
field that is undisturbed by the vehicle. The sum of (3.37) and (3.39) constitutes the
hydrodynamic potential flow force fP : E(3)× R6 × R6 × R3 × R3 → R6, defined by

fP (g, ν, α, vc, ac) := fH(ν, α) + fC(g, ν, vc, ac) (3.40)

= −MHαr + adTνr MHνr+

(
ϱυI
ϱυr×υ

)
RTac,

where we for readability have introduced the vehicle-current relative velocity and
acceleration νr := ν − νc and αr := α− αc, respectively.

It should be remarked that experimentally determined hydrodynamic inertia pa-
rameters may differ significantly from the ideal values computed from the Kirchhoff
potential with (3.35) or (3.36). Since a memoryless model can not describe the hy-
drodynamic wrenches exerted on the vehicle by a viscous and rotational fluid exactly,
unmodeled effects will inevitably be captured in the hydrodynamic inertia parameters
when the memoryless model is fitted to experimental data.

3.3.3 Hydrodynamic Damping

In a viscous and rotational fluid, additional physical effects such as viscous shear
stresses and free vorticity must be considered. The simplified memoryless approxima-
tion to these effects is typically referred to as the hydrodynamic damping wrench,
e.g. [24, Section 6.4], due to their empirically observable tendency to dampen out the
motion of the underwater vehicle. The damping wrench is modeled as a continuous
mapping d : R6 → R6, dependent solely on the vehicle velocity.

The particular expressions chosen for d can be considered semi-empirical at best.
An example from the literature is given by the second-order modulus damping model

d(ν) := −
6∑
i=1

|νi|Diν, (3.41)

where νi denotes component i of the vehicle velocity ν, and Di ∈ R6×6 is a matrix
of damping coefficients for every i ∈ {1, . . . , 6}. This damping model is found in the
literature rather frequently. For instance, it is referred to in [24] as a possible choice for
describing the hydrodynamic damping wrench acting on an underwater vehicle during
general maneuvers.

Viscous current effects are usually taken into account by reformulating the hydro-
dynamic damping wrench relative to the current. In particular, d(ν) is replaced by
d(νr). This is certainly reasonable when vc is constant due to the Galilean invariance
of the underlying hydrodynamic equations. When the current is unsteady, it might be
necessary to use a different set of hydrodynamic coefficients in d than in the steady
case. It is for instance well known that the averaged drag coefficients of piles in oscil-
latory flow depend on the frequency of oscillation, which is captured by the so-called
Keulegan-Carpenter number. A more detailed discussion of this phenomenon can be
found in [112, Chapter 7] and [113, Chapter 3].
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3.3.4 Hydrostatics

The hydrostatic wrench comprises in the context of ocean vehicles both weight and
buoyancy, and we start by treating the former. The vehicle weight, considered as a
wrench, can be computed by integrating gravitational contributions expressed in the
vehicle frame over R. Denoting by aγ ∈ R3 the gravitational acceleration in the world
frame, taken to point downwards, we find

fW (g) :=

∫
r∈R

(
I
r×

)
RTaγ ρ(r)d

3r

=

(
mI
mr×m

)
RTaγ .

(3.42)

The buoyancy wrench takes the same form in all commonly used constant-density
fluid models. It results from integrating the hydrostatic pressure contributions over
the surface of the vehicle. In particular,

fB(g) := −
∫
r∈∂R

⟨RTaγ , r⟩
(

n(r)
r × n(r)

)
ϱd2r. (3.43)

For a fluid with constant density in a uniform gravitational field, this surface integral
can be transformed into a volume integral over the body, and can further be shown
to have an expression similar to the gravitational wrench (3.42). In particular,

fB(g) = −
(
ϱυI
ϱυr×υ

)
RTaγ (3.44)

for every g ∈ E(3), where the vehicle volume υ and center of volume rυ are defined by

υ :=

∫
r∈R

d3r, rυ :=
1

υ

∫
r∈R

r d3r, (3.45)

respectively. The quantity ϱυ is the mass of the fluid displaced by the vehicle. The
hydrostatic wrench is the sum of (3.42) and (3.44), χ : E(3) → R6,

χ(g) :=

(
(m− ϱυ)I

(mr×m − ϱυr×υ )

)
RTaγ . (3.46)

It is readily seen that (3.46) can be derived from the potential Uχ : E(3) → R defined
by

Uχ(g) := −⟨aγ , (m− ϱυ)p+R(mrm − ϱυrυ)⟩, (3.47)

that is, χ(g) = −dUχ(g) for every g ∈ E(3).
We end this section with a proof of the fact that (3.43) and (3.44) are indeed

equivalent.

Proposition 3.5. The expressions (3.43) and (3.44) are equivalent.

Proof. The proof is easiest in component-notation. Defining a∗ := RTaγ , the linear
force components of the buoyancy wrench (3.43) are

li = −
∫
r∈∂R

a∗jrjni ϱd
2r, (3.48)
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where summation over repeated indices is implied. Applying the divergence theorem
yields

li = −
∫
r∈R

a∗jδij ϱd
3r = −ϱ

∫
r∈R

d3r a∗i = −ϱυa∗i (3.49)

where δij is the Kronecker-delta. Denoting by ϵijk Levi-Civita symbol, the moment
components of the buoyancy wrench are

κi = −
∫
r∈∂R

a∗srsϵijkrjnk ϱd
2r

= −
∫
r∈R

a∗s(δksϵijkrj + rsϵijkδjk)ϱd
3r

= −ϱϵijk
∫
r∈R

rjd
3r a∗k

= −ϱυϵijkrυ,ja∗k,

(3.50)

where the divergence theorem and the fact that δijϵijk = 0 were used. This establishes
that fB is indeed given by the volume integral (3.44).

3.3.5 Equation of Motion

We will now combine the expressions presented in the previous sections to form the
equation of motion for the underwater vehicle. Denoting the wrenches generated by
the vehicle’s thrusters and control surfaces by τ , we have

MRα− adTν MRν = fP (g, ν, α, vc, ac)

+ d(ν − νc) + χ(g) + τ,
(3.51)

or equivalently,

Mα− adTν Mν = fC(g, ν, vc, ac)

+ d(ν − νc) + χ(g) + τ,
(3.52)

where we defined the total inertia matrix

M :=MR +MH . (3.53)

It is possible to simplify (3.52) further by rewriting it in terms of the relative velocity
νr and relative acceleration αr. To this end, we require the following lemma which can
be viewed as a minor generalization of [114, Property 2] to the case of unsteady ocean
currents.

Lemma 3.1. It holds that

MRαr − adTνr MRνr =MRα− adTν MRν −
(
mI
mr×m

)
RTac. (3.54)
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Proof. Using the linearity of ad, we find

MRαr − adTνr MRνr =MRα− adTν MRν −MRαc

+MR adν νc + adTνc MRν + adTν MRνc

− adTνc MRνc

(3.55)

The last term in the first line of (3.55) is found to be equal to the last term in (3.54).
We now investigate the terms appearing in the second line of (3.55). Straightforward
computations yield

MR adν νc = m

(
ω×RTvc
r×mω

×RTvc

)
,

adTνc MRν = m

(
0

−(RTvc)
×v + (RTvc)

×r×mω

)
,

adTν MRνc = −m
(

ω×RTvc
v×RTvc + ω×r×mR

Tvc

)
.

(3.56)

The sum of the expressions presented in (3.56) is

m

(
0

−v×RTvc − (RTvc)
×v + r×mω

×RTvc + (RTvc)
×r×mω − ω×r×mR

Tvc

)
,

and the terms containing v are readily seen to cancel due to the anti-symmetry of the
cross product. Furthermore, the terms containing ω cancel due to the Jacobi identity.
It remains to show that the last term in (3.55) vanishes. We find that

− adTνc MRνc = m

(
0

(RTvc)
×RTvc

)
, (3.57)

which vanishes due to anti-symmetry of the cross product.

In light of Lemma 3.1 and the expression (3.40) for the hydrodynamic potential
wrench, it is possible to write the full equation of motion for the underwater vehicle
as

Mαr − adTνr Mνr = d(νr) + χ(g, ac) + τ, (3.58)

where χ : E(3) × R3 → R6 comprises hydrostatic contributions, the acceleration-
reaction wrench, and the last term appearing in (3.54),

χ(g, ac) :=

(
(m− ϱυ)I
mr×m − ϱυr×υ

)
RT(aγ − ac). (3.59)

The form of the equation (3.58) when a uniform and unsteady current is present is to
the authors’ knowledge novel. When the current is steady, χ reduces to the hydrostatic
wrench χ, and (3.58) to the standard model found in [24, Equation (8.2)]. It follows
that the complete system describing the motion of the underwater vehicle can be
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stated as

ġ = g(ν̂r + ν̂c)

ν̇r =M−1[adTνr Mνr + d(νr) + χ(g, ac) + τ ]

v̇c = ac︸ ︷︷ ︸
(g, νr, τ, vc, ac) ∈ E(3)× R6 × R6 × R3 × R3,

(3.60)

where τ ∈ R6 and ac ∈ R3 are considered inputs.
We finalize this section by showing that the equation of motion (3.58) can be

derived from the Lagrange-d’Alembert principle (see for instance [107, Section 7.8],
[53, Section 5.2], and [101, Section 4.4.3] for details). Our result shows that the inertial
and hydrostatic terms present in (3.58), including those resulting from unsteady ocean
currents, can be directly derived from a Lagrangian function.

Theorem 3.6. The equation of motion (3.58) can be derived from the Lagrange-
d’Alembert principle by utilizing the Lagrangian L : E(3)× R6 × R3 × R3 → R,

L(g, νr, ac) :=
1

2
⟨Mνr, νr⟩ − U(g, ac), (3.61)

where U : E(3)× R3 → R is defined by

U(g, ac) := −⟨aγ − ac, (m− ϱυ)p+R(mrm − ϱυrυ)⟩, (3.62)

and including d and τ in the external wrenches.

Proof. Let T ≥ 0, and consider curves g : [0, T ] → E(3) and vc : [0, T ] → R3 such that
ġ and vc are absolutely continuous. Given a smooth curve ξ : [0, T ] → R6, we write a
variation of g as gξ : [0, T ]× R → E(3),

gξ(t, s) := g(t) exp(sξ̂(t)). (3.63)

From gξ, we can define the variation νξ of the corresponding velocity t 7→ ν(t) defined
such that ν̂(t) = g(t)−1ġ(t). In particular,

ν̂ξ(t, s) := gξ(t, s)
−1ġξ(t, s). (3.64)

The variation of νc is denoted νc,ξ and defined by

νc,ξ(t, s) := Ad−1
gξ(t,s)

(
vc(t)
0

)
= Ad−1

exp(sξ̂(t))
νc(t)

(3.65)

The variation of νr is then νr,ξ(t, s) := νξ(t, s)− νc,ξ(t, s).
The corresponding infinitesimal variation of the configuration is now defined as

δgξ(t) :=
d

ds

∣∣∣∣
s=0

gξ(t, s)

= g(t)
d

ds

∣∣∣∣
s=0

(I + sξ̂(t) + . . .)

= g(t)ξ̂(t).

(3.66)
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The infinitesimal variation of the velocity is defined analogously,

δ̂νξ(t) :=
d

ds

∣∣∣∣
s=0

ν̂ξ(t, s)

= − d

ds

∣∣∣∣
s=0

(I + sξ̂(t) + . . .)ν̂(t) + ν̂(t)
d

ds

∣∣∣∣
s=0

(I + sξ̂(t) + . . .) +
˙̂
ξ(t)

=
˙̂
ξ(t) + [ν̂(t), ξ̂(t)]. (3.67)

Consequently, δνξ(t) = ξ̇(t) + adν(t) ξ(t). Lastly, the infinitesimal variation of νc,ξ is

δνc,ξ(t) :=
d

ds

∣∣∣∣
s=0

νc,ξ(t, s)

=
d

ds

∣∣∣∣
s=0

(I − s adξ(t) + . . .)νc(t)

= − adξ(t) νc(t),

(3.68)

where we used the general fact that Adexp ν̂ = exp adν for every ν ∈ R6. Consequently,
the infinitesimal variation of νr is δνr,ξ(t, s) := δνξ(t)− δνc,ξ(t) = ξ̇(t) + adνr(t) ξ(t).

The Lagrange-d’Alembert principle states that the motion of the underwater ve-
hicle, g : [0, T ] → E(3), should satisfy

d

ds

∣∣∣∣
s=0

∫ T

0

L(gξ(t, s), νr,ξ(t, s), ac(t)) dt+

∫ T

0

⟨f(t), ξ(t)⟩ dt = 0 (3.69)

for every smooth curve ξ : [0, T ] → R6 such that ξ(0) = ξ(T ) = 0. We focus on the
left-hand side of (3.69). Due to the independence of t and s, the differentiation with
respect to s can be moved inside the integral. It follows from the definition of the
infinitesimal variations that

d

ds

∣∣∣∣
s=0

L(gξ(t, s), νr,ξ(t, s), ac(t)) = ⟨d1L(g(t), νr(t), ac(t)), ξ(t)⟩
+ ⟨∇2L(g(t), νr(t), ac(t)), ξ̇(t) + adνr(t) ξ(t)⟩. (3.70)

Let us now isolate the term containing ξ̇. Utilizing integration by parts gives∫ T

0

⟨∇2L(g(t), νr(t), ac(t)), ξ̇(t)⟩ dt = ⟨∇2L(g(t), νr(t), ac(t)), ξ(t)⟩
∣∣∣t=T
t=0

−
∫ T

0

⟨ ddt [∇2L(g(t), νr(t), ac(t))], ξ(t)⟩ dt. (3.71)

Since ξ(0) = ξ(T ) = 0 by assumption, the boundary term in (3.71) vanishes. Since
(3.69) should hold for all smooth curves ξ : [0, T ] → R6 vanishing at the domain
endpoints, the Lagrange d’Alembert principle is satisfied if and only if the curve g
satisfies

d

dt
∇2L(g(t), νr(t), ac(t))− adTνr(t) ∇2L(g(t), νr(t), ac(t))

− d1L(g(t), νr(t), ac(t)) = f(t) (3.72)

almost everywhere in [0, T ]. Substituting the Lagrangian (3.61) into (3.72) and setting
f(t) := d(νr(t)) + τ(t) yields (3.58).
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3.4 Dissipativity

We introduce in this section the notions of dissipative and monotonically dissipative
damping models, and investigate some of their properties. We remark that all results
remain valid if the damping model d maps from and to Rn instead of R6, that is, if
d : Rn → Rn.

3.4.1 Dissipative Damping Models

We say that a hydrodynamic damping model d is dissipative if the instantaneous work
done by d is nonpositive at any velocity, and strictly dissipative if the instantaneous
work done by d is negative at any nonzero velocity.

Definition 3.7. A mapping d : R6 → R6 is dissipative if it is continuous and

⟨d(ν), ν⟩ ≤ 0 (3.73)

for every ν ∈ R6. It is strictly dissipative if it is continuous and

⟨d(ν), ν⟩ < 0 (3.74)

for every ν ∈ R6 \ {0}.

Our definition of dissipativity is the same as [101, Definition 4.65]. Some works, e.g.
[107, Definition 7.8.7], refer to dissipativity in the sense of Definition 3.7 as weak
dissipativity, and strict dissipativity in the sense of Definition 3.7 as dissipativity. For
linear damping models, the situation is particularly simple.

Example 3.8. Let D ∈ R6×6 and d(ν) := −Dν. Then d is dissipative if and only
if D is positive semidefinite, that is, if all eigenvalues of D + DT are nonnegative.
Furthermore, d is strictly dissipative if and only if D is positive definite, that is, if all
eigenvalues of D +DT are positive.

The following lemma demonstrates that a dissipative damping model always van-
ishes at the origin, and that its derivative at the origin is a negative semidefinite
matrix.

Lemma 3.2. If d : R6 → R6 is a dissipative mapping, then d(0) = 0. If d is also
differentiable at the origin, then Dd(0) is negative semidefinite.

Proof. Let c := d(0). Utilizing (3.73) and the Cauchy-Schwarz inequality,

0 ≥ ⟨d(ν), ν⟩
= ⟨c, ν⟩+ ⟨d(ν)− c, ν⟩
≥ ⟨c, ν⟩ − |d(ν)− c||ν|.

(3.75)

By continuity of d, for every ε > 0 there exists δ > 0 such that

|ν| ≤ δ =⇒ |d(ν)− c| ≤ ε. (3.76)
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Assume now that c ̸= 0. We may then set ε = |c|/2 and ν = δ c/|c|. From (3.75), we
find that

0 ≥ δ|c|
2
, (3.77)

which is a contradiction. Consequently, c = 0, and the first claim is proven. From
(3.73), it now follows that

⟨d(sν)− d(0), ν⟩
s

≤ 0, (3.78)

for every ν ∈ R6 and every s > 0. If d is continuously differentiable, then taking the
limit s↘ 0 gives

⟨Dd(0)ν, ν⟩ ≤ 0, (3.79)

which proves the second claim.

3.4.2 Monotonically Dissipative Damping Models

We shall now investigate a stronger notion of dissipativity that is useful for stability
analysis and design of feedback control laws for underwater vehicles. This dissipativity
notion will be referred to as monotone dissipativity, and damping models with this
property will be referred to as monotonically dissipative damping models. The idea
of a monotonically dissipative damping model utilized in this chapter comes from the
concept of a monotone mapping, that is, a mapping f : Rn → Rn that satisfies

⟨f(ν)− f(µ), ν − µ⟩ ≥ 0, (3.80)

for all ν, µ ∈ Rn. This class of mappings has numerous applications in control theory,
for instance global tracking control on matrix Lie groups [83], and nonlinear observer
design [115, 116].

Definition 3.9. A mapping d : R6 → R6 is monotonically dissipative if it is continu-
ous, d(0) = 0, and

⟨d(ν)− d(µ), ν − µ⟩ ≤ 0 (3.81)

for all ν, µ ∈ R6. It is strictly monotonically dissipative if it is continuous, d(0) = 0,
and

⟨d(ν)− d(µ), ν − µ⟩ < 0 (3.82)

for all ν, µ ∈ R6 such that ν ̸= µ. Given K ∈ R6×6, we say that d is (strictly) monoton-
ically dissipative modulo K if the mapping ν 7→ d(ν)−Kν is (strictly) monotonically
dissipative.

The purpose of the requirement d(0) = 0 is to ensure that monotone dissipativity
implies dissipativity. Indeed, the monotone dissipation inequalities (3.81) and (3.82)
are completely independent of the value d(0). It should be emphasized that monotone
dissipativity modulo K ∈ R6×6 only depends on the symmetric part of K.
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3. Modeling of Rigid Underwater Vehicles

Evidently, (3.81) holding for all ν, µ ∈ R6 is equivalent to the mapping ν 7→ −d(ν)
being monotone. Monotonicity of a differentiable mapping can be equivalently stated
in terms of its derivative. In particular, [102, Proposition 12.3] establishes that f is
monotone if and only if Df takes positive semidefinite values. The following proposi-
tion builds on this result and constitutes a tool to verify that a damping model satisfies
one of the monotone dissipation inequalities (3.81) and (3.82) modulo K ∈ R6×6.

Proposition 3.10. Let K ∈ R6×6. If d : R6 → R6 is continuously differentiable, then

⟨d(ν)− d(µ), ν − µ⟩ ≤ ⟨K(ν − µ), ν − µ⟩ (3.83)

for all ν, µ ∈ R6 if and only if Dd(ν) −K is negative semidefinite for every ν ∈ R6.
Furthermore,

⟨d(ν)− d(µ), ν − µ⟩ < ⟨K(ν − µ), ν − µ⟩ (3.84)

for all ν, µ ∈ R6 such that ν ̸= µ if Dd(ν)−K is negative definite for every ν ∈ R6 \S,
where S ⊂ R6 is a discrete set.

Proof. The first claim follows immediately by applying [102, Proposition 12.3] to the
mapping φ(ν) := −d(ν) +Kν.

We now prove the claim related to the strict monotone dissipation inequality (3.84).
Since the mapping (ν, µ) 7→ ⟨Dφ(ν)µ, µ⟩ is continuous on R6 ×R6, it follows that the
set

{(ν, µ) ∈ R6 × R6 : ⟨Dφ(ν)µ, µ⟩ ≥ 0} (3.85)

is closed. By assumption, it holds that ⟨Dφ(ν)µ, µ⟩ > 0 for all (ν, µ) ∈ (R6 \ S)× R6.
Consequently, ⟨Dφ(ν)µ, µ⟩ ≥ 0 for all (ν, µ) ∈ (R6 \ S)× R6. Furthermore,

(R6 \ S)× R6 = R6 \ S × R6

= R6 × R6,
(3.86)

where the first equality follows from the fact that the closure of a Cartesian product
is the product of the closures of the factors, and the last equality follows from the fact
that S is discrete and therefore contains only isolated points. It follows that Dφ(ν)
is positive semidefinite for every ν ∈ R6. Now, fix ν, µ ∈ R6 such that ν ̸= µ. Define
ξ : [0, 1] → R6 and ζ : [0, 1] → R by

ξ(s) := sν + (1− s)µ,

ζ(s) := ⟨φ(ξ(s))− φ(µ), ν − µ⟩.
(3.87)

Then, ζ(0) = 0 and ζ(1) = ⟨φ(ν)− φ(µ), ν − µ⟩. Furthermore, ζ ′(s) = ⟨Dφ(ξ(s))(ν −
µ), ν − µ⟩. It then holds that

ζ(1) =

∫ 1

0

ζ ′(s) ds

=

∫ 1

0

⟨Dφ(ξ(s))(ν − µ), ν − µ⟩ ds.
(3.88)
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3.4. Dissipativity

To prove that ζ(1) is in fact strictly positive, we will show that there exists a compact
subinterval [s1, s2] of [0, 1], where s2 > s1, such that Dφ(ξ(s)) is positive definite for
every s ∈ [s1, s2]. It then follows that

ζ(1) =

∫ 1

0

ζ ′(s) ds

=

∫ s1

0

ζ ′(s) ds+

∫ s2

s1

ζ ′(s) ds+

∫ 1

s2

ζ ′(s) ds

≥
∫ s2

s1

⟨Dφ(ξ(s))(ν − µ), ν − µ⟩ ds > 0,

(3.89)

where it was used that Dφ(ξ(s)) is positive semidefinite for every s ∈ [0, 1]. It is
seen that (3.89) is equivalent to (3.84) for the chosen ν, µ. To show that the interval
[s1, s2] exists, assume that ⟨Dφ(ξ(s0))(ν − µ), ν − µ⟩ = 0 for some s0 ∈ [0, 1]. This
necessitates ξ(s0) ∈ S, since Dφ takes positive definite values everywhere else by
assumption. Since S is discrete, there exists an open neighborhood U of ξ(s0) such
that U ∩S = ξ(s0). It follows that U \ ξ(s0) is an open set on which Dφ takes positive
definite values. By continuity of ξ, it holds that V := ξ−1(U \ ξ(s0)) is relatively open
in [0, 1]. Furthermore, since ξ([0, 1]) is a line-segment that passes through ξ(s0) and
U is open, there must be other points in U ∩ ξ([0, 1]) than ξ(s0). It follows that V is
also nonempty. Since V is relatively open in [0, 1] and nonempty, it must contain a
subinterval [s1, s2] of [0, 1] such that s2 > s1. It follows that (3.84) holds for the chosen
ν, µ. Since ν, µ are arbitrary except for ν ̸= µ, it follows that (3.84) in fact holds for
all ν, µ ∈ R6 such that ν ̸= µ.

We now treat as an example the diagonal modulus damping model, which has
found ample applications in the literature. It is for instance used in [117] in a control
design model for an autonomous underwater vehicle.

Example 3.11. Consider the diagonal modulus hydrodynamic damping model d :
R6 → R6 defined by

d(ν) := −

δ1|ν1|ν1...
δ6|ν6|ν6

 , (3.90)

where δi ≥ 0 for every i ∈ {1, . . . , 6}. The model (3.90) is precisely (3.41) with
Di = δi ei ⊗ ei. Certainly d(0) = 0, and

Dd(ν) = −2 diag(δ1|ν1|, . . . , δ6|ν6|) (3.91)

is continuous and negative semidefinite for every ν ∈ R6. Consequently, d is mono-
tonically dissipative by Proposition 3.10. Furthermore, if every δi > 0, then Dd(ν) is
negative definite for every ν ∈ R6 \ {0}. Since the set {0} is discrete, it follows from
Proposition 3.10 that d is strictly monotonically dissipative.
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3. Modeling of Rigid Underwater Vehicles

It turns out that d has strong monotone dissipativity properties that can not be
readily concluded from Proposition 3.10. In particular, it holds that

⟨d(ν)− d(µ), ν − µ⟩ ≤ −1

2

6∑
i=1

δi|νi − µi|3

≤ −min{δ1, . . . , δ6}
2
√
6

|ν − µ|3.

(3.92)

To show this, let νi ≥ 0 and µi ≥ 0. Then,

(|νi|νi − |µi|µi)(νi − µi) = (ν2i − µ2
i )(νi − µi)

= (νi + µi)(νi − µi)
2

≥ |νi − µi|3.

Equality holds if νi = µi, or if either νi = 0 or µi = 0. Let now νi ≥ 0 and µi ≤ 0.
Then

(|νi|νi − |µi|µi)(νi − µi) = (ν2i + µ2
i )(νi − µi)

= 1
2 (νi − µi)

3

+ 1
2 (νi + µi)

2(νi − µi)

≥ 1
2 |νi − µi|3.

Equality holds if νi = −µi. The remaining cases can be handled in the same manner
as the two shown, and the first inequality in (3.92) is readily established. The second
inequality in (3.92) can be shown by noting that |ν|33 ≥ |ν|3/

√
6 for every ν ∈ R6.

3.4.3 Rayleigh Dissipation Functions

Rayleigh dissipation functions are scalar functions that can be used to describe dissi-
pative mappings. They are named after John William Strutt, 3rd Baron Rayleigh, who
introduced them in 1871 [118]. Rayleigh only considered quadratic functions, which
he used to encode linear damping in the Euler-Lagrange equations of motion. We here
impose no such restriction, and base our definition on a more general form utilized for
instance in [107, Definition 7.8.9].

Definition 3.12. A Rayleigh dissipation function is a continuously differentiable func-
tion D : R6 → R such that −∇D is a dissipative mapping.

We shall say that a dissipative mapping d : R6 → R6 admits a Rayleigh dissipation
function if there exists a function D such that d = −∇D. The following lemma shows
how to compute the Rayleigh dissipation function from the dissipative mapping, if
possible.

Lemma 3.3. If d : R6 → R6 admits a Rayleigh dissipation function, then it is defined
uniquely up to an additive constant by the expression

D(ν) := −
∫ 1

0

⟨d(sν), ν⟩ ds. (3.93)
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3.4. Dissipativity

Proof. Assume that E is a Rayleigh dissipation function for d. Then, from (3.93),

D(ν) =

∫ 1

0

⟨∇E(sν), ν⟩ ds

=

∫ 1

0

d

ds
E(sν) ds

= E(ν)− E(0),

(3.94)

is also a Rayleigh dissipation function for d. Moreover, D and E differ by a constant.

If d : R6 → R6 is a continuously differentiable dissipative mapping, then the exis-
tence of a Rayleigh dissipation function is equivalent to the symmetry of the derivative
of d.

Proposition 3.13. If d is continuously differentiable, then d admits a Rayleigh dis-
sipation function if and only if Dd(ν) is symmetric for every ν ∈ R6.

Proof. If d is continuously differentiable, then the associated Rayleigh dissipation
function must be twice continuously differentiable. Since second partial derivatives
commute in this case, having Dd(ν) symmetric for each ν ∈ R6 is necessary for the
existence of the Rayleigh dissipation function. If d admits a Rayleigh dissipation func-
tion, then it is given uniquely up to an additive constant by (3.93). Differentiating
this expression and integrating by parts gives

∇D(ν) = −
∫ 1

0

[Dd(sν)Tsν + d(sν)] ds

=

∫ 1

0

[Dd(sν)−Dd(sν)T]sν ds−
[
sd(sν)

]s=1

s=0

=

∫ 1

0

[Dd(sν)−Dd(sν)T]sν ds− d(ν), (3.95)

which shows that a symmetric-valued Dd is also sufficient.

It turns out that a Rayleigh dissipation function can be used to characterize mono-
tone dissipativity of the associated mapping. The following result is based on [102,
Theorem 2.14].

Proposition 3.14. Let K ∈ R6×6. If d : R6 → R6 admits the Rayleigh dissipation
function D, then

⟨d(ν)− d(µ), ν − µ⟩ ≤ ⟨K(ν − µ), ν − µ⟩ (3.96)

for all ν, µ ∈ R6 if and only if

D(sν + (1− s)µ) ≤ sD(ν) + (1− s)D(µ)

+
s(1− s)

2
⟨K(ν − µ), ν − µ⟩

(3.97)
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3. Modeling of Rigid Underwater Vehicles

for all s ∈ [0, 1] and all ν, µ ∈ R6. Furthermore,

⟨d(ν)− d(µ), ν − µ⟩ < ⟨K(ν − µ), ν − µ⟩ (3.98)

for all ν, µ ∈ R6 if and only if

D(sν + (1− s)µ) < sD(ν) + (1− s)D(µ)

+
s(1− s)

2
⟨K(ν − µ), ν − µ⟩

(3.99)

for all s ∈ (0, 1) and all ν, µ ∈ R6 such that ν ̸= µ.

Proof. Let A := 1
2 (K + KT) and φ(ν) := −d(ν) + Aν. Then, (3.96) is equivalent to

φ being a monotone mapping. Moreover, φ = ∇Φ, where Φ(ν) := D(ν) + 1
2 ⟨Aν, ν⟩. It

follows from [102, Theorem 2.14] that φ is monotone if and only if Φ is convex, that
is,

Φ(sν + (1− s)µ) ≤ sΦ(ν) + (1− s)Φ(µ) (3.100)

for all s ∈ [0, 1] and all ν, µ ∈ R6. Substituting Φ into (3.100) and noting that ⟨Aν, ν⟩ =
⟨Kν, ν⟩ for all ν ∈ R6 gives the desired expression (3.97). The strict case is similar.

In the case where K = 0, the condition (3.97) holding for all s ∈ [0, 1] and all
ν, µ ∈ R6, characterizes D as convex. Similarly, the condition (3.99) holding for all
s ∈ (0, 1) and all ν, µ ∈ R6 such that ν ̸= µ, characterizes D as strictly convex.
Consequently, if D : R6 → R is a continuously differentiable (strictly) convex function
such that the origin is a minimum of D, then −∇D is a (strictly) monotonically
dissipative mapping. Conversely, if d is a (strictly) monotonically dissipative mapping
that admits a Rayleigh dissipation function, then this Rayleigh dissipation function is
(strictly) convex and the origin is a minimum.

Example 3.15. Consider again the diagonal modulus damping model defined by
(3.90). We have that Dd is continuous and symmetric-valued, and therefore by Propo-
sition 3.13 that d admits a Rayleigh dissipation function. In this case, we find that

D(ν) :=
6∑
i=1

∫ 1

0

s2δi|νi|3 ds =
1

3

6∑
i=1

δi|νi|3. (3.101)

If δi ≥ 0 for i ∈ {1, 2, . . . , 6}, then D is convex and the origin is a minimum of D.
Furthermore, if If δi > 0 for i ∈ {1, 2, . . . , 6}, then D is strictly convex and the origin
is a global minimum of D

3.5 Hydrodynamic Symmetry Principle

This section will cover simplifications of the hydrodynamic inertia matrix MH and the
damping wrench d by exploiting symmetries of the underwater vehicle. A symmetry
should in this context be understood as a change of vehicle frame that leaves the
vehicle looking identical. In particular, given a change of vehicle frame h ∈ E(3), we
denote the set of coordinates of the points comprising the vehicle in the new frame by
R∗ ⊂ R3. The relationship between R and R∗ is then R = h ·R∗. By a symmetry of
R, we mean a change of frame h such that R = R∗, that is, such that R = h ·R.
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3.5. Hydrodynamic Symmetry Principle

Definition 3.16. A rigid transformation h ∈ E(3) is a symmetry of the vehicle if
R = h ·R.

An equivalent definition provided that R is compact is the following: A rigid trans-
formation h ⊂ E(3) is a symmetry of R if r ∈ R implies h · r ∈ R. It is readily seen
that the set of symmetries of R, denoted H, is a matrix group. In particular,

1. if R = h ·R, then R = h−1 ·R, and
2. if R = h1 ·R and R = h2 ·R, then R = (h1h2) ·R.

We refer to H as the symmetry group of R. It can furthermore be shown that H is
closed in R4×4, and consequently relatively closed in GL(4). It then follows by the
closed subgroup theorem that H is a matrix Lie group.

Lemma 3.4. If H ⊂ E(3) is the symmetry group of R, then H is closed.

Proof. Let h = (b, S) ∈ H. Then there exists a sequence hk ∈ H converging to h.
Furthermore, for every r ∈ R, the sequence xk = hk ·r converges to x = h ·r. This can
be seen by writing

|x− xk| = |b− bk + (S − Sk)r|
≤ |b− bk|+ |S − Sk||r|
≤ (1 + |r|)∥h− hk∥.

(3.102)

Since xk ∈ R is a convergent sequence and R is closed, it follows that x ∈ R. Conse-
quently, r ∈ R implies h · r ∈ R. By definition, h ∈ H. Since h is arbitrary, it follows
that H = H.

It is easy to show that the vehicle center of volume is invariant under a symmetry
transformation.

Lemma 3.5. If h is a symmetry of R, then h · rυ = rυ.

Proof. We have that

h · rυ =
1

υ

∫
R
h · r d3r = 1

υ

∫
h·R

z d3z =
1

υ

∫
R
z d3z = rυ,

where we used the substitution z = h · r and the fact that h ·R = R.

Consequently, if the vehicle frame is chosen such that its origin lies in the center of
volume, then all vehicle symmetries must be pure rotations. This is seen as follows:
If h = (b, S) is a symmetry, then Srυ + b = rυ by Lemma 3.5. If the frame origin
is in the center of volume, then rυ = 0, and hence b = 0. Consequently, h = (0, S).
For this reason, we only consider pure rotations in the examples presented later. It
should nonetheless be remarked that the existence of symmetries does not depend on
the particular vehicle frame chosen.
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3. Modeling of Rigid Underwater Vehicles

3.5.1 Hydrodynamic Inertia Symmetry

Every vehicle inertia matrix M transforms as M∗ = AdThM Adh under a change of
vehicle frame h. Since the hydrodynamic inertia matrix MH depends solely on the
shape of the vehicle and the fluid density, it is reasonable to assume that if R = R∗,
then MH = M∗

H = AdThMH Adh. Roughly speaking, we are claiming that a change
of frame that leaves the vehicle looking the same should leave the hydrodynamic
inertia matrix unchanged. This consideration forms the basis of hydrodynamic inertia
symmetry.

Symmetry Principle for Hydrodynamic Inertia. If h is a symmetry of R, then
MH = AdThMH Adh.

To prove this result under Assumption 3.3, we must first establish a symmetry property
of the unit outward normal n of R.

Lemma 3.6. If h = (b, S) ∈ E(3) is a symmetry of R, then Sn(r) = n(h ·r) for every
r ∈ ∂R.

Proof. Let (U,ψ) be a local chart for R such that

n(r) = − ∇ψ3(r)

|∇ψ3(r)|
(3.103)

for all r ∈ U ∩ ∂R. It then follows that (h · U, β), where β(r) := ψ(h−1 · r) for all
r ∈ h ·U , is a local chart for h ·R = R. Furthermore, since h is a diffeomorphism and
a symmetry of R, it follows that h · (U ∩ ∂R) = (h ·U) ∩ ∂(h ·R) = (h ·U) ∩ ∂R.

Now,

n(r) = − ∇β3(r)
|∇β3(r)|

(3.104)

for all r ∈ (h ·U)∩ ∂R. Since ψ(r) = β(h ·r) for all r ∈ U ∩R, we find from the chain
rule that

∇ψ3(r) = ST∇β3(h · r) (3.105)

for all r ∈ U ∩R, which in light of the expressions (3.103) and (3.104) gives the desired
result.

An illustration of Lemma 3.6 is presented in Figure 3.2. We are now ready to proceed
with the main result of this section.

Theorem 3.17. If h is a symmetry of R, then the classical Kirchhoff potential for R
satisfies φ(r) = AdTh φ(h · r) for every r ∈ R3 \ R.

Proof. The result is proven by showing that the transformed Kirchhoff potential
φ∗(r) := AdTh φ(h ·r) is also a classical Kirchhoff potential for R as per Definition 3.4.
The desired result then follows from the uniqueness of the potential.

Since the domain of φ is R3 \ R, it follows that the domain of φ∗ must be h−1 ·(
R3 \ R

)
. Since h · : R3 → R3 is a diffeomorphism, it holds that h−1 ·

(
R3 \ R

)
=

(h−1 ·R3) \ (h−1 ·R). We have that h−1 · R3 = R3, and, since h is a symmetry of
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Figure 3.2: Reflection of the normal vector n for a triangle.

R, that h−1 ·R = R. Consequently, the domain of φ∗ is R3 \ R. Furthermore, φ∗ is
seen to be continuously differentiable on R3 \ R. Since rigid transformations preserve
harmonic functions (see [108, Lemma 2.1.2]) and linear combinations of harmonic
functions are harmonic functions, each component of φ∗ is harmonic on h−1·(R3\R) =
(h−1 ·R3) \ (h−1 ·R) = R3 \ R. Consequently, φ∗ satisfies item 1 in Definition 3.4.

Let h = (b, S). Utilizing the chain rule, Lemma 3.6, and the boundary condition
satisfied by φ, we find

Dφ∗(r)n(r) = AdTh Dφ(h · r)Sn(r)
= AdTh Dφ(h · r)n(h · r)

= AdTh

(
n(h · r)

(h · r)× n(h · r)

)
.

(3.106)

Continuing, it follows from Lemma 3.6 and properties of the cross product that the
matrix appearing in the last line of (3.106) can be rewritten as(

n(h · r)
(h · r)× n(h · r)

)
=

(
Sn(r)

(b+ Sr)× (Sn(r))

)
=

(
Sn(r)

b×Sn(r) + det(S)S(r × n(r))

)
=

(
S 0
b×S det(S)S

)(
n(r)

r × n(r)

)
= Ad−T

h

(
n(r)

r × n(r)

)
. (3.107)

In light of (3.106), it follows from (3.107) that φ∗ satisfies the same Neumann boundary
condition as φ. Consequently, φ∗ satisfies item 2 in Definition 3.4.

Lastly, |φ∗(r)| ≤ |Adh||φ(h·r)|, and |h·r|R ≤ |r|R+ |b|R. Since |r|R → ∞ therefore
implies |h · r|R → ∞, and since |φ(r)| → 0 as |r|R → ∞, it follows that |φ∗(r)| → 0
as |r|R → ∞. Consequently, φ∗ satisfies item 3 in Definition 3.4. It follows that φ∗ is
a classical Kirchhoff potential for R. Since this potential is unique, it must hold that
φ∗ = φ.
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With Theorem 3.17 in place, it is straightforward to show the symmetry principle
for hydrodynamic inertia.

