
Andreas N
esbakken Berger and Torstein

M
olland

Autom
atic D

etection and Fixing of XXE Vulnerabilities U
sing Static Source Code Analysis and Instance Tracking

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Andreas Nesbakken Berger and Torstein Molland

Automatic Detection and Fixing of XXE
Vulnerabilities Using Static Source Code
Analysis and Instance Tracking

Master’s thesis in Computer Science

Supervisor: Jingyue Li

June 2020

Andreas Nesbakken Berger and Torstein Molland

Automatic Detection and Fixing of XXE
Vulnerabilities Using Static Source
Code Analysis and Instance Tracking

Master’s thesis in Computer Science
Supervisor: Jingyue Li
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Acknowledgment
We would like to thank Associate Professor Jingyue Li at the Department of Computer
Science at The Norwegian University of Science and Technology for his support on this
project and his feedback and advice. We would also like to thank Associate Professor

Babak A. Farshchian at the Department of Computer Science at The Norwegian
University of Science and Technology for his feedback on our research plan.

Abstract

Web security is an important part of any web-based software system. XML External Entity
attacks is one of the biggest security risks for web applications, both according to OWASP
and MITRE. A successful XML External Entity attack can have severe consequences like
denial of service, remote code execution, and information extraction. There has been
done little research into tool support for fixing of XML External Entity attacks. There
has been done some research into detection of XXE and fixing of other vulnerabilities
like SQL Injection and Cross-Site Scripting, but not XML External Entities. To be better
able to advance the field of automatic vulnerability fixing, we wish to find out how XXE
vulnerability detection can be improved, and how automatic fixing of these vulnerabilities
can be done. To be able to evaluate a new auto fixing tool we also aim to research how a
test bed can be designed for evaluating auto fixing tools. Based on a structured literature
review a number of vulnerability detection techniques were discovered. We aim to use
these techniques to improve the detection in state of the art auto fixing tools, and then
implement automatic fixing of these vulnerabilities. Before creating the detection and auto
fixing, a test bed will be created containing test cases vulnerable to XXE that can evaluate
the effectiveness of the detection and the fixes. Our research contributes a novel instance
tracking method to detect XXE vulnerabilities for the tool FindSecBugs, a novel extension
for the tool adding auto fixes for the detected vulnerabilities, and a novel test bed for the
evaluation of the detection and the auto fixes of XXE. Our analysis of different detection
methods also shows that instance tracking is an effective way to improve the detection
of XXE. We also discuss both the effectiveness and shortcomings of using abstract syntax
trees (ASTs) for fixing vulnerable code, and a design for test beds that are used specifically
for evaluation of auto fixes and detection.

i

Sammendrag

Programvaresikkerhet er en viktig del av ethvert moderne programvaresystem. XML Ex-
ternal Entity angrep er en av de største sikkerhetsrisikoene for web applikasjoner, både
i følge OWASP og MITRE. Et vellykket XML External Entity angrep kan ha alvorlige
konsekvenser, som tjenestenektangrep, remote code execution, og informasjonsekstrak-
sjon. Det har blitt gjort lite forskning på verktøystøtte for fiksing av XML External En-
tity angrep. Det har blitt gjort noe forskning på deteksjon av XXE, og fiksing av andre
sårbarheter som SQL Injection og Cross-Site Scripting, men ikke for XML External En-
tities. For å forbedre verktøystøtte for automatisk fiksing av sårbarheter, ønsker vi å finne
ut hvordan deteksjon av XXE sårbarheter kan forbedres, og hvordan automatisk fiksing av
disse sårbarhetene kan bli utført. For å evaluere det nye auto-fiksing verktøyet ønsker vi
også å utforske hvordan test beds kan designes for evaluering av auto-fiks verktøy. Basert
på et strukturert litteratursøk ble en rekke deteksjonsteknikker for sårbarheter identifisert.
Vi ønsker å bruke disse teknikkene til å forbedre deteksjonen av sårbarheter, og deretter
implementere automatisk fiksing av disse sårbarhetene. Før deteksjon og autofiksing kan
implementeres, lagde vi en test bed som inneholder test cases som er sårbare mot XXE, og
som har muligheten til å evaluere om fiksene klarte å gjøre koden sikker og om funksjon-
aliteten i koden ble bevart. Vår forskning bidrar med en ny instance tracking metode for
å detektere XXE sårbarheter i FindSecBugs, en utvidelse til FindSecBugs som legger til
automatisk fiksing for de detekterte sårbarhetene, og en ny test bed for å evaluere detek-
sjonen og fiksing av XXE. Vår analyse av ulike deteksjonsmetoder viser også at instance
tracking er en effektiv måte å forbedre deteksjon av XXE. Vi diskuterer også fordeler og
ulemper ved å bruke abstrakte syntaks-trær for å fikse sårbarheter i kildekode. Vi presen-
terer også et design for en test bed som kan brukes spesifikt for å evaluere autofikser og
deteksjon.

i

ii

Table of Contents

Summary i

Sammendrag i

Table of Contents viii

List of Tables xiii

List of Figures xvi

Abbreviations xvii

1 Introduction 1

2 Background 5
2.1 Static Code Analysis . 5

2.1.1 Pattern Matching . 6
2.1.2 Control Flow . 6
2.1.3 Data Flow . 7
2.1.4 Bytecode Analysis . 10
2.1.5 Source, Sink, and Sanitizer . 11
2.1.6 Early and Late Detection . 11

2.2 Java Virtual Machine . 11
2.3 Abstract Syntax Trees . 13
2.4 Evaluation Metrics . 14
2.5 OWASP Top 10 2017 . 15

2.5.1 A1:2017-Injection . 15
2.5.2 A2:2017-Broken Authentication 15
2.5.3 A3:2017-Sensitive Data Exposure 15
2.5.4 A4:2017-XML External Entities (XXE) 16
2.5.5 A5:2017-Broken Access Control 16

iii

2.5.6 A6:2017-Security Misconfiguration 16
2.5.7 A7:2017-Cross-Site Scripting (XSS) 16
2.5.8 A8:2017-Insecure Deserialization 17
2.5.9 A9:2017-Using Components with Known Vulnerabilities 17
2.5.10 A10:2017-Insufficient Logging and Monitoring 17

2.6 Other Web Application Vulnerability Classifications 18
2.6.1 Session management . 18

2.7 Importance of Mitigating XXE . 18
2.7.1 Mitigation Strategies for XXE Vulnerabilities 20

2.8 Common Weakness Enumeration (CWE) 22
2.9 Static Analysis and Automatix Code Fixing in IDEs 24
2.10 Description of Tools to be Extended . 24

2.10.1 FindSecBugs Project Structure 24
2.10.2 SpotBugs Project Structure . 26

3 Related Work 31
3.1 Existing Detection and Auto Fix Tools for Software Security 31

3.1.1 ASIDE . 31
3.1.2 ESVD . 32
3.1.3 FindSecBugs . 34
3.1.4 JoanAudit . 35
3.1.5 LAPSE+ . 36
3.1.6 Snyk . 37

3.2 Detection and Auto Fix Methods . 37
3.2.1 Overview of Detection Methods 38
3.2.2 Auto Fixing Based on Bytecode Analysis 38
3.2.3 Dynamic Analysis for Auto Fixing 38
3.2.4 Pattern Matching . 39
3.2.5 Data Flow Analysis for Auto Fixing 39
3.2.6 Machine Learning Approaches 39
3.2.7 Other Security Auto Fixing Approaches 40
3.2.8 Classical Auto Bug Fixes . 40
3.2.9 General Limitations of Existing Auto Fix Tools 42

3.3 Existing Test Beds . 43
3.3.1 Test Beds Used for Evaluations of Vulnerability Detection and

Fixing Approaches . 43
3.3.2 Classical Test Beds . 45
3.3.3 Metrics used for Evaluation . 45
3.3.4 Evaluation Methodology . 45

3.4 Studies into the Prevalence of XML External Entities 46

4 Research Design 49
4.1 Motivation . 49
4.2 Research Questions . 50
4.3 Research Method . 50
4.4 Participants . 51

iv

4.5 Research Paradigm . 51
4.6 Final Deliverables and Dissemination 52

5 Research Implementation 53
5.1 RQ1: How can a Test Suite for Evaluating Web Sec Auto Fixes be De-

signed for XML External Entity attacks? 53
5.2 RQ2: How can Detection of XXE be Improved? 54
5.3 RQ3: How can Auto Fixing of XML External Entities be Implemented

using an IDE Plugin . 55

6 Research Results 57
6.1 RQ1: How can a Test Suite for Evaluating Web Sec Auto Fixes be De-

signed for XML External Entity attacks? 57
6.1.1 Design of Existing Test Beds . 57
6.1.2 Explanation of Juliet Style Test Cases 58
6.1.3 Explanation of Instance Based Test Cases 58
6.1.4 Included XML Parsers . 60
6.1.5 Evaluation Process using the Test Bed 60
6.1.6 Testing the Functionality After Applying the Auto Fixes 61
6.1.7 Testing the Effectiveness of the Auto Fixes 61
6.1.8 Output of Automatic Evaluation of Fixes 62

6.2 RQ2.1: What are the Shortcomings of Existing Static Analysis Tools for
the Detection of XML External Entity Attacks? 63
6.2.1 Analyzing the Approach used by Existing XXE Detectors in Find-

SecBugs . 63
6.2.2 Evaluation of the Existing XML Detectors in FindSecBugs 64

6.3 RQ2.2 How can the Detection of XML External Entities be Improved us-
ing Different Techniques? . 70
6.3.1 Instruction Based Data Flow Analysis Approach 71
6.3.2 Evaluation Results of Instruction Based Data Flow Analysis . . . 71
6.3.3 Instance Tracking Analysis Approach 74
6.3.4 Evaluation of Instance Tracking Based XXE Detectors 77
6.3.5 Evaluation on Built in Test Cases in FindSecBugs 82

6.4 RQ3: How can Auto Fixing of XML External Entities be Implemented
using an IDE Plugin . 83
6.4.1 AST Based Auto Fix Approach for XML External Entities 83
6.4.2 Evaluation of AST based Auto Fixes 84
6.4.3 Summary of Auto Fix Evaluation Results 88
6.4.4 Dependence of Auto Fixes on Correctness of Detection 90

7 Discussion 91
7.1 RQ1: How can a Test Suite for Evaluating Web Sec Auto Fixes be De-

signed for XML External Entity Attacks? 91
7.1.1 Comparison with Classical Auto Fixing Test Beds 91
7.1.2 Comparison With Other Software Security Test Beds 92
7.1.3 Strengths and Weaknesses of Test Bed Design 92

v

7.1.4 Comparison with Related Work 94
7.2 RQ2.1: What are the shortcomings of existing static analysis tools for the

detection of XML External Entity attacks? 95
7.2.1 Strengths and Weaknesses of the Existing Detection of XXE in

FindSecBugs . 95
7.2.2 Comparison with Related Work 97

7.3 RQ2.2: How can the Detection of XML External Entities be Improved
using Different Techniques? . 97
7.3.1 Strengths and Weaknesses of Instruction Based Data Flow Analysis 97
7.3.2 Strengths and Weaknesses of Instance Tracking 98
7.3.3 Extending FindSecBugs for Detection Compared to Making Stand

Alone Tool . 99
7.3.4 Different Mitigation Strategies for XXE Vulnerabilities 100
7.3.5 Comparison with Related Work 100

7.4 RQ3: How can Auto Fixing of XML External Entities be Implemented
using an IDE Plugin . 101
7.4.1 Strengths and Weaknesses of using AST Based Auto Fixes 101
7.4.2 Strengths and Weaknesses of Backwards Compatible Auto Fixes . 102
7.4.3 Comparison with Related Work 103

7.5 Threats to Validity . 103
7.5.1 Threats to Internal Validity . 104
7.5.2 Threats to External Validity . 104

8 Conclusion and Future Work 107
8.1 Summary of Related Work . 107

8.1.1 Research into Detection . 107
8.1.2 Research into Fixing . 107
8.1.3 Test Beds and Testing Methods 108

8.2 Research Motivation . 108
8.3 Contributions and Conclusion . 109

8.3.1 RQ1: How can a test suite for evaluating web sec auto fixes be
designed for XML External Entity attacks? 109

8.3.2 RQ2.1: What are the shortcomings of existing static analysis tools
for the detection of XML External Entity attacks? 109

8.3.3 RQ2.2 How can the Detection of XML External Entities be Im-
proved Using Different Techniques? 110

8.3.4 RQ3: How can auto fixing of XML External Entities be imple-
mented using an IDE plugin . 110

8.4 Future Work . 110
8.4.1 Improve Test Bed . 111
8.4.2 Improve Detection . 111
8.4.3 Improve Auto Fixing . 112

Bibliography 113

Appendix 127

vi

Appendix A Summaries of Papers About Auto Fix Tools 129

Appendix B Prestudy 145
B.1 Implementation of the Literature Review 145
B.2 Implementation of Empirical Evaluation of Existing Auto Fix Tools . . . 147
B.3 Results of Evaluating Tools . 148

B.3.1 Q1.1: What are the Existing Tools in the Market Today? 148
B.4 Results of the Literature Review . 149

B.4.1 Q1.2: What are the Strengths and Weaknesses of Different Soft-
ware Security Tools? . 149

B.4.2 Q2: The state of the Art In Evaluating Auto Fixing Tools and
Methods . 150

B.5 Strengths and Weaknesses of Existing Approaches 151
B.6 Limitations of Existing Tools . 152
B.7 Limitations of Existing Test Beds . 153

Appendix C Test Bed Use Cases 155

Appendix D Test Case Flow Variants 157
D.1 Instance Based Flow Variants . 157
D.2 Flow Variants in Juliet Test Suite . 159

Appendix E Implementation Details of Existing XML Vulnerability detectors in
FindSecBugs 163

Appendix F Implementation of Instruction based Data Flow Analysis 167

Appendix G Implementation of XML Vulnerability Detectors using Instance Track-
ing 169
G.1 Implementation of Instance Tracking Approach 169
G.2 The BetterDocumentBuilderDetector class 171
G.3 The BetterSAXParserDetector class . 175
G.4 The BetterXmlStreamReaderDetector class 178
G.5 The BetterTransformerFactoryDetector class 179
G.6 The BetterXMLReaderDetector class . 181

Appendix H Implementation of Detection of Insecure Cookies 183

Appendix I Implementation of the Auto Fix Approach 187
I.1 Auto Fixing using Instance Tracking Resolution 187

I.1.1 The DocumentBuilderResolution class 189
I.1.2 The SAXParserResolution class 190
I.1.3 The XMLStreamReaderResolution class 191
I.1.4 The TransformerResolution class 192
I.1.5 The XMLReaderResolution class 192

I.2 Benefits of Extending FindSecBugs . 193

vii

Appendix J Implementation of AST based Auto Fixes of Insecure Cookies 195

Appendix K Research Paper 197

viii

List of Tables

2.1 Values from data flow analysis, example by Allen and Cocke [2] 10
2.2 The different method invocation instructions as specified by [32] 12
2.3 The different field descriptor types recognized by the JVM [32] 13
2.4 Summary of vulnerable parsers in popular programming languages as iden-

tified by Jan, Nguyen, and Briand[59] 20
2.5 The different attributes suggested by OWASP that can be configured for

the different factories used to initialize the XML parsers, and for XML
parsers that are initialized directly [127] 22

2.6 The different attributes suggested by Oracle that can be configured for the
different factories used to initialize the XML parsers, and for XML parsers
that are initialized directly [30] . 22

2.7 An overview of the base detector classes present in SpotBugs [55] 28

3.1 Input-validation related vulnerability Coverage by Baset and Denning [16] 42
3.2 Test beds discovered through literature review 43
3.3 How frequently different parsers for Java have been used as described by

Jan, Nguyen, and Briand [59]. 46

6.1 Test cases included for each XML parser 60
6.2 Result of evaluating the existing detector for the DocumentBuilder parser

in FindSecBugs on the instance based test cases described in Table D.1 . . 65
6.3 Result of evaluating the existing detector for the SAXParser parser in Find-

SecBugs on the instance based test cases described in Table D.1 65
6.4 Result of evaluating the existing detector for the XMLStreamReader parser

in FindSecBugs on the instance based test cases described in Table D.1 . . 66
6.5 Result of evaluating the existing detector for the XMLEventReader parser

in FindSecBugs on the instance based test cases described in Table D.1 . . 66
6.6 Result of evaluating the existing detector for the FilteredReader parser in

FindSecBugs on the instance based test cases described in Table D.1 . . . 67
6.7 Result of evaluating the existing detector for the Transformer parser in

FindSecBugs on the instance based test cases described in Table D.1. . . . 67

ix

6.8 Result of evaluating the existing detector for the XMLReader parser in
FindSecBugs on the instance based test cases described in Table D.1. Only
test case four, six, and seven through 11 are applicable to this parser . . . 68

6.9 Summary of the true positives, false positives, and false negatives after
evaluating the existing detectors on the instance based test cases in Table D.1 69

6.10 Summary of the true positives, false positives, and false negatives after
evaluating the existing detectors on the Juliet style test cases 70

6.11 Execution time for the existing detectors 70
6.12 Result of evaluating the new detector for the DocumentBuilder parser in

FindSecBugs on the instance based test cases described in Table D.1 . . . 78
6.13 Result of evaluating the new detector for the SAXParser parser in Find-

SecBugs on the instance based test cases described in Table D.1 78
6.14 Result of evaluating the new detector for the XMLStreamReader parser in

FindSecBugs on the instance based test cases described in Table D.1 . . . 79
6.15 Result of evaluating the new detector for the XMLEventReader parser in

FindSecBugs on the instance based test cases described in Table D.1 . . . 79
6.16 Result of evaluating the new detector for the FilteredReader parser in Find-

SecBugs on the instance based test cases described in Table D.1 80
6.17 Result of evaluating the new detector for the Transformer parser in Find-

SecBugs on the instance based test cases described in Table D.1 80
6.18 Result of evaluating the new detector for the XMLReader parser in Find-

SecBugs on the instance based test cases described in Table D.1 80
6.19 Summary of the true positives, false positives, and false negatives after

evaluation of the instance tracking based detectors on the instance based
test cases in Table D.1 . 81

6.20 Summary of the true positives, false positives, and false negatives after
evaluation of the instance tracking based detectors on the Juliet style test
cases . 81

6.21 Execution time for instance tracking detectors 82
6.22 Result of evaluating the auto fixes for the DocumentBuilder parser in Find-

SecBugs on the instance based test cases shown in Table D.1 85
6.23 Result of evaluating the auto fixes for the SAXParser parser in FindSecBugs

on the instance based test cases shown in Table D.1 85
6.24 Result of evaluating the auto fixes for the XMLStreamReader parser in

FindSecBugs on the instance based test cases shown in Table D.1 86
6.25 Result of evaluating the auto fixes for the XMLEventReader parser in

FindSecBugs on the instance based test cases shown in Table D.1 86
6.26 Result of evaluating the auto fixes for the FilteredReader parser in Find-

SecBugs on the instance based test cases shown in Table D.1 87
6.27 Result of evaluating the auto fixes for the Transformer parser in Find-

SecBugs on the instance based test cases shown in Table D.1 88
6.28 Result of evaluating the auto fixes for the XMLReader parser in Find-

SecBugs on the instance based test cases shown in Table D.1 88
6.29 Summary of the successful fixes, missed fixes, and incorrect fixes after

evaluating the auto fixes on the instance based test cases shown in Table D.1 89

x

6.30 Summary of the successful fixes, missed fixes, and incorrect fixes after
evaluating the auto fix mechanism on the Juliet style test cases 89

6.31 Execution time for auto fixes . 90

A.1 Literature review results [89] . 143

B.1 List of the inclusion and exclusion criteria used for filtering the papers [89] 147

B.2 Evaluation criteria for papers used to assess the papers identified in the
literature review [89]. Please note that RQs have been replaced with Qs to
avoid confusion with RQs for the master thesis. 147

B.3 Overview of evaluated plugins [89] . 149

B.4 Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors [86]152

C.1 Use case for validating fixes using test bed 156

D.1 Control and data flow test cases focusing on different ways of initializing
an object and different ways of invoking methods on an object instance . . 159

D.2 The different test case flow variants from Juliet Test Suite [93] 161

E.1 The different parsers and their corresponding fullClassName as identified
by FindSecBugs . 164

G.1 Result of inspecting the bytecode and the documentation for which return
values to track for the DocumentBuilder parser 172

G.2 Different calls considered vulnerable if not called as well as calls consid-
ered vulnerable if called for the DocumentBuilder as detailed in subsec-
tion 2.7.1. The parameters, the stack indexes for these parameters, the bug
pattern to report, and when to report the bug was found by inspecting the
bytecode and consulting the documentation for the parser 173

G.3 Different calls that all must be called to mitigate the XXE vulnerability for
the DocumentBuilder parser as detailed in subsection 2.7.1. The insecure
calls are shown under the secure one they make vulnerable again if called.
The parameters, the stack indexes for these parameters, the bug pattern to
report, and when to report the bug found by inspecting the bytecode and
consulting the documentation for the parser 175

G.4 Result of inspecting the bytecode and the documentation for which return
values to track for the SAXParser parser 176

G.5 Different calls considered vulnerable if not called as well as calls consid-
ered vulnerable if called for the SAXParser as detailed in subsection 2.7.1.
The parameters, the stack indexes for these parameters, the bug pattern to
report, and when to report the bug was found by inspecting the bytecode
and consulting the documentation for the parser 176

xi

G.6 Different calls that all must be called to mitigate the XXE vulnerability
for the SAXParser parser as detailed in subsection 2.7.1. The insecure
calls are shown under the secure one they make vulnerable again if called.
The parameters, the stack indexes for these parameters, the bug pattern to
report, and when to report the bug found by inspecting the bytecode and
consulting the documentation for the parser 177

G.7 Result of inspecting the bytecode and the documentation for which return
values to track for the XMLStreamReader, the XMLEventReader parser,
and the FilteredReader parser . 178

G.8 Different calls considered vulnerable if not called as well as calls con-
sidered vulnerable if called for the XMLStreamReader, XMLEventReader,
and FilteredReader parsers as detailed in subsection 2.7.1. The parame-
ters, the stack indexes for these parameters, the bug pattern to report, and
when to report the bug was found by inspecting the bytecode and consult-
ing the documentation for the parser . 179

G.9 Result of inspecting the bytecode and the documentation for which return
values to track for the transformer parser 180

G.10 Different calls considered vulnerable if not called as well as calls consid-
ered vulnerable if called for the transformer as detailed in subsection 2.7.1.
The parameters, the stack indexes for these parameters, the bug pattern to
report, and when to report the bug was found by inspecting the bytecode
and consulting the documentation for the parser 180

G.11 Result of inspecting the bytecode and the documentation for which return
values to track for the XMLReader parser 181

G.12 Different calls considered vulnerable if not called, and calls considered
vulnerable if called for the XMLReader parser as detailed in subsection 2.7.1.
The parameters, the stack indexes for these parameters, the bug pattern to
report, and when to report the bug was found by inspecting the bytecode
and consulting the documentation for the parser 182

I.1 The function to call, as well as which parameters to call the function with
and which value that is necessary to make the DocumentBuilder parser safe 190

I.2 The different AST nodes that need to be traversed to find the correct node
to apply the quick fix to for the DocumentBuilder parser 190

I.3 Function to call, as well as which parameter and which value necessary to
make the SAXParser parser safe . 190

I.4 The different AST nodes that need to be traversed to find the correct node
to apply the quick fix to for the SAXParser parser 191

I.5 Function to call, as well as which parameter and which value necessary to
make the XMLStreamReader parser, the XMLEventReader parser and the
FilteredReader parser safe . 191

I.6 The different AST nodes that need to be traversed to find the correct node
to apply the quick fix to for the XMLStreamReader parser, the XMLEven-
tReader parser and the FilteredReader parser 191

I.7 Function to call, as well as which parameter and which value necessary to
make the Transformer parser safe . 192

xii

I.8 The different AST nodes that need to be traversed to find the correct node
to apply the quick fix to for the Transformer parser 192

I.9 Function to call, as well as which parameter and which value necessary to
make the XMLReader parser safe . 193

I.10 The different AST nodes that need to be traversed to find the correct node
to apply the quick fix to for the XMLReader parser 193

xiii

xiv

List of Figures

2.1 Examples of control flow graphs . 7
2.2 Control flow graph example from Allen and Cocke [2] 8
2.3 Example of code with corresponding control flow graph and data flow

graph based on figure 3 and 9 from [123] 9
2.4 Stored XSS attack to send user’s cookie to attacker 17
2.5 CSRF Attack . 18
2.6 Session Fixation Attack . 19
2.7 Example of quick fix offered by Eclipse 24
2.8 Top-level project structure of FindSecBugs 25
2.9 Uml diagram showing how the main findsecbugs-plugin module depends

on the modules findsecbugs-samples-kotlin, findsecbugs-test-util, findsecbugs-
samples-java, findsecbugs-samples-deps, and findsecbugs-samples-jsp. The
blue lines represent normal dependencies, and the green lines represent test
dependencies . 25

2.10 Top-level project structure of FindSecBugs 26
2.11 Overview of the data flow analysis framework in spotbugs [57] 29

3.1 ASIDE architecture by Zhu et al. [143] 32
3.2 ESVD architecture as described by Sampaio and Garcia [117] 33
3.3 JoanAudit architecture by Thomé et al. [130] 35

4.1 Visualization of research method used for the project 51

6.1 Overview of test bed design . 58
6.2 Process view of test bed . 61
6.3 The result of evaluating the instruction based data flow analysis on the

vulnerable version of test case one, the bad method in Table D.1. The
sequence of recorded calls at the end of the method is shown in the high-
lighted area. It is successfully able to determine that no call to the secure
method setFeature has been performed which means the parser use is vul-
nerable . 72

xv

6.4 Result of evaluating instruction based data flow analysis on the secure
version of test case one, the good method in Table D.1. The sequence
recorded calls at the end of the method is shown in the highlighted area. It
is successfully able to determine that a call to the secure method setFeature
has been performed before the parser use, which means that the parser use
is secure . 73

6.5 The parameters the setFeature call, which is call number two shown in
Figure 6.4, has been called with is highlighted in blue. This shows that the
data flow value successfully records the parameters the method has been
called with . 73

6.6 The result of evaluating instruction based data flow analysis on the vulner-
able version, the bad method, of test case 9 in Table D.1. The sequence of
recorded calls at the end of the method is shown in the highlighted area.
The data flow value does not contain enough information to determine if
the last two parse calls are invoked on the first vulnerable parser or on the
second secure parser . 74

6.7 Flow chart for the instance tracking approach 75
6.8 Flow chart for the auto fixing approach 84

B.1 Overview of the structured literature review process [89] 146
B.2 List of search queries used to obtain papers [89] 147

H.1 Detection result of evaluating the insecure cookie detector shown in List-
ing 24 on the 17 test cases in Juliet Test Suite [95] 184

xvi

Abbreviations

API = Application Programming Interface
AST = Abstract Syntax Tree
ASIDE = Application Security plugin for Integrated Development Environment
AUC = Area Under the Curve
BCEL = Byte Code Engineering Library
CFG = Control Flow Graph
CSRF = Cross-Site Request Forgery
CWE = Common Weakness Enumeration
DBMS = Database Management System
DFG = Data Flow Graph
DOM = Document Object Model
DOS = Denial Of Service
DTD = Document Type Definition
ESAPI = Enterprise Security API
ESVD = Early Security Vulnerability Detector
IDE = Integrated Development Environment
HTTP = HyperText Transfer Protocol
JDK = Java Development Kit
JVM = Java Virtual Machine
LIFO = Last In First Out
OWASP = Open Web Application Security Project
PHP = PHP Hypertext Preprocessor
ROC = Receiver Operating Characteristic
SAT = Static Analysis Tool
SQL = Structured Query Language
SQLi = SQL Injection
SSRF = Server-Side Request Forgery
SSO = Security Sensitive Operations
TP = True Positive
FP = False Positive
FN = False Negative
UML = Unified Modeling Language
XSS = Cross Site Scripting
XSLT = Extensible Stylesheet Language Transformations
XXE = XML External Entities

xvii

xviii

Chapter 1
Introduction

In the prestudy [89], it was found that a lot of research has been done into detection and
auto fixing of security vulnerabilities. As shown in Table A.1, numerous tools and ap-
proaches for detecting security vulnerabilities were found. However, most of these fo-
cused on the detection of SQL Injections, Cross-Site Scripting attacks, and other injection
vulnerabilities. Additionally, the maturity of different tools was found to differ substan-
tially. For instance, detection and auto fixing of injection-based vulnerabilities were found
to be quite mature, whereas detection of XXE was found to be lacking. Existing tools for
detecting XML related vulnerabilities were identified, however, the detection mechanism
was found to employ only the most basic detection mechanism based on pattern matching.
No auto fix mechanism was found for XML External Entities.

In the prestudy, it was also found that many researchers evaluate their auto fixing tools
on sub-optimal test beds. As shown in Table A.1, many evaluate their approaches on
open source software or proprietary test beds making it difficult to reproduce their results.
These test beds also do not provide information about the effectiveness of the fixes. Others
evaluate their approaches on test beds created specifically for evaluating the performance
of the detection mechanism. However, these test beds make it difficult to evaluate the
performance of auto fixes. The variation in evaluation methods makes it challenging to
compare different detection and auto fixing tools from different researchers.

The Open Web Application Security Project (OWASP) top 10 project [125] shows an
overview of the top 10 software vulnerability categories. XML External Entity attacks is
ranked as the fourth most critical security risk to web applications. This is due to both the
popularity and the severe consequences of such an attack being successfully carried out.
XXE can be used for information extraction, Server Side Request Forgery (SSRF), denial
of service attacks, and remote code execution. MITRE classifies XXE as part of the top
25 most dangerous software errors in their list from 2019 [86].

In a study done by Späth et al. [120], all the XML parsers in Java were found to be
vulnerable to XXE by default. This requires the developer to manually add lines of code
to make the parsers secure every time the parser is used to mitigate the vulnerability. This
means that a developer who uses an XML parser without changing the default settings

1

Chapter 1. Introduction

will be vulnerable to XXE without knowing it. Present-day tools can detect and show the
location of XXE vulnerabilities in code. However, these tools require developers to know
how to correctly change settings of the XML parser used to make them secure. This can be
challenging since mitigation strategies vary from parser to parser, and the resources online
do not always agree on the best mitigation strategy.

For the project, three research questions are proposed:
RQ1: How can a test suite for evaluating web sec auto fixes be designed for XML External
Entity attacks?
RQ2: How can detection of XXE be improved?

RQ2.1: What are the shortcomings of existing static analysis tools for the detection of
XML External Entity attacks?

RQ2.2: How can the detection of XML External entities be improved using different
techniques?
RQ3: How can auto fixing of XML External Entities be implemented using an IDE plugin?

A prestudy [89] was conducted the results of which are the basis for this master thesis.
In the prestudy, a structured literature review to identify the strengths and weaknesses of
different tools and approaches for detecting and auto fixing software vulnerabilities, as
well as different tools for auto fixing classical software bugs, was conducted. An evalu-
ation of auto fixing tools on the market today was also performed. The literature review
was done to established the state of the art in detection and auto fixing of software vulner-
abilities and provided the starting point for the research done in this master thesis.

In the prestudy, FindSecBugs was found to be the tool that seemed the most promising
to extend with auto fix functionality focusing on XML related vulnerabilities. It was also
found to employ detection based on pattern matching. To improve the detection of XXE
in FindSecBug the different source code analysis techniques discovered through the liter-
ature review such as data flow analysis was used. Each of the detection techniques was
preliminarily evaluated to identify the detection capabilities of the technique. Instruction
based data flow analysis was found to not provide enough information to improve the de-
tection. Instance tracking was found to perform better than the existing pattern matching
approach. The most promising technique, instance tracking, was chosen and implemented.
This implementation was evaluated on a larger test set to evaluate the performance of the
detection. An auto fix mechanism was also implemented for XXE using FindSecBugs
based on modifying the abstract syntax tree which was the most promising method identi-
fied in the prestudy.

A test bed was designed to be an extension of the Juliet Test Bed [95] since this was
discovered to be the most commonly used and most complete test bed based on control
flow variants. New vulnerable test cases for XXE needed to be added since these were
missing in Juliet. Then tests for checking if the test cases are still vulnerable and func-
tional were added. The output of running these tests will show how well an auto fixing
tool performed without requiring developers to manually check if an auto fix is correct.
Therefore, the test bed was used for evaluating the new auto fixing tool created in this
research.

The main contributions of this thesis are a novel detection mechanism for XML Ex-
ternal Entities based on instance tracking, a novel auto fix mechanism for XXE based on

2

modifying the abstract syntax tree, and a novel test bed for evaluating auto fix tools. All
of these are improvements to the state of the art in detection and auto fixing of web se-
curity vulnerabilities. The instance tracking mechanism is generalizable and capable of
being extended with detection capabilities for other instance-based vulnerabilities without
much effort. The corresponding auto fix mechanism is generalizable and capable of being
extended with auto fix capabilities for other vulnerabilities based on vulnerable instances.
Finally, the test bed is designed in an extensible manner, making the creation of additional
test cases effortless. The test bed is tailored for the evaluation of auto fixes of security vul-
nerabilities in Java source code. This test bed allows researchers to automatically check if
their fixes are effective mitigating XXE and if they preserve the intended functionality of
the code.

The rest of the thesis is organized as follows. In chapter 2 a brief overview of the
background information for the thesis is presented. In chapter 3 the related work which this
thesis is in the context of is shown. chapter 4 shows how the research has been designed.
chapter 5 shows how the research has been implemented. In chapter 6 the results and
evaluation of the test bed, the novel instance tracker approach for XXE, and the AST
based auto fix approach for XXE are shown. In chapter 7 the strengths and weaknesses
of each of these are discussed. Finally, the conclusion and future work are presented in
chapter 8.

3

Chapter 1. Introduction

4

Chapter 2
Background

In this chapter, the necessary background for the thesis will be presented. First, an overview
of different static code analysis techniques will be given. Then a description of the Java
virtual machine will follow. Next, abstract syntax trees are explained. A description of
OWASP top 10 will then be given as well as a description of the importance of mitigat-
ing XXE vulnerabilities. An explanation of Common Weakness Enumeration (CWE) for
XML is given, alongside a description of the detection and auto fixing tools that have been
extended. The basis of this background section is similar to the one in the prestudy, hence
why part of the background from the prestudy has been used [89].

2.1 Static Code Analysis
Static code analysis is defined as a tool that can be used to examine the source code of
a program without attempting to execute it [22]. The analysis can be performed both on
program source code which has the advantage that the static analyzer checks the exact
program written by the programmer [76] and on the compiled code. Since compilers
optimize the code, the resulting compiled code may not reflect the source code, which
means that the analysis can take compiler optimizations into account and detect problems
as a result of the optimization performed. Another advantage of analyzing the compiled
source is that it is considerably faster.

The tools compare with manual audits because they are faster, which means they can
audit larger volumes of code more frequently compared to manual audits. They also cap-
ture security knowledge in the tool, which means that users of the tool do not need to have
the same level of expertise as a human auditor. This means that it is easy to start using a
static analysis tool.

Static code analysis tools can make use of the control flow graph to analyze the control
flow of the program. The Data Flow Graph (DFG) can also be used to analyze the data flow
within a program, which means that the tool tries to infer the possible values that variables
might have at certain points in the program. This means that the tool can consider more of
the relationships between function, the order of execution, and the context of the data flow

5

Chapter 2. Background

within the program. Most static analysis tools make use of patterns or rules to identify
vulnerabilities, which means that the tools can identify most, but not all vulnerabilities. It
also means that the tools need to be regularly updated with new tools and strategies to find
new vulnerabilities.

Chess and McGraw [22] mention how static analyzers may be undecidable in the worst
case which means that the output of a static analyzer will require human evaluation. It is
difficult for the tool to know which problems are of most importance to the developer in
terms of the acceptable level of risk. There may also be flaws in the analysis, which means
that the tool can produce false negatives or false positives. False negatives mean that the
program contains a bug the tool is unable to detect, whereas false positives mean that the
tool reports a bug the program does not include. It is therefore desirable for the tool to be
sound, which means that given a set of assumptions, it produces no false negatives. This,
however, may lead to a huge number of false positives.

2.1.1 Pattern Matching
Pattern matching is a technique used for detecting bugs based on known patterns originally
proposed by Knuth, Morris, and Pratt [68]. This is a common technique used to detect bugs
in source code [96]. Pattern matching algorithms for code analysis use regular expressions
to detect issues and are commonly used in tools for detecting code style issues called
linters of which Eslint is an example [46]. With linters being based on pattern matching,
it is typically easy for developers to extend and modify them to add new rules. All one
has to do is add a new regular expression for incorrect code, and optionally the desired
transformed pattern of the code after fixing the issue. An effective way to find these
patterns is by documenting actual bugs found in production and create patterns that would
have detected them, to discover similar bugs [24].

Pattern matching is limited by not being able to know the context of the statements
being examined. This means that pattern matching can detect missing input sanitation
easily, but does not know if the variable is sanitized later during execution. This limits
pattern matching to either only focus on very specific issues, where a pattern will always
be incorrect, or risk raising a large number of false-positive warnings. Although pattern
matching alone is not robust enough to be used for security vulnerability detection it is
often used as an early step in static code analysis to create a call graph or abstract syntax
tree.

Pattern matching can be used to detect bugs in a code-base. As long as a bug can
be explained fully by a regular expression or finite automata, they can be detected using
pattern matching. Examples of this are using a package with known vulnerabilities or
security misconfigurations. It is also possible to use pattern matching to detect unsafe
methods, like the C functions strcpy(), gets(), or sprintf(), or SQL commands
that use a concatenation of strings. The problem is that the regular expression does not
know if the inputs to these functions have been checked before the functions are called.

2.1.2 Control Flow
The control flow of an imperative program determines in which order individual state-
ments, instructions, or function calls of a program are executed or evaluated [48]. This

6

2.1 Static Code Analysis

means that the code is executed in a certain order determined by the control flow state-
ments such as if statements, switch statements, or function calls. This control flow can be
represented by a directed graph where the nodes represent basic blocks and the edges rep-
resent control flow paths. The basic blocks are linear sequences of program instructions
having one entry point and one exit point [26]. Control flow analysis is a static analysis
of the expression and data relationships in a program that can be used to determine the
control flow of a program. The output of such an analysis is a control flow graph. The
control flow graph can be used to determine control flow relationships in a program.

1

2

3

5

4

(a) Control Flow Graph of
an if-statement

1

2

3
(b) Control Flow Graph of
a while-loop

Figure 2.1: Examples of control flow graphs

The graphs in Figure 2.1 are the results of an if statement in (a) causing the split at
node 2 into two paths that come together at 4, when the if-block is over. (b) shows a loop
were 1 checks some condition and goes to 2 as long as the conditional is true, and goes to
3 if it is not.

A control flow graph (CFG) G represents the control flow of a program as a directed
graph with nodes N = {n0, n1, n2, . . . , nl}, a single entry node n0, and a list of edges E.
For the graph in Figure 2.2

n0 = 1 (2.1)

N = {1, 2, 3, 4, 5, 6, } (2.2)

E = {(1, 2), (1, 7), (2, 3), (3, 4), (3, 5), (4, 6), (5, 6), (6, 3), (6, 7), (7, 2)} (2.3)

2.1.3 Data Flow
Allen and Cocke [2] argue the importance of data flow analysis by explaining that for
every variable definition, it is usually of interest to know what uses will be affected by the
definition of a particular variable. Similarly, given the use of a variable, it is of interest

7

Chapter 2. Background

2

3

4 5

7

6

1

Figure 2.2: Control flow graph example from Allen and Cocke [2]

to know which definitions of data items that can potentially supply values to it. In other
words, the data flow of a program shows how data flows through the program, and when
it is defined and when it is used. They continue by explaining how the control flow graph
can be used to derive and express data flow relationships. An expression or part of an
expression that modifies a data item in some way is a data definition. Likewise, a data use
is an expression or part of an expression that refers to some data item without modifying
it. A data use is potentially affected by a data definition if the data items are the same and
the result of the definition is available to the use of the data.

Figure 2.3 shows an example program called power, which takes as an input an integer
x and an integer y, and computes xy with the corresponding control flow graph (CFG)
is shown in the middle. To the right is the data flow graph for the same example. The
example is based on figure 3 and 9 from [123], using the same nomenclature. dxl denotes
the variable x being defined, and ux

l denotes the variable x being used at point l in the
program. Using the definition points and the use points, the sets DEF (l) denoting the
definitions at point l, and USE(l) denoting the use at point l can be constructed. These
are shown in the figure.

An approach to data flow analysis is proposed by Harrold and Soffa [54], which uses
a standard iterative data flow analysis to compute the variable use and the definitions that
can supply values. They also abstract intraprocedural definitions and use the information
for every procedure from the control flow graph to compute interprocedural definition-use
pairs that cross the boundary of different procedures. In other words, the control flow
graph is used in data flow analysis to observe how variables are used. Improvements have
been made on this algorithm through approximations, for instance, Duesterwald, Gupta,

8

2.1 Static Code Analysis

Figure 2.3: Example of code with corresponding control flow graph and data flow graph based on
figure 3 and 9 from [123]

and Soffa [40] which uses a demand-driven data flow analysis technique and performs a
goal-oriented search instead of exhaustive information propagation.

One of the major drawbacks of data flow analysis is that for each variable use, the
definitions that can potentially supply the values to it needs to be computed. This makes
it difficult to make the data flow analysis algorithm scalable and suitable approximations
need to be made [123].

Definitions

The definitions below are used to describe the flow of variables through their life cycle in
data flow analysis.

• ni Node i

• d definition

• Ri definitions which reach ni

• Ui upwards exposed uses at ni

• Ai available definitions at ni

• Li definitions active at ni

Li = Ri ∩ Ui (2.4)

Ri =
⋃
p

Ap, for all immediate predecessors of node ni (2.5)

Ai = (Ri ∩ PBi) ∪DBi (2.6)

9

Chapter 2. Background

Node Ri Ui Li

1 Ø X Ø
2 X7 X X7

3 X5 X7 X X5 X7

4 X5 X7 X X5 X7

5 X5 X7 Ø Ø
6 X5 X7 X X5 X7

7 X5 X7 Ø Ø

Table 2.1: Values from data flow analysis, example by Allen and Cocke [2]

The table created by conducting data flow analysis on a control flow graph like Fig-
ure 2.3 is shown in Table 2.1. This table shows what variables are defined at which node,
active variables at each node, and upwards exposed variables at each node. See A Program
Data Flow Analysis Procedure by Allen and Cocke [2] for more details. This information
allows the analysis algorithm to analyze the variables based on definition and usage pairs.

2.1.4 Bytecode Analysis

The Java Virtual Machine (JVM) doesn’t know anything about the Java programming
language. It only knows about the binary class file format, which contains instructions
(bytecodes), a symbol table, and other ancillary information [32]. A class file must adhere
to strong structural constraints imposed upon it by the Java Virtual Machine to be able
to precisely describe the representation of a class or interface. This means that all code
run on the JVM needs to first be compiled down to bytecode by a compiler, which then
is interpreted by the JVM. One of the main benefits of compiling Java code down to a
bytecode representation which is then run on the Java Virtual Machine is that it doesn’t
specify anything about the inner workings of the Java Virtual Machine. If the implemen-
tation supports all the operations specified in the class files it means that the JVM will be
able to run the program.

It is possible to perform an analysis of the bytecode generated by the Java compiler
[142]. Optimizations performed by the compiler can be taken advantage of when analyz-
ing bytecode. Due to specific features of JVM to perform control flow analysis on Java
bytecode, control flow techniques must be applied both at the intraprocedural level and
at the interprocedural level. The resulting control flow graphs can be used by analysis
techniques such as data flow analysis or dependency analysis.

The Byte Code Engineering Library (BCEL) is a library for analyzing, creating, and
manipulating Java class files, and thus Java bytecode [47]. The library represents classes
as objects which in turn contain all the symbolic information of the class including meth-
ods, fields, and bytecode instructions. These are represented as an abstract syntax tree
(AST). This makes it easier to work with Java bytecode and allows for easier manipulation
and analysis of the bytecode. ASM is a different Java bytecode manipulation and analysis
framework [9]. It provides bytecode transformation and analysis algorithms that enable
complex transformations and code analysis tools to be built. It is designed with perfor-
mance in mind and performs better than BCEL [10]. FindBugs is an example of a tool for

10

2.2 Java Virtual Machine

finding bugs in Java code which uses BCEL to implement the bug pattern detectors used
by the tool [58]. The tool implements both control sensitive analyzation methods and data
flow analysis.

2.1.5 Source, Sink, and Sanitizer
Taint analysis is a form of information-flow analysis that attempts to find if values from
untrusted methods or parameters can flow into operations that are sensitive to security
[132]. A variety of tools to perform taint analysis exist such as static code analyzers
and dynamic code analysis. These tools may also use different approaches such as early
detection and late detection.

Tripp et al. [132] introduce a definition of source, sink, and sanitizer. A source is a
method where the return value is considered tainted. A sink is a method where security-
sensitive computations are performed, and which is vulnerable to attack via tainted data. A
sanitizer is a method that changes the insecure input to produce an output that is considered
secure.

2.1.6 Early and Late Detection
The timing of feedback from auditing tools is important to developers due to the increased
cost of fixing vulnerabilities later on in development. There are two main categories of
feedback timing for static development tools: early detection and late detection [117].
Early detection gives feedback to developers as they are coding. This means that this type
of tool is often implemented as an Integrated Development Environment (IDE) plugin.
These tools often notify developers by highlighting lines of code while the developer is
coding. This can make the process of fixing the vulnerability quicker, since the mistake
is noticed right away, rather than after the code is completed. Late detection tools require
that developers run the tool manually after finishing coding. This process can often take
days or weeks, and can, therefore, leave mistakes in code that become more difficult to fix
as the code base grows around it.

2.2 Java Virtual Machine
The Java Virtual Machine is based upon a stack-based architecture [32]. It operates on
the primitive types which are the numeric types, the boolean type, and the returnAddress
type, and on the referenced types which are class types, array types, and interface types.
Each of the threads of a Java Virtual Machine has a private Java Virtual Machine stack that
stores frames. A frame consists of local variables, an operand stack, and a reference to a
run-time constant pool. A new frame is created when a method is invoked and destroyed
when the method invocation completes either normally or abruptly.

The local variables can hold a value of the types boolean, byte, char, short, int, float,
reference, or returnAddress. Local variables are also used to pass parameters on a method
invocation where the first parameter starts at local variable 0 and so on. The operand stack
is a last-in-first-out (LIFO) stack of instructions for the Java Virtual Machine. An operand
may load or store constants or values from local variables or fields onto the operand stack,

11

Chapter 2. Background

or consume operands from the operand stack, operate on them, and push the result back to
the operand stack. The run-time constant pool contains both numeric literals known from
compile-time and method or field references that are resolved at run time. It is constructed
on a class by class, or interface by interface basis.

The five different instructions that can be used to invoke methods are shown in Ta-
ble 2.2. For the invokevirtual, invokestatic, and invokespecial, the instructions take the
index into a run-time constant pool as its argument which gives the internal form of the
binary name of the class type of the object, the name of the method to invoke, and the de-
scriptor of that method. Both the invokevirtual and the invokespecial first push a reference
to this on the stack before the invocation instruction is pushed meaning that the resulting
frame that is created gets a reference to this. Additionally, if the invocation should con-
sume any parameters these are pushed to the stack after pushing the reference to this to the
stack. The arguments then become the initial values of the local variables in the resulting
frame.

Constructors appear in the bytecode as a method with the name <init>, which is a
name supplied by the compiler used. To create a new Java Virtual Machine class instance
the new instruction is used. Then the instance variables of the class and all of the super
classes are initialized to their default values, before the invokespecial method of the new
class is invoked.

Instruction Description
invokevirtual Invokes the method of an instance of an object. This dis-

patches on the (virtual) type of the object.
invokeinterface Invokes the method of an interface. This looks for the

appropriate method implemented by a particular run-time
object

invokespecial Invokes the method of an instance of an object which re-
quires special handling. Examples of this is an instance
initialization method, a private method, or a superclass
method

invokestatic Invokes a static method in a named class
invokedynamic Invokes the method which is the target of the call site

object bound to the invokedynamic instruction [32]

Table 2.2: The different method invocation instructions as specified by [32]

Descriptors for fields and methods are specified using a grammar notation. For fields,
this descriptor represents the type of a class, an instance, or a local variable. Field de-
scriptors can be interpreted as the 10 different types shown in Table 2.3 For methods, the
descriptor represents the types of parameters that the method takes. Return descriptors of
a method represent the type of the value that the method returns.

12

2.3 Abstract Syntax Trees

BaseType Character Type Interpretation
B byte signed byte
C char Unicode character

code point in the Basic
Multilingual Plane,
encoded with UTF-16

D double double-precision
floating-point value

F float single-precision
floating-point value

I int integer
J long long integer
L ClassName ; reference an instance of class

ClassName
S short signed short
Z boolean true or false
[reference one array dimension

Table 2.3: The different field descriptor types recognized by the JVM [32]

To access class fields the opcodes getstatic, putstatic, getfield, and putfield are used.
These operands take an index into a run-time constant pool as its argument similar to
the invocation instructions detailed above. The first two are used to access static fields,
whereas the latter two are used to access fields of class instances.