Corollary 3.18. If h is a symmetry of R, then MH = AdThMH Adh.

Proof. Let h = (b, S). It follows from Theorem 3.17 and the chain rule that

Dφ(r) = AdTh Dφ(h · r)S (3.108)

for every r ∈ R3 \ R. Utilizing the definition of the hydrodynamic inertia matrix (3.35)
and the relationship (3.108), we find

MH =

∫
r∈R3\R

Dφ(r)Dφ(r)T ϱd3r

=

∫
r∈R3\R

AdTh Dφ(h · r)Dφ(h · r)T Adh ϱd
3r.

(3.109)

We then perform the substitution z = h · r and utilize the fact that h · (R3 \ R) =
(h ·R3) \ (h ·R) = R3 \ R. This gives

MH =

∫
z∈h·(R3\R)

AdTh Dφ(z)Dφ(z)
T Adh ϱd

3z

=

∫
z∈R3\R

AdTh Dφ(z)Dφ(z)
T Adh ϱd

3z

= AdThMH Adh .

(3.110)

It is important to note that if a vehicle R has symmetry group H, then it is not
necessary to check that MH satisfies the symmetry principle for every element in H. It
suffices to check a subset of H called a generating set. A generating set for H is a set
S ⊂ H such that every element in H can be written as a composition of finitely many
elements in S and inverses of elements in S. To see why this is possible, let h ∈ H,
and suppose that MH = AdThMH Adh. Since generally Ad−1

h = Adh−1 , it follows that
MH = AdTh−1 MH Adh−1 , such thatMH automatically has the required invariance with
respect to h−1. Similarly, if h1, h2 ∈ H, and also MH = AdTh1

MH Adh1 and MH =

AdTh2
MH Adh2 , then it follows that MH = AdTh2

AdTh1
MH Adh1 Adh2 . Since generally

Adh1 Adh2 = Adh1h2 , it follows that MH = AdTh1h2
MH Adh1h2 . Consequently, MH

automatically has the required invariance with respect to the product h1h2.
We finally remark that symmetry considerations for the added inertia matrix are

similar to those for linear damping models, which are covered in Example 3.19.

3.5.2 Hydrodynamic Damping Symmetry

This section introduces a symmetry principle for the hydrodynamic damping wrench.
While the main idea behind this symmetry principle and the symmetry principle for
hydrodynamic inertia is precisely the same, it is not possible to formulate any formal
proof for damping symmetry. This is because the hydrodynamic damping wrench is
not based on mathematical hydrodynamics, and there really is no underlying theory
from which its properties can be derived. Nonetheless, we argue that the symmetry
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principle is reasonable in the context of memoryless hydrodynamic damping models.
In particular, the principle states that a change of vehicle frame that leaves the ve-
hicle looking the same, should leave the damping wrench unchanged. We recall from
(3.23) that the vehicle velocity and vehicle wrench transform as ν∗ = Ad−1

h ν and
f∗ = AdTh f , respectively, under a change of vehicle frame h. The damping wrench
therefore transforms such that d∗(Ad−1

h ν) = AdTh d(ν) for every ν ∈ R6, or equiva-
lently, d∗(ν∗) := AdTh d(Adh ν

∗). The symmetry principle for hydrodynamic damping
now states that if R = R∗, then d(ν) = d∗(ν) for every ν ∈ R6. Consequently, if
R = R∗, then d(ν) = AdTh d(Adh ν) for every ν ∈ R6.

Symmetry Principle for Hydrodynamic Damping. If h is a symmetry of R,
then d(ν) = AdTh d(Adh ν) for every ν ∈ R6.

It should be remarked that it also here is not necessary to consider symmetry with
respect to all elements of the symmetry group H of R. A generating set for H suffices.
We now illustrate the simplification of linear damping models by symmetry. These
results are also applicable to symmetry considerations for hydrodynamic inertia.

Example 3.19. Linear damping models take the general form d(ν) := −Dν, where
D ∈ R6×6. The symmetry principle for hydrodynamic damping then dictates that if
h is a symmetry of R, then D = AdTh DAdh. We recall from Lemma 3.5 that we
without loss of generality can assume that h is a pure rotation. We therefore only
consider symmetries of the form h = (0, S), where S ∈ O(3), in which case

Adh := blkdiag(S, (detS)S). (3.111)

If we partition D as

D =

(
D1 D3

D2 D4

)
, (3.112)

where Di ∈ R3×3 for i ∈ {1, . . . , 4}, then the symmetry principle for linear damping
requires that

Di = STDiS if i ∈ {1, 4},
Di = (detS)STDiS if i ∈ {2, 3}.

(3.113)

Let us compute how the damping matrix D can be simplified if we demand invari-
ance with respect to a reflection through the 2-3-plane. This is done by considering
(3.113) with S = diag(−1, 1, 1). Straightforward computations yield

STDiS =

 Di,11 −Di,12 −Di,13

−Di,21 Di,22 Di,23

−Di,31 Di,32 Di,33

 , (3.114)

and, since detS = −1, (3.113) gives

D =


D11 0 0 0 D15 D16

0 D22 D23 D24 0 0
0 D32 D33 D34 0 0
0 D42 D43 D44 0 0
D51 0 0 0 D55 D56

D61 0 0 0 D65 D66

 . (3.115)
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If R describes an underwater vehicle with vehicle frame chosen such that the 1-axis
points from aft to fore, the 2-axis from port to starboard, and the 3-axis from top to
bottom of the vehicle, as is convention, then this particular symmetry is referred to as
fore-aft symmetry. Similar computations then yield for S = diag(1,−1, 1) (starboard-
port symmetry),

D =


D11 0 D13 0 D15 0
0 D22 0 D24 0 D26

D31 0 D33 0 D35 0
0 D42 0 D44 0 D46

D51 0 D53 0 D55 0
0 D62 0 D64 0 D66

 , (3.116)

and for S = diag(1, 1− 1) (bottom-top symmetry),

D =


D11 D12 0 0 0 D16

D21 D22 0 0 0 D26

0 0 D33 D34 D35 0
0 0 D43 D44 D36 0
0 0 D53 D54 D55 0
D61 D62 0 0 0 D66

 . (3.117)

For a vehicle with a rectangular cross-section, we combine port-starboard and bottom-
top symmetries. This gives

D =


D11 0 0 0 0 0
0 D22 0 0 0 D26

0 0 D33 0 D35 0
0 0 0 D44 0 0
0 0 D53 0 D55 0
0 D62 0 0 0 D66

 . (3.118)

Let us consider a vehicle with a square cross section. We take our first symmetry
to be a 90◦-rotation around the 1-axis,

S1 :=

1 0 0
0 0 −1
0 1 0

 . (3.119)

Straightforward computations yield

ST
1DiS1 =

 Di,11 Di,13 −Di,12

Di,31 Di,33 −Di,32

−Di,21 −Di,23 Di,22

 . (3.120)

Since detS1 = 1, the relations (3.113) state that Di,12 = Di,13, Di,13 = −Di,12,
Di,21 = Di,31, Di,31 = −Di,21, Di,32 = −Di,23, and Di,22 = Di,33. Evidently, this
requires Di,12 = Di,13 = Di,21 = Di,31 = 0. Consequently, the damping matrix taking
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into account the symmetry S1 has the form

D =


D11 0 0 D14 0 0
0 D22 D23 0 D25 D26

0 −D23 D22 0 −D26 D25

D41 0 0 D44 0 0
0 D52 D53 0 D55 D56

0 −D53 D52 0 −D56 D55

 (3.121)

As our second symmetry, we take a reflection through the 1-3-plane, that is, S2 =
diag(1,−1, 1). The simplifications are in this case already stated in (3.116). The damp-
ing matrix taking into account both symmetries S1 and S2 is therefore

D =


D11 0 0 0 0 0
0 D22 0 0 0 D26

0 0 D22 0 −D26 0
0 0 0 D44 0 0
0 0 D53 0 D55 0
0 −D53 0 0 0 D55

 . (3.122)

If the vehicle has a square cross section, then it also has bottom-top symmetry. How-
ever, it is seen from (3.117) that taking S3 = diag(1, 1,−1) yields no further simpli-
fications of D in (3.122). This is because S3 can be stated in terms of S1 and S2. In
particular, S3 = S1S1S2.

We will now apply the symmetry principle to a class of nonlinear hydrodynamic
damping models of the form

d(ν) := −
k∑
i=1

σi(ν)Diν, (3.123)

where σ : R6 → Rk is a continuous mapping and Di ∈ R6×6 is a constant matrix of
coefficients for every i ∈ {1, . . . k}. The second-order modulus damping model (3.41) is
seen to be a special case of (3.123) with k = 6 and σ chosen as the entrywise absolute
value. These models admit a representation in terms of a nonlinear damping matrix
D : R6 → R6×6,

D(ν) =

k∑
i=1

σi(ν)Di, (3.124)

such that d(ν) = −D(ν)ν. Of course, there exist other choices for D than (3.124) that
result in the damping wrench (3.123). The following theorem establishes symmetry
for the class of models (3.123) under the assumption that σ is invariant under the
symmetry.

Theorem 3.20. Let h be a symmetry of R and d be defined by (3.123). If σ(ν) =
σ(Adh ν) for every ν ∈ R6, then d satisfies the symmetry principle for hydrodynamic
damping if and only if ⟨Ajν, σ(ν)⟩ = 0 for every ν ∈ R6 and every j ∈ {1, . . . , 6},
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where

Aj :=


eTj (D1 −AdTh D1 Adh)

...
eTj (Dk −AdTh Dk Adh)

 . (3.125)

Proof. The symmetry principle demands that d(ν) = AdTh d(Adh ν) for every ν ∈ R6.
Due to the invariance of σ, we find that

δ(ν) := d(ν)−AdTh d(Adh ν)

=
k∑
i=1

σi(ν)(Di −AdTh DiAdh)ν.
(3.126)

Denoting by δj the jth component of δ, we find that

δj(ν) =

k∑
i=1

σi(ν)⟨ej , (Di −AdTh DiAdh)ν⟩

= ⟨Ajν, σ(ν)⟩.

(3.127)

Consequently, damping symmetry holds if and only if ⟨Ajν, σ(ν)⟩ = 0 for every ν ∈ R6

and every j ∈ {1, . . . , 6}.

It follows from Theorem 3.20 that a sufficient condition for the damping model
(3.123) to satisfy the symmetry principle with respect to a symmetry h of R is that
Di = AdTh DiAdh for every i ∈ {1, . . . , k}. If σ satisfies a certain independence prop-
erty, then this condition is also necessary.

Corollary 3.21. Let the conditions of Theorem 3.20 hold and let A ∈ Rk×6. If
⟨Aν, σ(ν)⟩ = 0 for every ν ∈ R6 implies that A = 0, then (3.123) satisfies the symmetry
principle if and only if Di = AdTh DiAdh for every i ∈ {1, . . . , k}.

Proof. The independence property of σ ensures that the requirement ⟨Ajν, σ(ν)⟩ = 0
for every ν ∈ R6 and every j ∈ {1, . . . , 6} presented in Theorem 3.20 is satisfied only
if every Aj = 0. In light of (3.125), this is true only if Di = AdTh DiAdh for every
i ∈ {1, . . . , k}. Sufficiency of the requirement Di = AdTh DiAdh for every i ∈ {1, . . . , k}
is straightforward in light of Theorem 3.20.

Theorem 3.20 and Corollary 3.21 suggest an approach to the design of damping
models for vehicles with certain symmetries. In particular, one first identifies a gen-
erating set of the symmetry group H of the vehicle. Then, one looks for a mapping
σ that is invariant under the elements of the generating set (and therefore under H),
ideally with the independence property of Corollary 3.21. Finally, one forms the model
(3.123), where every Di satisfies Di = AdTh DiAdh, a property which is established
as outlined in Example 3.19. We now present an example in which we show that this
approach leads to the second-order modulus damping model if a vehicle has three
planes of symmetry.
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Example 3.22. The second-order modulus damping model, also stated in (3.41), is
given by

d(ν) := −
6∑
i=1

|νi|Diν. (3.128)

If the vehicle frame is placed in the center of volume with its axes directed along
the intersections of the symmetry planes, then the symmetries of R can be written
as hi = (0, Si) for i ∈ {1, 2, 3}, where S1 = diag(−1, 1, 1), S2 = diag(1,−1, 1), and
S3 = diag(1, 1,−1). It is readily seen that

Adh1
ν =


−ν1
ν2
ν3
ν4

−ν5
−ν6

 ,Adh2
ν =


ν1

−ν2
ν3

−ν4
ν5

−ν6

 ,Adh3
ν =


ν1
ν2

−ν3
−ν4
−ν5
ν6

 . (3.129)

It is therefore reasonable to select σ as a mapping that is independent of the sign of
the entries of its argument. There are of course many such mappings. For example,
k = 1 and σ(ν) := |ν|, or k = 2 and σ(ν) := (|v|, |ω|). However, both of these
mappings are invariant under a much larger group than what we consider here. In
particular, both of them satisfy σ(ν) = σ(Adh ν) for every ν ∈ R6 and every h = (0, S)
where S ∈ O(3). These choices of σ would therefore also be candidates for a spherical
underwater vehicle. Indeed, reasoning along these lines very quickly leads to k = 6
and σ(ν) = abs ν for the present case if one wishes the entries of d to be of second
order. It can also be established that abs has the independence property, as shown
below in Lemma 3.7. It then follows by Corollary 3.21 and considerations presented in
Example 3.19 that every Di should be a diagonal matrix. This constitutes a reduction
from 216 parameters to 36 parameters.

Lemma 3.7. Let A ∈ R6×6. Then

⟨Aν, abs ν⟩ = 0 (3.130)

for every ν ∈ R6 if and only if A = 0.

Proof. Let i, j ∈ {1, . . . , 6}. Set all entries of ν except νi and νj to zero. Consider first
the case where i = j. Then, (3.130) simplifies to Aii|νi|νi = 0. Since this must hold
for all νi, it can be concluded that Aii = 0. Since i is arbitrary, it follows that A has
only zeros on its diagonal. Consider now the case where i ̸= j. From what has been
established, it can be concluded that (3.130) simplifies to Aij |νi|νj + Aji|νj |νi = 0.
This must hold for all νi and νj . In particular, the cases (νi, νj) = (1, 1) and (νi, νj) =
(1,−1) yield the equation (

1 1
−1 1

)(
Aij
Aji

)
= 0, (3.131)

with the unique solution Aij = Aji = 0. Since (i, j) are arbitrary apart from i ̸= j,
this proves that A = 0.
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Lastly, we will highlight the connection between vehicle symmetry and Rayleigh
dissipation functions. If a hydrodynamic damping wrench d admits a Rayleigh dissi-
pation function D, as introduced in Definition 3.12, then the symmetry properties of
d can be completely characterized in terms of D. The following proposition makes this
statement precise.

Proposition 3.23. Let h ∈ E(3) be a symmetry of R. If d admits the Rayleigh dissi-
pation function D, then d satisfies the symmetry principle for hydrodynamic damping
if and only if D(ν) = D(Adh ν) for every ν ∈ R6.

Proof. Assume that d(ν) = AdTh d(Adh ν) for every ν ∈ R6. From Lemma 3.3, we have
that

D(ν) = −
∫ 1

0

⟨d(sν), ν⟩ ds+D0

= −
∫ 1

0

⟨AdTh d(sAdh ν), ν⟩ ds+D0

= −
∫ 1

0

⟨d(sAdh ν),Adh ν⟩ ds+D0

= D(Adh ν),

(3.132)

where D0 ∈ R is a free parameter specifying D(0). This shows necessity.
Let now D(ν) = D(Adh ν) for every ν ∈ R6. It then follows from the chain rule

that

∇D(ν) = AdTh ∇D(Adh ν) (3.133)

for every ν ∈ R6. Consequently, d(ν) = AdTh d(Adh ν) for every ν ∈ R6. This shows
sufficiency.

3.6 Control Model with Quaternion Attitude Representation

It is convenient for control design purposes to employ unit quaternions to describe the
orientation of the underwater vehicle. The group of unit quaternions can be represented
as the matrix Lie group

Z :=

{
z =

(
η −ϵT
ϵ ηI + ϵ×

)
: (η, ϵ) ∈ S3

}
⊂ GL(4), (3.134)

where η is the real part of the unit quaternion and ϵ is the imaginary part of the unit
quaternion. The underlying manifold of Z is seen to be S3. Let us now characterize
the basic group operations. Skipping some tedious but straightforward computations,
the inverse of z ∈ Z is found to be

z−1 =

(
η −ϵT
ϵ ηI + ϵ×

)−1

=

(
η −ϵT
ϵ ηI + ϵ×

)T

=

(
η ϵT

−ϵ ηI − ϵ×

)
. (3.135)
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Furthermore, the product of z1 ∈ Z and z2 ∈ Z is

z1z2 =

(
η1 −ϵT1
ϵ1 η1I + ϵ×1

)(
η2 −ϵT2
ϵ2 η2I + ϵ×2

)
(3.136)

=

(
η1η2 − ⟨ϵ1, ϵ2⟩ −(η1ϵ2 + η2ϵ1 + ϵ1 × ϵ2)

T

η1ϵ2 + η2ϵ1 + ϵ1 × ϵ2 (η1η2 − ⟨ϵ1, ϵ2⟩)I + (η1ϵ2 + η2ϵ1 + ϵ1 × ϵ2)
×

)
.

Unit quaternions are connected to proper rotations via the mapping rot : Z →
SO(3), defined by

rot(z) := I + 2ηϵ× + 2ϵ×ϵ×. (3.137)

The mapping rot establishes Z as a double covering group of SO(3). In particular,
it can be shown that rot is surjective and that for every R ∈ SO(3), there exists
an open neighborhood U of R and two disjoint open sets V1 and V2 in Z such that
rot−1(U) = V1 ∪ V2 and the restriction rot|Vi : Vi → U is a homeomorphism for
i ∈ {1, 2}. The neighborhoods V1 and V2 have the the property that z ∈ V1 if and
only if −z ∈ V2. Furthermore, it can be shown that for all z1, z2 ∈ Z, it holds that
rot(z1) rot(z2) = rot(z1z2). Consequently, rot is also a Lie group homomorphism. Since
Z is simply connected, it is in fact the universal covering group of SO(3).

We now seek to characterize the Lie algebra of Z, denoted z. The tangent space to
Z at z ∈ Z is

TZ(z) :=

{(
ς −σT

σ ςI + σ×

)
: ς ∈ R, σ ∈ R3, ης + ⟨ϵ, σ⟩ = 0

}
. (3.138)

The Lie algebra to Z, as introduced in Definition 2.7, is the tangent space to Z at the
identity equipped with the matrix commutator. It follows that

z := TZ(I) =

{(
0 −σT

σ σ×

)
: σ ∈ R3

}
. (3.139)

We identify z with R3 by utilizing the vector space isomorphism ·̂ z : R3 → z, is defined
by

σ̂z :=
1

2

(
0 −σT

σ σ×

)
. (3.140)

The factor 1/2 is included to ensure that the derivative of rot satisfies

Drot(z, zω̂z) = rot(z)ω× (3.141)

for all (z, ω) ∈ Z× R3. Equivalently, every solution t 7→ (z(t), ω(t)) to the differential
equation with input

ż = zω̂z, (z, ω) ∈ Z× R3 (3.142)

satisfies the kinematic relation on SO(3),

d

dt
rot(z(t)) = rot(z(t))ω(t)× (3.143)
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for almost all t ∈ dom z.
We now consider the counterpart to SE(3) when the orientation is described by a

unit quaternion. We refer to this matrix Lie group as S̃E(3), and define it by

S̃E(3) :=


rot(z) 0 p

0 z 0
0 0 1

 : p ∈ R3, z ∈ Z

 ⊂ GL(8). (3.144)

For every g ∈ S̃E(3), it holds that

g−1 =

rot(z) 0 p
0 z 0
0 0 1

−1

=

rot(z)T 0 − rot(z)Tp
0 zT 0
0 0 1

 , (3.145)

and for every g1 ∈ S̃E(3) and g2 ∈ S̃E(3),

g1g2 =

rot(z1) 0 p1
0 z1 0
0 0 1

rot(z2) 0 p2
0 z2 0
0 0 1


=

rot(z1z2) 0 rot(z1)p2 + p1
0 z1z2 0
0 0 1

 .

(3.146)

The configuration of a rigid body is described in terms of S̃E(3) with the mapping
cnf : S̃E(3) → SE(3) defined by

cnf(g) :=

(
rot(z) p

0 1

)
. (3.147)

Just as rot established Z as a double covering group of SO(3), the mapping cnf estab-
lishes S̃E(3) as a double covering group of SE(3). Since the product of simply connected
spaces is simply connected, it follows that S̃E(3) is simply connected. Consequently,
it is the universal covering group of SE(3). The Lie algebra to S̃E(3), denoted s̃e(3),
is found to be

s̃e(3) :=


ω× 0 v

0 ω̂z 0
0 0 0

 : v ∈ R3, ω ∈ R3

 . (3.148)

We identify s̃e(3) with R6 through the vector space isomorphism ·̂ : R6 → s̃e(3),

·̂ :
(
v
ω

)
7→

ω× 0 v
0 ω̂z 0
0 0 0

 . (3.149)

The adjoint operators on S̃E(3) and s̃e(3) can then for g ∈ S̃E(3) and ν ∈ R6 be
defined as

Adg :=

(
rot(z) p× rot(z)

0 rot(z)

)
,

adν :=

(
ω× v×

0 ω×

)
,

(3.150)
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respectively. Using the Lie group structure of the configuration space, the equations
of motion for a fully actuated underwater vehicle are given by

ġ = gν̂,

Mν̇ − adTν Mν = d(ν) + χ̃(g) + b+ τ

}
(g, ν, τ) ∈ S̃E(3)× R6 × R6. (3.151)

The mapping χ̃ : S̃E(3) → R6 describes the hydrostatic wrench acting on the vehicle,
and is defined as χ̃(g) := χ(cnf(g)). The effect of the ocean current has here been
captured by a constant bias b ∈ R6.
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Chapter 4

Modeling of Multibody Underwater
Vehicles

This chapter presents a framework for the mathematical modeling of multibody un-
derwater vehicles possessing a kinematic tree structure. Under the assumption of hy-
drodynamical decoupling of the bodies composing the vehicle, the kinematics and
dynamics are presented in a global and singularity-free matrix-form. We present a
generalized inverse dynamics algorithm that allows efficient implementation of model-
based control laws for this structurally complex class of vehicles. Lastly, we present an
efficient forward dynamics algorithm which greatly simplifies simulation of multibody
underwater vehicle motion.

The material in this chapter is based on [82].

4.1 Introduction

Control design models for general multibody underwater vehicles are, in the absence
of other simplifying assumptions, unwieldy dynamical systems evolving on a state
space of high dimension. For control strategies based on such general models, the
implementation is usually not treated in detail, and overly simplified examples are
used to show their effectiveness. Similarly, when it comes to models for simulation of
multibody underwater vehicles, the presented numerical algorithms, although highly
efficient, can in many cases not be used directly in the computation of the control
effort [32, 35, 36]. This is because the controllers exploit properties of certain matrix
forms of the equations of motion which are not respected by the recursive algorithms
used in simulators. The main objective of this chapter is to outline a unified treatment
of mathematical modeling for a broad class of multibody underwater vehicles, which
can serve as the basis for simulators and model-based controllers.

The remainder of this chapter is organized as follows. Section 4.2 introduces the
necessary concepts from Lie theory and multibody kinematics, in particular the notion
of kinematic tree systems and the most important kinematic relations in recursive and
matrix-form. In Section 4.3 we derive the general equations of motion in matrix-form.
Lastly, Section 4.4 introduces algorithms for generalized inverse dynamics and forward
dynamics.
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4.2 Vehicle Kinematics

We consider in this chapter the modeling of rigid underwater vehicles with tree topol-
ogy comprising n rigid bodies. To effectively describe the kinematics of such multibody
underwater vehicles, we first introduce a few concepts from matrix Lie theory. For ma-
trix Lie groups Gi, where i ∈ {1, 2, . . . , n}, the product group G = G1 × G2 × · · · × Gn
is the matrix Lie group

G := {blkdiag(g1, g2, . . . , gn) : gi ∈ Gi}. (4.1)

For convenience, we write elements of G as g = (g1, g2, . . . , gn) ∈ G. Evidently, if
each matrix Lie group Gi has dimension mi as a manifold, then G has dimension
m =

∑n
i=1mi. Denoting by gi the Lie algebra of Gi, the Lie algebra of G is

g := {blkdiag(V1, V2, . . . , Vn) : Vi ∈ gi}. (4.2)

Furthermore, there exists for each i ∈ {1, 2, . . . , n} a vector space isomorphism ·̂ gi :
Rmi → gi. Consequently, we can define

ν̂g := blkdiag(ν̂g1

1 , ν̂g2

2 , . . . , ν̂gn
n ), (4.3)

where ν = (ν1, ν2, . . . , νn) ∈ Rm and each νi ∈ Rmi . Continuing, each Gi and gi have
adjoint operators AdGi and adgi , respectively, defined relative to the vector space
isomorphism ·̂ gi

i . Consequently, we define the adjoint operators

AdGg := blkdiag(AdG1
g1 ,AdG2

g2 , . . . ,AdGn
gn ) ∈ Rm×m,

adgν := blkdiag(adg1
ν1 , ad

g2
ν2 , . . . , ad

gn
νn ) ∈ Rm×m,

(4.4)

where g = (g1, g2, . . . gn) ∈ G and ν = (ν1, ν2, . . . , νn) ∈ Rm such that every νi ∈ Rmi .
Recall that if G is a matrix Lie group, then a matrix Lie subgroup of G is a matrix

Lie group H such that H ⊂ G. Furthermore, if H is a matrix Lie subgroup of G, then
the Lie algebra h of H is a vector subspace of g. Denoting the dimension of H as a
manifold by k, there exists a vector space isomorphism ·̂ h : Rk → h that allows us to
identify h with Rk. It then follows from the fact that h is a vector subspace of g that
there exists a matrix Φ ∈ Rm×k such that

µ̂h = Φ̂µ
g

(4.5)

for every µ ∈ Rk. The matrix Φ describes the subspace h of g relative to the iso-
morphisms ·̂ h and ·̂ g. Utilizing the definition (2.6) of the adjoint operators, it holds
that

ΦAdHh = AdGh Φ,

Φ adhµ = adgΦµ Φ
(4.6)

for every h ∈ H and every µ ∈ Rk. Here, Adh and adh are formulated relative to ·̂ h,
and Adg and adg are formulated relative to ·̂ g.
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4.2.1 Unconstrained Motion

By introducing a Cartesian world-fixed reference frame and n Cartesian body-fixed
reference frames, the configuration of each rigid body composing the vehicle can be
identified with E(3). In particular, we denote by gi = (pi, Ri) ∈ E(3) the configuration
of the ith body frame expressed relative to the world frame for i ∈ {1, 2 . . . , n}, as
illustrated in Figure 4.1. The position pi should be understood as the vector from the
world frame origin to the origin of body frame i expressed in the world frame. The
orientation Ri describes the axes of body frame i expressed in the world frame. It can
be verified that Ri is a proper rotation if the world frame and body frame i have the
same handedness, and an improper rotation otherwise.

Figure 4.1: A multibody underwater vehicle comprising two rigid bodies intercon-
nected by a joint.

The Lie algebra e(3) of E(3) is identified with R6 by utilizing the vector space
isomorphism ·̂ : R6 → e(3) defined by (3.10). Furthermore, we use the adjoint operators
Ad and ad as defined in (3.11) and (3.12), respectively. We denote by vi ∈ R3 and
ωi ∈ R3 the linear and angular velocity, respectively, of body frame i relative to the
world frame, both expressed in body frame i. Furthermore, we denote by ai = v̇i ∈ R3

and ϖi = ω̇i ∈ R3 the linear and angular accelerations of body i, respectively. The
velocity of body i is denoted by νi = (vi, ωi) ∈ R6, and the acceleration of body i by
αi = (ai, ϖi) ∈ R6.

The configuration of the rigid bodies composing the multibody underwater vehicle
is denoted g ∈ E(3)n, where E(3)n denotes the direct product of n copies of E(3).
The velocity and acceleration of the multibody underwater vehicle are written ν :=
(ν1, ν2, . . . , νn) ∈ R6n and α := (α1, α2, . . . , αn) ∈ R6n, respectively. We also utilize the
symbol ·̂ to denote the vector space isomorphism ·̂ e(3)

n

: R6n → e(3)n, and write Ad

and ad instead of AdE(3)n and ade(3)
n

, respectively. Consequently, the unconstrained
motion of the vehicle is described by the system

ġ = gν̂

ν̇ = α

}
(g, ν, α) ∈ E(3)n × R6n × R6n, (4.7)

where α is considered an input.
We denote by fi ∈ R6 a wrench acting on body i, which we take to be expressed

in body frame i. The wrenches acting on all bodies in the system are collected and
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4. Modeling of Multibody Underwater Vehicles

expressed as f = (f1, f2, . . . , fn) ∈ R6n. A deeper treatment of the topics briefly
examined here is found in [98, Chapter 2] and [119, Chapter 1], the latter being more
mathematically rigorous.

4.2.2 Constrained Motion

The rigid bodies composing the underwater vehicle can in general not move freely
relative to each other. They are interconnected by joints which permit relative motion
only in certain directions. A description of how the rigid bodies in the multibody
system are connected together by joints is referred to as its topology or connectivity.
We will in this chapter represent the topology of the multibody system as a so-called
connectivity graph. In particular, we follow the approach presented in the standard
reference [40, Chapter 4].

The connectivity graph comprises n+1 vertices, each of which describes a reference
frame. The root vertex 0 is assigned to the world frame, and the remaining n vertices
are assigned to the body-fixed frames. Every edge in the graph represents a joint.
The conception of a joint must here be understood in a slightly generalized sense.
In particular, for the graph-description to be applicable to free-floating mechanisms
such as underwater vehicles, we must accept the existence of “free joints” that describe
unconstrained relative motion between rigid bodies and the world.

We will restrict our attention to underwater vehicles whose connectivity graph is
a rooted tree. This means that there is a unique path between any two vertices in
the graph, or equivalently, that it is connected and possesses no cycles. Since a tree
always has one less edge than it has vertices, the underwater vehicles in question
possess exactly n (generalized) joints. An edge connects from a vertex referred to as
the parent to a vertex referred to as the child, and inherits the number of the child.
We employ a regular numbering scheme, where the number assigned to a vertex is
always lower than the number assigned to its children.

The graph can be represented numerically by its parent mapping λ : {1, 2, . . . n} →
{0, 1, . . . , n}, which takes as input a non-zero vertex and gives as output the number
of its parent. The children of a given vertex i are consequently the elements of the set
λ−1(i). Regular numbering for vertices can be stated in terms of the parent mapping as
λ(i) < i. It is clear that for every k ∈ {1, . . . , n}, there exists r ≤ n such that λr(k) = 0.
Another important quantity is the set-valued mapping κ : {1, 2, . . . , n} ⇒ {1, 2, . . . , n}
which returns the set of vertices in the path from the root vertex up to and including
its argument. Let us illustrate the introduced concepts with an example.

Example 4.1. The connectivity graph, λ, and κ of the very simple mechanism de-
picted in Figure 4.1 is presented in Figure 4.2. In particular, joint 1 is seen to be a

0 1 2

i 1 2
λ(i) 0 1
κ(i) {1} {1, 2}

Figure 4.2: The connectivity graph, λ, and κ for the vehicle depicted in Figure 4.1.

free joint. For a slightly more interesting example, consider the underwater vehicle
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4.2. Vehicle Kinematics

with a dual arm configuration illustrated in Figure 4.3. Assigning the number 1 to
the distinguishable base, the numbers 2 through 4 to one arm, and 5 through 7 to the
other, results in the connectivity graph and associated λ and κ depicted in Figure 4.4.
Since this is a floating base mechanism, joint 1 is again a free joint.

Figure 4.3: A multibody underwater vehicle comprising a distinguished base and
two manipulator arms.

0

3 2 1 5 6

4 7

i 1 2 3 4 5 6 7
λ(i) 0 1 2 3 1 5 6
κ(i) {1} {1, 2} {1, 2, 3} {1, 2, 3, 4} {1, 5} {1, 5, 6} {1, 5, 6, 7}

Figure 4.4: A possible connectivity graph with the associated λ and κ for the vehicle
depicted in Figure 4.3.

A joint model describes the possible relative motion between the two rigid bod-
ies it connects. We will here assume that the configuration space of each joint in
the underwater vehicle can be described by a matrix Lie subgroup of E(3). The par-
ticular subgroup describing the motion of joint i, and therefore the relative motion
of bodies λ(i) and i, will be denoted Xi for every i ∈ {1, 2, . . . , n}. It follows that
the configuration space of the multibody underwater vehicle is the product group
X = X1 × X2 × · · · × Xn. We take the dimension of each Lie group Xi as a manifold
to be mi > 0, and the dimension of X to be m :=

∑n
i=1mi. Furthermore, we de-

note by xi ⊂ Rmi×mi the Lie algebra of Xi, and by x ⊂ Rm×m the Lie algebra of X .
Each Lie algebra xi comes equipped with a vector space isomorphism ·̂ xi : Rmi → xi,
from which we construct the vector space isomorphism ·̂ x : Rm → x for x. Note also
that there for each i ∈ {1, 2, . . . n} exists a matrix Φi ∈ R6×mi such that µ̂xi

i = Φ̂iµi
for every µi ∈ Rmi . It then follows that µ̂x = Φ̂µ for every µ ∈ Rm, where the ma-
trix Φ := blkdiag(Φ1, Φ2, . . . , Φn) ∈ R6n×m. We denote the joint configuration, joint
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4. Modeling of Multibody Underwater Vehicles

velocity, and joint acceleration of joint i by xi ∈ Xi, µi ∈ Rmi , and σi ∈ Rmi , re-
spectively. Furthermore, we denote the global joint configuration, joint velocity, and
joint acceleration by x := (x1, x2, . . . , xn) ∈ X , µ := (µ1, µ2, . . . , µn) ∈ Rm, and
σ := (σ1, σ2, . . . , σn) ∈ Rm, respectively. Consequently, the kinematics of joint i are
described by the system

ẋi = xiµ̂
xi
i

= xiΦ̂iµi

µ̇i = σi

 (xi, µi, σi) ∈ Xi × Rmi × Rmi , (4.8)

where σi is considered an input. Similarly, the overall joint kinematics are described
by the system

ẋ = xµ̂x

= xΦ̂µ

µ̇ = σ

 (x, µ, σ) ∈ X × Rm × Rm, (4.9)

where σ is considered an input.
We present all nontrivial connected subgroups of E(3) up to conjugacy in Table 4.1.

These are the most attractive candidates for the subgroups Xi. The first column states
the dimension mi of the group, the second column shows which often-encountered
group it is isomorphic to, the third column shows the overall structure of the elements
xi of the group, and the last column shows the associated matrix Φi. A derivation of
these subgroups is found in [99, Chapter 3].

The configuration of the reference frame i > 0 expressed relative to the reference
frame λ(i) is written hi ∈ E(3), and decomposed as

hi := cixi, (4.10)

where ci ∈ E(3) describes how joint i is situated in the frame λ(i). In particular, we
see that if joint i is at its identity configuration, that is xi = I, then the configuration
of frame i expressed in frame λ(i) is given by ci. For this decomposition to be possible,
the reference frame i must be placed in joint i, as illustrated in Figures 4.1 and 4.3. If
joint i is a free joint, then ci can always be taken as the identity. We emphasize that
hi is technically a function of xi, and that every ci is considered a constant parameter
that describes the geometry of the vehicle. There is then the following result.

Proposition 4.2. Let g0 = I, ν0 = 0, and α0 = 0. The configuration, velocity, and
acceleration of frame i > 0 relative to the world frame 0 satisfy the recursions

gi = gλ(i)hi,

νi = Ad−1
hi
νλ(i) + Φiµi,

αi = Ad−1
hi
αλ(i) + adνi Φiµi + Φiσi.

(4.11)

Proof. The fact that gi = gλ(i)hi for every i > 0 follows by definition of hi. Differen-
tiating this expression gives

giν̂i = gλ(i)ν̂λ(i)hi + gλ(i)hiΦ̂iµi

= gi[h
−1
i ν̂λ(i)hi + Φ̂iµi]

(4.12)
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m X ∼= x Φ

6 SE(3)

R11 R12 R13 p1
R21 R22 R23 p2
R31 R32 R33 p3
0 0 0 1




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



4 R × SE(2)

R11 R12 0 p1
R21 R22 0 p2
0 0 1 p3
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1



3 SE(2)

R11 R12 0 p1
R21 R22 0 p2
0 0 1 0
0 0 0 1




1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1



3 SO(3)

R11 R12 R13 0
R21 R22 R23 0
R31 R32 R33 0
0 0 0 1




0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1



3 R3

1 0 0 p1
0 1 0 p2
0 0 1 p3
0 0 0 1




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0



3 R3

cos θ − sin θ 0 p1
sin θ cos θ 0 p2
0 0 1 kθ/2π
0 0 0 1




1 0 0
0 1 0
0 0 k/2π
0 0 0
0 0 0
0 0 1



2 R × SO(2)

R11 R12 0 0
R21 R22 0 0
0 0 1 p3
0 0 0 1




0 0
0 0
1 0
0 0
0 0
0 1



2 R2

1 0 0 p1
0 1 0 p2
0 0 1 0
0 0 0 1




1 0
0 1
0 0
0 0
0 0
0 0



1 SO(2)

R11 R12 0 0
R21 R22 0 0
0 0 1 0
0 0 0 1




0
0
0
0
0
1



1 R

1 0 0 0
0 1 0 0
0 0 1 p3
0 0 0 1




0
0
1
0
0
0



1 R

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 kθ/2π
0 0 0 1




0
0

k/2π
0
0
1



Table 4.1: The nontrivial connected subgroups of E(3) up to conjugacy.
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4. Modeling of Multibody Underwater Vehicles

from which the velocity-recursion in (4.11) immediately follows. Differentiation of the
expression for the velocity in (4.11) yields

αi = Ad−1
hi
αλ(i) − adΦiµi

Ad−1
hi
νλ(i) + Φiσi. (4.13)

Substituting Ad−1
hi
νλ(i) = νi−Φiµi into (4.13) and utilizing the anti-symmetry of the

ad operator then gives the desired result.