The code attribute is a variable-length attribute in the attributes table of a method info
structure which is part of the class file. This attribute contains the Java Virtual Machine
instructions and the necessary information for a method. As part of this, the code attribute
may include a LineNumberTable attribute which is an optional variable-length attribute
that can be used to determine which part of a code array corresponds to a given line number
in the source file which the bytecode was generated from.

2.3 Abstract Syntax Trees
An Abstract Syntax Tree (AST) is a near-source intermediate representation of the source
code built by a parser which retains the essential structure of a parse tree but eliminates
many of the internal nodes that represent nonterminal symbols in a grammar [28]. In
other words, an AST eliminates extraneous nodes from the parse tree and retains only the
precedence and meaning of the expression. Since the AST is a near-source representation,
the parser can build the AST directly.

During the second stage of a compiler’s front end, a parser determines if the input
program is a valid sentence in the programming language [27]. This is done by building
a derivation of the input program using a context-free grammar. A concrete model of
the program is then built if the input stream is determined to be a valid program. This
representation is called a parse tree and is a graphical representation of a sequence of

13

Chapter 2. Background

rewriting steps that starts with the start symbol of the grammar and ends with a sentence
in the language which is defined by a context-free grammar. An AST can then be built by
the parser using the parse tree.

Syntax directed editors can make use of the AST to generate source code. These are
called source-to-source systems. Compilers and interpreters also use ASTs. For instance,
compilers can use details exposed in the AST to perform optimizations. Both source-level
abstractions and assembly level abstractions are possible. Since source-level ASTs may
lack the information required to translate a statement into assembly code, a low-level AST
can be used instead.

The abstract syntax tree is the basis for manipulating Java code in Eclipse e.g. through
refactoring, quick fixes, and quick assist [25]. The AST model used in Eclipse is com-
parable to the Document Object Model (DOM) of an XML file, which means changes
can be made to the tree model and then reflected in the Java source code. The Eclipse
IDE has a built-in parser called ASTParser which can be used to parse the Java source
code into an AST representation of the source. This is done using a Java model, which
is a set of classes that model the objects associated with creating, editing, and building
a Java program. The model elements are represented by an in-memory object model to
represent the structure of a Java program. All the nodes of the AST subclass the ASTN-
ode class, and each subclass is a specialized element of the Java Programming Language.
Org.eclipse.jdt.core.dom contains the Java DOM/AST classes, which contains an Applica-
tion Programming Interface (API) that can be used for manipulating the source code of a
Java program as a structured document. Eclipse also includes an ASTRewrite class, which
allows Eclipse to write the changes made to the AST back to the Java source code.

2.4 Evaluation Metrics

To evaluate the performance of static code analysis tools the number of true positives
(TP), false positives (FP), and false negatives (FN) can be counted. A true positive is a
vulnerability that was present in the test set and which was detected. A false positive is a
vulnerability that was detected, but which was not present in the test set. A false negative
is a vulnerability that was present in the test set, but which was not detected.

Standard metrics for evaluating the detection performance such as precision and re-
call can be calculated using these numbers. Precision calculates the number of correctly
identified vulnerabilities out of the total number of identified vulnerabilities. The equation
for calculating the precision is shown in Equation 2.7. Recall calculates the numbers of
correctly identified vulnerabilities out of the total number of vulnerabilities present in the
test set. The equation for calculating the recall is shown in Equation 2.8.

Precision =
TruePositive

TruePositive+ FalsePositive
(2.7)

Recall =
TruePositive

TruePositive+ FalseNegative
(2.8)

14

2.5 OWASP Top 10 2017

2.5 OWASP Top 10 2017
The Open Web Application Project, OWASP [105], is a nonprofit dedicated to helping
organizations develop, operate, and maintain secure software. The OWASP top 10 project
[125] was started to raise awareness about web application security but has grown to be
used by many as a web security standard.

2.5.1 A1:2017-Injection
Malicious inputs are injected into queries or commands. This can be used by an attacker
to bypass authentication or steal information. Software is vulnerable if user-supplied data
is not sanitized or validated properly. It can be avoided using prepared statements and
bound variables. An example of an SQL injection attack is typing 1 or 1 = 1; -- as
a username when signing in. When used in a function similar to the one in Listing 1, this
will bypass password checks later in an SQL query as shown in Listing 2.

username = getRequestString("username");
password = getRequestString("userpassword");

sql = 'SELECT * FROM Users
WHERE Username ="' + username + '"
AND Password ="' + password + '"'

Listing 1: Code Vulnerable to SQL injection

SELECT UserId, Name, Password
FROM Users
WHERE Username = 1 or 1 = 1;
-- AND Password = any_password;

Listing 2: Result of injected SQL

2.5.2 A2:2017-Broken Authentication
Attackers can gain authenticated access to a service without knowledge of the required
credentials. This can be achieved by brute force attacks, guessing weak or default pass-
words, or token theft. To avoid these attacks services should limit login attempts and have
a strong password policy.

2.5.3 A3:2017-Sensitive Data Exposure
Sensitive data is leaked, not by an attacker breaking encryption, but by them finding data
that was accidentally left unprotected by developers. This can happen when software
uses unencrypted communication or encryption with default keys. It can also occur when
sensitive information is exposed in code comments or variables that can be accessed in
runtime.

15

Chapter 2. Background

2.5.4 A4:2017-XML External Entities (XXE)
XML External Entities are attacks against applications that incorrectly parse XML. Vul-
nerable code is exploited by an attacker inputting XML that contains an external entity that
is parsed by a misconfigured XML parser. Applications can be targeted by filling in the
code from Listing 3 in an input field, which would lead to the contents of the password file
to be returned to an attacker. Applications should either disallow XML external entities
and Document Type Definition (DTD) processing [82] or sanitize inputs to avoid XEE.

<foo xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:include parse="text" href="file:///etc/passwd"/>

</foo>

Listing 3: XML External Entity to extract passwords from password file

2.5.5 A5:2017-Broken Access Control
Some applications allow attackers to bypass access control or elevate their privileges. This
can be achieved for example by changing an id in a URL, application state, or in HTML
if this change is accepted without a new authentication for the new user id. To avoid this
web apps should deny access to non-public data by default, and perform rate-limiting and
log failed login attempts.

2.5.6 A6:2017-Security Misconfiguration
A system is set up incorrectly, leaving it vulnerable to known attacks. This can happen if
default passwords are used, updates are not installed or incorrect security settings are used
for frameworks. To mitigate these vulnerabilities, it is recommended to avoid unnecessary
features in platforms and to use automatic auditing of configurations and versioning of
packages.

2.5.7 A7:2017-Cross-Site Scripting (XSS)
XSS is the second most common vulnerability in OWASP top 10, found in two-thirds
of web applications. Attacker supplied input is parsed as JavaScript in browsers and the
malicious code is executed. There are three ways of targeting users’ browsers: Stored XSS,
Reflected XSS, and DOM XSS. A code example for an XSS attack is shown in Listing 4.

In a reflected XSS attack, the script is injected into a request. These attacks are often
executed by spreading links with a script in the URL. The script is executed when the page
is loaded using the malicious link.

Stored, also called persistent, XSS attacks store scripts in a server’s database. This
makes it possible for the script to be executed repeatedly. This also makes it possible for
this type of XSS to replicate itself as users are affected. An example of stored XSS is
shown in Figure 2.4.

In DOM-based XSS the attack payload executes as a result of modifying the DOM
environment [125]. In a DOM-based XSS, the response from the server is not altered, but
the code executes differently in the client’s browser due to changes to the DOM.

16

2.5 OWASP Top 10 2017

1. Inject Script into Input Field

Attacker

2. User Visits the Website.
Malicious Script is Executed

3. Users Cookie is Sent to Attacker
User

Server

Figure 2.4: Stored XSS attack to send user’s cookie to attacker

<script type="text/javascript">
// malicious script

</script>

Listing 4: Example code for XSS attack

2.5.8 A8:2017-Insecure Deserialization

Applications that deserialize malicious objects without checking the integrity of the object.
Serialization is used for purposes like HTML form data, cookies, caching, and file systems.
These attacks can be used to bypass access control or to modify objects and data structures
to achieve remote code execution on the victim’s server.

2.5.9 A9:2017-Using Components with Known Vulnerabilities

If developers do not keep their software up to date with the latest patches and updates,
their applications can be vulnerable to attacks that have already been patched. Potentially
vulnerable software includes database management systems (DBMSs), libraries, APIs,
operating systems, and web frameworks. To avoid these issues developers must keep
systems and dependencies update. This process can be assisted by automated tools.

2.5.10 A10:2017-Insufficient Logging and Monitoring

Missing logging of events makes it easier for attackers to make continuous attempts over an
extended period at compromising a system. This can be a problem if suspicious volumes
of API calls and failed login attempts are not logged, or if no alert is given in real-time.
One way of effectively testing if a system is monitoring activity well enough is to con-
duct a penetration test, and check if the event was detected with sufficient information for
developers.

17

Chapter 2. Background

2.6 Other Web Application Vulnerability Classifications

2.6.1 Session management
Cross-Site Request Forgery(CSRF)

In a Cross-Site Request Forgery attack, the victim is made to send a request to a website
where they are already authenticated [84]. This is typically done by sending a URL with a
script tag or an image with JavaScript in the source field. An example of a CSRF attack is
shown in Figure 2.5 where a user first signs in to a banking website, then open a malicious
website with an image with a source that is the URL for sending money to another user.
The website does not check if the request was intentionally sent by the user, and sends
money to the attacker.

Website.com Evil.comUser

Login

Login Success {cookie}

Get /index.html

<img src="bank.com/sendMoneyTo=<evil-id>/>

bank.com/sendMoneyTo=<evil-id>

Payment sent

Figure 2.5: CSRF Attack

Session fixation

Session Fixation can happen when a user is authenticated without invalidating existing
session cookies. Doing this allows an attacker to force a known session onto a user, which
will give the attacker authenticated access to the victim after they authenticate. The at-
tacker can set the victims token using XSS or exploiting an unencrypted connection. An
example of how a session fixation attack can be carried out is shown in Figure 2.6.

2.7 Importance of Mitigating XXE
Extensible Markup Language (XML) is a well-defined meta-language which allows one
to encode a description of an XML document’s storage layout and logical structure [133].
These XML documents in turn are built up of entities, which can contain either parsed
or unparsed data. However, these parsers may be vulnerable to XML External Entities

18

2.7 Importance of Mitigating XXE

1. Login

3. website.com/login?session=<evli-session>

5. GET /secretData, session_cookie = <evil-session>

Attacker

4. Login, session_cookie=<evil-session>
Username + Password

User

2. session_id = <evil-session>

Server

Figure 2.6: Session Fixation Attack

attacks, as described in subsection 2.5.4. An application is vulnerable if XML is accepted
directly, or if XML uploads are accepted by the application [125].

Späth et al.[120] evaluated 30 XML parsers from popular programming languages of
which 10 were Java-based. They found that all the parsers were vulnerable to XXE attacks.
For most of the parsers, the vulnerability was present due to an incorrect configuration of
the XML parser. The vulnerability can also be mitigated by filtering the input or correctly
sanitizing the input before providing it to the XML parser. They mention how some fea-
tures might not work as expected when applying countermeasures. For instance, disabling
DTD processing limits the loading of external DTD.

Jan, Nguyen, and Briand[59] studied 13 different XML parsers. The integrated parsers
in the most popular programming languages were selected. These parsers were evaluated
by invoking each parser and providing XML input files as input, which contained Billion
Laugh and XXE attacks. An overview of the vulnerability of each parser they looked at
can be seen in Table 2.4. Out of the 13 parsers they looked at, eight of them were for Java,
two for Python, one for Perl, one for PHP Hypertext Preprocessor (PHP), and one for C#
and Javascript. The Java parsers were found to be the most widely used ones, with over
250 000 projects identified on GitHub making use of these parsers. Out of the Java-based
parsers, six of the eight were found to be vulnerable to either the billion laughs attack or
XXE attacks in general. Furthermore, of the over 700 classes from 628 open source project
they inspected manually, all but one was found to use a vulnerable XML parser configured
in a vulnerable way. They also found that most developers use the parser with a default
configuration. This shows how widespread vulnerable use of XML parsers are and shows
the importance of identifying and mitigating XXE vulnerabilities in XML parsers.

Most XXE vulnerabilities can be prevented by ensuring that the XML parsers are up-
dated to the latest version as well as correctly configuring the parsers to disable XXE and
document type definition (DTD) processing [125]. Since most parsers have a vulnerable
configuration by default, it is important to identify where these parsers have been used in
the code and to apply the appropriate configuration options. Whitelisting, sanitization, and
input validation can also be employed to prevent XXE attacks.

19

Chapter 2. Background

Parser Vul. to BIL Vul. to XXE Language
JDOM2 Yes Yes Java

NanoXML Yes Yes Java
NanoXML-LITE No No Java

Std-DOM Yes Yes Java
Std-SAX Yes Yes Java

Std-STAX No No Java
WOODSTOX No No Java

XERCES-JDOM Yes Yes Java
LXML-ETREE No No Python

Std-ETREE Yes No Python
PERL(XML::LibXML) Yes Yes Perl

PHPDOM No No PHP
MSXML (DOMDocument) Yes Yes C#, Javascript

Total 8 7 -

Table 2.4: Summary of vulnerable parsers in popular programming languages as identified by Jan,
Nguyen, and Briand[59]

2.7.1 Mitigation Strategies for XXE Vulnerabilities
The different XML parsers support a wide variety of features [3, 4, 35, 34]. This can make
it difficult to know which features to set to make a parser secure since XML parsers for Java
are made secure by disabling vulnerable features [125]. Different mitigation strategies are
presented by Oracle [30] and OWASP [127]. The attributes suggested by these will be
used to determine if a parser is secure or not.

The different mitigation strategies presented by OWASP summarizes the features that
need to be set [127]. The covered XML parsers alongside their attributes and values are
shown in Table 2.5. The XMLDecoder parser has not been listed due to being considered
fundamentally insecure and, therefore, should not be used. The JAXB Unmarshaller parser
requires the input to be sent through a separate secure parser first to be secure.

Attribute Value Description Parser
http://apache.org/xml/features/
disallow-doctype-decl

true Disallows DTD
DOCTYPE
declaration

DocumentBuilder,
SAXParser,
DOM4J, XML-
Reader, SAXReader,
SAXBuilder

http://xml.org/sax/features/
external-general-entities

false Disables inclu-
sion of external
general entities

DocumentBuilder,
SAXParser,
DOM4J, XML-
Reader, SAXReader,
SAXBuilder

20

2.7 Importance of Mitigating XXE

http://xml.org/sax/features/
external-parameter-entities

false Disallows inclu-
sion of external
parameter entities
or the external
DTD subset

DocumentBuilder,
SAXParser,
DOM4J, XML-
Reader, SAXReader,
SAXBuilder

http://apache.org/xml/features/
nonvalidating/load-external-dtd

false Ignores external
DTD completely

DocumentBuilder,
SAXParser, DOM4J,
XMLReader

.setXIncludeAware(
boolean state)

false Disables XIn-
clude processing

DocumentBuilder,
SAXParser, DOM4J

.setExpandEntityReferences(
boolean expandEntityRef)

false Disables expan-
sion of entity
reference nodes

DocumentBuilder

javax.xml.stream.
isSupportingExternalEntities

false Disallows resolv-
ing externally
parsed entities

XMLInputFactory

XMLInputFactory
.SUPPORT DTD

false Requests a pro-
cessor that does
not support DTD

XMLInputFactory

XMLConstants
.ACCESS EXTERNAL
DTD

”” Restricts access
to external DTDs
and extenal entity
references

TransformerFactory,
Validator,
SchemaFactory,
SAXTransformer-
Factory

XMLConstants
.ACCESS EXTERNAL
STYLESHEET

”” Restricts access
to external ref-
erences set by
the stylesheet
processing

TransformerFactory,
SAXTransformer-
Factory

XMLConstants
.ACCESS EXTERNAL
SCHEMA

”” Restricts access
to external refer-
ences set by the
schemaLocation
attribute, Import
and Include
element

Validator,
SchemaFactory

.setEntityResolver(
EntityResolver er)

er Specifies the
EntityResolver
(er) to be used to
resolve entities
in the XML
document which
is parsed

DocumentBuilder,
XMLReader, SAX-
Parser

21

Chapter 2. Background

Table 2.5: The different attributes suggested by OWASP that can be configured for the different
factories used to initialize the XML parsers, and for XML parsers that are initialized directly [127]

Different mitigation strategies are also presented by Oracle [30]. These have been
summarized in Table 2.6. It is worth noting that for the parsers that support the feature
XMLConstants.FEATURE SECURE PROCESSING, this feature has been turned on by
default except for the Transformer parser. However, external access is still allowed to
all protocols which means that the parsers are still vulnerable to XXE attacks. Setting
this attribute explicitly to true disallows external access effectively mitigating the XXE
vulnerability. When a security manager is present, then this feature is set explicitly to true
for all supported parsers. Oracle also recommends disabling DTD if it is not needed.

Attribute Value Description Parser
XMLConstants.FEATURE
SECURE PROCESSING

true Instructs the
XML pro-
cessors to try
and process
XML securely.
Enforces pro-
cessing limits
and restricts
external access

DocumentBuilder,
SAXParser, XML-
Reader, Transformer

XMLInputFactory.SUPPORT
DTD

false Disables DTD
processing

XMLStreamReader,
XMLEventReader,
FilteredReader

XMLInputFactory.IS
SUPPORTING EXTERNAL
ENTITIES

false Restricts ex-
ternal access

XMLStreamReader,
XMLEventReader,
FilteredReader

.setEntityResolver(
EntityResolver er)

er Specify cus-
tom entity
resolver

DocumentBuilder,
XMLReader, SAX-
Parser

Table 2.6: The different attributes suggested by Oracle that can be configured for the different
factories used to initialize the XML parsers, and for XML parsers that are initialized directly [30]

2.8 Common Weakness Enumeration (CWE)

Common Weakness Enumeration (CWE) [85] is a formal list of common software security
weaknesses that can occur in software architecture, design, code, or implementation that
can lead to exploitable security vulnerabilities. The primary purpose of the list is to serve
as a common language for describing software security weaknesses. The list is composed
by the CWE community, which includes individual researchers and representatives from
organizations from across the industry, academia, and government. The main difference

22

2.8 Common Weakness Enumeration (CWE)

between a software weakness and a software vulnerability is that software weaknesses can
lead to software vulnerabilities that can be used by a hacker to gain access to a system or a
network. The different CWE entries have a category ID, which is assigned to a collection
of weaknesses sharing common attribute(s), a compound element ID, which is assigned
to meaningful aggregations of several weaknesses, a view ID, which describes different
ways of viewing the CWE entry and a weakness ID, which is an ID for the software weak-
nesses themselves. These identifiers are used to categorize and to group the weaknesses.
Different CWE entries can be classified within the OWASP top 10 categories and give
specific examples of actual vulnerabilities for that category. For example, CWE-89: Im-
proper Neutralization of Special Elements used in an SQL Command (’SQL Injection’),
is an example of an injection attack, which fits under the OWASP top 10 A1 - injection
category.

The CWE entries CWE-611 [87] and CWE-776 [88] denote the security vulnerabilities
related to parsing XML. These entries correspond to OWASP top 10 A4 – XML External
Entities. CWE-611 denotes the vulnerability that occurs when an XML document which
contains external entities outside of the sphere of control, is processed which leads to
these documents becoming part of the output. This vulnerability exploits the Document
Type Definitions (DTD) feature within XML documents which allows the definition of
external XML entities to be defined. For instance, an attacker can use this to embed the
/etc/passwd file in Unix-based systems into the output of the processed XML as shown
in Listing 5. CWE-776 denotes the improper restriction of recursive entity references in
Document Type Definitions [88]. An attacker can exploit this to create a large number
of nested recursive entities that lead to an explosive growth in the data that needs to be
parsed. leading to denial of service. An example of CWE-776 is the billion laughs attack
shown in Listing 6.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

Listing 5: An example of CWE-611 showing an attacker attempting to include the external entity
/etc/passwd

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE lolz [

<!ENTITY lol "lol">
<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>
<lolz>&lol9;</lolz>

Listing 6: An example of CWE-776 showing a Billion Laughs Denial Of Service (DOS) attack

23

Chapter 2. Background

2.9 Static Analysis and Automatix Code Fixing in IDEs
The open source IDE Eclipse [43] offers automatic fixes for problems found by the IDE
as the code is being written and after the code has been compiled by Eclipse. These
automatic fixes are highlighted with a light bulb indicator next to the affected lines in the
IDE, which the developer can click on to get access to the auto fixes if these are available.
The automatic fixes include changing the method signature, or the return statement of a
function to correctly correspond to each other, as well as changing the type of a variable
to the correct one among others. A full list of the available automatic fixes can be found
in [42]. A selection of the available fixes will be available in a pop-up dialogue as shown
in Figure 2.7. In this example, the return statement returns a variable of the type Integer,
whereas the method signature is of type void. Eclipse offers to either change the method
type or to change the return statement to fix the error.

Other IDEs such as JetBrains’ IntelliJIDEA [61] and Microsoft’s Visual Studio [83]
also support static code analysis to identify the style, quality, and other code issues. How-
ever, both IntelliJIDEA’s and Visual Studio’s built-in static code analysis are proprietary,
and the source code cannot be inspected to identify how the respective IDEs implements
the static code analysis.

Figure 2.7: Example of quick fix offered by Eclipse

2.10 Description of Tools to be Extended
In this section, the project structure of the tools FindSecBugs [5] and SpotBugs [121], the
successor to FindBugs [58], that in the prestudy [89] was found to be the most promising
to extended for the master thesis will be explained. An overview of how the two tools’
source code is structured will be given, as well as what functionality is available.

2.10.1 FindSecBugs Project Structure
FindSecBugs is divided into four separate modules as shown in Figure 2.8. The main
module, where the different detectors are implemented, is findsecbugs-plugin [112]. This
module depends on the other modules find-secbugs-samples-kotlin, findsecbugs-test-util,
findsecbugs-samples-java, findsecbugs-samples-deps, and findsecbugs-samples-jsp as shown
in Figure 2.9 with the blue lines representing normal dependencies and the green lines

24

2.10 Description of Tools to be Extended

representing test dependencies. The findsecbugs-samples-java and findsecbugs-samples-
kotlin modules contain vulnerable test code for testing the detectors. The findsecbugs-
samples-deps package contains mock implementations of the Java libraries used to test the
different detectors which means that these libraries don’t have to be downloaded to use the
samples of vulnerable test code in FindSecBugs. Lastly, the findsecbugs-test-util module
implements utility classes to help with testing the vulnerability detectors in FindSecBugs.

• findsecbugs-plugin

• findsecbugs-samples-deps

• findsecbugs-samples-java

• findsecbugs-samples-kotlin

• findsecbugs-test-util

Figure 2.8: Top-level project structure of FindSecBugs

Figure 2.9: Uml diagram showing how the main findsecbugs-plugin module depends on the modules
findsecbugs-samples-kotlin, findsecbugs-test-util, findsecbugs-samples-java, findsecbugs-samples-
deps, and findsecbugs-samples-jsp. The blue lines represent normal dependencies, and the green
lines represent test dependencies

FindSecBugs describe all bugs by specifying which detectors report which bugs in
findsecbugs-plugin/metadata/findbugs.xml. The message displayed to the end user con-
taining information about the detector reporting the bug, and information on how to mit-
igate the vulnerability is described in findsecbugs-plugin/metadata/messages.xml. To add
a new detector, corresponding entries have to be inserted into findbugs.xml to let Find-
SecBugs know which detector reports which vulnerabilities, and into messages.xml to let
FindSecBugs know how to present information about the detector and the identified vul-
nerability to the user.

Maven is used to handle dependencies, compilation, and running the tests present in
FindSecBugs. FindSecBugs employ a test driven development strategy, meaning that a

25

Chapter 2. Background

test for a detector is first created which fails, and then a detector is written that makes this
test pass. Classes containing examples of vulnerable test code is placed into either the
findsecbugs-samples-java module, or the findsecbugs-samples-kotlin module depending
on whether the vulnerable code is written in Java or in Kotlin. A mock implementation
may have to be added to findsecbugs-samples-deps if external libraries are used in the
test. Then test cases are written in a package with a suitable name in the findsecbugs-
plugin module using the test utilities described in findsecbugs-test-util. As mentioned
above, corresponding entries have to be added to findbugs.xml and messages.xml. Finally,
a detector to handle the desired vulnerability is implemented to make the test cases pass.

2.10.2 SpotBugs Project Structure
SpotBugs is divided into 8 separate modules as shown in Figure 2.10. The main module
where the core functionality lies is the spotbugs-spotbugs module [55]. The spotbugs-
annotations module includes all the different annotations supported by Spotbugs, however,
this package is mostly deprecated. The spotbugs-ant module includes Java classes that help
set up tasks to run Spotbugs functionality with Ant. The packages SpotbugsTestCases,
test-harness, test-harness-core, and test-harness-jupiter are used to test Spotbugs and the
detectors. The SpotbugsTestCases module is a collection of vulnerable test code. The test-
harness and test-harness-core package sets up the test framework used to test Spotbugs.
Finally, the test-harness-jupiter package helps integrate SpotBugs tests with JUnit. Gradle
is used to handle dependencies, compilation, and running the test cases in SpotBugs.

• spotbugs-annotations

• spotbugs-ant

• spotbugs-spotbugs

• spotbugs-tests

• spotbugsTestCases

• test-harness

• test-harness-core

• test-harness-jupiter

Figure 2.10: Top-level project structure of FindSecBugs

Spotbugs includes numerous different base bug detectors which provide core func-
tionality and which can be extended to implement new detectors [56]. These are divided
into visitor-based detectors and CFG-based detectors. The visitor-based detectors traverse
the features of a classfile such as fields, methods, and instructions in a top-down manner
while simultaneously decoding the symbolic information. When one of these features are
encountered, a callback method is invoked. By overriding these callback methods new de-
tectors can be implemented using the visitor pattern. The CFG-based detectors represent

26

2.10 Description of Tools to be Extended

the Java methods using a CFG representation allowing one to analyze the control flow and
to implement data flow analysis. Base detectors implementing these two kinds of base
detectors, as well as other generic classes for doing static analysis are implemented in the
edu.umd.cs.findbugs.ba package.

Overview of Base Detector Classes

SpotBugs includes base classes that provide helper functionality which can be used to
implement a new detector for a vulnerability without needing to write a lot of the base
functionality for scanning the bytecode [55]. An overview of these is presented in Ta-
ble 2.7.

The ByteCodeScanningDetector class extends the DismantleBytecode class and pro-
vides a concrete implementation of the DismantleBytecode class. The main purpose of the
DismantleByteCode class is to take the bytecode apart using Apache BCEL, and create
an internal representation of the bytecode for SpotBugs. Therefore, using the ByteCodeS-
canningDetector base detector class allows one to use this internal representation of the
bytecode, but it does not provide any other functionality.

The OpcodeStackDetector collects approximate information about the values at the
operand stack for each code location. It extends the ByteCodeScanningDetector and is
thus given the functionality of both DismantleByteCode and a specific implementation of
this. The OpcodeStackDetector visits the bytecode instructions of the class, method, and
fields, and calls the abstract sawOpcode function whenever a new opcode is found. It also
attempts to keep track of which operands are on the operand stack at any given moment.

The PreorderVisitor class allows one to traverse the contents of a Java class by calling
the respective accept methods. In other words, it allows one to traverse the content of
a Java class by using the visitor pattern. More specifically, the PreorderDetector class
implements a detector using preorder traversal of the classfile which can be extended to
implement a detector using this preorder traversal and the visitor pattern.

The AnnotationVisitor class is similar to the PreorderVisitor class but also visits anno-
tation on classes, fields, methods, and method parameters. The AnnotationDetector class
is thus also similar to the PreorderDetector class in that it can be used to implement a de-
tector that uses preorder traversal of the classfile including visiting annotations by applying
the visitor pattern.

The ByteCodePatternDetector class can be used to detect specific patterns of bytecode
instructions while taking into account the control flow and uses of fields and values. It
visits the class context and looks for the desired pattern in each method of the class.

The CFGDetector class is a base class for detectors that analyzes the control flow
graph. It does this by visiting the control flow graph of each method, allowing one to
perform analysis on each point in this graph.

The ResourceTrackingDetector class provides base functionality for detectors that wish
to find where a particular kind of resource is not cleaned up or closed properly. The base
classes implementing this provides the base class with information about what kinds of
resources are tracked by the detector.

27

Chapter 2. Background

Base Detector Description
OpcodeStackDetector Base class for Detectors that want to scan the bytecode of

a method and use an opcode stack
BytecodeScanningDetector Base class for Detectors which want to extend Disman-

tleBytecode
PreorderVisitor Interface to make the use of a visitor pattern program-

ming style possible. I.e. a class that implements this in-
terface can traverse the contents of a Java class just by
calling the ’accept’ method which all classes have

PreorderDetector Base class for Detectors that want to perform a preorder
traversal of the classfile

AnnotationVisitor Similar to PreorderVisitor, but also visits annotation on
classes, fields, methods, and method parameters

AnnotationDetector Base class for Detectors which want to perform a pre-
order traversal of the classfile including visiting Annota-
tions

ByteCodePatternDetector Base class for Detectors that are based on a ByteCodePat-
tern. This class allows patterns of bytecode instructions
to be detected, taking into account control flow, and the
uses of fields and values

CFGDetector Base class for detectors that analyze the control flow
graph

ResourceTrackingDetector Base class for Detectors that wish to find methods where
a particular kind of resource is not cleaned up or closed
properly

Table 2.7: An overview of the base detector classes present in SpotBugs [55]

Data Flow Analysis Framework

SpotBugs includes a generic data flow analysis framework that allows any kind of object
to be used as a data flow value [56]. When performing data flow analysis in SpotBugs,
SpotBugs symbolically executes the method using a control flow graph representation of
the method. The nodes consist of BasicBlocks which are made up of InstructionHandles,
and the edges are made up of the bytecode instructions that connect a source block and
a target block e.g. goto, ifcmp, as well as exception handlers. The analysis attempts to
estimate data flow values that are true for each location by modeling the data flow values
as a lattice having a meet operator for merging values, a top value that will always result
in a top value when merging with another value, and a bottom value that will always result
in a bottom value when merging with other values. A data flow location is defined by an
InstructionHandle and the BasicBlock it occurred in.

The different data flow analysis classes provided by SpotBugs are shown in Figure 2.11.
The main difference between these is the level of which the transfer function operates at.
All data flow analysis classes inherit from the DataflowAnalysis interface which defines
methods for creating and manipulating data flow values. The BasicAbstractDataflowAnal-

28

2.10 Description of Tools to be Extended

Figure 2.11: Overview of the data flow analysis framework in spotbugs [57]

ysis base class provides a starting point for defining data flow analysis and handles caching
of start and result facts for basic blocks [55] and can be used to perform data flow analysis
where the transfer function should be at the block-level. The AbstractDataflowAnalysis
class extends the BasicAbstractDataflowAnalysis class and provides additional informa-
tion for performing data flow analysis by modeling the instructions within basic blocks.
The ForwardDataflowAnalysis class, and the BackwardDataflowAnalysis both extend the
AbstractDataflowAnalysis and differ primarily in that one initializes the AbstractDataflow-
Analysis class for performing forwards data flow analysis, and the other initializes the Ab-
stractDataflowAnalysis class for performing backward data flow analysis. Therefore, if
either forward or backward data flow analysis modeling the effect of instructions on data
flow values is desired, these two classes should be extended. The FrameDataflowAnalysis
class implements base functionality for modeling the local variables and the operand stack
within a Java frame and uses a Frame class to represent Java stack frame values at a single
CFG location. The AbstractFrameModelingVisitor class can then be used to model the
effect of bytecode instructions on a Frame.

29

Chapter 2. Background

30

Chapter 3
Related Work

In this chapter related research into auto fixing web security vulnerabilities in Java. The
related work was discovered and examined through the structured literature review per-
formed in the prestudy [89].

3.1 Existing Detection and Auto Fix Tools for Software
Security

There exists a variety of different tools for detecting security flaws in code based on both
static and dynamic analysis approaches [16]. Tools that are state of the art for detecting
security vulnerabilities, and fixing them through code analysis were identified through the
prestudy [89]. In this section, existing tools for detecting and automatically fixing security
vulnerabilities in Java will be presented.

3.1.1 ASIDE

Application Security plugin for Integrated Development Environment, ASIDE [102], is
a static analysis tool for Java and PHP that can be installed in the Eclipse IDE. ASIDE
was created by OWASP, but has not been updated since 2012 [101]. ASIDE has three
prototype implementations: ASIDE CodeRefactoring for Education, ASIDE CodeAnno-
tate which consists of two implementations, ASIDE JavaCodeAnnotate and ASIDE PHP-
CodeAnnotate. This analysis will focus on ASIDE CodeRefactoring for Education since
it revolves around web application security vulnerabilities like CSRF and broken access
control. ASIDE’s architecture is described in Figure 3.1.

Implementation

Figure 3.1 shows an overview of the design of ASIDE. It takes in an abstract syntax tree
and a set of security sensitive operations (SSO rules). These are used to create annotations

31

Chapter 3. Related Work

that can be used during static analysis to detect vulnerabilities. The tool uses the OWASP
Enterprise Security API (ESAPI) to provide the auto fix suggestions and sanitization op-
tions [102]. ESAPI defines a standard interface that provides secure implementations of
standard API methods that are considered insecure [103]. Inspecting the source code of
the tool reveals that the tool uses the visitor pattern.

Figure 3.1: ASIDE architecture by Zhu et al. [143]

Vulnerabilities

The vulnerabilities covered by ASIDE are listed below. As can be seen, ASIDE covers the
vulnerabilities input validation, broken access control, and Cross-Site Request Forgery.

• Improper input validation and/or filtering

• Broken access control

• Cross-Site Request Forgery (CSRF)

3.1.2 ESVD

Early Security Vulnerability Detector (ESVD) [117] is a vulnerability scanner developed
as a plugin for Eclipse [116]. The plugin supports the identification of 11 different vul-
nerabilities as identified by OWASP including command injection, cookie poisoning, and
SQL injection. They were selected because they all occur due to untrusted input from the
user. The plugin utilizes static code analysis to perform the analysis without needing to
run the code. This means that the tool can provide feedback to the developer on possible
vulnerabilities as the developer writes the code. This is often referred to as early detection
since the tool can be run while the code is being written and does not require the program
to be fully implemented.

32

3.1 Existing Detection and Auto Fix Tools for Software Security

Implementation

The tool makes use of context-sensitive data flow analysis, which means that the tool can
consider the context of the program in terms of its variables and methods when searching
for vulnerabilities. This is then combined with three heuristics: A list of entry points, a
list of exit points, and a list of sanitization points. An entry point is a point in the source
code where untrusted input may enter the application from outside of the application.
An exit point, or a sink, is a point in the source code where untrusted output may exit
the application. A sanitization point is a point in the source code where a method or a
class transforms the untrusted input into a trusted output. The developer of the tool has
compiled a list of entry points, exit points, and sanitization points, which is then used to
report vulnerabilities when an entry point reaches an exit point without going through a
sanitization point. To provide auto fix suggestions, the OWASP ESAPI library is used.
Inspecting the source code shows that the tool uses the visitor pattern. The described
architecture is shown in Figure 3.2.

Figure 3.2: ESVD architecture as described by Sampaio and Garcia [117]

Vulnerabilities

The vulnerabilities covered by ESVD are listed below. As can be seen, ESVD focuses on
vulnerabilities caused by untrusted input.

• Command Injection

• Cookie Poisoning

• Cross-Site Scripting (XSS)

• HyperText Transfer Protocol (HTTP) Response Splitting

• LDAP Injection

• Log Forging

33

Chapter 3. Related Work

• Path Traversal

• Reflection Injection

• Security Misconfiguration

• SQL Injection

• XPath Injection

3.1.3 FindSecBugs

FindSecBugs [5] is an extension to SpotBugs, a more general code auditing tool that is
the spiritual successor to FindBugs. FindSecBugs detects bugs in bytecode using Apache
BCEL to look for known bug patterns. The tool has 134 patterns used to detect CWE and
OWASP vulnerabilities. FindSecBugs can be installed into IDEs or used as a part of a
continuous integration pipeline.

To help solve vulnerabilities, FindSecBugs suggests potential solutions to the reported
bugs. The prompt explains the bug, points out the vulnerable code, and suggests a code
pattern that will solve the problem. This means that FindSecBugs does not have automatic
bug fixing, but does have a system that assists users in solving the issue.

Implementation

According to the creator of FindBugs Hovemeyer and Pugh [58], FindBugs is implemented
using the visitor pattern for bug detection. The implementation of the visitor pattern used
by SpotBugs, the successor to FindBugs, is shown in Listing 7. Each detector checks each
class of the application being analyzed. The implementation strategies used by the detector
were divided into four categories:

• Class structure and inheritance hierarchy only: Only the overall structure of the
class. It does not examine the code.

• Linear code scan: Scans bytecode linearly, using the visited instructions to drive a
state machine. Do not use control flow information.

• Control Sensitive: Analyze a control flow graph.

• Data flow: Uses data flow as well as control flow to analyze code.

Vulnerabilities

FindSecBugs supports 134 different bug patterns ranging from vulnerabilities caused by
untrusted input, to use of predictable pseudorandom number generators, and unsafe hash
equals. A full list of the covered vulnerabilities can be found in [6].

34

3.1 Existing Detection and Auto Fix Tools for Software Security

for each analysis pass in the execution plan do
for each application class do

for each detector in the analysis pass do
request ClassContext for the class from the AnalysisContext
apply the detector to the ClassContext

end for
end for

end for

Listing 7: Visitor pattern implementation in SpotBugs as described by SpotBugs [121]

3.1.4 JoanAudit

JoanAudit [130] is a vulnerability detector for Java which focuses on detecting common
injection vulnerabilities such as XSS, SQL injection, and XML injection. It uses static
code analysis together with an approach referred to as security slicing. Security slicing
first uses static analysis to identify the input sources alongside the sinks. Then program
slicing and code filtering are applied to obtain only the source code that contains the state-
ments necessary for auditing vulnerabilities related to each sink. The statements that don’t
require auditing are pruned away. The architecture for JoanAudit can be seen in Figure 3.3.

Implementation

The tool takes as input the bytecode of a Java application and a pre-defined set of signatures
for input sources and sinks. Then a system dependency graph capturing inter-procedural
data-, control- and call dependencies is constructed. Using this, the tool prunes away
irrelevant functions such as functions assumed to be known free for security issues. A
chop for each sink is then generated, containing all the program statements that influence
a sink, while sinks not affected by any input source are pruned away. Flow analysis is then
performed on each chop to check if any of the paths in the chop can be pruned away due
to proper usage of sanitization functions. Context analysis is then applied to the remaining
paths. During this step, the tool attempts to use the context describing how the data from
a source is used in a sink, which is then used to apply an appropriate sanitization function.
The tool claims that this automatic fix is guaranteed to properly fix the given vulnerability
because the fix is only applied if the data flow is directly from a source to a sink, and if the
context of the input to the source can be determined.

Figure 3.3: JoanAudit architecture by Thomé et al. [130]

35

Chapter 3. Related Work

Vulnerabilities

The vulnerabilities covered by JoanAudit are listed below. As can be seen, JoanAudit
focuses on vulnerabilities caused by untrusted input.

• XSS

• SQL injection

• XML injection

• XPath injection

• LDAP injection

3.1.5 LAPSE+
LAPSE+ [104] is a tool for detecting vulnerabilities in Java EE applications developed by
OWASP. It is available as an Eclipse plugin. The tool makes use of static code analysis to
detect the source and sink of a vulnerability. In the context of LAPSE+, a source is a point
in the code where untrusted data can be injected. A sink is a process that modifies data in
order to manipulate the behavior of the application. The tool identifies a vulnerability as
the possibility for a vulnerability to reach a sink from a source.

Implementation

LAPSE+ utilizes three main steps in its detection process. First, all the possible vulnera-
bility sources are detected. These are the points in code where untrusted data may enter.
Then, all the vulnerability sinks are identified. These are all the points in the code where
untrusted data can propagate to other places in the application. The last step is the prove-
nance tracker where the tool figures out if a vulnerability source can be reached from a
vulnerability sink by doing backward propagation through different assignations. The tool
identifies a vulnerability if this is possible.

Vulnerabilities

The vulnerabilities covered by LAPSE+ are listed below. These are caused by the injection
of untrusted data into the application.

• Parameter Tampering

• URL Tampering

• Header Manipulation

• Cookie Poisoning

• SQL Injection

• Cross-site Scripting (XSS)

36

3.2 Detection and Auto Fix Methods

• HTTP Response Splitting

• Command Injection

• Path Traversal

• XPath Injection

• XML Injection

• LDAP Injection

3.1.6 Snyk
Snyk [119] is a source code auditing tool focused on detecting vulnerable dependencies.
The tool is free to use but has premium tiers that come with extra features, like Docker
container security scanning, Jira integration, and improved reports. Snyk’s source code is
available on GitHub [118] and can be installed into projects as well as customized for an
organization’s needs.

Implementation

Snyk is implemented both as an IDE plugin and as a CI/CD tool. The IDE plugin can be
installed in major IDEs like Eclipse, Microsoft Visual Studio Code, and IntelliJ, and code
managers like GitHub or GitLab.

When scanning for vulnerabilities, Snyk first scans for manifest files containing the
project’s dependencies. This is done by selecting and parsing files based on simple patterns
since these files have a strict format and naming scheme. The dependencies are then
checked against a database with known vulnerabilities and automatically corrected if any
vulnerabilities are detected.

The Snyk plugin is open source, however, the Snyk vulnerability database is closed
source and does not offer any documentation of their system. This means that analysis of
the vulnerability database part of the tool can only be done at a high level, and only with
some assumptions.

Vulnerabilities

Snyk keeps a database of identified vulnerabilities in packages and dependencies. The
tool then scans for packages containing these known vulnerabilities, identifying outdated
packages or packages containing vulnerabilities.

3.2 Detection and Auto Fix Methods
In this section, the different detection methods within the field of software security will be
presented. Different auto fix methods were also identified both classical auto fixes focusing
on logical bugs or programming error, but also software security related auto fixes. First,
a presentation of the different detection techniques will be given. Then the different auto
fix approaches will be detailed.

37

Chapter 3. Related Work

3.2.1 Overview of Detection Methods
There exists a variety of different techniques within the field of software security for de-
tecting software vulnerabilities. Many of the existing tools for detecting software vulnera-
bilities apply an approach based on static code analysis to identify the vulnerabilities [81,
140, 117, 136, 104, 119, 5, 130, 139]. Approaches based on dynamic analysis are also
used to identify software vulnerabilities [140, 134, 97, 69]. Most of the tools use pattern
matching in conjunction with static code analysis to identify and mark code as vulnerable
[136, 104, 119, 5, 11, 77]. Tools that make use of context aware data flow analysis, and
thus which can take the application context into account also exist [117, 141, 113, 5, 130,
113]. In more recent times, attempts have been made at using machine learning in order
to create tools to fix software security vulnerabilities [53, 52]. Lastly, there have been a
few attempts at creating tools that can automatically fix security vulnerabilities [140, 130,
129]. For a more extensive list of different approaches identified through the literature
review, see Table A.1.

3.2.2 Auto Fixing Based on Bytecode Analysis
As explained in chapter 2, a tool based on static code analysis can be used to examine the
source code of a program without attempting to execute it. Most existing tools apply this
technique [117, 136, 104, 119, 5, 130] since it allows the detector to identify vulnerabilities
while the code is being written and does not require the code to be ran. Other benefits
of static code analysis include analyzing the code without needing to provide runtime
parameters and early detection as opposed to late detection [117]. Since the code does
not need to be able to run for the analysis tool to perform the detection, the code can
be analyzed while it is in an incomplete state. Bytecode analysis can be used to create
automatic fixes by manipulating the abstract syntax tree representation of the code. This
is done by [14, 73, 136].

Most of the tools available for Java perform static code analysis on the bytecode as
opposed to the source code itself [5, 130]. According to Logozzo and Fähndrich [75],
this is because analysis on the bytecode level brings many simplifications to the analysis.
There are fewer cases to handle and a higher degree of independence from the source syn-
tax. Bytecode analysis also brings the analysis closer to the code that is actually executed,
enabling the analyzer to analyze libraries whose source code is not available and avoid re-
doing work performed by the compiler. Another benefit of analyzing bytecode as opposed
to the Java source code is that the analyzer can work with any language that compiles to
the Java bytecode. For instance, FindSecBugs [5] works with Kotlin, Groovy, and Scala in
addition to the Java language, making the tool more capable than if the tool analyzed the
Java source code directly.

3.2.3 Dynamic Analysis for Auto Fixing
Dynamic analysis is an approach that evaluates the application at runtime by submitting
input and evaluating the returned results [8]. Dynamic analysis is used by [134, 97, 69].
A benefit of using dynamic analysis is that the program can be evaluated without knowing
how the source code was implemented. This means that the tool can be run on software

38

3.2 Detection and Auto Fix Methods

where the source code is not available. Dynamic analysis is also more precise when com-
pared to static analysis. However, it can be difficult to know where in the source code the
fault lies, which makes identifying the piece of source code contributing to the vulnerabil-
ity difficult. The program also needs to be fully working in order for the dynamic analysis
to take place [8].

Dynamic analysis can be used together with static analysis to create automatic fixes.
This is done by Yan et al. [140]. Their approach is to combine static and dynamic analysis.
Existing static memory leak detectors for the C language is used to automatically fix the
leaky allocation site reported by the detector along all leaky paths. The leaky allocation
sites are then instrumented with dynamic checks to ensure safe fixing at runtime.

3.2.4 Pattern Matching
Pattern matching is one of the most common approaches to static code analysis [96]. It
is the approach used by [136, 104, 119, 72, 66, 14] and one of more approaches used by
[117, 5] which also uses data flow analysis. Pan, Kim, and Whitehead [108] identified 27
common bug patterns for Java, showing that many common bugs can be identified through
pattern matching. Pattern matching can be used to automatically fix security vulnerabili-
ties by replacing the vulnerability identified using pattern matching with a non-vulnerable
version. This is done by [136, 72, 66]. Pattern matching does, however, lead to a lot of
false positives as identified by the studies [71, 107]. Pattern matching is also unable to
follow the tainted values through the program to find where unsanitized input enters and
exits the program [117].

3.2.5 Data Flow Analysis for Auto Fixing
Data flow analysis is another approach used by static code analysis tools. Tools that use
data flow analysis are able to take the context of the flow of the data within the application
into context, which means the tool is able to make informed decisions about how data en-
ters and exits the application, and whether or not the tainted data was correctly sanitized
[132]. Data flow is used by [117, 58, 5, 130, 141, 113] to help the detection of vulnerabil-
ities. A weakness of using data flow analysis is the complexity of performing the analysis
[117]. The approaches identified through the literature review did not use data flow di-
rectly to auto fix software vulnerabilities but used it to assist in detecting the vulnerability,
which then was fixed using pattern matching [141, 130].

3.2.6 Machine Learning Approaches
In more recent time vulnerability detection [52] and auto fixing of vulnerabilities [53]
have been done using machine learning. Harer et al. [52] describe a data-driven machine
learning approach where different machine learning model was trained using generated
features based on the output of Clang static analyzer to detect vulnerabilities. Measuring
the Area Under Curve (AUC) of the ROC curve (receiver operating characteristic curve)
metric, they get a result of 0.82, and using the AUC of the precision-recall curve, they
get a result of 0.32. They mention that a weakness of using machine learning approaches
is that there does not exist a labeled dataset that can be used for training the machine

39

Chapter 3. Related Work

learning models. Harer et al. [53] use a generative adversarial network to repair software
vulnerabilities by turning bad source code into good source code. The tool was tested on
the SATE IV dataset [94] and was found to repair source code errors in the dataset.

3.2.7 Other Security Auto Fixing Approaches
Thomas, Williams, and Xie [129, 128] claims to have constructed an algorithm for auto-
matically generating prepared statements to remove SQL injection vulnerabilities. Based
on their experimental results performed on four open source web applications they were
able to successfully replace 94 % of the SQL injection vulnerabilities present in the projects.
Dysart and Sherriff [41] implement a tool for PHP using this algorithm. The tool was
evaluated on phpBB, an open source forum system, where it found 663 SQL statements,
of which 328 were found to be possible SQLi vulnerabilities, all of which were success-
fully fixed using prepared statements. A weakness of the algorithm is the assumptions
made, for instance, it cannot handle data structures that shift pointers when getting data,
or statements dependent on multiple files.

Chen and Li [21] created a tool that examines the client host according to information
security requirements to find out if the system configuration meets the requirements. The
tool modifies the Windows registry to register the correct parameters according to 31 types
of misconfigurations. In their testing, the tool is more efficient than examining the client
hosts manually. The author does not discuss any weaknesses of the approach.

3.2.8 Classical Auto Bug Fixes
In this section different classical approaches to fixing bugs not related to security is de-
tailed. Classical approaches to bug fixes are of interest because the existing approaches
could be re-used to fix security related vulnerabilities.

Code Search

Studies [72, 73, 62, 138, 65] use code search to identify similar code in order to create
patches. They create a database of existing patches and use semantic code search to iden-
tify which patch to apply. Liu et al. [72] creates code fixes by matching faulty code with a
given pattern from a database of mined fix patterns. The repair action is performed on an
abstract syntax tree representation of the program. Jeffrey et al. [60] maintains a database
of bug-fixing scenarios. These bug fixes are then used to apply patches in debugging situa-
tions. They also use a machine learning approach to learn about new debugging situations.
Liu et al. [72] argues that the main strength of using code search is that knowledge about
existing ways to fix bugs can be applied in a new context. However, this is also the main
weakness, since the bug cannot be fixed if the database does not include the knowledge
necessary.

Approaches Based on Pattern Matching

Classical approaches for automatically fixing bugs also make use of pattern matching [66,
14]. Kim et al. [66] generates patches based on 10 fix templates identified by inspecting

40

3.2 Detection and Auto Fix Methods

human written patches. They then use test cases to calculate the fitness of each patch candi-
date in order to identify which patch to apply using an Abstract Syntax Tree representation
of the program. Test cases are used to identify if it is a successful patch. Balachandran [14]
takes as input the output of a static analysis tool named Review bot. The code is turned
into an abstract syntax tree representation of the code. Transformations are then performed
on the abstract syntax tree according to a collection of known patterns to auto fix the code.
Both authors argue that pattern-based automatic program repair can use templates to fix
known patterns of vulnerabilities, however, bugs that do not fit the pattern cannot be fixed.

Genetic programming

Approaches [91, 135] make use of genetic programming to automatically create patches.
Nguyen et al. [91] searches over the space of replacements from the other expressions in
the program using genetic programming to device a patch. The tool then derives a repair
constraint from a set of tests and then generates a valid repair by solving the repair con-
straint. They argue that the strengths of using genetic programming are that the technique
can evolve variants of the patch to fix a variety of bugs. However, the technique is slow
and has a low success rate in their testing. Weimer et al. [135] evolves program variants
for locating and repairing bugs in C programs using genetic programming by using an ab-
stract syntax tree representation of the program. Test cases are used to verify the repairs.
They identified a success rate of 54%. However, they also found that the performance of
generating the patches is low.

Other approaches

Xuan et al. [137] uses angelic fix location together with an instance of a Satisfiability Mod-
ulo Theory problem in order to fix buggy if-then-else statements given a buggy program
and test suites with at least one failing test suite. It then tries to find a solution to the Sat-
isfiability Modulo Theory problem in order to generate a patch. Muntean et al. [90] also
uses a Satisfiability Modulo Theory problem in order to fix buffer overflow vulnerabilities.
They argue that the benefit of using their approach is that it is faster than symbolic execu-
tion. However, angelic fix location may lead to infinite loops, and the approach requires
test cases to be correct.

Nguyen et al. [92] creates a tree-based representation of a PHP program using symbolic
execution, which estimates the possible HTML client page outputs. A mapping between
any text in the HTML page and PHP code location is created. An HTML validation tool
is then used to find validation errors in an HTML page, and the fixes are propagated to
the PHP code. They argue that the benefit of using symbolic execution and a mapping
between the PHP code and the HTML page is that it achieves high accuracy and high
performance. However, they use an approximation of the symbolic execution which means
that all possible paths are not represented.

Coker and Hafiz [23] uses program transformations to fix integer related vulnerabil-
ities. The first transformation explicitly introduces casts to make integer use clear. The
second transformation replaces arithmetic operations with safe functions to detect over-
flows and overflows at runtime. The third transformation changes the types of integer to

41

Chapter 3. Related Work

fix signedness and widthness problems. They argue that the approach is capable of han-
dling all types of C integer problems. They do not discuss any weaknesses of the approach.

3.2.9 General Limitations of Existing Auto Fix Tools
Johnson et al. [63] performs a study in which they investigated why developers are not
using static analysis tools and what would need to be changed in order for developers to
start using them. 20 participants with developer background were interviewed of which all
mentioned the beneficial use of static code analysis tools but pointed out that the high rate
of false positives and the way the warnings were presented provided too high of a barrier
for using the tools in practice. They point out the importance of having helpful links to
detailed examples of how to fix the issue in the error reported by the tool, and further points
out that there is a lack of or ineffectively implemented quick fixes. Most of the participants
in this study expressed an interest in getting code suggestions or quick fixes from the tool.
They also wanted the possibility of previewing how a possible fix would affect their code
before applying it e.g. by viewing the difference before and after applying the fix in the
editor to show how the code would be affected.

A different study by Baset and Denning [16] evaluated 17 tools, of which two of the
17 tools evaluated were found to provide automatic fixes, namely ASIDE and Codepro
AnalytiX, showing that few existing tools provide automatic fixes. They highlight that
there is a big difference in the quality and thoroughness in the analysis of the plugins.
Other tools they evaluated can be seen in Table 3.1. They explain that the plugins they
focused on check for the most common input validation vulnerabilities, but only three
of them (ESVD, FindBugs, and LAPSE+) are capable of identifying more than 6 of the
vulnerabilities they focused on, showing that most tools do not cover many vulnerabilities.

Vulnerability checks CWE A
nd

ro
id

L
in

t

A
SI

D
E

C
he

ck
m

ar
x

E
SV

D

Fi
nd

bu
gs

Fo
rt

if
y

Fx
C

op

G
oa

nn
a

St
ud

io

K
lo

cw
or

k
In

si
gh

t

L
A

PS
E

+

Se
cu

re
A

ss
is

t

So
na

rL
in

t

V
er

ac
od

e

Improper input validation 20 - X - - X - - - - - - - -
Command injection 77 - - X X X - - X - X - - -

OS Command Injection 78 - - X - X - - X - X - - -
Cross-site Scripting 79 - - X X X X X - X X - - -

SQL Injection 89 - - X X X X X - X X X X X
LDAP injection 90 - - - X X X - - - X X - -
XML injection 91 - - - - - - - - - X - - -

Unsafe Reflection 470 X - - X - - - - - - - - -
XPath injection 643 - - X X X - - - - X X - -

Table 3.1: Input-validation related vulnerability Coverage by Baset and Denning [16]

Codepro AnalytiX used to be available on the following URL https://developers.
google.com/java-dev-tools/codepro/doc/, but seems to have been depre-
cated. Using an archived version of the URL, it seems like the latest release of the project
was in September of 2010 [49]. A proposal was made to turn Codepro AnalytiX into an

42

https://developers.google.com/java-dev-tools/codepro/doc/
https://developers.google.com/java-dev-tools/codepro/doc/

3.3 Existing Test Beds

open source Eclipse project according to Eclipse Foundation, Inc [44] and Google, Inc
[50], but this never got past the proposal phase. Since the source code for the tool cannot
be obtained, we conclude that this project cannot be used in order to identify its approach
to quick fixes, nor to verify which quick fixes the tool provided.

3.3 Existing Test Beds
As shown in Table A.1, many tools evaluated in the literature review were evaluated on
different test beds, making comparison difficult. Many tools were evaluated against open
source software where some vulnerabilities were known, and some on custom made and
vulnerable test beds, but none of the security test beds were created for auto fixing, and
thus lacked any mechanism for testing effectiveness of fixes. A common test bed with
checks for security fixes is required for a thorough evaluation and comparison of different
software security auto fix tools.

3.3.1 Test Beds Used for Evaluations of Vulnerability Detection and
Fixing Approaches

As shown in Table A.1, many tools are evaluated on vastly different test beds. The different
test beds used are listed in Table 3.2. This table does not describe evaluations using home-
made code, or open source software. No documentation could be obtained for DroidBench
which is why it is not detailed any further. The documentation for Stanford SecuriBench
was found to be lacking in detail, and the test suite was only used once and it is therefore
not focused on.

Test Bed Design Language
Juliet [95] Collection of vulner-

able functions
Java, C/C++

WebGoat
[106]

Complete application Java

DroidBench
testsuite

- Java

Stanford
SecuriBench
[122]

Collection of real-
life applications

Java

Defects4J
[64]

Collection of vulner-
able functions

Java

ManyBugs
[78]

Collection of vulner-
able functions with
associated test cases

C

Bugs.jar
[114]

Collection of vulner-
able functions

Java

Table 3.2: Test beds discovered through literature review

43

Chapter 3. Related Work

Juliet

The Juliet Test Suite is a popular test suite used for source code analysis of security vul-
nerabilities [51, 90, 71]. Juliet Test Suite for Java contains 28,881 vulnerable test cases for
a large number of different CWE classes, making it the largest test bed used for the evalua-
tion of static analysis tools. The test bed is divided by CWE category and each vulnerable
class inherits from a superclass that contains common logic between all the different vul-
nerable classes. This is done to make both development and evaluations easier using the
test bed.

WebGoat

WebGoat is a deliberately vulnerable web application created for teaching security [106].
WebGoat is designed as a complete application, as opposed to a set of vulnerable functions
like Juliet. The application is designed to be more realistic than a set of vulnerable methods
and can be attacked during runtime through a web interface. Though the application is not
primarily designed for static analysis it was used by multiple researchers [139, 129, 117],
primarily for its realistic design.

Defects4J

Defects4J is a test set consisting of a collection of vulnerable functions gathered from real-
world applications. The tools authors Just, Jalali, and Ernst [64] note that this is done to
allow the test bed to be extensible.

Bugs.jar

Bugs.jar is a test bed comprised of 1,158 bugs from real open source Java programs [114].
The test bed is designed as a set of vulnerable functions designed to allow modification
and addition of new vulnerabilities.

Open Source Software and Proprietary Test Beds

Many tools are evaluated with proprietary test sets [53, 19] or open source projects [81,
140, 113, 141]. These tests are often not made public and are also not very clearly de-
scribed. Most of these only explain how many test cases they have and what sort of vulner-
ability is covered. They lack information about how the insecure functions are constructed.
There is little information about how many functions are tested that are not vulnerable.
This means that many do not test for false positives. It is also unclear how complicated
the data flow in the tested functions was. It is therefore hard to tell if these tools can detect
if data is cleaned in a different function that is called by the evaluated function, or if the
software is constructed to always only call a function with sanitized variables.

[107, 1, 39] are easier to replicate due to using open source and publicly available test
sets, however, due to not disclosing how they treated false positives, e.g. if they had some
sort of ground truth it is still difficult to know where these results were obtained from.

[107, 1, 39, 80] evaluates on open source code, namely PuTTY, Nmap and Wireshark.
[20] does not specify which test set was used to generate the test cases. [16] compares tools

44

3.3 Existing Test Beds

based on what the tools claim to be able to do, but doesn’t run the tools to evaluate them.
[13] evaluates only one tool, Coverity Prevent, on four anonymized products. [17] designs
a custom benchmark suite to rank Static Analysis Tools (SAT) and compares this suite with
OWASP BSA and SAMATE. In general, it is difficult to replicate the results done by [80,
20, 13, 17], since they do not specify the details of the custom test sets that were generated.
[107, 1, 39] are easier to replicate due to using open source and publicly available test sets,
however, due to not disclosing how they treated false positives, e.g. if they had some sort
of ground truth it is still difficult to know where these results were obtained from. Other
studies are evaluations done by the creator of the tool themselves [141, 117, 130, 136,
132]. [141, 130, 136] evaluates on real-world open source applications. [117] evaluates
on people in terms of ease of use, and benchmark applications. [136] evaluates on a custom
application, Apache Roller.

3.3.2 Classical Test Beds
ManyBugs [78] is a test set for C that implements validation of auto fixes. The test bed
consists of a collection of buggy functions, and each function has associated tests that
can check the functionality of the function. This means that the test bed can check the
correctness of repairs.

3.3.3 Metrics used for Evaluation
The metrics collected by researchers vary drastically. Evaluations based on well-known
test sets often use standard metrics, like recall and precision. Evaluations on open source
software typically present a limited set of metrics in their results. Many only list the
number of bugs found, but since the total number of bugs is unknown they cannot give
recall or precision.

A significant number of papers [77, 111, 134, 73, 74] also only claim to have fixed a
number of vulnerabilities, but without explaining what vulnerability or how many vulner-
abilities were missed, or how many false positives were found before the correct one was
detected.

Many also make generalized claims to be better than other tools or better than the state
of the art [117, 98, 130]. A few studies [139, 53, 138] also obfuscate their results so much
that they are hard to understand, or they present no concrete results at all.

3.3.4 Evaluation Methodology
The tools proposed were all tested in different ways. Some use public test sets like the
Juliet Test Suite [95], but all have different ways of evaluating the results of the tests. It is
unknown how robust these tests are. It is for example not clear if tests using the Juliet Test
Suite check if vulnerabilities were detected in the correct place in a given test file. E.g. it is
possible that a tool detected an SQL injection vulnerability in a test case that is vulnerable
to injection attacks, but that the detected vulnerability was a false positive somewhere else.
This is an issue since the Juliet suite does not clarify where the problem is, or what the
solution is. There are also no regression tests to check that a suggested solution does not
break the intended functionality.

45

Chapter 3. Related Work

In general, the evaluations of the tools examined are hard to reproduce. The test sets
are mostly not made public, and the way the test sets were used is often not well explained.
Many of the tools are also closed source, or even not published at all, making it impossible
to evaluate them properly.

3.4 Studies into the Prevalence of XML External Entities
Jan, Nguyen, and Briand [59] studied the presence of the Billion Laughs attack and XML
External Entities attack in 13 popular parsers. These parsers were chosen due to being
included with the programming languages Java, Python, PHP, Perl, and C#. Popular open
source parsers were also selected for evaluation. Using search queries, the open source
hosting systems GitHub and Google code were analyzed for the prevalence of these XML
parsers. They found that the parsers together had been used over half a million times as
shown in Table 3.3.

The CPU and memory usage of the parsers were evaluated when parsing billion laugh
example files of different sizes. On the smallest example, they observed a ram usage of
33MB, whereas on the largest example they experienced ram usage of 8Gb which was the
limit of their test. They found that the CPU usage ranged from less than 2 minutes to 51
minutes depending on the parser. They also checked if open source systems that use the
vulnerable XML parsers DocumentBuilder and SAXParser remember to apply mitigation
strategies to prevent these attacks. 1000 Java source files were selected. Then, all the
Java projects that did not parser XML inputs were filtered. After filtering, they were left
with 628 open source projects containing 749 Java files of which 735 were found to be
vulnerable (98.13%) not setting any of the attributes they were looking for.

Parser Query GitHub Google Code
JDOM2 org.jdom2.input.SAXBuilder 2,861 9,380

NanoXML net.n3.nanoxml.IXMLParser 1,410 291
NanoXML-LITE nanoxml.XMLElement 6,057 4,380

Std-DOM javax.xml.parsers.DocumentBuilder 112,638 58,900
Std-SAX javax.xml.parsers.SAXParser 43,307 11,200

Std-STAX javax.xml.stream.XMLStreamReader 84,826 4,840
WOODSTOX org.codehaus.stax2.XMLStreamReader2 252 251

XERCES-JDOM org.apache.xerces.parsers.DOMParser 3,444 1,440

Table 3.3: How frequently different parsers for Java have been used as described by Jan, Nguyen,
and Briand [59].

Späth et al. [120] analyzed known attacks on 30 different XML parsers executing 1459
different attacks to identify vulnerabilities in the default configuration of these parsers.
They also parser features that can be set to prevent the different attacks. These were
classified into the categories prevention, counteraction, and limitation. For the attacks pre-
sented, using the prevention mitigation strategy by disabling the insecure parser features
was applicable in all cases. Of all the Java parsers they evaluated, all were vulnerable to
denial of service attacks such as the billion laughs attack, external entity attacks through

46

3.4 Studies into the Prevalence of XML External Entities

file system access, and Server-Side Request Forgery (except for the KXml parser). Using a
custom entity resolver mitigates the XXE vulnerability and some SSRF attacks by filtering
the input. Setting secure features such as disallow-doctype-decl to true disables all DTD
processing mitigating all these attacks. Setting the feature EXPAND ENTITYREF to false
mitigates the denial of service attacks, the XXE attacks, and some SSRF attacks. how-
ever not all the features work as expected due to different parser API’s supporting setting
features but not implementing them.

Tiwari and Singh [131] surveyed possible attacks on web services and composite web
services. They found that DOS attacks due to large payloads are common for web services
that rely on SOAP messages and XML syntax. These attacks exploit the resource con-
suming nature of XML parsing, mentioning that DOM model parsers are more susceptible
to large payloads when compared to other XML parsing techniques. Mitigation strategies
include restricting the length of XML elements and the number of elements.

Oliveira, Laranjeiro, and Vieira [100] implemented a tool based on WS-Attacker for
testing the security of web service frameworks by dynamically evaluating them. The tool
contains the nine attack types coercive parsing, malformed XML, malicious attachment,
oversized XML, soap array attack, XML bomb, XML document size, repetitive entity
expansion, and XXE. These attacks can be run against a live version of the service to be
tested. Evaluating Apache Axis 1 and Apache Axis 2, they found that both were vulnerable
to numerous of the vulnerabilities tested including oversized XML and XML document
sizer vulnerabilities. An extension to the dynamic testing tool WS-attacker for testing
DOS attacks against XML parsers was also created by Falkenberg et al. [45]. In their
evaluation, all the parsers were vulnerable to XXE attacks.

47

Chapter 3. Related Work

48

Chapter 4
Research Design

In this chapter, the design of the research will be presented. First, the purpose of the
research will be presented. Then the method used to answer the research questions is de-
tailed. The participants of the research and their roles in the research will then be listed.
The research paradigm will then be presented before finally the deliverables from the re-
search performed will be listed. Parts of the research design is reused from the prestudy
[89].

4.1 Motivation

This project aims to improve the detection and fixing of XML External Entity vulnerabili-
ties in Java source code. A successful XXE attack can have multiple severe consequences
such as denial of service, information extraction, and remote code execution. All XML
parsers in Java are vulnerable by default and they have to be made secure manually. It is
therefore important to focus on helping developers mitigate XXE vulnerabilities.

XXE is listed as number 4 on OWASP’s list of top 10 most critical vulnerabilities
in web applications. XML External Entity reference is also on the CWE Top 25 most
dangerous software errors listed in Table B.4.

Web security tools for developers mostly focus on the detection of vulnerabilities rather
than fixing them. FindSecBugs [5] it a popular tool that provides detection of vulnerabil-
ities using pattern matching. Since previous research has focused on the detection of
vulnerabilities, there are currently no test beds created for auto fixing tools. Because of
this, evaluations of auto fixing tools often use various code bases for evaluation.

Previous research has focused on the detection of vulnerabilities, not fixing them. Most
of this research has also been focused on detecting SQLi and XSS, while little research has
been done into detection or fixing of XXE. There are currently no tools that provide auto
fixes for XXE and detection of XXE is not yet mature, mostly relying on pattern matching
which is not enough to consistently detect XXE.

49

Chapter 4. Research Design

4.2 Research Questions

Based on the results of the literature review from the prestudy the following research ques-
tions were selected:

RQ1: How can a test suite for evaluating web sec auto fixes be designed for XML External
Entity attacks?
RQ2: How can detection of XXE be improved?

RQ2.1: What are the shortcomings of existing static analysis tools for the detection of
XML External Entity attacks?

RQ2.2: How can the detection of XML External entities be improved using different
techniques?
RQ3: How can auto fixing of XML External Entities be implemented using an IDE plugin?

4.3 Research Method

The research topic given by the project supervisor was creating an auto fixing tool for web
security vulnerabilities as an IDE plugin. To gain an understanding of the state of the art in
the field of vulnerability auto fixing, a literature review was conducted in the prestudy. A
summary of this prestudy can be found in Appendix B. The results of the literature review
were used to select appropriate research questions for the master thesis. An overview of
the research method is shown in Figure 4.1.

The first research question will be answered by creating a test bed similar to Juliet
in design but altered to accommodate the validation of fixes as well as validation of the
functionality after the fixes are applied. The test bed will be evaluated based on how well
it works for collecting the necessary metrics to evaluate an auto fixing tool.

The second research question will be answered by evaluating the best existing XXE
detection tool to discover its limitations. Then a selection of vulnerability detection meth-
ods discovered in the prestudy will be evaluated to find out which technique works best to
detect more vulnerabilities. The best candidate technique will then be implemented and
evaluated on a test bed. The number of true positives, false positives, and false negatives
will be collected from the evaluation, and recall and precision will be calculated using the
test bed we designed. These will then be compared to the evaluation results for the best
existing tool.

The third research question will be answered by creating an auto fixing tool based on
FindSecBugs. FindSecBugs was discovered to be the most promising vulnerability detec-
tion tool for extension through the literature review. The auto fixing will be implemented
using techniques discovered in the prestudy. The auto fixing will be evaluated on the test
bed to discover how well it performs. The number of correct fixes, incorrect fixes (that
try to fix a bug, but fail), and bugs that are missed completely (e.g. false negatives) will
be presented using the test bed we designed. The distinction between incorrect fixes and
missed fixes will be used to argue whether the problem was lacking detection or lacking
auto fixing.

50

4.4 Participants

Figure 4.1: Visualization of research method used for the project

4.4 Participants

Torstein Molland and Andreas Berger, both master students in computer science, are the
main participants of the research project. Their task is to plan and perform the research.
The project supervisor, Jinguye Li, associate professor at the Department of Computer
Science at NTNU, will monitor the progress of the research. Li will also contribute with
his experience within the field of software security.

4.5 Research Paradigm

The research uses the scientific method and therefore is within the positivist paradigm.
First, a test bed will be created. This will be used to evaluate the existing tools to find out
what is missing. Then the findings of the literature review will be used to select possible
detection and auto fixing techniques to use. These techniques will be implemented and
evaluated to find out which performs best. This project aims to find patterns and regu-
larities in fixing web security vulnerabilities through experimentation. A hypothesis will
be proposed and attempted refuted. Conclusions will be drawn from the data generated.
The hypothesis will be refuted if other researchers cannot replicate the experiments or get
different results.

51

Chapter 4. Research Design

4.6 Final Deliverables and Dissemination
The research results will be presented in a master’s thesis and in a research paper submitted
to The Asia-Pacific Software Engineering Conference (APSEC). The research paper is
listed in Appendix K. The source code for the test bed, the new vulnerability detectors,
and the auto fixing tool are available on the projects GitHub page [18].

52

Chapter 5
Research Implementation

In this chapter, the research methods used to answer the research questions will be pre-
sented. Prior to this master thesis, a prestudy was conducted where the state of the art
within software security auto fixing was identified through a structured literature review.
The results of this literature review were used to identify the research questions which
have been answered in this master thesis. RQ1 was answered by implementing a test suite
design suggested in the prestudy using the result of analyzing the strengths and weak-
nesses of different test beds identified through the literature review. RQ2 was split into
two sub-research questions. RQ2.1 was answered by performing an evaluation of Find-
SecBugs, which is the tool that was found to be the most capable in the prestudy. RQ2.2
was answered by improving the existing tool using techniques identified in the prestudy,
as well as new techniques. RQ3 was answered by implementing a new auto fix mechanism
for XXE vulnerabilities using auto fix techniques identified in the prestudy. For both RQ2
and RQ3 the evaluations were performed using this test suite to generate quantitative data.

5.1 RQ1: How can a Test Suite for Evaluating Web Sec
Auto Fixes be Designed for XML External Entity at-
tacks?

In the prestudy, the state of the art in evaluating auto fixing tools and methods were iden-
tified through a structured literature review. The result of this review showed that different
test suites for evaluating the performance of the detection of software security vulnera-
bilities have been researched. A test bed for evaluating the performance of classical bug
auto fixes was also found. However, no test bed for evaluating the auto fix performance of
software security auto fix tools was identified. No test bed for evaluating the detection per-
formance of XXE vulnerabilities were found either. Juliet Test Suite was found to be the
most complete test suite for evaluating the detection performance of static analysis tools
for software security and seemed the most promising to extend with automatic verification
of both the functionality of and the security of auto fixes, as well as test cases for XXE

53

Chapter 5. Research Implementation

vulnerabilities. RQ1 was created as a result of this. RQ1 was answered by designing and
creating a new test bed for automatically evaluating the functionality of and the security of
software security auto fixes with focus on XXE vulnerabilities based on flow variants from
Juliet Test Suite. The test bed was evaluated by using the detection and auto fix methods
implemented as part of RQ2 and RQ3, then running the evaluation mechanism in the test
bed, and finally checking if the test bed generated sufficient quantitative data to be able
to evaluate the performance of the detection and auto fixing tools. It was discovered that
the flow variants from Juliet Test Suite could not sufficiently detect XXE vulnerabilities.
Therefore 11 additional test cases with more complex data flows were implemented. These
aimed to find out the limits of intraprocedural analysis in FindSecBugs, i.e. the test cases
were limited to one method and instead introduced multiple instances of parsers and other
objects.

5.2 RQ2: How can Detection of XXE be Improved?
In the prestudy, existing tools were identified through a structured literature review. The
result of this showed that not a lot of research had been done into the detection of XXE
vulnerabilities. It was discovered that FindSecBugs is the best performing tool for detec-
tion, which is why it was chosen as the tool to evaluate. RQ2, as well as its sub research
questions, were created as a result of this. RQ2.1, What are the shortcomings of existing
static analysis tools for the detection of XML External Entity attacks, was answered by
evaluating FindSecBugs, since it was found to be the tool that seemed the most promis-
ing in the prestudy. This was done by evaluating on a test suite created with the same
flow variants as the Juliet Test Suite [93] to gather quantitative data on the performance of
the existing detectors within FindSecBugs. The number of true positives, false positives,
and false negatives was used to calculate the precision and recall. The existing detectors
were also evaluated on the entirety of Juliet Test Suite to gather quantitative data on the
detection performance on test cases with no vulnerabilities. The time performance was
evaluated by measuring the execution time on the entirety of Juliet Test Suite and the test
bed with XXE vulnerabilities.

In the prestudy, the strengths and weaknesses of software security tools were also iden-
tified focusing on the different techniques used by these tools. RQ2.2, How can the detec-
tion of XML External entities be improved using different techniques, was answered by
designing and creating improved detectors for XXE vulnerabilities based on the strengths
identified in the prestudy. The new detectors were evaluated using the same test suite as
RQ2.1 to be able to compare the results to each other by analyzing the quantitative data.
The techniques were first evaluated based on how well the data they provided could be
used to improve upon the existing detectors in FindSecBugs. Then, the most promising
technique was fully implemented within FindSecBugs and evaluated on all the tests for
XXE created for the evaluation. The detectors were also evaluated on the entirety of Juliet
Test Suite, similarly to the evaluation for RQ2.1, to see if the new detection would increase
the detectors’ false positive rate since Juliet does include XXE vulnerabilities. The num-
ber of true positives, false positives, and false negatives was used to calculate the precision
and recall. The quantitative data was then assessed to identify strengths and weaknesses
compared to the existing detection mechanism for XXE vulnerabilities in FindSecBugs.

54

5.3 RQ3: How can Auto Fixing of XML External Entities be Implemented using an IDE
Plugin

The time performance was evaluated by measuring the execution time on the entirety of
Juliet Test Suite and the test bed with XXE vulnerabilities.

5.3 RQ3: How can Auto Fixing of XML External Entities
be Implemented using an IDE Plugin

In the prestudy, strengths and weaknesses of different auto fix tools were identified through
a structured literature review both focusing on software security but also on classical bug
fix tools. The result of this review showed that no auto fix mechanism for XXE vulnera-
bilities had been researched. Existing classical bug fix tools and auto fix tools for software
security were found to use abstract syntax trees to perform their quick fixes and were found
to perform well. Additionally, FindSecBugs was found to be the most promising tool to
extend with auto fix functionality, since it was discovered to be an extensible tool mini-
mizing the groundwork needed to be done. RQ3 was created as a result of this. RQ3 was
answered by designing and creating a new auto fix mechanism for XXE vulnerabilities
based on modifying the abstract syntax tree. The auto fixes were implemented using parts
of [67], which contains fixes for classical Java bugs detected by SpotBugs. This repository
was used to get a working setup for connecting FindSecBugs to the Eclipse auto fix API
and does not contain code for auto fixing XXE or other web security vulnerabilities. The
auto fix implementation was evaluated using the same test suite as in RQ2 on the number
of successful fixes, the number of incorrect fixes, and the number of missed fixes. Missed
fixes and incorrect fixes were distinguished between to separate lacking detection and lack-
ing auto fixing from each other since a missed fix suggests the vulnerability was missed
by the detector, while an incorrect fix suggests an error in the auto fixing mechanism. The
quantitative data generated from this evaluation was then used to assess the performance
of the auto fixes. The time performance was evaluated by measuring the time to auto fix
each vulnerability in the test bed with XXE vulnerabilities.

55

Chapter 5. Research Implementation

56

Chapter 6
Research Results

This chapter presents the results of the research conducted in this project. First, the design
of the test bed will be presented. Then the evaluation of the existing XXE detection is
detailed. Next, the improved XXE detection is presented and evaluated. Finally, the auto
fix mechanism for XXE vulnerabilities is presented and evaluated.

6.1 RQ1: How can a Test Suite for Evaluating Web Sec
Auto Fixes be Designed for XML External Entity at-
tacks?

One of the results of the literature review conducted in the prestudy, as shown in Ap-
pendix B, was that there was a lack of test beds designed for evaluation of automatic fixes
of software security vulnerabilities. Therefore, such a test bed was designed as part of
the prestudy. In this master thesis, this design was used to implement a test bed for the
evaluation of automatic fixes of software security vulnerabilities with focus on XXE vul-
nerabilities. This test bed was used to evaluate the detection of XXE. This test bed was
also used to evaluate the automatic fixes of XXE vulnerabilities, to find out how well the
test bed performed for evaluating the correctness of auto fixes for XXE.

6.1.1 Design of Existing Test Beds
To ensure the test bed had a representative enough number of test cases for the different
flow variants tested it was designed based on the flow variants from the Juliet Test Suite.
The overall design of the test suite is shown in Figure 6.1. The flow variants within Juliet
Test Suite are shown in section D.2. Juliet Test Suite was found in the prestudy to be the
most common test bed used for evaluating web security detection tools. It is designed
as a collection of vulnerable test cases categorized by their corresponding CWE codes
using the different flow variants described. Not all flow variants are applicable to test all
vulnerabilities [93].

57

Chapter 6. Research Results

Since Juliet Test Suite does not include test cases for XEE attacks against different
XML parsers [93], these were added using the previously mentioned relevant flow vari-
ants. These test cases are classified by the CWE codes CWE-611 and CWE-776 and were
implemented for the parsers DocumentBuilder, XMLStreamReader, XMLEventReader,
FilteredReader, SAXParser, XMLReader, and Transformer since these were found to be
the XML parsers the existing detectors in FindSecBugs detected vulnerabilities from as
shown in subsection 6.2.1. Each test case tests a different flow variant and has a good
method that tests the flow variant using a secure XML parser and a bad method that tests
the flow variant using an insecure XML parser.

Extends

Package for
vulnerability 1 (e.g.
SAXParser)

Test2 Test3

TestCase TestCase

Extends

TestCase

Extends Extends

Package for
vulnerability 2 (e.g.
StreamReader)

Test1 Test2 Test3

TestCase TestCase

Extends

TestCase

Extends

AbstractTestCase

void runTest()
abstract void bad()
abstract void good()

Test1

TestRunner1
void runTests()

EvaluationTest1
void vulnerable()
void functional()
void functionalGood()
void vulnerableGood()

TestCase1

void bad()
void good()

TestCase2

void bad()
void good()

TestCase3

void bad()
void good()

EvaluationTest3
void vulnerable()
void functional()
void functionalGood()
void vulnerableGood()

EvaluationTest2
void vulnerable()
void functional()
void functionalGood()
void vulnerableGood()

TestCase1

void bad()
void good()

TestCase2

void bad()
void good()

TestCase3

void bad()
void good()

EvaluationTest3
void vulnerable()
void functional()
void functionalGood()
void vulnerableGood()

EvaluationTest2
void vulnerable()
void functional()
void functionalGood()
void vulnerableGood()

EvaluationTest1
void vulnerable()
void functional()
void functionalGood()
void vulnerableGood()

TestRunner2
void runTests()

Figure 6.1: Overview of test bed design

6.1.2 Explanation of Juliet Style Test Cases

The test bed includes test cases created to be similar in data flow to those found in the
Juliet Test Suite. These test cases were created for the seven XML parsers included in the
test bed. The first 17 variants from Juliet shown in Table D.2 were chosen since these are
the ones that are applicable to XXE and only include intraprocedural data flows.

6.1.3 Explanation of Instance Based Test Cases

The flow variants within Juliet Test Suite were found to cover different control flows re-
lated to if statements, switch statements, and loops well. However, control flows and data
flows for invoking methods on an instance were found to be missing. This included dif-
ferent ways of initializing an object as well as different ways of invoking methods on an
object instance which may affect the detection and auto fix performance of a tool. 11

58

6.1 RQ1: How can a Test Suite for Evaluating Web Sec Auto Fixes be Designed for XML
External Entity attacks?

additional test cases were enumerated to better cover these cases. These are shown in
Table D.1.

• Six test cases with variations of class field and method variable an example of which
is shown in Listing 8

• Four test cases with multiple parsers being made secure and insecure in the same
method an example of which is shown in Listing 9

• One test case where an object with the same secure method as an XML parser, and an
XML parser. If instances are not tracked, it is impossible to know if the .setFeature()
method has been called on the factory or on a different object. An example of which
is shown in Listing 10

// Test case 1
InputStream inputStream = new FileInputStream(filePath);
// Factory initialized into method variable
SAXParserFactory factory = SAXParserFactory.newInstance();
// parser initialized into class field
parser = factory.newSAXParser();
PrintHandler handler = new PrintHandler();
parser.parse(inputStream, handler);

Listing 8: Example of test case with variation of class field and method variable

// Test case 7
SAXParserFactory factory = SAXParserFactory.newInstance();

SAXParser parser1 = factory.newSAXParser();
PrintHandler handler1 = new PrintHandler();
parser1.parse(inputStream, handler1); // Insecure

factory.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);

SAXParser parser2 = factory.newSAXParser();
PrintHandler handler2 = new PrintHandler();
parser2.parse(inputStream, handler2); // Secure

Listing 9: Example of test case with multiple parsers. The first is insecure and the second is secure.

// Test case 11
Bar b = new Bar();
// Calls the setFeature method with correct parameters
// but on the wrong object
b.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);

InputStream inputStream = new FileInputStream(filePath);
SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser parser = factory.newSAXParser();
PrintHandler handler = new PrintHandler();
parser.parse(inputStream, handler); // Insecure

Listing 10: Example of test case with a different object with the same secure method as the XML
parser

59

Chapter 6. Research Results

6.1.4 Included XML Parsers

The test bed includes test cases for the seven Java XML parsers shown in Table 6.1. It was
discovered that not all parsers could feasibly include all the 11 test cases enumerated in
Table D.1 because the data flows described did not make sense. For XMLStreamReader,
FilteredReader, and EventReader, cases 9 and 10 were excluded since those cases require
parsing twice, something that does not make sense for these parsers since they parse using
iterators and consume the iterator after finishing. Thus, trying to parse again would yield
no items in the iterator and the parsing would be skipped. XMLReader lack cases 1, 2, 3,
and 5 because these require instantiating the parser and its factory separately. This is not
possible with XMLReader since the parser is created directly.

Parser No. of Juliet Style cases No. of Custom Cases
SAXParser 17 11

DocumentBuilder 17 11
EventReader 17 9

FilteredReader 17 9
TransformerFactory 17 11

XMLReader 17 7
XMLStreamReader 17 9

Total 119 67

Table 6.1: Test cases included for each XML parser

6.1.5 Evaluation Process using the Test Bed

The test bed is designed with validation of fixes in mind. The way the test bed evaluates
fixes is by using a set of tests that check for correct functionality and checks the security
of the test cases in the test bed. The validation is performed as shown in Figure 6.2. The
tests are run after the auto fixes are applied and output a list of insecure functions and
functions where functionality has been broken. Since the automatic evaluation only tests
for exceptions, case 7 to 10 needs to be evaluated manually since these have multiple
parsers that can raise exceptions. When evaluating detection using the test bed manual
evaluation of correctness is required. The automatic evaluation only works for auto fixes
since the mechanism is based on JUnit tests.

Before running the automated validation included in the test bed researchers must first
manually apply their fixes. With the tool proposed in this research, that is done by running
FindSecBugs and either selecting functions to fix by opening the file they are in, or by
clicking a button to automatically fix all vulnerabilities for an XML parser. Since the fixes
can be applied to all test cases with the press of one button and the evaluation is automatic,
an auto fixing tool can be evaluated within a couple of minutes.

60

6.1 RQ1: How can a Test Suite for Evaluating Web Sec Auto Fixes be Designed for XML
External Entity attacks?

Te
st

 B
ed

 C
he

ck
er

M
ai

n
Ta

sk Test
Bed

Validate
Fix

Start
Validation

Output
Test
ResultsTest

Output Validation
Finished

Va
lid

at
io

n
Te

st
s

No

Store	Failed
Validation	Results

Is	Valid?Validate

Yes Store	Successful
Validation	Results

Se
cu

rit
y

Te
st

s

No

Store	Failed
Security	Results

Test
Bed

Is	Valid?Validate
Store

Successful
Security	ResultsYes

Te
st

er

Figure 6.2: Process view of test bed

6.1.6 Testing the Functionality After Applying the Auto Fixes
To make sure the auto fixes do not break the code after fixing a security vulnerability, the
test bed implements tests that check for the proper functionality of the code. Since each
test case is a function that parses an XML document from a given file path, the function can
be tested by parsing a file with no external entities or DTD. These XML documents should
be parsed correctly after the vulnerability has been fixed since no dangerous features of the
XML parsers need to be used. The file used to validate functionality is listed in Listing 11,
and the output of parsing it is expected to be the contents of the <foo>-tags, i.e. “test”.

<?xml version="1.0"?>

<foo>test</foo>

Listing 11: Example of safe XML file

6.1.7 Testing the Effectiveness of the Auto Fixes
After the auto fixes are applied the test bed checks the security of the parsers in the test
cases. This is done by attempting to parse an XML document with external entities trying
to read from a file. If the file read is successful and the function returns the contents of the
file, the parser is still vulnerable to XXE. If the parser throws an exception when trying to
read the file, the parser is secure. The file used for this is listed in Listing 12. The content
of the file being read by the external entity is the string “vulnerable”. That means that if
the parser outputs the string “vulnerable” when parsing the XML document, the parser is
vulnerable to XXE. Since the external entity called ‘xxe’ should not be parsed, the test

61

Chapter 6. Research Results

case parsing it should raise an exception. The tests validating the security of the test cases
therefore also check for raised exceptions to see if the parser is configured correctly.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [

<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///some/path/file.txt" >

]>
<foo>&xxe;</foo>

Listing 12: Content of XML file used to evaluate protection against XML External Entities

6.1.8 Output of Automatic Evaluation of Fixes
After running the detection and performing auto fixes on the test bed, the tests for vali-
dating the security and the functionality of the test cases in the test bed can be run. An
example of a test case to evaluate the security of a parser is shown in Listing 13. These
outputs a list of the test cases that were broken as a result of running the auto fixes, and a
list of the test cases that are still vulnerable to XXE. This can be used to calculate various
metrics such as true positives, false positives, and false negatives, and therefore also pre-
cision and recall. Since all test cases are functional before fixes are applied, any test case
listed with broken functionality will have been broken by the auto fix. Test cases listed
as still vulnerable to XXE after the fix indicates a missed or incorrect fix. If a test case
starting with the name good is listed as insecure or with broken functionality it means that
there has been applied a “fix” to a test case that was already secure and that the ”fix” neg-
atively affected the security and/or functionality of a function that should not have been
touched by an auto fixing tool. Conversely, if a test case starting with the name bad is
listed as secure and the functionality is intact, then a fix has been applied successfully.

@Test
public void vulnerable() {
Boolean vulnerable = true;
try {
CWE611_XML_External_Entities__SAXParser_01 parser

= new CWE611_XML_External_Entities__SAXParser_01();
String res = parser.bad("bad.xml");

if(res.equals("vulnerable")) {
vulnerable = true;

} else {
vulnerable = false;

}

} catch (SAXParseException e) {
vulnerable = false;

}catch (Throwable e) {
e.printStackTrace();

}
assertFalse(vulnerable, "Parser should not be vulnerable to XXE");

}

Listing 13: Test for checking security of parser

62

6.2 RQ2.1: What are the Shortcomings of Existing Static Analysis Tools for the
Detection of XML External Entity Attacks?

6.2 RQ2.1: What are the Shortcomings of Existing Static
Analysis Tools for the Detection of XML External En-
tity Attacks?

In this section, the results for RQ2.1 will be presented. First, the approach used by the
existing detectors in FindSecBugs will be presented. Then the results of evaluating these
detectors on the test bed presented in section 6.1 will be shown. Finally, the strengths and
weaknesses of the existing approach will be detailed in light of these evaluation results.
The latest version of FindSecBugs at the time of writing is version 1.10.1 which was
released on the 17th of October 2019 [7]. This version was used in all of the evaluations
in this section.

6.2.1 Analyzing the Approach used by Existing XXE Detectors in
FindSecBugs

Three detectors for identifying XXE vulnerabilities were found in FindSecBugs. XxeDe-
tector reports vulnerabilities for the parsers SAXParser, XMLReader, and Document-
Builder. TransformerFactoryDetector reports vulnerabilities for the Transformer parser.
XMLStreamReaderDetector reports vulnerabilities for the parsers XMLStreamReader, XM-
LEventReader, and FilteredReader.

The detectors work in a similar fashion which is summarized in the pseudocode shown
in Listing 14. For implementation-specific details see Appendix E. First, a stack of op-
codes for the method under consideration is analyzed to find where a parser has been used
to parse an XML document. This is done by comparing the class name of the opcode and
the method signature with that of the parser. The TransformerFactoryDetector finds where
the parser has been initialized instead of where it has been used. Then the control flow
graph of the method under consideration is obtained. The name of all the called methods
is compared to the name of the secure methods for the parser. If only one call is required,
the detector marks the parser as safe if this is found. If multiple calls are required, then the
detector attempts to identify all of these.

XxeDetector only checks the first parameter of the method, which means that for the
secure calls that require two parameters, the second one is disregarded of. For many
of the parameters in subsection 2.7.1 the second parameter indicates whether to enable
or disable the feature. Thus, not checking the second parameter means that the vulner-
able feature may be enabled as opposed to disabled. TransformerFactoryDetector and
XMLStreamReaderDetector checks all the required parameters at most two. XMLStream-
ReaderDetector also includes extra logic to get the Boolean value of a Boolean object.
Except for TransformerFactoryDetector, all the detectors report the vulnerability where
the parser is used. TransformerFactoryDetector reports the vulnerability where the parser
is initialized. TransformerFactoryDetector also reports two separate bug patterns for DTD
vulnerabilities and XSLT vulnerabilities.

63

Chapter 6. Research Results

for each opcode in method do
if name of opcode equals name of parse method

for each call in method_callgraph do
if name equals name of secure function

check parameters of method
end if

end for
end if

end for
if not all secure calls found

report vulnerability
end if

Listing 14: Pseudocode for the existing detectors in FindSecBugs

6.2.2 Evaluation of the Existing XML Detectors in FindSecBugs
To test the performance of the existing detectors the test bed detailed in section 6.1 was
used. The test bed consists of test cases that are based on control flow and data flow
variants from Juliet Test Suite, and test cases based on different ways of initializing an
instance and calling secure or insecure methods on it. Each of the test cases has been
created for the parsers supported by FindSecBugs. When performing the evaluation it
became clear that the existing detectors were able to handle the test cases based on the
flow variants from Juliet Test Suite well, whereas they fell through on the test cases that
tested different ways of initializing instances. Therefore, the evaluation results on these
test cases have been shown in more detail to show exactly where the existing detectors fell
through.

Detection Results for DocumentBuilder

The result of evaluating on the instance based test cases for the DocumentBuilder parser
is shown in Table 6.2. The false negatives on test case seven through 10 are due to the
detector not handling the use of multiple parsers and the detector not handling parsers
that have been configured to be explicitly vulnerable within the same method. The false
negatives on test case 11 are due to the detector not differentiating between the parser and
a separate object with the same secure method.

Case TP FP FN
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 0 0 1

64

6.2 RQ2.1: What are the Shortcomings of Existing Static Analysis Tools for the
Detection of XML External Entity Attacks?

Case TP FP FN
Case 8 0 0 2
Case 9 0 0 2
Case 10 0 0 4
Case 11 0 0 1

Table 6.2: Result of evaluating the existing detector for the DocumentBuilder parser in FindSecBugs
on the instance based test cases described in Table D.1

Detection Results for SAXParser

The results of evaluating on the instance based test cases for the SAXParser parser is shown
in Table 6.3. The false negatives on test case seven through 10 are due to the detector not
handling the use of multiple parsers and the detector not handling parsers that have been
configured to be explicitly vulnerable within the same method. The false negatives on test
case 11 are due to the detector not differentiating between the parser and a separate object
with the same secure method.

Case TP FP FN
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 0 0 1
Case 8 0 0 2
Case 9 0 0 2
Case 10 0 0 4
Case 11 0 0 1

Table 6.3: Result of evaluating the existing detector for the SAXParser parser in FindSecBugs on
the instance based test cases described in Table D.1

Detection Results for XMLStreamReader

The results of evaluating on the instance based test cases for the XMLStreamReader parser
are shown in Table 6.4. Test case nine and test case 10, which tests if the detector can detect
multiple uses of the same parser, are not applicable to test the detection performance of the
XMLStreamReader parser. This is because this parser uses an iterator to parse the XML
[37]. When the iterator reaches the end of the XML document it cannot be reset. This
means that to parse an XML document multiple times the old parser instance cannot be
used, and a new parser needs to be created.

The false negatives on test case seven and eight are due to the detector not handling
the use of multiple parsers and the detector not handling parsers that have been configured
to be explicitly vulnerable within the same method. The false negatives on test case 11 are

65

Chapter 6. Research Results

due to the detector not differentiating between the parser and a separate object with the
same secure method.

Case TP FP FN
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 0 0 1
Case 8 0 0 2
Case 11 0 0 1

Table 6.4: Result of evaluating the existing detector for the XMLStreamReader parser in Find-
SecBugs on the instance based test cases described in Table D.1

Detection Results for XMLEventReader

The results of evaluating on the instance based test cases for the XMLEventReader parser
is shown in Table 6.5. Test case nine and test case 10 are not applicable to XMLEven-
tReader for the same reasons as XMLStreamReader described in section 6.2.2. The false
negatives on test case seven and eight are due to the detector not handling the use of multi-
ple parsers and the detector not handling parsers that have been configured to be explicitly
vulnerable within the same method. The false negatives on test case 11 are due to the
detector not differentiating between the parser and a separate object with the same secure
method.

Case TP FP FN
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 0 0 1
Case 8 0 0 2
Case 11 0 0 1

Table 6.5: Result of evaluating the existing detector for the XMLEventReader parser in FindSecBugs
on the instance based test cases described in Table D.1

Detection Results for FilteredReader

The results of evaluating on the instance based test cases for the FilteredReader parser is
shown in Table 6.6. Test case nine and test case 10 are not applicable to FilteredReader for

66

6.2 RQ2.1: What are the Shortcomings of Existing Static Analysis Tools for the
Detection of XML External Entity Attacks?

the same reasons as XMLStreamReader described in section 6.2.2. The false negatives on
test case seven and eight are due to the detector not handling the use of multiple parsers
and the detector not handling parsers that have been configured to be explicitly vulnerable
within the same method. The false negatives on test case 11 are due to the detector not
differentiating between the parser and a separate object with the same secure method.

Case TP FP FN
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 0 0 1
Case 8 0 0 2
Case 11 0 0 1

Table 6.6: Result of evaluating the existing detector for the FilteredReader parser in FindSecBugs
on the instance based test cases described in Table D.1

Detection Results for Transformer

The results of evaluating on the instance based test cases for the Transformer parser are
shown in Table 6.7. Note that for each vulnerability in these test cases, the detector re-
ports two vulnerabilities. As mentioned in subsection 6.2.1, this is because the detector
differentiates between whether the parser is vulnerable to DTD processing or Extensible
Stylesheet Language Transformation (XSLT) attacks and reports a separate bug pattern for
each vulnerability. The test cases used to evaluate the detector are vulnerable to both bug
patterns.

Case TP FP FN
Case 1 2 0 0
Case 2 2 0 0
Case 3 2 0 0
Case 4 2 0 0
Case 5 2 0 0
Case 6 2 0 0
Case 7 0 0 2
Case 8 2 0 2
Case 9 0 0 4
Case 10 6 0 2
Case 11 0 0 2

Table 6.7: Result of evaluating the existing detector for the Transformer parser in FindSecBugs on
the instance based test cases described in Table D.1.

67

Chapter 6. Research Results

The false negatives on test case seven through 10 are due to the detector not handling
the use of multiple parsers and the detector not handling parsers that have been configured
to be explicitly vulnerable within the same method. The false negatives on test case 11 are
due to the detector not differentiating between the parser and a separate object with the
same secure method.

Detection Results for XMLReader

The results of evaluating on the instance based test cases for the XMLReader parser are
shown in Table 6.8. Test cases one through three and test case five tests if the detector
can correctly identify secure instances from vulnerable instances created using the same
factory. An XMLReader parser is initialized directly without first initializing a factory
[36]. Therefore, these test cases are not applicable to test the detection performance on the
XMLReader parser.