While the recursive relations presented in (4.11) are utilized in efficient multibody
dynamics algorithms, we would also like a global formulation of the vehicle kinematic
relations in terms of the joint configurations x ∈ X , the joint velocities µ ∈ Rm,
and the joint accelerations σ ∈ Rm. To this end, define the adjacency block matrix
Λ ∈ R6n×6n in terms of the blocks Λij ∈ R6×6 by

Λij =

{
I if λ(i) = j,

0 otherwise.
(4.14)

The adjacency block matrix relates objects to their parents in the following sense: If
ν = (ν1, ν2, . . . , νn) ∈ R6n and νλ = (νλ(1), νλ(2), . . . , νλ(n)) ∈ R6n such that ν0 = 0,
then Λν = νλ. It is seen from (4.14) that Λ is strictly lower triangular due to the
regular numbering scheme we have adopted. Consequently, Λ is a nilpotent matrix of
degree n, i.e. Λn = 0. A matrix closely related to Λ is K ∈ R6n×6n, defined such that
its blocks Kij ∈ R6×6 satisfy

Kij =

{
I if j ∈ κ(i),

0 if j /∈ κ(i).
(4.15)

Due to regular numbering, K is lower triangular. Furthermore, it can be shown that
K = (I − Λ)−1 = I + Λ+ Λ2 + · · ·+ Λn−1 [120, Chapter 5].

We will also require the matrix Θ : X → R6n×6n, defined by

Θ(x) := (I −Ad−1
h Λ)−1, (4.16)

where h := (h1, h2, . . . , hn) ∈ E(3)n. We remark that since Λ is strictly lower triangular
and Adh is block diagonal, it follows that I −Ad−1

h Λ is lower triangular with ones on
its diagonal. Such a matrix is always invertible, and Θ is therefore always well-defined.
The following result establishes some properties of Θ.

Proposition 4.3. It holds that

Θ(x) = Ad−1
g K Adg . (4.17)

Furthermore, denoting by dΘ : X × Rm → R6n×6n the derivative of Θ, it holds that

dΘ(x, µ) := Θ(x) adΦµ−Θ(x) adΦµΘ(x). (4.18)

Proof. We first show that Adgλ Λ = ΛAdg, where gλ = (gλ(1), gλ(2), . . . , gλ(n)) ∈
E(3)n with g0 = I. Letting ν = (ν1, ν2, . . . , νn) ∈ R6n be arbitrary, it holds that
Λν = νλ. Since Adg is a block diagonal matrix, it also holds that ΛAdg ν = Adgλ νλ.
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4.2. Vehicle Kinematics

Consequently, ΛAdg ν = Adgλ Λν for every ν ∈ R6n. It follows that ΛAdg = Adgλ Λ.
Since g = gλh, we find the relation Ad−1

h Λ = Ad−1
g Adgλ Λ = Ad−1

g ΛAdg, and finally

Θ(x) = (I −Ad−1
h Λ)−1

= (I −Ad−1
g ΛAdg)

−1

= Ad−1
g (I − Λ)−1 Adg,

(4.19)

which is the desired expression.
We compute the time derivative of Θ along ẋ = xΦ̂µ, which gives

dΘ(x, µ) = −Θ(x) adΦµAd−1
h Θ(x)

= −Θ(x) adΦµ(Ad−1
h −I + I)Θ(x)

= Θ(x) adΦµ−Θ(x) adΦµΘ(x)

(4.20)

where we used the fact that d{A−1}(x, µ) = −A(x)−1 dA(x, µ)A(x)−1 for a differen-
tiable function A : X → Rn×n such that A(x) is invertible for every x ∈ X .

With these properties of Θ in place, it is possible to establish the global formulation
of the underwater vehicle kinematics.

Theorem 4.4. If g0 = I, ν0 = 0, and α0 = 0, then the recursive relations (4.11) are
equivalent to

g = F (x),

ν = Θ(x)Φµ,

α = −Θ(x) adΦµΘ(x)Φµ+Θ(x)Φσ,

(4.21)

where F = (F1, F2, . . . , Fn) : X → E(3)n is defined by

Fi(x) :=
∏
j∈κ(i)

hj . (4.22)

Proof. The fact that g can be defined in terms of F as stated in (4.22) is easily seen
by inspecting the recursive relations for gi in (4.11). To show the expression for ν in
(4.21), we note that the velocity-recursion in (4.11) can be stated as

ν = Ad−1
h νλ + Φµ

= Ad−1
h Λν + Φµ

(4.23)

which can readily be solved for the desired expression. To find the expression for the
acceleration, we differentiate the velocity in (4.21) with respect to time. This gives

α = dΘ(x, µ)Φµ+Θ(x)Φσ

= Θ(x) adΦµ Φµ−Θ(x) adΦµΘ(x)Φµ+Θ(x)Φσ

= −Θ(x) adΦµΘ(x)Φµ+Θ(x)Φσ

(4.24)

where the expression for dΘ derived in Proposition 4.3 and the anti-symmetry of the
ad-operator were used.
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It follows from Theorem 4.4 that the body Jacobian J : X → R6n×m which relates
ν and µ through ν = J(x)µ can be defined as J(x) := Θ(x)Φ. Furthermore, it follows
from Proposition 4.3 that its derivative dJ : X × Rm → R6n×m can be expressed as

dJ(x, µ) := Θ(x) adΦµ[Φ− J(x)]. (4.25)

The global expressions (4.21) can be equivalently restated in terms of the Jacobian J
as

g = F (x),

ν = J(x)µ,

α = dJ(x, µ)µ+ J(x)σ.

(4.26)

We end this section by briefly covering generalized joint forces and their rela-
tionship with wrenches applied to the multibody underwater vehicle. The generalized
joint forces are denoted ζi ∈ Rmi . They contract naturally with the joint velocities
µi to form instantaneous work produced by the force, W = ⟨ζi, µi⟩. If a collection of
wrenches f = (f1, f2, . . . , fn) is applied to the vehicle, with fi acting on body i, then
the resulting generalized joint forces required to counteract f can be computed by the
recursion

wi = −fi +
∑

j∈λ−1(i)

Ad−T
hj

wj ,

ζi = ΦT
i wi.

(4.27)

where wi denotes the wrench transmitted from body λ(i) to body i across joint i.
It should be emphasized that (4.27) is a backwards recursion from i = n to i = 1.
Globally, the recursion computes ζ = −J(x)Tf , where ζ = (ζ1, ζ2, . . . , ζn). More details
can be found in [40, Chapter 5].

4.3 Vehicle Dynamics in Global Matrix-Form

In this section, we derive the equations of motion for multibody underwater vehicles
in a global matrix-form, and state their most important properties for control design
purposes. We shall require the following assumptions.

Assumption 4.5.

1. The world frame is an inertial frame.
2. The bodies composing the vehicle are hydrodynamically decoupled.

Hydrodynamic decoupling in essence means that the hydrodynamic influence that the
bodies have on each other is neglected. In particular, each body in the system is mod-
eled hydrodynamically as if the other bodies were not present. This assumption is so
common in the underwater vehicle literature that it usually is not explicitly stated
as an assumption. It is nonetheless very important to understand that this is techni-
cally incorrect even in the context of memoryless models. Indeed, more mathematical
works that focus on potential flow theory do sometimes take hydrodynamic coupling
into account. Examples include [121] where the equation of motion of an articulated
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swimmer immersed in potential flow is derived, and [122] where the equations of mo-
tion of several deformable bodies immersed in potential flow are derived.

Hydrodynamic decoupling allows us to model the wrenches acting on each body
in the vehicle utilizing results from Chapter 3. The equation of motion of body i can
then, in the absence of ocean currents, be stated as

Miαi − adTνi Miνi = di(νi) + χi(gi) + τi + wi (4.28)

where Mi := MR,i +MH,i is the total inertia matrix of body i, di : R6 → R6 is the
damping wrench of body i, χi : E(3) → R6 is the hydrostatic wrench acting on body
i, τi is the wrench due to thrusters and control surfaces attached to body i, and

wi := wi −
∑

j∈λ−1(i)

Ad−T
hj

wj (4.29)

is the net wrench transmitted to body i from all joints connected to it. It is clear that
(4.28) can be restated globally as

Mα− adTν Mν = d(ν) + χ(g) + τ + w (4.30)

where M ∈ R6n×6n, d : R6n → R6n, χ : E(3)n → R6n, τ ∈ R6n, and w ∈ R6n are
defined by

M := blkdiag(M1,M2, . . . ,Mn),

d(ν) := (d1(ν1), d2(ν2), . . . , dn(νn),

χ(g) := (χ1(g1), χ2(g2), . . . , χn(gn),

τ := (τ1, τ2, . . . , τn),

w := (w1, w2, . . . , wn).

(4.31)

The constraint forces present in w can be eliminated by premultiplying (4.30) by
J(x)T. In particular, J(x)Tw = η, where η := (η1, η2, . . . , ηn) ∈ Rm denotes the
active generalized joint forces. These include for instance generalized motor forces and
joint friction, and will subsequently be treated as an input. Substituting the global
kinematic expressions (4.26) into (4.30) then yields the equation of motion

M◦(x)σ + C◦(x, µ)µ = d◦(x, µ) + χ◦(x) + J(x)Tτ + η, (4.32)

where M◦ : X → Rm×m is the vehicle inertia matrix, C◦ : X ×Rm → Rm×m describes
velocity-dependent inertia terms, d◦ : X ×Rm → Rm is the generalized damping force,
and χ◦ : X → Rm the generalized hydrostatic force. These objects are defined by

M◦(x) := J(x)TMJ(x),

C◦(x, µ) := J(x)TM dJ(x, µ)− J(x)T adTJ(x)( · )MJ(x)µ,

d◦(x, µ) := J(x)Td(J(x)µ),

χ◦(x) := J(x)Tχ(F (x)).

(4.33)

The quantities (4.33) that appear in (4.32) are, unlike equations of motion derived
with local coordinates, well-defined for all (x, µ) ∈ X × Rm. The equation of motion
(4.32) can be viewed as an extension of similar expressions presented in [123, Chapter
7] to account for a more general mechanism topology and more general joint types.

We now state the most important properties of the quantities in (4.33).
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Theorem 4.6. The following hold:

1. If each Mi is symmetric and positive definite, then M◦(x) is symmetric and
positive definite for every x ∈ X .

2. If each Mi is symmetric, then dM◦(x, µ) − 2C◦(x, µ) is skew-symmetric for all
(x, µ) ∈ X × Rm.

3. If each di is dissipative, then ⟨d(x, µ), µ⟩ ≤ 0 for all (x, µ) ∈ X × Rm.
4. If each di is monotonically dissipative, then ⟨d(x, µ)− d(x, µ), µ− µ⟩ ≤ 0 for all

(x, µ, µ) ∈ X × Rm × Rm.

Proof. The fact that M◦(x) is symmetric for every x ∈ X if M is symmetric is clear.
The matrix Θ(x) has full rank for every x ∈ X . Furthermore, since each Φi ∈ R6×mi is
defined to span anmi-dimensional subspace of R6, it must have rankmi. Consequently,
Φ = blkdiag(Φ1, Φ2, . . . , Φn) has rank m. It follows that J(x) has rank m for very x ∈
X , and therefore, that ν = J(x)µ is nonzero for every nonzero µ. Since ⟨M◦(x)µ, µ⟩ =
⟨Mν, ν⟩ for all (x, µ) ∈ X × Rm and M is positive definite, it follows that M◦(x) is
positive definite for every x ∈ X .

To prove the second claim, we compute the derivative of M◦ as

dM◦(x, µ) = dJ(x, µ)TMJ(x) + J(x)TM dJ(x, µ). (4.34)

Then, for all (x, µ, µ) ∈ X × Rm × Rm, we find

⟨[dM◦(x, µ)− 2C◦(x, µ)]µ, µ⟩ = ⟨[dJ(x, µ)TMJ(x)− J(x)TM dJ(x, µ)]µ, µ⟩
+ 2⟨J(x)T adTJ(x)µMJ(x)µ, µ⟩

= 0 (4.35)

where the symmetry of M and the anti-symmetry of the ad-operator were used. Con-
sequently, dM◦(x, µ)− 2C◦(x, µ) is skew-symmetric for all (x, µ) ∈ X × Rm.

To prove the third property, let ν = J(x)µ. Then,

⟨d(x, µ), µ⟩ =
n∑
i=1

⟨di(νi), νi⟩ ≤ 0 (4.36)

due to dissipativity of each di.
To show the last property, let ν = J(x)µ and ν = J(x)µ. Then

⟨d(x, µ)− d(x, µ), µ− µ⟩ =
n∑
i=1

⟨di(νi)− di(νi), νi − νi⟩ ≤ 0 (4.37)

due to monotone dissipativity of each di.

It should be remarked that the second property in Theorem 4.6 can be equivalently
stated as

dM◦(x, µ) = C◦(x, µ) + C◦(x, µ)
T (4.38)

for all (x, µ) ∈ X ×Rm. This is done for a less general class of models in [45]. Further-
more, strict versions of the third and fourth property in Theorem 4.6 can be shown
by similar means.
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We now extend (4.32) to include the effect of a uniform and unsteady ocean current.
The resulting formulations are to the author’s best knowledge novel. To this end, let
vc ∈ R3 and ac ∈ R3 denote the current velocity and acceleration expressed in the
world frame, respectively. Furthermore, define the current velocities νc,i ∈ R6 and
current accelerations αc,i ∈ R6 by

νc,i := Ad−1
gi

(
vc
0

)
=

(
RT
i vc
0

)
,

αc,i := Ad−1
gi

(
ac
0

)
− adνi νc,i =

(
RT
i ac − ω×

i R
T
i vc

0

)
,

(4.39)

and the body-current relative velocities and accelerations by

νr,i := νi − νc,i,

αr,i := αi − αc,i,
(4.40)

respectively. Lastly, define the global counterparts to the above quantities,

νc := (νc,1, νc,2, . . . , νc,n),

νr := (νr,1, νr,2, . . . , νr,n),

αc := (αc,1, αc,2, . . . , αc,n),

αr := (αr,1, αr,2, . . . , αr,n).

(4.41)

Following results presented in [110, 111], the inertial current wrench exerted on
body i is a mapping fC,i : E(3)× R6 × R3 × R3 → R6 defined by

fC,i(gi, νi, vc, ac) :=MH,iαc,i + adTνc,i MH,iνc,i − adTν,iMH,iνc,i

− adTνc,i MH,iνi +

(
ϱυiI
ϱυir

×
υ,i

)
RT
i ac,

(4.42)

where ϱ > 0 denotes the fluid density, υi ≥ 0 the effective volume of body i, and
rυ,i ∈ R3 the effective center of volume of body i. Collecting the current wrenches
in the mapping fC : E(3)n × R6n × R3 × R3 → R6n defined by fC(g, ν, vc, ac) :=
(fC,1(g1, ν1, vc, ac), fC,2(g2, ν2, vc, ac), . . . , fC,n(gn, νn, vc, ac)), the generalized current
force ζC : X × Rm × R3 × R3 → Rm can be defined by

ζC(x, µ, vc, ac) := J(x)TfC(F (x), J(x)µ, vc, ac). (4.43)

Furthermore, the viscous current loads are accounted for by reformulating d with the
body-current relative velocity. To this end, let d◦,C : X × Rm × R3 → Rm be defined
by

d◦,C(x, µ, vc) := J(x)Td(J(x)µ− νc). (4.44)

Consequently, the equation of motion in the presence of a uniform and unsteady ocean
current becomes

M◦(x)σ + C◦(x, µ)µ = d◦,C(x, µ, vc) + ζC(x, µ, vc, ac)

+ χ◦(x) + J(x)Tτ + η.
(4.45)
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4. Modeling of Multibody Underwater Vehicles

As shown in (3.58), the equation of motion of a rigid underwater vehicle permits
an attractive reformulation in terms of the vehicle-current relative velocity. It turns
out that such a reformulation is also possible for multibody underwater vehicles if the
allowed motion of all joints connecting from the world frame is sufficiently general.
We state this precisely in the following result.

Lemma 4.1. For every x ∈ X and every vc ∈ R3, there exists µc ∈ Rm such that
J(x)µc = νc if and only if span{e1, e2, e3} ⊂ colΦi for every i ∈ λ−1(0). In this case,
it holds that dJ(x, µc) = 0.

Proof. We seek to solve the system

J(x)µc = νc (4.46)

for µc. In light of Proposition 4.3, we can rewrite (4.46) as

Φµc = Ad−1
g (I − Λ)Adg νc (4.47)

The above is readily shown to be equivalent to

Φiµc,i =

{
νc,i if i ∈ λ−1(0)

0 otherwise
(4.48)

for each i ∈ {1, 2, . . . , n}. Isolating the case where i ∈ λ−1(0), we find

Φiµc,i =

(
RT
i vc
0

)
, (4.49)

which has a solution for every vc ∈ R3 if and only if span{e1, e2, e3} ⊂ colΦi. In this
case, it can be computed by

µc,i = (ΦT
i Φi)

−1ΦT
i νc,i. (4.50)

If i /∈ λ−1(0), then the only possible solution is µc,i = 0.
We will now prove that dJ(x, µc) = 0 if µc is well-defined. It follows from (4.25)

that dJ(x, µc) = 0 if and only if

adΦµc
[Φ− J(x)]µ = 0 (4.51)

for every µ ∈ Rm. If ν = J(x)µ, then νi = Φiµi for every i ∈ λ−1(0). If i /∈ λ−1(0),
then µc,i = 0. Since (4.51) can be restated as

adΦiµc,i
[Φiµi − νi] = 0 (4.52)

for every i ∈ {1, 2, . . . , n}, it follows that (4.51) holds.

If the conditions of Lemma 4.1 are satisfied, it is possible to define µr := µ− µc, and
subsequently write νr = J(x)µr. Furthermore, letting σc := µ̇c and σr := µ̇r, it holds
that αr = dJ(x, µ)µr + J(x)σr = dJ(x, µr)µr + J(x)σr since dJ(x, µc) = 0.

The analogue of (3.58) for body i in the multibody underwater vehicle is

Miαr,i − adTνr,i Miνr,i = di(νr,i) + χi(gi, ac) + τi + wi, (4.53)
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where χi : E(3) → R6 is a wrench of the form (3.59) that contains the hydrostatic and
current acceleration-reaction wrenches. A global formulation of (4.53) is

Mαr − adTνr Mνr = d(νr) + χ(g, ac) + τ + w, (4.54)

where χ : E(3)n × R3 → R6 is defined by

χ(g, ac) := (χ1(g1, ac), χ2(g2, ac), . . . , χn(gn, ac)). (4.55)

Premultiplying (4.54) by J(x)T and expressing (g, νr, αr) in terms of (x, µr, σr) then
results in

M◦(x)σr + C◦(x, µr)µr = d◦(x, µr) + χ◦(x, ac) + J(x)Tτ + η, (4.56)

where χ◦ : X × R3 → Rm is defined by

χ◦(x, ac) := J(x)Tχ(F (x), ac). (4.57)

The formulation (4.56) is usable for all floating-base multibody underwater vehicles.
There are however cases of interest that do not satisfy Lemma 4.1. One example is a
manipulator arm attached to a subsea structure by means of a common revolute or
prismatic joint. For these applications, the more general formulation (4.45) should be
used.

4.4 Recursive Dynamics Algorithms

The global matrix formulations presented in Section 4.3 are well-suited for stability
analysis. However, implementing this form of the equations directly can be cumber-
some for vehicles comprising a large number of bodies. We therefore present a gen-
eralized inverse dynamics algorithm suitable for implementing feedback control laws,
and a forward dynamics algorithm for use in simulation studies.

4.4.1 Generalized Newton-Euler Algorithm

In this section, we present a recursive inverse dynamics algorithm that computes the
quantity

ζ =M◦(x)σ + C◦(x, µ)µ− J(x)Tf − η. (4.58)

Model-based feedback control laws for underwater vehicle-manipulator systems often
involve an expression of the form (4.58). However, actually implementing these expres-
sions can be a daunting task. Indeed, typically no methods are provided to compute the
involved quantities. Our approach, presented in Algorithm 1, is based on the standard
Newton-Euler algorithm.

The algorithm has three stages. First, a few kinematic quantities are initialized.
Second, a forward pass computes the involved configurations, velocities, accelerations,
and the wrenches acting on each body. Lastly, a backward pass, readily seen to be
equivalent to (4.27), propagates these wrenches through the multibody system and
computes the generalized forces acting on the joints. It should be remarked that if
µ = µ, then Algorithm 1 reduces to the standard Newton-Euler algorithm presented
in for instance [40, Chapter 5]. We now establish that Algorithm 1 does in fact compute
(4.58).
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Algorithm 1 Generalized Newton-Euler Algorithm
1: g0 = I,
2: ν0 = 0
3: ν0 = 0
4: α0 = 0
5: for i = 1 to n do
6: hi = cixi
7: gi = gλ(i)hi

8: νi = Ad−1
hi
νλ(i) + Φiµi

9: νi = Ad−1
hi
νλ(i) + Φiµi

10: αi = Ad−1
hi
αλ(i) + adνi Φiµi + Φi(σi + adxi

µi
µi)

11: wi =Miαi − adT
νi
Miνi − fi

12: end for
13: for i = n to 1 do
14: ζi = ΦT

i wi − ηi
15: if λ(i) ̸= 0 then
16: wλ(i) = wλ(i) +Ad−T

hi
wi

17: end if
18: end for
19: return ζ

Theorem 4.7. Algorithm 1 computes (4.58).

Proof. It is evident that Algorithm 1 computes

ζ = J(x)T[Mα− adTν Mν − f ]− η. (4.59)

Furthermore, it is seen that

ν = J(x)µ,

ν = J(x)µ.
(4.60)

Writing the recursion relation for α globally yields

(I −Ad−1
h Λ)α = adν Φµ+ Φ(σ + adxµ µ), (4.61)

and consequently,

α = Θ(x) adν Φµ+Θ(x)Φ(σ + adxµ µ)

= −Θ(x) adΦµ ν + J(x)σ +Θ(x)Φ adxµ µ

= −Θ(x) adΦµ J(x)µ+ J(x)σ +Θ(x) adΦµ Φµ

= Θ(x) adΦµ[Φ− J(x)]µ+ J(x)σ

= dJ(x, µ)µ+ J(x)σ.

(4.62)

Substituting the derived expressions for ν, ν, and α into (4.59) yields

ζ = J(x)T[MJ(x)σ +M dJ(x, µ)µ− adTJ(x)µMJ(x)µ− f ]− η, (4.63)

which in light of (4.33) constitutes the desired result.
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4.4.2 Composite-Rigid-Body Algorithm

In this section, we present a forward dynamics algorithm for multibody underwater
vehicles that computes the accelerations σ predicted by the general equation of motion
(4.45). It is based on the composite-rigid-body algorithm found in [40, Chapter 6]. We
first use a modified Newton-Euler algorithm, presented as Algorithm 2, to compute
the generalized joint forces modulo the term M◦(x)σ, which we denote ζ. Then, we
use a composite-rigid-body algorithm, stated as Algorithm 3, to compute M◦(x). The
joint acceleration can then be computed with the relation σ = −M◦(x)

−1ζ.

Algorithm 2 Modified Newton-Euler Algorithm
1: νr,0 = −(vc, 0)
2: αr,0 = −(ac, 0)
3: ae,0 = ag − ac
4: for i = 1 to n do
5: hi = cixi

6: νr,i = Ad−1
hi
νr,λ(i) + Φiµi

7: αr,i = Ad−1
hi
αr,λ(i) + adνr,i Φiµi

8: ae,i = ST
i ae,λ(i), where Si is the rotation associated with hi

9: wi =Miαr,i − adT
νr,i Miνr,i − di(νr,i)− χi(gi, ac)− τi

10: end for
11: for i = n to 1 do
12: ζi = ΦT

i wi − ηi
13: if λ(i) ̸= 0 then
14: wλ(i) = wλ(i) +Ad−T

hi
wi

15: end if
16: end for
17: return ζ

Algorithm 2 has three stages. First, the relative velocity, relative acceleration, and
effective acceleration are initialized. In the forward pass, the current-relative kinematic
quantities that enter the equations of motion are computed recursively, an approach
inspired by [35]. Since the quantity χi depends solely on constant parameters and the
effective acceleration ae,i, it is not necessary to compute every configuration gi. The
last step in the forward pass computes the wrenches acting on each body. Lastly, a
backward pass propagates the computed wrenches through the multibody system and
computes the generalized forces acting in the joints.

The composite-rigid-body algorithm, here presented as Algorithm 3, is essentially
unmodified from [40, Table 6.2]. It must be emphasized that M◦,ij ∈ Rmi×mj here
denotes the (i, j) block of the matrix M◦.
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Algorithm 3 Composite-Rigid-Body Algorithm
1: M◦ = 0
2: for i = 1 to n do
3: Mc

i =Mi

4: end for
5: for i = n to 1 do
6: if λ(i) ̸= 0 then
7: Mc

λ(i) =Mc
λ(i) +Ad−T

hi
Mc

i Ad−1
hi

8: end if
9: X =Mc

i Φi

10: M◦,ii = ΦT
iX

11: j = i
12: while λ(j) ̸= 0 do
13: X = Ad−T

hj
X

14: j = λ(j)
15: M◦,ij = XTΦj

16: M◦,ji =MT
◦,ij

17: end while
18: end for
19: return M◦
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Chapter 5

Synergistic PID and Output Feedback
Control on Matrix Lie Groups

In this chapter, we present several novel synergistic trajectory tracking controllers
for mechanical systems defined on matrix Lie groups with left-invariant metrics. In
particular, we propose synergistic PD and output feedback control laws ensuring global
asymptotic tracking. Furthermore, we propose two synergistic PID control laws that
ensure global asymptotic tracking in the presence of an unknown constant disturbance
in the system dynamics. Finally, a simulation study with a small underwater vehicle
is conducted.

The material in this chapter is based on [83].

5.1 Introduction

While several hybrid feedback control laws that guarantee global asymptotic tracking
on Rn, SO(3), and SE(3) exist, much less work has been done on global hybrid tracking
controllers with integral action. One example is the work [69], where a hybrid control
law with integral action ensuring global asymptotic tracking on SO(3) is presented.
The switching logic employed here depends explicitly on the integral state due to
cross-terms that are employed in the Lyapunov analysis.

A continuous-time intrinsic controller with integral action on compact Lie groups
is presented in [124]. The integral action stems from integration of the P-action in
the controller. The controller ensures bounded tracking error in the presence of uncer-
tainty, and almost global asymptotic stability in the absence of uncertainty. Several
similar controllers with integral action are presented in [125]. Here, the integral action
stems from integrating the PD-action in the controller. This controller achieves almost
global asymptotic stability in the presence of a constant disturbance.

The remainder of this chapter is organized as follows. In Section 5.2, we present
the class of mechanical systems and reference trajectories considered in this chapter,
and derive the associated tracking error system. We then treat synergistic functions
in Section 5.3. In Section 5.4, we present a synergistic PD control law that ensures
global asymptotic tracking, and in Section 5.5 an output feedback modification of this
control law. Section 5.6 introduces two novel synergistic control laws with integral
action, both of which ensure global asymptotic tracking of a given bounded reference
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5. Synergistic PID and Output Feedback Control on Matrix Lie Groups

trajectory in the presence of a constant and unknown disturbance. Finally, Section 5.7
presents simulation results for the integral control of a small underwater vehicle.

5.2 Modeling

Consider a fully actuated simple mechanical system with left-invariant metric on a
matrix Lie group G ⊂ GL(n) of dimension m,

ġ = gν̂

Mν̇ − adTν Mν = d(ν) + χ(g) + b+ τ

}
(g, ν, τ) ∈ G × Rm × Rm. (5.1)

In accordance with the modeling theory for rigid underwater vehicles outlined in Chap-
ter 3, g ∈ G is the configuration of the mechanical system, ν ∈ Rm is the system
velocity, M ∈ Rm×m is the symmetric and positive definite inertia matrix associated
with the left-invariant metric on G, d : Rm → Rm is a continuous velocity-dependent
force, χ : G → Rm is a continuous configuration-dependent force, b ∈ Rm is a constant
disturbance, and τ ∈ Rm is an idealized input force.

The desired configuration, desired velocity, and desired acceleration are assumed
to form a solution to the constrained differential equation with input

ġd = gdν̂d

ν̇d = αd

}
(gd, νd, αd) ∈ Ω × cB× lB, (5.2)

where Ω ⊂ G is a compact set, c > 0 and l > 0. We remark that we consider (5.2) as a
special case of a hybrid system with input, such that solutions to (5.2) are characterized
by Definition 2.27. Consequently, a solution to (5.2) may with some abuse of notion
be regarded as a mapping t 7→ (gd(t), νd(t), αd(t)) defined on some subinterval E of
R≥0 containing the origin such that the following three properties hold.

1. rge gd ⊂ G, gd is continuously differentiable, bounded, and has determinant
bounded away from zero. Furthermore, ġd(t) = gd(t)ν̂d(t) for every t ∈ E.

2. rge νd ⊂ Rm, νd is Lipschitz continuous and bounded. Furthermore ν̇d(t) = αd(t)
for almost every t ∈ E.

3. rgeαd ⊂ Rm, αd is measurable and bounded.

Conversely, every mapping t 7→ (gd(t), νd(t), αd(t)) defined on some subinterval E of
R≥0 containing the origin that satisfies the above three properties is a solution to (5.2)
for an appropriate choice of compact set Ω ⊂ G, c > 0, and l > 0.

For a matrix Lie group G that is not a properly embedded submanifold of Rn×n,
that is, a matrix Lie group that is not closed in Rn×n, boundedness of a desired
trajectory gd in G does not imply that there exists a compact set Ω ⊂ G such that
rge gd ⊂ Ω. This is because gd in this case can coverge to a point outside of G.
The following example shows that the requirement on the trajectory determinant is
necessary if G is not properly embedded.

Example 5.1. Consider the matrix Lie group GL(1) = R\{0}, which is not properly
embedded in R. The trajectory gd : [0,∞) → GL(1) defined by

gd(t) :=
1

1 + t
(5.3)
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is smooth and bounded in R, but leaves every compact subset of GL(1).

Given a configuration g ∈ G and a desired configuration gd ∈ G, we define the
configuration error

ge := g−1
d g. (5.4)

Clearly, ge = I if and only if g = gd. Furthermore, ge is left-invariant in the sense that
g−1
d g = (hgd)

−1(hg) for every h ∈ G. With the left-invariant error ge, we associate the
error velocity

νe := ν −Ad−1
ge νd. (5.5)

It is convenient for notation to also define the body reference velocity νr := Ad−1
ge νd

such that νe = ν − νr. Lastly, let

αr := Ad−1
ge αd (5.6)

denote the reference acceleration. It is emphasized that αr is not the time-derivative
of νr, which is found to be ν̇r = αr−adνe νr. We then perform the change of variables
(g, ν, τ, gd, νd, αd) 7→ (ge, νe, τ, gd, νd, αd), and restrict the desired coniguration, desired
velocity, and desired acceleration as done in (5.2). This results in the tracking error
system

ġe = geν̂e

ν̇e =M−1[adTν Mν + d(ν) + χ(g) + b+ τ ]− ν̇r

ġd = gdν̂d

ν̇d = αd︸ ︷︷ ︸
(ge, νe, τ, gd, νd, αd) ∈ G × Rm × Rm ×Ω × cB× lB.

(5.7)

Throughout this chapter, we will make heavy use of the feedforward control κff :
G × Rm × Rm → Rm defined by

κff (g, ν, α) :=Mα− adTν Mν − d(ν) + χ(g). (5.8)

The following lemma introduces two characterizations of the velocity error dynamics
in terms of (5.8).

Lemma 5.1. The velocity error dynamics in (5.7) can be restated as

ν̇e = −∇M
ν+νrνe +M−1[d(ν)− d(νr) + b+ τ − κff (g, νr, αr)]

=M−1[b+ τ − κff (g, ν, ν̇r)],
(5.9)

where κff is defined by (5.8).

Proof. Since M−1 adTν Mν = −∇M
ν ν, we find that

ν̇e = −∇M
ν ν +∇M

νr νr + adνe νr

+M−1[d(ν)− d(νr) + b+ τ − κff (g, νr, αr)].
(5.10)
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Furthermore,

∇M
ν ν = ∇M

ν νe +∇M
ν νr

= ∇M
ν νe +∇M

νr νr +∇M
νe νr

= ∇M
ν+νrνe +∇M

νr νr +∇M
νe νr −∇M

νr νe

= ∇M
ν+νrνe +∇M

νr νr + adνe νr,

where the bilinearity of ∇M and the fact that adµ ν = ∇M
µ ν−∇M

ν µ for every ν ∈ Rm

and µ ∈ Rm were used. Substituting this expression for ∇M
ν ν into (5.10) gives the first

equality in (5.9). The second equality in (5.9) is straightforward to verify.

5.3 Synergistic Functions

In this section, we extend the concept of a synergistic function as defined in [65] for
SO(3) to general matrix Lie groups, and present some general properties of these
functions.

Definition 5.2. Let G ⊂ GL(n) be a matrix Lie group, A ⊂ G be a compact set, and
Q ⊂ Z be a finite set. A proper and continuously differentiable function U : G ×Q →
R≥0 is synergistic on G relative to A with gap exceeding δ > 0 if

1. the zero set of U ,

ZeroU := {(g, q) ∈ G ×Q : U(g, q) = 0}, (5.11)

satisfies π1(ZeroU) = A;
2. there exists δ > 0 such that the synergy gap

µU (g, q) := U(g, q)−min
s∈Q

U(g, s), (5.12)

satisfies µU (g, q) > δ for all (g, q) ∈ (CritU ∪ (A×Q))\ZeroU , where

CritU := {(g, q) ∈ G ×Q : dU(g, q) = 0}, (5.13)

denotes the set of critical points of U .

Item 1 in Definition 5.2 states that g ∈ A if and only if there exists at least one
q ∈ Q such that U(g, q) = 0. Item 2 in Definition 5.2 may be easier to understand
when restated as two separate conditions without direct reference to the synergy gap
µU . This may be done as follows: There exists δ > 0 such that for every (g, q) ∈ G×Q,

1. if g ∈ A, then either U(g, q) = 0 or U(g, q) > δ;
2. if dU(g, q) = 0, then either U(g, q) = 0 or U(g, q) > U(g, s) + δ for some s ∈ Q.

To arrive at the first claim, note that µU (g, q) = U(g, q) for every (g, q) ∈ A × Q
because, by item 1 in Definition 5.2, there exists s ∈ Q such that (g, s) ∈ ZeroU .
The following proposition characterizes some general properties of functions defined
on G ×Q.

Proposition 5.3. Let G ⊂ GL(n) be a matrix Lie group, Q ⊂ Z be finite, and
U : G ×Q→ R≥0. Then the following hold:
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1. If U is continuous, then the synergy gap µU : G ×Q→ R≥0 is continuous.
2. If U is continuously differentiable, then ZeroU ⊂ CritU .

Proof. We prove the first claim. Since g 7→ U(g, q) is continuous and Q is finite,
the mapping g 7→ minq∈Q U(g, q) is the minimum of a finite number of continuous
functions, and is therefore continuous. The synergy gap µU is then the difference
between two continuous functions and is therefore continuous. We prove the second
claim. It is clear that every element of ZeroU constitutes a global minimum of U .
Consequently, if (g, q) ∈ ZeroU , then for every ν ∈ Rm and s > 0, it holds that

U(g exp(sν̂), q)

s
=
U(g exp(sν̂), q)− U(g, q)

s
≥ 0. (5.14)

Taking the limit s ↘ 0 shows that ⟨dU(g, q), ν⟩ ≥ 0 for every ν ∈ Rm. Therefore, it
must hold that (g, q) ∈ CritU . Consequently, ZeroU ⊂ CritU .

A synergistic function induces the following kinematic hybrid control law
q̇ = 0 (g, q) ∈ CU

q+ ∈ GU (g) (g, q) ∈ DU

ν = −dU(g, q)

(5.15)

with state q ∈ Q, input g ∈ G and output ν, where the flow set CU ⊂ G ×Q, jump set
DU ⊂ G ×Q and jump map GU : G ⇒ Q are defined according to

CU := {(g, q) ∈ G ×Q : µU (g, q) ≤ δ} ,
DU := {(g, q) ∈ G ×Q : µU (g, q) ≥ δ} ,

GU (g) := {q ∈ Q : µU (g, q) = 0} .
(5.16)

The data (5.16) satisfies the following properties, reminiscent of the input hybrid basic
conditions presented as Assumption 2.25.

Proposition 5.4. Let G ⊂ GL(n) be a matrix Lie group, Q ⊂ Z be finite, and
U : G ×Q→ R≥0 be synergistic with gap exceeding δ > 0. Then the following hold:

1. The sets CU and DU defined in (5.16) are relatively closed in GL(n) × R. If G
is properly embedded, then CU and DU are closed in Rn×n × R.

2. The set-valued mapping GU defined in (5.16) is outer semicontinuous and locally
bounded relative to G.

Proof. We prove the first claim. Since µU is continuous by item 2 in Proposition 5.3,
and sublevel sets and superlevel sets of continuous functions are relatively closed in
the domain of the function, it follows that CU and DU are relatively closed in G ×Q.
G is relatively closed in GL(n) by definition, and Q is closed in R because it is finite.
Since the product of two closed sets is closed in the product topology, G × Q is in
turn relatively closed in GL(n) × R. It follows that CU and DU are relatively closed
in GL(n)×R. Recall that G is properly embedded if and only if it is relatively closed
in Rn×n. The preceding argument can then be repeated to show that CU and DU are
closed in Rn×n × R.
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We prove the second claim. The graph of GU is found to be

gphGU = {(g, q) ∈ G ×Q : µU (g, q) = 0},

which is a level set of the continuous function µU . It follows that gphGU is relatively
closed in G ×Q, and therefore relatively closed in G ×R. By Lemma 2.2, GU is outer
semicontinuous relative to G. GU is locally bounded relative to G because GU (g) ⊂ Q
for every g ∈ G and Q is bounded.

We end this section with an example of a synergistic potential function on S̃E(3)
which is inspired by the work [71].

Example 5.5. Let G = S̃E(3), Q = {−1, 1}, and consider the function U : S̃E(3) ×
Q→ R≥0 defined by

U(g, q) :=
k1
2
|p|2 + 2k2(1− qη), (5.17)

where k1, k2 > 0 are gains. We aim to show that U is synergistic with gap exceeding
δ > 0 relative to A = {g ∈ S̃E(3) : p = 0, η = ±1}. It is clear that U is proper and
continuously differentiable. Furthermore,

ZeroU = {(g, q) ∈ S̃E(3)×Q : p = 0, qη = 1}, (5.18)

and it therefore holds that π1(ZeroU) = A. Consequently, U satisfies item 1 in Defi-
nition 5.2. It is straightforward to verify that

dU(g, q) =

(
k1rot(z)

Tp
k2qϵ

)
, (5.19)

and, since rot(z) has full rank for every z ∈ S3 and ϵ = 0 if and only if η = ±1, it
holds that CritU = A×Q. Then,

(CritU ∪ (A×Q)) \ ZeroU = (A×Q) \ ZeroU

= {(g, q) ∈ S̃E(3)×Q : p = 0, qη = −1}.