The false negatives on test case seven through 10 are due to the detector not handling
the use of multiple parsers and the detector not handling parsers that have been configured
to be explicitly vulnerable within the same method. The false negatives on test case 11 are
due to the detector not differentiating between the parser and a separate object with the
same secure method.

Case TP FP FN
Case 4 1 0 0
Case 6 1 0 0
Case 7 0 0 1
Case 8 0 0 2
Case 9 0 0 2
Case 10 0 0 4
Case 11 0 0 1

Table 6.8: Result of evaluating the existing detector for the XMLReader parser in FindSecBugs on
the instance based test cases described in Table D.1. Only test case four, six, and seven through 11
are applicable to this parser

Summary of Detection Results

The detection performance on the instance based test cases is identical for all the parsers
handled by the XxeDetector. These are DocumentBuilder, SAXParser, and XMLReader.
The detection performance for XMLStreamReaderDetector is identical to that for XxeDe-
tector. XMLStreamReaderDetector handles the parsers XMLStreamReader, XMLEven-
tReader, and FilteredReader. These detectors correctly identify the vulnerabilities in test
cases one through six which tests initializing a parser into a class field or a variable and
calling the secure methods. This is the simplest form of initializing a parser. However,
the detectors were not able to handle test cases seven through 11. These tests initializing
multiple parsers, calling both secure and insecure methods on the parser, and calling the
secure method on a separate object.

TransformerFactoryDetector performs identically to XxeDetector and XMLStream-

68

6.2 RQ2.1: What are the Shortcomings of Existing Static Analysis Tools for the
Detection of XML External Entity Attacks?

ReaderDetector for all of the instance based test cases, except for test case eight and test
case 10. The detector has a higher number of true positives for these. Test case eight tests
if the detector can detect vulnerabilities for parsers created by a factory that is first vul-
nerable, then secure, and then vulnerable again. Test case 10 is a variant of test case eight
where the vulnerable parsers are used more than once. The reason for the higher number
of true positives is due to the detector toggling a boolean value depending on the second
boolean attribute set when setting the XMLConstants.FEATURE SECURE PROCESSING
to determine if this attribute has been set. Therefore, since this feature is first enabled, and
then disabled, the detector toggles the boolean and coincidentally ends up in a state where
it successfully reports the vulnerabilities. The number of true positives for test case eight
and 10 can, therefore, be regarded as a coincidence.

FindSecBugs had high precision but varying recall for the instance based test cases.
The number of true positives, false positives, false negatives, precision, and recall for
each of the parsers handled by the existing detectors for the instance based test cases have
been summarized in Table 6.9. While there is a high number of true positives, and a
low number of false positives showing that the detectors are able to successfully identify
vulnerabilities in many cases, there is also a high number of false negatives. This means
that of the vulnerabilities the detector identifies, all of them are actual vulnerabilities as
shown by the precision, however, the detectors also miss a lot of vulnerabilities as shown
by the recall. This shows that the existing detectors are able to handle different ways of
initializing the different parsers, but that they are not able to handle more complex data
and control flows.

Parser TP FP FN Precision Recall
DocumentBuilder 6 0 10 100% 38%

XMLStreamReader 6 0 4 100% 60%
XMLEventReader 6 0 4 100% 60%

FilteredReader 6 0 4 100% 60%
SAXParser 6 0 10 100% 38%

XMLReader 2 0 10 100% 17%
Transformer 20 0 12 100% 63%

Table 6.9: Summary of the true positives, false positives, and false negatives after evaluating the
existing detectors on the instance based test cases in Table D.1

FindSecBugs had 100% precision and recall for all XML parsers for the Juliet style
tests. The result of evaluating the existing detectors on the test cases based on flow variants
from Juliet Test Suite has been summarized in Table 6.10. These flow variants test if the
detector is able to handle wrapping the initialization of the parsers in different control
flow constructs such as ifs, loops, and switch statements. For more detail see section D.2.
These test cases test a single instance of a parser and a single call to the secure method.
This shows that the existing detectors are able to handle different flow constructs where
only one parser instance has been used. Additionally, the detectors were evaluated on the
entirety of Juliet Test Suite which does not include support for XXE. No false positives or
false negatives were found.

69

Chapter 6. Research Results

Parser TP FP FN Precision Recall
DocumentBuilder 17 0 0 100% 100%

XMLStreamReader 17 0 0 100% 100%
XMLEventReader 17 0 0 100% 100%

FilteredReader 17 0 0 100% 100%
SAXParser 17 0 0 100% 100%

XMLReader 17 0 0 100% 100%
Transformer 34 0 0 100% 100%

Table 6.10: Summary of the true positives, false positives, and false negatives after evaluating the
existing detectors on the Juliet style test cases

The results of evaluating the performance of the existing detectors for XXE have been
summarized in Table 6.11. The execution time was measured on a PC with 16G of mem-
ory and a 3.9GHz CPU using Windows 10 pro. The test bed detailed in section 6.1 and the
existing Juliet Test Suite was evaluated separately to show the execution time for test cases
without XXE vulnerabilities and test cases with. FindSecBugs allows enabling and dis-
abling specific detectors. Therefore, only the XXE vulnerability detectors were enabled.
This is useful for comparing the detection performance of the new detectors presented in
RQ2.2. The difference in execution time for a cold run and a hot run is due to caching
performed by FindSecBugs.

Test suite LOC Execution
time cold run

Execution
time hot run

Test cases
with XXE
vulnerabili-
ties

24,087 4.6s 1.5s

Juliet Test
Suite

5,143,930 84.1s 79.1s

Table 6.11: Execution time for the existing detectors

6.3 RQ2.2 How can the Detection of XML External Enti-
ties be Improved using Different Techniques?

Different analysis techniques, such as pattern matching, data flow analysis, and control
flow analysis, were identified in the prestudy in Appendix B. The existing detectors for
identifying XXE vulnerabilities in FindSecBugs employ limited control flow analysis us-
ing pattern matching. To improve the detection of XXE a tool needs to check if an in-
stance of a parser has been made secure before it is used by identifying when a secure
or a vulnerable method has been called on the instance. The tool has to analyze the
calls performed on the parser through the execution of the method. This problem requires
an analysis of the flow of data.

Two data flow analysis based approaches were evaluated to find out which would work

70

6.3 RQ2.2 How can the Detection of XML External Entities be Improved using Different
Techniques?

best for detecting the XXE vulnerabilities FindSecBugs missed. First, instruction based
data flow analysis will be detailed. This should perform better in theory due to mod-
eling the effect of each instruction within each basic block thus being able to take into
account the sequence of calls and the values of these calls within the method. However,
this analysis was not capable of knowing which parser instance the calls have been called
on. Therefore, a novel instance tracking approach was implemented. This approach tracks
the instances and the calls alongside their parameters performed on the instances through
the execution of the method. This approach improves the state of the art in detecting XXE
vulnerabilities by being able to identify vulnerabilities from multiple parsers within the
same method and by being able to identify vulnerabilities correctly even if a parser and a
different instance with the secure methods are called within the same method. As will be
shown, the approach can easily be generalized to other vulnerabilities.

6.3.1 Instruction Based Data Flow Analysis Approach
The instruction-based data flow analysis approach evaluated is based on the observation
that the calls and the parameters these calls have been called with can be modeled as data
flow values. Thus, both the order of the sequence of the calls within a method and the
parameters the calls are called with can be stored in these data flow values for each basic
block of the control flow graph of the method. At the end of the method, in the last basic
block, the sequence of all the calls made within the method, and the parameters of these
calls can be found. For the implementation-specific details see Appendix F. For XXE these
calls can be identified as secure or insecure calls which in turn can be used to determine if
a parser is vulnerable. The approach has been summarized in the following points:

1. Create a map from instruction to Calls to record method name, class name, and
signature

2. For each block in the control flow graph, initialize data flow values as an empty list
of calls

3. Execute data flow algorithm: For each instruction in the basic block, check if it is a
method call, and add the call and the parameters of the call to the data flow value

4. Check the sequence of the calls to identify if the calls have been called with correct
parameters in the correct sequence to make the parser secure

6.3.2 Evaluation Results of Instruction Based Data Flow Analysis
Evaluating the instruction based data flow analysis on the test cases from section 6.1 re-
vealed that this type of analysis was not capable of detecting many of the vulnerabilities
present in the test bed. For the test cases including the use of multiple parsers (test cases
seven through 10) this analysis method was not able to keep track of which was secure
and which was insecure. The results presented show why this is the case and why in-
struction based data flow analysis is not capable of significantly improving the detection
of XXE vulnerabilities. The results presented here are for the detection performance on
SAXParser. Similar results were obtained for the other parsers.

71

Chapter 6. Research Results

When analyzing the instruction based data flow for the vulnerable method, the bad
method, in test case one, the analyzer can correctly detect that the secure function has not
been called. In Figure 6.3, the result of evaluating the instruction based data flow analysis
on the vulnerable version of test case one of the instance based test cases is shown. The
sequence of calls recorded at the end of the method is shown in the highlighted area.
As can be seen, the approach is successfully able to identify the sequence of the calls
performed in the method and that the secure function for the parser has not been called.
For SAXParser, this means that the method setFeature has not been called before a new
instance of SAXParser has been obtained and used to parse an XML document using the
method newSAXParser.

Figure 6.3: The result of evaluating the instruction based data flow analysis on the vulnerable ver-
sion of test case one, the bad method in Table D.1. The sequence of recorded calls at the end of
the method is shown in the highlighted area. It is successfully able to determine that no call to the
secure method setFeature has been performed which means the parser use is vulnerable

The result of evaluating the instruction based data flow on the secure version of test
case one of the instance based test cases (the good method) is shown in Figure 6.4. The
sequence of calls recorded at the end of the method is shown in the highlighted area.
Compared to the vulnerable version of test case one shown in Figure 6.3, the method
setFeature has been called before a new instance of SAXParser has been obtained using the
newSAXParser method. This shows that the instruction based data flow approach records
the sequence of calls needed to identify if the parser secure. In Figure 6.5 the setFeature
call, which is call number two in Figure 6.4 has been expanded to show the values recorded
for this call. The parameters of interest are highlighted. As can be seen, the approach is
also able to identify the parameters the secure method (setFeature) has been called with
which can be used to successfully determine if the method has been called with the correct
parameters.

Similar positive results were obtained for the other parsers for test case one through
six of the instance based test cases and for all of the Juliet style test cases, where the

72

6.3 RQ2.2 How can the Detection of XML External Entities be Improved using Different
Techniques?

Figure 6.4: Result of evaluating instruction based data flow analysis on the secure version of test
case one, the good method in Table D.1. The sequence recorded calls at the end of the method is
shown in the highlighted area. It is successfully able to determine that a call to the secure method
setFeature has been performed before the parser use, which means that the parser use is secure

Figure 6.5: The parameters the setFeature call, which is call number two shown in Figure 6.4, has
been called with is highlighted in blue. This shows that the data flow value successfully records the
parameters the method has been called with

sequence of calls and their parameters recorded was enough to determine if the parsers
initialized were secure or vulnerable. In these test cases, only one parser is initialized
and used. As mentioned previously, the data flow values capture the sequence of when
the factory is initialized, then if the secure method has been called, and finally when the
parser has been initialized using the factory. If the secure method has been called, the
corresponding data flow value for this call captures the parameters of the secure method
e.g. xmlconstants.FEATURE SECURE PROCESSING and 1 as shown by the highlighted
values in Figure 6.5.

73

Chapter 6. Research Results

However, when evaluating on test cases seven through 11 of the instance based test
cases it became evident that the approach was not significantly better than state of the art.
In these test cases, multiple parsers are initialized and used. As an example, the result of
evaluating on test case nine for SAXParser is shown in Figure 6.6. Test case nine first
initializes an insecure factory, then an insecure parser is initialized using the factory, then
this parser is used twice, then the factory is made secure, then a secure parser is initialized,
and finally this secure parser is used twice. The sequence of calls recorded at the end of
the method is shown in the highlighted area. The instruction based data flow approach is
able to identify that the first parse call is from the first vulnerable parser. However, the
approach is unable to determine if the first or the second parser is used for the two latter
parse calls. Thus, the instruction based data flow analysis can determine that the first two
parser uses are vulnerable, but not whether the two last parser values are used since it does
not know which instance these are invoked on.

Therefore, this approach was determined to not perform significantly better than state
of the art. It is able to identify the sequence of calls and can identify which parameters
these calls have been invoked with, but it is not able to identify which parser use corre-
sponds to which parser when multiple parsers are used within the same method. Therefore,
it was decided that a different approach is necessary.

Figure 6.6: The result of evaluating instruction based data flow analysis on the vulnerable version,
the bad method, of test case 9 in Table D.1. The sequence of recorded calls at the end of the
method is shown in the highlighted area. The data flow value does not contain enough information
to determine if the last two parse calls are invoked on the first vulnerable parser or on the second
secure parser

6.3.3 Instance Tracking Analysis Approach

In this section, a novel instance tracking approach is presented. Evaluating the existing
detectors in FindSecBugs and the instruction based data flow analysis showed that the
main weakness of both was that they were not capable of knowing which instance the
secure or vulnerable methods have been called on. Therefore, a detector that can track the

74

6.3 RQ2.2 How can the Detection of XML External Entities be Improved using Different
Techniques?

instance and the methods called on this instance is needed.
The main instance tracking approach has been summarized in the flow chart shown in

Figure 6.7. The approach can be broken down into four steps:

1. Find the instances to track

2. Combine instances that should be treated as the same instance

3. Identify the secure and vulnerable calls called on the tracked instances

4. Report the vulnerabilities found for each instance

Find Instance to track Change tracked instance Find secure and vulnerable calls
for instance

Select opcode from
stack

Check if instruction
initializes instance

No

Add to list of tracked
objects Yes

No

Invocation on
tracked instance

Check if invocation on
tracked instance

Check if return value
of invocation is

tracked

No

YesTracked return
value?

Add returned instance
to tracked instance

Check tracked calls

Yes

No Call insecure?

Mark instance as
vulnerable

Mark instance as
secure

Add vulnerabilities for
vulnerable calls

Yes

Instance
initialized?

Check for more opcodes and
report

Check if there are
more opcodes

No

Yes

More opcodes? Report vulnerabilities
found on instances

Start End

Figure 6.7: Flow chart for the instance tracking approach

The instance tracking approach begins with a stack of opcodes. First, the initialization
opcodes are used to find which instances to track the calls of. These are identified by their
initialization instruction. Then the method call opcodes which return a new instance are
analyzed to find which instances should be treated as the same instance. For the example
shown in Listing 15, this means that documentBuilder1 and documentBuilder2 are both
treated as part of the dbFactory instance. Afterward, the calls performed on the tracked
instances are analyzed to identify the vulnerable and secure calls. This is then used to
report the vulnerabilities found for each instance.

DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder documentBuilder1 = dbFactory.newDocumentBuilder();
documentBuilder1.parse(<inputFile>);

DocumentBuilder documentBuilder2 = dbFactory.newDocumentBuilder();
Document doc = documentBuilder2.parse(<inputFile>);

Listing 15: Example of DocumentBuilder instances that are treated as part of the DocumentBuilder-
Factory instance

75

Chapter 6. Research Results

The main instance tracking approach has been summarized in more detail in the pseu-
docode shown in Listing 16. The instance tracker requires a list of initialization instruc-
tions for the instances to track, a list of return values for each instance that should be
combined and considered the same, and a list of calls to track for each instance. The
instance tracker analyzes the stack of opcodes to find opcodes corresponding to the initial-
ization of an instance using the list of initialization instructions. If an instance is found,
then the source line location of where it was initialized is stored. The initial vulnerabilities
for the instance are determined by the calls that vulnerable if not found. These are added
to the instance found.

for each opcode in method
if opcode is in list of initialization instructions
add instance to list of tracked instances
add vulnerabilities to the instance

end if
if opcode is invocation instruction
if invocation invoked on tracked instance

add the return value to the tracked instance
end if
check if opcode corresponds to tracked call

end if
end for

for each tracked instance
for each vulnerability

report vulnerability
end for

end for

Listing 16: Pseudocode for instance tracking
When an opcode corresponding to an invocation is found, the instance it has been

invoked on is obtained from the operand stack. If this invocation results in a new instance,
the list of return values is used to determine if this instance should be treated as part of the
tracked instance. The vulnerabilities on the instance retrieved from the operand stack is
also stored on this returned instance to keep track of which vulnerabilities are present on
each tracked instance and the instances that are part of these at any given time.

The call checking subroutine shown in Listing 17 is then used to check if any of the
calls invoked on the instances have been found. Singular calls and multiple calls are dif-
ferentiated between. A singular call is a call which can be either vulnerable if not found or
secure if found. The stack parameters are used to determine if such a call has been found.
A multiple call consists of multiple singular calls. All of these calls have to be found for
the vulnerability reported by a multiple call to be removed. Each of the singular calls that
makes up a multiple call has an opposite that allows checking if one call undoes the effect
of a previously found call. Finally, the vulnerabilities found are reported. This is done
after all the opcodes within a method has been checked.

76

6.3 RQ2.2 How can the Detection of XML External Entities be Improved using Different
Techniques?

if invocation is singular tracked call
if parameters of invocation corresponds to tracked call
mark call as found
if call is secure:

remove the vulnerability reported by it
end if
if call is vulnerable:

add the vulnerability reported by it
end if

end if
end if
if invocation is multiple tracked call

for each singular tracked call
if parameters of invocation corresponds to tracked call

if singular call is secure
mark call as found

end if
if singular call is vulnerable

mark call as not found
add the vulnerability reported by the multiple tracked call

end if
end if

end for
if all singular calls for multiple tracked call found
remove the vulnerability reported by it

end if
end if

Listing 17: Pseudocode for call checking subroutine used by the instance tracker

6.3.4 Evaluation of Instance Tracking Based XXE Detectors
To test the performance of the new detectors based on the instance tracking approach the
test bed detailed in section 6.1 was used. To better compare with the existing detectors,
new detectors based on the instance tracking approach for all the parsers supported by
the existing ones were evaluated. The implementation details are shown in Appendix G.
Similar to the evaluation performed for the existing detectors, the new detectors were
found to handle all the test cases based on the flow variants from the Juliet Test Suite.
Therefore, the instance based test cases will be presented in more detail to better compare
to the detection performance of the existing state of the art detectors for XXE.

Detection Results for DocumentBuilder

The result of evaluating on the instance based test cases for the DocumentBuilder parser
is shown in Table 6.12.

Case TP FP FN
Case 1 1 0 0
Case 2 1 0 0

77

Chapter 6. Research Results

Case TP FP FN
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 1 0 0
Case 8 2 0 0
Case 9 2 0 0
Case 10 4 0 0
Case 11 1 0 0

Table 6.12: Result of evaluating the new detector for the DocumentBuilder parser in FindSecBugs
on the instance based test cases described in Table D.1

Detection Results for SAXParser

The result of evaluating on the instance based test cases for the SAXParser parser is shown
in Table 6.13.

Case TP FP FN
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 1 0 0
Case 8 2 0 0
Case 9 2 0 0
Case 10 4 0 0
Case 11 1 0 0

Table 6.13: Result of evaluating the new detector for the SAXParser parser in FindSecBugs on the
instance based test cases described in Table D.1

Detection Results for XMLStreamReader

The result of evaluating on the instance based test cases for the XMLStreamReader parser
is shown in Table 6.14. As mentioned in section 6.2.2, test case nine and 10 are not
applicable to XMLStreamReader.

Case TP FP FN
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0

78

6.3 RQ2.2 How can the Detection of XML External Entities be Improved using Different
Techniques?

Case TP FP FN
Case 5 1 0 0
Case 6 1 0 0
Case 7 1 0 0
Case 8 2 0 0
Case 11 1 0 0

Table 6.14: Result of evaluating the new detector for the XMLStreamReader parser in FindSecBugs
on the instance based test cases described in Table D.1

Detection Results for XMLEventReader

The result of evaluating on the instance based test cases for the XMLEventReader parser
is shown in Table 6.15. As mentioned in section 6.2.2, test case nine and 10 are not
applicable to XMLEventReader.

Case TP FP FN
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 1 0 0
Case 8 2 0 0
Case 11 1 0 0

Table 6.15: Result of evaluating the new detector for the XMLEventReader parser in FindSecBugs
on the instance based test cases described in Table D.1

Detection Results for FilteredReader

The result of evaluating on the instance based test cases for the FilteredReader parser is
shown in Table 6.16. As mentioned in section 6.2.2, test case nine and 10 are not applicable
to FilteredReader.

Case TP FP FN
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0

79

Chapter 6. Research Results

Case TP FP FN
Case 7 1 0 0
Case 8 2 0 0
Case 11 1 0 0

Table 6.16: Result of evaluating the new detector for the FilteredReader parser in FindSecBugs on
the instance based test cases described in Table D.1

Detection Results for Transformer

The result of evaluating on the instance based test cases for the Transformer parser is
shown in Table 6.17. Note that for each vulnerability in these test cases, the detector
reports two vulnerabilities as mentioned in section 6.2.2.

Case TP FP FN
Case 1 2 0 0
Case 2 2 0 0
Case 3 2 0 0
Case 4 2 0 0
Case 5 2 0 0
Case 6 2 0 0
Case 7 2 0 0
Case 8 4 0 0
Case 9 4 0 0
Case 10 8 0 0
Case 11 2 0 0

Table 6.17: Result of evaluating the new detector for the Transformer parser in FindSecBugs on the
instance based test cases described in Table D.1

Detection Results for XMLReader

The result of evaluating on the instance based test cases for the XMLReader parser is
shown in Table 6.18. As mentioned in section 6.2.2, test case one through three and test
case five are not applicable to XMLReader.

Case TP FP FN
Case 4 1 0 0
Case 6 1 0 0
Case 7 1 0 0
Case 8 2 0 0
Case 9 2 0 0
Case 10 4 0 0
Case 11 1 0 0

Table 6.18: Result of evaluating the new detector for the XMLReader parser in FindSecBugs on the
instance based test cases described in Table D.1

80

6.3 RQ2.2 How can the Detection of XML External Entities be Improved using Different
Techniques?

Summary of Detection Results

The new detectors based on the instance tracking approach are able to detect all the vul-
nerabilities in the instance based test cases. The detectors detect the vulnerabilities in test
case one through six which tests initializing an instance into a class field or a variable and
calling the secure methods. The detectors are also capable of detecting vulnerabilities in
test case seven through 11 which tests multiple parsers and calling secure and vulnerable
calls on these.

Both the precision and recall of the instance tracking based detector are 100% for all
test cases in the test bed. It should be noted that the scores are high because the test
bed only includes test cases with intraprocedural flows. This limitation of the test bed
is because the focus of the auto fixing tool, as described in chapter 4, is intraprocedural
and is dependent on proper detection. The number of true positives, false positives, and
false negatives for each of the parsers on the instance based test cases is summarized in
Table 6.19. As can be seen, there is a high number of true positives, no false positives, and
no false negatives. This shows that the new detectors are able to handle more complex data
and control flows. Similar results were obtained when evaluating the new detectors on the
test cases based on flow variants from Juliet Test Suite which is summarized in Table 6.20.
As can be seen, there is a high number of true positives, no false positives, and no false
negatives. This shows that the instance tracking based approach is able to handle different
control flow constructs. The detectors were also evaluated on the entirety of Juliet Test
Suite, which does not include support for XXE. No false positives or false negatives were
found.

Parser TP FP FN Precision Recall
DocumentBuilder 16 0 0 100% 100%

XMLStreamReader 10 0 0 100% 100%
XMLEventReader 10 0 0 100% 100%

FilteredReader 10 0 0 100% 100%
SAXParser 16 0 0 100% 100%

XMLReader 12 0 0 100% 100%
Transformer 32 0 0 100% 100%

Table 6.19: Summary of the true positives, false positives, and false negatives after evaluation of the
instance tracking based detectors on the instance based test cases in Table D.1

Parser TP FP FN Precision Recall
DocumentBuilder 17 0 0 100% 100%

XMLStreamReader 17 0 0 100% 100%
SAXParser 17 0 0 100% 100%

XMLReader 17 0 0 100% 100%
Transformer 34 0 0 100% 100%

Table 6.20: Summary of the true positives, false positives, and false negatives after evaluation of the
instance tracking based detectors on the Juliet style test cases

81

Chapter 6. Research Results

Compared to the execution time of the existing detectors in FindSecBugs shown in
Table 6.11, the execution time of the new detectors is 31% slower when examining a
cold run on the whole Juliet Test Suite. The results of evaluating the performance of the
new detectors for XXE have been summarized in Table 6.21. The execution time was
measured on a PC with 16G of memory, 3.9GHz CPU using Windows 10 pro. The test
bed detailed in section 6.1 and the existing Juliet Test Suite was evaluated separately to
show the execution time for test case without XXE and test cases with. FindSecBugs
allows enabling and disabling specific detectors. Therefore, only the XXE detectors were
enabled. The difference in execution time for a cold run and a hot run is due to caching
performed by FindSecBugs.

Test suite LOC Execution
time cold run

Execution
time hot run

Test cases
with XXE
vulnerabili-
ties

24,087 4.21s 1.75s

Juliet Test
Suite

5,143,930 110s 98.9s

Table 6.21: Execution time for instance tracking detectors

6.3.5 Evaluation on Built in Test Cases in FindSecBugs
As mentioned in section 2.10, FindSecBugs employs a test driven development strategy.
Test cases for testing the detection of vulnerabilities for the parsers DocumentBuilder,
SAXParser, Transformer, XMLStreamReader, XMLEventReader, FilteredReader, and XML-
Reader were already present. These tests include the bare minimum for initializing one of
the XML parsers, and test the different safe function the existing detectors look for. Both
examples of vulnerable code and non-vulnerable code are tested. The test framework ver-
ifies that the vulnerabilities are reported on the line that is expected.

During the implementation of the new detectors using the recommendations from
OWASP and Oracle as described in subsection 2.7.1 it was discovered that some of the
test cases in FindSecBugs were wrongly implemented using the wrong parameters. An
overview of the affected methods is shown below. These test cases were changed to corre-
spond to the recommendations by OWASP and have been published to GitHub alongside
the new detectors [18].

• DocumentBuilderSafeProperty.safeManualConfiguration

• DocumentBuilderSafeProperty.unsafeManualConfig1

• DocumentBuilderSafeProperty.unsafeManualConfig2

• DocumentBuilderSafeProperty.unsafeManualConfig3

• DocumentBuilderSafeProperty.unsafeManualConfig4

82

6.4 RQ3: How can Auto Fixing of XML External Entities be Implemented using an IDE
Plugin

• SaxParserSafeProperty.safeManualConfiguration

With the new detectors handling more cases than the old ones, more test cases were
added to handle these. These are shown below. For DocumentBuilder and XMLReader
test cases were added to test if the detector could identify the use of a custom entity resolver
which is considered safe. For SAXParser similar test cases to DocumentBuilderSafeProperty.
unsafeManualConfig1 through DocumentBuilderSafeProperty.unsafeManualConfig5 were
added to test if the detector successfully reported the vulnerability if one of the multiple
attributes which together makes the parser secure was missing.

• DocumentBuilderSafeProperty.unsafeManualConfig5

• DocumentBuilderSafeEntityResolver.receiveXMLStream

• SaxParserSafeProperty.unsafeManualConfig1

• SaxParserSafeProperty.unsafeManualConfig2

• SaxParserSafeProperty.unsafeManualConfig3

• SaxParserSafeProperty.unsafeManualConfig4

• SaxParserSafeProperty.unsafeManualConfig5

• XmlReaderSafeEntityResolver.receiveXMLStream

6.4 RQ3: How can Auto Fixing of XML External Entities
be Implemented using an IDE Plugin

In this section, a novel auto fix approach for instance based vulnerabilities based on travers-
ing and modifying the AST is presented. In the prestudy shown in Appendix B, no auto
fix mechanism for XXE was found. Therefore, this approach was used to create auto fixes
for these vulnerabilities. This is useful for developers who are not domain experts to help
them mitigate XXE by inserting the fixes at the correct location in the code. Given a
detection mechanism, it is desirable with an auto fix mechanism to make mitigating the
vulnerabilities easier. As shown in subsection 2.7.1, there are many different APIs and fea-
tures that need to be set for the different parsers to make them secure. Having an auto fix
mechanism will help reduce the complexity, time, and effort spent identifying the correct
fixes for the different parsers. The auto fixes have been evaluated on the test bed presented
in section 6.1 and was found to perform well.

6.4.1 AST Based Auto Fix Approach for XML External Entities
The AST based auto fix approach has been summarized in Figure 6.8. For implementation
specific details see Appendix I. The approach can be broken down into three steps:

1. Find the node to insert the auto fix on

83

Chapter 6. Research Results

2. Prepare the node for the auto fix insertion

3. Apply the auto fix

Find AST node of
vulnerability

Check if vulnerable
method called on

variable or directly on
instance

No

Yes

Called directly
on instance?

Split AST node of
initialization of instance
and method invocation

Insert AST nodes to fix
after initialization

Traverse AST nodes

Find Node Apply FixPrepare AST node for
auto fix

Check if more than one
method invocation on

the AST node

Yes NoMore than one
invocation?

Check if AST node
where instance

initialized is found

No

YesAST node
found?

YesStart

End

Figure 6.8: Flow chart for the auto fixing approach

The auto fix approach begins with the location of the vulnerability to be auto fixed
which is reported by a vulnerability detector. The corresponding AST node for the source
code line is found by traversing the AST of the method. Then, a check is made to identify
if the vulnerable method is called on a variable or directly on an instance. If the vulner-
able method is called on a variable, then the auto fix approach attempts to traverse the
predecessors of the AST nodes of this variable until it finds the AST node of the variable
where the instance to be auto fixed was initialized to. It does this by matching the names
of the variable the vulnerability is reported on with the previous method calls that led to
this variable being created. The type of the node is used to determine when an instance
where the auto fix should be inserted has been found.

When this node is found, or if the vulnerable method is called directly on an instance,
then a check is made to identify if there are multiple methods invoked on this node. If
there are, then the AST node of the initialization of the instance and the remaining calls
are split up using an auxiliary variable.

Finally, the AST nodes corresponding to the missing method calls that make up the
auto fix are inserted after the initialization. The necessary imports are also added as part
of this step.

6.4.2 Evaluation of AST based Auto Fixes

To test the performance of the AST based auto fixes for XXE the test bed detailed in sec-
tion 6.1 was used. The implementation details of the auto fixes are shown in Appendix I.
The output of the detectors for XXE based on the instance tracking approach shown in
subsection 6.3.3 was used. The implementation details of these detectors are shown in
Appendix G. The auto fixes were found to handle the flow variants from Juliet Test Suite
well. Therefore, the instance based test cases will be presented in more detail to better be
able to show the strengths and weaknesses of the AST based auto fix approach.

84

6.4 RQ3: How can Auto Fixing of XML External Entities be Implemented using an IDE
Plugin

Auto Fix Results for DocumentBuilder

The result of evaluating on the instance based test cases for the DocumentBuilder parser is
shown in Table 6.22. The incorrect fixes are due to the auto fix not removing or modifying
code that makes a factory explicitly vulnerable.

Case Successful fixes Missed fixes Incorrect fixes
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 1 0 0
Case 8 1 0 1
Case 9 2 0 0
Case 10 3 0 1
Case 11 1 0 0

Table 6.22: Result of evaluating the auto fixes for the DocumentBuilder parser in FindSecBugs on
the instance based test cases shown in Table D.1

Auto Fix Results for SAXParser

The result of evaluating on the instance based test cases for the SAXParser parser is shown
in Table 6.23. The incorrect fixes are due to the auto fix not removing or modifying code
that makes a factory explicitly vulnerable.

Case Successful fixes Missed fixes Incorrect fixes
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 1 0 0
Case 8 1 0 1
Case 9 2 0 0
Case 10 3 0 1
Case 11 1 0 0

Table 6.23: Result of evaluating the auto fixes for the SAXParser parser in FindSecBugs on the
instance based test cases shown in Table D.1

85

Chapter 6. Research Results

Auto Fix Results for XMLStreamReader

The result of evaluating on the instance based test cases for the XMLStreamReader parser
is shown in Table 6.24. As mentioned in section 6.2.2 test case nine and test case 10 are
not applicable. The incorrect fixes are due to the auto fix not removing or modifying code
that makes a factory explicitly vulnerable.

Case Successful fixes Missed fixes Incorrect fixes
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 1 0 0
Case 8 1 0 1
Case 11 1 0 0

Table 6.24: Result of evaluating the auto fixes for the XMLStreamReader parser in FindSecBugs on
the instance based test cases shown in Table D.1

Auto Fix Results for XMLEventReader

The result of evaluating on the instance based test cases for the XMLEventReader parser
is shown in Table 6.25. Due to the same reasons mentioned in section 6.2.2, test case nine
and test case 10 are not applicable. The incorrect fixes are due to the auto fix not removing
or modifying code that makes a factory explicitly vulnerable.

Case Successful fixes Missed fixes Incorrect fixes
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 1 0 0
Case 8 1 0 1
Case 11 1 0 0

Table 6.25: Result of evaluating the auto fixes for the XMLEventReader parser in FindSecBugs on
the instance based test cases shown in Table D.1

Auto Fix Results for FilteredReader

The result of evaluating on the instance based test cases for the FilteredReader parser is
shown in Table 6.26. Due to the same reasons mentioned in section 6.2.2, test case nine
and test case 10 are not applicable.

86

6.4 RQ3: How can Auto Fixing of XML External Entities be Implemented using an IDE
Plugin

The auto fixes for FilteredReader made three incorrect fixes, one in test case four, one
in test case six, and one in test case eight. The incorrect fix in test case eight was due to the
auto fix not removing or modifying code that makes a factory explicitly vulnerable. For
test case four and test case six the incorrect fixes were due to the auto fix fixing one of the
insecure factories used to initialize the FilteredReader, but not both. As an example, an
excerpt of test case four and test case six is shown in Listing 18. As can be seen, two calls
to XMLInputFactory.newInstance() are made to create one FilteredReader. The incorrect
fixes in these two test cases were due to the auto fix fixing one of the insecure factories,
but not both. For test case four, the first call to XMLInputFactory is made secure by the
auto fix but not the second call. For test case six the second call to XMLInputFactory,
referenced by the factory variable is made secure, but not the first call.

// Test case 4
reader = XMLInputFactory.newInstance().createFilteredReader(

XMLInputFactory.newInstance()
.createXMLStreamReader()

);

// Test case 6
XMLInputFactory factory = XMLInputFactory.newInstance();
XMLStreamReader reader = XMLInputFactory.newInstance()

.createFilteredReader(
factory.createXMLStreamReader()

);

Listing 18: Initialization of the FilteredReader in test case four and test case 6 from Table D.1

Case Successful fixes Missed fixes Incorrect fixes
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 0 0 1
Case 5 1 0 0
Case 6 0 0 1
Case 7 1 0 0
Case 8 1 0 1
Case 11 1 0 0

Table 6.26: Result of evaluating the auto fixes for the FilteredReader parser in FindSecBugs on the
instance based test cases shown in Table D.1

Auto Fix Results for Transformer

The result of evaluating on the instance based test cases for the Transformer parser is
shown in Table 6.27. The incorrect fixes are due to the auto fix not removing or modifying
code that makes a factory explicitly vulnerable.

87

Chapter 6. Research Results

Case Successful fixes Missed fixes Incorrect fixes
Case 1 1 0 0
Case 2 1 0 0
Case 3 1 0 0
Case 4 1 0 0
Case 5 1 0 0
Case 6 1 0 0
Case 7 1 0 0
Case 8 1 0 1
Case 9 2 0 0
Case 10 3 0 1
Case 11 1 0 0

Table 6.27: Result of evaluating the auto fixes for the Transformer parser in FindSecBugs on the
instance based test cases shown in Table D.1

Auto Fix Results for XMLReader

The result of evaluating on the instance based test cases for the XMLReader parser is
shown in Table 6.28. As mentioned in section 6.2.2, test case one through three and test
case five are not applicable to XMLReader. The incorrect fixes are due to the auto fix not
removing or modifying code that makes a factory explicitly vulnerable.

Case Successful fixes Missed fixes Incorrect fixes
Case 4 1 0 0
Case 6 1 0 0
Case 7 1 0 0
Case 8 1 0 1
Case 9 2 0 0
Case 10 3 0 1
Case 11 1 0 0

Table 6.28: Result of evaluating the auto fixes for the XMLReader parser in FindSecBugs on the
instance based test cases shown in Table D.1

6.4.3 Summary of Auto Fix Evaluation Results

The performance of the auto fixes on the instance based test case is identical for test case
one through seven and eleven for all of the parsers except for FilteredReader. Filtere-
dReader had incorrect fixes in test cases four, six, and eight, due to this parser being
slightly different in how it is used as mentioned in section 6.4.2. All of the auto fixes
had lower performance on test case eight through ten compared to test case one through
seven and eleven. This is due to these test cases including parsers that are made explicitly
secure and then vulnerable. The incorrect fixes were made when attempting to fix a parser
that had been explicitly made insecure. The auto fix was inserted directly after the factory
was initialized making the factory secure. However, the code making the factory explic-

88

6.4 RQ3: How can Auto Fixing of XML External Entities be Implemented using an IDE
Plugin

itly insecure was not removed or modified. Therefore, the developer needs to manually
remove the code making the factory explicitly insecure for the auto fix to be successfully
applied. The new detectors described in subsection 6.3.3 will keep reporting these parsers
as vulnerable, and notify the developer that they need to remove the insecure code for the
auto fixes to be effective. These fixes were still regarded as incorrect fixes since a fu-
ture improvement would be to give the developer the option to automatically remove the
vulnerable code as part of the auto fix.

All parsers are auto fixed with a high number of successful fixes, but all of them have
some incorrect fixes. None of the parsers have any missed fixes. A summary of the
evaluation on the instance based test cases can be seen in Table 6.29. There is a high
number of successful fixes and a low number of missed and incorrect fixes for all the
parsers. The number of successful fixes, missed fixes, and incorrect fixes for the parsers
DocumentBuilder, SAXParser, and Transformer are identical. This is due to the similar
way these parsers are implemented. The auto fixes were also evaluated on the test cases
based on flow variants from Juliet. The result of this evaluation is shown in Table 6.30. As
can be seen, the auto fixes were successfully able to fix all the vulnerabilities in these test
cases.

Parser Successful fixes Missed fixes Incorrect fixes
DocumentBuilder 14 0 2

XMLStreamReader 9 0 1
XMLEventReader 9 0 1

FilteredReader 7 0 3
SAXParser 14 0 2

XMLReader 10 0 2
Transformer 14 0 2

Table 6.29: Summary of the successful fixes, missed fixes, and incorrect fixes after evaluating the
auto fixes on the instance based test cases shown in Table D.1

Parser Successful fixes Missed fixes Incorrect fixes
DocumentBuilder 17 0 0

XMLStreamReader 17 0 0
XMLEventReader 17 0 0

FilteredReader 17 0 0
SAXParser 17 0 0

XMLReader 17 0 0
Transformer 17 0 0

Table 6.30: Summary of the successful fixes, missed fixes, and incorrect fixes after evaluating the
auto fix mechanism on the Juliet style test cases

When auto fixing all XXE vulnerabilities of each type, the execution took between
604ms and 861ms for between 27 and 34 test cases. The result of evaluating the perfor-
mance of the auto fixes for XXE is shown in Table 6.31. The execution time was measured

89

Chapter 6. Research Results

on a PC with 16G of memory and a 3.9GHz CPU using Windows 10 pro. These numbers
were obtained by fixing all vulnerabilities for each parser using the test bed detailed in
section 6.1. As can be seen, auto fixing close to 30 vulnerabilities takes less than a second
for each parser.

Parser Number of vulnerabilities auto fixed Execution time
DocumentBuilder 33 668ms

XMLStreamReader 27 604ms
XMLEventReader 27 764ms

FilteredReader 27 684ms
SAXParser 34 861ms

XMLReader 29 799ms
Transformer 33 807ms

Table 6.31: Execution time for auto fixes

6.4.4 Dependence of Auto Fixes on Correctness of Detection
The auto fixes use the vulnerability location reported by the detectors as a starting point
for identifying where to perform the auto fix. If the detector reports a false positive, then
the auto fix will use this as an input and end up fixing the wrong vulnerability. This may
lead to incorrect fixes that will break the functionality of the code being fixed. If a detector
has a lot of false negatives, then the vulnerability is not identified and the auto fixes cannot
be applied. Therefore, the precision and recall of the detectors need to be high in order for
the auto fixes to be useful.

As shown in Table 6.9 and Table 6.10, the existing detectors had high precision but low
recall. This means that for all the vulnerabilities the detectors reported all of them were
correct, however, a lot of vulnerabilities were missed. Therefore, the detection needed to
be improved for the auto fixes to be useful. As shown in Table 6.19 and Table 6.20, the
new detectors had high precision and high recall, making the auto fixes more useful since
all of the vulnerabilities found are actual vulnerabilities, and fewer vulnerabilities were
missed.

90

Chapter 7
Discussion

In this chapter, the research results presented in chapter 6 will be compared with related
work. First, the test bed will be compared with other test beds used for evaluations of
security-based source code analysis tools, and test beds used for evaluation of automatic
fixes of other code bugs. Then the improved XXE detection will be compared to other
detection tools and techniques. Last the auto fixing technique presented in this thesis will
be compared to other code repair techniques and implementations. This chapter also lists
the most important threats to validity and explains how these threats were mitigated.

7.1 RQ1: How can a Test Suite for Evaluating Web Sec
Auto Fixes be Designed for XML External Entity At-
tacks?

This section contains discussions about how well the test beds function for the evaluation
of auto fixing tools.

7.1.1 Comparison with Classical Auto Fixing Test Beds

The automatic evaluation of auto fixes is the main contribution of the test bed. No such
feature exists for security auto fixing tools. The automatic evaluation makes checking the
performance of auto fixing tools much simpler than it would be without this feature. It
was discovered through the literature review that many tools are evaluated on various code
bases and use various metrics. This test bed allows researchers to quickly and easily do a
thorough evaluation of their auto fixing tool.

ManyBugs [70] is a test bed for C code bugs that does implement validations for auto
fixes. This is the only test bed discovered through our literature review that is designed
with validations in mind. The test cases in the test bed are not relevant for our purposes
since they focus on common C bugs, not web security in Java. The addition of automatic

91

Chapter 7. Discussion

evaluation of fixes allows researchers to apply fixes to all vulnerabilities, and then evaluate
the effectiveness of all fixes within minutes.

7.1.2 Comparison With Other Software Security Test Beds
Multiple existing test beds for software security were discovered through the prestudy.
These test beds were focused on evaluating detection not auto fixing vulnerabilities. Our
test bed was based on the flow variants and overall design of the Juliet Test Suite. This
helps ensure that the test bed covers as many flow variants as possible and avoids the test
bed being tailored to the auto fixing tool being evaluated.

The limitation of putting each vulnerability in a separate function in a test case makes
it difficult to find ways to make realistic methods with advanced data flow. This results
in some of the test cases being unnatural, for instance instantiating multiple parsers in a
row. These more complex usages are more natural in test beds designed as complete test
beds, like WebGoat [106]. Although some test cases seem somewhat out of place, we
argue that they test how the tools handle complex data flows just as well as a complete
application would. It is also easier to systematically test different combinations of parsers
with different control flows in a test bed consisting of a collection of test cases.

The design also makes it easier to add new flow variants for existing vulnerabilities as
well as new vulnerabilities to the test bed. This is the primary reason many existing test
beds use this design. Juliet’s design made it easy to add new test cases for this project,
something that would have been more difficult for a test bed designed as a complete app.

Comparison with Juliet Test Suite

The overall design of the test bed was designed to be as similar as possible to the Juliet
Test Suite. This is done to ensure better coverage for relevant data flows present in Juliet
but with added tests for XML External Entity vulnerabilities. There are still a few key
differences between our test bed and Juliet.

One major difference between our test bed and Juliet is the addition of 11 instance-
based test cases. Though not present in the Juliet Test Suite, these test cases are somewhat
similar to test cases in the Juliet Test Suite for C. These cases have tests where variables
are added to the stack or heap, similar to how our test bed has class and method variables.

Our test bed also has test cases with multiple parsers in the same test case. This is
not present in Juliet. Juliet’s variants concern wrapping vulnerable code in different code
structures like conditionals, loops, etc. but does not explore the effects of having multiple
parsers within the same method on detection and auto fixing tools.

7.1.3 Strengths and Weaknesses of Test Bed Design
Ease of Evaluating Auto Fixes

The main strength of the test bed proposed in this research compared to other test beds is
the automatic evaluation of auto fixes. This saves a lot of time when evaluating using this
test bed compared to when auto fixing on test beds without this feature. Evaluating auto
fixes using the Juliet Test Suite requires manual evaluation of each auto fix. Evaluations

92

7.1 RQ1: How can a Test Suite for Evaluating Web Sec Auto Fixes be Designed for XML
External Entity Attacks?

of auto fixes on applications without a known number of vulnerabilities require manual
verification of fixes to see if they are correct. These types of evaluations also cannot give
the number of false negatives since there is no ground truth.

More Robust Testing of Intraprocedural Flows

Another benefit of this test bed is that it has more robust testing of intraprocedural data
flows for instance based vulnerabilities. The test bed includes not only test cases similar
to Juliet, but also a number of other test cases to test more complex data flows. Juliet does
not have any cases where instances are made secure and then insecure.

The test bed created for this project also covers the XXE better than other test beds.
Juliet does not include any test cases for XXE. WebGoat has some, but not many examples
of XXE. The test bed used for our evaluation contains a large collection of XXE cases for
seven of the most used XML parsers in Java.

Lack of Interprocedural Data Flows

The test bed does not include test cases with interprocedural data flows. This was done
since the detection and auto fixing tools only cover intraprocedural analysis. All test cases
requiring interprocedural analysis would fail and would not give any results that are not
already known. This limitation of the test bed results in better results in the evaluation
of our tool than a similar evaluation with a test bed including interprocedural data flows.
This was taken into account during the evaluation. This type of test case would need to
be added to the test bed if it is going to be used to evaluate an XXE auto fixing tool that
includes interprocedural analysis.

Evaluation of Functions with multiple parsers

If a test case has more than one vulnerable parser in the same method the automated tests
cannot check if both have been fixed. The tests only check the output of one XML parser.
This means that it is technically possible to have one secure parser that refuses to parse
external entities and another insecure parser that is in the same method, and this would go
unnoticed by the automated tests if the return value comes from the secure parser. This
does not occur in any of the tests based on the Juliet Test Suite but does occur in some of
the 11 added tests for each parser. Since the tests only evaluate the returned values from
the function parsing XML it is still possible to, for example, use XML for remote code
execution or denial of service with another parser that does not need to be used for the
return value of the function being tested.

Impossible to Evaluate XML Entity Expansion for Newer Versions of Java

The test bed design supports evaluating XML Entity Expansion, however, the Java Devel-
opment Kit (JDK) imposes a default limit of 64000 on the number of entity expansions
since JDK 7u45 and JDK 8 [30]. Therefore testing if the parser is vulnerable to the billion
laughs DOS attack shown in Listing 6 does not make sense for newer Java versions, since
the parsers are inherently secure from these attacks. If one wants to evaluate the detection

93

Chapter 7. Discussion

and fixing of XML Entity Expansion, an older version of Java has to be used. Therefore,
a Java code base with an older version of Java would be better suited for this.

Duplicate Code

There is a substantial amount of duplicate code in the test bed. This is a result of having
many very similar test cases with similar automated evaluations for each case. This is
common for test beds with this design but could be improved to make the test beds more
understandable for researchers. One way to reduce the amount of code in the test bed
would be to extract common functionality to a superclass that the specific cases could
extend. This would reduce the amount of code but would force test cases to be very
similar in design by forcing them to implement a common interface. This could limit how
well the test bed covers relevant test cases.

The Thoroughness of Evaluation of Security

The tests used to ensure that the test cases are secure after applying fixes could be more
thorough. To be sure that an auto fix actually fixes a security vulnerability the test bed
would need more automated tests. This was not implemented since checking if a function
is vulnerable to XXE is a research topic on its own. This has been researched by [120]
who found a large collection of tests that could be used to evaluate the security of parsers.
The automated tests should be sufficient and do check properly for XML External Entities,
but other relevant, parser specific vulnerabilities could be omitted.

7.1.4 Comparison with Related Work
Most test beds used for evaluation of auto fixing tools were proprietary code bases [53,
19]. Many used open source software [81, 140, 113, 141, 107, 1, 39, 80], and some used
home made code bases [80, 20, 13, 17]. All the test beds used can be found in Table A.1.
Only a few used properly documented test beds [51, 38, 139, 117, 73].

No existing test bed focusing on automatic evaluation of auto fixes of security vul-
nerabilities was found. The Juliet Test Suite contains a collection of web vulnerabilities.
WebGoat is a full application containing web vulnerabilities. However, neither of these
include automatic verification of either the vulnerability of or the security of test cases.
Furthermore, Juliet Test Suite did not contain test cases for XXE.

The only test bed with an automatic evaluation of auto fixes was found to be ManyBugs
[70], which only has test cases in the C programming language. This test bed is a collection
of vulnerable functions with associated test cases for testing the correctness of a fix by
verifying the functionality of them. However, it does not verify the security of the fix
since it is made for classical auto fixing. Furthermore, it does not contain different flow
variants for testing software security for different vulnerabilities in a repeatable manner
across different vulnerabilities.