Now, µU (g, q) = 4k2 > 0 for every (g, q) ∈ (CritU ∪ (A×Q)) \ ZeroU . It follows that
U also satisfies item 2 in Definition 5.2. Therefore, U is synergistic on S̃E(3) relative
to A with gap exceeding δ, where 4k2 > δ > 0.

5.4 Synergistic PD Control

In this section, we employ a synergistic function to design a hybrid PD controller for
the control model which renders the closed-loop system globally pre-asymptotically
stable in the absence of external disturbances, that is b = 0.

We propose the following synergistic PD controller
q̇ = 0 (ge, νe, gd, νd, αd, q) ∈ C̃

q+ ∈ GU (ge) (ge, νe, gd, νd, αd, q) ∈ D̃

τ = κff (g, νr, αr)

− dU(ge, q)−Kνe

(5.20)
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where the feedforward control κff : G × Rm × Rm → Rm is defined by (5.8) and the
controller flow set and jump set are defined by

C̃ := {(ge, νe, gd, νd, αd, q) : (ge, q) ∈ CU , νe ∈ Rm, gd ∈ G, νd ∈ Rm, αd ∈ Rm},

D̃ := {(ge, νe, gd, νd, αd, q) : (ge, q) ∈ DU , νe ∈ Rm, gd ∈ G, νd ∈ Rm, αd ∈ Rm}.
(5.21)

Observe that the control law (5.20) comprises a proportional action dU and a deriva-
tive action Kνe. Moreover, the feedforward control as it appears in the control law
(5.20) is independent of the velocity.

Using Lemma 5.1 it is straightforward to verify that the control law (5.20) applied
to the system (5.1), while restricting the desired trajectories to those generated by
(5.2) for some compact set Ω ⊂ G, c > 0, and l > 0, results in the closed loop system

ġe = geν̂e

ν̇e = −∇M
ν+νrνe +M−1(d(ν)− d(νr))

−M−1(dU(ge, q) +Kνe)

ġd = gdν̂d

ν̇d ∈ lB


(ge, νe, gd, νd, q) ∈ C

q+ ∈ GU (ge) (ge, νe, gd, νd, q) ∈ D

(5.22)

where the flow set C and the jump set D are defined by

C := {(ge, νe, gd, νd, q) : (ge, q) ∈ CU , νe ∈ Rm, gd ∈ Ω, νd ∈ cB},
D := {(ge, νe, gd, νd, q) : (ge, q) ∈ DU , νe ∈ Rm, gd ∈ Ω, νd ∈ cB}.

(5.23)

Before we state the main result of this section, we recall from Definition 3.9 that d :
Rm → Rm is strictly monotonically dissipative modulo K if d(0) = 0, d is continuous,
and ⟨d(ν)− d(ν), ν − ν⟩ < ⟨K(ν − ν), ν − ν⟩ for every ν ∈ Rm and every ν ∈ Rm such
that ν ̸= ν.

Theorem 5.6. If U is synergistic on G relative to A with gap exceeding δ > 0 and d
is strictly monotonically dissipative modulo K, then the compact set

T := A× {0} ×Ω × cB×Q (5.24)

is globally pre-asymptotically stable for the system (5.22).

Proof. Let

X := G × Rm ×Ω × cB×Q, (5.25)

and denote by x := (ge, νe, gd, νd, q) ∈ X the closed-loop state vector. Define the
set-valued mappings

F (x) := (geν̂e, αe(x), gdν̂d, lB, 0),
G(x) := (ge, νe, gd, νd, GU (ge)),

(5.26)
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with αe denoting the velocity error dynamics. Then the closed-loop system (5.22) is
a hybrid system H = (C,F,D,G). Consider the continuously differentiable function
W : X → R≥0 defined by

W (x) := U(ge, q) +
1

2
⟨νe,Mνe⟩. (5.27)

Evidently, W is proper and positive definite with respect to the compact set

T0 := {x ∈ X : U(ge, q) = 0, νe = 0}. (5.28)

Utilizing the skew property of ∇M (see Lemma 2.1), the derivative of W along flows
of the closed-loop system (5.22) is Ẇ (x) = ⟨d(ν) − d(νr) −Kνe, νe⟩ for every x ∈ C.
It now follows from the strict monotone dissipativity property of d that Ẇ (x) ≤ 0 for
every x ∈ C, and also that Ẇ (x) < 0 for every x ∈ C such that νe ̸= 0. The change of
W across jumps of the closed-loop system is W (s)−W (x) ≤ −δ for every x ∈ D and
s ∈ G(x). Since W is proper and non-increasing along flows and across jumps of the
closed loop system, it follows that T0 is stable and that every solution to the closed-
loop system is bounded. In fact, every sublevel set of W is forward pre-invariant, that
is, for every r ≥ 0, every solution starting in the set W−1([0, r]) remains in it.

Consider now, for r ≥ 0, the family of hybrid systems defined by

Hr := (C ∩W−1([0, r]), F,D ∩W−1([0, r]), G). (5.29)

Every complete solution to H that starts in the set W−1([0, r]) is a complete solu-
tion to Hr. Furthermore, for each r ≥ 0, Hr satisfies the hybrid basic conditions
(Assumption 2.16). In particular, it follows from Proposition 5.4 that C and D are
relatively closed in X. Since W−1([0, r]) ⊂ X is compact for every r ≥ 0, it holds
that C ∩W−1([0, r]) and D ∩W−1([0, r]) are compact sets, and therefore closed. The
required properties of F and G can then be verified by noting the continuity of the
velocity error dynamics αe and the properties of GU established in Proposition 5.4.

It now follows from Corollary 8.7 (b) in [90] that, for each r ≥ 0, complete solutions
to Hr converge to the largest weakly invariant subset Wr contained in W−1(γ)∩{x ∈
C : νe = 0} for some γ ∈ [0, r]. A necessary condition for Wr to be weakly invariant
is that there exists a complete solution to Hr with range contained in Wr. Let ϕ
denote a complete solution to Hr, such that rgeϕ ⊂ Wr. Since ϕ is complete and the
decrease of W over jumps of the closed loop system is strict, it must be the case that
domϕ = R≥0 × {0}. Continuing, νe(t, 0) = 0 for every t ∈ R≥0, and it follows that
ν̇e(t, 0) = 0 for every t ∈ R≥0. Utilizing the velocity error dynamics, it is seen that
dU(ge(t, 0), q(t, 0)) = 0 for every t ∈ R≥0. By construction, the only points in C where
dU(ge, q) = 0 are those for which U(ge, q) = 0. It follows that rgeϕ ⊂ T0. Therefore,
for every r ≥ 0, Wr ⊂ T0. Consequently, every complete solution to Hr converges to
T0. Since every complete solution to H is a complete solution to Hr for some r ≥ 0,
every complete solution to H converges to T0. Since T0 is stable, all solutions are
bounded, and every complete solution converges to T0, it follows that T0 is globally
pre-asymptotically stable for H.

Since T0 ⊂ T , it follows that T is globally pre-attractive. It follows from Lemma 7.8
in [90] that this pre-attractivity is uniform from any compact subset of X. Moreover,
T is forward pre-invariant because T0 is forward pre-invariant and

T \ T0 = {x ∈ X : (ge, q) ∈ (A×Q) \ ZeroU} ⊂ D \ C
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is such that any maximal solution reaching T \ T0 is immediately mapped to T0 via a
single jump. It then follows from Proposition 7.5 of [90] that T is stable. Since T is
stable and globally pre-attractive, it is globally pre-asymptotically stable.

If the force χ appearing in (5.1) and the considered desired configurations satisfy
additional conditions, it is possible to use a modified feedforward control that does not
cancel χ in its entirety. In particular, let χ(g) = χ0(g) − dP (g), where χ0 : G → Rm
is continuous and P : G → R≥0 is continuously differentiable. Let H be a matrix Lie
subgroup of G such that the force −dP is left-invariant with respect to H, that is,
dP (hg) = dP (g) for every h ∈ H and every g ∈ G. The following lemma shows that
dP is left-invariant with respect to H if P is left-invariant with respect to H, that is,
if P (hg) = P (g) for every h ∈ H and every g ∈ G.

Lemma 5.2. Let G ⊂ GL(n) be a m-dimensional matrix Lie group and H be a matrix
Lie subgroup of G. If a continuously differentiable function P : G → R is left-invariant
with respect to H, then dP is left-invariant with respect to H.

Proof. We have that for every g ∈ G, h ∈ H, and ν ∈ Rm,

⟨dP (hg), ν⟩ = lim
s→0

P (hg exp(sν̂))− P (hg)

s

= lim
s→0

P (g exp(sν̂))− P (g)

s

= ⟨dP (g), ν⟩.

Consequently, dP (hg) = dP (g) for every g ∈ G and h ∈ H.

Consider the synergistic PD-controller defined by
q̇ = 0 (ge, νe, gd, νd, αd, q) ∈ C̃

q+ ∈ GU (ge) (ge, νe, gd, νd, αd, q) ∈ D̃

τ = κff (g, νr, αr)

− dU(ge, q)−Kνe

(5.30)

where κff : G × Rm × Rm → Rm is defined by

κff (g, ν, α) :=Mα− adTν Mν − d(ν)− χ0(g), (5.31)

and C̃ and D̃ are defined by (5.21). The resulting closed-loop system becomes

ġe = geν̂e

ν̇e = −∇M
ν+νrνe +M−1(d(ν)− d(νr))

−M−1(dP (g) + dU(ge, q) +Kνe)

ġd = gdν̂d

ν̇d ∈ lB


(ge, νe, gd, νd, q) ∈ C

q+ ∈ GU (ge) (ge, νe, gd, νd, q) ∈ D

(5.32)
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It can be shown that the compact set (5.24) is globally pre-asymptotically stable
for the closed-loop system (5.32) if in addition to the conditions of Theorem 5.6,
we require that dP is left-invariant with respect to H, that desired trajectories be
restricted to a compact subset of H, and that P + U is synergistic on G relative to A
with gap exceeding δ > 0. It must be emphasized that U being synergistic generally
does not imply that P + U is synergistic. In general, Zero(P + U) ̸= ZeroU , and
Crit(P + U) ̸= CritU . Since P does not depend on the mode q, it does however hold
that µP+U = µU .

Theorem 5.7. If Ω ⊂ H, dP is left-invariant with respect to H, P +U is synergistic
on G relative to A with gap exceeding δ > 0, and d is strictly monotonically dissipative
modulo K, then T , as defined in (5.24), is globally pre-asymptotically stable for (5.32).

Proof. Let x and X be defined as in the proof of Theorem 5.6. Consider the continu-
ously differentiable function W : X → R≥0 defined by

W (x) := P (ge) + U(ge, q) +
1

2
⟨νe,Mνe⟩. (5.33)

Evidently, W is proper and positive definite with respect to the compact set

T0 := {x ∈ X : P (ge) + U(ge, q) = 0, νe = 0} (5.34)

Utilizing the skew property of ∇M (Lemma 2.1), the derivative of W along flows of
the closed-loop system (5.32) is

Ẇ (x) = ⟨d(ν)− d(νr)−Kνe, νe⟩+ ⟨dP (ge)− dP (g), νe⟩

for every x ∈ C. Since gd ∈ Ω ⊂ H and dP (g) is left-invariant with respect to H, it
holds that dP (g) = dP (gdge) = dP (ge). The strict monotone dissipativity property of
d then ensures that Ẇ (x) ≤ 0 for every x ∈ C, and also that Ẇ (x) < 0 for every x ∈ C
such that νe ̸= 0. The remainder of the proof is similar to the proof of Theorem 5.6.

We end this section with two examples. First, we show that the hydrostatic moment
acting on an underwater vehicle can be derived from a potential P with the necessary
properties, provided that the axis of the desired rotation is aligned with the direction
of gravity. We then show in a quaternion setting that P +U , where U is the potential
function introduced in Example 5.5, is synergistic.

Example 5.8. Let G = SE(3), and consider the underwater robot model derived in
Chapter 3. There is a particular class of desired trajectories that allows us to exploit
the hydrostatic moments acting on the robot in the control design process. These are
the desired trajectories in

H :=

{
h =

(
S r
0 1

)
∈ SE(3) : Saγ = aγ

}
, (5.35)

where aγ ∈ R3 is the gravity vector. Elements of H have the axis of their orientations
restricted to be parallel with aγ . It can be verified that H is a matrix Lie subgroup of
SE(3).
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The hydrostatic moment acting on the underwater robot can be derived from the
potential P : SE(3) → R≥0 defined by

P (g) := |aγ ||mrm − ϱυrυ| − ⟨aγ , R(mrm − ϱυrυ)⟩ (5.36)

The fact that P is non-negative is easily verified by the Cauchy-Schwarz inequality.
We find that

dP (g) = −
(

0
mr×m − ϱυr×υ

)
RTaγ (5.37)

= −
(

0
mr×m − ϱυr×υ

)
RTSTaγ (5.38)

= dP (hg), (5.39)

since by (5.35), aγ = STaγ .

Example 5.9. Let G = S̃E(3). In this example, we continue developments of Ex-
ample 5.8 with quaternions, and show that the synergistic function introduced in
Example 5.5 can be utilized in Theorem 5.7 with P taken to be a quaternion ver-
sion of P in Example 5.8. We assume without loss of generality that the reference
frames are chosen such that aγ = |aγ |e3 and mrm − ϱυrυ = |mrm − ϱυrυ|e3. Let
c := |aγ ||mrm − ϱυrυ| > 0 and P be defined by

P (g) := c(1− ⟨rot(z)e3, e3⟩)
= 2c⟨(I − e3 ⊗ e3)ϵ, ϵ⟩
= 2c(ϵ21 + ϵ22).

(5.40)

An argument similar to the one utilized in Example 5.8 can be used to establish that
P is left-invariant with respect to the matrix Lie group

H := {h ∈ S̃E(3) : rot(z)e3 = e3}. (5.41)

Recall the synergistic function U on S̃E(3) that was defined in (5.17). Let V (g, q) :=
U(g, q) + P (g), that is,

V (g, q) =
k1
2
|p|2 + 2k2(1− qη) + 2c⟨(I − e3 ⊗ e3)ϵ, ϵ⟩, (5.42)

where k1, k2 > 0 are positive gains. It is straightforward to verify that ZeroV =
ZeroU = {g ∈ S̃E(3) : p = 0, qη = 1}. Furthermore,

dV (g, q) =

(
k1 rot(z)

Tp
k2qϵ+ 2c(ηI − ϵ×)(I − e3 ⊗ e3)ϵ

)
. (5.43)

To find CritV , we require the unit quaternions such that

k2qϵ+ 2c(ηI − ϵ×)(I − e3 ⊗ e3)ϵ = 0. (5.44)

To this end, we contract (5.44) with e3. This gives

0 = k2qϵ3 + 2cη⟨(I − e3 ⊗ e3)ϵ, e3⟩ − 2c⟨ϵ×(I − e3 ⊗ e3)ϵ, e3⟩
= k2qϵ3 + 2cη⟨(I − e3 ⊗ e3)e3, ϵ⟩+ 2c⟨e×3 (I − e3 ⊗ e3)ϵ, ϵ⟩
= k2qϵ3.

(5.45)
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Consequently, (5.44) holds only if ϵ3 = 0. In this case, (I − e3 ⊗ e3)ϵ = ϵ, and (5.44)
reduces to

(k2q + 2cη)ϵ = 0. (5.46)

It follows that if k2 ≥ 2c, then CritV = CritU . If instead k2 < 2c, then

CritV = CritU ∪ {(g, q) ∈ S̃E(3)×Q : p = 0, qη = −k2/2c, ϵ3 = 0}. (5.47)

We seek to determine if V is synergistic on G relative to A = {g ∈ S̃E(3) : p =
0, η = ±1}. Since µV = µU and ZeroV = ZeroU , the critical points of V that are
also critical points of U have already been treated in Example 5.5. For the additional
critical points given in (5.47) for which qη = −k2/2c and ϵ3 = 0, we find

µV (g, q) = 2k2

(
1 +

k2
2c

)
− 2k2

(
1− k2

2c

)
=

2k22
c

> 0.

(5.48)

It follows that V is synergistic on G relative to A with gap exceeding δ, where
min(4k2, 2k

2
2/c) > δ > 0.

5.5 Synergistic Output Feedback Control

Due to the fact that the feedforward control in (5.8) is independent of the robot
velocities, we can utilize it in the design of a Lyapunov-based output feedback tracking
control law. It will also be required in this section that there is no disturbance acting
on the mechanical system, that is, b = 0. Let V : G × Σ → R≥0 be synergistic on
G relative to a finite set B with gap exceeding ρ > 0 and denote by σ ∈ Σ ⊂ Z the
associated logic variable. Define, analogously to (5.16), the quantities

CV := {(g, σ) ∈ G ×Σ : µV (g, σ) ≤ ρ},
DV := {(g, σ) ∈ G ×Σ : µV (g, σ) ≥ ρ},

GV (g) := {σ ∈ Σ : µV (g, σ) = 0}
(5.49)

where µV : G × Σ → R≥0 is the synergy gap of V . Consider the output feedback
control law 

ġf = gf ν̂f (ge, gd, νd, αd, gf , q, σ) ∈ C̃

q+ ∈ GU (ge)

σ+ ∈ GV (go)

}
(ge, gd, νd, αd, gf , q, σ) ∈ D̃

τ = κff (g, νr, αr)

− dV (go, σ)− dU(ge, q)

(5.50)

where gf ∈ G is a filter state, go := g−1
f ge ∈ G is the filter error, and the filter velocity

νf ∈ Rm is defined by νf := Adgo K dV (go, σ). Furthermore, we define the controller
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flow set and jump set by

C̃ := {(ge, gd, νd, αd, gf , q, σ) : (ge, q) ∈ CU and (go, σ) ∈ CV ,

gd ∈ G, νd ∈ Rm, αd ∈ Rm},

D̃ := {(ge, gd, νd, αd, gf , q, σ) : (ge, q) ∈ DU or (go, σ) ∈ DV ,

gd ∈ G, νd ∈ Rm, αd ∈ Rm}.

(5.51)

The closed-loop system becomes

ġe = geν̂e

ν̇e = −∇M
ν+νrνe

+M−1(d(ν)− d(νr))

−M−1(dU(ge, q) + dV (go, σ))

ġd = gdν̂d

ν̇d ∈ lB
ġo = goν̂o


(ge, νe, gd, νd, go, q, σ) ∈ C

q+ ∈ GU (ge)

σ+ ∈ GV (go)

}
(ge, νe, gd, νd, go, q, h) ∈ D

(5.52)

where the filter error velocity νo ∈ Rm is defined by

νo := νe −Ad−1
go νf

= νe −K dV (go, σ),
(5.53)

and the flow set C and jump set D are defined by

C := {(ge, νe, gd, νd, go, q, σ) : (ge, q) ∈ CU and (go, σ) ∈ CV , νe ∈ Rm,
gd ∈ Ω, νd ∈ cB},

D := {(ge, νe, gd, νd, go, q, σ) : (ge, q) ∈ DU or (go, σ) ∈ DV , νe ∈ Rm,
gd ∈ Ω, νd ∈ cB}.

(5.54)

Before we state the main result of this section, we recall from Definition 3.9 that
d : Rm → Rm is monotonically dissipative if d(0) = 0, d is continuous, and ⟨d(ν) −
d(ν), ν − ν⟩ ≤ 0 for every ν ∈ Rm and every ν ∈ Rm.

Theorem 5.10. If U is synergistic on G relative to A with gap exceeding δ > 0, V
is synergistic on G relative to a finite set B with gap exceeding ρ > 0, K is positive
definite, and d is monotonically dissipative, then the compact set

T := A× {0} ×Ω × cB×Q× B ×Σ, (5.55)

is globally pre-asymptotically stable for the system (5.52).

Proof. Define the set X := G × Rm × Ω × cB × G × Q × Σ, the state vector x :=
(ge, νe, gd, νd, go, q, σ) ∈ X and the set-valued mappings

F (x) := (geν̂e, αe(x), gdν̂d, lB, goν̂o, 0, 0),
G(x) := (ge, νe, gd, νd, go, GU (ge), GV (go)),

(5.56)
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with αe denoting the velocity error dynamics. Then the closed-loop system (5.52) is
a hybrid system H = (C,F,D,G). Consider the continuously differentiable function
W : X → R≥0 defined by

W (x) := U(ge, q) + V (go, σ) +
1

2
⟨νe,Mνe⟩. (5.57)

Evidently, W is proper and positive definite with respect to the compact set

T0 := {x ∈ X : U(ge, q) = 0, V (go, σ) = 0, νe = 0}. (5.58)

The derivative of W along flows of the closed-loop system (5.52) is

Ẇ (x) = ⟨dU(ge, q), νe⟩+ ⟨dV (go, σ), νe −K dV (go, σ)⟩
− ⟨M∇M

ν+νrνe, νe⟩+ ⟨d(ν)− d(νr), νe⟩
− ⟨dU(ge, q) + dV (go, σ), νe⟩

≤ −⟨K dV (go, σ),dV (go, σ)⟩

for all x ∈ C. The change of W across jumps is found to be

W (s)−W (x) ≤ −min(δ, ρ) (5.59)

for all x ∈ D and s ∈ G(x). By a similar argument as in the proof of Theorem 5.6,
it can be shown that T0 is stable and that all solutions to H are bounded. Moreover,
every complete solution to Hr converges to the largest weakly invariant subset Wr of
W−1(γ) ∩ {x ∈ C : dV (go, σ) = 0} for some γ ∈ [0, r].

Let ϕ denote a complete solution to Hr, such that rgeϕ ⊂ Wr. Since ϕ is complete
and the decrease ofW over jumps of the closed loop system is strict, it must be the case
that domϕ = R≥0 × {0}. By construction, the only points in C where dV (go, σ) = 0
are those for which V (go, σ) = 0. Consequently, go(t, 0) ∈ B for every t ∈ R≥0. Since
B is a finite set, it must hold that ġo(t, 0) = 0 for every t ∈ R≥0. It follows that
νe(t, 0) = 0 for every t ∈ R≥0. By an argument similar to the one employed in the
proof of Theorem 5.6, it now follows that dU(ge(t, 0), q(t, 0)) = 0 for every t ∈ R≥0.
It follows that Wr ⊂ T0 and that every complete solution to Hr converges to T0.
Since every complete solution to H is a complete solution to Hr for some r ≥ 0,
every complete solution to H converges to T0. Since T0 is stable, all solutions are
bounded, and every complete solution converges to T0, it follows that T0 is globally
pre-asymptotically stable for H. The remainder of the proof uses an argument similar
to the one utilized in the proof of Theorem 5.6.

We remark briefly that the output feedback controller (5.50) admits an analogue
to the controller (5.30). This controller has the form

ġf = gf ν̂f (ge, gd, νd, αd, gf , q, σ) ∈ C̃

q+ ∈ GU (ge)

σ+ ∈ GV (go)

}
(ge, gd, νd, αd, gf , q, σ) ∈ D̃

τ = κff (g, νr, αr)

− dV (go, σ)− dU(ge, q)

(5.60)
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where κff is defined by (5.31), and C̃ and D̃ are defined by (5.51), and leads to the
closed-loop system

ġe = geν̂e

ν̇e = −∇M
ν+νrνe

+M−1(d(ν)− d(νr))

−M−1(dU(ge, q) + dV (go, σ))

−M−1 dP (g)

ġd = gdν̂d

ν̇d ∈ lB
ġo = goν̂o



(ge, νe, gd, νd, go, q, σ) ∈ C

q+ ∈ GU (ge)

σ+ ∈ GV (go)

}
(ge, νe, gd, νd, go, q, σ) ∈ D

(5.61)

where C and D are defined by (5.54). We then have the following theorem, the proof
of which we omit due its similarity to the proofs of Theorem 5.7 and Theorem 5.10.

Theorem 5.11. If Ω ⊂ H, dP is left-invariant with respect to H, P +U is synergistic
on G relative to A with gap exceeding δ > 0, V is synergistic on G relative to the
finite set B with gap exceeding ρ > 0, K is positive definite, and d is monotonically
dissipative, then T , as defined in (5.55), is globally pre-asymptotically stable for (5.61).

5.6 Synergistic PID Control

We now treat the full system (5.1) with the constant disturbance b present. Consider
the following synergistic PID control law

φ̇ = dU(ge, q) (ge, νe, gd, νd, αd, φ, q) ∈ C̃

q+∈ GU (ge) (ge, νe, gd, νd, αd, φ, q) ∈ D̃

τ = κff (g, ν, ν̇r)

− dU(ge, q)− kφ−Kνe

(5.62)

where K ∈ Rm×m is the derivative gain, k ∈ R is the integral gain, and

C̃ := {(ge, νe, gd, νd, αd, φ, q) : (ge, q) ∈ CU , νe ∈ Rm, gd ∈ G,
νd ∈ Rm, αd ∈ Rm, φ ∈ Rm},

D̃ := {(ge, νe, gd, νd, αd, φ, q) : (ge, q) ∈ DU , νe ∈ Rm, gd ∈ G,
νd ∈ Rm, αd ∈ Rm, φ ∈ Rm}.

(5.63)

Observe that the feedback control law comprises a proportional term dU(ge, q), an
integral term kφ and a derivative term Kνe. Let be := b− kφ denote the error of the
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integrator. The resulting closed-loop system is then given by

ġe = geν̂e

ν̇e = −M−1(dU(ge, q)− be +Kνe)

ġd = gdν̂d

ν̇d ∈ lB

ḃe = −k dU(ge, q)


(ge, νe, gd, νd, be, q) ∈ C

q+∈ GU (ge) (ge, νe, gd, νd, be, q) ∈ D

(5.64)

where

C := {(ge, νe, gd, νd, be, q) : (ge, q) ∈ CU , νe ∈ Rm, gd ∈ G, νd ∈ cB, be ∈ Rm},
D := {(ge, νe, gd, νd, be, q) : (ge, q) ∈ DU , νe ∈ Rm, gd ∈ G, νd ∈ cB, be ∈ Rm}.

(5.65)

We then have the following result.

Theorem 5.12. If A is finite, U is synergistic on G relative to A with gap exceeding
δ > 0, k > 0, and K − kM is symmetric and positive definite, then the compact set

T := A× {0} ×Ω × cB× {0} ×Q, (5.66)

is globally pre-asymptotically stable for the system (5.64).

Proof. Define the set X := G × Rm × Ω × cB × Rm × Q, the state vector x :=
(ge, νe, gd, νd, be, q) ∈ X and the set-valued mappings

F (x) := (geν̂e, αe(x), gdν̂d, lB,−k dU(ge, q), 0), (5.67)
G(x) := (ge, νe, gd, νd, be, GU (ge)), (5.68)

with αe denoting the velocity error dynamics. Then the closed-loop system (5.64) is
a hybrid system H = (C,F,D,G). Define also the symmetric positive definite matrix
A := (K − kM)−1. Note that since M is symmetric positive definite, k > 0, and
K − kM is symmetric positive definite, we must have that K is symmetric positive
definite. Consider the continuously differentiable function W : X → R≥0 defined by

W (x) := U(ge, q) +
1

2
⟨Mνe, νe⟩+

1

2k
⟨A(be − kMνe), be − kMνe⟩, (5.69)

Evidently, W is proper and positive definite with respect to the compact set

T0 := {x ∈ X : U(ge, q) = 0, νe = 0, be = 0} (5.70)

The derivative of W along flows of the closed-loop system (5.64) is

Ẇ (x) = ⟨be −Kνe, νe⟩ − ⟨A(be −Kνe), be − kMνe⟩
= ⟨be −Kνe, νe⟩ − ⟨A(be −Kνe), be −Kνe⟩ − ⟨A(be −Kνe), (K − kM)νe⟩
= −⟨A(be −Kνe), be −Kνe⟩,
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for every x ∈ C. The change of W across jumps is found to be

W (s)−W (x) ≤ −δ (5.71)

for all x ∈ D and s ∈ G(x). By a similar argument as in the proof of Theorem 5.6,
it can be shown that T0 is stable and that all solutions to H are bounded. Moreover,
every complete solution to Hr converges to the largest weakly invariant subset Wr of
W−1(γ) ∩ {x ∈ C : be = Kνe} for some γ ∈ [0, r].

Let ϕ denote a complete solution to Hr, such that rgeϕ ⊂ Wr. Since ϕ is complete
and the decrease of W over jumps of the closed loop system is strict, it must be the
case that domϕ = R≥0 × {0}. We must then have that

ν̇e(t, 0) = −M−1 dU(ge(t, 0), q(t, 0)),

ḃe(t, 0) = −k dU(ge(t, 0), q(t, 0)),

for almost every t ∈ R≥0. Since be(t, 0) −Kνe(t, 0) = 0 for every t ∈ R≥0, it follows
that

ḃe(t, 0)−Kν̇e(t, 0) = (KM−1 − kI) dU(ge(t, 0), q(t, 0))

= (K − kM)M−1 dU(ge(t, 0), q(t, 0))

= 0

for almost every t ∈ R≥0. Since K − kM and M have full rank, and the mapping
t 7→ dU(ge(t, 0), q(t, 0)) is continuous, it follows that dU(ge(t, 0), q(t, 0)) = 0 for every
t ∈ R≥0. By construction, the only points in C where dU(ge, q) = 0 are those for
which U(ge, q) = 0. Consequently, ge(t, 0) ∈ A for every t ∈ R≥0. Since A is a finite
set, it must hold that ġe(t, 0) = 0 for almost every t ∈ R≥0. It follows that νe(t, 0) = 0
for every t ∈ R≥0, and since be(t, 0) = Kνe(t, 0), that be(t, 0) = 0 for every t ∈ R≥0.
It follows further that Wr ⊂ T0 and that every complete solution to Hr converges to
T0. Since every complete solution to H is a complete solution to Hr for some r ≥ 0,
every complete solution to H converges to T0. Since T0 is stable, all solutions are
bounded, and every complete solution converges to T0, it follows that T0 is globally
pre-asymptotically stable for H. The remainder of the proof uses an argument similar
to the one utilized in the proof of Theorem 5.6.

We now present a second synergistic PID controller that integrates both the pro-
portional action and the derivative action. Consider the control law

φ̇ = dU(ge, q) +Kνe (ge, νe, gd, νd, αd, φ, q) ∈ C̃

q+∈ GU (ge) (ge, νe, gd, νd, αd, φ, q) ∈ D̃

τ = κff (g, ν, ν̇r)

− dU(ge, q)− kφ−Kνe

(5.72)

where K ∈ Rm×m, k ∈ R, and C̃ and D̃ are defined by (5.63). The controller (5.72)
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leads to the closed-loop system

ġe = geν̂e

ν̇e = −M−1(dU(ge, q)− be +Kνe)

ġd = gdν̂d

ν̇d ∈ lB

ḃe = −k(dU(ge, q) +Kve)


(ge, νe, gd, νd, be, q) ∈ C

q+∈ GU (ge) (ge, νe, gd, νd, be, q) ∈ D

(5.73)

where C and D are defined by (5.65). Conditions that ensure stability are less restric-
tive for the controller (5.72) than for the controller (5.63). In particular, the set A
need not be finite, and the matrix K need not be symmetric.

Theorem 5.13. If U is synergistic on G relative to A with gap exceeding δ > 0,
k > 0, and K − kM is positive definite, then T , as defined in (5.66), is globally
pre-asymptotically stable for (5.73).

Proof. Define the set X := G × Rm × Ω × cB × Rm × Q, the state vector x :=
(ge, νe, gd, νd, be, q) ∈ X, and the set-valued mappings

F (x) := (geν̂e, αe(x), gdν̂d, lB,−k(dU(ge, q) +Kve), 0), (5.74)
G(x) := (ge, νe, gd, νd, be, GU (ge)), (5.75)

with αe denoting the velocity error dynamics. Then the closed-loop system (5.73) is
a hybrid system H = (C,F,D,G). Note that since M is positive definite, k > 0, and
K − kM is positive definite, we must have that K is positive definite. Consider the
continuously differentiable function W : X → R≥0 defined by

W (x) := U(ge, q) +
1

2
⟨νe,Mνe⟩+

1

2k
⟨M−1(be − kMνe), be − kMνe⟩. (5.76)

Evidently, W is proper and positive definite with respect to the compact set

T0 := {x ∈ X : U(ge, q) = 0, νe = 0, be = 0} (5.77)

The derivative of W along flows of the closed-loop system (5.73) is

Ẇ (x) = ⟨be −Kve, νe⟩ − ⟨M−1be, be − kMνe⟩
= −⟨(K − kM)νe, νe⟩+ ⟨be − kMνe, νe⟩ − ⟨M−1be, be − kMνe⟩
= −⟨(K − kM)νe, νe⟩ − ⟨M−1(be − kMνe), be − kMνe⟩

for every x ∈ C. The change of W across jumps is found to be

W (s)−W (x) ≤ −δ (5.78)

for all x ∈ D and s ∈ G(x). By a similar argument as in the proof of Theorem 5.6,
it can be shown that T0 is stable and that all solutions to H are bounded. Moreover,
every complete solution to Hr converges to the largest weakly invariant subset Wr of
W−1(γ) ∩ {x ∈ C : νe = 0, be = 0} for some γ ∈ [0, r]. The remainder of the proof is
similar to the proof of Theorem 5.6.
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5.7 Application to Underwater Vehicle Control

This section presents simulation results for a small fully actuated underwater vehicle.
We utilize a quaternion representation of the vehicle orientation such that G = S̃E(3).
In this case, the model (5.1) reduces to the underwater vehicle control model in-
troduced in Section 3.6. Let us present the data of the underwater vehicle used for
the simulation. The center of mass is rm = (0, 0, 0.02)m, the center of buoyancy is
rυ = 0m, the dry mass is m = 13.7 kg, and the displaced mass is ϱυ is 1% larger than
the dry mass. The hydrodynamic inertia matrix MH is chosen as

MH :=


5.5 0 0 0 0 0
0 12.7 0 0 0 0
0 0 14.6 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1

 . (5.79)

Furthermore, we use a hydrodynamic damping model comprising linear damping and
diagonal second-order modulus damping,

d(ν) := −


4.0ν1 + 18.2|ν1|ν1
6.2ν2 + 21.7|ν2|ν2
5.2ν3 + 37.0|ν3|ν3
0.1ν4 + 1.6|ν4|ν4
0.1ν5 + 1.6|ν5|ν5
0.1ν6 + 1.6|ν6|ν6

 . (5.80)

The constant disturbance is set to

b :=


2
1
−1
−1
−1
1

 . (5.81)

The control law (5.72) is implemented with the synergistic potential function intro-
duced in Example 5.5. Furthermore, we have implemented it without the feedforward
term that would cancel the acting hydrodynamic and hydrostatic wrenches to achieve
a slightly more realistic picture of its performance. The controller parameters are given
by

k1 = 5,

k2 = 1,

K =


10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 ,

k = 0.1.

(5.82)

97



5. Synergistic PID and Output Feedback Control on Matrix Lie Groups

Simulation results are presented in Figures 5.1 to 5.3, from which we conclude that
acceptable tracking performance is achieved despite this simplification of the control
law.
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Figure 5.1: The position p, desired position pd, roll-pitch-yaw angles ϕ and desired
roll-pitch-yaw angles ϕd.
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Figure 5.2: The velocity ν and the desired velocity νr.
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Figure 5.3: The control inputs τ and logic variable q.
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Chapter 6

Adaptive Hybrid Feedback Control for
Marine Vehicles

This chapter develops an adaptive hybrid feedback controller for global asymptotic
tracking of a hybrid reference system for marine vehicles subject to parametric uncer-
tainties. In contrast to backstepping-based hybrid adaptive control [81], the proposed
approach permits estimation of the inertia matrix, and the switching mechanism is
independent of the system velocities. As our approach is based on traditional Euler-
Lagrange system models, the adaptive hybrid control law is applicable to other me-
chanical systems as well. In particular, it can easily be extended to robot manipulators
or, more generally, vehicle-manipulator systems. The hybrid reference system is con-
structed from a parametrized loop and a speed assignment for the motion along the
loop. The main benefit of this formulation is that it decouples the design of the path
from the motion along the path, allowing us to globally asymptotically track a given
parametrized loop at a desired and time-varying speed. The proposed reference sys-
tem can be considered an adaptation of the maneuvering problem [84, 85] to a hybrid
dynamical systems setting. The theoretical developments are validated experimentally
for surface and underwater vehicle applications.

The material in this chapter is based on [86, 87].

6.1 Introduction

Some of the first adaptive control laws proposed for underwater vehicles can be found
in [21] and [126], where Euler angle representations were utilized for the vehicle orien-
tation. The first quaternion-based control laws for underwater vehicles were introduced
in [127], while adaptive and quaternion-based control approaches for underwater ve-
hicles can be found in [128] and [129]. None of the aforementioned quaternion-based
approaches achieve global asymptotic stability results, since they only stabilize one of
the equilibrium points corresponding to the desired orientation. Adaptive backstep-
ping designs for tracking control of ships were introduced in [130], [131], and [132].
However, none of these methods permit estimation of the inertia matrix parameters,
and all of them lift the vehicle orientation from the circle to the field of real numbers,
which leads to unwinding problems.

To the best of our knowledge, experimental validations of globally stabilizing hy-
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brid control laws for surface and underwater vehicles are virtually nonexistent in the
existing literature. A combined hybrid observer/controller for dynamic positioning of
a marine surface vehicle with global exponential stability properties was proposed in
[133]. However, this result was achieved by a priori assuming that the angular velocity
is bounded and by lifting the vehicle orientation from the circle to the field of real
numbers, which leads to unwinding problems.

The remainder of this chapter is organized as follows. Section 6.2 presents kine-
matic and dynamic models of marine vehicles, a hybrid reference system based on a
parametrized loop, and the resulting error system. The hybrid control law developed
in Section 6.3 is based on a set of potential functions and a hysteretic switching mech-
anism. In Section 6.4, we construct potential functions and switching mechanisms to
overcome the topological obstructions of SE(2) and SE(3). Moreover, we show that the
aforementioned potential functions and switching mechanisms satisfy the assumptions
in Section 6.3. In Section 6.5, we present the results of three experiments conducted
on marine surface and underwater vehicles.

6.2 Modeling

This section begins by presenting kinematic and dynamic models of marine vehicles.
Then, we derive a hybrid reference system generating continuous and bounded config-
uration, velocity and acceleration references from a parametrized loop. Moreover, the
motion along the path can be independently controlled by specifying a desired speed,
which takes values within a compact interval. Finally, we derive the error system and
formulate the problem statement.

6.2.1 Models for Surface and Underwater Marine Vehicles

The configuration of a marine vehicle can be identified with a matrix Lie group G ⊂
Rn×n of dimension k ≤ 6, which is typically either SE(2),SE(3) or S̃E(3). Let g ∈ G
denote the configuration and ν = (v, ω) ∈ Rk denote the body velocity, where v and ω
denote the linear and angular velocities of the vehicle. Using the Lie group structure
of the configuration space, the equations of motion for fully actuated marine vehicles
are given by

ġ = gν̂, (6.1a)

Mν̇ − adTν Mν = d(ν) + f(g) + τ, (6.1b)

where M ∈ Rk×k is the inertia matrix, including hydrodynamic added mass, adTν Mν
describes Coriolis and centrifugal forces, the function d : Rk → Rk describes dissipative
forces, f : G → Rk contains potential forces and disturbances, and τ ∈ Rk is the control
force.