Test suites have been made for testing the security of different XML parsers focus-
ing on testing how vulnerable different parsers are to different attacks as mentioned in
section 3.4. However, none of the studies identified focused on testing the detection per-
formance of static analysis tools, but rather the vulnerabilities present within the parsers.

94

7.2 RQ2.1: What are the shortcomings of existing static analysis tools for the detection of
XML External Entity attacks?

For instance [120] evaluated 1459 attacks on 30 different XML parsers to identify
which ones the parsers were vulnerable to, whereas [131] surveyed different potential
attack on web services with a focus on DOS attacks, and [100, 45] implemented a tool
to run various XML attacks against a live web server. None of these were test cases with
repeatable flow variants for either testing the detection performance of static analysis tools,
or for evaluating the functionality and security of auto fixes.

We, therefore, argue the novelty of test bed since it tests the detection of XXE for
different flow variants, includes additional flow variants for testing different ways of ini-
tializing an object and testing subsequent functions invoked on this instance, and verifies
both the functionality of and tests the security of automatic fixes. The verification of the
functionality and checking the security of the test cases both before and after performing
an auto fix are automated, which was not found to have been done previously.

7.2 RQ2.1: What are the shortcomings of existing static
analysis tools for the detection of XML External En-
tity attacks?

In this section, the strengths and weaknesses of the existing approach used to detect XXE
in FindSecBugs will be presented. The approach will also be compared to other vulnera-
bility detection tools.

7.2.1 Strengths and Weaknesses of the Existing Detection of XXE in
FindSecBugs

Detection of Simple XXE Vulnerabilities with No False Positives

The main strength of the way detection is implemented in FindSecBugs is that it is able to
handle the simplest forms of XXE with no false positives. The existing detectors handle
test case one through six of the instance based test cases, and all the test cases based on
flow variants from Juliet Test Suite. For the instance based test cases, the first six are the
simplest test cases only differing in whether the instance has been initialized into a field or
a variable. For the Juliet style test cases, they primarily differ in the control flow constructs
used. This shows that the existing detectors are able to handle the simplest variants of XXE
where the vulnerability occurs once within the same method and where different control
flow constructs are used with no complex data or control flow. Compared to the detectors
for other vulnerabilities in FindSecBugs, the recall and precision of the XXE detectors are
much higher, as mentioned by Oyetoyan et al. [107].

Simple Detection Approach

The main strength of the approach used by the existing detectors is that it is very simple and
straight forward for developers to understand. A double pattern matching approach is used.
First, a parser use is found, then the secure calls are found. Except for Xxedetector, all the
parameters of these calls are checked to determine if the parser use is secure. Very little

95

Chapter 7. Discussion

effort is required for creating detectors that are capable of identifying many vulnerabilities.
The execution time of the detectors is also low due to the simplicity of the detectors. The
other approaches used for source code analysis shown in section 3.2 are more complicated
than the pattern matching used for the detection of XXE by FindSecBugs.

Lacking Detection for Complex Data Flows

The main weakness of the XXE detection approach used by FindSecBugs is that it can-
not handle more complex data and control flow. As shown in Table D.1, test cases seven
through 10 test the use of multiple parsers within the same method, and initializing multi-
ple parsers within the same method using a factory that is made both secure and insecure.
All of the existing detectors fell through on these test cases using more complex data and
control flow. As noted in section 6.2.2, the TransformerFactoryDetector detector was able
to handle test cases eight and 10 by a coincidence, hence it can be regarded as not handling
this test case, since if the secure calls had been exchanged then the detector would not have
been able to handle the test case. The existing detectors are also not able to handle the use
of a parser and a separate instance in the same method whose secure method is similar.
This is tested by test case 11. All of the existing detectors fell through on this test case.
This type of flow requires data flow analysis to be detected. As shown in section 3.2, this
type of analysis is used by other tools to detect other vulnerabilities, but not currently to
detect XXE.

Inconsistent Implementations

Internal inconsistency in how the approach has been implemented in FindSecBugs was
also found. TransformerFactoryDetector toggles a boolean when secure and insecure calls
are found allowing it to detect vulnerabilities in a sequence of consecutive calls happen-
ing after each other. An example of this is shown in Listing 19. Neither XxeDetector
nor XMLStreamReaderDetector is capable of this. XxeDetector also does not check the
second parameter of a call and only considers the first which makes it incapable of dif-
ferentiating between secure and insecure calls for the features in subsection 2.7.1 where
the second parameter differentiates the secure call from the insecure one. Transformer-
FactoryDetector also reports the vulnerability where the parser is initialized, not where
it is used. This may confuse developers who may assume that initializing the parser is
itself vulnerable when it is parsing an XML document that is vulnerable. The taint anal-
ysis implemented by FindSecBugs is an example of a set of detectors with a consistent
implementation making the detectors perform comparably.

TransformerFactory factory = TransformerFactory.newInstance();
factory.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);
factory.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, false);
// This parser use is regarded as vulnerable
// by TransformerFactoryDetector
Transformer transformer = factory.newTransformer();

Listing 19: Example of subsequent calls handled by TransformerFactoryDetector

96

7.3 RQ2.2: How can the Detection of XML External Entities be Improved using
Different Techniques?

7.2.2 Comparison with Related Work

No evaluation of FindSecBugs’ detection of XXE was found in the prestudy. This is
because there is no good test bed for this evaluation. Previous evaluations of other vulner-
ability detectors in FindSecBugs have used similar research methods to ours where a test
bed is used to evaluate the detection performance. The metrics collected by researchers
were discovered to vary drastically, as shown in chapter 6. As shown in Table A.1, many
other researchers only collected the number of true positives for instance [11, 73, 77, 134],
others also included false positives for instance [81, 115], but few collected false negatives
[38, 136, 129, 65]. Therefore many researchers could not calculate the recall or preci-
sion of the tools they were evaluating. This was a result of many researchers using poor
test beds with no ground truth. Because no other evaluations of XXE detection in Find-
SecBugs exist, we argue the novelty of our analysis into the shortcomings of the existing
static analysis tools for detecting XML related vulnerabilities.

7.3 RQ2.2: How can the Detection of XML External En-
tities be Improved using Different Techniques?

7.3.1 Strengths and Weaknesses of Instruction Based Data Flow Anal-
ysis

Analyze Sequence of Method Calls

The main strength of the instruction based data flow analysis is that it is able to capture
the sequence of the calls within the method. This is not possible using simpler analysis
approaches like pattern matching. Therefore, it can determine a sequence of secure and
vulnerable calls as either ultimately secure or insecure. This approach is also able to
identify a generalized number of parameters. This means that it can be used to identify
secure or vulnerable calls that require an arbitrary number of parameters. Instruction based
data flow analysis is able to determine where the secure call has been made within the
method instead of just somewhere in the method. This means that it can determine when
a parser has been initialized and identify the secure or vulnerable calls performed after the
parser has been initialized.

Lacking Instance Tracking

The main weakness of the approach is that it is not capable of knowing which instance
calls are invoked on thus not knowing which secure calls are for which instance. It also
gets confused by two instances with similar secure calls because it does not know which
of these they were invoked on. The approach also only works on the intraprocedural level.
To handle these data flows, the analysis tool needs to be extended with an instance tracking
mechanism.

97

Chapter 7. Discussion

Benefits Compared to Pattern Matching Approach Used by FindSecBugs

Compared to the existing approach, the instruction based data flow analysis handles a
generalized number of parameters and can determine where in the method a secure or
vulnerable call has been made. Due to the internal inconsistency within FindSecBugs, it
is also able to better determine if subsequent calls made after one another are ultimately
vulnerable or secure. While TransformerFactoryDetector is able to handle this, it is more
of a coincidence. XxeDetector and XMLStreamReaderDetector is not capable of this.
However, evaluating the detection performance of the instruction based data flow approach
on the test cases in section 6.1 revealed that it did not perform significantly better than the
existing approach. This means that an approach that is capable of tracking calls performed
on each instance is needed.

7.3.2 Strengths and Weaknesses of Instance Tracking

Handles More Complex Data Flows

The main strength of the new detector implementations based on the instance tracking
approach is that they are able to handle more complex control and data flow variants in
addition to the simplest forms of XXE with no false positives, compared to FindSecBugs.
All of the Juliet style test cases and all the instance based test cases are handled by this
approach.

Handles Multiple Parameters, Secure and Insecure Calls, and Multiple Parsers

Another strength of the instance tracking based approach is that a generalized number
of parameters for each call can be detected allowing for generalizability. Both secure and
insecure calls can be tracked, and singular and multiple calls can be differentiated between.
Additionally, the sequence of the calls called on the instance is kept track of, which means
that the approach is able to identify when an instance is vulnerable and when it is secure.
Due to keeping track of the calls performed on different instances, it is also capable of
knowing which parsers within a method that is vulnerable and which is secure.

Generalizable Detectors

The implementation of the instance tracker has also been done in a generalized manner.
The core algorithm has been extracted to a superclass allowing subclasses to supply the
algorithm with which initialization instructions to look for, which return values to look for,
where to report the vulnerability, and which singular and multiple tracked calls to look for.
This was done to improve upon the internal inconsistency found within FindSecBugs for
the existing detectors. Extracting the similarities to a common superclass ensures that the
detectors using this approach all use it correctly and in the same manner. Having extracted
and generalized the approach also makes it easy to implement additional detectors. For
instance, a new detector for identifying insecure cookies was implemented as shown in
Appendix H by using this generalized implementation. This shows that instance tracking
is not only applicable to detect XXE, but it is applicable to other vulnerabilities as well.

98

7.3 RQ2.2: How can the Detection of XML External Entities be Improved using
Different Techniques?

Lack of Interprocedural Analysis

The main weakness of the instance tracking based approach is that it performs only in-
traprocedural analysis and not interprocedural analysis. However, it was designed to per-
form only intraprocedural analysis to focus on supporting the auto fixing tool, thus, this is
a reasonable weakness considering it was not implemented. FindSecBugs includes limited
support for interprocedural analysis [56] and does not support context sensitive interpro-
cedural analysis at all [57]. Performing interprocedural analysis can still be achieved by
”faking it” [57] through the use of two detectors where one pass is done over the Java class
under consideration to collect information for use in a second detector. However, since this
support is lacking at best this was decided to be out of scope for this thesis.

Performance Penalty for More Advanced Analysis

Another weakness of the instance tracker is that it takes longer to run compared to the
existing detectors. However, it is only 31% slower than FindSecBugs’ XXE detectors on 5
million lines of code and the performance is comparable on 24K lines of code. Therefore,
this should not be too much of a problem. Additionally, this is only a one-time penalty due
to FindSecBugs only scanning files that have changed after the initial run.

7.3.3 Extending FindSecBugs for Detection Compared to Making Stand
Alone Tool

FindSecBugs is Easy to Extend

FindSecBugs proved easy to extend with detection functionality and worked well as a
baseline for implementing the new detectors. While the new detectors do not inherently
use any of the detection mechanisms provided by FindSecBugs, but instead build upon
the functionality within SpotBugs which FindSecBugs is an extension to, FindSecBugs is
set up with a testing framework that proved quite useful in ironing out the kinks of the
detection mechanism. The test cases enumerated in Table D.1 could be integrated directly
into FindSecBugs providing immediate feedback on the detection performance of both the
existing and the new detectors.

Extending FindSecBugs Requires Backwards Compatibility

Using FindSecBugs also meant that a choice between being backward compatible with re-
gards to where the bugs are reported needed to be made. As discussed in subsection 6.4.4,
for the auto fix mechanism later implemented it would have been more useful to report
where the fix should have been inserted as opposed to where the bug occurred. However,
a choice was made to keep reporting the bugs on the same lines as the current detectors
in FindSecBugs. A discrepancy was found between the existing XML detectors where
the Transformer detector reported the bug on the line where the parser was initialized,
whereas the remaining XML detectors reported the bug where the bug occurred. We de-
cided to change the new transformer detector to be more consistent with the rest of the
existing XML detectors, reporting the vulnerability where the parser is used as opposed to
where it is initialized. Maintaining backward compatibility will also reduce the overhead

99

Chapter 7. Discussion

of developers adopting the new detectors since visibly it will not change anything within
the IDE except for more vulnerabilities being detected.

Pros and Cons of Test Driven Development in FindSecBugs

Using the test-driven development method in FindSecBugs helps ensure that the detec-
tors that are implemented can detect the vulnerability patterns that have been tested for.
However, it also shows the importance of these test cases being correct. If the test cases
are wrong then the detection mechanism implemented will be wrong. Additionally, if im-
provements are made upon existing detectors or new detectors are implemented then it is
not unreasonable that the test cases are assumed to be correct. If these are wrong, then the
new detection mechanism will also be wrong because of this.

7.3.4 Different Mitigation Strategies for XXE Vulnerabilities
Both OWASP and Oracle give recommendations for best practices in web security, but
their recommendations differ in multiple ways.

OWASP and Oracle Recommendations

Oracle and OWASP both describe different attributes that can be set to make an XML
parser secure as shown in subsection 2.7.1. However, where OWASP specifies each at-
tribute that should be set alongside the value recommended, Oracle mentions more top-
level features that can be enabled which in turn enables or disables multiple underlying
attributes. For instance, enabling feature secure processing implicitly disallows DTD pro-
cessing and restricts external access effectively mitigating both CWE-611 and CWE-776.
Similarly, using a security manager implicitly enables the feature secure processing.

Impact on Developers

In general, the main difference between the suggested mitigation strategies from OWASP
and Oracle is that the strategies presented by OWASP are more specific, whereas the strate-
gies presented by Oracle are easier to remember. Therefore, for the detection part, we
chose to detect the attributes from both OWASP and Oracle. Since the mitigation strate-
gies from Oracle incurs less overhead for the developer to both remember and verify, for
the auto fix part the parameters recommended by Oracle were used. In general, it would
be easier for developers to know which features to set if both OWASP and Oracle agreed.

7.3.5 Comparison with Related Work
Most previous work into software security vulnerability detection has focused on SQL
Injections and Cross-Site Scripting. Little research has been done on the detection of
XXE. For instance, Baset and Denning [16] found that most existing tools cover SQLi and
XSS vulnerabilities well.

Previous research into the detection of other web security vulnerabilities also shows
that data flow analysis performs better than pattern matching. This is the case for vulnera-
bilities including complex data flows, such as SQL injections and XSS.

100

7.4 RQ3: How can Auto Fixing of XML External Entities be Implemented using an IDE
Plugin

Dynamic analysis is another vulnerability detection technique that was not evaluated
in this research. That is because it is a run-time analysis and does not provide pointers to
vulnerabilities in source code. This is required to be able to auto fix the detected vulnera-
bilities.

Machine learning approaches were found to have been used for vulnerability detection.
However, no publicly available test set for training such models for the detection of XML
External Entities was found. Therefore, this approach was not attempted for detecting
XXE.

We, therefore, argue the novelty of our evaluation of different techniques for improving
the detection of XXE vulnerabilities, and our new instance tracking mechanism.

7.4 RQ3: How can Auto Fixing of XML External Entities
be Implemented using an IDE Plugin

In this section, the auto fixes for XXE vulnerabilities will be discussed. First, the strengths
and weaknesses will be presented. Then the strengths and weaknesses of backward com-
patible auto fixes will be discussed. Finally, the auto fix approach will be compared to
related work.

7.4.1 Strengths and Weaknesses of using AST Based Auto Fixes
Correct Auto Fix Suggestion

The main strength of the auto fixes is that they provide vulnerability specific auto fix
suggestions. This means that for each vulnerability, a specific auto fix for mitigating that
vulnerability is suggested. This allows bulk auto fixes to be performed. ASIDE and ESVD
suggests all auto fixes for each detected vulnerability. This means that to apply the auto fix,
the developer has to manually select the correct one from a list of all auto fixes provided by
the tool, since the tools don’t know which auto fix is correct. Additionally, this means that
bulk auto fixes cannot be applied. This makes it difficult for developers to both identify
the correct auto fix to apply and to fix more than one vulnerability.

Ensures Correctness of Code Structure

When applying fixes to source code using ASTs, developers are assured that the code
change will not break the semantics of the code. This means that the fix will not leave any
incorrect tokens such as curly braces or commas. This is something that developers would
have to check for themselves when creating auto fixing tools that change code as a string.
Auto fixing approaches based on machine learning have a large risk of breaking the code
structure when applying a change if there are no manual tests in place to avoid this.

Generalizable Design

The implementation of the auto fix approach has also been done in a generalized manner
similar to the implementation of the instance tracker detector. The core algorithm has been

101

Chapter 7. Discussion

extracted to a superclass allowing subclasses to supply the algorithm with which nodes to
look for, and which AST nodes to insert to perform the auto fix. This makes it easy to
implement auto fixes using this approach. For instance, auto fixes for insecure cookies
were implemented as shown in Appendix J. This shows that the approach can be used
to auto fix other vulnerabilities in addition to XXE. Auto fixes for SQL injections [129,
128] and XSS were found, however, the methods used were only applicable to one specific
vulnerability and could not be used to auto fix other injection vulnerabilities as well.

Needs to Traverse AST to Identify Where to Insert Auto Fix

The main weakness of the AST based auto fix approach is that it cannot fix parsers that
have been made explicitly vulnerable through calls to insecure methods. This is because
the AST based approach currently does not identify statements that make a parser explic-
itly vulnerable. This is the main reason for the incorrect auto fixes for test case eight and
10 shown in subsection 6.4.2. In both tests, a parser has been explicitly made vulnerable
as described in Table D.1. When attempting to perform the auto fix, the auto fix identifies
the factory to insert the auto fix on and inserts the auto fix right after the factory is cre-
ated. However, the code making the factory explicitly insecure is not removed or modified.
The new detectors still report the remaining vulnerabilities, letting the developer choose
whether to remove the insecure calls or not. If the developer removes the insecure calls
the auto fixes inserted will become effective.

Lack of Fixes with Interprocedural Data Flows

Another weakness of the implementation of the AST based auto fixes is that they only sup-
port intraprocedural fixes and not interprocedural fixes. However, they were implemented
to perform intraprocedural fixes, thus, this is a reasonable weakness considering it was not
implemented. This is due to the detectors only supporting intraprocedural analysis.

7.4.2 Strengths and Weaknesses of Backwards Compatible Auto Fixes
Seamless Extension of FindSecBugs

One of the strengths of the auto fix approach is that they are backward compatible with
the existing detectors in FindSecBugs. This means that developers can use the existing
detectors with the novel auto fixes for XXE. As shown in section 6.2, the existing detectors
were unable to handle more complex data and control flow. However, since the precision is
high, the auto fixes can use the input from these detectors to sufficiently perform the auto
fixes for the identified vulnerabilities. Using the input from the instance based detectors
detailed in section 6.3 will allow for more vulnerabilities to be fixed compared to using the
existing detectors due to the higher number of recall.

Dependence on Input From Detectors

One of the main weaknesses of the auto fix approach, however, is also that they are back-
ward compatible with the existing detectors. For many of the XXE vulnerabilities, the
vulnerability occurs on a different instance than where the auto fix should be inserted as

102

7.5 Threats to Validity

shown in the specific implementations explained in Appendix I. The existing detectors
report the vulnerability where it occurs and not where the auto fix should be inserted. This
means that the auto fixes have to traverse the AST to identify where the fix should be in-
serted. Since the AST lacks the necessary information to perform data flow analysis [28],
the traversal part of the auto fixes has to use pattern matching to traverse from one AST
node to another. In most cases this is sufficient, however, it makes the auto fix approach
more complicated. To mitigate this weakness, the vulnerability could be reported on the
source code line where the auto fix should have been inserted. This would remove the
need for the auto fix to identify which instance to insert the vulnerability on. However, de-
velopers would not know where the vulnerability occurred only where the auto fix should
have been applied. Making this change would likely reduce the number of incorrect fixes.

7.4.3 Comparison with Related Work

Existing auto fixing tools provide unspecific auto fix suggestions and list all the available
auto fixes. ASIDE and ESVD uses ESAPI to provide their auto fixes. However, nei-
ther of these present the auto fixes applicable to a certain vulnerability but instead lists
all the auto fixes ESAPI supports making it difficult to know which auto fix to apply as
mentioned in Appendix B. Neither ASIDE nor ESVD supports identifying XML vulner-
abilities which means it is impossible to identify these vulnerabilities and apply the auto
fixes using ESAPI using these tools.

Auto fix mechanisms were identified for SQLi and XSS as mentioned in the prestudy
in Appendix B, but none were found for fixing XXE. These techniques are specific to
SQLi and XSS for instance using prepared statements or inserting runtime patches. Auto
fixes for classical bugs were also identified as shown in subsection 3.2.8. Of these, only
AST based fixes seemed promising. No data set was found to be available for training
machine learning models, satisfiability modulo problems are more tailored to incorrect if
statements, and genetic programming requires a test suite which adds additional overhead.
Therefore, an auto fix was implemented based on modifying the AST.

We, therefore, argue the novelty of the auto fix mechanism because it supports auto
fixing XML External Entities, it presents only relevant auto fixes for the vulnerability un-
der consideration, it supports different XML parsers, and handles each parser according to
the implementation of the auto fixes for that parser, The auto fix mechanism implemented
is also generalizable and can be used to auto fix other vulnerabilities as well. Such a gener-
alized auto fix mechanism for instance related vulnerabilities based on modifying the AST
was not found to have been done before.

7.5 Threats to Validity

This section details the threats to the validity of the research conducted in this thesis. These
threats include biases in the way detection and auto fixing is evaluated, biases in the way
the tools could be affected by the test bed, and the way biases in the prestudy could affect
decisions made in the research.

103

Chapter 7. Discussion

7.5.1 Threats to Internal Validity

Reliance on Correctness of FindSecBugs

The soundness of our findings depends on the soundness of Eclipses APIs and Find-
SecBugs’ underlying detection framework. If these do not perform as intended, the auto
fixing tool proposed in this thesis will not perform as demonstrated in this thesis. This risk
is the reason improved detection was made to be a part of this research. To reduce the risk
of incorrect detection by FindSecBugs, the tool was evaluated thoroughly, and changes
were made to ensure a better and more reliable detection mechanism.

It is also possible that there was selection bias in the prestudy when collecting papers
to review. Missed information from the prestudy could threaten the internal validity of
the results in this thesis since this information is the foundation of this study. To avoid
selection bias in the prestudy, a large amount of literature was reviewed. These papers
were collected using a structured literature review to avoid bias in the selection of papers.

Bias in Prestudy

The prestudy may contain threats to its validity. If the prestudy is biased it would affect
the correctness of the related work presented. This could mean that the motivations behind
the research could be invalid, or that the detection and auto fixing techniques examined in
this study are not complete. To avoid biases in the prestudy the information was collected
in a structured literature review. Relevant search terms were used and as many papers as
possible were collected to avoid selection bias. To get a collection of papers as large and
as representative as possible, snowballing was used in addition to the search. It is also
possible that research into detection and auto fixing of security vulnerabilities is affected
by publication bias. Many papers present only the positive results of their research. To
mitigate this as many papers as possible were collected.

Tailored Detection and Auto Fixing for Test Bed

The auto fixes may be tailored for the test bed. This would result in better evaluation scores
when evaluating the auto fixes and detection on this test bed than on other test beds. This
was mitigated by focusing on using the detection and fixing techniques discovered in the
literature review, and evaluating these as objectively as possible.

7.5.2 Threats to External Validity

Biased Test Bed

One threat to the external validity of our research is the limited test bed used for evaluation.
The results of this evaluation cannot simply be generalized and compared to results from
evaluations on other test beds. This is the result of possible selection bias when creating
test cases for the test bed. To mitigate selection bias, the test bed was made to be as similar
as possible to the Juliet Test Suite which was found to be the most common test bed for
evaluation of security analysis tools. This should help our results be more comparable to

104

7.5 Threats to Validity

evaluations on other test beds. If there is a bias in the Juliet Test Bed, this bias will be
present in the test bed created based on this.

The evaluations done in this study also only focused on intraprocedural data flows.
The results can therefore not be directly compared to results of tools evaluated on test
beds including interprocedural data flows. The lack of interprocedural test cases also gives
better testing results than a test bed with these cases. It should, therefore, be noted that this
study does not claim to cover interprocedural data flows, and is only a proof of concept for
auto fixing XXE limited to intraprocedural data flows.

Generalizability of FindSecBugs and Eclipse

Another threat is that the study was based on FindSecBugs and the Eclipse IDE and
its APIs. FindSecBugs might be implemented differently than other analysis tools, and
Eclipse could have APIs that are not found in other IDEs. This could mean that the results
discovered for adding auto fixes to Eclipse based on FindSecBugs might not be applicable
for other analysis tools and other IDEs. To avoid this, generalized approaches such as
modifying an AST and using data flow analysis were used.

105

Chapter 7. Discussion

106

Chapter 8
Conclusion and Future Work

8.1 Summary of Related Work

A summary of the related work for this project is shown below. It was discovered through a
structured literature review in the prestudy phase of the project as detailed in Appendix B.
The related work consists of existing tools for auto fixing, research into auto fixing, in-
formation about test beds as well as testing methodologies used by other researchers, and
studies into the prevalence of XML External Entities.

8.1.1 Research into Detection

A lot of research has been done on tools for detecting web security vulnerabilities. Var-
ious techniques, such as static analysis, dynamic analysis, pattern matching, data flow
analysis, and machine learning approaches have been used. However, the majority of the
research was found to focus on injection related vulnerabilities such as SQLi and XSS.
These vulnerabilities are covered well by existing tools and research into them. Few tools
for detecting XML related vulnerabilities were identified.

Some research uses dynamic analysis to detect vulnerabilities [134, 97, 69]. This
approach is not applicable to auto fixing because it cannot report the line the vulnerability
occurred on. This is required for auto fixing.

Machine learning approaches have been attempted for the detection of security vul-
nerabilities [52, 53]. This type of detection is limited by the availability of data sets with
vulnerable and secure code. No such data set exists for XXE.

8.1.2 Research into Fixing

Few existing tools for auto fixing of software security vulnerabilities were identified. Most
research focuses on auto fixing SQLi and XSS with specific auto fixes only applicable to
these vulnerabilities. However, no tools that auto fix XXE vulnerabilities in Java were

107

Chapter 8. Conclusion and Future Work

identified. A common problem discovered in existing auto fixing tools for software secu-
rity was that they did not provide specific enough auto fix suggestions. Some tools provide
all possible mitigation of other unrelated security vulnerabilities for a detected vulnerabil-
ity. This limits these tools to only be usable by experts who already know how to mitigate
vulnerabilities.

Classical auto fix techniques were also identified. These used approaches based on
code search, pattern matching, genetic programming, and satisfiability modulo theory
problems. Many of the tools using code search and pattern matching worked on the AST
instead of the source code which was found to perform well.

8.1.3 Test Beds and Testing Methods
There are multiple existing test beds for software security that the test bed created as part of
this research drew inspiration from. The most common test bed for evaluating web security
vulnerability detection is Juliet, which the new test bed is based on. WebGoat is another
test bed designed as a web application with multiple vulnerabilities. This design makes the
test beds more realistic than Juliet and other test beds designed as collections of vulnerable
functions. Neither of these test beds are designed for evaluation of auto fixes. ManyBugs
is a test bed for C code bugs that does implement validations for auto fixes. This is the
only test bed discovered through our literature review that is designed with validations in
mind. The test cases in the test bed are not relevant for our purposes since they focus
on common C bugs, not web security in Java. Most research into detection and fixing of
security vulnerabilities were evaluated on either open source software or proprietary test
beds. None of the test beds discovered through our literature review covered XXE.

8.2 Research Motivation
XML External Entity attacks are ranked as the fourth most critical security risk to web
applications by OWASP [125]. A successful XML External Entity attack can have severe
consequences, such as for information extraction, Server-Side Request Forgery, denial of
service attacks, and remote code execution. The Common Weakness Enumeration clas-
sifies XXE as part of the top 25 most dangerous software errors in their list from 2019
[86]. The XML parsers in Java are all vulnerable to XEE by default and require develop-
ers to manually make them secure [120]. The settings needed to make the different parsers
secure vary from parser to parser and different sources give different guidelines on what
should be done to mitigate XXE. This makes it difficult for developers to fix parsers and
highlights the need for tool support to fix vulnerabilities. There has been done a substantial
amount of research into auto fixing SQL Injection and Cross-Site Scripting attacks, how-
ever, a lack of research into auto fixing of XXE was found. The existing detection of XXE
was also found to be based only on basic detection techniques such as pattern matching,
making this detection incapable of detecting more advanced data flows. Existing test beds
for evaluating the detection performance of static analysis tools were found, however, no
test beds suitable for evaluating software security auto fixes were found. Therefore, an
improved detection mechanism, a novel auto fix mechanism, and a novel test bed focusing
on XML related vulnerabilities were created.

108

8.3 Contributions and Conclusion

8.3 Contributions and Conclusion

The main contributions of this research are a novel analysis of existing static analysis tools
for detecting XML related vulnerabilities, an improved detection method for XXE, a novel
auto fix method for XXE, and a novel test bed used for evaluation of auto fixing tools. As
part of the improved detection method, a generalized instance tracker which can be used to
track vulnerabilities occurring due to insecure instances was created. Similarly, as part of
the auto fix method, a generalized auto fix mechanism for fixing vulnerabilities occurring
due to insecure instances was created. These are elaborated in more detail in the following
paragraphs.

8.3.1 RQ1: How can a test suite for evaluating web sec auto fixes be
designed for XML External Entity attacks?

This master thesis presents a novel test bed for evaluation of auto fixes for web security
vulnerabilities. This was one of the things discovered to be missing in previous research
into tool support for web security. This test bed builds on existing test beds, mainly the
Juliet Test Suite, by reusing their flow variants to ensure coverage of relevant control and
data flows. While inspecting the existing flow variants in Juliet Test Suite it was found that
they did not include flow variants related to how instances are initialized, nor how different
methods are invoked on the instances. Therefore additional test cases were identified and
implemented to cover these. The test bed covers all the XML parsers present in Java which
are supported by existing detection tools making it possible to use in future research for
comparing different detection and auto fixing tools.

8.3.2 RQ2.1: What are the shortcomings of existing static analysis
tools for the detection of XML External Entity attacks?

The tool FindSecBugs was evaluated on a novel test bed for testing the detection capabil-
ities of static code analysis tools for XML related vulnerabilities. Our novel results show
that the existing detection performed well on test cases based on Juliet Test Suite, but fell
through on new test cases created to test vulnerabilities related to insecure instances. The
existing detection mechanism was found to primarily use pattern matching which is not
able to take the context of the parser instances being analyzed into account. A control flow
graph was used in the analysis, but only to enable pattern matching on the other methods
called within a Java method and not caring about the different control flows within the
method. The existing analysis was found to be incapable of reporting vulnerabilities from
multiple parser instances within the same Java method as well as being easily confused
by similar function calls used for different parsers if they were used together in the same
method.

When analyzing the test driven development strategy used to implement the existing
detectors in FindSecBugs, some of these test cases were found to have been wrongly im-
plemented explicitly enabling vulnerabilities in the parsers instead of disabling them. The
detectors for DocumentBuilder, SAXParser, and XMLReader were found to not check the

109

Chapter 8. Conclusion and Future Work

value of the secure attributes being set. Because of this, the existing detectors were inca-
pable of identifying these vulnerabilities in their own test set.

8.3.3 RQ2.2 How can the Detection of XML External Entities be Im-
proved Using Different Techniques?

Instruction based data flow analysis was researched to identify if it could be used to iden-
tify XML related vulnerabilities. It is shown that this is capable of performing the same
detection as the existing detectors within FindSecBugs in addition to considering the pa-
rameters the methods are invoked with. It is also shown that it is not able to reason about
different parsers within the Java method and treats them all as a long sequence of function
calls.

Analyzing different XML parser implementations showed that XML parsers are vul-
nerable due to missing calls needed to make them secure. Both OWASP and Oracle suggest
different parameters that can be set to make them secure. Treating the parser instance as
either vulnerable or not vulnerable with the vulnerability state depending on the methods
invoked on the instance allows the detector to know when the parser should be considered
secure and when it should not be. This was realized by implementing a novel instance
tracker which is supplied with which calls to look for and whether this call should make
the instance vulnerable or secure if called. To implement such an instance tracker, the Java
operand stack is analyzed to determine which values each method the instance tracker is
looking for is called with. Additionally, the operand stack is used to determine which in-
stances are the same and which are different. Effectively, a data flow analysis has been im-
plemented by modeling the operand stack. The instance tracking mechanism was created
to be general. Since it is not specific to XXE, it can also be applied to other vulnerabilities
that can be treated as insecure or secure instances. An example implementation of this was
shown by implementing an insecure cookie detector.

8.3.4 RQ3: How can auto fixing of XML External Entities be imple-
mented using an IDE plugin

A novel auto fix method for fixing XML External Entities based on modifying the AST
was implemented. Having identified that XML parsers can be treated as insecure or se-
cure instances, this novel auto fix mechanism was implemented as a generalized auto fix
mechanism for vulnerabilities occurring due to insecure instances. By supplying the auto
fix mechanism with which nodes to look for and which fixes to insert the generalized auto
fix mechanism handles traversing the AST to identify which node to insert the fix on and
inserts the fix. Since the auto fix mechanism is not specific to XXE, it can also be applied
to other vulnerabilities that can be treated as insecure or secure instances. An example
implementation of this was shown by implementing auto fixes for insecure cookies.

8.4 Future Work
A test bed for automatically evaluating the functionality and security of XXE vulnera-
bilities were created. A generalize instance tracker detector and a generalized auto fix

110

8.4 Future Work

mechanism for this detector was implemented. These were used to both detect and auto
fix XXE. During this research different detection techniques were explored. Different ex-
isting auto fix techniques and existing test beds were also identified and evaluated through
a literature review. The study discovered multiple parts of the detection and auto fixing
process that can be improved by future work. The most important are listed in this section.

8.4.1 Improve Test Bed

Since FindSecBugs only supports detecting vulnerabilities for the XML parsers Docu-
mentBuilder, SAXParser, XMLStreamReader, XMLEventReader, FilteredReader, Trans-
former, and XMLReader test cases for these parsers were created. However, Java has a
multitude of different XML parsers as shown in section 3.4. Therefore, when detectors for
these parsers are implemented corresponding test cases should be created too.

The test bed created only includes automatic validation of the functionality and auto-
mated tests for the security for the test cases made for XXE. However, Juliet Test Suite
includes numerous other test cases. These can be extended with similar tests to give the
same functionality to the rest of the test cases. The new tests written were created manu-
ally making the process time-consuming. If others choose to use this design for validation
of auto fixes it would be recommended to automate the generation of the test scripts. This
should be possible since this is how the vulnerability test cases in Juliet are created.

8.4.2 Improve Detection

Support Interprocedural Analysis

The detection mechanism implemented is only intraprocedural. As discussed, SpotBugs
only supports limited interprocedural analysis. However, implementing interprocedural
analysis would in turn improve the detection capabilities of the instance tracking mecha-
nism. Interprocedural analysis would allow the detection of XXE vulnerabilities, as well
as other instance related vulnerabilities, to consider using separate safe Java methods or
safe Java classes to wrap around a parser implementation. This is not an unreasonable
case since having a wrapper Java method or a wrapper Java class to always retrieve a safe
parser would mean that the parser is always secure when used. Detecting vulnerabilities
in such Java methods or Java classes would ensure that they are correctly mitigating the
XXE vulnerability.

Report Bug Where it Should be Fixed

The implications of reporting the bug in different places can also be evaluated. Currently,
bugs are reported where they can be exploited. However, as discussed, it could be bene-
ficial for the auto fix to know where the fix should have been inserted. A survey can be
performed to evaluate whether developers prefer to know where the vulnerability occurred,
or where the fix should have been inserted. It is not obvious for a developer if a fix needs
to be applied to an XML parser or to the parser’s factory, before instantiating the parser.

111

Chapter 8. Conclusion and Future Work

Add Support for Additional XML Parsers

Finally, since FindSecBugs only supports detecting vulnerabilities for the XML parsers
DocumentBuilder, SAXParser, XMLStreamReader, XMLEventReader, FilteredReader, Trans-
former, and XMLReader new detectors for these were implemented to be able to compare
the performance of the new detectors with the existing detectors. However, as shown in
section 3.4 there exists multiple additional parsers for Java. Since a generalized instance
tracking mechanism was implemented additional detectors were not implemented since
this is mainly engineering work. However, additional detectors for these parsers could be
made using the instance tracking mechanism.

8.4.3 Improve Auto Fixing
Replace Vulnerable Calls with Secure Calls

If an XML parser has been made explicitly vulnerable by explicitly enabling vulnerable
features such as DTD processing or XXE on the parser then the auto fix tool inserts the
auto fixes before the method calls enabling these features making the auto fix ineffective.
This is because the auto fix in its current state does not remove or modify code that ex-
plicitly enables vulnerable features. A better solution would be to find the method calls
that enable the insecure features and either remove them completely, or replace them with
secure method calls that disable the vulnerable features. This would improve the limi-
tations discussed in subsection 7.4.1, and reduce the number of incorrect fixes shown in
subsection 6.4.3.

Add Only Select Secure Methods

The auto fixes also do not consider if parts of the fix have been applied, but always inserts
all the instance invocations necessary to make the instance secure. If an instance has
been made partially secure the detectors are capable of reporting this, however, the auto
fixes do not know about the partially secure state of the instance. Thus, if the auto fix
is applied, some of the secure method invocations will be duplicated. As discussed in
subsection 7.4.1, this is not an issue for XML parsers, but it could be for other auto fixes
that can be based on the generalized auto fix mechanism. This can be solved by identifying
which code lines are necessary to be inserted for the auto fix to be applied, instead of
inserting all the code lines that are part of the auto fix.

Identify Best Place to Report Vulnerability for Auto Fixing

The auto fixes have been implemented to be backward compatible with the existing de-
tectors in FindSecBugs, except for the detector for the Transformer parser as discussed in
subsection 7.3.3. To stay backward compatible the vulnerability for the new detectors is
reported where the vulnerability occurred instead of where the fix should be applied. This
means that the current auto fixes include a lot of code to traverse the AST from the node
the vulnerability is reported on to where the auto fix should be applied. If an evaluation
is done on where the best place to report the vulnerability on finds out that this is where
the auto fix should be applied, then the auto fixes should be revisited to update support for

112

this. Similarly, if such an evaluation finds out that the best place to report the vulnerability
on is where the vulnerability occurred then the possibility of using two representations -
one for where the vulnerability occurred and one for where the auto fix should be inserted
should be looked into.

Add Support for Interprocedual Auto Fixes

An XXE auto fixing tool should also be capable of fixing vulnerabilities that require in-
terprocedural program analysis to be identified. The main reason this has not been im-
plemented is that the detectors were not implemented to support interprocedural analysis.
However, adding auto fixing of vulnerabilities identified using such an analysis should be
done when detectors that support this analysis is available. Researchers will have to iden-
tify how to find the correct method to apply the fix in. This can be solved by giving the
developer the choice of which method to apply the fix in. A different solution would be to
report the vulnerability on the code line the fix should be applied to as discussed above.

113

114

Bibliography

[1] H. H. AlBreiki and Q. H. Mahmoud. “Evaluation of static analysis tools for soft-
ware security”. In: 2014 10th International Conference on Innovations in Informa-
tion Technology (IIT). Nov. 2014, pp. 93–98. DOI: 10.1109/INNOVATIONS.
2014.6987569.

[2] F. E. Allen and J. Cocke. “A Program Data Flow Analysis Procedure”. In: Com-
mun. ACM 19.3 (Mar. 1976), pp. 137–. ISSN: 0001-0782. DOI: 10.1145/360018.
360025. URL: http://doi.acm.org/10.1145/360018.360025.

[3] Apache. Features. Accessed Jun 13, 2020. 2020. URL: http : / / xerces .
apache.org/xerces-j/features.html.

[4] Apache. Parser Features. Accessed Jun 13, 2020. 2020. URL: https://xerces.
apache.org/xerces2-j/features.html.

[5] Philippe Arteau. Find Security Bugs. Accessed September 22, 2019. 2019. URL:
https://find-sec-bugs.github.io/.

[6] Philippe Arteau. Find Security Bugs. Accessed May 12, 2020. 2020. URL: https:
//find-sec-bugs.github.io/bugs.htm.

[7] Philippe Arteau. OWASP Find Security Bugs Plugin. Accessed Jun 20, 2020. 2019.
URL: https://search.maven.org/artifact/com.h3xstream.
findsecbugs/findsecbugs-plugin/1.10.1/jar.

[8] Cyrille Artho and Armin Biere. “Combined static and dynamic analysis”. In: Elec-
tronic Notes in Theoretical Computer Science. Vol. 131. May 2005, pp. 3–14. DOI:
10.1016/j.entcs.2005.01.018.

[9] ASM. Accessed September 22, 2019. 2019. URL: https://asm.ow2.io/
index.html.

[10] ASM Performance Benchmarks. Accessed September 22, 2019. 2019. URL: https:
//asm.ow2.io/performance.html.

[11] N. Ayewah et al. “Using Static Analysis to Find Bugs”. In: IEEE Software 25.5
(Sept. 2008), pp. 22–29. ISSN: 1937-4194. DOI: 10.1109/MS.2008.130.

115

https://doi.org/10.1109/INNOVATIONS.2014.6987569
https://doi.org/10.1109/INNOVATIONS.2014.6987569
https://doi.org/10.1145/360018.360025
https://doi.org/10.1145/360018.360025
http://doi.acm.org/10.1145/360018.360025
http://xerces.apache.org/xerces-j/features.html
http://xerces.apache.org/xerces-j/features.html
https://xerces.apache.org/xerces2-j/features.html
https://xerces.apache.org/xerces2-j/features.html
https://find-sec-bugs.github.io/
https://find-sec-bugs.github.io/bugs.htm
https://find-sec-bugs.github.io/bugs.htm
https://search.maven.org/artifact/com.h3xstream.findsecbugs/findsecbugs-plugin/1.10.1/jar
https://search.maven.org/artifact/com.h3xstream.findsecbugs/findsecbugs-plugin/1.10.1/jar
https://doi.org/10.1016/j.entcs.2005.01.018
https://asm.ow2.io/index.html
https://asm.ow2.io/index.html
https://asm.ow2.io/performance.html
https://asm.ow2.io/performance.html
https://doi.org/10.1109/MS.2008.130

[12] Dejan Baca. “Identifying security relevant warnings from static code analysis tools
through code tainting”. In: ARES 2010 - 5th International Conference on Avail-
ability, Reliability, and Security. 2010, pp. 386–390. ISBN: 9780769539652. DOI:
10.1109/ARES.2010.108.

[13] Dejan Baca et al. “Improving software security with static automated code analysis
in an industry setting”. In: Software - Practice and Experience 43.3 (Mar. 2013),
pp. 259–279. ISSN: 00380644. DOI: 10.1002/spe.2109.

[14] Vipin Balachandran. “Fix-it: An extensible code auto-fix component in review
bot”. In: IEEE 13th International Working Conference on Source Code Analy-
sis and Manipulation, SCAM 2013. IEEE Computer Society, 2013, pp. 167–172.
ISBN: 9781467357395. DOI: 10.1109/SCAM.2013.6648198.

[15] Santa Barbara and Muath Abdullah Alkhalaf. Automatic Detection and Repair of
Input Validation and Sanitization Bugs. Tech. rep. 2014.

[16] A. Z. Baset and T. Denning. “IDE Plugins for Detecting Input-Validation Vul-
nerabilities”. In: 2017 IEEE Security and Privacy Workshops (SPW). May 2017,
pp. 143–146. DOI: 10.1109/SPW.2017.37.

[17] “Benchmarking Static Analysis Tools for Web Security”. In: IEEE Transactions on
Reliability 67.3 (Sept. 2018), pp. 1159–1175. ISSN: 00189529. DOI: 10.1109/
TR.2018.2839339.

[18] Andreas Berger and Torstein Molland. xxe-autofix-tool. Accessed Jun 21, 2020.
2020. URL: https://github.com/Berger- and- Molland/xxe-
autofix-tool.

[19] Chandrapal Chahar, Vishal Singh Chauhan, and Manik Lal Das. “Code Analy-
sis for Software and System Security Using Open Source Tools”. In: Informa-
tion Security Journal: A Global Perspective 21.6 (2012), pp. 346–352. DOI: 10.
1080/19393555.2012.727132. URL: https://doi.org/10.1080/
19393555.2012.727132.

[20] Chandrapal Chahar, Vishal Singh Chauhan, and Manik Lal Das. “Code Analysis
for Software and System Security Using Open Source Tools”. In: Information Se-
curity Journal 21.6 (Jan. 2012), pp. 346–352. ISSN: 19393555. DOI: 10.1080/
19393555.2012.727132.

[21] C. Chen and M. Li. “SecConfig: A Pre-Active Information Security Protection
Technique”. In: 2008 Fourth International Conference on Networked Computing
and Advanced Information Management. Vol. 2. Sept. 2008, pp. 648–652. DOI:
10.1109/NCM.2008.79.

[22] B. Chess and G. McGraw. “Static analysis for security”. In: IEEE Security Privacy
2.6 (Nov. 2004), pp. 76–79. DOI: 10.1109/MSP.2004.111.

[23] Zack Coker and Munawar Hafiz. “Program transformations to fix C integers”. In:
Proceedings - International Conference on Software Engineering. 2013, pp. 792–
801. ISBN: 9781467330763. DOI: 10.1109/ICSE.2013.6606625.

116

https://doi.org/10.1109/ARES.2010.108
https://doi.org/10.1002/spe.2109
https://doi.org/10.1109/SCAM.2013.6648198
https://doi.org/10.1109/SPW.2017.37
https://doi.org/10.1109/TR.2018.2839339
https://doi.org/10.1109/TR.2018.2839339
https://github.com/Berger-and-Molland/xxe-autofix-tool
https://github.com/Berger-and-Molland/xxe-autofix-tool
https://doi.org/10.1080/19393555.2012.727132
https://doi.org/10.1080/19393555.2012.727132
https://doi.org/10.1080/19393555.2012.727132
https://doi.org/10.1080/19393555.2012.727132
https://doi.org/10.1080/19393555.2012.727132
https://doi.org/10.1080/19393555.2012.727132
https://doi.org/10.1109/NCM.2008.79
https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1109/ICSE.2013.6606625

[24] Brian Cole et al. “Improving Your Software Using Static Analysis to Find Bugs”.
In: Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Pro-
gramming Systems, Languages, and Applications. OOPSLA ’06. Portland, Ore-
gon, USA: ACM, 2006, pp. 673–674. ISBN: 1-59593-491-X. DOI: 10.1145/
1176617.1176667. URL: http://doi.acm.org/10.1145/1176617.
1176667.

[25] Eclipse contributors. Eclipse Documentation. Accessed February 21, 2020. 2020.
URL: https://help.eclipse.org/2019-12/index.jsp.

[26] “Control flow analysis”. In: Proceedings of a Symposium on Compiler Optimiza-
tion. Association for Computing Machinery, Inc, July 1970, pp. 1–19. DOI: 10.
1145/800028.808479.

[27] Keith D. Cooper and Linda Torczon. “Chapter 3 - Parsers”. In: Engineering a
Compiler (Second Edition). Ed. by Keith D. Cooper and Linda Torczon. Second
Edition. Boston: Morgan Kaufmann, 2012, pp. 83–159. ISBN: 978-0-12-088478-0.
DOI: https://doi.org/10.1016/B978-0-12-088478-0.00003-7.
URL: http://www.sciencedirect.com/science/article/pii/
B9780120884780000037.

[28] Keith D. Cooper and Linda Torczon. “Chapter 5 - Intermediate Representations”.
In: Engineering a Compiler (Second Edition). Ed. by Keith D. Cooper and Linda
Torczon. Second Edition. Boston: Morgan Kaufmann, 2012, pp. 221–268. ISBN:
978-0-12-088478-0. DOI: https://doi.org/10.1016/B978-0-12-
088478- 0.00005- 0. URL: http://www.sciencedirect.com/
science/article/pii/B9780120884780000050.

[29] Oracle Corporation. Class DocumentBuilderFactory (Java SE 13 & JDK 13).
Accessed May 25, 2020. 2020. URL: https://docs.oracle.com/en/
java/javase/13/docs/api/java.xml/javax/xml/parsers/
DocumentBuilderFactory.html.

[30] Oracle Corporation. Java API for XML Processing (JAXP) Security Guide. Ac-
cessed May 25, 2020. 2020. URL: https://docs.oracle.com/en/
java/javase/13/security/java-api-xml-processing-jaxp-
security-guide.html.

[31] Oracle Corporation. SAXParserFactory (Java SE 13 & JDK 13). Accessed May
25, 2020. 2020. URL: https://docs.oracle.com/en/java/javase/
13/docs/api/java.xml/javax/xml/parsers/SAXParserFactory.
html.

[32] Oracle Corporation. The Java Virtual Machine Specification. Accessed September
22, 2019. 2019. URL: https://docs.oracle.com/javase/specs/
jvms/se13/html/index.html.

[33] Oracle Corporation. TransformerFactory (Java SE 13 & JDK 13). Accessed May
25, 2020. 2020. URL: https://docs.oracle.com/en/java/javase/
13/docs/api/java.xml/javax/xml/transform/TransformerFactory.
html.

117

https://doi.org/10.1145/1176617.1176667
https://doi.org/10.1145/1176617.1176667
http://doi.acm.org/10.1145/1176617.1176667
http://doi.acm.org/10.1145/1176617.1176667
https://help.eclipse.org/2019-12/index.jsp
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/https://doi.org/10.1016/B978-0-12-088478-0.00003-7
http://www.sciencedirect.com/science/article/pii/B9780120884780000037
http://www.sciencedirect.com/science/article/pii/B9780120884780000037
https://doi.org/https://doi.org/10.1016/B978-0-12-088478-0.00005-0
https://doi.org/https://doi.org/10.1016/B978-0-12-088478-0.00005-0
http://www.sciencedirect.com/science/article/pii/B9780120884780000050
http://www.sciencedirect.com/science/article/pii/B9780120884780000050
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/parsers/DocumentBuilderFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/parsers/DocumentBuilderFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/parsers/DocumentBuilderFactory.html
https://docs.oracle.com/en/java/javase/13/security/java-api-xml-processing-jaxp-security-guide.html
https://docs.oracle.com/en/java/javase/13/security/java-api-xml-processing-jaxp-security-guide.html
https://docs.oracle.com/en/java/javase/13/security/java-api-xml-processing-jaxp-security-guide.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/parsers/SAXParserFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/parsers/SAXParserFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/parsers/SAXParserFactory.html
https://docs.oracle.com/javase/specs/jvms/se13/html/index.html
https://docs.oracle.com/javase/specs/jvms/se13/html/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/transform/TransformerFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/transform/TransformerFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/transform/TransformerFactory.html

[34] Oracle Corporation. XMLConstants (Java SE 13 & JDK 13). Accessed Jun 13,
2020. 2020. URL: https://docs.oracle.com/en/java/javase/13/
docs/api/java.xml/javax/xml/XMLConstants.html.

[35] Oracle Corporation. XMLInputFactory (Java SE 13 & JDK 13). Accessed May
25, 2020. 2020. URL: https://docs.oracle.com/en/java/javase/
13/docs/api/java.xml/javax/xml/stream/XMLInputFactory.
html.

[36] Oracle Corporation. XMLReaderFactory (Java SE 13 & JDK 13). Accessed May
25, 2020. 2020. URL: https://docs.oracle.com/en/java/javase/
13/docs/api/java.xml/org/xml/sax/helpers/XMLReaderFactory.
html.

[37] Oracle Corporation. XMLStreamReader (Java SE 13 & JDK 13). Accessed May
28, 2020. 2020. URL: https://docs.oracle.com/en/java/javase/
13/docs/api/java.xml/javax/xml/stream/XMLStreamReader.
html.

[38] Erik Derr. Understanding and assessing security on Android via static code anal-
ysis. 2017. DOI: http://dx.doi.org/10.22028/D291-27345.

[39] Gabriel Dı́az and Juan Ramón Bermejo. “Static analysis of source code security:
Assessment of tools against SAMATE tests”. In: Information and Software Tech-
nology 55.8 (Aug. 2013), pp. 1462–1476. ISSN: 09505849. DOI: 10.1016/j.
infsof.2013.02.005.

[40] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. “Demand-driven Compu-
tation of Interprocedural Data Flow”. In: Proceedings of the 22Nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’95. San
Francisco, California, USA: ACM, 1995, pp. 37–48. ISBN: 0-89791-692-1. DOI:
10.1145/199448.199461. URL: http://doi.acm.org/10.1145/
199448.199461.

[41] Fred Dysart and Mark Sherriff. “Automated fix generator for SQL injection at-
tacks”. In: Proceedings - International Symposium on Software Reliability Engi-
neering, ISSRE. 2008, pp. 311–312. ISBN: 9780769534053. DOI: 10.1109/
ISSRE.2008.44.

[42] Eclipse contributors. Quick Fix. Accessed November 19, 2019. URL: https:
//help.eclipse.org/kepler/index.jsp?topic=%5C%2Forg.
eclipse.jdt.doc.user%5C%2Fconcepts%5C%2Fconcept-quickfix-
assist.htm.

[43] Eclipse Foundation. Eclipse. Accessed November 19, 2019. URL: https://
www.eclipse.org/.

[44] Eclipse Foundation, Inc. Runtime Analysis Tools (RAT). Accessed October 31,
2019. 2010. URL: https://www.eclipse.org/proposals/tools.
rat/.

[45] A. Falkenberg et al. “A New Approach towards DoS Penetration Testing on Web
Services”. In: 2013 IEEE 20th International Conference on Web Services. 2013,
pp. 491–498.

118

https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/XMLConstants.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/XMLConstants.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/stream/XMLInputFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/stream/XMLInputFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/stream/XMLInputFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/org/xml/sax/helpers/XMLReaderFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/org/xml/sax/helpers/XMLReaderFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/org/xml/sax/helpers/XMLReaderFactory.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/stream/XMLStreamReader.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/stream/XMLStreamReader.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.xml/javax/xml/stream/XMLStreamReader.html
https://doi.org/http://dx.doi.org/10.22028/D291-27345
https://doi.org/10.1016/j.infsof.2013.02.005
https://doi.org/10.1016/j.infsof.2013.02.005
https://doi.org/10.1145/199448.199461
http://doi.acm.org/10.1145/199448.199461
http://doi.acm.org/10.1145/199448.199461
https://doi.org/10.1109/ISSRE.2008.44
https://doi.org/10.1109/ISSRE.2008.44
https://help.eclipse.org/kepler/index.jsp?topic=%5C%2Forg.eclipse.jdt.doc.user%5C%2Fconcepts%5C%2Fconcept-quickfix-assist.htm
https://help.eclipse.org/kepler/index.jsp?topic=%5C%2Forg.eclipse.jdt.doc.user%5C%2Fconcepts%5C%2Fconcept-quickfix-assist.htm
https://help.eclipse.org/kepler/index.jsp?topic=%5C%2Forg.eclipse.jdt.doc.user%5C%2Fconcepts%5C%2Fconcept-quickfix-assist.htm
https://help.eclipse.org/kepler/index.jsp?topic=%5C%2Forg.eclipse.jdt.doc.user%5C%2Fconcepts%5C%2Fconcept-quickfix-assist.htm
https://www.eclipse.org/
https://www.eclipse.org/
https://www.eclipse.org/proposals/tools.rat/
https://www.eclipse.org/proposals/tools.rat/

[46] OpenJS Foundation. Eslint. Accessed October 30, 2019. 2019. URL: https://
eslint.org/.

[47] The Apache Software Foundation. Apache Commons BCEL. Accessed Septem-
ber 22, 2019. 2019. URL: https://commons.apache.org/proper/
commons-bcel/.

[48] Scott Frame and John W Coffey. “A Comparison of Functional and Imperative
Programming Techniques for Mathematical Software Development”. In: Journal
of Systemics, Cybernetics and Informatics 12.2 (2014).

[49] Google, Inc. Codepro AnalytiX. Accessed October 31, 2019. 2015. URL: https:
//web.archive.org/web/20150919011445/https://developers.
google.com/java-dev-tools/codepro/doc/history.

[50] Google, Inc. WindowBuilder Pro Eclipse Donation FAQ. Accessed October 31,
2019. 2012. URL: https://web.archive.org/web/20120314010806/
http://code.google.com/javadevtools/eclipse-donation-
faq.html.

[51] Katerina Goseva-Popstojanova and Andrei Perhinschi. “On the capability of static
code analysis to detect security vulnerabilities”. In: Information and Software
Technology 68 (2015), pp. 18–33. ISSN: 0950-5849. DOI: https : / / doi .
org / 10 . 1016 / j . infsof . 2015 . 08 . 002. URL: http : / / www .
sciencedirect.com/science/article/pii/S0950584915001366.

[52] Jacob A. Harer et al. “Automated software vulnerability detection with machine
learning”. In: (Feb. 2018). arXiv: 1803.04497. URL: http://arxiv.org/
abs/1803.04497.

[53] Jacob Harer et al. “Learning to Repair Software Vulnerabilities with Generative
Adversarial Networks”. In: Advances in Neural Information Processing Systems
31. Ed. by S. Bengio et al. Curran Associates, Inc., 2018, pp. 7933–7943. URL:
http://papers.nips.cc/paper/8018-learning-to-repair-
software-vulnerabilities-with-generative-adversarial-
networks.pdf.

[54] Mary Jean Harrold and Mary Lou Soffa. “Interprocedual Data Flow Testing”. In:
SIGSOFT Softw. Eng. Notes 14.8 (Nov. 1989), pp. 158–167. ISSN: 0163-5948.
DOI: 10.1145/75309.75327. URL: http://doi.acm.org/10.1145/
75309.75327.

[55] David Hovemeyer. SpotBugs API Documentation. Accessed May 16, 2020. URL:
https://javadoc.io/doc/com.github.spotbugs/spotbugs/
latest/index.html.

[56] David Hovemeyer. The Architecture of FindBugs. Accessed May 13, 2020. URL:
https://github.com/spotbugs/spotbugs/blob/master/spotbugs/
design/architecture/architecture.tex.

[57] David Hovemeyer. Using FindBugs for Research. Accessed May 19, 2020. URL:
https://storage.googleapis.com/google-code-archive-
downloads/v2/code.google.com/findbugs-tutorials/uffr-
talk.pdf.

119

https://eslint.org/
https://eslint.org/
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
https://web.archive.org/web/20150919011445/https://developers.google.com/java-dev-tools/codepro/doc/history
https://web.archive.org/web/20150919011445/https://developers.google.com/java-dev-tools/codepro/doc/history
https://web.archive.org/web/20150919011445/https://developers.google.com/java-dev-tools/codepro/doc/history
https://web.archive.org/web/20120314010806/http://code.google.com/javadevtools/eclipse-donation-faq.html
https://web.archive.org/web/20120314010806/http://code.google.com/javadevtools/eclipse-donation-faq.html
https://web.archive.org/web/20120314010806/http://code.google.com/javadevtools/eclipse-donation-faq.html
https://doi.org/https://doi.org/10.1016/j.infsof.2015.08.002
https://doi.org/https://doi.org/10.1016/j.infsof.2015.08.002
http://www.sciencedirect.com/science/article/pii/S0950584915001366
http://www.sciencedirect.com/science/article/pii/S0950584915001366
http://arxiv.org/abs/1803.04497
http://arxiv.org/abs/1803.04497
http://arxiv.org/abs/1803.04497
http://papers.nips.cc/paper/8018-learning-to-repair-software-vulnerabilities-with-generative-adversarial-networks.pdf
http://papers.nips.cc/paper/8018-learning-to-repair-software-vulnerabilities-with-generative-adversarial-networks.pdf
http://papers.nips.cc/paper/8018-learning-to-repair-software-vulnerabilities-with-generative-adversarial-networks.pdf
https://doi.org/10.1145/75309.75327
http://doi.acm.org/10.1145/75309.75327
http://doi.acm.org/10.1145/75309.75327
https://javadoc.io/doc/com.github.spotbugs/spotbugs/latest/index.html
https://javadoc.io/doc/com.github.spotbugs/spotbugs/latest/index.html
https://github.com/spotbugs/spotbugs/blob/master/spotbugs/design/architecture/architecture.tex
https://github.com/spotbugs/spotbugs/blob/master/spotbugs/design/architecture/architecture.tex
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/findbugs-tutorials/uffr-talk.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/findbugs-tutorials/uffr-talk.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/findbugs-tutorials/uffr-talk.pdf

[58] David Hovemeyer and William Pugh. “Finding Bugs is Easy”. In: SIGPLAN Not.
39.12 (Dec. 2004), pp. 92–106. ISSN: 0362-1340. DOI: 10.1145/1052883.
1052895. URL: http://doi.acm.org/10.1145/1052883.1052895.

[59] S. Jan, C. D. Nguyen, and L. Briand. “Known XML Vulnerabilities Are Still a
Threat to Popular Parsers and Open Source Systems”. In: 2015 IEEE International
Conference on Software Quality, Reliability and Security. Aug. 2015, pp. 233–241.
DOI: 10.1109/QRS.2015.42.

[60] Dennis Jeffrey et al. “BugFix: A learning-based tool to assist developers in fix-
ing bugs”. In: IEEE International Conference on Program Comprehension (2009),
pp. 70–79. DOI: 10.1109/ICPC.2009.5090029.

[61] Jetbrains. IntelliJIDEA. Accessed December 08, 2019. 2019. URL: https://
www.jetbrains.com/idea/.

[62] T. Ji et al. “Automated Program Repair by Using Similar Code Containing Fix
Ingredients”. In: 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC). Vol. 1. June 2016, pp. 197–202. DOI: 10 . 1109 /
COMPSAC.2016.69.

[63] B. Johnson et al. “Why don’t software developers use static analysis tools to find
bugs?” In: 2013 35th International Conference on Software Engineering (ICSE).
May 2013, pp. 672–681. DOI: 10.1109/ICSE.2013.6606613.

[64] René Just, Darioush Jalali, and Michael D. Ernst. “Defects4J: A Database of Ex-
isting Faults to Enable Controlled Testing Studies for Java Programs”. In: Pro-
ceedings of the 2014 International Symposium on Software Testing and Analysis.
ISSTA 2014. San Jose, CA, USA: ACM, 2014, pp. 437–440. ISBN: 978-1-4503-
2645-2. DOI: 10.1145/2610384.2628055. URL: http://doi.acm.
org/10.1145/2610384.2628055.

[65] Yalin Ke et al. “Repairing programs with semantic code search”. In: Proceedings -
2015 30th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2015. Institute of Electrical and Electronics Engineers Inc., Jan. 2016,
pp. 295–306. ISBN: 9781509000241. DOI: 10.1109/ASE.2015.60.

[66] Dongsun Kim et al. “Automatic patch generation learned from human-written
patches”. In: Proceedings - International Conference on Software Engineering.
IEEE Computer Society, 2013, pp. 802–811. ISBN: 9781467330763. DOI: 10.
1109/ICSE.2013.6606626.

[67] kjlubick. fb-contrib Eclipse quick fix plugin. Accessed November 19, 2019. URL:
https://github.com/kjlubick/fb-contrib-eclipse-quick-
fixes.

[68] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. “Fast Pattern Match-
ing in Strings”. In: SIAM Journal on Computing 6.2 (1977), pp. 323–350. DOI:
10.1137/0206024. eprint: https://doi.org/10.1137/0206024.
URL: https://doi.org/10.1137/0206024.

[69] T. Kwon and Z. Su. “Automatic Detection of Unsafe Dynamic Component Load-
ings”. In: IEEE Transactions on Software Engineering 38.2 (Mar. 2012), pp. 293–
313. ISSN: 2326-3881. DOI: 10.1109/TSE.2011.108.

120

https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1145/1052883.1052895
http://doi.acm.org/10.1145/1052883.1052895
https://doi.org/10.1109/QRS.2015.42
https://doi.org/10.1109/ICPC.2009.5090029
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://doi.org/10.1109/COMPSAC.2016.69
https://doi.org/10.1109/COMPSAC.2016.69
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2610384.2628055
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1109/ICSE.2013.6606626
https://github.com/kjlubick/fb-contrib-eclipse-quick-fixes
https://github.com/kjlubick/fb-contrib-eclipse-quick-fixes
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://doi.org/10.1109/TSE.2011.108

[70] C. Le Goues et al. “The ManyBugs and IntroClass Benchmarks for Automated
Repair of C Programs”. In: IEEE Transactions on Software Engineering 41.12
(Dec. 2015), pp. 1236–1256. ISSN: 2326-3881. DOI: 10.1109/TSE.2015.
2454513.

[71] Jingyue Li, Sindre Beba, and Magnus Melseth Karlsen. “Evaluation of Open-
Source IDE Plugins for Detecting Security Vulnerabilities”. In: Proceedings of
the Evaluation and Assessment on Software Engineering. EASE ’19. Copenhagen,
Denmark: ACM, 2019, pp. 200–209. ISBN: 978-1-4503-7145-2. DOI: 10.1145/
3319008.3319011. URL: http://doi.acm.org/10.1145/3319008.
3319011.

[72] Kui Liu et al. “AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Anal-
ysis Violations”. In: SANER 2019 - Proceedings of the 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution, and Reengineering. Insti-
tute of Electrical and Electronics Engineers Inc., Mar. 2019, pp. 456–467. ISBN:
9781728105918. DOI: 10.1109/SANER.2019.8667970. arXiv: 1812.
07270.

[73] Kui Liu et al. “LSRepair: Live Search of Fix Ingredients for Automated Pro-
gram Repair”. In: Proceedings - Asia-Pacific Software Engineering Conference,
APSEC. Vol. 2018-December. IEEE Computer Society, July 2018, pp. 658–662.
ISBN: 9781728119700. DOI: 10.1109/APSEC.2018.00085.

[74] Kui Liu et al. “Mining Fix Patterns for FindBugs Violations”. In: IEEE Transac-
tions on Software Engineering (2018). ISSN: 19393520. DOI: 10.1109/TSE.
2018.2884955. arXiv: 1712.03201.

[75] Francesco Logozzo and Manuel Fähndrich. “On the relative completeness of byte-
code analysis versus source code analysis”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Vol. 4959 LNCS. 2008, pp. 197–212. ISBN: 3540787909. DOI:
10.1007/978-3-540-78791-4_14.

[76] P. Louridas. “Static code analysis”. In: IEEE Software 23.4 (July 2006), pp. 58–61.
DOI: 10.1109/MS.2006.114.

[77] Z. Lu and S. Mukhopadhyay. “Model-Based Static Source Code Analysis of Java
Programs with Applications to Android Security”. In: 2012 IEEE 36th Annual
Computer Software and Applications Conference. July 2012, pp. 322–327.

[78] ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs. Ac-
cessed December 4, 2019. 2017. URL: https://repairbenchmarks.cs.
umass.edu/.

[79] MaxNad. Implement a base detector to track specific calls (#211). Accessed Jun
19, 2020. 2016. URL: https://github.com/find-sec-bugs/find-
sec-bugs/pull/220.

[80] Ryan K. McLean. “Comparing static security analysis tools using open source
software”. In: Proceedings of the 2012 IEEE 6th International Conference on Soft-
ware Security and Reliability Companion, SERE-C 2012. 2012, pp. 68–74. ISBN:
9780769547435. DOI: 10.1109/SERE-C.2012.16.

121

https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1145/3319008.3319011
https://doi.org/10.1145/3319008.3319011
http://doi.acm.org/10.1145/3319008.3319011
http://doi.acm.org/10.1145/3319008.3319011
https://doi.org/10.1109/SANER.2019.8667970
http://arxiv.org/abs/1812.07270
http://arxiv.org/abs/1812.07270
https://doi.org/10.1109/APSEC.2018.00085
https://doi.org/10.1109/TSE.2018.2884955
https://doi.org/10.1109/TSE.2018.2884955
http://arxiv.org/abs/1712.03201
https://doi.org/10.1007/978-3-540-78791-4_14
https://doi.org/10.1109/MS.2006.114
https://repairbenchmarks.cs.umass.edu/
https://repairbenchmarks.cs.umass.edu/
https://github.com/find-sec-bugs/find-sec-bugs/pull/220
https://github.com/find-sec-bugs/find-sec-bugs/pull/220
https://doi.org/10.1109/SERE-C.2012.16

[81] I. Medeiros, N. Neves, and M. Correia. “Detecting and Removing Web Application
Vulnerabilities with Static Analysis and Data Mining”. In: IEEE Transactions on
Reliability 65.1 (Mar. 2016), pp. 54–69. DOI: 10.1109/TR.2015.2457411.

[82] Microsoft. Insecure DTD Processing. Accessed September 22, 2019. 2019. URL:
https://docs.microsoft.com/en-us/visualstudio/code-
quality/ca3075?view=vs-2019.

[83] Microsoft. Visual Studio. Accessed December 08, 2019. 2019. URL: https://
visualstudio.microsoft.com/.

[84] MITRE. CCWE-352: Cross-Site Request Forgery (CSRF). Accessed November 5,
2019. URL: https://cwe.mitre.org/data/definitions/352.
html.

[85] MITRE. Common Vulnerabilities and Exposures (CVE). Accessed September 22,
2019. 2019. URL: https://cwe.mitre.org/.

[86] MITRE. CWE VIEW: Weaknesses in the 2019 CWE Top 25 Most Dangerous Soft-
ware Errors. Accessed November 23, 2019. 2019. URL: https://cwe.mitre.
org/data/definitions/1200.html.

[87] MITRE. CWE-611: Improper Restriction of XML External Entity Reference. Ac-
cessed Jun 01, 2020. 2019. URL: https : / / cwe . mitre . org / data /
definitions/611.html.

[88] MITRE. CWE-776: Improper Restriction of Recursive Entity References in DTDs
(’XML Entity Expansion’). Accessed Jun 01, 2020. 2019. URL: https://cwe.
mitre.org/data/definitions/776.html.

[89] Torstein Molland and Andreas Berger. Autofix feature of software security vulner-
ability detection IDE plugins. Project report in TDT4501. Department of Infor-
mation Security, Communication Technology, NTNU – Norwegian University of
Science, and Technology, Dec. 2019.

[90] Paul Muntean et al. “Automated generation of buffer overflow quick fixes using
symbolic execution and SMT”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics). Vol. 9337. Springer Verlag, 2015, pp. 441–456. ISBN: 9783319242545.
DOI: 10.1007/978-3-319-24255-2_32.

[91] Hoang Duong Thien Nguyen et al. “SemFix: Program repair via semantic analy-
sis”. In: Proceedings - International Conference on Software Engineering. 2013,
pp. 772–781. ISBN: 9781467330763. DOI: 10.1109/ICSE.2013.6606623.

[92] Hung Viet Nguyen et al. “Auto-locating and fix-propagating for HTML validation
errors to PHP server-side code”. In: 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2011, Proceedings. 2011, pp. 13–
22. ISBN: 9781457716393. DOI: 10.1109/ASE.2011.6100047.

[93] NIST. Juliet Test Suite v1.2 for Java User Guide. Accessed May 12, 2019. 2012.
URL: https://samate.nist.gov/SRD/resources/Juliet_Test_
Suite_v1.2_for_Java_-_User_Guide.pdf.

122

https://doi.org/10.1109/TR.2015.2457411
https://docs.microsoft.com/en-us/visualstudio/code-quality/ca3075?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/ca3075?view=vs-2019
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/1200.html
https://cwe.mitre.org/data/definitions/1200.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/776.html
https://cwe.mitre.org/data/definitions/776.html
https://doi.org/10.1007/978-3-319-24255-2_32
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1109/ASE.2011.6100047
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf

[94] NIST. Static Analysis Tool Exposition (SATE) IV. Accessed June 11, 2020. 2013.
URL: https://samate.nist.gov/SATE4.html.

[95] NIST. Test Suites. Accessed October 29, 2019. 2017. URL: https://samate.
nist.gov/SRD/testsuite.php.

[96] J. Novak, A. Krajnc, and R. Žontar. “Taxonomy of static code analysis tools”. In:
The 33rd International Convention MIPRO. May 2010, pp. 418–422.

[97] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. “Exterminator: Auto-
matically Correcting Memory Errors with High Probability”. In: Commun. ACM
51.12 (Dec. 2008), pp. 87–95. ISSN: 0001-0782. DOI: 10.1145/1409360.
1409382. URL: http://doi.acm.org/10.1145/1409360.1409382.

[98] Paulo Nunes et al. “An empirical study on combining diverse static analysis tools
for web security vulnerabilities based on development scenarios”. In: Computing
101.2 (Feb. 2019), pp. 161–185. ISSN: 1436-5057. DOI: 10.1007/s00607-
018-0664- z. URL: https://doi.org/10.1007/s00607-018-
0664-z.

[99] Briony J Oates. Researching Information Systems and Computing. Sage Publica-
tions Ltd., 2006. ISBN: 1412902231.

[100] Rui André Oliveira, Nuno Laranjeiro, and Marco Vieira. “WSFAggressor: An Ex-
tensible Web Service Framework Attacking Tool”. In: Proceedings of the Indus-
trial Track of the 13th ACM/IFIP/USENIX International Middleware Conference.
MIDDLEWARE ’12. Montreal, Quebec, Canada: Association for Computing Ma-
chinery, 2012. ISBN: 9781450316132. DOI: 10.1145/2405146.2405148.
URL: https://doi.org/10.1145/2405146.2405148.

[101] OWASP. ASIDE GitHub Repository. Accessed October 21, 2019. 2014. URL:
https://github.com/Jing-Xie/owasp-aside.

[102] OWASP. OWASP ASIDE Project. Accessed September 22, 2019. 2016. URL: https:
//www.owasp.org/index.php/OWASP_ASIDE_Project.

[103] OWASP. OWASP Enterprise Security API. Accessed November 21, 2019. URL:
https://www.owasp.org/index.php/Category:OWASP_Enterprise_
Security_API.

[104] OWASP. OWASP LAPSE Project. Accessed September 22, 2019. 2017. URL: https:
//www.owasp.org/index.php/OWASP_LAPSE_Project.

[105] OWASP. The OWASP Foundation. Accessed September 22, 2019. 2019. URL:
https://www.owasp.org/index.php/Main_Page.

[106] OWASP. WebGoat Project. Accessed December 4, 2019. 2019. URL: https:
//www2.owasp.org/www-project-webgoat/.

[107] Tosin Daniel Oyetoyan et al. “Myths and facts about static application security
testing tools: An action research at telenor digital”. In: Lecture Notes in Busi-
ness Information Processing. Vol. 314. Springer Verlag, 2018, pp. 86–103. ISBN:
9783319916019. DOI: 10.1007/978-3-319-91602-6_6.

123

https://samate.nist.gov/SATE4.html
https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php
https://doi.org/10.1145/1409360.1409382
https://doi.org/10.1145/1409360.1409382
http://doi.acm.org/10.1145/1409360.1409382
https://doi.org/10.1007/s00607-018-0664-z
https://doi.org/10.1007/s00607-018-0664-z
https://doi.org/10.1007/s00607-018-0664-z
https://doi.org/10.1007/s00607-018-0664-z
https://doi.org/10.1145/2405146.2405148
https://doi.org/10.1145/2405146.2405148
https://github.com/Jing-Xie/owasp-aside
https://www.owasp.org/index.php/OWASP_ASIDE_Project
https://www.owasp.org/index.php/OWASP_ASIDE_Project
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/OWASP_LAPSE_Project
https://www.owasp.org/index.php/OWASP_LAPSE_Project
https://www.owasp.org/index.php/Main_Page
https://www2.owasp.org/www-project-webgoat/
https://www2.owasp.org/www-project-webgoat/
https://doi.org/10.1007/978-3-319-91602-6_6

[108] Kai Pan, Sunghun Kim, and E. James Whitehead. “Toward an understanding of
bug fix patterns”. In: Empirical Software Engineering 14.3 (June 2009), pp. 286–
315. ISSN: 13823256. DOI: 10.1007/s10664-008-9077-5.

[109] M. Payer. “The Fuzzing Hype-Train: How Random Testing Triggers Thousands
of Crashes”. In: IEEE Security Privacy 17.1 (Jan. 2019), pp. 78–82. ISSN: 1558-
4046. DOI: 10.1109/MSEC.2018.2889892.

[110] Yu Pei et al. “Automated Program Repair in an Integrated Development Envi-
ronment”. In: Proceedings - International Conference on Software Engineering.
Vol. 2. IEEE Computer Society, Aug. 2015, pp. 681–684. ISBN: 9781479919345.
DOI: 10.1109/ICSE.2015.222.

[111] N. H. Pham et al. “Detecting recurring and similar software vulnerabilities”. In:
2010 ACM/IEEE 32nd International Conference on Software Engineering. Vol. 2.
May 2010, pp. 227–230. DOI: 10.1145/1810295.1810336.

[112] David Formánek Philippe Arteau and Tomáš Polešovský. OWASP Find Security
Bugs Wiki. Accessed May 13, 2020. 2020. URL: https://github.com/
find-sec-bugs/find-sec-bugs/wiki.

[113] W. Qiang et al. “Patch-Related Vulnerability Detection Based on Symbolic Exe-
cution”. In: IEEE Access 5 (2017), pp. 20777–20784. DOI: 10.1109/ACCESS.
2017.2676161.

[114] R. Saha et al. “Bugs.jar: A Large-Scale, Diverse Dataset of Real-World Java Bugs”.
In: 2018 IEEE/ACM 15th International Conference on Mining Software Reposito-
ries (MSR). May 2018, pp. 10–13.

[115] Hesam Samirni et al. “Automated repair of HTML generation errors in PHP ap-
plications using string constraint solving”. In: Proceedings - International Confer-
ence on Software Engineering. 2012, pp. 277–287. ISBN: 9781467310673. DOI:
10.1109/ICSE.2012.6227186.

[116] Luciano Sampaio. Early Security Vulnerability Detector - ESVD. Accessed Septem-
ber 22, 2019. 2019. URL: https://marketplace.eclipse.org/content/
early-security-vulnerability-detector-esvd/.

[117] Luciano Sampaio and Alessandro Garcia. “Exploring context-sensitive data flow
analysis for early vulnerability detection”. In: Journal of Systems and Software
113 (2016), pp. 337–361. ISSN: 0164-1212. DOI: https://doi.org/10.
1016/j.jss.2015.12.021. URL: http://www.sciencedirect.
com/science/article/pii/S0164121215002873.

[118] Snyk. Snyk: GitHub Repository. Accessed October 21, 2019. 2019. URL: https:
//github.com/snyk/snyk.

[119] Snyk: Open Source Security Platform. Accessed October 21, 2019. 2019. URL:
https://snyk.io.

[120] Christopher Späth et al. “SoK: XML Parser Vulnerabilities”. In: WOOT. 2016.

[121] SpotBugs. SpotBugs GitHub. Accessed November 11, 2019. URL: https://
github.com/spotbugs/spotbugs.

124

https://doi.org/10.1007/s10664-008-9077-5
https://doi.org/10.1109/MSEC.2018.2889892
https://doi.org/10.1109/ICSE.2015.222
https://doi.org/10.1145/1810295.1810336
https://github.com/find-sec-bugs/find-sec-bugs/wiki
https://github.com/find-sec-bugs/find-sec-bugs/wiki
https://doi.org/10.1109/ACCESS.2017.2676161
https://doi.org/10.1109/ACCESS.2017.2676161
https://doi.org/10.1109/ICSE.2012.6227186
https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd/
https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd/
https://doi.org/https://doi.org/10.1016/j.jss.2015.12.021
https://doi.org/https://doi.org/10.1016/j.jss.2015.12.021
http://www.sciencedirect.com/science/article/pii/S0164121215002873
http://www.sciencedirect.com/science/article/pii/S0164121215002873
https://github.com/snyk/snyk
https://github.com/snyk/snyk
https://snyk.io
https://github.com/spotbugs/spotbugs
https://github.com/spotbugs/spotbugs

[122] Stanford. Introduction to Stanford SecuriBench. Accessed December 4, 2019. 2005.
URL: https://suif.stanford.edu/˜livshits/securibench/.

[123] Ting Su et al. “A Survey on Data-Flow Testing”. In: ACM Comput. Surv. 50.1 (Mar.
2017), 5:1–5:35. ISSN: 0360-0300. DOI: 10.1145/3020266. URL: http:
//doi.acm.org/10.1145/3020266.

[124] “Testing for software security: A case study on static code analysis of a file reader
Java program”. In: vol. 166 AISC. VOL. 1. 2012, pp. 529–538. ISBN: 9783642301568.

[125] The OWASP Foundation. Owasp Top 10 - 2017. Accessed January 21st, 2019.
2017. URL: https://www.owasp.org/images/7/72/OWASP_Top_
10-2017_(en).pdf.pdf.

[126] The OWASP Foundation. Secure Cookie Flag. Accessed Jun 01, 2020. 2020. URL:
https://owasp.org/www-community/controls/SecureFlag.

[127] The OWASP Foundation. XML External Entity Prevention. Accessed May 12,
2020. 2020. URL: https://cheatsheetseries.owasp.org/bundle.
zip.

[128] S. Thomas and L. Williams. “Using Automated Fix Generation to Secure SQL
Statements”. In: Third International Workshop on Software Engineering for Secure
Systems (SESS’07: ICSE Workshops 2007). May 2007, pp. 9–9. DOI: 10.1109/
SESS.2007.12.

[129] Stephen Thomas, Laurie Williams, and Tao Xie. “On automated prepared state-
ment generation to remove SQL injection vulnerabilities”. In: Information and
Software Technology 51.3 (Mar. 2009), pp. 589–598. ISSN: 09505849. DOI: 10.
1016/j.infsof.2008.08.002.

[130] Julian Thomé et al. “JoanAudit: A Tool for Auditing Common Injection Vulnera-
bilities”. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering. ESEC/FSE 2017. Paderborn, Germany: ACM, 2017, pp. 1004–
1008. ISBN: 978-1-4503-5105-8. DOI: 10.1145/3106237.3122822. URL:
http://doi.acm.org/10.1145/3106237.3122822.

[131] S. Tiwari and P. Singh. “Survey of potential attacks on web services and web ser-
vice compositions”. In: 2011 3rd International Conference on Electronics Com-
puter Technology. Vol. 2. 2011, pp. 47–51.

[132] Omer Tripp et al. “TAJ: Effective Taint Analysis of Web Applications”. In: SIG-
PLAN Not. 44.6 (June 2009), pp. 87–97. ISSN: 0362-1340. DOI: 10.1145/
1543135.1542486. URL: http://doi.acm.org/10.1145/1543135.
1542486.

[133] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). Accessed March 3,
2020. URL: https://www.w3.org/TR/xml/.

[134] T. Wang et al. “TaintScope: A Checksum-Aware Directed Fuzzing Tool for Auto-
matic Software Vulnerability Detection”. In: 2010 IEEE Symposium on Security
and Privacy. May 2010, pp. 497–512. DOI: 10.1109/SP.2010.37.

125

https://suif.stanford.edu/~livshits/securibench/
https://doi.org/10.1145/3020266
http://doi.acm.org/10.1145/3020266
http://doi.acm.org/10.1145/3020266
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf
https://owasp.org/www-community/controls/SecureFlag
https://cheatsheetseries.owasp.org/bundle.zip
https://cheatsheetseries.owasp.org/bundle.zip
https://doi.org/10.1109/SESS.2007.12
https://doi.org/10.1109/SESS.2007.12
https://doi.org/10.1016/j.infsof.2008.08.002
https://doi.org/10.1016/j.infsof.2008.08.002
https://doi.org/10.1145/3106237.3122822
http://doi.acm.org/10.1145/3106237.3122822
https://doi.org/10.1145/1543135.1542486
https://doi.org/10.1145/1543135.1542486
http://doi.acm.org/10.1145/1543135.1542486
http://doi.acm.org/10.1145/1543135.1542486
https://www.w3.org/TR/xml/
https://doi.org/10.1109/SP.2010.37

[135] Westley Weimer et al. “Automatically finding patches using genetic programming”.
In: Proceedings - International Conference on Software Engineering. 2009, pp. 364–
374. ISBN: 9781424434527. DOI: 10.1109/ICSE.2009.5070536.

[136] Jing Xie et al. “ASIDE: IDE support for web application security”. In: ACM Inter-
national Conference Proceeding Series. 2011, pp. 267–276. ISBN: 9781450306720.
DOI: 10.1145/2076732.2076770.

[137] Jifeng Xuan et al. “Nopol: Automatic Repair of Conditional Statement Bugs in
Java Programs”. In: IEEE Transactions on Software Engineering 43.1 (Jan. 2017),
pp. 34–55. ISSN: 00985589. DOI: 10.1109/TSE.2016.2560811. eprint:
1811.04211.

[138] Jiangtao Xue et al. “History-Driven Fix for Code Quality Issues”. In: IEEE Ac-
cess 7 (Aug. 2019), pp. 111637–111648. DOI: 10.1109/access.2019.
2934975.

[139] Fen Yan and Tao Qiao. “Study on the detection of cross-site scripting vulner-
abilities based on reverse code audit”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). Vol. 9937 LNCS. Springer Verlag, 2016, pp. 154–163. ISBN:
9783319462561. DOI: 10.1007/978-3-319-46257-8_17.

[140] Hua Yan et al. “AutoFix: an automated approach to memory leak fixing on value-
flow slices for C programs”. In: ACM SIGAPP Applied Computing Review 16 (Jan.
2017), pp. 38–50. DOI: 10.1145/3040575.3040579.

[141] Chao Zhang et al. “IntPatch: Automatically Fix Integer-Overflow-to-Buffer-Overflow
Vulnerability at Compile-Time”. In: Computer Security – ESORICS 2010. Ed. by
Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 71–86. ISBN: 978-3-642-15497-3.

[142] Jian-jun Zhao. “Static analysis of Java bytecode”. In: Wuhan University Journal
of Natural Sciences 6.1 (Mar. 2001), pp. 383–390. ISSN: 1993-4998. DOI: 10.
1007/BF03160273. URL: https://doi.org/10.1007/BF03160273.

[143] Jun Zhu et al. “Mitigating Access Control Vulnerabilities Through Interactive
Static Analysis”. In: Proceedings of the 20th ACM Symposium on Access Control
Models and Technologies. SACMAT ’15. Vienna, Austria: ACM, 2015, pp. 199–
209. ISBN: 978-1-4503-3556-0. DOI: 10.1145/2752952.2752976. URL:
http://doi.acm.org/10.1145/2752952.2752976.

126

https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/2076732.2076770
https://doi.org/10.1109/TSE.2016.2560811
1811.04211
https://doi.org/10.1109/access.2019.2934975
https://doi.org/10.1109/access.2019.2934975
https://doi.org/10.1007/978-3-319-46257-8_17
https://doi.org/10.1145/3040575.3040579
https://doi.org/10.1007/BF03160273
https://doi.org/10.1007/BF03160273
https://doi.org/10.1007/BF03160273
https://doi.org/10.1145/2752952.2752976
http://doi.acm.org/10.1145/2752952.2752976

Appendix

127

128

Appendix A
Summaries of Papers About Auto
Fix Tools

The following section outlines the results of the literature review that was conducted as
part of the prestudy described in Appendix B. The table includes all papers that include an
evaluation of tools discovered in the literature review conducted in the prestudy. For more
information about this see the prestudy [89].

When no information was given by a paper on one or more of the criteria the cell is
marked with a dash (-). When little, or unclear information was presented by a paper, the
information was listed in the table as concisely as possible.

129

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“On the capabil-
ity of static code
analysis to detect
security vulnera-
bilities” [51]

Comparison
of three Static
code analysis
tools

No significant
performance
difference
between
tools.

”Comparable
or worse
performance
than random
guessing”.

22 vulnerabilities for
C/C++
19 vulnerabilities for
Java

Juliet 27% of C/C++ vul-
nerabilities and 11%
of Java vulnerabili-
ties missed
41% of C/C++ and
21% of Java vulnera-
bilities detected

“Identifying
security relevant
warnings from
static code analy-
sis tools through
code tainting”
[12]

Limit ex-
isting static
analysis tools
to increase
efficiency

Increased effi-
ciency

Reduced
capability of
tools

- Anonymized
testset

-

“Testing for
software security:
A case study
on static code
analysis of a
file reader Java
program” [124]

Data flow
Control flow

- - - Custom made
Java file

-

Understanding
and assessing se-
curity on Android
via static code
analysis [38]

Static analy-
sis of Android
components

Resilient to
byte code
obfuscation

Low perfor-
mance

Outdated compo-
nents

DroidBench
testsuite

97% precision
80% recall

130

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“Model-Based
Static Source
Code Analysis
of Java Programs
with Applica-
tions to Android
Security” [77]

Static analy-
sis techniques
combined
with model-
based de-
ductive
verification
using SMT
solvers

- - - Android
Bluetooth
ChatServices
application
Android SM-
SPopup
openGPStracker
OpenSudoku

Found a total of 8
mistakes in open
source software

“Study on the de-
tection of cross-
site scripting vul-
nerabilities based
on reverse code
audit” [139]

Reverse code
auditing and
static analysis

Improved
time per-
formance
using reverse
auditing

None listed
(Did not
mention false
positives or
negatives)

XSS WebGoat Found as many vul-
nerabilities as some
taint analysis algo-
rithm
Used 65% less time
no mention of false
positives or negatives

“Detecting and
Removing Web
Application
Vulnerabilities
with Static Anal-
ysis and Data
Mining” [81]

Taint analysis
and data min-
ing

Reduces false
positive rates

Uses un-
proven AI to
reduce false
positives

SQLi,XSS, remote
file inclusion, local
file inclusion, direc-
tory traversal and
path traversal, source
code disclosure,
PHP code injection,
and OS command
injection

45 open
source appli-
cations

found 431 vulner-
abilities, where at
least 43 were false
positives

131

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

Automatic Detec-
tion and Repair
of Input Valida-
tion and Sanitiza-
tion Bugs [15]

Input valida-
tion and san-
itization lan-
guage

- - Input sanitization
vulnerabilities

5 open source
PHP applica-
tions
A number
of Javascript
sanitizer-
function
benchmarks

Generates a number
of patches with no
ground truth

“SecConfig:
A Pre-Active
Information Se-
curity Protection
Technique” [21]

Examine
client host
according
to informa-
tion security
requirements.

- - 31 types of miscon-
figurations

’520 end
hosts and
20 rounds of
experiments
(each round
per month)’

’more than the rate of
95% hosts’

“Detecting recur-
ring and similar
software vulnera-
bilities” [111]

Datamining to
find bugs

Could au-
tomatically
’learn’ to fix
new vulnera-
bilities

Requires
training data
to work

- Red Hat En-
terprise Linux
ES Version 4
and Apache

Claim to have de-
tected bugs

132

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“TaintScope:
A Checksum-
Aware Directed
Fuzzing Tool
for Automatic
Software Vulner-
ability Detection”
[134]

Checksum
fuzzing using
dynamic taint
analysis

Implements
integrity
checks for
fixes

- Buffer overflow, in-
teger overflow, dou-
ble free, null pointer
dereference, and infi-
nite loop

Real-world
applications

Detected 27 vulnera-
bilities in real-world
applications

“IntPatch: Au-
tomatically
Fix Integer-
Overflow-to-
Buffer-Overflow
Vulnerability at
Compile-Time”
[141]

Compiler ex-
tension
Data flow
Using LLVM

Small perfor-
mance loss
No false nega-
tives

Based on
LLVM (early
stages of
development)

Integer-Overflow-
to-Buffer-Overflow
(IO2BO)

Open source
applications:
libtiff,
ming,
dillo, and
gstreamer

1% performance de-
crease
No false negatives
Unknown false posi-
tive rate

“Patch-Related
Vulnerability
Detection Based
on Symbolic
Execution” [113]

Static analy-
sis
Symbolic
execution
data flow
analysis

Does not
require de-
velopers to
create test
cases
Uses pruning
method to
deal with path
explosion
problem

Does not
handle third-
party library
function calls
Only focuses
on memory
vulnerabili-
ties

Memory vulnerabili-
ties

Patches col-
lected from
GNU binu-
tils, GNU
coreutils and
OpenSSL

Analysis time pro-
portional to the num-
ber of paths
Has only one false
negative

133

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“Exterminator:
Automatically
Correcting Mem-
ory Errors with
High Probability”
[97]

Dynamic
analysis

Provable low
false positives
and false neg-
ative rates

Great vari-
ability in
performance

Heap-based memory
errors

SPECint2000
suite
Squid Web
cache server
Mozilla Web
browser

Performance degra-
dation between 0%
and 132%
Observed 0% false
negative rate

“Automatic De-
tection of Unsafe
Dynamic Com-
ponent Loadings”
[69]

Dynamic
analysis

- Code cover-
age problem
due to using
dynamic
analysis

Component resolu-
tion failure
Unsafe component
resolution

Software for
Windows and
Linux

Found many vul-
nerabilities, but no
ground truth

“The Fuzzing
Hype-Train:
How Random
Testing Triggers
Thousands of
Crashes” [109]

Fuzzing Realistic way
of testing web
applications

Hard to use
for fixing

Input validation re-
lated vulnerabilities

- -

“ASIDE: IDE
support for
web application
security” [136]

Static code
analysis
Early detec-
tion

Provides
auto fix
suggestions

Uses pattern
matching
which leads
to high false
positive rate
Auto fixes are
generic, not
specific

Injection vulnerabili-
ties

Apache
Roller

Identified 131 of
143 exploitable taint
sources

134

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“On automated
prepared state-
ment generation
to remove SQL
injection vul-
nerabilities”
[129]

Created a
prepared
statement
replacement
algorithm

High success
rate

Limited to
single file
Relies on pat-
tern matching

SQLi Nettrust,
iTrust, Web-
Goat, Roller
(with custom
SQLi unit
tests).
Also tested
on: Stanford
SecuriBench

Removes 94% of
SQLIVs in the cus-
tom test set
Removes 9 out of 16
SQLIVs in Stanford
SecuriBench

“Exploring
context-sensitive
data flow analysis
for early vulnera-
bility detection”
[117]

Context-
sensitive data
flow analysis
Early detec-
tion

High recall
and precision

High memory
usage
Lower time
performance
than other
tools

11 injection vulnera-
bilities

BlueBlog
PersonalBlog
WebGoat
Roller
Pebble
NCO

Better precision than
tools its compared
with

“An empirical
study on combin-
ing diverse static
analysis tools for
web security vul-
nerabilities based
on development
scenarios” [98]

Combining
the output
of diverse
ASATs to
improve
performance

Improve per-
formance by
using the best
tool for each
vulnerability
class

Recall not
always im-
proved by
adding ASAT

SQLi and XSS WordPress
plugins from
the online
WordPress
Vulnerability
Database

Generally improved
performance by com-
bining tools

135

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“Using Static
Analysis to Find
Bugs” [11]

Static code
analysis

Uses control
flow and
data flow
to perform
more in-depth
analysis

False posi-
tives

More than 300 dif-
ferent programming
mistakes

Sun’s JDK Found 379 bugs. No
ground truth

“Automated
software vulner-
ability detection
with machine
learning” [52]

Different
machine
learning mod-
els trained
on labeled
dataset

- Uses static
analyzer to la-
bel unlabeled
dataset

- C/C++
packaged
distributed
with Debian
C/C++ func-
tions from
public Github
repositories

ROC AUC score of
0.82 for Github
ROC AUC score of
0.76 for Debian

“Learning to
Repair Software
Vulnerabilities
with Genera-
tive Adversarial
Networks” [53]

Generative
adversarial
network to fix
software vul-
nerabilities

Does not
require paired
examples to
train

Trade-off
between
complex
and simple
discriminator

- Generated
sequence of
20 random
integers
Data gen-
erated from
simple con-
text free
grammar
SATE IV

Difficult to under-
stand the metrics
used

136

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“AutoFix: an au-
tomated approach
to memory leak
fixing on value-
flow slices for C
programs” [140]

Static and
dynamic pro-
gram analysis
Graph reacha-
bility analysis
on value flow
graph

Auto fixes
memory leaks
Small over-
head for fixes
Guarantees
memory
safety

Compile
time trans-
formation,
which means
it is done
after code is
written (late
detection)
Only covers
memory leaks

Memory leaks 5 SPEC200
benchmarks
(ammp, gcc,
perlbmkm,
twolf, mesa)
a2ps
h2o
redis

Fixes all leaky allo-
cation sites reported
by leak detector
SABER
Introduces 1.06 %
overhead on average

“JoanAudit: A
Tool for Audit-
ing Common
Injection Vul-
nerabilities”
[130]

Static analysis
Security slic-
ing
Auto fix

Auto fixes
vulnerabil-
ities where
input used
directly in
sinks

Does not
evaluate the
auto fixes
Does not
present detec-
tion metrics
such as pre-
cision or
recall

Injection vulnerabili-
ties

9 web ap-
plications,
but does not
specify which
ones

Claims good run-
time performance
Claims to not miss
any important infor-
mation for security
auditing

“LSRepair: Live
Search of Fix In-
gredients for Au-
tomated Program
Repair” [73]

Semantic
code search

Uses several
search strate-
gies

Code trans-
form problem
Naı̈ve code
transform

- Defects4J Repaired 19 bugs

137

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“Automated Pro-
gram Repair by
Using Similar
Code Containing
Fix Ingredients”
[62]

Similar code
detection
based on
reusability
metrics

Suggests
more suitable
fixes com-
pared to just
code search

- - Randomly
picked six
groups of
similar code
fragments
from Tom-
cat70

Buggy code frag-
ment’s NCC de-
crease after using
reusability metric

“History-Driven
Fix for Code
Quality Issues”
[138]

Mining fix
patterns from
code change
history

- Can only be
as good as
SonarQube,
since it was
used for
mining

Code Quality Issues
(CQIs)

Unclear
where the
tests came
from. May
be the 206
GitHub
projects they
mined

Very obfuscated

“BugFix: A
learning-based
tool to assist
developers in
fixing bugs” [60]

Uses database
that maps
debug-
situations
to relevant
bug-fix de-
scriptions

The tool be-
comes better
over time at
predicting
most relevant
bug fixes

Requires ini-
tial training to
create knowl-
edge base
Requires test
cases

- Subset of
Siemens
benchmark
programs:
tcas
totinfo
sched
sched2
replace

Lists detected faults
and corresponding
fixes without any
metrics

138

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“Repairing
programs with
semantic code
search” [65]

Database
of code
fragments
encoded as
SMT con-
straints
Use con-
straint solving
to replace
buggy code
with the code
fragments

Uses test
cases to guide
semantic
search
Uses human
written code
templates

Repairs may
be hard to
maintain due
to overfitting

- IntroClass
benchmark

Repairs 150 out of
778 defects
Claims higher qual-
ity patches

“Automated Pro-
gram Repair in an
Integrated Devel-
opment Environ-
ment” [110]

Dynamic
analysis
to collect
program
behavior
and validate
repairs

No false posi-
tives

Cannot pro-
vide real time
fixes
Low per-
formance
compared to
state of the art

- Various Eiffel
code bases

Suggests fixes for
42% for 200 faults,
25% of which are
proper

139

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“Automatic
patch generation
learned from
human-written
patches” [66]

Pattern-based
automatic
program
repair

Using tem-
plates ex-
pands the
fixability
of patch
generation

Cannot gener-
ate predicates
to satisfy
branch condi-
tions
Needs bug
fix template
to generate a
patch

- 119 bugs
collected
from Apache,
log4j, Rhino,
and AspectJ

Successfully gener-
ated 27 patches of
119

“SemFix: Pro-
gram repair
via semantic
analysis” [91]

Genetic pro-
gramming
Generates
patch using
constraint
solving

Faster than
enumera-
tion and
search based
techniques

Requires test
suite to be
available

Branch predicates Programs
from SIR
repository:
Tcas, Sched-
ule, sched-
ule2, replace,
grep
Coreutils

Repaired 48 of 90
test cases

“Nopol: Au-
tomatic Repair
of Conditional
Statement Bugs
in Java Pro-
grams” [137]

Generates
patches for
conditionals
given a test
suite

Claims an-
gelic fix
localization
is faster than
symbolic
execution

Requires test
cases to be
correct
Angelic fix
location may
lead to infinite
loops

buggy IF conditions
Missing precondi-
tions

22 bugs from
Apache Com-
mons Math
and Apache
Commons
Lang

17 of 22 bugs suc-
cessfully fixed

140

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“AVATAR:
Fixing Seman-
tic Bugs with
Fix Patterns of
Static Analysis
Violations” [72]

Code fixes ab-
stracted into
fix patterns

Fix patterns
are more
general than
pattern based
fixes

Not better
than state
of the art in
terms of bugs
fixed

- Defects4J 34 out of 49 bugs
fully fixed
5 out of 14 bugs par-
tially fixed

“Auto-locating
and fix-
propagating
for HTML vali-
dation errors to
PHP server-side
code” [92]

Symbolic
execution
Mapping
algorithm

Achieves high
accuracy
High perfor-
mance

Dependent on
an external
validation
tool to find
errors

HTML validation er-
rors

SchoolMate
TimeClock
WebERP
UPB
AddressBook
Manhali

Over 86% accuracy
for all test beds

“Fix-it: An ex-
tensible code
auto-fix compo-
nent in review
bot” [14]

Transformations
according to
known pat-
terns

Extensible - - User study Fixes 43% of issues

141

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“Automated gen-
eration of buffer
overflow quick
fixes using sym-
bolic execution
and SMT” [90]

Static execu-
tion
Code patch
patterns
Satisfiability
Modulo The-
ory
Generates
bug patches

Patches in-
troduce little
compile over-
head
High perfor-
mance

Not generaliz-
able approach
for larger pro-
grams

Buffer overflow 58 C pro-
grams from
Juliet Test
Suite

1.97% overhead

“Automatically
finding patches
using genetic
programming”
[135]

Genetic
programming

Claims to
successfully
repair off the
shelf software
Minimizes
successful
repairs

Requires test
cases to be
available
High variance
in success
rate

- 10 open
source bench-
marks with
known de-
fects

Average success:
58.7%

“Automated
repair of HTML
generation errors
in PHP appli-
cations using
string constraint
solving” [115]

Adding,
modifies
or removes
statements
that print
string literals

Fixes most
errors auto-
matically
Integrates
with Eclipse
High perfor-
mance

Requires test
cases

Incorrect constant
prints

Custom test
set consisting
of: faqforge,
webchess,
school-
mate, hgb,
timeclock,
dnscript

Has 73% false posi-
tives for hgb
Has close to 0%
false positives for the
others
Performs 86% of
patches automati-
cally

142

Study. Ref. Approach Strength Weaknesses Vulnerabilities
covered

Evaluation
test
bed

Evaluation
results

“Program trans-
formations to fix
C integers” [23]

Program
transforma-
tions

Handles all
types of C
integer prob-
lems

- Integer problems NIST SA-
MATE
5 open source
programs

Modifies 13.18% of
expressions on aver-
age

“Mining Fix
Patterns for Find-
Bugs Violations”
[74]

Machine
learning to
find patterns
in fixed and
unfixed static
analysis vio-
lations across
revisions of
software

The fix pat-
terns are
applicable to
real bugs

Dependent on
input from
FindBugs

- Defects4J 14 bugs detected
were 4 fixed

Table A.1: Literature review results [89]

143

144

Appendix B
Prestudy

A prestudy [89] was conducted prior to writing this master thesis. The aim of the prestudy
was to identify what was the state of the art of detection and auto fixing in the field of
software security, and the state of the art of classical auto fixing not necessarily focusing
on software security. Tools and approaches were also analyzed to identify how they have
been evaluated in terms of what test bed has been used and which metrics have been
collected. To answer these questions a literature review was conducted. Additionally,
the most popular existing vulnerability detection tools were also empirically evaluated to
find out which one was the most promising to be extended with auto fix functionality.
The main contribution of the prestudy was a comprehensive overview of the state of auto
fixing web application security vulnerabilities in terms of detection approaches, evaluation
approaches, and different auto fix approaches.