6.2.2 Hybrid Reference System

We construct a hybrid reference trajectory gd : R≥0 × Z≥0 → G by composing a path
γ : [0, 1] → G with a time scaling s : R≥0×Z≥0 → [0, 1], i.e. gd(t, j) = γ(s(t, j)). A key
advantage of this formulation is that it decouples the geometric path from the desired
motion along the path.
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Definition 6.1. Let I = [0, 1], H2 = SO(2), H3 = SU(2) and m ∈ {2, 3}. The
parametric Cr-path γ : I → G := Rm ⋊Hm defined by

γ(s) := (γ1(s), γ2(s)), γ1(s) ∈ Rm, γ2(s) ∈ Hm, (6.2)

is a Cr-loop if it satisfies

γ(j)(0) = γ(j)(1), (6.3)

for all 0 ≤ j ≤ r.

Given a loop γ, the motion along the loop can be controlled through a speed
assignment for ṡ. In particular, by assuming that |γ′1(s)| ≠ 0 for all s ∈ I, the desired
speed of the vehicle can be controlled through the following speed assignment [84]

ṡ = ϱ(s, ud) :=
ud

|γ′1(s)|
, (6.4)

where ud ∈ R is a desired input speed. To ensure continuity of the velocity and
acceleration references, the desired speed can be obtained from the following set-
valued second-order low-pass filter with natural frequency ωn > 0 and damping factor
ζf > 0

üd ∈ U(ud, u̇d) := ω2
n[0, c]− 2ζfωnu̇d − ω2

nud, (6.5)

where the interval [0, c], with c > 0, contains the values of the commanded input speed
µ.

Let Ω1,Ω2 ⊂ R be compact. The Lie group structure of the desired path γ leads
to the following hybrid reference system:

R :



ṡ = ϱ(s, ud)

u̇d = ad

ȧd ∈ U(ud, ad)

 (s, ud, ad) ∈ I × Ω1 × Ω2

s+ = 0 (s, ud, ad) ∈ {1} × Ω1 × Ω2

gd = γ(s)

νd = κ(s)ϱ(s, ud)

αd = fd(s, ud, ad)

where κ̂(s) := γ(s)−1γ′(s) is the desired tangent vector expressed in the desired frame
and the mapping fd : I × Ω1 × Ω2 → Rk is given by

fd(·) = κ(s)

(
∂ϱ

∂s
ϱ(s, ud) +

∂ϱ

∂ud
ad

)
+ κ′(s)ϱ(s, ud)

2. (6.6)

Conceptually, R can be considered as a hybrid system with the commanded speed
µ ∈ [0, c] as the input, and

y :=(gd, νd, αd) = (γ(s), κ(s)ϱ(s, ud), fd(s, ud, ad)), (6.7)

as the output, where gd ∈ rge γ, νd ∈ Rk and αd ∈ Rk are the desired configuration,
velocity and acceleration references, respectively. We remark that the speed assignment
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for ṡ in (6.4) ensures that the norm of the desired linear velocity vd is equal to the
desired speed ud. Note that if γ is a C2-loop, then it follows from γ(j)(0) = γ(j)(1)
for all 0 ≤ j ≤ 2 and continuity of ud, ad that the output map y = (gd, νd, αd) is
continuous. We remark that for practical purposes, only a compact path is required.
This, in turn, removes the switching component of the reference system. However, the
loop assumption helps ensure that every maximal solution is complete.

6.2.3 Error System

The error dynamics are obtained by considering the continuous and invertible trans-
formation (g, ν, r) 7→ (ge, νe, r), using the natural (and left-invariant) error defined by
[101]

ge := g−1
d g, (6.8)

νe := ν −Ad−1
ge νd. (6.9)

We observe that ge expresses the configuration of the vehicle-fixed frame with respect
to the desired vehicle-fixed frame, while the term νr :=Ad−1

ge νd can be interpreted as
νd expressed in the vehicle-fixed frame. Moreover, the derivative of νr satisfies

ν̇r = Ad−1
ge αd − adνe Ad−1

ge νd. (6.10)

The error dynamics can now be stated as

N :



ġe = geν̂e

ν̇e = fe(ge, νe, s, ud, ad, τ)

ṡ = ϱ(s, ud)

u̇d = ad

ȧd ∈ U(ud, ad)


(ge, νe, s, ud, ad) ∈ Ĉ

s+ = 0 (ge, νe, s, ud, ad) ∈ D̂

where Ĉ = G × Rk × I × Ω1 × Ω2, D̂ = G × Rk × {1} × Ω1 × Ω2 and the mapping
fe : G × Rk × I × Ω1 × Ω2 × Rk → Rk is given by

fe(·) :=M−1(τ −M∇M
ν ν + d(ν) + f(g))−Ad−1

ge fd(s, ud, ad)

+ adνe Ad
−1
ge κ(s)ϱ(s, ud).

(6.11)

We remark that the matrix representation of the adjoint maps Ad and ad are provided
in Section 6.5 for the Lie groups SE(2) and SE(3) and their Lie algebras se(2) and
se(3).

Lemma 6.1. The hybrid system N satisfies the hybrid basic conditions [90, Assump-
tion 6.5].

Proof. The flow and jump sets Ĉ and D̂ are closed since Ω1 and Ω2 are closed. More-
over, the jump map is single-valued and continuous. The flow map is single-valued and
continuous for every state except ad. However, since the set-valued mapping U is outer
semicontinuous, convex and locally bounded, the flow map is outer semicontinuous,
convex-valued and locally bounded.
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Problem Statement

For a given C2-loop γ, the speed assignment ϱ defined in (6.4) for ṡ and a compact
set A• ⊂ G, design a hybrid feedback control law with output τ ∈ Rk such that every
solution to N is bounded and converges to the compact set

B = {(ge, νe, s, ud, ad) : ge ∈ A•, νe = 0}, (6.12)

for the system N under parametric uncertainties.

6.3 Hybrid Control Design

In this section, we propose an adaptive hybrid feedback control law for the system N .
The control law is derived from a set of potential functions and a hysteretic switch-
ing mechanism encoded by the flow and jump sets and the jump map. The hybrid
controller is based on the following assumption.

Assumption 6.2. Given a 5-tuple (A, C,D,G, V ), where V : O → R is defined by
(g, q) 7→ V (g, q) = Vq(g), where q ∈ Q is a logic variable, Q ⊂ R is a finite set and O
is an open set containing C ⊂ G ×Q.

(A1) A ⊂ C is a compact set and π1(A) = A•;
(A2) C and D are closed subsets of G ×Q such that C ∪D = G ×Q and π1(C) = G;
(A3) The set-valued mapping G : D ⇒ Q is nonempty for all (g, q) ∈ D and outer

semicontinuous and locally bounded relative to D;
(A4) for every (g, q) ∈ C ∩D, it holds that (g, w) ∈ C \D for each w ∈ G(g, q);
(A5) there exists N ∈ Z≥1 such that for every (g, q) ∈ D, it holds that (g, w) ∈ C \D

for each (g, w) ∈ G
K
(g, q), where 1 ≤ K ≤ N , G(g, q) = {g} × G(g, q) and

G
K

:= G ◦G ◦ · · · ◦G︸ ︷︷ ︸
Ktimes

;

(A6) V is continuously differentiable on O and the restriction of V to C is proper and
positive definite with respect to A;

(A7) for all (g, q) ∈ C ∩D and each w ∈ G(g, q)

Vw(g)− Vq(g) ≤ 0; (6.13)

(A8) for all (g, q) ∈ C, dVq(g) = 0 if and only if (g, q) ∈ A.

Assumption 6.2 guarantees that the switching is hysteretic, the hybrid control law
satisfies the hybrid basic conditions and is required to ensure that every solution to
N converges to B.

We remark that the conditions of Assumption 6.2 are different from the conditions
for synergistic control [61, Definition 7.3]. First, they do not enforce a strict decrease
in V across jumps. Second, they are not restricted to a switching mechanism based on
the value of the potential functions Vq. Finally, they permit each potential function
Vq to be defined locally, i.e., having a domain that is a strict subset of G.

To establish convergence to the set B when the model parameters are unknown,
we define the modified reference velocity νm ∈ Rk and the corresponding reference
velocity error ζ := νm − νr through the differential equation

Λ[ζ̇ +∇Λ
ν ζ] = −dVq(ge)− ϑq(ζ), (6.14)
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where ϑq : Rk → Rk is continuous and satisfies ⟨ϑq(ζ), ζ⟩ > 0 for every ζ ∈ Rk \ {0}
and every q ∈ Q. We remark that ϑ can be chosen independent of q and that the term
Λ∇Λ

ν ζ is optional. The latter is because ⟨ζ, Λ∇Λ
ξ ζ⟩ = 0 for any ξ ∈ Rk, which entails

that any velocity can be used in place of ν in the bilinear map ∇Λ. The velocity error
is now redefined as

ξ := ν − νm = νe − ζ. (6.15)

Since ζ = 0 implies ξ = νe, the velocity tracking control objective νe = 0 is accom-
plished when (ξ, ζ) = 0. In practice, this type of velocity error may be advantageous
when the configuration error encoded by dV is significant while the velocity error νe
is zero.

Before delving into the proposed adaptive controller, we begin by presenting the
non-adaptive version. Given a 5-tuple (A, C,D,G, V ) satisfying Assumption 6.2 and
if the model parameters in (6.1) are known, we propose the following hybrid control
law 

ζ̇ = −∇Λ
ν ζ − Λ−1

(
dVq(ge) + ϑq(ζ)

)
, (ge, q) ∈ C

q+ ∈ G(ge, q), (ge, q) ∈ D

τ =M [ν̇m +∇M
ν νm]− d(ν)

− f(g)− dVq(ge)− φq(ξ).

(6.16)

Observe that the feedback control law (6.16) comprises a proportional action dV and
a derivative action φ, where φq : Rk → Rk is continuous and satisfies ⟨φq(ξ), ξ⟩ > 0
for every ξ ∈ Rk \ {0} and every q ∈ Q. In other words, the control law (6.16) is
essentially a PD+ control law [134] with desired velocity νm and hysteretic switching.
We note that the derivative action can be chosen independently of the logic variable
q. However, the proportional action can only be chosen independently of q provided
that the configuration space is globally diffeomorphic to Euclidean space.

To make the control law (6.16) adaptive, we make the following assumption on the
unknown model parameters.

Assumption 6.3. There exists a known matrix-valued function of available data
Φ: G × Rk × Rk × I × Ω1 × Ω2 → Rk×l and a vector of unknown model parameters
θ ∈ Rl with known lower and upper bounds θ and θ such that

M [ν̇m+∇M
ν νm]−d(ν)−f(g)=Φ(ge, ζ, ξ, s, ud, ad)θ, (6.17)

for all (ge, ζ, ξ, s, ud, ad) ∈ G × Rk × Rk × I × Ω1 × Ω2.

The boundedness assumption on the parameters is justified by the fact that the
parameters represent real physical quantities that we often have rough estimates of in
practice. Assumption 6.3 implies that the parameters are contained in the convex set

P := {θ ∈ Rl : θ ≤ θ ≤ θ}. (6.18)

Define the extended tangent cone to P by

TR,P(θ) := TR,[θ1,θ1]
(θ1)× TR,[θ2,θ2]

(θ2)× · · · × TR,[θl,θl]
(θl), (6.19)
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where the extended tangent cone to each interval is given by

TR,[θi,θi]
(θi) :=


[0,∞) if θi ≤ θi
(−∞,∞) if θi ∈ (θi, θi)

(−∞, 0] if θi ≥ θi

(6.20)

Let θa ∈ Rl denote the estimate of θ and define the convex set

Pϵ := {θa ∈ Rl : θ − ϵ ≤ θa ≤ θ + ϵ}, (6.21)

where ϵ = (ϵ1, . . . , ϵl) ∈ Rl, defines boundary layers of length ϵi > 0 around each
interval in (6.18). The goal is to enforce θa ∈ Pϵ through the adaptive update law. To
this end, we define the projection operator Proj : Rl × Pϵ → Rl by [135]

Proj(χ, θa) :=

{
χ, if χ ∈ TR,Ω(θa)

(1− h(θa))χ if χ /∈ TR,Ω(θa)
(6.22)

where the components of h(θa) are given by

hi(θa,i) =


0, if θa,i ∈ (θi, θi)

min{1, θi−θa,i

ϵi
}, if θa,i ≤ θi

min{1, θa,i−θi
ϵi

}, if θa,i ≥ θi

(6.23)

The following lemma can be found in [135, Lemma E.1].

Lemma 6.2. The projection operator (6.22) satisfies

(P1) The mapping Proj : Rl × Pϵ → Rl is Lipschitz continuous in χ and θa.
(P2) The differential equation

θ̇a = Proj(χ, θa), θa(t0) ∈ Pϵ, (6.24)

satisfies θa ∈ Pϵ for all t ≥ t0.
(P3) Let θe = θ − θa denote the estimation error, then

−⟨θe, Γ−1Proj(χ, θa)⟩ ≤ −⟨θe, Γ−1χ⟩, (6.25)

for all θa ∈ Pϵ and θ ∈ P.

Using (6.17) and the projection operator defined in (6.22), we define an adaptive
version of (6.16) by

ζ̇ = −∇Λ
ν ζ − Λ−1

(
dVq(ge) + ϑq(ζ)

)
θ̇a = Proj(−ΓΦ(ge, ζ, ξ, s, ud, ad)Tξ, θa)

}
(ge, q)∈C

q+∈ G(ge, q) (ge, q)∈D
τ = Φ(ge, ζ, ξ, s, ud, ad)θa−dVq(ge)−φq(ξ).

(6.26)

By defining x :=(ge, ξ, s, ud, ad, ζ, θa, q)∈ X and the extended state space

X := G × Rk × I × Ω1 × Ω2 × Rk × Pϵ ×Q, (6.27)
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the adaptive hybrid control law (6.26) applied to the hybrid system N leads to the
hybrid closed-loop system

H :



ġe = ge ξ̂+ζ

ξ̇ = f̃(x)

ṡ = ϱ(s, ud)

u̇d = ad

ȧd ∈ U(ud, ad)
ζ̇ = −∇Λ

ν ζ − Λ−1
(
dVq(ge) + ϑq(ζ)

)
θ̇a = Proj(−ΓΦ(ge, ζ, ξ, s, ud, ad)Tξ, θa)


x ∈ C̃

(q+, s+) ∈ G̃(ge, q, s) x ∈ D̃,

(6.28)

where

f̃(x) :=−M−1Φ(ge, ζ, ξ, s, ud, ad)θe−∇M
ν ξ −M−1(dVq(ge) + φq(ξ)). (6.29)

Moreover, the jump map G̃ : G ×Q× I ⇒ Q× I is defined as

G̃(ge, q, s) :=


(G(ge, q), s) , (ge, q, s)∈D × (I\{1})
{(G(ge, q), s) , (q, 0)} (ge, q, s)∈D × {1}
(q, 0), (ge, q, s)∈(C\D)×{1}

(6.30)

while the flow set C̃ and jump set D̃ are defined by

C̃ := {x ∈ X : (ge, q) ∈ C}, (6.31)

D̃ := {x ∈ X : (ge, q) ∈ D} ∪ {x ∈ X : s = 1}. (6.32)

Lemma 6.3. The closed-loop system H satisfies the hybrid basic conditions.

Proof. From Lemma 6.1, Assumption 6.2 and the definitions of the jump map, flow set
and jump set, it follows that all of the assumptions in [61, Lemma 2.21] are satisfied.

Theorem 6.4. Let Assumption 6.3 hold. Given a 5-tuple (A, C,D,G, V ) satisfying
Assumption 6.2, the compact set

A1 = {x ∈ X : (ge, q) ∈ A, ξ = 0, ζ = 0, θa = θ}, (6.33)

is uniformly globally stable for the system H and every solution to H converges to

A2 = {x ∈ X : (ge, q) ∈ A, ξ = 0, ζ = 0,Φ(ge, 0, 0, s, ud, ad)θe = 0}. (6.34)

Proof. Let H̆ denote the hybrid system H with each jump set D̃ replaced by D̆ = {x ∈
X : (ge, q) ∈ C ∩ D} ∪ {x ∈ X : s = 1} and consider the continuously differentiable
function

W (ge, q, ξ, ζ, θa) = Vq(ge) +
1

2
⟨ξ,Mξ⟩+ 1

2
⟨ζ, Λζ⟩+ 1

2
⟨θe, Γ−1θe⟩. (6.35)
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For all x ∈ C̃, the change in W along the solutions of H̆ is

⟨dVq(ge), νe⟩+ ⟨ζ,−dVq(ge)− ϑq(ζ)⟩
+ ⟨ξ,−Φθe −M∇M

ν ξ − dVq(ge)− φq(ξ)⟩
− ⟨θe, Γ−1Proj(−ΓΦTξ, θa)⟩,

(6.36)

which simplifies to

− ⟨ξ, φq(ξ)⟩ − ⟨ζ, ϑq(ζ)⟩ − ⟨θe, Γ−1Proj(−ΓΦTξ, θa) + ΦTξ⟩
≤ −⟨ξ, φq(ξ)⟩ − ⟨ζ, ϑq(ζ)⟩
≤ 0,

(6.37)

where the first inequality follows from (P3) in Lemma 6.2. For any x ∈ D̆ and (w,m) ∈
G̃(ge, q, s), the change in W across jumps is

W (ge, w, ξ, ζ, θa)−W (ge, q, ξ, ζ, θa) = Vw(ge)− Vq(ge),

which is clearly equal to zero when (ge, q, s) ∈ (C\D) × {1}, i.e. when w = q. Oth-
erwise, it follows from Assumption 6.2 that Vw(ge) − Vq(ge) ≤ 0 for all (q, w) ∈
Q × π1(G̃(ge, q, s)). Consequently, the growth of W along solutions to H̆ is bounded
by

uc(x)=

{
−⟨ξ, φq(ξ)⟩−⟨ζ, ϑq(ζ)⟩, if x ∈ C̃

−∞, otherwise
(6.38)

ud(x)=

{
0, if x ∈ D̆

−∞, otherwise
(6.39)

along flows and across jumps, respectively. It follows from Assumption 6.2 and (6.35)
that W is proper and positive definite on C̃ ∪ D̆ with respect to the compact set A1.
Hence, the proof of [90, Theorem 3.18] implies that A1 is uniformly globally stable
for the hybrid system H̆. Observe that the system H̆ permits at most two consecutive
jumps before a nonzero time of flow follows. Thus, since W is continuous, H̆ satisfies
the hybrid basic conditions, and every maximal solution to H̆ is complete, it follows
from [90, Corollary 8.7 (b)] that each solution to H̆ converges to the largest weakly
invariant subset Ψ contained in

W−1(r) ∩ u−1
c (0), (6.40)

for some r ∈ R, where

u−1
c (0) = {x ∈ X : ξ = 0, ζ = 0, (ge, q) ∈ C}. (6.41)

Moreover, the closed-loop system (6.28) is such that ζ ≡ 0 implies dVq(ge) ≡ 0, and
it follows from Assumption 6.2 that dVq(ge) = 0 implies (ge, q) ∈ A. Thus, (ξ, ζ) ≡ 0
implies that Φ(ge, 0, 0, s, ud, ad)θe ≡ 0, which results in

Ψ ⊂W−1(r) ∩ u−1
c (0) ⊂W−1(r) ∩ A2 ⊂ A2.
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Consequently, since every solution is complete and bounded, every solution to H̆ con-
verges to A2. Solutions to H that are not solutions to H̆ are those with initial values
x∗ such that (g∗e , q

∗) ∈ D\C. However, it follows from (A5) that such solutions ex-
hibit 1 ≤ K ≤ N immediate and consecutive jumps from q∗ to some w ∈ G

K
(g∗e , q

∗)
satisfying (g∗e , w) ∈ C\D, after which the solutions coincide with a solution to H̆.
Consequently, we conclude that A1 is uniformly globally stable for the hybrid system
H and that every solution to the hybrid system H converges to A2.

We remark that Theorem 6.4 implies that the problem statement is solved. Fur-
thermore, note that uniform global asymptotic stability of the compact set

B̃ = {x ∈ X : (ge, q) ∈ A, ζ = 0, ξ = 0}, (6.42)

for the closed-loop system H implies that B is uniformly globally asymptotically stable
for the error system N . However, without further assumptions on the nature of the
parametrized loop and commanded input speed, it is not possible to show that (6.26)
uniformly globally asymptotically stabilizes the compact set B̃ for the closed-loop
system H. However, a trivial modification of the proof of Theorem 6.4 clearly shows
that the non-adaptive hybrid control law (6.16) uniformly globally asymptotically
stabilizes the compact set B̃ for the closed-loop system H with θ̇a = 0 and θe = 0,
implying that B is uniformly globally asymptotically stable for the error system N .

We remark that a trivial modification of the proof of Theorem 6.4 shows that the
non-adaptive hybrid control law (6.16) uniformly globally asymptotically stabilizes
the compact set B̃ for the closed loop system H with θ̇a = 0 and θe = 0, implying that
B is uniformly globally asymptotically stable for the error system N .

6.4 Potential Functions for Marine Vehicles

In this section we construct potential functions and derive 5-tuples (A, C,D,G, V )
satisfying Assumption 6.2 for a surface vehicle and an underwater vehicle. This 5-tuple
determines the proportional control action and the switching mechanism through the
potential functions V and the flow set, jump set and jump map C, D, G, respectively.

6.4.1 Potential functions on SE(2)

The configuration of a surface vehicle can be identified with the matrix Lie group
SE(2) = R2⋊SO(2). An element g = (p,R) ∈ SE(2) contains the position p = (x, y) ∈
R2 and orientation R ∈ SO(2) of a vehicle-fixed frame with respect to an inertial
frame.

Using the linear action of SO(2) on R2 defined by (p,R) 7→ Rp, the semidirect
product SE(2) = R2 ⋊ SO(2) yields the natural error on SE(2)

ge = g−1
d g = (pe, Re) = (RT

d (p− pd), R
T
dR). (6.43)

The goal is to construct potential functions and a switching mechanism for stabi-
lization of the configuration corresponding to the compact set

A• = {ge ∈ SE(2) : pe = 0, Re = e}. (6.44)

110



6.4. Potential Functions for Marine Vehicles

To this end, we let δ > 0, and define the functions ρ1 : D1 → R, ρ2 : D2 → R
and ρ3 : D3 → R, where D1 = D2 := {R ∈ SO(2) : l̂ogR ∈ [δ, π] ∪ (−π,−δ]} and
D3 := SO(2) by

ρ1(R) :=

{
l̂ogR, if l̂ogR ∈ [δ, π]

l̂ogR+ 2π, if l̂ogR ∈ (−π,−δ]
(6.45a)

ρ2(R) :=

{
l̂ogR, if l̂ogR ∈ (−π,−δ]
l̂ogR− 2π, if l̂ogR ∈ [δ, π]

(6.45b)

ρ3(R) := l̂ogR, (6.45c)

where l̂ogR = atan2(R21, R11) is the principal logarithm of R ∈ SO(2), which corre-
sponds to the heading angle ψ ∈ (−π, π] in practice. Now, for each q ∈ Q = {1, 2, 3},
we define the potential functions Vq : Dq × R2 → R≥0 by

Vq(ge) :=
1
2kqρq(Re)

2 + 1
2p

T
eKpe + oq, (6.46)

where K = KT > 0, k1 = k2 = k > 0, k3 > 0, o1 = o2 = o and o3 = 0. Due to the
topology of SO(2), at least two potential functions are required to design a globally
asymptotically stable hybrid control law. However, by using three potential functions
we obtain improved transient performance by encoding smaller proportional gains into
the global controllers (q ∈ {1, 2}) relative to the local controller (q = 3). To this end,
the role of the offsets is to enable k3 > k, i.e., a larger proportional gain locally around
Re = I. A visualization of the rotational part of the potential functions is shown in
Figure 6.1.
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Figure 6.1: The rotational part of the potential functions {Vq}q∈Q with k = 1
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The switching mechanism is defined by the flow and jump sets C,D ⊂ SE(2)×Q
and the jump map G : D ⇒ Q associated with the potential functions {Vq}q∈Q. We
define the flow and jump sets by

C :=
⋃
q∈Q

Cq × {q}, (6.47a)

D :=
⋃
q∈Q

Dq × {q}, (6.47b)

where

C1 := {ge ∈ SE(2) : δ ≤ ρ1(Re) ≤ π + ε}, (6.48a)
C2 := {ge ∈ SE(2) : δ ≤ −ρ2(Re) ≤ π + ε}, (6.48b)
C3 := {ge ∈ SE(2) : |ρ3(Re)| ≤ δ + ε}. (6.48c)

and

D1 :={ge ∈ SE(2) : π + ε ≤ ρ1(Re) ≤ 2π − δ}
∪ {ge ∈ SE(2) : |ρ3(Re)| ≤ δ} (6.49a)

D2 :={ge ∈ SE(2) : π + ε ≤ −ρ2(Re) ≤ 2π − δ}
∪ {ge ∈ SE(2) : |ρ3(Re)| ≤ δ} (6.49b)

D3 :={ge ∈ SE(2) : |ρ3(Re)| ≥ δ + ε}. (6.49c)

In (6.48) and (6.49), δ > 0 determines the switching point between the local and
global controllers while ε > 0 denotes the hysteresis half-width between the global
controllers. Finally, we define the set-valued jump map for all (ge, q) ∈ D by

G(ge, q) := {w ∈ Q \ {q} : ge ∈ Cw ∩Dq} . (6.50)

The following lemma provides conditions on the gains and offsets in (6.46), ensuring
that V is nonincreasing across jumps.

Lemma 6.4. Let A = A• × {3}. If k3 ≥ k, δ + 2ε < π and

1
2δ

2(k3 − k) ≤ o ≤ 1
2 (δ + ε)2(k3 − k), (6.51)

then the 5-tuple (A, C,D,G, V ) satisfies Assumption 6.2.

Proof. (A1-A2) A is compact since it is finite, while C and D are closed subsets of
SE(2) × Q since each ρq is continuous and the sublevel sets of a continuous function
are closed. Moreover,

⋃
q∈Q Cq = SE(2) and Cq ∪Dq = SE(2) for each q ∈ Q. Hence,

(A1)-(A2) hold.
(A3) Observe that G is locally bounded since rgeG = Q is compact. More-

over, it follows from (A2) that G nonempty for all (ge, q) ∈ D. Since G−1(w) =⋃
q ̸=w (Cw ∩Dq)×{q} is closed, gphG−1 =

⋃
w∈QG

−1(w)×{w} and the intersection
of closed sets are closed, it follows from [102, Theorem 5.7 (a)] that G−1 is outer
semicontinuous everywhere, and hence that G is outer semicontinuous everywhere.

(A4) Let ge ∈ Cq ∩ Dq and w ∈ G(ge, q). Consider the case where q ∈ {1, 2}. If
w = 3, then it follows that |ρ3(Re)| = δ, and hence that ge ∈ C3\D3. Otherwise,
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w = 3 − q and it follows that |ρq(Re)| = π + ε, which implies that |ρw(Re)| = π − ε
and hence that ge ∈ C3−q\D3−q. Finally, consider that q = 3. Then, ge ∈ Cq ∩ Dq

implies that |ρ3(Re)| = δ + ε, which further implies that ge ∈ Cw\Dw.
(A5) Let (ge, q) ∈ D\C. Then, ge ∈ Cw for some w ∈ G(ge, q). Consequently,

ge ∈ Cw\Dw or ge ∈ Cw ∩Dw. It follows from (A4) that (A5) holds with N = 2.
(A6) V is clearly continuously differentiable on O and positive definite with respect

to A. Moreover, since the function Ṽ : D → R, where D =
⋃
q∈QDq × {q} defined by

(R, q) 7→ 1
2kqρq(R)

2 is continuous, π1(D) = SO(2), and SO(2) is compact, it follows
that Ṽq is proper. Additionally, the function V̌q : R2 → R defined by p 7→ 1

2p
TKp is

radially unbounded. Consequently, Vq(ge) = Ṽq(Re) + V̌q(pe) is a proper map.
To prove (A7), consider ge ∈ Cq ∩ Dq, q ∈ {1, 2}, w = 3 − q, and 0 < ε < π.

It follows immediately from the definitions of ρ1 and ρ2 that V3−q(ge) − Vq(ge) < 0.
When ge ∈ Cq ∩ Dq, q ∈ {1, 2}, w = 3, 0 < ε < π and 0 < δ < π, it holds that
ρ3(Re)

2 ≤ ρq(Re)
2, which implies that

V3(ge)− Vq(ge) ≤
1

2
(k3 − k)ρ3(Re)

2 − o.

Since k3 − k ≥ 0 and ρ3(Re)
2 ≤ δ2, the lower bound o ≥ 1

2 (k3 − k)δ2 follows. Let
ge ∈ C3 ∩D3 and w ∈ G(ge, 3). Then δ+2ε < π implies that ρw(Re)2 = ρ3(Re)

2, and
hence

Vw(ge)− V3(ge) ≤
1

2
(k − k3)ρ3(Re)

2 + o.

Using k − k3 ≤ 0 and ρ3(Re)2 ≥ δ + ε > 0, it holds that o ≤ 1
2 (k3 − k)(δ + ε)2.

(A8) For all (ge, q) ∈ C, it is clear that dVq(ge) = (RT
eKpe, kqρq(Re)) = 0 if and

only if (ge, q) ∈ A.

6.4.2 Potential functions on S̃E(3)

Analogous to the surface vehicle case, we can identify the configuration of an under-
water vehicle with the matrix Lie group SE(3) = R3⋊SO(3). An element g = (p,R) ∈
SE(3) contains the position p ∈ R3 and orientation R ∈ SO(3) of a vehicle-fixed frame
with respect to an inertial frame.

The goal is to construct potential functions and a switching mechanism for stabi-
lization of the configuration corresponding to the compact set

A0 = {ge ∈ SE(3) : pe = 0, Re = I}, (6.52)

However, working with 3×3 rotation matrices can be cumbersome in practice. Unfor-
tunately, there does not exist any globally nonsingular three-parameter representation
of SO(3). As a result, practical state estimation and control applications normally
utilize a globally nonsingular four-parameter unit quaternion representation of the
vehicle orientation.

Unit quaternions z = (η, ϵ) ∈ S3, where η ∈ R and ϵ ∈ R3, map to the Lie group
SU(2) through the isomorphism z 7→ Z defined by

Z :=

(
η + iϵ3 −ϵ2 + iϵ1
ϵ2 + iϵ1 η − iϵ3

)
∈ C2×2, (6.53)
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and an element ω = (ω1, ω2, ω3) ∈ R3 maps to su(2) through the isomorphism
·̂ su(2) : R3 → su(2) defined by

ω̂su(2) :=
1

2

(
iω3 −ω2 + iω1

ω2 + iω1 −iω3

)
. (6.54)

The Lie algebras of su(2) and so(3) are isomorphic. Hence, the surjective homomor-
phism Ad: SU(2) → SO(3) given by

AdZ := I + 2ηϵ× + 2ϵ×ϵ×, (6.55)

is a covering map, where ( · )× : R3 → so(3) is defined by

ϵ× :=

 0 −ϵ3 ϵ2
ϵ3 0 −ϵ1
−ϵ2 ϵ1 0

 . (6.56)

Note that Ad : SU(2) → SO(3) is globally two-to-one and satisfies AdZ = Ad−Z be-
cause SU(2) is the double cover of SO(3). In practice, this implies that ±Z corresponds
to the same physical orientation.

Using the adjoint action of SU(2) on R3 given by (p, Z) 7→ AdZ p, the semidirect
product R3 ⋊ SU(2) implies that the natural error on S̃E(3) := R3 ⋊ SU(2) is [99]

ge = g−1
d g = (pe, Ze) = (AdZ−1

d
(p− pd), Z

−1
d Z). (6.57)

We remark that S̃E(3) is the universal covering group of SE(3). Due to the double
cover property of SU(2), stabilizing the set {ge ∈ S̃E(3) : pe = 0, Ze = I} using
the gradient of a potential function either leads to unwinding, where the control law
unnecessarily performs a full rotation of the rigid body, or it may lead to very poor
convergence properties around tr(Ze) = 2ηe = 0 [71, 92, 136]. Consequently, to prevent
unwinding and obtain global convergence properties, we must stabilize the compact
set of disconnected points

A• = {ge ∈ S̃E(3) : Ze = ±I}. (6.58)

To this end, we define the set Q := {−1, 1} and the potential functions Vq : S̃E(3) →
R≥0 as in [71] by

Vq(ge) := k tr(I − qZe) +
1
2p

T
eKpe

= 2k(1− qηe) +
1
2p

T
eKpe,

(6.59)

where k > 0 and K = KT > 0. Let ε ∈ (0, 1) denote the hysteresis half-width and
define the flow and jump sets by

C := {(ge, q) ∈ S̃E(3)×Q : qηe ≥ −ε} (6.60a)

D := {(ge, q) ∈ S̃E(3)×Q : qηe ≤ −ε}. (6.60b)

Finally, the jump map is defined as

G(q) := −q. (6.61)

Observe that the preceding definitions ensure that the switching is hysteretic since
qηe ≤ −ε implies that G(q)ηe ≥ ε.
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Lemma 6.5. Let A := {(ge, q) ∈ S̃E(3) × Q : ηe = q}. The 5-tuple (A, C,D,G, V )
satisfies Assumption 6.2.

Proof. The proof is a straightforward extension of the results of [71, Lemma 5.1,
Theorem 5.2]. It is clear that the function V̌q : R3 → R defined by p 7→ 1

2p
TKp is

continuously differentiable, radially unbounded and positive definite with respect to
π2(A), where A is regarded as a subset of SU(2) × R3 × Q. Moreover, C and D are
clearly closed subsets of S̃E(3)×Q, A is compact, and for all (ge, q) ∈ C, it holds that
dVq(ge) = (RT

eKpe, kqϵe) = 0 if and only if pe = 0, ϵe = 0 which implies that η = ±1,
i.e., (ge, q) ∈ A.

6.5 Experimental Results

In this section we report the results of three experiments conducted in the Marine
Cybernetics Laboratory (MC Lab) [137] at the Norwegian University of Science and
Technology (NTNU) in Trondheim. The main purpose of the experiments is to demon-
strate the applicability of the devised controllers in realistic scenarios for surface and
submerged marine vehicles. The first two experiments were conducted using a scale
model tug boat and the third experiment was conducted with a remotely operated
underwater vehicle.

In the MC Lab, a local positioning system comprises sets of cameras mounted above
and below the water surface and the Qualisys Track Manager (QTM) software. Light
emitted by the cameras is reflected by a set of optical markers mounted on the vehicle
to be tracked. These measurements are then processed with QTM, which outputs
the position and orientation estimates at a rate of 100Hz. A multiplicative extended
Kalman filter (MEKF) [24, Section 14.4.3] is employed to reconstruct the velocities and
filter the position and orientation. The MEKF is augmented with linear acceleration
and angular velocity measurements for the underwater vehicle experiments.

Figure 6.2: The Marine Cybernetics Lab at NTNU

6.5.1 Cybership Enterprise

Cybership Enterprise (CSE) is a 1:50 scale model tug boat with a length of 1.105m
and beam of 0.248m. CSE is equipped with two Voith Schneider propellers (VSPs) and
one bow thruster. The configuration of CSE is described by g = (p,R) ∈ SE(2), where
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Figure 6.3: Cybership Enterprise in the MC-Lab

elements in SE(2) admit a homogeneous matrix representation through the injective
homomorphism SE(2) → GL(3) defined by [99]

g :=

(
R p
0 1

)
∈ R3×3. (6.62)

Denoting the vehicle-fixed linear and angular velocities by v ∈ R2 and ω ∈ R, respec-
tively, define the vehicle-fixed velocity as ν := (v, ω) ∈ R3. An element ν ∈ R3 maps
to se(2) through the isomorphism ·̂ : R3 → se(2) defined by

ν̂ :=

(
Sω v
0 0

)
∈ R3×3, S :=

(
0 −1
1 0

)
. (6.63)

Let θ ∈ R15 denote the model parameters. The equations of motion for a surface
vehicle can be formulated by (6.1) with

M =

θ1 0 0
0 θ2 θ3
0 θ3 θ4

 , f(g) = b, (6.64)

d(ν) =

 −θ5ν1
−θ6ν2 − θ8ω
−θ9ν2 − θ7ω

+

−θ10|ν1|ν1
−θ11|ν2|ν2
−θ12|ω|ω

 (6.65)

where b = (θ13, θ14, θ15) ∈ R3 is a constant bias. We remark that the expression for
the regressor Φ follows from (6.17) together with (6.64) and (6.65).
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The generalized forces are calculated using (6.26), where the adjoint actions of
SE(2) and se(2) on R3 for g = (p,R) ∈ SE(2) and ν = (v, ω) ∈ R3 are given by

Adg =

(
R −Sp
0 1

)
, adν =

(
Sω −Sv
0 0

)
. (6.66)

The generalized forces τ ∈ R3 map to the actuator inputs (α, u) ∈ R2 × R3 through

τ = B(α)Ku, (6.67)

where α = (α1, α2) are the VSP angles and u = (u1, u2, u3) are the thruster inputs.
Specifically, (u1, u2) corresponds to the VSPs, and u3 is the bow thruster.

Using the transformation (α, u) 7→ (ǔ1, ǔ2, ǔ3), where

ǔ1 =

(
cos(α1)u1
sin(α1)u1

)
, ǔ2 =

(
cos(α2)u2
sin(α2)u2

)
, ǔ3 = u3. (6.68)

we can rewrite (6.67) as τ = B̌Ǩǔ, which is solved using the Moore-Penrose pseudoin-
verse

ǔ∗ = (B̌Ǩ)†τ, (6.69)

for a given τ ∈ R3. The actuator control inputs (α, u) are then obtained by inverting
the transformation (6.68). Note that the BT input is constrained to the interval [−1, 1],
while the VSP inputs are constrained to [0, 1]. The desired path is given by γ(s) =
(γ1(s), γ2(s)) ∈ SE(2) where

γ1(s) =

(
xd(s)
yd(s)

)
, γ2(s) = exp(Sψd(s)), (6.70)

where ψd(s) = atan2(y′d(s), x
′
d(s)).

The hysteresis width and control gains are chosen according to Table 6.1 with
ϑq(ζ) = Kdζ and φq(ξ) = Kdξ. Moreover, the adaptation gain and bounds on θ ∈ R15

are given by

Γ = blkdiag(50, 40, 5, 20, 5I4×4, 10I9×9, 0.025, 0.1, 0.01),

θ = (10, 15, 1,−3, 07×1,−1,−4,−4,−4),

θ = (20, 30, 5, 3, 107×1, 10, 4, 4, 4),

and the parameters are initialized as

θ0 = (10, 15, 1, 012×1). (6.71)

Two two experiments are performed using different parametrized loops; the first
loop is a circle, and the second is a lemniscate.

Circle

The circle is centered at O = (1m, 0) with a radius of R = 1.2m and is represented
by the parametric equation

γ1(s) =

(
R cos(s)
R sin(s)

)
+O. (6.72)
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Figure 6.4: North-East plot showing the North-East position p = (x, y) and the
desired position pd = (xd, yd).
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Figure 6.5: The configuration p = (x, y), R = exp(Sψ) and the desired configuration
pd = (xd, yd), Rd = exp(Sψd).
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Figure 6.6: The velocity estimates (ṗ, ω) and the desired velocity references (γ̇1, ωd).
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Figure 6.7: The speed U , desired speed ud, commanded input speed µ and logic
variable q.
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Figure 6.8: The VSP control inputs u1, u2 ∈ [0, 1], the BT control input u3 ∈ [−1, 1]
and VSP angle inputs α1, α2.
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Figure 6.9: The inertia and bias parameters.
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Table 6.1: Control Parameters

Circle Lemniscate
δ π/6 δ π/18
ε π/18 ε π/18
Kp diag(1.7, 1.7) Kp diag(1.45, 1.45)
k 0.5 k 0.5
k3 1.2 k3 1.5
Kd diag(.7, .6, .6) Kd diag(1.25, 1.25, 1)
Λ I3 Λ I3
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Figure 6.10: The damping parameters associated with the linear and nonlinear
damping.

Experimental results are presented in Figures 6.4 to 6.10. The ship was initialized at
p(0) = (0.35m,−1.46m) with ψ = −42◦. At this point in time, the orientation error
was ρ3(Re(t))|t=0 = −π 106

180 ≥ δ + ε, and it follows from (6.46) that ρ22(Re(t))|t=0 <
ρ21(Re(t))|t=0. In other words, the orientation error was in the jump set corresponding
to q = 3 and the jump map (6.50) implies that the global controller corresponding
to q+ = 2 was activated, which is what we observe in the lower plot in Figure 6.7.
Then, at t ≈ 33 s, the commanded input speed µ was set to 0.08m/s as seen in
Figure 6.7. Figures 6.4 and 6.5 shows that CSE accurately tracked the path after
an initial transient due to the significant initial configuration error, even though the
actuator inputs saturate until t ≈ 25 s as seen in Figure 6.8. Figure 6.6 depicts the
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system velocities and desired velocities, while Figure 6.7 shows the commanded input
speed µ(t), the desired speed ud(t) and the estimated speed U(t) = ∥v(t)∥. Therefore,
it is clear that the speed and velocities are tracked with sufficient accuracy.

Lemniscate

The lemniscate is centered at O = (2m, 0) and is represented by the parametric
equation

γ1(s) =

R1
cos s

1 + sin2s

R2

√
2 sin 2s

1 + sin2s

+O, (6.73)

where R1 = 2m, R2 = 2.4m.
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Figure 6.11: North-East plot showing the position p and the desired position pd.

Experimental results are presented in Figures 6.11 to 6.17. The ship was initialized
at p(0) = (4.2m, 0.3m) with a heading of ψ = 130◦. Since the lemniscate loop given
by (6.73) does not result in a constant acceleration with respect to the body-fixed
frame for nonzero commanded input speeds, the control gains must be increased to
compensate for the inaccuracies in the dynamic model and obtain similar performance
to the circular trajectory.

By comparing Figures 6.9 and 6.10 with Figures 6.16 and 6.17, it is clear that
the parameters do not converge to any ‘true’ value. This cannot be expected because
we have not provided any persistency of excitation condition; that is, we have not
given any conditions under which (6.26) uniformly globally asymptotically stabilizes
the compact set B̃ for the closed-loop system H. However, even if such conditions
were provided, a constant bias in the vehicle-fixed frame will not fully capture the
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Figure 6.12: The configuration p = (x, y), R = exp(Sψ) and the desired configura-
tion pd = (xd, yd), Rd = exp(Sψd).
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Figure 6.13: The velocity estimates (ṗ, ω) and the desired velocity references (γ̇1, ωd).
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Figure 6.14: The speed U , desired speed ud, commanded input speed µ and logic
variable q.

0 100 200 300 400 500
Time [s]

-1

-0.5

0

0.5

1

u1

u2

u3

0 100 200 300 400 500
Time [s]

-200

-100

0

100

200

A
n
g
le

[d
eg

]

,1

,2

Figure 6.15: The VSP control inputs u1, u2 ∈ [0, 1], the BT control input u3 ∈ [−1, 1]
and VSP angle inputs α1, α2.
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Figure 6.16: The inertia and bias parameters.
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Figure 6.17: The damping parameters associated with the linear and nonlinear
damping.
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inaccuracies in the mapping between the forces produced by the actuators and their
inputs. As a consequence, the desired forces and torque computed by the control law
are significantly different from the actual forces and torque produced by the actuators.
In turn, this leads to a tracking error, which induces parameter adaptation. Since
this adaptation occurs due to unmodeled effects that are not correctly captured by
our assumed model structure, we cannot expect to accurately identify the mass and
damping model parameters for this system. Instead, due to the presence of a constant
bias in our dynamic model, our control law is more reminiscent of a PID controller
with adaptive feedforward. To see this, note that the bias feedforward term can be
written as −

∫ t
0
(νe(τ)−ζ(τ))dτ , and that (6.14) can be interpreted as a multiple-input

multiple-output low-pass filter with input −dVq and output ζ. Thus, when the velocity
error νe is zero, the bias feedforward term can be interpreted as the integral of the
output of a low-pass filter whose input is the configuration error.

Finally, we observe that the parameters converge for the circular trajectory. This
is a consequence of the steady-state nature of the circular trajectory, that is, con-
stant desired velocities with respect to the desired frame when ud has converged to
the commanded input speed µ. For the lemniscate trajectory, however, the desired
velocities are not constant even if the desired speed has converged to the commanded
input speed. Hence, considering the inaccuracies in the mappings between the desired
forces and torque and the produced forces and torque, it is not surprising that the
parameters do not converge to any specific values and that the damping and bias
parameters change more rapidly when the ship is in a turning maneuver, as seen in
Figures 6.12, 6.16 and 6.17. Despite these structural modeling inaccuracies, the ship’s
position remains within 4 cm of the desired position after converging to the path, as
seen in Figures 6.11 and 6.12. Moreover, from Figure 6.13 and Figure 6.14, we observe
that the desired velocities and the desired speed are tracked with sufficient accuracies.

6.5.2 BlueROV2

The BlueROV2 is a remotely operated underwater vehicle developed by Blue Robotics.
The experiments were conducted using the heavy configuration BlueROV2 with eight
thrusters, depicted in Fig. 6.18.

Elements g = (p, Z) ∈ S̃E(3) admit a matrix representation using the injective
homomorphism S̃E(3) → GL(6,C) given by

g =

AdZ p 0
0 1 0
0 0 Z

 ∈ C6×6 (6.74)

Denoting the vehicle-fixed linear and angular velocities by v ∈ R3 and ω ∈ R3, respec-
tively, define the vehicle-fixed velocity as ν := (v, ω) ∈ R6. An element ν ∈ R6 maps
to s̃e(3) through the isomorphism ·̂ : R6 → s̃e(3) defined by

ν̂ =

ω× v 0
0 0 0
0 0 ω̂su

 ∈ C6×6. (6.75)
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Figure 6.18: The BlueROV2 in the MC-Lab.

The equations of motion for an underwater vehicle can then be formulated by (6.1)
with

f(g) = β(Z) + b, (6.76)

where β(Z) = (θ7 Ad
T
Z e3, e

×
3 AdTZ θ8:10) contains gravitational and buoyancy forces

and b = (θ1, . . . , θ6) ∈ R6 is a constant bias. Moreover, by assuming port/starboard
and fore/aft symmetry, the inertia matrix is parametrized by

M =


θ11 0 0 0 θ17 0
0 θ12 0 θ18 0 0
0 0 θ13 0 0 0
0 θ18 0 θ14 0 0
θ17 0 0 0 θ15 0
0 0 0 0 0 θ16

 (6.77)

while the hydrodynamic drag forces are assumed to satisfy

di(ν) = θ18+iνi + θ24+i|νi|νi, (6.78)

for i ∈ {1, . . . , 6}. We remark that the expression for the regressor Φ follows from
(6.17) together with (6.76), (6.77) and (6.78). The generalized forces are calculated
using the control law (6.26), where the adjoint actions of S̃E(3) and s̃e(3) on R6 for
g = (p, Z) ∈ S̃E(3) and ν = (v, ω) ∈ R6 are given by

Adg =

(
AdZ p× AdZ
0 AdZ

)
, adν =

(
ω× v×

0 ω×

)
. (6.79)

The generalized forces τ ∈ R6 map to the desired thrust u ∈ R8 through τ = Ku,
where each column of K is

Ki =

(
ri

Li × ri

)
, (6.80)
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where ri ∈ R3 is a unit vector pointing in the direction of thrust and Li ∈ R3 is the
position of the thruster relative to the body frame. Using (6.26), the actuator control
inputs are then found from the expression u = K†τ .

The desired path is given by γ(s) = (pd(s), Zd(s)) ∈ S̃E(3), with

pd(s)=

L1
cos s

1+sin2s

L2

√
2 sin 2s

1+sin2s

L3
2 sin s

1+sin2s

+O, zd(s)=

(
cos(ψ(s)/2)

0
0

sin(ψ(s)/2)

)

where zd is a unit quaternion that maps to SU(2) through the isomorphism zd 7→ Zd
defined in (6.53). Moreover, O = (0.2m,−0.3m,−0.55m), L1 = 1m, L2 = 0.6m,
L3 = 0.25m and ψ(s) = atan2(y′d(s), x

′
d(s)).

The desired speed reference is given by

µ =

{
0.1m/s, 5 ≤ t < 125

0.2m/s, t ≥ 125
, (6.81)

while the hysteresis half-width is ε = 0.1. The control gains are chosen as Kp =
diag(50, 50, 70), k = 16, φq(ξ) = Kdξ, ϑq(ζ) = Kdζ, Kd = diag(40, 40, 30, 7, 7, 7), and
Λ = I6. Moreover, the adaptation gain and bounds on θ ∈ R30 are given by

Γ = blkdiag(Γ1, Γ2, Γ3),

Γ1 = diag(1.5, 1.5, 1.5, 1.2, 1.2, 1.2),

Γ2 = diag(2.5, 2, 2, 2),

Γ3 = diag(7, 7, 7, 4, 4, 4, 5, 5, 20, 20, 20, 5, 5, 5, 20, 20, 20, 5, 5, 5),

θ = (−40,−109×1, 07×1,−2, 012×1),

θ = (1010×1, 506×1, 2, 0, 5012×1),

and the parameters are initialized as

θ0 = (010×1, 19.17, 26.37, 28.24, 0.28, 0.28,

0.28, 0.23,−0.23, 4.03, 6.22, 5.1,

0.07, 0.07, 0.07, 18.18, 21.66, 36.99,

1.55, 1.55, 1.55)

. (6.82)

Experimental results are presented in Figures 6.19 to 6.27. Due to limitations in the
hardware implementation, the controller activates a few seconds before the data logger
and actuator driver do. As a result, the bias and gravitational parameters have already
adapted for several seconds by the time the control signals are sent to the actuators.
This can be observed in the upper plot in Figure 6.27, where θ1 and θ3, i.e., the x and
z components of the bias, are already saturated at t ≈ 4 s when the actuator driver
is activated and the control inputs are converted to pulse width modulated actuator
signals. Remarkably, this has little effect on the transient performance, as observed
in Figure 6.21. This occurs despite the fact that the BlueROV2 was initialized at the
bottom of the pool at a distance ∥pe∥ ≈ 1.36m away from the desired position with
no initial knowledge of the gravitational- and buoyancy-related parameters.
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Figure 6.19: North-East-Down plot showing the position p, the desired position pd
and the projection of pd onto the North-East plane.
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Figure 6.20: North-East plot of the position and desired position
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Figure 6.21: The position p = (p1, p2, p3) and desired position pd = (p1d, p
2
d, p
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Figure 6.22: The orientation and desired orientation, represented by the unit quater-
nions z and zd, respectively.
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Figure 6.23: The linear velocities v and the desired linear velocities vr, decomposed
in the body frame.
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Figure 6.24: The angular velocities ω and the desired angular velocities ωr decom-
posed in the body frame.
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Figure 6.25: The logic variable q, the speed U , and the desired speed Ud = |γ̇1|
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Figure 6.26: The control inputs u corresponding to the eight thrusters.
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Figure 6.27: The bias and gravitational/buoyancy related parameters, the inertia
matrix parameters and the damping parameters.

The initial quaternion error satisfies ηe ≤ −ε, which entails that a switch from the
initial value of q = 1 to q = −1 occurs at the first time step of the controller. Since the
logger was initialized after the controller, although no control inputs were sent to the
actuators, we have changed first logged value of the logic variable to q = 1 to highlight
the fact that a switch has in fact occurred.

From Figures 6.19, 6.21 and 6.22, we observe that the ROV successfully tracks
the position and orientation references with satisfactory accuracy. Moreover, from
Figures 6.23 and 6.24, we see that the desired velocities νr = Ad−1

ge νd are tracked
with satisfactory accuracy. However, we remark that v3 contains significantly more
noise compared to the other linear velocities. Moreover, the x-component of the linear
velocity, v1, exhibits spikes that coincide with the minima of p3, i.e. the z-component
of the position vector. This is due to poor tracking of the ROV from the camera-based
underwater positioning system, which either loses track of the ROV and/or outputs
noisy and inaccurate position measurements (especially in the z-direction). This can
be mitigated by further restricting the operating region of the ROV and/or lowering
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the weight of the camera-based position measurements relative to the accelerometer
measurements in the Kalman filter.
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Chapter 7

Hysteretic Control Lyapunov
Functions

In this chapter, we present a new class of control Lyapunov functions for hybrid
feedback control of continuous-time systems, referred to as hysteretic control Lyapunov
functions (HCLFs). HCLFs include a hysteresis-based switching mechanism and result
in a hybrid control law, transforming the continuous-time system into a hybrid control
system. We show that the existence of a family of HCLFs satisfying the small control
property implies global stabilizability of a compact set. The hybrid feedback consists of
a collection of continuous feedback laws and a hysteresis-based switching mechanism.
Moreover, we prove that optimization-based hybrid feedback laws can be constructed
under minor assumptions on the objective functions. The collection of optimization-
based feedback laws are continuous, implying that the hybrid basic conditions hold
such that the stability is robust.

The material in this chapter is based on [92].

7.1 Introduction

Control Lyapunov functions (CLFs) constitute a powerful tool for constructive non-
linear control design, since they can be utilized to determine a stabilizing control
law from Lyapunov inequalities [138, 139]. General control laws for stabilization of
nonlinear systems using CLFs were first introduced in [140] through Sontag’s univer-
sal formula, and later in [89]. The control law in [89] is notable in the sense that it
pointwise minimizes the norm of the control input with respect to the CLF. More re-
cently, CLFs have been extended to hybrid systems with and without disturbances in
[141] and [142], respectively. However, for global asymptotic stabilization of dynamical
systems defined on non-contractible state-spaces, there does not exist a continuously
differentiable CLF [143].

The remainder of this chapter is organized as follows. Section 7.2 defines a family
of hysteretic CLFs, and proves that a family of continuous feedback laws derived
from the feasible set-valued map of control inputs defined by the HCLFs results in
global asymptotic stability of any compact set. We subsequently introduce synergistic
control Lyapunov functions in Section 7.3 and characterize their relationship with
SCLFs. Then, Section 7.4 presents sufficient conditions for the existence of a family
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7. Hysteretic Control Lyapunov Functions

of continuous control selections from the feasible set-valued map. Given a collection
of level-bounded and strictly convex objective functions, we present an optimization-
based hybrid feedback law that pointwise minimizes the objective functions subject
to the stability constraints imposed by the HCLFs. Finally, Section 7.5 presents a
HCLF-based control design for an underwater vehicle guaranteeing global asymptotic
tracking. The theoretical developments are verified with simulations.

7.2 Hysteretic Control Lyapunov Functions

In this section, we define hysteretic control Lyapunov functions for the following class
of continuous-time systems

ẋ = f(x, r, u), (x, r, u) ∈ X ×R× U , (7.1)

where u ∈ U describes the input and r ∈ R describes a known exogenous reference
signal. Throughout this chapter, the data of (7.1) is taken to satisfy the following
assumptions.

Assumption 7.1.

(N1) The state space X ⊂ Rn is closed.
(N2) The exogenous reference space R ⊂ Rk is compact.
(N3) The input space U ⊂ Rm is closed and convex.
(N4) The mapping f : X ×R× U → Rn is continuous.

Systems of this form adequately describe a wide range of tracking problems for
mechanical systems.

Definition 7.2 (HCLF Family). Let A ⊂ X be compact and Q ⊂ Z be finite. A
collection of functions {Vq}q∈Q is a family of hysteretic control Lyapunov functions for
the system (7.1) relative to A with negativity margins {γq}q∈Q if there exist collections
of sets {Iq}q∈Q, {Oq}q∈Q, and {Mq}q∈Q such that

(H1) {Iq}q∈Q covers X , and for each q ∈ Q, Iq is closed in X , Oq is open in X , Mq

is closed in X , and Iq ⊂ Oq ⊂ Mq;
(H2) for every q ∈ Q, Vq : Mq → R≥0 is continuous on Mq and continuously differ-

entiable on Mq \ A, the zero set of Vq satisfies ZeroVq = A∩Mq, and for each
c > 0, the set {x ∈ Mq : Vq(x) ≤ c} is compact.

(H3) for all (q, s) ∈ Q×Q and every x ∈ (Mq \ Oq) ∩ Is,

Vs(x) ≤ Vq(x); (7.2)

(H4) for every q ∈ Q, γq : Mq \ A → R>0 is continuous, and for every x ∈ Mq \ A
and every r ∈ R, there exists u ∈ U such that

⟨∇Vq(x), f(x, r, u)⟩+ γq(x) < 0. (7.3)

A family of HCLFs is a tool that allows the design of a hybrid feedback controller
of the form 

q̇ = 0 (x, r) ∈ Cq,

q+ ∈ Gq(x) (x, r) ∈ Dq,

u = κq(x, r)

(7.4)

136



7.2. Hysteretic Control Lyapunov Functions

where {κq}q∈Q is a collection of continuous feedback control laws and the controller
flow set, jump set, and jump map are defined by

Cq := Mq ×R, (7.5)
Dq := (X \ Oq)×R, (7.6)

Gq(x) :=
{
s ∈ Q : x ∈ Is \ Oq

}
, (7.7)

respectively. We remark that the smallest possible Mq is the closure of Oq. In this
case, the set Mq \ Oq that appears in (H3) in Definition 7.2 becomes Oq \ Oq. Since
every Oq is relatively open in X , this set may be interpreted as the relative boundary
of Oq in X .

A hybrid system describing the resulting closed-loop dynamics when the hybrid
feedback controller (7.4) is applied to the system (7.1) that takes into account all
admissible exogenous reference signals is given by{

ẋ ∈ F (x, q) (x, q) ∈ C,

q+ ∈ G(x, q) (x, q) ∈ D,
(7.8)

where the closed-loop flow set, flow map, jump set, and jump map are defined by

C :=
⋃
q∈Q

Mq × {q}, (7.9)

F (x, q) := con{f(x, r, κq(x, r)) : r ∈ R}, (7.10)

D :=
⋃
q∈Q

(X \ Oq)× {q}, (7.11)

G(x, q) := Gq(x), (7.12)

respectively, and con denotes the closed convex hull of a set. For convenience of nota-
tion, the flow map (jump map) of a state in a hybrid system is omitted if it remains
unchanged along flows (across jumps). The closed-loop data has the following desired
properties.

Lemma 7.1. The hybrid system (7.8) satisfies the hybrid basic conditions (Assump-
tion 2.16).

Proof. Since C andD are finite unions of closed sets, it follows that C andD are closed.
The set-valued mapping (x, q) 7→ {f(x, r, κq(x, r)) : r ∈ R} is outer semicontinuous
and locally bounded relative to C by [103, Proposition 1.4.14]. In particular, (x, r, q) 7→
f(x, r, κq(x, r)) is continuous on X × R × Q and (x, q) 7→ R is outer semicontinuous
and locally bounded when regarded as a set-valued mapping. Taking the closed convex
hull preserves local boundedness and outer semicontinuity of mappings (this follows
from [90, Lemma 5.17]) and ensures that F is convex-valued. Lastly, it holds that

gphG = {(x, q, s) ∈ X ×Q×Q : x ∈ Is \ Oq}

=
⋃
q∈Q

⋃
s∈Q

(Is \ Oq)× {q} × {s}, (7.13)

which is closed as it is a finite union of closed sets. Consequently, G is outer semicon-
tinuous relative to D by Lemma 2.2.
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The definition of an HCLF family naturally leads to a collection of feasible set-
valued mappings for the input. Defining, for every q ∈ Q, the compact set

Bq := (A×R) ∩ Cq, (7.14)

we can for every q ∈ Q define the feasible set-valued mapping Fq : Cq \ Bq ⇒ U ,

Fq(x, r) :=
{
u ∈ U : ⟨∇Vq(x), f(x, r, u)⟩+ γq(x) ≤ 0

}
. (7.15)

The fact that Fq is takes nonempty values on Cq \ Bq follows readily from (H4) in
Definition 7.2. With (7.15) in place, we now define a feasible family of control laws.

Definition 7.3. A collection of control laws {κq}q∈Q is feasible if for every q ∈ Q,
κq : Cq ×R → U is continuous and κq(x, r) ∈ Fq(x, r) for all (x, r) ∈ Cq \ Bq.

A feasible collection of control laws ensures that ⟨∇Vq(x), f(x, r, κq(x, r))⟩+γq(x) ≤
0 for every q ∈ Q and all (x, r) ∈ Cq \ Bq. Hence, the negativity margins control the
decrease of the HCLF family along flows and should therefore be viewed as design
parameters. The next result shows that the regularized set-valued flow map F as
defined by (7.10) inherits this property.

Lemma 7.2. Let {Vq}q∈Q be an HCLF family for (7.1) relative to A with negativity
margins {γq}q∈Q. If {κq}q∈Q is a feasible collection of control laws, then ⟨∇Vq(x), φ⟩+
γq(x) ≤ 0 for every φ ∈ F (x, q) and all (x, q) ∈ C \ (A×Q).

Proof. Let Fκ(x, q) := {f(x, r, κq(x, r)) : r ∈ R)} such that F (x, q) = conFκ(x, q) for
all (x, q) ∈ C. Let F◦(x, q) := {φ ∈ Rn : ⟨∇Vq(x), φ⟩ + γq(x) ≤ 0}. Since F◦(x, q)
is the sublevel set of an affine function, it is closed and convex for all (x, q) ∈ C.
Since the controllers are feasible, it holds that Fκ(x, q) ⊂ F◦(x, q) for all (x, q) ∈
C \ (A × Q). Consequently, F (x, q) = conFκ(x, q) ⊂ conF◦(x, q) = F◦(x, q) for all
(x, q) ∈ C \ (A×Q).

We now prove that if {κq}q∈Q is a feasible collection of control laws, then the
compact set A × Q is globally pre-asymptotically stable for the closed-loop system
(7.8). This stability is robust to perturbations in the sense of [90, Definition 7.15], as
seen from [90, Proposition 7.21].

Theorem 7.4. Let {Vq}q∈Q be an HCLF family for (7.1) relative to A with negativity
margins {γq}q∈Q. If {κq}q∈Q is a feasible collection of control laws, then A × Q is
globally pre-asymptotically stable for the closed-loop system (7.8).

Proof. Consider the hybrid system{
ẋ ∈ F (x, q) (x, q) ∈ C,

q+ ∈ G(x, q) (x, q) ∈ C ∩D,
(7.16)

that is, the closed-loop system (7.8) with jump set D replaced by C∩D. Since C∩D ⊂
D is closed, it follows from Lemma 7.1 that (7.16) satisfies the hybrid basic conditions
(Assumption 2.16). We claim that V (x, q) := Vq(x) can be used as a Lyapunov function
for (7.16) relative to A×Q. It follows from (H2) in Definition 7.2 that V : C → R≥0 is
continuously differentiable on C \ (A×Q) and positive definite with respect to A×Q.
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Furthermore, the set {(x, q) ∈ C : V (x, q) ≤ c} is compact for every c > 0. It follows
from Lemma 7.2 that the decrease of V along flows of (7.16) is strict on C \ (A×Q).
Since C ∩D =

⋃
q∈Q(Mq \ Oq)× {q}, it follows from (H3) that V (x, s)− V (x, q) ≤ 0

for all (x, q) ∈ C ∩ D and every s ∈ G(x, q). Furthermore, jumping out of A × Q is
not possible. Lastly, since (x, q) ∈ C ∩ D and s ∈ G(x, q) implies that x ∈ Is, and
Is ⊂ Os, we have that (x, s) ∈ C \D. Consequently, solutions to (7.16) always jump
out of C ∩ D and into C \ D. It then follows from [106, Theorem 23] that A × Q is
globally pre-asymptotically stable for the system (7.16). Solutions to (7.8) that are
not solutions to (7.16) are those initiated in D \C. Such a solution must immediately
jump into C \D, after which it coincides with a solution to (7.8). Since the distance
of the solution to A × Q is unchanged by such a jump and A × Q is globally pre-
asymptotically stable for (7.16), it follows that A × Q is globally pre-asymptotically
stable for (7.8).

We now illustrate the presented theory with a simple example.

Example 7.5. Let X := R, R := [−1, 1], U := R, and f : X ×R× U → R be defined
by f(x, r, u) = −r+u. Furthermore, let Q := {−1, 1}, and A := {−1, 1}, and for every
q ∈ Q,

Iq := {x ∈ R : qx ≥ 0},
Oq := {x ∈ R : qx > − 1

4}, (7.17)

Mq := {x ∈ R : qx ≥ − 1
2},

Vq(x) := (qx− 1)2. (7.18)

It is clear that the sets (7.17) satisfy (H1) in Definition 7.2. It is also readily seen from
Figure 7.1 that (H2) in Definition 7.2 is satisfied. Furthermore,

Is ∩ (Mq \ Oq) =

{
∅ s = q

{x ∈ R : − 1
2 ≤ qx ≤ − 1

4} s = −q
(7.19)

from which it follows that Vs(x) ≤ 9
16 and Vq(x) ≥ 25

16 for every x ∈ Is ∩ (Mq \ Oq)
and every q ∈ Q. Hence, (H3) in Definition 7.2 is satisfied. Lastly, we find that

⟨∇Vq(x), f(x, r, u)⟩ = 2(x− q)(−r + u) (7.20)

such that (H4) in Definition 7.2 holds with negativity margins {γq}q∈Q defined by
γq(x) := 2k(qx − 1)2, where k > 0. Then {κq}q∈Q, where every κq is defined by
κq(x, r) := r − k(x− q), is a feasible family of control laws.

7.3 Synergistic Control Lyapunov Functions

HCLFs are closely related to the notions of synergistic functions and synergistic Lya-
punov function and feedback pairs (SLFFs) from Chapter 5 and Chapter 8. Recall that
every continuous function V : X × Q → R≥0 has an associated continuous synergy
gap µV : X ×Q → R≥0, defined by

µV (x, q) := V (x, q)−min
s∈Q

V (x, s). (7.21)

We now introduce the notion of a synergistic control Lyapunov function (SCLF).
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Figure 7.1: A plot of {Vq}q∈Q.

Definition 7.6 (SCLF). Let Q ⊂ Z be finite, M ⊂ X ×Q be closed, and A ⊂ X be
compact. A function V is a synergistic control Lyapunov function for the system (7.1)
relative to A with negativity margin γ and gap exceeding ρ if V satisfies

(S1) V : X ×Q → R≥0 is proper, V is continuously differentiable on M, and the zero
set of V satisfies π1(ZeroV ) = A;

(S2) there exist continuous functions γ : M → R≥0 and ρ : X ×Q → R≥0, Zero ρ ⊂
ZeroV , and the synergy gap satisfies

µV (x, q) > ρ(x, q) for all (x, q) ∈ (Pγ ∪ (A×Q) ∪ (X ×Q) \M ) \ ZeroV,

where

Pγ := {(x, q) ∈ M : inf
u∈U

max
r∈R

⟨∇V (x, q), f(x, r, u)⟩+ γ(x, q) ≥ 0} ∪ Zero γ.

(7.22)

Let V be an SCLF for the system (7.1) relative to A with negativity margin γ and
gap exceeding ρ, and define, for each q ∈ Q,

Iq := {x ∈ X : µV (x, q) = 0},
Oq := {x ∈ X : µV (x, q) < ρ(x, q)},
Mq := {x ∈ X : µV (x, q) ≤ ρ(x, q)}.

(7.23)
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If ρ(x, q) > 0 for all (x, q) ∈ X × Q, then it follows from the continuity of µV that
the sets in (7.23) satisfy (H1) in Definition 7.2. Define then, for every q ∈ Q, Vq :
Mq → R≥0 by Vq(x) := V (x, q) and γq : Mq \ A → R>0 by γq(x) := γ(x, q). It is
then straightforward to verify that {Vq}q∈Q is an HCLF family for (7.1) relative to
A with negativity margins {γq}q∈Q. The requirement that ρ(x, q) > 0 for all (x, q) ∈
X × Q is due to the fact that having ρ(x, q) = 0 for some (x, q) ∈ ZeroV leads to
the possibility of consecutive jumps in the synergistic framework. In the hysteretic
framework, consecutive jumping is impossible by design; every jump leaves the jump
set. We note that the results that are introduced in Section 7.4 also hold for an SCLF
in the absence of this additional restriction on ρ.

7.4 Hysteretic Feedback Control Design

Let {Vq}q∈Q be an HCLF family for (7.1) relative to A with negativity margins
{γq}q∈Q. The following theorem provides sufficient conditions for the existence of
a feasible collection of control laws.

Theorem 7.7 (Continuous Selection). Let {Vq}q∈Q be an HCLF family for (7.1)
relative to A with negativity margins {γq}q∈Q. If it holds that,

(C1) for every q ∈ Q and all (x, r) ∈ Cq, the mapping

u 7→ ⟨∇Vq(x), f(x, r, u)⟩, (7.24)

is convex on U ;
(C2) there exists a collection of mappings {θq}q∈Q such that for every q ∈ Q, θq : Bq →

U is continuous and the set-valued mapping Kq : Cq ⇒ U ,

Kq(x, r) :=

{{
θq(x, r)

}
, if (x, r) ∈ Bq

Fq(x, r), if (x, r) ∈ Cq\Bq,
(7.25)

is inner semicontinuous relative to Cq at all (x, r) ∈ Bq,

then there exists a feasible collection of feedback control laws {κq}q∈Q.

Proof. It follows directly from (H4) of Definition 7.2 that the set-valued mapping
Sq : Cq\Bq ⇒ U defined by

Sq(x, r) :=
{
u ∈ U : ⟨∇Vq(x), f(x, r, u)⟩+ γq(x) < 0

}
,

is nonempty-valued on Cq\Bq. Furthermore, since f , every ∇Vq, and every γq are
continuous, it follows directly from [89, Corollary 2.13] that, for every q ∈ Q, Sq is
inner semicontinuous relative to Cq\Bq. From (C1), [144, Theorem 7.6], and the fact
that taking closures preserves inner semicontinuity, it follows that for every q ∈ Q and
all (x, r) ∈ Cq\Bq

Sq(x, r) =
{
u ∈ U : ⟨∇Vq(x), f(x, r, u)⟩+ γq(x) ≤ 0

}
= Fq(x, r),
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is closed-convex-valued and inner semicontinuous relative to Cq\Bq. A similar result
is also found in [103, Proposition 1.5.2], which can be adapted from the affine to the
convex case.

Since every Cq \ Bq is relatively open in Cq, it holds that every Kq is inner semi-
continuous relative to Cq at all (x, r) ∈ Cq \ Bq. It now follows directly from (C2)
that Kq is inner semicontinuous relative to Cq for every q ∈ Q. Then, Theorem 2.14
implies the existence of a collection of functions {κq}q∈Q such that κq : Cq → U is
continuous and κq(x, r) ∈ Kq(x, r) for every q ∈ Q and all (x, r) ∈ Cq. In other words,
there exists a collection of feasible control laws.

Condition (C1) always holds when the mapping u 7→ f(x, r, u) is affine for all
(x, r) ∈ X × R. Additionally, (C2) is recognized as the small control property [89].
Theorem 7.7 states sufficient conditions for the existence of a feasible collection of
control laws. However, it is neither constructive nor optimal. The following theorem
enables us to take continuous selections from Kq minimizing a specified objective
function.

Theorem 7.8 (Optimal Selection). Let {Vq}q∈Q be an HCLF family for (7.1) relative
to A with negativity margins {γq}q∈Q. If condition (C1) in Theorem 7.7 holds and
there exists a collection of functions {hq}q∈Q such that,

(O1) for every q ∈ Q, hq : Cq×U → R is continuous, u 7→ hq(x, r, u) is strictly convex
on U for all (x, r) ∈ Cq, and for every compact set K ⊂ Cq and every k ∈ R,
the set

{u ∈ U : (x, r) ∈ K,hq(x, r, u) ≤ k} (7.26)

is bounded;
(O2) condition (C2) in Theorem 7.7 holds with θq : Bq → U defined by

θq(x, r) := argmin
u∈U

hq(x, r, u), (7.27)

then the collection of control laws {κq}q∈Q defined by

κq(x, r) = argmin
u∈Kq(x,r)

hq(x, r, u), (7.28)

where Kq is defined by (7.25), is feasible.

Proof. For all (x, r) ∈ Cq and every q ∈ Q, it holds Kq(x, r) is closed and that
u → hq(x, r, u) is continuous and level bounded on Kq(x, r). It follows from [102,
Theorem 1.9] that the set argminu∈Kq(x,r) hq(x, r, q) is nonempty and compact for
all (x, r) ∈ Cq and every q ∈ Q. Furthermore, since every Kq(x, r) is convex and
u → hq(x, r, u) is strictly convex on Kq(x, r), it follows from [102, Theorem 2.6] that
the set argminu∈Kq(x,r) hq(x, r, q) is a singleton. Consequently,

hq(x, r) := inf
u∈Kq(x,r)

hq(x, r, u)

= min
u∈Kq(x,r)

hq(x, r, u)

= hq(x, r, κq(x, r)).

(7.29)
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Since every Kq is inner semicontinuous relative to Cq, it follows from [103, Theorem
1.4.16] that every hq is upper semicontinuous. Continuity of every hq and upper semi-
continuity of every hq ensure that the set-valued mappings Rq : Cq ⇒ U defined
by

Rq(x, r) := {u ∈ U : hq(x, r, u) ≤ hq(x, r)} (7.30)

are outer semicontinuous relative to Cq. By definition of κq, it holds that κq(x, r) =
Kq(x, r)∩Rq(x, r) for all (x, r) ∈ Cq. Since every hq is upper semicontinuous, they are
upper bounded on compacts. Consequently, for every q ∈ Q and every compact set
K ⊂ Cq, there exists k ∈ R such that

Rq(K) = {u ∈ U : (x, r) ∈ K,hq(x, r, u) ≤ hq(x, r)}
⊂ {u ∈ U : (x, r) ∈ K,hq(x, r, u) ≤ k},

(7.31)

In light of (O1), it can be concluded that Rq(K) is bounded for every compact set
K ⊂ Cq. It follows that every Rq is locally bounded relative to Cq, and consequently
that every κq is locally bounded. Since every Vq is continuously differentiable and
every γq is continuous on Mq \A, and f is continuous on X ×R×U , we find for every
q ∈ Q that

gphKq ∩ [(Cq \ Bq)× Rm] =

{(x, r, u) ∈ (Cq \ Bq)× U : ⟨∇Vq(x), f(x, r, u)⟩+ γq(x) ≤ 0}
(7.32)

is relatively closed in (Cq \ Bq)× Rm. It follows that

gphκq = gphKq ∩ gphRq

= gphKq ∩ gphRq
(7.33)

is closed, and every κq is therefore outer semicontinuous when regarded as a set-valued
mapping. Since every κq is outer semicontinuous and locally bounded, they are in fact
continuous.

The main difficulty in applying Theorem 7.8 appears to be how to verify that the
HCLF family satisfies the small control property (C2) defined in Theorem 7.7. It turns
out that if (C1) holds, then the existence of a feasible collection of control laws for the
HCLF family implies that the small control property holds, as shown in the following
result.

Lemma 7.3. Let {Vq}q∈Q be an HCLF family for (7.1) relative to A with negativity
margins {γq}q∈Q satisfying (C1) in Theorem 7.7. If there exists a feasible collection of
control laws {κq}q∈Q such that κq(x, r) = θq(x, r) for all (x, r) ∈ Bq and every q ∈ Q,
then Kq as defined in (7.25) is inner semicontinuous relative to Cq for every q ∈ Q.

Proof. We have already shown in the proof of Theorem 7.7 that every Kq is inner
semicontinuous relative to Cq at all (x, r) ∈ Cq \ Bq. Let (x̄, r̄) ∈ Bq. By continuity
of κq, there exists for every neighborhood V of θq(x̄, r̄) a neighborhood U of (x̄, r̄)
such that U ∩Cq ⊂ κ−1

q (V ). Moreover, since κq(x, r) ∈ Kq(x, r) for all (x, r) ∈ Cq and
every q ∈ Q, it holds that U ∩Cq ⊂ K−1

q (V ). Consequently, Kq is inner semicontinuous
relative to Cq at (x̄, r̄) by Definition 2.11. This approach works for all (x̄, r̄) ∈ Bq and
every q ∈ Q. Consequently, every Kq is inner semicontinuous relative to Cq.
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7.5 Trajectory Tracking for Underwater Vehicles

In the remaining part of this chapter we will illustrate how the results of the previous
sections can be applied. Specifically, we will construct a family of HCLFs and synthesize
a hybrid control law ensuring global asymptotic tracking for an underwater vehicle
with configuration described by S̃E(3).