In the following sections, the findings from the literature review and the empirical
evaluation of the tools performed are summarized. This will be used to present which
detection mechanisms are already in use, which auto fix tools exist both in the field of
software security but also in general, and to show how existing software has been tested
and which metrics have been used. We will also argue why there is a need for continued
research into auto fixing of software vulnerabilities, and why a common test bed for testing
how well tools detect software vulnerabilities and how well tools perform auto fixes is
necessary.

B.1 Implementation of the Literature Review
The methodology used to conduct the literature review will be summarized in this section.
See [89] for more details. The questions which were answered through the prestudy by
performing the literature review were as follows. Please note that the research questions
for the prestudy have been renamed to Q1 and Q2 instead of RQ1 and RQ2 to avoid con-
fusion with the research questions for this master thesis:
Q1: What is the state of the art in web application security auto fixing?

Q1.1: What are the existing tools and approaches in the market today?

145

Q1.2: What are the strengths and weaknesses of different software security tools and
approaches?
Q2: What is the state of the art in evaluating auto fixing tools and methods?

The literature review was implemented as a structured literature review based on the
steps presented by Oates in Chapter 6 titled Reviewing the Literature [99, Chapter 6]. The
main goal of the literature review was to evaluate the existing literature and to consolidate
the information in order to answer the questions posed. An overview of the steps taken
can be seen in Figure B.1.

Define scope Define research
questions

Create search
queries

Perform search
Summarize papers

based on
evaluation protocol

Select papers
based on title

Filter papers based
on abstract,

introduction and
results by using

inclusion exclusion
criteria

Before literature review

During literature review

Remove too old
papers

Figure B.1: Overview of the structured literature review process [89]

As can be seen, the scope was first defined to be identifying the current state of the
art within software security auto fixing, general bugs, as well as what security vulnerabil-
ities tools are capable of automatically fixing, and how well the tools have been evaluated
and the test bed used. Automatic fixing of other bugs was also included since general
approaches not specific to software security could be used to fix software security vul-
nerabilities. The research questions shown above were then defined based on the scope.
The literature review itself was conducted by performing a search in prestigious research
databases by using the Oria.no search engine using the search queries shown in Figure B.2.
After completing the search, the papers were assessed using the inclusion and exclusion
criteria shown in Table B.1. After filtering, a total of 49 papers were kept. Both forward
and backward snowballing was done on these papers using Oria.no and Google Scholar,
after which 61 total papers were kept.

Information from the 61 papers was extracted and summarized based on the evaluation
protocol shown in Table B.2. This also shows which research question for the prestudy was
answered by which point. Of interest was the approach and scope to identify which ap-
proach worked well for which kind of vulnerabilities, the test bed used to identify strengths
and weaknesses of these, as well as what metrics different authors used to evaluate their
tool and how these results could be compared. The different author’s evaluations were also
of interest to find the most promising tools, and to identify how the tool could be improved.

146

• Static code analysis security

• Software security auto* fix

• IDE plugin software security

• Eclipse vulnerabilit*

• Static security analysis tools

• Software vulnerabilit* machine learning

• Auto* fix vulnerabilit* machine learning

• Software security tool*

• Data flow analysis auto* fix

Figure B.2: List of search queries used to obtain papers [89]

Inclusion Criteria Exclusion Criteria
Paper is published between
2004 and 2019 inclusive
(last 15 years)

Duplicate papers

Paper is peer reviewed
Papers that do not contain the information
necessary to answer the research questions

Paper is written in English Inaccessible papers
White papers

Table B.1: List of the inclusion and exclusion criteria used for filtering the papers [89]

Title: Relevant Research Question
1. Approach & Scope Q1.1

2.
Test bed Q2
Test result Q1.2 and Q2

3. Strengths Q1.2
Weaknesses Q1.2

Table B.2: Evaluation criteria for papers used to assess the papers identified in the literature review
[89]. Please note that RQs have been replaced with Qs to avoid confusion with RQs for the master
thesis.

B.2 Implementation of Empirical Evaluation of Existing
Auto Fix Tools

To get a better understanding of the existing tools, and to better answer Q1.1 as shown
in section B.1, the tools that were identified through the literature review for Java were

147

downloaded and evaluated. This was done using the Juliet Test Suite [95]. The tools were
empirically evaluated according to the following criteria:

1. Does the tool support the most recent version of Eclipse (Eclipse 2019-09 at the
time of writing)?

2. Is there an ongoing active development of the tool?

3. Are the quick fixes implemented in the tool relevant for the identified vulnerability?

These criteria were chosen to identify which of the identified tools seemed the most
promising to be extended as part of this master thesis. Results from [71, 107, 117] were
also used in this evaluation since these studies performed a qualitative analysis of plugins
for detecting security vulnerabilities in Java code. A more in-depth justification of why
these criteria were chosen can be found in [89].

B.3 Results of Evaluating Tools
A variety of different tools for detecting security vulnerabilities were found through the
literature review based on both static and dynamic analysis approaches. To answer Q1, an
empirical evaluation was performed on the tools identified for Java in order to identify the
tool that seemed the most promising to be extended with auto fix functionality. A summary
of the findings from this evaluation is presented in the next subsection. For a more detailed
description of the tools identified and the evaluation results see the prestudy [89].

B.3.1 Q1.1: What are the Existing Tools in the Market Today?
The main tools identified for identifying security vulnerabilities for Java was found to be
ASIDE [136], ESVD [117], FindSecBugs [5], JoanAudit [130], LAPSE+ [104], and Snyk
[119]. All of these are based on static analysis. All of these tools except Snyk focus on
injections, with FindSecBugs focusing on a vast array of different vulnerabilities as well.
Snyk focuses primarily on identifying outdated dependencies. The result of empirically
evaluating the existing auto fix tools is shown in Table B.3. We wish to remind that this is
not a qualitative analysis of the tools, but rather an empiric evaluation in order to identify
which tools seem the most promising to extend with auto fix functionality and to learn
from the existing techniques employed by these tools. More in-depth evaluations were
found to have been done by others, for instance [71] and [107]. As can be seen most of
the tools found were outdated, except for Snyk and FindSecBugs which have been updated
within the last year. Out of the tools identified, JoanAudit and LAPSE+ were the only ones
found to not support the latest version of Eclipse. Both ASIDE and ESVD were found to
implement quick fixes, but these were found to be too general to be useful. ESVD crashed
a lot in our testing making it difficult to run and evaluate the tool. JoanAudit was found
to not be open source making it difficult to evaluate their implementation. Out of the
tools identified, FindSecBugs were found to have been most recently updated, detected
most vulnerabilities, installed successfully in Eclipse, and thus seemed most promising to
extend with automatic fixes. Additionally, an extension for SpotBugs, which FindSecBugs

148

is based on, called fb-contrib quickfixes was found which provided quick fixes for the
classical bugs in SpotBugs. This seemed the most promising to make use of to extend
FindSecBugs with auto fix functionality.

Tool Last Updated Newest Eclipse Version Quick Fixes
ASIDE 2012 X X
ESVD 2016 X X

FindSecBugs 2019 X 7

JoanAudit 2017 7 -
LAPSE+ 2011 7 7

Snyk 2019 X 7

Table B.3: Overview of evaluated plugins [89]

B.4 Results of the Literature Review

In this section, the main results from the literature review performed in the prestudy will
be summarized. To make it easier to identify which part corresponds to which part of the
literature review the content has been structured after the research questions answered in
the specialization project. These research questions have been reiterated in section B.1.

B.4.1 Q1.2: What are the Strengths and Weaknesses of Different Soft-
ware Security Tools?

The strengths and weaknesses of different software security tools were identified through
the literature review. The table summarizing these findings have been placed in Table A.1.
The following paragraphs are a summary of the key findings in the prestudy.

Most existing tools were found to use static analysis which focused on scanning the
bytecode of the program code. The main benefits of using static code analysis were found
to be allowing the code to be scanned without executing it, performing the analysis with-
out needing to provide runtime parameters, and early detection instead of late detection.
Tools focusing on analyzing the bytecode are also able to leverage the optimizations per-
formed by the compiler to make the analysis easier. Additionally, tools were identified that
used bytecode analysis to create automatic fixes by manipulating the abstract syntax tree
representation of the code.

Tools using dynamic analysis were also identified. The benefits of these tools were
that they can evaluate the program without knowing how it was implemented. Compared
to static analysis, dynamic analysis was also found to be more precise. However, it may be
difficult to identify the source code responsible for a vulnerability due to dynamic analysis
evaluating the program at runtime.

Of the specific techniques used, pattern matching was found to be the most common
one. A drawback of using pattern matching is that it leads to a lot of false positives. Data
flow analysis was identified as another approach used to help mitigate this. Tools using

149

data flow analysis were able to take the context of the data flow into account when ana-
lyzing the program and helped increase the number of vulnerabilities that can be detected.
The main weakness of data flow analysis was found to be the complexity of the analysis.
Some authors were also found to use machine learning; however, a key drawback of these
methods was found to be the lack of labeled data sets that could be used for training.

Classical tools implementing bug fixes were also examined to identify existing ap-
proaches that can be re-used to fix security related vulnerabilities. The main techniques
identified were: Code search, pattern matching based approaches, genetic programming,
and modeling the bug as satisfiability modulo theory problems. Code search was found
to perform well if similar code that could be used to find the patches was present in the
code database. However, it performed poorly if the code was not present in the database.
Pattern matching approaches were found to be able to modify the Abstract Syntax Tree
and performed well if all the necessary patterns were identified to perform the fixes. Bugs
that did not fit any of the patterns could not be fixed. Genetic programming approaches
searched over a space of replacements from other expressions in the program which helped
the solvers evolve patches with greater expressiveness. However, the technique was found
to be slow and had a low success rate. Satisfiability modulo theory problems model if-
else statements and use a test suite to generate a patch that satisfies the buggy program.
However, this approach was found to be limited in its expressiveness.

B.4.2 Q2: The state of the Art In Evaluating Auto Fixing Tools and
Methods

Many different test beds were found to be used in evaluating the different tools identified
through the literature review. Some used open source software, others used publicly avail-
able test beds, whereas others used custom made vulnerable test beds. None of the test
beds identified allowed for verifying automatic fixes for software security vulnerabilities.
A common test bed with checks for these security fixes is necessary to be able to evaluate
and compare different software security auto fix tools. An overview of the different test
beds used are shown in Table A.1.

The metrics collected by different researchers were found to vary drastically. Some
presented the recall and the precision, whereas others only listed the number of bugs found,
or collected insufficient data to be able to calculate any metrics outside of this. A large
number of papers were also found to not explain what vulnerabilities they fixed, nor how
many vulnerabilities were missed.

The different publicly available test beds used for evaluating the tools identified are
shown in Table 3.2. Of these, Juliet and WebGoat are for evaluating software security
vulnerabilities, whereas Defects4J and Bugs.jar are for evaluating bugs not necessarily re-
lated to software security. Juliet contains vulnerable test cases classified by the CWE code
making it the largest test bed for evaluating static analysis tools. WebGoat is a vulnerable
web application as opposed to vulnerable methods only. Defects4J contains a collection
of vulnerable functions from real-world applications. Bugs.jar contains bugs from open
source Java programs.

Many of the tools, as can be seen in Table A.1, were found to be evaluated on propri-
etary test sets, or on open source projects. The main drawbacks of these were that the test

150

sets are often not made public making it difficult to replicate the results. This means that
one must rely on the metrics published by the authors, which was found to be, in many
cases, lacking. Results from evaluating on open source application were also found to not
specify which test sets that was used to generate the test cases. Open source application
also does not include a ground truth making calculating metrics such as true positives and
false positives difficult or impossible.

B.5 Strengths and Weaknesses of Existing Approaches
Pattern matching was found to be the most commonly used technique for detecting vul-
nerabilities. It is easy to implement and can be used to implement both detection and auto
fixes. It was, however, found to be limited in capability due to not taking the information
flow into account. Another weakness is that tools based on pattern matching cannot detect
vulnerabilities outside of the patterns identified.

Data flow analysis is an approach that was found to perform better than pattern match-
ing in terms of precision and recall. This was confirmed across multiple studies. It lets the
analysis take the information flow within the program into account. Many tools used both
pattern matching and data flow analysis. It is, however, limited by the resources available.
Approaches based on dynamic analysis were identified, but the main challenge with these
was that there is no easy way to link the source code where the vulnerability occurred to
the runtime analysis results. This led to the conclusion that dynamic analysis is not as
popular for automatic fixing as it is for detection.

Classical auto fixing approaches were also identified. Many tools use code search to
create patches from a database of similar code to the bug identified. This lets the knowl-
edge of common bugs be stored in a knowledge database. These patches were made on
the abstract syntax tree representation of the program. This performed well if the neces-
sary code construct was present in the database. This is also the main drawback since the
approach is limited to only the knowledge stored in the database. Many existing tools also
use genetic programming to search over the space of replacements to generate a possible
patch. This was found to adapt well to unseen situations, but necessitated a good test set to
perform evaluations, and was found to be slow in practice. Machine learning techniques
were also identified and performed well in the limited tests identified, but there does not
currently exist any good data set for training models

While analyzing the strengths and weaknesses of different approaches it became ev-
ident that some vulnerabilities are covered far better than others by auto fix tools. SQL
injections and XSS injections were found to have been studied in great detail, and a need
for focusing on other vulnerabilities was identified. MITRE [86] released a list of their 25
most dangerous vulnerabilities of 2019, which can be seen in Table B.4. The irrelevant
vulnerabilities for Java are marked in grey. As can be seen, the remaining vulnerabilities
are injection related, or related to information exposure. Vulnerabilities that do not fall
under the injection category have not been studied in great detail and are not covered by
existing tools, and are of interest to look into.

151

CWE-ID Description
119 ClassImproper Restriction of Operations within the

Bounds of a Memory Buffer
79 Improper Neutralization of Input During Web Page Gen-

eration (’Cross-site Scripting’)
20 Improper Input Validation

200 Information Exposure
125 Out-of-bounds Read
89 Improper Neutralization of Special Elements used in an

SQL Command (’SQL Injection’)
416 Use After Free
190 Integer Overflow or Wraparound
352 Cross-Site Request Forgery (CSRF)
22 Improper Limitation of a Pathname to a Restricted Direc-

tory (’Path Traversal’)
78 Improper Neutralization of Special Elements used in an

OS Command (’OS Command Injection’)
787 Out-of-bounds Write
287 Improper Authentication
476 NULL Pointer Dereference
732 Incorrect Permission Assignment for Critical Resource
434 Unrestricted Upload of File with Dangerous Type
611 Improper Restriction of XML External Entity Reference
94 Improper Control of Generation of Code (’Code Injec-

tion’)
798 Use of Hard-coded Credentials
400 Uncontrolled Resource Consumption
772 Missing Release of Resource after Effective Lifetime
426 Untrusted Search Path
502 Deserialization of Untrusted Data
269 Improper Privilege Management
295 Improper Certificate Validation

Table B.4: Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors [86]

B.6 Limitations of Existing Tools

In this section, a summary of the limitations found with the existing tools and approaches
identified through the literature review will be presented. First, an overview of the tools
that were found to be missing will be given. Then, the main results of empirically evaluat-
ing the existing tools will be presented. Finally, this will be used to motivate the necessity
for extending the detection capabilities of these tools and the importance of implementing
quick fixes for software security vulnerabilities.

152

The existing tools identified for Java were ASIDE, ESVD, FindSecBugs, JoanAudit,
LAPSE+, and Snyk. All were found to use pattern matching in their analysis, with ESVD,
JoanAudit, and FindSecBugs using data flow analysis as well making these more capable.
FindSecBugs covered the most vulnerabilities of the identified tools with 134 different bug
patterns being detected, with others focusing primarily on injection related vulnerabilities,
except for Snyk which focuses on outdated dependencies. ASIDE, ESVD, and JoanAu-
dit provided automatic fixes for security vulnerabilities, but with JoanAudit being closed
source and not being available as an Eclipse plugin, we decided not to focus any further on
JoanAudit leaving only ASIDE and ESVD. The fixes provided by these tools were found
to be too generic to be useful. They also focused primarily on sanitization methods which
can be used to mitigate injection attacks.

We also empirically evaluated the tools to find the tool that performs the best to get
a good starting point for implementing security fixes as part of the master thesis. The
questions to be answered are shown in section B.2. The following paragraph will briefly
summarize these results. A more exhaustive discussion of these results can be found in
[89].

ASIDE, ESVD, Snyk, and FindSecBugs supported the latest version of Eclipse, with
ASIDE and ESVD being more complicated to set up compared to FindSecBugs and Snyk.
This led to the conclusion that FindSecBugs and Snyk are the plugins that best support
the newest version of Eclipse. These were also the tools found to have ongoing active
development. ASIDE, JoanAudit, and ESVD were the plugins found that supported auto-
matic fixes. However, ASIDE and ESVD’s fixes were not contextually aware showing all
fixes for each vulnerability. JoanAudit is closed source making it impossible to inspect the
quick fixes. There were no quick fixes made for FindSecBugs, however, SpotBugs which
FindSecBugs is an extension to has an auto fix framework built-in making it possible to
add quick fixes for FindSecBugs.

Based on these findings, we found that there is a need for a tool that can provide
specific fixes for identified vulnerabilities focusing not only on injection vulnerabilities.
FindSecBugs was found to be the most promising candidate, making this the tool we
chose to extend for this master thesis. This is further detailed in [89, Chapter 8].

B.7 Limitations of Existing Test Beds
In this section, the results from analyzing the state of the art in evaluating auto fix tools
and methods are summarized. Some of the limitations of the test beds that have been used
will be highlighted.

First and foremost, a big difference in the way different tools have been evaluated
was found. Many evaluations were found to be done using poorly explained techniques
making them hard to reproduce and making it difficult to compare the results with other
evaluations. The evaluation done by the author themselves were also found to claim better
performance compared to external evaluations. Different evaluation methods were dis-
covered to use different metrics, and there is a need for a standardization of these using
e.g. precision and recall. Many tools were found to use poor metrics as shown in Ta-
ble A.1, making comparing the tools difficult. In order to get enough metrics a proper and
well-established test bed is necessary due to the difficulty of obtaining good metrics from

153

real-life applications due to not knowing the total number of vulnerabilities and similar.
Most testbeds were found to be implemented as a collection of vulnerable functions or
classes, simplifying the process of extending the test bed, and making it easier to clas-
sify the results due to the numbers being clustered after for instance CWE code or other
nomenclature schemes.

ManyBugs [78], which is a test bed designed for benchmarking automatic fixing of
errors in C code was found. It uses an associated test suite that checks the functionality of
the test bed [70]. However, this test suite cannot be used for evaluating the auto fix perfor-
mance of security vulnerabilities due to focusing on classical bugs. Of all the different test
beds we identified, No test bed that was able to validate fixes related to security vulnera-
bilities was found. This led to the conclusion that it is currently difficult for researchers to
know if their quick fixes are effective and if they preserve the functionality of the system
without any side effects. For more information on this see [89].

In general, existing test beds were found to focus on testing the detection of software
security tools, but not how well they are able to fix the vulnerable code. This is likely
due to the focus of many tools being on detection leading to a test suite for detection
having been more important. Furthermore, although well-established test suites for testing
the detection of tools are available, many researchers were still found to create their own
test suite or testing on real-life applications making comparisons between different tools
difficult or impossible. As we see a shift towards focusing on automatic fixes a test suite
for verifying and validating these will become necessary.

154

Appendix C
Test Bed Use Cases

The use cases shown in Table C.1 show the intended use of the test bed for evaluation of
auto fixes, for researchers and developers. These use cases do not explain the functionality
of the vulnerable code, but rather how evaluating tools using the test bed should work.

155

ID and Name UC-1 Validate fixes
Created by: Andreas Berger Date Created: 2019-11-08
Primary Actor: Developer Secondary Actor: N/A
Description A developer checks the correctness of automatic fixes

created by a tool he is evaluating. The system checks
that the system has the exact same functionality as before
the fix.

Trigger Developer runs the test suite.
Preconditions PRE-1: Auto fix tool used to fix vulnerabilities in test

bed.
Postconditions POST-1: The terminal displays information about cor-

rectness of code after auto fixing.
Normal Flow 1. Developer runs an auto fix tool on the code in the test

bed.
2. Developer runs the test suite created for the test bed.
3. The tests complete and all tests pass.
4. A message explaining that all tests pass is shown in the
terminal.

Alternative Flow 1. Developer runs an auto fix tool on the code in the test
bed.
2. Developer runs the test suite created for the test bed.
3. The tests complete and some tests fail.
4. A message listing failed test cases is shown in the ter-
minal.

Exceptions E1 No change has been made to the code base.
Goal(s) Test that an auto fix tool preserves functionality and dis-

plays the results to the tester.

Table C.1: Use case for validating fixes using test bed

156

Appendix D
Test Case Flow Variants

In this chapter the flow variants used to create the test cases are detailed. First, the instance
based flow variants are shown. Then the Juliet style flow variants are presented.

D.1 Instance Based Flow Variants
The instance based flow variants are shown in Table D.1. These test various ways of
initializing an object and invoking methods on the object instance.

Test
Case

CWE-ID OWASP
Category

Flow
Type

Description

Case 1 CWE-611,
CWE- 776

A4 Data Factory initialized into local vari-
able. Parser initialized into class
field using the insecure factory.
Then the insecure parser is used.

Case 2 CWE-611,
CWE- 776

A4 Data Factory initialized into class field.
Parser initialized into local variable
using factory. Then the insecure
parser is used.

Case 3 CWE-611,
CWE- 776

A4 Data Factory initialized into class field.
Parser initialized into class field us-
ing factory. Then the insecure parser
is used.

Case 4 CWE-611,
CWE- 776

A4 Data Parser initialized into class field by
using factory directly. Then the in-
secure parser is used.

Case 5 CWE-611,
CWE- 776

A4 Data Factory initialized into local vari-
able. Parser initialized into local
variable using factory. Then the in-
secure parser is used.

157

Case 6 CWE-611,
CWE- 776

A4 Data Parser initialized into local variable
by using factory directly. Then the
insecure parser is used.

Case 7 CWE-611,
CWE- 776

A4 Flow Factory initialized into a local vari-
able. Then a parser is initialized
into a local variable without making
the factory secure. Then this inse-
cure parser is used. Then another
parser initialized into local variable
after making factory secure. Then
this secure parser is used.

Case 8 CWE-611,
CWE- 776

A4 Flow Factory initialized into local vari-
able. Then parser initialized into lo-
cal variable without making factory
secure. Then this insecure parser is
used. Then another parser initialized
after making factory secure. Then
this secure parser is used. Then an-
other parser initialized after making
factory insecure. Then this insecure
parser is used.

Case 9 CWE-611,
CWE- 776

A4 Flow Factory initialized into local vari-
able. Then parser initialized into
local variable. The insecure parser
is then used twice. Then another
factory initialized into local variable
and made secure. Then new parser
initialized using this factory. The se-
cure parser is then used twice.

Case 10 CWE-611,
CWE- 776

A4 Flow Factory initialized into local vari-
able. Then parser initialized into lo-
cal variable without making factory
secure. The insecure parser is used
twice. Then factory made secure and
new parser initialized. Then old in-
secure parser is used, and new se-
cure parser is used. Then factory
made insecure and a third parser ini-
tialized. Then third insecure parser
used, and second secure parser used.

158

Case 11 CWE-611,
CWE- 776

A4 Flow A new instance of the class Bar with
a method titled the same as the se-
cure method of the class instance
being tested e.g. setFeature for
DocumentBuilder and SAXParser,
and setProperty for XMLStream-
Reader, XMLEventReader, and Fil-
teredReader, taking the same pa-
rameters as the secure method for
the factory of the parser, e.g. a string
and a boolean for setFeature and a
string and an object for setProperty.
Then this method is invoked on Bar.
Then a factory is initialized into a lo-
cal variable, and a parser is initial-
ized into a local variable. The inse-
cure parser is then used.

Table D.1: Control and data flow test cases focusing on different ways of initializing an object and
different ways of invoking methods on an object instance

D.2 Flow Variants in Juliet Test Suite
Various flow variants are tested by the Juliet Test Suite as described in [93]. These different
flow variants have been reiterated in Table D.2.

Flow Variant Flow
Type

Description

01 None Baseline – Simplest form of the flaw
02 Control if(true) and if(false)
03 Control if(5==5) and if(5!=5)
04 Control if(PRIVATE STATIC FINAL TRUE) and

if(PRIVATE STATIC FINAL FALSE)
05 Control if(privateTrue) and if(privateFalse)
06 Control if(PRIVATE STATIC FINAL FIVE==5)

and if(PRIVATE STATIC FINAL FIVE!=5)
07 Control if(privateFive==5) and if(privateFive!=5)
08 Control if(privateReturnsTrue()) and

if(privateReturnsFalse())
09 Control if(IO.STATIC FINAL TRUE) and

if(IO.STATIC FINAL FALSE)
10 Control if(IO.staticTrue) and if(IO.staticFalse)
11 Control if(IO.staticReturnsTrue()) and

if(IO.staticReturnsFalse())

159

12 Control if(IO.staticReturnsTrueOrFalse())
13 Control if(IO.STATIC FINAL FIVE==5) and

if(IO.STATIC FINAL FIVE!=5)
14 Control if(IO.staticFive==5) and

if(IO.staticFive!=5)
15 Control switch(6) and switch(7)
16 Control while(true)
17 Control for loops
21 Control Flow controlled by value of a private vari-

able. All methods contained in one file.
22 Control Flow controlled by value of a public static

variable. Sink methods are in a separate
file from sources.

31 Data Data flow using a copy of data within the
same method

41 Data Data passed as an argument from one
method to another in the same class

42 Data Data returned from one method to another
in the same class

45 Data Data passed as a private class member vari-
able from one method to another in the
same class

51 Data Data passed as an argument from one
method to another in different classes in
the same package

52 Data Data passed as an argument from one
method to another to another in three dif-
ferent classes in the same package

53 Data Data passed as an argument from one
method through two others to a fourth; all
four methods are in different classes in the
same package

54 Data Data passed as an argument from one
method through three others to a fifth; all
five methods are in different classes in the
same package

61 Data Data returned from one method to another
in different classes in the same package

66 Data Data passed in an array from one method
to another in different classes in the same
package

67 Data Data passed in a class from one method
to another in different classes in the same
package

160

68 Data Data passed as a member variable in the
“a” class from one method to another in
different classes in the same package

71 Data Data passed as an Object reference argu-
ment from one method to another in differ-
ent classes in the same package

72 Data Data passed in a Vector from one method
to another in different classes in the same
package

73 Data Data passed in a Linked List from one
method to another in different classes in
the same package

74 Data Data passed in a HashMap from one
method to another in different classes in
the same package

75 Data Data passed in a serialized object from one
method to another in different classes in
the same package

81 Data Data passed in an argument to an abstract
method called via a reference

Table D.2: The different test case flow variants from Juliet Test Suite [93]

161

162

Appendix E
Implementation Details of Existing
XML Vulnerability detectors in
FindSecBugs

By using the bug patterns described in [6] and comparing these with the entries in find-
bugs.xml the XML detectors were found to be located in the main FindSecBugs mod-
ule in a package called xml. The relevant excerpt from findbugs.xml is shown in List-
ing 20. Each detector is represented by the Detector tag which in turn specifies the class
implementing the detector, and the bug patterns reported by this detector. As can be
seen, the class com.h3xstream.findsecbugs.xml.XxeDetector is responsible for reporting
vulnerabilities for the parsers SAXParser, XMLReader, and DocumentBuilder, the class
com.h3xstream.findsecbugs.xml.TransformerFactoryDetector is responsible for reporting
vulnerabilities for the Transformer parser, and the class com.h3xstream.findsecbugs.xml.
XmlStreamReaderDetector is responsible for reporting vulnerabilities for the XMLStream-
Reader parser. As a side note, the class com.h3xstream.findsecbugs.xml.XxeDetector also
reports bugs of the pattern XXE XPATH, however, as shown in Listing 21, there already
exists another xPath injection detector which reports the XPATH INJECTION bug pattern.
It is unclear why the class com.h3xstream.findsecbugs.xpath.XPathInjectionDetector is not
used to handle the XXE XPATH bug pattern as well. The focus of this analysis is on the
detectors for XML parsers.

<Detector class="com.h3xstream.findsecbugs.xml.XxeDetector"
reports="XXE_SAXPARSER,XXE_XMLREADER,XXE_DOCUMENT,XXE_XPATH"/>
<Detector
class="com.h3xstream.findsecbugs.xml.TransformerFactoryDetector"
reports="XXE_DTD_TRANSFORM_FACTORY,XXE_XSLT_TRANSFORM_FACTORY"/>
<Detector
class="com.h3xstream.findsecbugs.xml.XmlStreamReaderDetector"
reports="XXE_XMLSTREAMREADER"/>

163

Listing 20: Excerpt from findbugs.xml showing the different detector classes for identifying XML
related vulnerabilities and the bug patterns they report

<Detector
class="com.h3xstream.findsecbugs.xpath.XPathInjectionDetector"
reports="XPATH_INJECTION"/>

Listing 21: Excerpt from findbugs.xml showing the taint analysis based injection detector for de-
tecting xPath injection vulnerabilities

The XxeDetector class

The XxeDetector class extends the OpcodeStackDetector base detector class from Spot-
Bugs. This is a base class for detectors that want to scan the bytecode of a method and use
a stack of opcodes [55]. The detector uses the sawOpcode method from the OpcodeStack-
Detector class to look for the opcodes invokevirtual and invokeinterface. If either of these
opcodes are found, the detector then gets the fullClassName of the operand, which corre-
sponds to the package the parser class resides in. The different fullClassNames and the cor-
responding parser are shown in Table E.1. The detector also obtains a string representation
of the method name of the opcode, and the signature of the operand used by the opcode.
Next, the detector checks if the fullClassname matches any of the fullClassNames for the
parsers SAXParser, XMLReader, or DocumentBuilder. If it does, the detector checks if the
method invoked on the parser is called parse, indicating that the parser has been used to
parse XML.

Parser/Factory fullClassName
SAXParser javax/xml/parsers/SAXParser

XMLReader org/xml/sax/XMLReader
DocumentBuilder javax/xml/parsers/DocumentBuilder

TransformerFactory javax/xml/transform/TransformerFactory
TransformerFactory javax/xml/transform/sax/SAXTransformerFactory
XMLInputFactory javax/xml/stream/XMLInputFactory

Table E.1: The different parsers and their corresponding fullClassName as identified by Find-
SecBugs

Then, the detector checks if the class subclasses the java.security.PrivilegedExceptionAction
interface. If it does, the detector assumes that there are no vulnerabilities. Then the de-
tector obtains a control flow graph for the method being analyzed. The detector checks
whether the methods setEntityResolver, setFeature, setXIncludeAware, or setExpandEnti-
tyReferences have been called. If setEntityResolver is called the detector assumes there are
no XML vulnerabilities. If setFeature is called, the detector checks if it has been called
with different attributes. If these attributes are http://apache.org/xml/features/disallow-
doctype-decl or http://javax.xml.XMLConstants/feature/secure-processing the detector im-
mediately assumes there are no vulnerabilities. If the attributes are either http://xml.org/
sax/features/external-general-entities or http://xml.org/sax/features/external-parameter-entities,

164

the detector stores that this was found as the boolean values hasFeatureGeneralEntities
and hasFeatureExternalEntities. The detector only checks the first of the attributes for
the setFeature method, not checking the second attribute of this method to check if the
attribute has been set correctly. For many of the parameters in subsection 2.7.1 the second
parameter indicates whether to enable or disable the feature. Thus, not checking the sec-
ond parameter means that the vulnerable feature may be enabled as opposed to disabled.
Similarly, if the setXIncludeAware method has been called with the value false this is
stored as the boolean hasSetXIncludeAware, and if the setXIncludeAware method has been
called with the value false this is stored as the boolean hasExpandEntityReferences. The
detector then checks if the booleans hasFeatureExternalEntities, hasFeatureGeneralEn-
tities, hasSetXIncludeAware, and hasExpandEntityReferences are all true. Since the set-
ExpandEntityReferences method is only valid in the case that DocumentBuilder is used,
the hasExpandEntityReferences is only set if DocumentBuilder is used. Therefore, this is
initialized to true initially if DocumentBuilder is not the current parser being looked at.
If all these booleans are true, the detector assumes there are no vulnerabilities present.
Otherwise, the detector uses the fullClassName of the parser being looked at to report the
vulnerability for the parser using the parser specific bug pattern.

The TransformerFactoryDetector class

The TransformerFactoryDetector class is implemented in a similar fashion to the XxeDe-
tector class. It extends the OpcodeStackDetector base class from SpotBugs, and uses
the sawOpcode method from the OpcodeStackDetector class to look for the opcode in-
vokestatic. If this is found, the fullClassName of the operand and a string representation
of the method name of the operand is obtained. The fullClassName is compared to the one
for the TransformerFactory as shown in Table E.1. Note that there are two fullClassNames
for the TransformerFactory since this can be initialized either by using a TransformerFac-
tory or a SAXTransformerFactory [33]. The detector also checks if the method invoked
is named newInstance. This means that for the Transformer parser the existing detector
reports the initialization of the parser itself as vulnerable even if the parser has not been
used by using the transform method of the parser.

The detector then obtains a control flow graph for the method being analyzed and
checks whether the setAttribute method or the setFeature method has been called some-
where in the method. If setAttribute has been called, the detector gets the previous byte-
code instruction that matches the LDC bytecode instruction, and the second last byte-
code instruction which matches the LDC bytecode instruction, and obtains these constant
value. If the 2nd last instruction loaded the constant value http://javax.xml.XMLConstants/
property/accessExternalDTD, the detector checks if the last instruction before the method
call equals ”” (an empty string) and sets the boolean value of hasFeatureDTD to true
meaning the Transformer parser is considered to not be vulnerable to DTD attacks. If the
second last instruction loaded the constant value http://javax.xml.XMLConstants/property/
accessExternalStylesheet and the last instruction before the method call equals ”” (an
empty string), the detector sets the boolean value of hasFeatureStylesheet to true meaning
the Transformer parser is considered to not be vulnerable to XSLT attacks. Otherwise,
if the setFeature method is called, and the last bytecode instruction before the method
invocation matches the ICONST bytecode instruction, and the second last bytecode in-

165

struction matches the LDC bytecode instruction, the detector obtains the value of the
integer constant and checks if the value is 1, and that the value of the constant equals
http://javax.xml.XMLConstants/feature/secure-processing. If they do, then the detector
sets the boolean value of hasSecureProcessing to true meaning that the Transformer parser
is considered to not be vulnerable to either XSLT or DTD attacks. If hasSecureProcess-
ing was set to true, the detector declares the use of the Transformer parser to be secure.
Otherwise, if hasFeatureDTD is false, the detector reports the XXE DTD TRANSFORM
FACTORY TYPE bug pattern. If hasFeatureStylesheet is false, the detector reports the
XXE XSLT TRANSFORM FACTORY TYPE bug pattern. This means that if the Trans-
former parser is vulnerable to both XSLT and DTD attacks, the detector will report two
bugs for the parser, which agrees with the testing performed in subsection 6.2.2.

The XMLStreamReaderDetector class

The XMLStreamReaderDetector class is implemented similarly to both the Transformer-
FactoryDetector class and the XxeDetector class. This detector also extends the Op-
codeStackDetector class and uses the sawOpcode method to look for the opcode invoke-
virtual. The fullClassname and a string representation of the method name of the operand
is obtained. The detector then checks if the fullClassName matches the one for XMLIn-
putFactory as shown in Table E.1 and if the method invoked is either createXMLStream-
Reader, createXMLEventReader, or createFilteredReader. This means that the detector is
capable of detecting bugs for the XMLEventReader parser and the FilteredReader parser
in addition to the XMLStreamReader parser which is not explicitly stated in [6]. Upon
discovering this, test cases for FilteredReader and XMLEventReader were created using
the instance based test cases as well as test cases based on the test cases from Juliet Test
Suite as described in subsection 6.2.2.

The detector then obtains a control flow graph for the method and checks if the setProp-
erty method has been called. If it has been called, the detector gets the value of the previ-
ous LDC bytecode instruction. If this is equal to either javax.xml.stream.supportDTD or
javax.xml.stream.isSupportingExternalEntities, the detector obtains the second last byte-
code instruction and checks if it is a wrapped boolean invocation instruction of the class
java.lang.boolean calling the method valueOf. If it is, the detector gets the last byte-
code instruction and checks if it is an iconst instruction, and if it is, gets the value of this
and checks if it is 0. If it is, then the detector declares the parser secure. The detector
also checks if the second last bytecode instruction is a getstatic call with the class type
java.lang.boolean and the field name is FALSE. If it is, the detector declares the parser
secure. Otherwise, the parser use is reported as vulnerable. This special consideration for
different ways of specifying a boolean value is necessary because the setProperty method
takes as its second argument a parameter of the type Object instead of a boolean primitive
[35].

166

Appendix F
Implementation of Instruction
based Data Flow Analysis

The data flow analysis framework in SpotBugs, as explained in section 2.10, was used to
implement an analysis method based on instruction based data flow analysis by extending
the AbstractDataflowAnalysis class from SpotBugs. The data flow analysis was imple-
mented in the SpotBugs data flow framework according to the description in [57]. In the
following paragraphs, an in-depth description of this implementation will be detailed.

First, an EngineRegistrar class implementing the IAnalysisEngineRegistrar interface
from SpotBugs was created and the method registerAnalysisEngines was created as speci-
fied by the interface. Then, a new factory class called CallListDataflowFactory extending
the AnalysisFactory from SpotBugs was created. The analyze method from the superclass
was overridden to create a new CallListDataflow analysis object and to perform the data
flow analysis. The analyze method obtained the data flow analysis result from the existing
ConstantDataFlow class preexisting in SpotBugs. Then the CallListAnalysis class was
created which extended the AbstractDataflowAnalysis class from SpotBugs which was
used to perform the data flow analysis.

The CallListAnalysis class first builds a map from InstructionHandles to a Call class by
using the control flow graph of the method to be analyzed. The Call class was initialized
with the class name, name of the instruction, and the signature of the instruction. Then
the necessary methods initEntryFact, isForwards, getBlockOrder, makeFactTop, isTop,
createFact, same, meetInto, copy, transferInstruction, and isFactValid methods were im-
plemented.

Since the data flow analysis framework in SpotBugs requires a custom class represent-
ing the data flow values to be implemented, a CallList class representing these was created,
keeping track of the data flow values. The initEntryFact method called the clear method
in the CallList class setting the boolean values isTop and isBottom to false and clearing
the list of calls for this data flow value. Similarly, the setTop method set the isTop to true,
isBottom to false, and cleared the CallList. The createFact method created a new CallList
instance. The same method used the equals method in Java to check if the two CallLists

167

were equal. The meetInto method merged the results from two different data flow values.
If both callists were bottom, then the isBottom boolean of the result was set to true. If one
of the CallLists to be merged had isTop true, then the result was copied from the other
CallList into this one. Otherwise, the values from the first CallList was added to the result
as long as they differed from the values in the other CallList. This was then copied to the
other result as the result of the meetInto function. The copy function simply copied the
values from the source to the destination CallList. The transferInstruction method first
used the callMap to get the Call corresponding to the instruction to be looked at. Next,
if the opcode of this instruction was either invokevirtual or invokeinterface, the constant-
DataFlow result was used to obtain the constant values of the method invocation. The Call
was then added to the CallList data flow value. Finally, the isFactValid method simply
checked if the CallList had either isTop or isBottom set to true.

168

Appendix G
Implementation of XML
Vulnerability Detectors using
Instance Tracking

In this chapter, the implementation details of the instance tracking approach will be given.
First, the generalized instance tracker class will be explained. Then each of the detectors
implemented to identify XXE vulnerabilities using the generalized instance tracker class
will be explained. A more top-level description can be found in subsection 6.3.3.

G.1 Implementation of Instance Tracking Approach
The OpcodeStackDetector base class, which is explained in more detail in section 2.10,
was extended to create a new base detector class in FindSecBugs which was called In-
stanceTrackDetector. This class first takes a list of TrackedObject class instances which
contains information about which initialization instruction the detector is looking for,
which calls the detector is tracking, and what return values the detector is tracking. The
TrackedCall and TrackedObject objects as well as the top-level project structure are based
on a closed pull request to the FindSecBugs GitHub repository from 2016 [79] targeting
detection of insecure cookies. The TrackedCall class stores information about what values
the call should have been invoked with, the stack parameter indexes of these calls, the in-
struction this call corresponds to, and the bug that occurs when this call is not found. The
MultipleTrackedCalls class is a wrapper around TrackedCall objects which is used to track
multiple calls needed to make an instance secure. Additionally, a MultipleTrackedCall has
a list for each TrackedCall which is used to mark a call as vulnerable again. Both Multi-
pleTrackedCall and TrackedCall instances are added to the TrackedObject instance. The
TrackedReturnValue class is used to store the results of method invocations that the detec-
tor is looking for, as well as which return value the bug should be reported on allowing the
bug to be reported on either of the return values. Instances of this class is also added to

169

the TrackedObject instance. The detector then overrides the sawOpcode method from the
OpcodeStackDetector to perform the analysis.

First, the detector checks if the opcode corresponds to putfield or putstatic, which
means that a field was initialized using this operand. Using the getXFieldOperand method
from the OpcodeStackDetector class allows one to obtain this field. After checking that
the field pushed to the stack is indeed going to be stored in a registry, the field is then
put into a map between fields and the line they were stored on named fieldUse. Next,
the detector looks for the opcodes invokevirtual, invokeinterface, invokestatic, and in-
vokespecial since it only needs to consider invocations. If the class is subclassing the
java.security.PrivilegedExceptionAction interface, it assumes that the correct properties
have been applied to the sandbox and declares the class secure.

Then, the detector obtains the class name of, and the method invoked on the operand
which will be denoted fullOperand for the invocation opcode. If this is one of the objects
the detector is tracking, the source line of the creation of the object is stored, alongside
the method it occurred in and the class it occurred in by initializing a new TrackedOb-
jectInstance and storing it on the TrackedObject instance that is looking for the particular
initialization instruction. The different bugs stored on the TrackedCall instances and on
the MultipleTrackedCalls instances stored in the TrackedObject instance is added to the
TrackedObjectInstance instance. Then the source line of the object initialized is added to
a map between source line locations, and a list of the bugs at this location in the Tracke-
dObjectInstance instance.

The detector then continues looking for the opcodes invokevirtual, invokeinterface, in-
vokestatic, and invokespecial adding new TrackedObjectInstance instances to the Tracke-
dObject instances the detector is looking for. If an object initialization call is not found,
the detector then first checks if the opcode is either invokevirtual or invokeinterface since
it does not make sense to track instances of static invocations since they are not instances.
Next, the instance the opcode was invoked on is obtained from the stack alongside source
line where the instance was created, the XMethod [55] of the return value of the instance,
the XField [55] value of the instance, and the signature. The initialization location of the
current return value of the invocation opcode being called is also obtained. If the return
value of the instance is null, the source line of the creation of the object is obtained from the
fieldUse map instead. The detector then compares the return value, the signature, and the
fullOperand of the return value to the values of the TrackedReturnValue instances stored
on the TrackedObject instance under consideration. If these match, then the initialization
location of the current opcode is stored on the instance since it is a return value that is
being tracked. Additionally, if the bug should be reported on this line, the current bugs
present on this line are stored alongside the source line.

The detector then checks if any of the TrackedObjectInstances correspond to the object
creation location of the instance obtained from the stack. If it does, then all the Tracked-
Calls calls that match the invocation instruction of the fullOperand is checked to see if the
call has been found. This is done by obtaining the list of expected values and the stack
parameter indexes these should have been present on from the TrackedCall instance, and
comparing these to the values on the operand stack. Boolean.valueOf, Boolean.FALSE,
and Boolean.TRUE values are converted to the integer representation to allow these to be
specified as their integer representation in the TrackedCall class, which means that only

170

one TrackedCall instance has to be created for all of these. Other stack values, for instance,
stack values that are subclassing an interface, are also considered. If all of the stack values
necessary to make this call secure have been found, a check is made to see if this call
is vulnerable if called, or secure if called. If it is vulnerable, then the vulnerabilities of
this call is added to the instance. Otherwise, the vulnerabilities this call is mitigating is
removed from the instance. This means that any additional TrackedReturn values of this
instance will either be declared secure from the bugs this call was necessary to mitigate or
vulnerable from the bugs this call added.