7.5.1 Control Model

We denote by p ∈ R3 the position of the vehicle with respect to the inertial frame
origin, and by z = (η, ϵ) ∈ S3 a unit quaternion such that the rotation matrix rot(z)
specifies the orientation of the vehicle with respect to the inertial frame. Defining
ŜE(3) := {(p, z) ∈ R7 : p ∈ R3, z ∈ S3}, and denoting by ν = (v, ω) ∈ R6 the body
velocity of the vehicle, the fundamental kinematic relation reads

φ̇ = T (φ)ν, (φ, ν) ∈ ŜE(3)× R6 (7.34)

where the transformation T : ŜE(3) → R7×6 is defined by T (φ) := blkdiag(rot z, atr z)
with atr : S3 → R4×3 defined by

atr z :=
1

2

(
−ϵT

ηI + ϵ×

)
. (7.35)

When equipped with the group operation ⊚ : ŜE(3) × ŜE(3) → ŜE(3) defined by
φ1 ⊚ φ2 := (rot(z1)p2 + p1, z1 ⊙ z2) and group inverse φ−1 = (− rot(z)Tp, z−1), where
⊙ denotes the quaternion product and z−1 = (η,−ϵ) denotes the quaternion conjugate
of z = (η, ϵ), then ŜE(3) is a Lie group. The identity element of the group becomes
φI = (0, zI), where zI = (1, 0) is the identity quaternion. It can be shown that ŜE(3)

and S̃E(3) are isomorphic as Lie groups.
We consider the underwater vehicle model

φ̇ = T (φ)ν

Mν̇ = adTν Mν + d(ν) + χ(g) +Bu

}
(φ, ν, u) ∈ ŜE(3)× R6 × Rm, (7.36)

where M ∈ R6×6 is the total inertia matrix of the vehicle, d : R6 → R6 is the
hydrodynamic damping wrench, χ : ŜE → R6 is hydrostatic wrench, B ∈ R6×m is the
thruster configuration matrix, and u ∈ Rm is the thruster control signal. It is assumed
that M is symmetric and positive definite, that d and χ are continuous, and that B
has full rank. Since S̃E(3) and ŜE(3) are isomorphic, the model (7.36) is equivalent to
the control model of Section 3.6 provided b = 0 and τ = Bu.

A bounded reference trajectory for the vehicle configuration, velocity and acceler-
ation is generated from the exogenous system

φ̇d = T (φd)νd

ν̇d = αd

}
(φd, νd, αd) ∈ Ω × cB× lB, (7.37)

where Ω ⊂ ŜE(3) is compact and c, l > 0. Here φd ∈ ŜE(3) represents the desired
configuration, νd ∈ R6 the desired velocity, and αd ∈ R6 the desired acceleration. It
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7.5. Trajectory Tracking for Underwater Vehicles

can be verified that the reference system is equivalent to the reference system (5.2)
used in Chapter 5 for G = S̃E(3).

Given a configuration φ ∈ ŜE(3) and a desired configuration φd ∈ ŜE(3), we define
analogously to Chapter 5 the the error configuration φe := φ−1

d ⊚ φ. Then, φe = φI
if and only if φ = φd. With the error configuration φe, we can associate the error
velocity

νe := ν −Ad−1
φe
νd, (7.38)

where, for every φ = (p, z) ∈ ŜE(3), Adφ ∈ R6×6 is defined by

Adφ :=

(
rot(z) p× rot(z)

0 rot(z)

)
. (7.39)

It is then easily verified that

Ad−1
φ :=

(
rot(z)T − rot(z)Tp×

0 rot(z)T

)
. (7.40)

We perform the change of variables (φ, ν, u, φd, νd, αd) 7→ (φe, νe, u, φd, νd, αd), and
restrict the desired configuration, desired velocity, and desired acceleration as done in
(7.37). This results in the tracking error system

φ̇e = T (φe)νe

ν̇e =M−1[adTν Mν + d(ν) + χ(φ) +Bu]

−Ad−1
ge αd + adνe Ad−1

ge νd

φ̇d = T (φd)νd

ν̇d = αd︸ ︷︷ ︸
(φe, νe, u, φd, νd, αd) ∈ ŜE(3)×R6× Rm×Ω×cB×lB

(7.41)

Finally, we can make the identifications

X = ŜE(3)× R6 ×Ω × cB,
x = (φe, νe, φd, νd),

R = lB,
r = αd,

U = Rm,

f(x, r, u) =


T (φe)νe

M−1[adTν Mν + d(ν) + χ(φ) +Bu]−Ad−1
ge r + adνe Ad−1

ge νd
T (φd)νd

r

 ,

(7.42)

which place the error system (7.41) firmly in the scope of the present chapter. In
particular, X ⊂ R26 is closed because it is a product of closed sets, R ⊂ R6 is a closed
ball of radius l > 0 and therefore compact, and U = Rm is closed and convex. Lastly,
since d and χ are assumed continuous, it follows that f is continuous.
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7.5.2 Hysteretic Control Design

This section constructs HCLFs for trajectory tracking of an underwater vehicle. The
HCLFs are subsequently employed to synthesize an optimization-based hybrid feed-
back control law.

Let Q = {−1, 1}, and define for every q ∈ Q, W1,q : ŜE(3) → R≥0,

W1,q(φe) :=
1

2
k1|pe|2 + 2k2(1− qηe), (7.43)

where k1 > 0 and k2 > 0 are gains. It is straightforward to show that

T (φe)
T∇W1,q(φe) =

(
k1 rot(ze)

Tpe
k2qϵe

)
. (7.44)

Differentiating (7.43) along the error kinematics yields

⟨∇W1,q(φe), T (φe)νe⟩ = −⟨K2αq(φe), νe⟩. (7.45)

where K2 = blkdiag(k3I, k4I) ∈ R6×6 with k3 > 0 and k4 > 0, and αq : ŜE(3) → R6

is defined by

αq(φe) := −

(
k1
k3

rot(ze)
Tpe

k2
k4
qϵe

)
= −K−1

2 T (φe)
T∇W1,q(φe). (7.46)

Utilizing the fact that q2 = 1, (7.45) may be rewritten as

⟨∇W1,q(φe), T (φe)νe⟩ = −⟨K2α1(φe), α1(φe)⟩ − ⟨νe − αq(φe),K2αq(φe)⟩. (7.47)

We then augment W1,q with a positive definite term in νe − αq(φe). In particular, we
define Wq : ŜE(3)× R6 → R≥0 by

Wq(x) =W1,q(φe) +
1

2
⟨M(νe − αq(φe)), νe − αq(φe)⟩ (7.48)

which is smooth and proper. Furthermore, it holds that

ZeroWq = {x ∈ X : pe = 0, qηe = 1, νe = 0} . (7.49)

Differentiating Wq along flows yields

⟨∇Wq(x), f(x, r, u)⟩ = −⟨K2αq(φe), αq(φe)⟩ − ⟨νe − αq(φe),K2αq(φe)⟩
− ⟨νe − αq(φe),Mα̇q(φe, νe)⟩
− ⟨νe − αq(φe),M Ad−1

ge r −M adνe Ad−1
ge νd⟩

+ ⟨νe − αq(φe), ad
T
ν Mν + d(ν) + χ(φ) +Bu⟩, (7.50)

where we for readability defined α̇q(φe, νe) := Dαq(φe)T (φe)νe.
Note that the set Q only consists of two elements. Thus, the only possible switching

strategy for the logic variable is q+ = −q, and we set in what follows s = −q. In order
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to derive the sets {Iq}q∈Q, {Oq}q∈Q, and {Mq}q∈Q that in turn define the flow and
jump sets, we calculate the change in Wq along jumps as

Ws(x)−Wq(x) =W1,s(φe)−W1,q(φe)− ⟨Mνe, αs(φe)− αq(φe)⟩

+
1

2
⟨Mαs(φe), αs(φe)⟩ −

1

2
⟨Mαq(φe), αq(φe)⟩.

(7.51)

We partition the inertia matrix M in terms of Mi ∈ R3×3, i ∈ {1, 2, 3}, as

M =

(
M1 MT

2

M2 M3

)
. (7.52)

Then, straightforward computations give

W1,s(φe)−W1,q(φe) = 4k2qηe,

⟨Mνe, αs(φe)− αq(φe)⟩ = −2q⟨M1νe, α1(φe)⟩,
⟨Mαs(φe), αs(φe)⟩ − ⟨Mαq(φe), αq(φe)⟩ = −2q⟨M2α1(φe), α1(φe)⟩,

(7.53)

where

M1 :=

(
0 0
M2 M3

)
, M2 :=

(
0 MT

2

M2 0

)
. (7.54)

Let Ψ(x) : X → R be defined by

Ψ(x) := ηe +
1

2k2
⟨M1νe, α1(φe)⟩ −

1

4k2
⟨M2α1(φe), α1(φ1)⟩, (7.55)

such that Ws(x)−Wq(x) = 4k2qΨ(x). Then, we define the sets

Iq := {x ∈ X : qΨ(x) ≤ 0} ,
Oq := {x ∈ X : qΨ(x) < δ} ,
Mq := {x ∈ X : qΨ(x) ≤ δ} ,

(7.56)

where δ ∈ (0, 1) is the hysteresis half-width. We claim that {Vq}q∈Q, where every
Vq : Mq → R≥0 is defined by Vq(x) =Wq(x), is an HCLF family for the system (7.41)
relative to

A := {x ∈ X : pe = 0, ηe = ±1, νe = 0} (7.57)

with negativity margins {γq}q∈Q defined by

γq(x) := ε⟨K2α1(φe), α1(φe)⟩+ ε⟨K3(νe − αq(φe)), νe − αq(φe)⟩, (7.58)

where K3 ∈ R6×6 is positive definite and ε ∈ (0, 1). Indeed, it follows from the defi-
nition of Ψ that the sets defined by (7.56) satisfy (H1) in Definition 7.2. Since every
Vq is a restriction of the corresponding Wq to Mq, condition (H2) in Definition 7.2 is
also seen to hold. Furthermore, (H3) holds (strictly) by construction of the sets (7.56)
since Vs(x) − Vq(x) ≤ −4k2δ for every x ∈ (Mq\Oq) ∩ Is and every q ∈ Q. From

147



7. Hysteretic Control Lyapunov Functions

(7.50), it is straightforward to verify that (H4) holds, since the family of control laws
{µq}q∈Q, where every µq : Cq → Rm is defined by

µq(x, r) := B†[Mα̇q(φe, νe) +M Ad−1
ge r −M adνe Ad−1

ge νd − adTν Mν]

+B†[−χ(φ)− d(ν) +K2αq(φe)−K3(ν − αq(φe))],
(7.59)

and B† ∈ Rm×6 is the Moore-Penrose inverse of B, results in

⟨∇Vq(x), f(x, r, µq(x, r))⟩+ γq(x) ≤ −1− ε

ε
γq(x) (7.60)

which is strictly negative for all (x, r) ∈ (Mq \ A)×R and every q ∈ Q.
In order to use Theorem 7.8 to synthesize an optimization-based hybrid control

law, we first define the mapping ϑ : X ×R → Rm by

ϑ(x, r) = B†[Mr − adTνd Mνd − d(νd)− χ(φd)]. (7.61)

We then claim that property (C2) in Theorem 7.7 holds if, for every q ∈ Q, θq(x, r) :=
ϑ(x, r). Indeed, the feasible family of control laws defined by (7.59) satisfies µq(x, r) =
ϑ(x, r) for all (x, r) ∈ Bq and every q ∈ Q such that inner semicontinuity of Kq relative
to Cq follows from Lemma 7.3. Hence, by defining the family of objective functions
{hq}q∈Q, hq : Cq × Rm → R, by

hq(x, r, u) := |u− ϑ(x, r)|, (7.62)

all of the conditions in Theorem 7.8 are satisfied. It follows that a family of feasible
control laws {κq}q∈Q can be obtained by solving the quadratic program

κq(x, r) = argmin
u∈Rm

⟨u, u⟩ − 2⟨u, ϑ(x, r)⟩
subject to

⟨aq(x, r), u⟩ ≤ bq(x, r)

(7.63)

where

aq(x, r) := BT(ν − αq(x, r)) (7.64)

bq(x, r) := ⟨νe − αq(φe),Mα̇q(φe, νe) +M Ad−1
ge r −M adνe Ad

−1
ge νd⟩

− ⟨νe − αq(φe), ad
T
ν Mν + d(ν) + χ(φ)−K2αq(φe)⟩

+ (1− ε)⟨K2αq(φe), αq(φe)⟩ − ε⟨K3(νe − αq(φe)), νe − αq(φe)⟩.

7.5.3 Simulation Case Study

In this section, we verify the theoretical results in simulation for the underwater vehicle
ODIN, we refer to [45] for the model parameters. The system is initialized at the
configuration φ0 = (0, z0), where z0 = (η0, ϵ0), η0 = 0, and ϵ0 = 1√

50
(3, 4, 5), and at

the initial velocity ν0 = (0, 1.2ϵ0). The desired position and orientation is obtained
from the exogenous system in (7.37), initialized at φd,0 = (0, zI) and νd,0 = 0. The
desired acceleration r is generated from the low-pass filter

Teṙ + r = ξ(t), (7.65)
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with time constant Te := 15 s and the reference acceleration

ξ(t) :=


(0.1, 0.06,−0.07, 0, 0, 0), 0 ≤ t < 5

06×1, 5 ≤ t < 10

(03×1, 0.05,−0.1, 0.02) 10 ≤ t < 15

(04×1,−0.1, 0.02) 15 ≤ t.

(7.66)

The control gains are chosen as k1 = k2 = k3 = k4 = 1 and K = 1
2I. The system

is simulated with Simulink, using the o1e15 solver with a maximum step-size of 0.01.
Simulation results are presented in Figures 7.2 to 7.4. Observe that the only jump
occurs at t = 0, which is due to the initial angular velocity. Moreover, note that the
control input is continuous for all t > 0. To emphasize the necessity of the small control
property for continuity of the resulting control laws, Figure 7.5 depicts the control
inputs for the same control scenario with objective functions hq(x, r, u) := |u|2. It is
easily seen that

argmin
u∈Rm

hq(x, r, u) = 0, (7.67)

such that (O2) in Theorem 7.8 is not satisfied. From Figure 7.5, it is apparent that the
control input exhibits significant chattering when the state is near A at approximately
t > 20 s.

In order to highlight the benefits of the optimization-based control law obtained
from (7.63), Figures 7.6 to 7.8 depict simulation results for the same control scenario
using u = µq(x, r) given by (7.59). From Figures 7.2, 7.3, 7.6 and 7.7, it is clear that the
optimization-based control law achieves faster convergence to the desired orientation
with less control effort.
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Figure 7.2: The position p, the desired position pd and the unit quaternion orienta-
tion error ze = (ηe, ϵe).
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Figure 7.3: The thruster control inputs u, and the logic variable q.
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Figure 7.4: The linear and angular velocities v and ω, and their desired values υd
and ωd, respectively.
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Figure 7.5: The thruster control inputs u with hq = |u|2 and the logic variable q.
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Figure 7.6: The position p, the desired position pd and the unit quaternion orienta-
tion error ze = (ηe, ϵe) using (7.59).
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Figure 7.7: The thruster control inputs u, and the logic variable q using (7.59).
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Figure 7.8: The linear and angular velocities v and ω, and their desired values υd
and ωd, respectively, using (7.59).
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Chapter 8

Synergistic Lyapunov Function and
Feedback Triples

In this chapter, we extend the SLFF definition from [77]. The proposed generalization
allows the logic variable, now referred to as the synergy variable, to be vector-valued
and possess flow dynamics. Moreover, since the synergy variable is vector-valued, we
define synergy gaps relative to components of product sets. These synergy gaps enable
us to define flow and jump sets and jump conditions in the form of synergy gaps
for different components of the synergy variable. As a result, we can show that the
output feedback control method for rigid-body scheme outlined in [71] is synergistic.
The proposed generalization also encompasses the results for SO(3) and SE(3) in [70],
in which the scalar logic variable is also allowed to change during flows. However, our
proposed framework also includes path-following control scenarios in which the path
variable exhibits jump dynamics, such as instantaneously moving the desired state
closer to the actual state. As a result, ship maneuvering control as outlined in [84] and
[85] can be augmented with discrete path dynamics and combined with a traditional
synergistic control approach such as [75] to ensure global asymptotic stability within
the proposed framework.

The material in this chapter is based on [93].

8.1 Introduction

Consider a continuous-time system

ẋ = f(x, u) (x, v) ∈ X × Rk, (8.1)

where x ∈ X ⊂ Rn is the state, v ∈ Rk is the input and f : X×Rk → Rn is continuous.
The following definition of an SLFF pair is the starting point of this chapter and is a
slight modification of [61, Definition 7.3].

Definition 8.1 (Synergistic Lyapunov function and feedback pair). Given a system
(8.1), a compact set A ⊂ X ×Q, a continuously differentiable function V : X ×Q→
R≥0 and a continuous function κ : X → Rk define

µV (x, q) := V (x, q)−min
p∈Q

V (x, p). (8.2)
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The pair (V, κ) is a synergistic Lyapunov function and feedback pair relative to A with
synergy gap exceeding ρ > 0 for (8.1) if

1. V is proper and positive definite with respect to A;
2. for all (x, q) ∈ X ×Q, it holds that

⟨∇1V (x, q), f(x, κ(x, q))⟩ ≤ 0; (8.3)

3. µV (x, q) > ρ for each (x, q) ∈ I \ A, where I is the largest weakly invariant
subset for the system

ẋ = f(x, κ(x, q))

q̇ = 0
(x, q) ∈ E (8.4)

and

E := {(x, q) ∈ X ×Q : ⟨∇1V (x, q), f(x, κ(x, q))⟩ = 0} . (8.5)

The remainder of this chapter is organized as follows. In Section 8.2, we extend
the definition of SLFF pairs to SLFF triples, for which the synergy variables are al-
lowed to have flow dynamics and be vector-valued. Moreover, we show how the hybrid
feedback controller induced by an SLFF triple renders a given compact set globally
pre-asymptotically stable. Section 8.3 introduces the notion of synergy gaps relative
to components of product sets, which is a distinct feature of vector-valued synergy
variables. Then, Section 8.4 introduces a weaker notion of SLFF triples, and we show
that if an affine control system admits a weak SLFF triple, then the same system aug-
mented with an integrator at the input admits a (non-weak) SLFF triple. Section 8.5
presents a case study which combines the classical synergistic control approach of [63]
using the synergistic Lyapunov functions in [75] with the ship maneuvering control of
[84].

8.2 Synergistic Lyapunov Function and Feedback

This section extends the definition of an SLFF pair in Definition 8.1 by augmenting
the SLFF definition with a feedback representing the flow dynamics of the synergy
variables. Moreover, we show that the hybrid feedback control law induced by an SLFF
triple renders a given compact set globally pre-asymptotically stable.

Our goal is to design generalized synergistic controllers with state θ ∈ Θ ⊂ Rm of
the form

θ̇ = ν(x, θ) (x, θ) ∈ C

θ+ ∈ G(x, θ) (x, θ) ∈ D

v = κ(x, θ)

(8.6)

where C ⊂ X×Θ, D ⊂ X×Θ, ν : X×Θ → Rm, and G : X×Θ ⇒ Θ are the flow set,
jump set, flow map and jump map of the controller, respectively. The controller state
θ is also referred to as the synergy variable. We assume the following throughout the
chapter.

Assumption 8.2.
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1. X ⊂ Rn is closed;
2. f : X × Rk → Rn is continuous;
3. Θ ⊂ Rm is closed.

In the following, we generalize the notion of a synergy gap of a nonnegative and
proper function V introduced in [77]. In particular, we evaluate the minimum of V
over a set Ψ ⊂ Θ which need not be finite (or even compact).

Definition 8.3. Let V : X × Θ → R≥0 be proper, and let Ψ ⊂ Θ be closed and
nonempty. The synergy gap of V with respect to Ψ is the function µV,Ψ : X ×Θ → R
defined by

µV,Ψ (x, θ) := V (x, θ)−min
ψ∈Ψ

V (x, ψ). (8.7)

The set-valued solution mapping associated with µV,Ψ is GV,Ψ : X × Θ ⇒ Θ, defined
as

GV,Ψ (x, θ) := {ψ ∈ Ψ : µV,Ψ (x, ψ) = 0}. (8.8)

The fact that V is nonnegative, continuous, and proper is sufficient for its synergy
gap relative to any nonempty and closed set Ψ ⊂ Θ to be continuous. Moreover, the
associated solution mapping has the key properties it has in traditional synergistic
control. Specifically, nonemptiness, outer semicontinuity, and local boundedness. Con-
sequently, even when Ψ is not compact, the set of points where θ 7→ V (x, θ) attains
its minimum on Ψ is compact for each x ∈ X.

Proposition 8.4. The synergy gap µV,Ψ is continuous. The associated set-valued
solution mapping GV,Ψ is nonempty-valued, outer semicontinuous, and locally bounded.

Proof. The claims follow from [102, Corollary 7.42].

The following definition extends the notion of SLFF pairs from [77]. In addition
to utilizing the generalized notion of synergy gap from Definition 8.3, we allow the
synergy variable θ to flow.

Definition 8.5. Let A ⊂ X × Θ be compact. A continuously differentiable function
V : X × Θ 7→ R≥0 and continuous functions κ : X × Θ → Rk and ν : X × Θ → Rm
define a synergistic Lyapunov function and feedback triple (V, κ, ν) relative to A with
synergy gap relative to Ψ exceeding ρ > 0 for the system (8.1) if

1. V is proper and positive definite with respect to A;
2. The closed loop system(

ẋ

θ̇

)
=

(
f(x, κ(x, θ))
ν(x, θ)

)
︸ ︷︷ ︸

Fc(x,θ)

(x, θ) ∈ X ×Θ (8.9)

satisfies

⟨∇V (x, θ), Fc(x, θ)⟩ ≤ 0, ∀(x, θ) ∈ X ×Θ; (8.10)
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3. µV,Ψ (x, θ) > ρ for each (x, θ) ∈ I \ A, where I is the largest weakly invariant
subset for the system

ẋ = f(x, θ, κ(x, θ))

θ̇ = ν(x, θ)
(x, θ) ∈ E (8.11)

and

E := {(x, θ) ∈ X ×Θ : ⟨∇V (x, θ), Fc(x, θ)⟩ = 0}. (8.12)

We remark that if ν(x, θ) = 0 for all (x, θ) ∈ X × Θ and Θ = Ψ is finite, then
Definition 8.5 reduces to the definition of an SLFF pair given in [77]. If Θ = R,
and Ψ ⊂ R is finite, then Definition 8.5 encompasses the class of potential functions
recently introduced in [70].

Analogous to SLFF pairs [77, Theorem 7], the existence of an SLFF triple relative
to A with synergy gap relative to Ψ exceeding ρ > 0 guarantees global pre-asymptotic
stability of A for a synergistic closed loop system resulting from (8.1).

Proposition 8.6. Let (V, κ, ν) be an SLFF triple relative to A with synergy gap
relative to Ψ exceeding ρ > 0. Then A is globally pre-asymptotically stable for the
system

ẋ = f(x, κ(x, θ))

θ̇ = ν(x, θ)

}
(x, θ) ∈ C

θ+∈ G(x, θ) (x, θ) ∈ D

(8.13)

where

C := {(x, θ) ∈ X ×Θ : µV,Ψ (x, θ) ≤ ρ},
D := {(x, θ) ∈ X ×Θ : µV,Ψ (x, θ) ≥ ρ},

G(x, θ) := GV,Ψ (x, θ).

(8.14)

Proof. The sets C and D are closed since µV,Ψ is continuous by Proposition 8.4.
Moreover, the closed-loop flow map Fc is continuous, and G is nonempty-valued, outer
semicontinuous, and locally bounded by Proposition 8.4. Consequently, the system
(8.13) satisfies the hybrid basic conditions [90, Assumption 6.5] and is therefore well
posed. From the definition of the jump set and jump map in (8.14), V decreases strictly
across jumps by at least ρ. Since V is proper and positive definite with respect to A
by 1) of Definition 8.5 and V does not grow along solutions to the system (8.13) by 2)
of Definition 8.5 and the nonincrease of V across jumps, it follows that A is stable and
that all solutions are bounded. Since V must vanish in A by 1) of Definition 8.5, it
holds that µV,Ψ vanishes in A as well. Consequently, A ⊂ C. From 3) of Definition 8.5,
it then follows that I ∩ C ⊂ A. The invariance principle [90, Corollary 8.4] then
guarantees that complete solutions converge to A. It follows that A is globally pre-
asymptotically stable.

Completeness of maximal solutions (and global asymptotic stability of A for (8.13) )
is guaranteed if, in addition to the conditions of Proposition 8.6, it also holds that

Fc(x, θ) ∈ TX×Θ(x, θ) (8.15)
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for all (x, θ) such that µV,Ψ (x, θ) < ρ, where TX×Θ(x, θ) is the tangent cone to X ×Θ
at (x, θ). Indeed, TX×Θ(x, θ) = TC(x, θ) at these points, and the claim follows from
[90, Proposition 6.10]. It should also be remarked that TX×Θ ̸= TX × TΘ in general.
See [102, Chapter 6], and in particular Proposition 6.41, for further results on this
matter.

8.3 Synergy Gaps Relative to Components of Product Sets

The control approach covered in Proposition 8.6 updates the whole synergy variable
θ when the instantaneous synergy gap is equal to or exceeds the threshold ρ. This ap-
proach offers relatively little flexibility in shaping the jump sets. When Θ is a product
set, one can formulate the synergy gap and associated solution mapping relative to
the components of Θ. For simplicity, it is assumed that Θ comprises two components,
although the approach outlined in this section can be further generalized.

Assumption 8.7.

4) Θ = Θa ×Θb, where Θa and Θb are closed.

We now adapt Definition 8.3 to exploit the additional structure of Θ induced by
this assumption.

Definition 8.8. Let V : X × Θ → R≥0 be proper, and let Ψ = Ψa × Ψb such that
Ψa ⊂ Θa and Ψb ⊂ Θb are nonempty and closed. The synergy gap of V with respect to
Ψa is defined as

µV,Ψa
(x, θ) := V (x, θ)− min

ψa∈Ψa

V (x, (ψa, θb)). (8.16)

The synergy gap of V with respect to Ψb is defined as

µV,Ψb
(x, θ) := V (x, θ)− min

ψb∈Ψb

V (x, (θa, ψb)). (8.17)

The set-valued solution mapping associated with µV,Ψa
, GV,Ψa

: X ×Θ ⇒ Θ is

GV,Ψa
(x, θ) :={ψa ∈ Ψa :µV,Ψa

(x, (ψa, θb))=0}×{θb}. (8.18)

The objects introduced in Definition 8.8 have similar properties as the ones intro-
duced in Definition 8.3.

Proposition 8.9. The synergy gaps µV,Ψa and µV,Ψb
are continuous. The set-valued

solution mapping GV,Ψa
is nonempty-valued, outer semicontinuous, and locally bounded.

Proof. Apply [102, Corollary 7.42] with (x, θb) as parameters and θa as optimization
variable to show the claims for µV,Ψa

and GV,Ψa
. Continuity of µV,Ψb

is shown similarly.

Consequently, we may specialize the notion of an SLFF triple to the case where Θ
is product set.
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Definition 8.10. Let A ⊂ X × Θ be compact, and (V, κ, ν) satisfy 1) and 2) in
Definition 8.5 for the system (8.1). We say that (V, κ, ν) is a synergistic Lyapunov
function and feedback triple relative to A with synergy gap relative to Ψa exceeding
ρa > 0 if

3a) µV,Ψa
(x, θ) > ρa for each (x, θ) ∈ I \ A.

We say that (V, κ, ν) is a synergistic Lyapunov function and feedback triple relative to
A with synergy gap relative to (Ψa, Ψb) exceeding (ρa, ρb) with ρa, ρb > 0 if

3b) µV,Ψa(x, θ) > ρa or µV,Ψb
(x, θ) > ρb for each (x, θ) ∈ I \ A.

In both cases, I is defined as in Definition 8.5.

It is clear that if (V, κ, ν) has synergy gap relative to Ψa exceeding ρa > 0, then
it has synergy gap relative to Ψ exceeding ρa. If instead (V, κ, ν) has a synergy gap
relative to to (Ψa, Ψb) exceeding (ρa, ρb), with ρa, ρb > 0, then it has a synergy gap
relative to Ψ exceeding min(ρa, ρb) > 0. The last part of item 3b) ensures that (V, κ, ν)
is not an SLFF triple relative to A with synergy gap relative to Ψa or Ψb, and hence
that ρa and ρb are well-defined.

8.3.1 Optional Jumps

When (V, κ, ν) is an SLFF triple relative to A with synergy gap relative to Ψa exceeding
ρa > 0, it is not necessary to update θb to avoid the invariant sets where solutions
may get stuck. Jumping θb may nonetheless increase the performance of the closed-loop
system. We therefore define a closed-loop system in which jumps of θb are optional.

Proposition 8.11. Let (V, κ, ν) be a synergistic Lyapunov function and feedback triple
relative to A with synergy gap relative to Ψa exceeding ρa > 0. Then A is globally pre-
asymptotically stable for the system (8.13) with

C := {(x, θ) ∈ X ×Θ : µV,Ψa
(x, θ) ≤ ρa},

D := {(x, θ) ∈ X ×Θ : µV,Ψa
(x, θ) ≥ ρa or µV,Ψ (x, θ) ≥ ρ}

G(x, θ) :=


GV,Ψa

(x, θ), µV,Ψa
(x, θ) ≥ ρa and µV,Ψ (x, θ) < ρ,

(GV,Ψa
∪GV,Ψ )(x, θ), µV,Ψa

(x, θ) ≥ ρa and µV,Ψ (x, θ) ≥ ρ,

GV,Ψ (x, θ), µV,Ψa
(x, θ) < ρa and µV,Ψ (x, θ) ≥ ρ,

∅ otherwise,

(8.19)

where ρ ≥ ρa.

Proof. It is clear that C and the sets

DΨa
:= {(x, θ) ∈ X ×Θ : µV,Ψa

(x, θ) ≥ ρa} (8.20)
DΨ := {(x, θ) ∈ X ×Θ : µV,Ψ (x, θ) ≥ ρ} (8.21)

are closed since µV,Ψa and µV,Ψ are continuous. Therefore, D = DΨa ∪ DΨ is closed.
The closed-loop flow map is continuous on X ×Θ. We know that GV,Ψa

and GV,Ψ are
nonempty-valued, outer semicontinuous, and locally bounded. Denote then by G̃V,Ψa

and G̃V,Ψ the restrictions of GV,Ψa
and GV,Ψ to DΨa

and DΨ , respectively. These
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restrictions are also outer semicontinuous and locally bounded. Now, G is defined
such that gphG = gph G̃V,Ψa ∪ gph G̃V,Ψ . Thus, G is nonempty-valued on D. Since
outer semicontinuity of a set-valued mapping is equivalent to its graph being closed,
it also follows that G is outer semicontinuous. Moreover, the union of two locally
bounded set-valued mappings is locally bounded. Consequently, G is locally bounded.
Hence, the closed loop system (8.13) with data defined by (8.19) satisfies the hybrid
basic conditions. The remainder of the proof proceeds as the proof of Proposition 8.6,
with the strict decrease of V across jumps now being at least ρa.

Completeness of maximal solutions to the closed-loop system with data (8.19) is
guaranteed if the tangent cone condition (8.15) holds for all (x, θ) such that µV,Ψa

(x, θ) <
ρa. In this case, the system always admits complete solutions over the course of which
θb does not jump.

8.3.2 Independently Triggered Jumps

The following proposition introduces the concept of independentely triggered jumps,
where both components of θ jump when either of their jump conditions are met.

Proposition 8.12. Let (V, κ, ν) be a synergistic Lyapunov function and feedback triple
relative to A with synergy gap relative to (Ψa, Ψb) exceeding (ρa, ρb), with ρa, ρb > 0.
Then A is globally pre-asymptotically stable for the system (8.13) with

C := {(x, θ) ∈ X ×Θ : µV,Ψa
(x, θ) ≤ ρa and µV,Ψb

(x, θ) ≤ ρb},
D := {(x, θ) ∈ X ×Θ : µV,Ψa(x, θ) ≥ ρa or µV,Ψb

(x, θ) ≥ ρb},
G(x, θ) := GV,Ψ (x, θ).

(8.22)

The proof of Proposition 8.12 is very similar to the proofs of Proposition 8.6 and
Proposition 8.11 and is therefore omitted. An example where independently triggered
switching is used is furnished by the quaternion output feedback control scheme for
rigid-body orientation in [71, Section V-B]. In this work, θa corresponds to a traditional
synergy variable for a feedback controller, and θb corresponds to a traditional synergy
variable for an observer, while ν(x, θ) = 0 for all (x, θ) ∈ X ×Θ.

8.4 Backstepping

This section begins by introducing a weaker notion of SLFF triples for affine control
systems. Then, given a system that admits a weak SLFF triple, we construct a (non-
weak) SLFF triple for the same system augmented with an integrator at the input.

By assuming that (8.1) is affine in the control input v, we obtain the system

ẋ = f0(x) + g0(x)v (x, v) ∈ X × Rk (8.23)

Definition 8.13. Let A ⊂ X ×Θ be compact. A continuously differentiable function
V : X × Θ 7→ R≥0 and continuous functions κ : X × Θ → Rk and ν : X × Θ → Rm
define a weak synergistic Lyapunov function and feedback triple (V, κ, ν) relative to A
with a weak synergy gap relative to Ψ exceeding ρ > 0 for (8.23) if

1. V is proper and positive definite with respect to A;
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2. The closed loop system(
ẋ

θ̇

)
=

(
f0(x) + g0(x)κ(x, θ)

ν(x, θ)

)
︸ ︷︷ ︸

F0(x,θ)

(x, θ) ∈ X ×Θ (8.24)

satisfies

⟨∇V (x, θ), F0(x, θ)⟩ ≤ 0, ∀(x, θ) ∈ X ×Θ; (8.25)

3. µV,Ψ (x, θ) > ρ for each (x, θ) ∈ I \ A, where I is the largest weakly invariant
subset for the system

ẋ = f0(x) + g0(x)κ(x, θ)

θ̇ = ν(x, θ)

}
(x, θ) ∈ E ∩W (8.26)

where E is given in Definition 8.5, and

W :={(x, q) ∈ X×Θ : g0(x)
T∇1V (x, θ) = 0}. (8.27)

Augmenting the system (8.23) with an integrator at the input results in the control
system

ż = f1(z) + g1(z)u (z, u) ∈ Z × Rk (8.28)

where z = (x, v) ∈ Z := X × Rk, u ∈ Rk is the control input and

f1(z) =

(
f0(x) + g0(x)v

0

)
, g1(z) =

(
0
I

)
. (8.29)

Now, let (V0, κ0, ν0) be a weak SLFF triple relative to the compact set A0 ⊂ X × Θ,
define the set

A1 = {(z, θ) ∈ Z ×Θ : (x, θ) ∈ A0, v = κ(x, θ)} , (8.30)

and consider the following SLFF triple

V1(z, θ) = V0(x, θ) +
1

2
|v − κ0(x, θ)|2Γ , (8.31a)

κ1(z, θ) = ∇1κ0(x, θ) (f0(x) + g0(x)v)

+∇2κ0(x, θ)ν0(x, θ)− γ1(v − κ0(x, θ))

− Γ−1g0(x)
T∇1V0(x, θ),

(8.31b)

ν1(z, θ) = ν0(x, θ)− ϑ1(∇2V1(z, θ)), (8.31c)

where Γ ∈ Rk×k is positive definite, γ1 : Rk → Rk is continuous and satisfies
⟨γ1(v), v⟩ > 0 for every v ∈ Rk \ {0}, and ϑ1 : Rm → Rm is continuous and sat-
isfies ⟨ϑ1(ν), ν⟩ ≥ 0 for every ν ∈ Rm. The following proposition establishes that
(V1, κ1, ν1) is an SLFF triple for the system (8.28) with synergy gap exceeding ρ > 0
relative to Ψ .
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Proposition 8.14. If (V0, κ0, ν0) is a weak synergistic Lyapunov function and feedback
triple for the system (8.23) relative to A0, with a weak synergy gap relative to Ψ
exceeding ρ > 0, then (V1, κ1, ν1) is a (non-weak) synergistic Lyapunov function and
feedback triple for the system (8.28) relative to A1 with a (non-weak) synergy gap
relative to Ψ exceeding ρ > 0.

Proof. The derivative of V1 along the solutions of (8.23) is

V̇1 = ⟨∇1V1(z, θ), f1(z) + g1(z)κ1(z, θ)⟩
+ ⟨∇2V1(z, θ), ν1(z, θ)⟩

= ⟨∇1V0(x, θ), f0(x) + g0(x)κ0(x, θ)⟩
− ⟨v − κ0(x, θ), Γγ1(v − κ0(x, θ)⟩
− ⟨v − κ0(x, θ), Γ∇2κ0(x, θ)(ν1(z, θ)− ν0(x, θ))⟩
+ ⟨∇2V0(x, θ), ν1(z, θ)⟩

= ⟨∇1V0(x, θ), f0(x) + g0(x)κ0(x, θ)⟩
− ⟨v − κ0(x, θ), Γγ1(v − κ0(x, θ)⟩
+ ⟨∇2V0(x, θ), ν0(x, θ)⟩
− ⟨∇2V1(z, θ), ϑ1(∇2V1(z, θ))⟩

≤ 0.

(8.32)

Define E0,W0 and E1,W1 according to (8.12) and (8.27) for the systems (8.23) and
(8.28), respectively. It follows from (8.32) that

E1 = {(z, θ) ∈ X ×Θ : (x, θ) ∈ E0, v = κ0(x, θ), ϑ1(∇2V1(z, θ)) = 0}
⊂ W1.

(8.33)

Let I1 ⊂ E1 denote the largest weakly invariant subset for the system

ż = f1(z) + g1(z)κ1(z, θ)

θ̇ = ν1(z, θ)

}
(z, θ) ∈ E1 (8.34)

It follows that

I1 =
{
(z, θ) ∈ Z ×Θ : (x, θ) ∈ Ω0, v = κ0(x, θ), ϑ1(∇2V1(z, θ)) = 0

}
. (8.35)

From Definition 8.3 and 3) in Definition 8.13 it holds that

µV1,Ψ ≥ µV0,Ψ (x, θ) +
1

2
|v − κ0(x, θ)|2Γ

−min
ψ∈Ψ

1

2
|v−κ0(x, ψ)|2Γ

≥ µV0,Ψ (x, θ) (8.36)
> ρ. (8.37)

Consequently, (V1, κ1, ν1) is an SLFF triple with synergy gap relative to Ψ exceeding
ρ > 0.
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8.5 Synergistic Maneuvering for Ships

In this section, the proposed theory is exemplified by combining the traditional syn-
ergistic control approach of [63], [75] with the ship maneuvering control of [84], [85],
where we augment the path variable with jump dynamics. The configuration space
of a ship can be reasonably described by SE(2) = R2 ⋊ SO(2). Configurations of the
ship are then represented as x = (p,R), where p ∈ R2 represents the ship position and
R ∈ SO(2) represents the ship heading.

The desired position of the ship is described in terms of a sufficiently smooth planar
path.

Definition 8.15. A planar Cr-path is a Cr-mapping η : [0, 1] → R2. If r ≥ 1, we say
that a planar Cr-path is regular if η′(s) ̸= 0 for all s ∈ [0, 1].

Given a regular C3-path η in R2, we synthesize a C2-path in SE(2) by requiring
that the heading of the ship is tangential to the path. Such a path has the form
s 7→ (pd(s), Rd(s)), where

pd(s) := η(s)

Rd(s) :=
1

|η′(s)|
(
η′(s) Sη′(s)

)
.

(8.38)

A desired speed assignment for ṡ along the path, ud : [0, 1] → R, is chosen as

ud(s) :=
Ud(s)

|p′d(s)|
, (8.39)

where Ud : [0, 1] → R is a continuously differentiable signed desired ship speed along
the path. In particular, ud is defined such that if ṡ = ud(s), then ṗd(s) =

p′d(s)
|p′d(s)|

Ud(s).
A two times continuously differentiable path in the configuration space xd : [0, 1] →
SE(2) can now be defined as xd(s) := (pd(s), Rd(s)). We define the desired tangent
τd : [0, 1] → R3 such that τ̂d = xd(s)

−1x′d(s) for all s ∈ [0, 1].
We denote by v = (ζ, ω) ∈ R3 the velocity of the ship, where ζ ∈ R2 is its

linear velocity and ω ∈ R is its angular velocity. A model for the ship kinematics and
dynamics is [24, Chapter 6.5]

ẋ = xv̂

v̇ = −γ(v) +M−1(d(v) + u)

}
(x, v, u) ∈ SE(2)× R3 × R3, (8.40)

where M = MT > 0 is the ship inertia tensor (including hydrodynamic inertia),
γ : R3 → R3 describes the Coriolis and centripetal accelerations associated with M ,
d : R3 → R3 describes the hydrodynamic drag forces acting on the ship, and u are
idealized input forces produced by the actuators.

The general ship maneuvering problem is then split into a geometric task that
represents convergence to this path, and a dynamic task that represents the attainment
of the speed assignment ud on this path.

Problem Statement (Maneuvering Problem [85]).
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• Geometric Task: Force the position and heading of the ship to converge to the
desired path,

lim
(t+j)→∞

∥xd(s(t, j))−1x(t, j)− I∥ = 0. (8.41)

• Dynamic Task: Force the path speed to converge to the desired speed assign-
ment:

lim
(t+j)→∞

|ṡ(t, j)− ud(s(t, j))| = 0. (8.42)

8.5.1 Backstepping Controller

We set X = SE(2) and Θ = Θa × Θb, where Θa = {−1, 1}, Θb = [0, 1] and θ =
(θa, θb) = (q, s). In particular, q is a classical synergistic logic variable and s is a path
variable utilized in the ship maneuvering control problem. Then, the kinematics of the
ship and the flow of q and s may be cast as a system of the form (8.23),

ẋ = xv̂ (x, v) ∈ SE(2)× R3. (8.43)

The set A0 ⊂ X ×Θ is now chosen as

A0 = {(x, θ) ∈ X ×Θ : x = xd(s)}. (8.44)

Compactness of A0 holds because the mapping (q, s) 7→ xd(s) is continuous and Θ is
compact.

We now introduce a synergistic potential function which is similar to [75] for the
heading control of the ship. In particular, let P : SO(2)× [0, 1] → R and, with ρa > 0,
the mapping T : SO(2)×Θ → SO(2)

P (R, s) := (1− ⟨e1, Rd(s)TRe1⟩), (8.45)

T (R, θ) := exp(ρaqP (R, s)S)Rd(s)
TR. (8.46)

Let k0 > 0 and let K0 = KT
0 be a positive definite matrix. Then, (V0, κ0, ν0) defined

as

V0(x, θ) =
1

2
|RT
d (p− pd(s))|2K0

+ k0P (T (R, θ), s) (8.47a)

κ0(x, θ) = Ad−1
xd(s)−1x τd(s)ud(s)−K d1V0(x, θ) (8.47b)

ν0(x, θ) =

(
0

ud(s)

)
, (8.47c)

where K = KT is a positive definite matrix, is an SLFF triple for (8.43) with synergy
gap relative to {−1, 1} exceeding 1

2 .
We now augment (8.43) with the ship dynamics

ẋ = xv̂

v̇ = −γ(v) +M−1(d(v) + u)

}
(z, u)∈(SE(2)×R3)×R3, (8.48)
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and define

A1 = {(x, v, θ) : (x, θ) ∈ A0, v = κ0(x, θ)}. (8.49)

It then follows directly from Proposition 8.14 that

V1(z, θ) = V0(x, θ) +
1

2
|v − κ0(x, θ)|2M , (8.50a)

κ1(z, θ) =M d1κ0(x, θ)v +M∇2κ0(x, θ)ν0(x, θ)

+Mγ(v)− d(v)

− γ1(v − κ0(x, θ))

− d1V0(x, θ),

(8.50b)

ν1(z, θ) = ν0(x, θ), (8.50c)

is an SLFF triple for the system (8.48) relative to A1 with synergy gap relative to
{−1, 1} exceeding 1

2 . Consequently, the synergistic controller

θ̇ = ν1(z, θ) (z, θ) ∈ C, (8.51)

θ+ ∈ G(z, θ) (z, θ) ∈ D, (8.52)
u = κ1(z, θ), (8.53)

where (C,D,G) are given by (8.19), renders A1 globally pre-asymptotically stable for
the resulting closed-loop system by Proposition 8.11. Moreover, if ud(s) ∈ TΘb

(s) for
all s ∈ Θb, then all maximal solutions are complete and A1 is globally asymptotically
stable for the resulting closed-loop system, which implies that the problem statement
is solved.

8.5.2 Simulations

Simulation results are presented in Figures 8.1 to 8.5. The model parameters can
be found in [86]. In the simulations, we have chosen δ = 0.1, ρa = δk0, ρ = 1.2ρa,
k0 = 5, K0 = 5I2, K = 0.05I3 and γ1 = diag(10, 10, 7). The chosen path is given by
pd(s) := 5(cos(πs), sin(πs)). The ship is initialized at p = (5, 2) with an initial heading
of ψ = −85◦, an initial velocity of v = 0 and a desired speed of Ud = 0.3m/s.

From Figure 8.1 we observe that the position references are successfully tracked
after an initial transient phase. An optional jump is immediately triggered such that q
is mapped to −1 and s is mapped to approximately 0.08. An optional jump is triggered
around t ≈ 2 s as seen in Figure 8.1. The error in the x-direction is slightly decreased
while the error in the y-direction is slightly increased. Moreover, from Figure 8.2 we
note that the difference between ζ1 and κ0,1 decreases over the jump in s. In Figure 8.4,
we observe that s is decreased over the jump, while q remains the same. Moreover,
from Figure 8.5, we observe a discontinuity in u2 at the time of the jump.
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Figure 8.1: The position p = (x, y) and desired position pd = (xd, yd).
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Figure 8.2: The body linear velocity ζ1 and ζ2 and the first and second component
of κ0.
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Figure 8.3: The heading angle ψ = atan2(R21, R11), desired heading angle ψd =
atan2(Rd,21, Rd,11), angular velocity ω and the third component of κ0.
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Figure 8.4: The speed U = (ζ21 + ζ22 )
1
2 , desired speed Ud and synergistic variables q

and s.
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Figure 8.5: The control forces and moment u.
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Chapter 9

Conclusions and Future Work

This thesis has presented several new results on modeling of underwater vehicles and
hybrid feedback control of nonlinear systems. While not all results pertaining to hybrid
feedback control focus directly on underwater vehicle control, all of them are applicable
in this domain.

In Chapter 3, a matrix Lie group approach to the modeling of rigid underwater ve-
hicles was presented. Furthermore, we introduced the notion of monotone dissipativity
and showed its connection with convex Rayleigh dissipation functions. Building on es-
tablished results from hydrodynamics, we also provided a modern symmetry principle
for hydrodynamic inertia and damping effects that can be used to simplify underwa-
ter vehicle models. An important avenue for further work is to include the influence
of additional submerged bodies in the fluid. The presented model takes its relatively
simple form in large part because it is assumed that the underwater vehicle constitutes
the only bounding surface of the fluid. Since underwater vehicles often work in close
proximity to the seafloor or subsea installations, this assumption is strictly speaking
rarely satisfied. The presence of other bodies in the fluid makes it necessary to consider
configuration-dependent expressions for hydrodynamic mass and damping effects. The
symmetry principle should in this case also be extended to give simplifications due
to left-invariance of the wrenches with respect to the symmetry group of the other
submerged bodies. Another avenue for further work is to extend the hydrodynamic
symmetry principle to also address wrenches generated by the vehicle’s thrusters and
control surfaces.

In Chapter 4, we have extended the modeling approach outlined in Chapter 3 to
multibody underwater vehicles with tree-topology. It was demonstrated how such an
approach could be useful for expressing and computing kinematic and dynamic quan-
tities of interest. The equations of motion in a global matrix-form were derived, and
the most important properties of the resulting system matrices given. We presented a
generalized Newton-Euler algorithm that can be used for the implementation of con-
trol algorithms that rely on a parametrization of the C◦-matrix possessing the skew
property. Furthermore, it was shown how efficient methods from the field of multibody
dynamics could be adapted to simulate multibody underwater vehicles. One avenue
for further research is a modification of the generalized Newton-Euler algorithm to
compute other parametrizations of the C◦-matrix, and in particular the one associ-
ated with the generalized Christoffel symbols [101, Section 3.8.2]. Another interesting
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topic, similar to the one mentioned for the preceding chapter, is an investigation of
the effect of hydrodynamic couplings between the bodies composing the vehicle.

In Chapter 5, we have introduced multiple synergistic control designs for mechani-
cal systems on matrix Lie groups. Specifically, we have proposed synergistic PD, output
feedback, and PID type control laws ensuring global asymptotic tracking of a desired
bounded reference trajectory. The PID type control laws achieve global asymptotic
tracking also when there is a constant disturbance present in the system dynamics.
Given the importance of integral action for the control of underwater vehicles, there
is ample reason to pursue this topic further. The presented PID control laws do not
utilize the same feedforward control as the presented PD and output feedback con-
trol laws, and do therefore not exploit the system properties fully. The cross-terms
involving the velocity error and the bias error present in the Lyapunov functions for
the PID control laws also makes the utilization of the synergistic smoothing approach
outlined in for instance [65] impossible without modification. Improving these aspects
of the presented PID control laws is of high importance. Furthermore, all control laws
presented in this chapter assume full actuation of the mechanical system. This as-
sumption does of course not hold for a wide range of underwater vehicles, and further
research in this direction is required to achieve greater practical applicability of the
presented control laws.

In Chapter 6, we have proposed an adaptive hybrid feedback control law for ma-
rine vehicles. The control law tracks a hybrid reference system constructed from a
parametrized loop and a speed assignment for the motion along the path and achieves
global asymptotic tracking of the loop at a time-varying desired speed. The proposed
hybrid feedback control law was implemented on a scale model tug boat and a re-
motely operated underwater vehicle, and laboratory experiments demonstrated the
effectiveness of the proposed control law. The particular structure of this control law
and the relatively simple expressions of the Lyapunov functions utilized in its stability
analysis makes it possible to apply it to other mechanical systems defined on general
matrix Lie groups. This includes systems that do not posses a left-invariant metric,
provided that the feedforward control is modified to also include certain terms stem-
ming from derivatives of the metric. One example from the class of systems that is
then within reach is furnished by traditional robot manipulators. Indeed, several robot
manipulators have joints that allow full rotation such that topological obstructions to
global asymptotic stabilization exist. More generally, the control law could be applied
to the fairly general class of underwater vehicles presented in Chapter 4, if the current
is modeled as a bias.

In Chapter 7, we have presented hysteretic control Lyapunov functions for a class
of nonlinear continuous-time systems. We have stated sufficient conditions for the ex-
istence of a feasible collection of feedback control laws that globally asymptotically
stabilize a compact set. Moreover, we have shown how a collection of optimization-
based feedback laws can be derived from a family of HCLFs under mild assumptions
on the objective function. As a result, HCLFs can serve as a tool for synthesis of opti-
mal feedback laws ensuring global asymptotic tracking of spatial rigid-bodies such as
underwater vehicles. Further work related to the control of underwater vehicles could
focus on showing that the HCLF decrease conditions can be satisfied for underwater
vehicle error systems with bounded inputs, and investigating whether the “Lyapunov-
based thrust allocation” that the optimization-based control laws essentially constitute
in this context is an effective form of thrust allocation.
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In Chapter 8, we have generalized the definition of synergistic Lyapunov function
and feedback pairs introduced in [77, 78] to synergistic Lyapunov function and feedback
triples by allowing the traditional logic variable to change during flows. We have
introduced two approaches to triggering jumps in the closed-loop system within the
synergistic framework, which we referred to as optional jumps and independently
triggered jumps. Furthermore, we have showed that SLFF triples, just like SLFF pairs,
are amenable to integrator backstepping for input-affine systems. Finally, we have
applied the presented theory to the maneuvering control of ships, were optional jumps
in the path-variable where introduced. We consider further work to be a complete
integration of the maneuvering problem presented in [85, 132] into the synergistic
framework.
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spar platforms. (Dr.Ing. Thesis) 

MTA-

2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and 

Stressor Interaction on Static Mechanical 

Equipment Residual Lifetime. (Dr.Ing. Thesis) 

MTA-

2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 

impact underneath decks of offshore platforms. 

(Dr.Ing. Thesis) 

MTA-

2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 

Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
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(Dr.Ing. Thesis) 

MTA-

2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 

Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 

Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 

Sensitivity. (Dr.Ing. Thesis) 

MTA-

2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 

Strength and Collapse Analysis of Ship Structures. 

(Dr.Ing. Thesis) 

MTA-

2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 

bed. (Dr.Ing. Thesis) 

MTA-

2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 

ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 

(Dr.Ing. Thesis) 

MTA-

2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 

depth. (Dr.Ing. Thesis) 

MTA-

2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 

combustion of VOC released by crude oil tankers. 

(Dr.Ing. Thesis) 

MTA-

2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing 

on Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 

deck slamming. (Dr.Ing. Thesis) 

MTA-

2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due 

to Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 

(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 

in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-

2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations 

of Circular Cylinders by Radial Water Jets. (Dr.Ing. 

Thesis) 

IMT-

2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 

Thesis) 

IMT-

2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 

Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 

with Inverse Geometry Design. (Dr.Ing. Thesis) 
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IMT-

2003-6 

 
 

Wist, Hanne Therese 

 

Statistical Properties of Successive Ocean Wave 

Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 

Interfaces. (Dr.Ing. Thesis) 

IMT-

2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 

approach of identity safety characteristics of 

shipping organization. (Dr.Ing. Thesis) 

IMT-

2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 

cylinders and cables in near axial flow. (Dr.Ing. 

Thesis) 

IMT-

2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 

Situations at Sea. (Dr.Ing. Thesis) 

IMT-

2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 

engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-

2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-

2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 

Synthetic Aperture Radar Wave Measurements. 

(Dr.Ing. Thesis) 

IMT-

2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 

around marine structures. (Dr.Ing. Thesis) 

IMT-

2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 

Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-

2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 

Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 

(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 

Thesis) 

IMT-

2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 

Extreme Conditions. (Dr.Ing. Thesis) 

IMT-

2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 

Vibrations and Their Effect on the Fatigue Loading 

of Ships. (Dr.Ing. Thesis) 

IMT-

2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 

Nonlinear Wave-Body Interaction Problems. (PhD 

Thesis, CeSOS) 

IMT-

2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 

(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
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simulations and control applications 

IMT-

2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 

(PhD Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 

vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 

Fatigue due to Wide-band Response Processes 

(PhD Thesis, CeSOS) 

IMT-

2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 

Utilizing Information about Technical Condition. 

(Dr.ing. thesis, IMT) 

IMT-

2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 

AUVs (PhD Thesis, IMT) 

IMT-
2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 

(PhD-Thesis, IMT) 

IMT-

2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-

stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-

2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 

Systems. (PhD-Thesis, IMT) 

IMT-
2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 

(Dr.ing. thesis, IMT) 

IMT-
2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 

Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-

2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 

Applications to Marine Hydrodynamics. 

(Dr.ing.thesis, IMT) 

IMT-

2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 

Nonlinear Wave-Induced Load Effects in 

Containerships considering Hydroelasticity. (PhD 

thesis, CeSOS) 

IMT-

2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 

of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-

2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 

Systems with Attention to High-Speed Marine 

Diesel Engines. (PhD-Thesis, IMT) 

IMT-

2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 

Bottom Damage and Hull Girder Response. (PhD-

thesis, IMT) 

IMT-

2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 

and Load Effects in Membrane LNG Tanks 

Subjected to Random Excitation. (PhD-thesis, 

CeSOS) 
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IMT-
2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-

thesis, CeSOS) 

IMT-
2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 

vessels. (PhD thesis, CeSOS) 

IMT-

2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 

Life of Aggregated Systems. PhD thesis, IMT 

IMT-

2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 

 Vibrations of Flexible Beams,  PhD 

thesis, CeSOS 

IMT-
2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 

Local Loads. PhD Thesis, IMT 

IMT-

2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 

PhD Thesis, IMT 

IMT-

2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 

Studies of Piston-Mode Resonance. PhD-Thesis, 

CeSOS 

IMT-

2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   

Model and a Stochastic Scour Prediction Model for 

Marine Structures. PhD-thesis, IMT 

IMT-
2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 

to Collision and Grounding. PhD-thesis, IMT 

IMT-

2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 

PhD thesis, IMT 

IMT-
2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 

Scheduling. PhD-thesis, IMT 

IMT-

2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 

Analyzing the Ocean Current Displacement of 

Longlines. Ph.d.-Thesis, IMT. 

IMT-

2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 

Two-Dimensional Constrained Interpolation Profile 

Method, Ph.d.thesis, CeSOS. 

IMT-
2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 

Power Plants. Ph.d.-thesis, IMT 

IMT 

2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 

Three-Dimensional Channel Flow, Ph.d.-thesis, 

IMT. 

IMT 

2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 

Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 

2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 

Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 

2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 

Plants, Ph.d.-thesis, CeSOS. 
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IMT 
2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 

Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 

2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 

Converters. Ph.d.thesis, CeSOS. 

 

IMT 

2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 

Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 

2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-

Nonlinear Wave-Body Interactions with/without 

Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 

2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 

Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 

2010-64 

El Khoury, George Numerical Simulations of Massively Separated 

Turbulent Flows, Ph.d.-thesis, IMT 

IMT 

2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 

on the Faroe Bank Channel Overflow. Ph.d.thesis, 

IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 

CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 

CeSOS. 

IMT 

2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 

Pocket. Ph.d.thesis, CeSOS. 

IMT 

2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-

Type Wind Turbines with Catenary or Taut 

Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 

Ph.d.-thesis, IMT. 

IMT – 

2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 

Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 

Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 

Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 

2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 

Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 

2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 

Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 

Ph.d.Thesis, IMT. 
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Imt – 
2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 

Slender Beams. Ph.d.Thesis, IMT. 

Imt – 

2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 

Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 

Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 

Grounding, Ph.d.thesis, IMT. 

IMT- 

2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 

Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 

2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 

considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 

Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 

with Heave Compensating System, IMT. 

IMT- 

2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 

chains, IMT. 

IMT- 
2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 

Structural Reliability, CeSOS. 

IMT- 

2012-86 

You, Jikun Numerical studies on wave forces and moored ship 

motions in intermediate and shallow water, CeSOS. 

IMT- 

2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 

CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 

welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 

Vibrations in Bending and Torsion, CeSOS 

IMT- 

2012-90 

Zhou, Li Numerical and Experimental Investigation of 

Station-keeping in Level Ice, CeSOS 

IMT- 

2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 

diesel enignes operating on conventional and 

alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 

CeSOS 
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IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 

energy converters, CeSOS 

IMT- 

2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 

diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 

CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 

Broaching, CeSOS 

IMT- 

2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 

spar-type wind turbine, CeSOS 

IMT-7-

2013 

Balland, Océane Optimization models for reducing air emissions 

from ships, IMT 

IMT-8-

2013 

Yang, Dan Transitional wake flow behind an inclined flat 

plate-----Computation and analysis,  IMT 

IMT-9-

2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 

for a Ship Hull due to Ice Action, IMT 

IMT-10-

2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 

systems- 

Concepts and methods applied to oil and gas 

facilities, IMT 

IMT-11-

2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 

Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 

Faults with Emphasis on Spar Type Floating Wind 

Turbines, IMT 

IMT-13-

2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 

emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 

Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 

around Atlantic salmon net cages, IMT 

IMT-17-

2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 

Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 

Encounter, CeSOS 

IMT-19-

2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 
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IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 

submerged perforated plate, CeSOS 

IMT-2-

2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 

Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-

2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 

offshore wind farms ,IMT 

IMT-4-

2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 

Platform Wind Turbines, CeSOS 

IMT-5-

2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 

and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 

during accidental collisions, IMT 

IMT-7-

2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 

icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 

Extreme Load Effects of the Mooring System, 

CeSOS 

IMT-9-

2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 

an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-

2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 

heave compensation of deep water drilling risers, 

IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 

of a semisubmersible wind turbine, CeSOS 

IMT-13-

2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-

2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 

Account Effects of Residual Stress, IMT 

IMT-1-

2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-

2015 

Wang, Kai Modelling and dynamic analysis of a semi-

submersible floating vertical axis wind turbine, 

CeSOS 

IMT-3-

2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-

dimensional body with moonpool in waves and 

current, CeSOS 

IMT-4-

2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 

bodies, IMT 
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IMT-5-
2015 

Vegard Longva Formulation and application of finite element 
techniques for slender marine structures subjected 

to contact interactions, IMT 

IMT-6-

2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 

CeSOS 

IMT-7-

2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 

IMT 

IMT-8-

2015 

Oleh I Karpa Development of bivariate extreme value 

distributions for applications in marine 

technology,CeSOS 

IMT-9-

2015 

Daniel de Almeida Fernandes An output feedback motion control system for 

ROVs, AMOS 

IMT-10-

2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 

Dynamic Positioning Vessel and Underwater 

Robotics, CeSOS 

IMT-11-

2015 

Wenting Zhu Impact of emission allocation in maritime 

transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 

Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 

Unsteady Slug Flow, CeSOS 

IMT-14-

2015 

Dagfinn Husjord Guidance and decision-support system for safe 

navigation of ships operating in close proximity, 

IMT 

IMT-15-

2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 

Effects, IMT 

IMT-16-

2015 

Qin Zhang Image Processing for Ice Parameter Identification 

in Ice Management, IMT 

IMT-1-

2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 

Experiential Learning, IMT 

IMT-2-

2016 

Martin Storheim Structural response in ship-platform and ship-ice 

collisions, IMT 

IMT-3-

2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 

and Tandem Circular Cylinders Close to a Plane 

Wall, IMT 

IMT-4-

2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 

sections, IMT 
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IMT-5-
2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 

and coastal research,IMT 

IMT-6-
2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 

for Offshore Wind Turbines, CeSOS 

IMT-7-
2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-
2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 
Trawling Operations in a Safety Perspective, 

CeSOS 

IMT-9-
2016 

Zhengshun Cheng Integrated Dynamic Analysis of Floating Vertical 

Axis Wind Turbines, CeSOS 

IMT-10-
2016 

Ling Wan Experimental and Numerical Study of a Combined 
Offshore Wind and Wave Energy Converter 

Concept 

IMT-11-
2016 

Wei Chai Stochastic dynamic analysis and reliability 
evaluation of the roll motion for ships in random 

seas, CeSOS 

IMT-12-
2016 

Øyvind Selnes Patricksson Decision support for conceptual ship design with 
focus on a changing life cycle and future 

uncertainty, IMT 

IMT-13-
2016 

Mats Jørgen Thorsen Time domain analysis of vortex-induced vibrations, 

IMT 

IMT-14-
2016 

Edgar McGuinness Safety in the Norwegian Fishing Fleet – Analysis 

and measures for improvement, IMT 

IMT-15-

2016 

Sepideh Jafarzadeh Energy effiency and emission abatement in the 

fishing fleet, IMT 

IMT-16-
2016 

Wilson Ivan Guachamin Acero Assessment of marine operations for offshore wind 
turbine installation with emphasis on response-

based operational limits, IMT 

IMT-17-
2016 

Mauro Candeloro Tools and Methods for Autonomous  Operations on 
Seabed and Water Coumn using Underwater 

Vehicles, IMT 

IMT-18-
2016 

Valentin Chabaud Real-Time Hybrid Model Testing of Floating Wind 

Tubines, IMT 

IMT-1-
2017 

Mohammad Saud Afzal Three-dimensional streaming in a sea bed boundary 

layer 

IMT-2-
2017 

Peng Li A Theoretical and Experimental Study of Wave-
induced Hydroelastic Response of a Circular 

Floating Collar 

IMT-3-
2017 

Martin Bergström A simulation-based design method for arctic 

maritime transport systems 
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IMT-4-
2017 

Bhushan Taskar The effect of waves on marine propellers and 

propulsion 

IMT-5-
2017 

Mohsen Bardestani A two-dimensional numerical and experimental 
study of a floater with net and sinker tube in waves 

and current 

IMT-6-
2017 

Fatemeh Hoseini Dadmarzi Direct Numerical Simualtion of turbulent wakes 

behind different plate configurations 

IMT-7-
2017 

Michel R. Miyazaki Modeling and control of hybrid marine power 

plants 

IMT-8-
2017 

Giri Rajasekhar Gunnu Safety and effiency enhancement of anchor 
handling operations with particular emphasis on the 

stability of anchor handling vessels 

IMT-9-

2017 

Kevin Koosup Yum Transient Performance and Emissions of a 

Turbocharged Diesel Engine for Marine Power 

Plants 

IMT-10-
2017 

Zhaolong Yu Hydrodynamic and structural aspects of ship 

collisions 

IMT-11-
2017 

Martin Hassel Risk Analysis and Modelling of Allisions between 

Passing Vessels and Offshore Installations 

IMT-12-
2017 

Astrid H. Brodtkorb Hybrid Control of Marine Vessels – Dynamic 

Positioning in Varying Conditions 

IMT-13-
2017 

Kjersti Bruserud Simultaneous stochastic model of waves and 

current for prediction of structural design loads 

IMT-14-

2017 

Finn-Idar Grøtta Giske Long-Term Extreme Response Analysis of Marine 

Structures Using Inverse Reliability Methods 

IMT-15-
2017 

Stian Skjong Modeling and Simulation of Maritime Systems and 
Operations for Virtual Prototyping using co-

Simulations  

IMT-1-
2018 

Yingguang Chu Virtual Prototyping for Marine Crane Design and 

Operations 

IMT-2-
2018 

Sergey Gavrilin Validation of ship manoeuvring simulation models 

IMT-3-
2018 

Jeevith Hegde Tools and methods to manage risk in autonomous 
subsea inspection,maintenance and repair 

operations 

IMT-4-

2018 

Ida M. Strand Sea Loads on Closed Flexible Fish Cages 

IMT-5-
2018 

Erlend Kvinge Jørgensen Navigation and Control of Underwater Robotic 

Vehicles 
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IMT-6-
2018 

Bård Stovner Aided Intertial Navigation of Underwater Vehicles 

IMT-7-
2018 

Erlend Liavåg Grotle Thermodynamic Response Enhanced by Sloshing 

in Marine LNG Fuel Tanks 

IMT-8-
2018 

Børge Rokseth Safety and Verification of Advanced Maritime 

Vessels 

IMT-9-
2018 

Jan Vidar Ulveseter Advances in Semi-Empirical Time Domain 

Modelling of Vortex-Induced Vibrations 

IMT-10-
2018 

Chenyu Luan Design and analysis for a steel braceless semi-
submersible hull for supporting a 5-MW horizontal 

axis wind turbine 

IMT-11-
2018 

Carl Fredrik Rehn Ship Design under Uncertainty 

IMT-12-
2018 

Øyvind Ødegård Towards Autonomous Operations and Systems in 
Marine Archaeology 

IMT-13- 
2018 

Stein Melvær Nornes Guidance and Control of Marine Robotics for 
Ocean Mapping and Monitoring 

IMT-14-
2018 

Petter Norgren Autonomous Underwater Vehicles in Arctic Marine 
Operations: Arctic marine research and ice 

monitoring 

IMT-15-
2018 

Minjoo Choi Modular Adaptable Ship Design for Handling 
Uncertainty in the Future Operating Context  

MT-16-
2018 

Ole Alexander Eidsvik Dynamics of Remotely Operated Underwater 
Vehicle Systems 

IMT-17-
2018 

Mahdi Ghane Fault Diagnosis of Floating Wind Turbine 
Drivetrain- Methodologies and Applications 

IMT-18-
2018 

Christoph Alexander Thieme Risk Analysis and Modelling of Autonomous 
Marine Systems 

IMT-19-
2018 

Yugao Shen Operational limits for floating-collar fish farms in 
waves and current, without and with well-boat 

presence 

IMT-20-
2018 

Tianjiao Dai Investigations of Shear Interaction and Stresses in 
Flexible Pipes and Umbilicals 

IMT-21-
2018 

Sigurd Solheim Pettersen 
 

Resilience by Latent Capabilities in Marine 
Systems 

 

IMT-22-
2018 

Thomas Sauder 
 

Fidelity of Cyber-physical Empirical Methods. 
Application to the Active Truncation of Slender 

Marine Structures 

 
IMT-23-

2018 

Jan-Tore Horn 

 

Statistical and Modelling Uncertainties in the 

Design of Offshore Wind Turbines 
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IMT-24-
2018 

Anna Swider Data Mining Methods for the Analysis of Power 
Systems of Vessels 

 

IMT-1-
2019 

Zhao He Hydrodynamic study of a moored fish farming cage 
with fish influence 

 

IMT-2-
2019 

Isar Ghamari 
 

Numerical and Experimental Study on the Ship 
Parametric Roll Resonance and the Effect of Anti-

Roll Tank 

 
IMT-3-

2019 

Håkon Strandenes 

 

Turbulent Flow Simulations at Higher Reynolds 

Numbers 

 

IMT-4-

2019 

Siri Mariane Holen 

 

Safety in Norwegian Fish Farming – Concepts and 

Methods for Improvement 

 

IMT-5-

2019 

Ping Fu 

 

Reliability Analysis of Wake-Induced Riser 

Collision 

 

IMT-6-

2019 

Vladimir Krivopolianskii 

 

Experimental Investigation of Injection and 

Combustion Processes in Marine Gas Engines using 

Constant Volume Rig 
 

IMT-7-

2019 

Anna Maria Kozlowska Hydrodynamic Loads on Marine Propellers Subject 

to Ventilation and out of Water Condition. 

IMT-8-

2019 

Hans-Martin Heyn Motion Sensing on Vessels Operating in Sea Ice: A 

Local Ice Monitoring System for Transit and 
Stationkeeping Operations under the Influence of 

Sea Ice 

IMT-9-
2019| 

 

Stefan Vilsen 
 

Method for Real-Time Hybrid Model Testing of 
Ocean Structures – Case on Slender Marine 

Systems 

IMT-10-
2019 

Finn-Christian W. Hanssen Non-Linear Wave-Body Interaction in Severe 
Waves 

IMT-11-
2019 

Trygve Olav Fossum Adaptive Sampling for Marine Robotics 

IMT-12-
2019 

Jørgen Bremnes Nielsen Modeling and Simulation for Design Evaluation 

IMT-13-
2019 

Yuna Zhao Numerical modelling and dyncamic analysis of 
offshore wind turbine blade installation 

IMT-14-
2019 

Daniela Myland Experimental and Theoretical Investigations on the 
Ship Resistance in Level Ice 

IMT-15-
2019 

Zhengru Ren Advanced control algorithms to support automated 
offshore wind turbine installation 

IMT-16-
2019 

Drazen Polic Ice-propeller impact analysis using an inverse 
propulsion machinery simulation approach 

IMT-17-
2019 

Endre Sandvik Sea passage scenario simulation for ship system 
performance evaluation 
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IMT-18-
2019 

Loup Suja-Thauvin Response of Monopile Wind Turbines to Higher 
Order Wave Loads 

IMT-19-

2019 

Emil Smilden Structural control of offshore wind turbines – 

Increasing the role of control design in offshore 
wind farm development 

IMT-20-

2019 

Aleksandar-Sasa Milakovic On equivalent ice thickness and machine learning 

in ship ice transit simulations 

IMT-1-

2020 

Amrit Shankar Verma Modelling, Analysis and Response-based 

Operability Assessment of Offshore Wind Turbine 
Blade Installation with Emphasis on Impact 

Damages 

IMT-2-

2020 

Bent Oddvar Arnesen 

Haugaløkken 

Autonomous Technology for Inspection, 

Maintenance and Repair Operations in the 

Norwegian Aquaculture 

IMT-3-

2020 

Seongpil Cho Model-based fault detection and diagnosis of a 

blade pitch system in floating wind turbines 

IMT-4-

2020 

Jose Jorge Garcia Agis Effectiveness in Decision-Making in Ship Design 

under Uncertainty 

IMT-5-

2020 

Thomas H. Viuff Uncertainty Assessment of Wave-and Current-

induced Global Response of Floating Bridges 

IMT-6-

2020 

Fredrik Mentzoni Hydrodynamic Loads on Complex Structures in the 

Wave Zone 

IMT-7- 

2020 

Senthuran Ravinthrakumar Numerical and Experimental Studies of Resonant 

Flow in Moonpools in Operational Conditions 

IMT-8-

2020 

Stian Skaalvik Sandøy 

 

Acoustic-based Probabilistic Localization and 

Mapping using Unmanned Underwater Vehicles for 
Aquaculture Operations 

 

IMT-9-
2020 

Kun Xu Design and Analysis of Mooring System for Semi-
submersible Floating Wind Turbine in Shallow 

Water 

IMT-10-

2020 

Jianxun Zhu Cavity Flows and Wake Behind an Elliptic 

Cylinder Translating Above the Wall 

IMT-11-

2020 

Sandra Hogenboom Decision-making within Dynamic Positioning 

Operations in the Offshore Industry – A Human 
Factors based Approach 

IMT-12-

2020 

Woongshik Nam Structural Resistance of Ship and Offshore 

Structures Exposed to the Risk of Brittle Failure 

IMT-13-

2020 

Svenn Are Tutturen Værnø Transient Performance in Dynamic Positioning of 

Ships: Investigation of Residual Load Models and 

Control Methods for Effective Compensation 

IMT-14-

2020 

Mohd Atif Siddiqui 

 

Experimental and Numerical Hydrodynamic 

Analysis of a Damaged Ship in Waves 

IMT-15-

2020 

John Marius Hegseth Efficient Modelling and Design Optimization of 

Large Floating Wind Turbines 
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IMT-16-
2020 

Asle Natskår Reliability-based Assessment of Marine Operations 
with Emphasis on Sea Transport on Barges 

IMT-17-
2020 

Shi Deng Experimental and Numerical Study of 
Hydrodynamic Responses of a Twin-Tube 

Submerged Floating Tunnel Considering Vortex-

Induced Vibration 
IMT-18-

2020 

Jone Torsvik Dynamic Analysis in Design and Operation of 

Large Floating Offshore Wind Turbine Drivetrains 

 

IMT-1-

2021 

Ali Ebrahimi Handling Complexity to Improve Ship Design 

Competitiveness 

IMT-2-

2021 

Davide Proserpio Isogeometric Phase-Field Methods for Modeling 

Fracture in Shell Structures 

IMT-3-

2021 

Cai Tian Numerical Studies of Viscous Flow Around Step 

Cylinders 

 

IMT-4-

2021 

Farid Khazaeli Moghadam Vibration-based Condition Monitoring of Large 

Offshore Wind Turbines in a Digital Twin 

Perspective 

IMT-5-

2021 

Shuaishuai Wang Design and Dynamic Analysis of a 10-MW 

Medium-Speed Drivetrain in Offshore Wind 

Turbines 

IMT-6-

2021 

Sadi Tavakoli Ship Propulsion Dynamics and Emissions 

IMT-7-

2021 

Haoran Li Nonlinear wave loads, and resulting global 

response statistics of a semi-submersible wind 

turbine platform with heave plates 

IMT-8-

2021 

Einar Skiftestad Ueland Load Control for Real-Time Hybrid Model Testing 

using Cable-Driven Parallel Robots 

IMT-9-

2021 

Mengning Wu Uncertainty of machine learning-based methods for 

wave forecast and its effect on installation of 

offshore wind turbines 

IMT-10-

2021 

Xu Han Onboard Tuning and Uncertainty Estimation of 

Vessel Seakeeping Model Parameters 

IMT-01-

2022 

Ingunn Marie Holmen Safety in Exposed Aquacultrue Operations 

IMT-02-

2022 

Prateek Gupta Ship Performance Monitoring using In-service 

Measurements and Big Data Analysis Methods 

IMT-03-

2022 

Sangwoo Kim Non-linear time domain analysis of deepwater riser 

vortex-induced vibrations 

IMT-04-

2022 

Jarle Vinje Kramer Hydrodynamic Aspects of Sail-Assisted Merchant 

Vessels 

IMT-05-

2022 

Øyvind Rabliås Numerical and Expermental Studies of 

Maneuvering in Regular and Irregular Waves 
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IMT-06-
2022 

Pramod Ghimire Simulation-Based Ship Hybrid Power System 
Conspet Studies and Performance Analyses 

IMT-07-
2022 

Carlos Eduardo Silva de Souza Structural modelling, coupled dynamics, and design 
of large floating wind turbines 

IMT-08-
2022 

Lorenzo Balestra Design of hybrid fuel cell & battery systems for 
maritime vessels 

IMT-09-
2022 

Sharmin Sultana Process safety and risk management using system 
perspectives – A contribution to the chemical 

process and petroleum industry 

IMT-10-
2022 

Øystein Sture Autonomous Exploration for Marine Minerals 

IMT-11-
2022 

Tiantian Zhu Information and Decision-making for Major 
Accident Prevention – A concept of information-

based strategies for accident prevention 

IMT-12-
2022 

Siamak Karimi Shore-to-Ship Charging Systems for Battery-
Electric Ships 

IMT-01-
2023 

Huili Xu Fish-inspired Propulsion Study: Numerical 
Hydrodynamics of Rigid/Flexible/Morphing Foils 

and Observations on Real Fish 

IMT-02-
2023 

Chana Sinsabvarodom Probabilistic Modelling of Ice-drift and Ice Loading 
on Fixed and Floating Offshore Structures 

IMT-03-
2023 

Martin Skaldebø Intelligent low-cost solutions for underwater 
intervention using computer vision and machine 

learning 

IMT-04-
2023 

Hans Tobias Slette Vessel  
operations in exposed aquaculture – Achieving safe 

and efficient operation of vessel fleets in fish farm  

systems experiencing challenging metocean 
conditions 

IMT-05-

2023 

Ruochen Yang Methods and models for analyzing and controlling 

the safety in operations of autonomous marine 
systems 

IMT-06-

2023 

Tobias Rye Torben Formal Approaches to Design and Verification of 

Safe Control Systems for Autonomous Vessels 

IMT-07-

2023 

YoungRong Kim Modeling Operational Performance for the Global 

Fleet & Application of an Energy Saving Measure 

IMT-08-

2023 

Henrik Schmidt-Didlaukies Modeling and Hybrid Feedback Control of 

Underwater Vehicles 
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