Similarly, all the TrackedCall calls of the MultipleTrackedCalls instances are gone
through. First, the TrackedCall is checked. If the stack parameters are equal to the val-
ues the TrackedCall is looking for, then this call is added to the TrackedObjectInstance
instance. If they aren’t, then the list of TrackedCalls that mark the TrackedCall as vulner-
able is checked. If one such TrackedCall is found, then the TrackedCall this call makes
vulnerable again is removed from the list of found tracked calls stored on the Tracke-
dObjectInstance and the bug is added to the instance again. Then all the TrackedCalls
stored on the TrackedObjectInstance are compared to all the TrackedCall instances the
MultipleTrackedCall is looking for. If all the calls have been found, then the bug the
MultipleTrackedCall is reporting is removed from the instance.

Lastly, the report method from OpcodeStackDetector is used to report the bugs. All the
TrackedObjectInstance instances stored in the TrackedObject instance is gone through to
obtain the vulnerable lines for the TrackedObjectInstance as well as all the vulnerabilities
for this line which the found bugs are reported on. If no TrackedReturnValues are tracked,
then any vulnerabilities found are reported directly on the instance, instead of subsequent
calls done on the instance.

G.2 The BetterDocumentBuilderDetector class
To implement the new detector for the DocumentBuilder parser using the InstanceTrack-
Detector class described above, the bytecode of the different test cases shown in Table D.1
as well as the test cases present in FindSecBugs as explained in section 2.10 was inspected.
This was done in order to find the initialization calls necessary to supply the Instance-
TrackDetector with to track the instances, the return value of and the fullOperand values
of subsequent calls necessary to create a parser and parse using the factory, as well as the
invocation instruction for the tracked calls, the parameters pushed to the operand stack
and the index of these. The invocation instruction that needs to be tracked for Document-
BuilderFactory is javax/xml/parsers/DocumentBuilderFactory.newInstance.

The different return values of performing the invocation calls necessary to create a
new DocumentBuilder parser and to parse the XML that needed to be tracked are shown
in Table G.1. The signature of calling the method the return value looks for was found by
inspecting the constant pool of the bytecode and comparing it with the official documen-
tation [29]. These are the necessary calls that need to be made to go from creating a new
instance of the DocumentBuilderFactory factory to parsing using the DocumentBuilder
parser as described in [29].

171

Class name signature Full Operand Report bug
on this line

javax/xml/parsers/
DocumentBuilder
Factory

Ljavax/xml/
parsers/
DocumentBuilder
Factory;

javax/xml/parsers/
DocumentBuilder
Factory
.newDocumentBuilder

7

javax/xml/parsers/
DocumentBuilder
Factory

Ljavax/xml/
parsers/
DocumentBuilder;

javax/xml/parsers/
DocumentBuilder
.parse

X

Table G.1: Result of inspecting the bytecode and the documentation for which return values to track
for the DocumentBuilder parser

Both Oracle and OWASP specify different attributes that can be used to make the parser
secure as detailed in subsection 2.7.1. These attributes have been split up into attributes
where one attribute is necessary to consider the parser secure and attributes where multiple
attributes are necessary to consider the parser secure. The first are shown in Table G.2,
while the latter is shown in Table G.3. For each attribute specified by OWASP and Oracle,
the corresponding bytecode instructions were inspected to find the invocation instructions,
stack parameters, and stack indexes. Additionally, the bug patterns reported for the calls
are shown as well as whether the call is considered secure if found, or insecure if not found.
For the multiple tracked calls, the insecure call that makes the secure call vulnerable is
shown on the row under each secure call.

Invocation
instruction

Parameters Stack
in-
dexes

Bug pattern When to
report
bug

javax/xml/
parsers/
DocumentBuilder
Factory
.setFeature

XMLConstants
.FEATURE SECURE
PROCESSING,

1

1,
0

XXE
DOCUMENT

Report
bug when
not called

javax/xml/
parsers/
DocumentBuilder
Factory
.setFeature

http://apache.org/
xml/features/
disallow-doctype-
decl,
1

1,
0

XXE
DOCUMENT

Report
bug when
not called

javax/xml/
parsers/
DocumentBuilder
.setEntityResolver

org.xml.sax.
EntityResolver

0 XXE
DOCUMENT

Report
bug when
not called

172

javax/xml/
parsers/
DocumentBuilder
Factory
.setFeature

XMLConstants
.FEATURE SECURE
PROCESSING,

0

1,
0

XXE
DOCUMENT

Report
bug when
called

javax/xml/
parsers/
DocumentBuilder
Factory
.setFeature

http://apache.org/
xml/features/
disallow-doctype-
decl,
0

1,
0

XXE
DOCUMENT

Report
bug when
called

Table G.2: Different calls considered vulnerable if not called as well as calls considered vulnerable
if called for the DocumentBuilder as detailed in subsection 2.7.1. The parameters, the stack indexes
for these parameters, the bug pattern to report, and when to report the bug was found by inspecting
the bytecode and consulting the documentation for the parser

173

Invocation
instruction

Parameters Stack
in-
dexes

Bug pattern When to
report
bug

javax/xml/
parsers/
DocumentBuilder
Factory
.setFeature

http://xml.org/sax/
features/external-
general-entities,
0

1,
0

XXE
DOCUMENT

Report
bug when
not called

javax/xml/
parsers/
DocumentBuilder
Factory
.setFeature

http://xml.org/sax/
features/external-
general-entities,
1

1,
0

XXE
DOCUMENT

Report
bug when
called

javax/xml/
parsers/
DocumentBuilder
Factory
.setFeature

http://xml.org/sax/
features/external-
parameter-entities,
0

1,
0

XXE
DOCUMENT

Report
bug when
not called

javax/xml/
parsers/
DocumentBuilder
Factory
.setFeature

http://xml.org/sax/
features/external-
parameter-entities,
1

1,
0

XXE
DOCUMENT

Report
bug when
called

javax/xml/
parsers/
DocumentBuilder
Factory
.setFeature

http://apache.org/
xml/features/
nonvalidating/
load-external-dtd, 0

1,
0

XXE
DOCUMENT

Report
bug when
not called

javax/xml/
parsers/
DocumentBuilder
Factory
.setFeature

http://apache.org/
xml/features/
nonvalidating/
load-external-dtd, 1

1,
0

XXE
DOCUMENT

Report
bug when
called

javax/xml/
parsers/
DocumentBuilder
Factory
.setXIncludeAware

0 0 XXE
DOCUMENT

Report
bug when
not called

javax/xml/
parsers/
DocumentBuilder
Factory
.setXIncludeAware

1 0 XXE
DOCUMENT

Report
bug when
called

174

javax/xml/
parsers/
DocumentBuilder
Factory
.setExpandEntity
References

0 0 XXE
DOCUMENT

Report
bug when
not called

javax/xml/
parsers/
DocumentBuilder
Factory
.setExpandEntity
References

1 0 XXE
DOCUMENT

Report
bug when
called

Table G.3: Different calls that all must be called to mitigate the XXE vulnerability for the Docu-
mentBuilder parser as detailed in subsection 2.7.1. The insecure calls are shown under the secure
one they make vulnerable again if called. The parameters, the stack indexes for these parameters, the
bug pattern to report, and when to report the bug found by inspecting the bytecode and consulting
the documentation for the parser

G.3 The BetterSAXParserDetector class
The new detector for the SAXParser parser was implemented in a similar fashion to the new
detector for the DocumentBuilder parser described above. The bytecode of the test cases
described in Table D.1 and from FindSecBugs as detailed in section 2.10 was inspected.
The initialization call necessary to supply the InstanceTrackDetector with to track the
instances was javax/xml/parsers/SAXParserFactory.newInstance.

The different return values of performing the invocation calls necessary to create a new
SAXParser parser and parse the XML that needed to be tracked are shown in Table G.4.
These are the necessary calls that need to be made to go from creating a new instance of
the SAXParserFactory factory to using the SAXParser parser as described in [31]. The two
last rows describe the return values from obtaining the underlying XMLReader parser of
the SAXParser parser, which allows one to set a custom entity resolver which is considered
secure according to Oracle and OWASP as shown in subsection 2.7.1.

Class name signature Full Operand Report bug
on this line

javax/xml/parsers/
SAXParserFactory

Ljavax/xml/
parsers/
SAXParserFactory;

javax/xml/parsers/
SAXParserFactory
.newSAXParser

7

javax/xml/parsers/
SAXParserFactory

Ljavax/xml/
parsers/
SAXParser;

javax/xml/parsers/
SAXParser.parse

X

175

javax/xml/parsers/
SAXParserFactory

Ljavax/xml/
parsers/
SAXParser;

javax/xml/parsers/
SAXParser
.getXMLReader

7

javax/xml/parsers/
SAXParser

Lorg/xml/sax/
XMLReader;

org/xml/sax/
XMLReader.parse

X

Table G.4: Result of inspecting the bytecode and the documentation for which return values to track
for the SAXParser parser

Similar to the description for the DocumentBuilder parser, both Oracle and OWASP
specify different attributes that can be used to make the parser secure as detailed in sub-
section 2.7.1. The attributes where one attribute is necessary is shown in Table G.5. These
attributes can also be used to make the parser insecure, which is also shown in the table.
The attributes where multiple attributes are necessary to make the parser secure are shown
in Table G.6. For the multiple tracked calls, the insecure call that makes the secure call
vulnerable is shown on the row under each secure call.

Invocation
instruction

Parameters Stack
in-
dexes

Bug pattern When to
report
bug

javax/xml/
parsers/
SAXParserFactory
.setFeature

XMLConstants
.FEATURE SECURE
PROCESSING,

1

1,
0

XXE
SAXPARSER

Report
bug when
not called

javax/xml/
parsers/
SAXParserFactory
.setFeature

http://apache.org/
xml/features/
disallow-doctype-
decl,
1

1,
0

XXE
SAXPARSER

Report
bug when
not called

org/xml/sax/
XMLReader
.setEntityResolver

org.xml.sax
.EntityResolver

0 XXE
SAXPARSER

Report
bug when
not called

javax/xml/
parsers/
SAXParserFactory
.setFeature

XMLConstants
.FEATURE SECURE
PROCESSING,

0

1,
0

XXE
SAXPARSER

Report
bug when
called

javax/xml/
parsers/
SAXParserFactory
.setFeature

http://apache.org/
xml/features/
disallow-doctype-
decl,
0

1,
0

XXE
SAXPARSER

Report
bug when
called

Table G.5: Different calls considered vulnerable if not called as well as calls considered vulnerable
if called for the SAXParser as detailed in subsection 2.7.1. The parameters, the stack indexes for
these parameters, the bug pattern to report, and when to report the bug was found by inspecting the
bytecode and consulting the documentation for the parser

176

Invocation
instruction

Parameters Stack
in-
dexes

Bug pattern When to
report
bug

javax/xml/
parsers/
SAXParserFactory
.setFeature

http://xml.org/sax/
features/external-
general-entities,
0

1,
0

XXE
SAXPARSER

Report
bug when
not called

javax/xml/
parsers/
SAXParserFactory
.setFeature

http://xml.org/sax/
features/external-
general-entities,
1

1,
0

XXE
SAXPARSER

Report
bug when
called

javax/xml/
parsers/
SAXParserFactory
.setFeature

http://xml.org/sax/
features/external-
parameter-entities,
0

1,
0

XXE
SAXPARSER

Report
bug when
not called

javax/xml/
parsers/
SAXParserFactory
.setFeature

http://xml.org/sax/
features/external-
parameter-entities,
1

1,
0

XXE
SAXPARSER

Report
bug when
called

javax/xml/
parsers/
SAXParserFactory
.setFeature

http://apache.org/
xml/features/
nonvalidating/
load-external-dtd,
0

1,
0

XXE
SAXPARSER

Report
bug when
no called

javax/xml/
parsers/
SAXParserFactory
.setFeature

http://apache.org/
xml/features/
nonvalidating/
load-external-dtd,
1

1,
0

XXE
SAXPARSER

Report
bug when
called

javax/xml/
parsers/
SAXParserFactory
.setXIncludeAware

0 0 XXE
SAXPARSER

Report
bug when
not called

javax/xml/
parsers/
SAXParserFactory
.setXIncludeAware

1 0 XXE
SAXPARSER

Report
bug when
called

Table G.6: Different calls that all must be called to mitigate the XXE vulnerability for the SAX-
Parser parser as detailed in subsection 2.7.1. The insecure calls are shown under the secure one they
make vulnerable again if called. The parameters, the stack indexes for these parameters, the bug
pattern to report, and when to report the bug found by inspecting the bytecode and consulting the
documentation for the parser

177

G.4 The BetterXmlStreamReaderDetector class
The new detector for the XMLStreamReader parser was implemented similarly to the
DocumentBuilder parser described above. The bytecode of the test cases described in
Table D.1 and from FindSecBugs as detailed in section 2.10 was inspected. The initializa-
tion call necessary to supply the InstanceTrackDetector with to track the instances were
javax/xml/stream/XMLInputFactory.newFactory and javax/xml/stream/XMLInputFactory.
newInstance.

The different return values of performing the invocation calls necessary to create a
new XMLStreamReader, XMLEventReader, and FilteredReader are shown in Table G.7.
According to [35], the instance obtained from creating the respective parser using the XM-
LInputFactory is used directly to perform the parsing, hence there only being one tracked
return value for each parser.

Class name signature Full Operand Report bug
on this line

javax/xml/stream/
XMLInputFactory

Ljavax/
xml/stream/
XMLInputFactory;

javax/xml/stream/
XMLInputFactory
.createXMLStream
Reader

X

javax/xml/stream/
XMLInputFactory

Ljavax/
xml/stream/
XMLInputFactory;

javax/xml/stream/
XMLInputFactory
.createXMLEvent
Reader

X

javax/xml/stream/
XMLInputFactory

Ljavax/
xml/stream/
XMLInputFactory;

javax/xml/stream/
XMLInputFactory
.createFiltered
Reader

X

Table G.7: Result of inspecting the bytecode and the documentation for which return values to track
for the XMLStreamReader, the XMLEventReader parser, and the FilteredReader parser

Both Oracle and OWASP describe different attributes that can be used to make the
parser secure as shown in subsection 2.7.1. For XMLStreamReader, XMLEventReader,
and FilteredReader, only singular calls are required for the parser to be considered secure.
These calls are shown in Table G.8. These attributes can also be used to make the parser
insecure, which is also shown in the table.

Invocation
instruction

Parameters Stack
in-
dexes

Bug pattern When to
report
bug

javax/xml/
stream/
XMLInputFactory
.setProperty

XMLInputFactory
.IS SUPPORTING
EXTERNAL
ENTITIES,

0

1,
0

XXE
XML

STREAM
READER

Report
bug when
not called

178

javax/xml/
stream/
XMLInputFactory
.setProperty

XMLInputFactory
.SUPPORT
DTD,

0

1,
0

XXE
XML

STREAM
READER

Report
bug when
not called

javax/xml/
stream/
XMLInputFactory
.setProperty

XMLInputFactory
.IS SUPPORTING
EXTERNAL
ENTITIES,

1

1,
0

XXE
XML

STREAM
READER

Report
bug when
called

javax/xml/
stream/
XMLInputFactory
.setProperty

XMLInputFactory
.SUPPORT
DTD,

1

1,
0

XXE
XML

STREAM
READER

Report
bug when
called

Table G.8: Different calls considered vulnerable if not called as well as calls considered vulnerable
if called for the XMLStreamReader, XMLEventReader, and FilteredReader parsers as detailed in
subsection 2.7.1. The parameters, the stack indexes for these parameters, the bug pattern to report,
and when to report the bug was found by inspecting the bytecode and consulting the documentation
for the parser

G.5 The BetterTransformerFactoryDetector class
The new detector for the Transformer parser was implemented similarly to the new detec-
tor for the DocumentBuilder parser. The bytecode of the test cases described in Table D.1
and from FindSecBugs as detailed in section 2.10 was inspected. According to [33], both
TransformerFactory factory and SAXTransformerFactory factory can be used to initial-
ize a Transformer parser. The corresponding initialization calls needed to be tracked are
javax/xml/transform/TransformerFactory.newInstance and javax/xml/transform/sax/
SAXTransformerFactory.newInstance.

The different return values of performing the invocation calls necessary to create a new
transformer parser and parse the XML that needed to be tracked are shown in Table G.9.
These are the necessary calls that need to be made to go from creating a new instance of
the TransformerFactory factory to using the Transformer parser as described in [33].

Class name signature Full Operand Report bug
on this line

javax/xml/transform/
TransformerFactory

Ljavax/xml/
transform/
Transformer
Factory;

javax/xml/transform/
TransformerFactory
.newTransformer

7

javax/xml/transform/
TransformerFactory

Ljavax/xml/
transform/
Transformer;

javax/xml/transform/
Transformer.transform

X

179

Table G.9: Result of inspecting the bytecode and the documentation for which return values to track
for the transformer parser

Both Oracle and OWASP specify different attributes that can be used to make the
parser secure as shown in subsection 2.7.1. Only singular attributes are necessary to make
the parser secure, which are shown in Table G.10. These attributes can also be used to
make the parser insecure, which is also shown in the table.

Invocation
instruction

Parameters Stack
in-
dexes

Bug pattern When to
report
bug

javax/xml/
transform/
TransformerFactory
.setFeature

XMLConstants
.FEATURE SECURE
PROCESSING,

1

1,
0

XXE DTD
TRANSFORM
FACTORY,

XXE XSLT
TRANSFORM
FACTORY

Report
bug when
not called

javax/xml/
transform/
TransformerFactory
.setAttribute

XMLConstants
.ACCESS EXTERNAL
DTD,

””

1,
0

XXE DTD
TRANSFORM
FACTORY

Report
bug when
not called

javax/xml/
transform/
TransformerFactory
.setAttribute

XMLConstants
.ACCESS EXTERNAL
STYLESHEET,

””

1,
0

XXE XSLT
TRANSFORM
FACTORY

Report
bug when
not called

javax/xml/
transform/
TransformerFactory
.setFeature

XMLConstants
.FEATURE SECURE
PROCESSING,

0

1,
0

XXE DTD
TRANSFORM
FACTORY,

XXE XSLT
TRANSFORM
FACTORY

Report
bug when
called

javax/xml/
transform/
TransformerFactory
.setAttribute

XMLConstants
.ACCESS EXTERNAL
DTD,

all

1,
0

XXE DTD
TRANSFORM
FACTORY

Report
bug when
called

javax/xml/
transform/
TransformerFactory
.setAttribute

XMLConstants
.ACCESS EXTERNAL
STYLESHEET,

all

1,
0

XXE XSLT
TRANSFORM
FACTORY

Report
bug when
called

Table G.10: Different calls considered vulnerable if not called as well as calls considered vulnerable
if called for the transformer as detailed in subsection 2.7.1. The parameters, the stack indexes for
these parameters, the bug pattern to report, and when to report the bug was found by inspecting the
bytecode and consulting the documentation for the parser

180

G.6 The BetterXMLReaderDetector class
The new detector for the XMLReader parser was implemented similarly to the Document-
Builder parser described above. The bytecode of the test cases described in Table D.1 and
from FindSecBugs as detailed in section 2.10 was inspected. The initialization call nec-
essary to supply the InstanceTrackDetector with to track the instances was org/xml/sax/
helpers/XMLReaderFactory.createXMLReader.

The different return values of performing the invocation calls necessary to create a new
XMLReader parser are shown in Table G.11. According to [36], the instance obtained from
creating the respective parser using the XMLReaderFactory is used directly to perform the
parsing, hence there only being one tracked return value for the parser.

Class name signature Full Operand Report bug
on this line

org/xml/sax/helpers/
XMLReaderFactory

Lorg/xml/sax/
XMLReader;

org/xml/sax/
XMLReader.parse

X

Table G.11: Result of inspecting the bytecode and the documentation for which return values to
track for the XMLReader parser

Both Oracle and OWASP describe different attributes that can be used to make the
parser secure as shown in subsection 2.7.1. For XMLReader only singular calls are re-
quired for the parser to be considered secure. These calls are shown in Table G.12. These
attributes can also be used to make the parser insecure, which is also shown in the table.

Invocation
instruction

Parameters Stack
in-
dexes

Bug pattern When to
report
bug

org/xml/sax/
XMLReader
.setFeature

XMLConstants
.FEATURE SECURE
PROCESSING,

1

1,
0

XXE
XMLREADER

Report
bug when
not called

org/xml/sax/
XMLReader
.setFeature

http://apache.org/
xml/features/
disallow-doctype-
decl,
1

1,
0

XXE
XMLREADER

Report
bug when
not called

org/xml/sax/
XMLReader
.setEntityResolver

org.xml.sax.
EntityResolver

0 XXE
XMLREADER

Report
bug when
not called

org/xml/sax/
XMLReader
.setFeature

XMLConstants
.FEATURE SECURE
PROCESSING,

0

1,
0

XXE
XMLREADER

Report
bug when
called

181

org/xml/sax/
XMLReader
.setFeature

http://apache.org/
xml/features/
disallow-doctype-
decl,
0

1,
0

XXE
XMLREADER

Report
bug when
called

Table G.12: Different calls considered vulnerable if not called, and calls considered vulnerable if
called for the XMLReader parser as detailed in subsection 2.7.1. The parameters, the stack indexes
for these parameters, the bug pattern to report, and when to report the bug was found by inspecting
the bytecode and consulting the documentation for the parser

182

Appendix H
Implementation of Detection of
Insecure Cookies

The base instance tracker detector described in subsection 6.3.3 is a generalized imple-
mentation of a detector for tracking method invocations on instances and denoting these
instances as secure and insecure at different points in the method under consideration. The
instance tracker supports tracking singular calls that either make the instance vulnerable
or make the instance secure, as well as tracking multiple calls that together make an in-
stance secure or insecure. The sections section G.2, section G.3, section G.4, section G.5,
and section G.6 are similar precisely because the main detection mechanism has been ex-
tracted into a generalized base class. The only differences between these detectors are the
initialization calls they’re tracking, the calls they are tracking, both singular tracked calls
and multiple tracked calls, the bug patterns they are reporting, and the return values they
are tracking.

Since the main instance tracking mechanism has been generalized and extracted into
a base class, the overhead of implementing additional detectors using the instance tracker
is quite low. A new detector would only need to extend the base class and supply it with
information about which initialization instructions to look for, which calls to look for,
what bug patterns to report, and the return values to track if any. For instance, for cookies,
it is recommended to set the setSecure attribute to true as per the recommendations by
OWASP [126]. An example of how a cookie is initialized and the setSecure attribute
is set is shown in Listing 22 with the corresponding bytecode shown in Listing 23. To
detect when the setSecure call has not been called, the base instance tracking detector
is supplied with the initialization call javax/servlet/http/Cookie.<init>, which looks for
the call javax/servlet/http/Cookie.setSecure which should have been called with the stack
parameter 1 residing on stack index 0. Additional entries for the detector to describe the
bug pattern the detector class detects, as well as a description of the bug pattern is placed
in findbugs.xml and messages.xml as described in section 2.10. If the call is not found, a
new bug pattern, e.g. insecure cookie can be reported. The code that needs to be written
is shown in Listing 24. Running this detector on the 17 test cases within the CWE614

183

Sensitive Cookie Without Secure package in Juliet Test Suite presents the results shown
in Figure H.1. Through manual verification, this detector was found to correctly identify
all the missing calls to the setSecure method in these test cases.

Cookie cookie = new Cookie("myCookieName", "myCookieValue");
cookie.setSecure(true);

Listing 22: Example code for initializing a new cookie and setting the secure attribute by calling
setSecure

0 new #23 <javax/servlet/http/Cookie>
3 dup
4 ldc #24 <myCookieName>
6 ldc #25 <myCookieValue>
8 invokespecial #26 <javax/servlet/http/Cookie.<init>>

11 astore_2
12 aload_2
13 iconst_1
14 invokevirtual #27 <javax/servlet/http/Cookie.setSecure>
17 return

Listing 23: Corresponding bytecode for the cookie example in Listing 22

addTrackedObject(new TrackedObject("javax/servlet/http/Cookie.<init>")
.addTrackedCallForObject(
new TrackedCall("javax/servlet/http/Cookie.setSecure",

Arrays.asList(1),
Arrays.asList(0),

"INSECURE_COOKIE")
.reportBugWhenNotCalled(true))
);

Listing 24: Code required to detect cookies missing the setSecure call

Figure H.1: Detection result of evaluating the insecure cookie detector shown in Listing 24 on the
17 test cases in Juliet Test Suite [95]

This also shows that the detectors for the additional XML parsers mentioned in sub-
section 2.7.1 can easily be implemented using this base instance tracker detection class.

184

This was not done as part of this thesis since the main focus was on improving the exist-
ing detectors present in FindSecBugs. However, as shown by the cookie detector example
above the effort required to implement these new detectors is low.

185

186

Appendix I
Implementation of the Auto Fix
Approach

As mentioned in Appendix B the plugin project fb-contrib-eclipse-quick-fixes, which is an
extension to SpotBugs, seemed the most promising to extend with auto fixes for security
vulnerabilities. This plugin is an Eclipse plugin project set up for integrating new auto fixes
with SpotBugs. Each auto fix requires an entry in the plugin.xml file and a corresponding
class to perform the auto fix. An excerpt from plugin.xml is shown in Listing 25. This
shows the entry for one of the quick fixes for the bug pattern XXE XMLREADER. The
auto fix classes extend the BugResolution class from SpotBugs, which was found to not
be documented in [55]. The BugResolution class uses an AST representation of the source
code created by the Eclipse JDT and handles writing the auto fixes back to the AST of
the class being auto fixed, as well as updating the bug markers in the IDE. Each auto fix
extends this class and implements the repairBug method which queries the AST for the
necessary information to create the auto fix. Using and modifying the AST for creating
auto fixes was one of the approaches found to be used by classical auto fixes in the prestudy
[89].

<quickfix
class="xml.XMLReaderResolution"
label="Replace with safe function"
pattern="XXE_XMLREADER">

</quickfix>

Listing 25: Excerpt from plugin.xml showing the quick fix entry for the bug pattern
XXE XMLREADER

I.1 Auto Fixing using Instance Tracking Resolution
The BugResolution class from SpotBugs was extended to create a generalized abstract
instance track resolution class for creating auto fixes for bugs identified by the Instance-

187

TrackDetector class described in section G.1. This class was named AbstractInstance-
TrackResolution. Classes extending this class provide the abstract class with a list of
NodeToFind classes which each store a string representation of the type of nodes to find,
a string representation of the method invoked on this type, and a boolean value to denote
whether the quick fix should be inserted after that node. This NodeToFind list is used to
find the AST nodes that need to be traversed in order to find the insertion location for the
auto fix. For some auto fixes, as will be more explicitly stated in the specific subsections
below for each parser specific auto fix, the auto fix is inserted directly on the instance that
is used to parse XML, whereas for others the quick fix is inserted on a different instance
than the one the bug is reported on meaning that the AST needs to be traversed to find
the correct instance to insert the fix on. Classes extending AbstractInstanceTrackResolu-
tion also provide a list of the imports that need to be added for this quick fix, and a list
of QuickFix classes. Each QuickFix class stores the name of the method that needs to be
invoked, and which parameters it needs to be invoked with.

The AbstractInstanceTrackResolution begins by overriding the repairBug method from
the BugResolution class in SpotBugs. The helper method getASTNode from edu.umd.cs.
findbugs.plugin.eclipse.quickfix.util.ASTUtil is used to get the AST node that corresponds
to the source line of the bug marker from the compilationUnit. A compilationUnit is the
type of the root node of an AST in Eclipse [25]. Next, a new visitor named InvocationVisi-
tor extending ASTVisitor from Eclipse is created and used to visit all the MethodInvocation
nodes of this AST node. This visitor obtains the IVariableBinding binding of the Field-
Access or the SimpleName which the MethodInvocation was called on and stores it in a
variable called nameOfInvocedInstance.

The enclosing method block of the AST node is obtained by traversing the parents of
the AST node. Then the nameOfInvocedInstance is checked to see if it is null. If it is
not null, then the method called on the AST node corresponding to the bug marker was
called on a variable, which means that the auto fix might need to be inserted on a differ-
ent variable than the one corresponding to this node. To identify if the auto fix should
be inserted on a different AST node, a new visitor named InstanceTrackVisitor extending
ASTVisitor from Eclipse is created by providing a list of NodeToFind classes. The AST
node of the enclosing method block is then visited using this visitor. The visitor visits
all VariableDeclarationStatement nodes and checks if the type of this node corresponds to
one of the types from the nodes to find list. If it does, the Initializer of the Fragment of this
VariableDeclarationStatement is obtained. If this initializer is a MethodInvocation and the
name of this method corresponds to the name of the method of the node to find, the visitor
then obtains the IVariableBinding of the right-hand side of the VariableDeclarationState-
ment and maps the IVariableBinding of the left-hand side to the IVariableBinding of the
right-hand side and stores it in a map called assignmentMap. E.g. for the code line shown
in Listing 26, the corresponding IVariableBinding for dBuilder would be mapped to the
IVariableBinding for dbFactory. Additionally, the MethodInvocation invocations for this
VariableDeclarationStatement are compared to the invocations in the nodes to find list,
and if they match, a mapping is created between the IVariableBinding on the left side of
the VariableDeclarationStatement and the MethodInvocation invocation on the right side.
This is stored in a map called invocationMap.

188

DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

Listing 26: A new DocumentBuilder called dBuilder is created by calling newDocumentBuilder()
on dbFactory

Similarly, the InstanceTrackVisitor visitor visits the corresponding ExpressionState-
ment nodes to find assignments where a variable that has already been declared is assigned
to a new value. If the type of the left-hand side corresponds to the type of one of the nodes
to find, a mapping is created between the IVariableBinding of the left-hand side and the
IVariableBinding of the right-hand side. A mapping between the IVariableBinding and the
MethodInvocation invocations for this node is also created for the assignments and stored
in the assignmentMap.

The assignment map is then used to traverse the IVariableBinding bindings until the
desired IVariableBinding is found. Then the list of invocations corresponding to this
IVariableBinding is obtained. If the number of invocations is greater than one, the auto
fix cannot be applied because the same variable was initialized more than once, and the
AbstractInstanceTrackResolution class cannot determine where to put the auto fix. Oth-
erwise, a check is done to determine if the auto fix can be called directly on the IVari-
ableBinding that was found, or if there are nested invocations that need to be split up such
that a reference can be obtained by making use of an auxiliary variable to apply the secure
properties before continuing to invoke the remaining methods. If there are no nested in-
vocations, then the list of QuickFixes is obtained and each auto fix is inserted right after
the IVariableBinding found. Otherwise, if there are nested invocations, then these are tra-
versed recursively until the desired node corresponding to the MethodInvocation is found.
These chained invocations are then split up by making use of an auxiliary variable which
the quick fixes are inserted on, before the remaining method invocations are called on this
auxiliary variable

If the nameOfInvocedInstance variable is null, then the method called in the AST
node corresponding to the bug marker was not called on a variable, which means that
the auto fix does not have to traverse the AST to find the correct AST node to insert the
auto fix on. A visitor to obtain the first MethodInvocation node for this AST node or the
first ClassInstanceCreation node together with the variable this ClassInstanceCreation in-
stance is stored in is created. If the MethodInvocation is not null, then the auto fix is
inserted by splitting up the nested invocations as described above. Otherwise, the auto
fix is inserted on the variable the new object was initialized to by using the variable the
ClassInstanceCreation expression was called on. Finally, the AST nodes returned by the
importsToAdd method provided by the subclasses are added.

I.1.1 The DocumentBuilderResolution class
Oracle specifies that setting XMLConstants.FEATURE SECURE PROCESSING explic-
itly to true is sufficient to disable external entities as well as DTD processing for the Doc-
umentBuilder parser as mentioned in subsection 2.7.1. Therefore, the list of QuickFix
classes consisted of one quick fix which is to set this attribute to true as shown in Table I.1.
Additionally, when performing the auto fix javax.xml.XMLConstants is imported.

189

Function to call Parameter Value
setFeature XMLConstants

.FEATURE SECURE
PROCESSING

true

Table I.1: The function to call, as well as which parameters to call the function with and which
value that is necessary to make the DocumentBuilder parser safe

To instruct the AbstractInstanceTrackResolution class on where to insert the quick fix
two NodeToFind classes were created. This is necessary because the attributes need to be
set on the DocumentBuilderFactory that creates the DocumentBuilder, and not directly on
the DocumentBuilder itself. The values of these nodes are shown in Table I.2.

Type Method invocation Insert quick fix here
DocumentBuilderFactory newInstance X
DocumentBuilder newDocumentBuilder 7

Table I.2: The different AST nodes that need to be traversed to find the correct node to apply the
quick fix to for the DocumentBuilder parser

I.1.2 The SAXParserResolution class
Similar to the quick fix for the DocumentBuilder, Oracle also specifies that setting XML-
Constants.FEATURE SECURE PROCESSING explicitly to true is sufficient to disable
external entities and DTD processing for the SAXParser parser as mentioned in subsec-
tion 2.7.1. Therefore, the list of QuickFix classes consisted of one quick fix which is to
set this attribute to true as shown in Table I.3. Additionally, when performing the auto fix
javax.xml.XMLConstants is imported.

Function to call Parameter Value
setFeature XMLConstants

.FEATURE SECURE
PROCESSING

true

Table I.3: Function to call, as well as which parameter and which value necessary to make the
SAXParser parser safe

The SAXParser parser is initialized similarly to the DocumentBuilder parser. To in-
struct the AbstractInstanceTrackResolution class on where to insert the quick fix two
NodeToFind classes were created. This is necessary because the attributes need to be
set on the SAXParserFactory creating the SAXParser, and not directly on the SAXParser
itself. The values of these nodes are shown in Table I.4.

190

Type Method invocation Insert quick fix here
SAXParserFactory newInstance X
SAXParser newSAXParser 7

Table I.4: The different AST nodes that need to be traversed to find the correct node to apply the
quick fix to for the SAXParser parser

I.1.3 The XMLStreamReaderResolution class
Since the XMLStreamReader, XMLEventReader the FilteredReader parsers do not support
XMLConstants.FEATURE SECURE PROCESSING according to Oracle as mentioned in
subsection 2.7.1, the recommendations from OWASP was applied instead to explicitly
disable external entities and DTD processing. The list of QuickFix classes, therefore,
consisted of two quick fixes. The two attributes alongside their value that needs to be set
are shown in Table I.5.

Function to call Parameter Value
setProperty XMLInputFactory

.SUPPORT DTD
false

setProperty XMLInputFactory.IS
SUPPORTING
EXTERNAL
ENTITIES

false

Table I.5: Function to call, as well as which parameter and which value necessary to make the
XMLStreamReader parser, the XMLEventReader parser and the FilteredReader parser safe

The XMLInputFactory which is used to create the XMLStreamReader parser can also
be used to create an XMLEventReader parser, and a FilteredReader [35]. In both cases the
quick fix should be applied to the factory, as shown in Table I.6.

Type Method invocation Insert quick fix here
XMLInputFactory newInstance X
XMLInputFactory newFactory X

Table I.6: The different AST nodes that need to be traversed to find the correct node to apply the
quick fix to for the XMLStreamReader parser, the XMLEventReader parser and the FilteredReader
parser

191

I.1.4 The TransformerResolution class
Similar to the quick fixes for the DocumentBuilder parser, and the SAXParser parser, Ora-
cle also specifies that setting XMLConstants.FEATURE SECURE PROCESSING explic-
itly to true is sufficient to disable external entities and DTD processing for the Transformer
parser as mentioned in subsection 2.7.1. Therefore, the list of QuickFix classes consisted
of one quick fix which is to set this attribute to true as shown in Table I.7. Additionally,
when performing the auto fix javax.xml.XMLConstants is imported.

Function to call Parameter Value
setFeature XMLConstants

.FEATURE SECURE
PROCESSING

true

Table I.7: Function to call, as well as which parameter and which value necessary to make the
Transformer parser safe

The Transformer parser is initialized similarly to the DocumentBuilder parser and the
SAXParser parser. To instruct the AbstractInstanceTrackResolution class on where to in-
sert the quick fix two NodeToFind classes were created. This is necessary because the
attributes need to be set on the TransformerFactory creating the Transformer, and not di-
rectly on the Transformer itself. The values of these nodes are shown in Table I.8.

Type Method invocation Insert quick fix here
TransformerFactory newInstance X
Transformer newTransformer 7

Table I.8: The different AST nodes that need to be traversed to find the correct node to apply the
quick fix to for the Transformer parser

I.1.5 The XMLReaderResolution class
Oracle specifies that setting XMLConstants.FEATURE SECURE PROCESSING explic-
itly to true is sufficient to disable external entities and DTD processing for the XML-
Reader parser. However, evaluating the auto fixes on the test suite described in section 6.1
showed that the parser was still vulnerable to external entities after setting XMLCon-
stants.FEATURE SECURE PROCESSING explicitly to true. Therefore, the recommen-
dations from OWASP as detailed in subsection 2.7.1 was applied instead. The list of
QuickFix classes consisted of four quick fixes whose attributes and values are shown in
Table I.9.

192

Function to call Parameter Value
setFeature http://apache.org/xml/

features/disallow-
doctype-decl

true

setFeature http://apache.org/xml/
features/nonvalidating/
load-external-dtd

false

setFeature http://xml.org/sax/
features/external-
general-entities

false

setFeature http://xml.org/sax/
features/external-
parameter-entities

false

Table I.9: Function to call, as well as which parameter and which value necessary to make the
XMLReader parser safe

An XMLReader is created directly by invoking the createXMLReader method on the
XMLReaderFactory [36]. Therefore the resulting quick fix should be applied directly on
the resulting XMLReader instance, hence why the NodeToFind only includes one entry as
shown in Table I.10.

Type Method invocation Insert quick fix here
XMLReader createXMLReader X

Table I.10: The different AST nodes that need to be traversed to find the correct node to apply the
quick fix to for the XMLReader parser

I.2 Benefits of Extending FindSecBugs
As mentioned in section I.1, the BugResolution class from SpotBugs is used to initialize
the auto fix mechanism. The main benefit of using the BugResolution class from SpotBug
as a starting point is that it sets up the link between SpotBugs and Eclipse JDT which
is used to perform the auto fix. This class handles setting up the mapping between the
bug marker supplied by the detectors implemented in FindSecBugs and the corresponding
AST representation within Eclipse. Using this base class for integrating with Eclipse also
allows the bugs to make use of the bulk auto fix functionality in Eclipse. This means
that instead of manually having to go through each bug and fixing them, the bulk auto fix
feature within Eclipse can be used to fix all the bugs of a similar type.

193

194

Appendix J
Implementation of AST based Auto
Fixes of Insecure Cookies

A base auto fix class for detectors using the base instance tracker detector class was im-
plemented as described in section I.1. This base auto fix class gathers the necessary infor-
mation to perform the auto fix and traverses from the node the vulnerability occurred on
to the node where the auto fix should have been inserted. It also includes a generalized
mechanism for inserting multiple fixes as well as inserting multiple imports where nec-
essary. The sections subsection I.1.1, subsection I.1.2, subsection I.1.3, subsection I.1.4,
subsection I.1.5 are all similarly written precisely because of this base auto fix class hav-
ing been implemented. The only differences between these different auto fixes are the
fixes to apply, which nodes to traverse between, and which imports to add. Therefore, the
overhead of implementing additional auto fixes is quite low. Additionally, since each auto
fix is defined by an entry in plugin.xml and a class to perform the auto fix as described in
Appendix I, multiple auto fixes for the same vulnerability can also be added by creating
multiple auto fix classes extending the base auto fix class and adding multiple entries in
the plugin.xml for the same bug pattern.

An auto fix for the example mentioned in Appendix H, where a detector for finding
insecure cookies is created, can easily be created by extending the base instance tracker
auto fix class. Since no nodes need to be traversed for this quick fix, an empty node to find
is created stating that the auto fix should be inserted on the line where the bug is reported.
Similarly, the list of auto fixes only requires one entry denoting the call to setSecure which
should be called with the Boolean true. The necessary code lines to create an auto fix
for insecure cookies are shown in Listing 27. As can be seen, keeping the generalized
auto fix mechanism in a base class, together with a generalized instance tracking detection
mechanism means that the overhead of developing new detectors and auto fixes based on
instance tracking is quite low.

195

@Override
public List<NodeToFind> addNodesToFind() {

return Arrays.asList(new NodeToFind("", "", true));
}
@Override
public List<QuickFix> getQuickFixes(AST ast) {

QuickFix quickFix1 = new QuickFix(ast.newSimpleName("setSecure"),
Arrays.asList((Expression)ast.newBooleanLiteral(true)));

return Arrays.asList(quickFix1);
}
@Override
public String[] importsToAdd() {

return new String[0];
}

Listing 27: Code required to auto fix cookies missing the setSecure call

196

Appendix K
Research Paper

The research paper created from the results of this master’s thesis can be found below. This
paper will be submitted to The Asia-Pacific Software Engineering Conference (APSEC)
by the 10th of July 2020.

197

Automatic Detection and Fixing of XXE
Vulnerabilities Using Static Source Code Analysis

and Instance Tracking
Torstein Molland

Norwegian University of Science
and Technology

Trondheim, Norway
torstmol@alumni.ntnu.no

Andreas Nesbakken Berger
Norwegian University of Science

and Technology
Trondheim, Norway

aberger@alumni.ntnu.no

Jingyue Li
Department of Computer Science
Norwegian University of Science

and Technology
Trondheim, Norway
jingyue.li@ntnu.no

Abstract—Web security is an important part of any web-based
software system. XML External Entity attacks are one of the
biggest security risks for web applications, both according to
OWASP and MITRE. A successful XML External Entity attack
can have severe consequences like denial of service, remote code
execution, and information extraction. To better advance the field
of automatic vulnerability fixing, we focused on finding out how
XXE vulnerability detection can be improved, and how automatic
fixing of these vulnerabilities can be done. We have also studied
how a test bed can be designed for evaluating auto fixing tools.
First, we created a test bed containing typical code vulnerable for
XXE. Then, we used the test bed to evaluate one state of the art
XXE vulnerability detector, i.e., FindSecBug. The results of the
evaluation show the weakness of FindSecBugs. We improve the
XXE detectors in FindSecBug by using a novel instance tracking
approach. Our improved detection provides 100% precision and
recall of detecting XXE vulnerability. We have also implemented
auto fixes for XXE vulnerabilities in FindSecBugs. Our research
contributes a novel instance tracking method to detect XXE
vulnerabilities for the tool FindSecBugs, a novel extension for
the tool adding auto fixes for the detected vulnerabilities, and a
novel test bed for the evaluation of the detection and the auto
fixes of XXE.

Index Terms—software security, instance tracking, auto fix,
XXE, AST

I. INTRODUCTION

According to OWASP [1], web vulnerabilities can be classi-
fied into the categories injection, broken authentication, sensi-
tive data exposure, XML External Entities, broken access con-
trol, security misconfiguration, Cross-Site Scripting, insecure
deserialization, using components with known vulnerabilities,
and insufficient logging and monitoring in descending order
of security risk. XML External Entity attacks are ranked as
the fourth most critical security risk to web applications. This
is due to the severe consequences of such an attack being
successfully carried out. XXE can be used for information
extraction, Server Side Request Forgery (SSRF), denial of
service attacks, and remote code execution. The Common
Weakness Enumeration [2] classifies XXE as part of the top
25 most dangerous software errors in their list from 2019
[3]. Two kinds of XML vulnerabilities related to the parsing

of XML Documents are recognized. CWE-611 denotes the
vulnerability that occurs when an XML document which
contains external entities outside of the sphere of control, is
processed which leads to these documents becoming part of
the output [4]. CWE-776 denotes the improper restriction of
recursive entity references in Document Type Definitions [5].

The code below shows an XML parser being instantiated
with default parameters. This parser will be vulnerable to
XXE.
InputStream is = new FileInputStream(filePath);
SAXParserFactory f = SAXParserFactory.newInstance();
SAXParser p = f.newSAXParser();
PrintHandler h = new PrintHandler();
p.parse(is, h);

If an XML parser is vulnerable to XXE, parsing an XML
input like the one listed below will extract information from
the system parsing the XML. In the example below, the passwd
file of a Unix system will be read.
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [

<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >

]>
<foo>&xxe;</foo>

By adding the third line shown in the code listing shown
below, the SAXParser is made secure and is not vulnerable to
XXE.
InputStream is = new FileInputStream(filePath);
SAXParserFactory f = SAXParserFactory.newInstance();
f.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);
SAXParser p = f.newSAXParser();
PrintHandler h = new PrintHandler();
p.parse(is, h);

The same vulnerable parser shown above is also vulnerable
to denial of service, remote code execution, and information
extraction. These attacks are performed by inputting different
XML into the parser. The fixed parser is not vulnerable to any
of these attacks.

In a study done by Späth et al. [6], all the XML parsers
in Java were found to be vulnerable to XXE by default. This
requires the developer to manually add lines of code to make
the parsers secure every time the parser is used to mitigate the
vulnerability. This means that a developer who uses an XML
parser without changing the default settings will be vulnerable

198

to XXE without knowing it. Jan et al. [7] studied the presence
of the Billion Laughs attack and XML External Entities attack
in 13 popular parsers. These parsers were chosen due to being
included with the programming languages Java, Python, PHP,
Perl, and C#. They found that the parsers together had been
used over half a million times. Evaluating the parsers on the
billion laughs attack Jan et al. observed ram usage of above
8Gb and CPU usage of up to 51 minutes depending on the
parser. When checking if open source systems that use the
vulnerable XML parsers DocumentBuilder and SAXParser re-
member to apply mitigation strategies to prevent these attacks,
Jan et al. found that 98.13% of open source projects had
vulnerable parsers.

Oliveira et al. [8] implemented a tool based on WS-
Attacker for testing the security of web service frameworks
by dynamically evaluating them. The tool contains the nine
attack types, i.e., coercive parsing, malformed XML, malicious
attachment, oversized XML, soap array attack, XML bomb,
XML document size, repetitive entity expansion, and XXE.
After evaluating Apache Axis 1 and Apache Axis 2, Oliveira
et al. found that both were vulnerable to numerous of the
vulnerabilities tested including oversized XML and XML
document sizer vulnerabilities. An extension to the dynamic
testing tool WS-attacker for testing DOS attacks against XML
parsers was also created by Falkenberg et al. [9]. In their
evaluation, all the parsers were vulnerable to XXE attacks.

There currently exist present-day tools that can identify
software vulnerabilities using means such as static code anal-
ysis [10, 11], byte code analysis [10, 12, 13, 14], dynamic
analysis [15, 16, 17], pattern matching [13, 14], data flow
analysis [10, 18, 19] and machine learning approaches [20].
Some tools are available as plugins that integrate directly into
the IDE [10, 13, 14] giving developers feedback on possible
vulnerabilities in the code as code is written. However, none
of these tools were found to provide auto fix functionality for
XML vulnerabilities.

To further advance the field of software security by im-
proving the detection of XML vulnerabilities and auto fixing
of XML vulnerabilities, three research questions are proposed:
RQ1: How can a test suite for evaluating web sec auto fixes
be designed?
RQ2: How can detection of XXE be improved?
RQ3: How can auto fixing of XXE be implemented using an
IDE plugin?

Our contributions are:
• A novel test bed for evaluating auto fixes of software

vulnerabilities
• A novel detection mechanism for XXE based on instance

tracking.
• A novel auto fix mechanism for XXE based on modifying

the Abstract Syntax Tree (AST).
The rest of the paper is organized as follows. In section II

the related work is presented. In section III the research
method is detailed. In section IV the result and evaluation
of the test bed, the novel instance tracker approach for XXE,

and the AST based auto fix approach for XXE are shown.
In section V the strengths and weaknesses of each of these
are discussed. Finally, in section VI the conclusion and future
work are presented.

II. RELATED WORK

Vulnerability detection and auto fixing tools are currently
evaluated on different test beds. The Juliet Test Suite [21] is
a collection of vulnerable functions classified by CWE code.
WebGoat [22] is a test bed designed as a complete application
with many web vulnerabilities. ManyBugs [23] is the only test
bed discovered tailored for evaluation of automatic bug fixes,
but the test bed is created for non-security programming bugs
in C.

FindSecBugs [10] is an extension to SpotBugs [24] which
supports 134 different bug patterns. It supports the detection of
XXE vulnerabilities using pattern matching. FindSecBugs uses
data flow analysis and taint analysis for the detection of other
vulnerabilities, like SQL Injections and Cross-Site Scripting.

LAPSE+ [14] is a vulnerability detection tool created
by OWASP. The tool supports detection of XML injection
vulnerabilities. LAPSE+ identifies sources and sinks using
pattern matching and uses a manual provenance tracker which
developers can use to manually check if a source is reachable
from a sink using backward propagation. The tool is no longer
supported by OWASP and has not been updated since 2011
and requires Eclipse Indigo from 2011 to run.

OWASP ASIDE [25] and ESVD [12] do not support
detecting XXE vulnerabilities, however, they provide auto
fixes for vulnerabilities using OWASP’s ESAPI [26] for other
vulnerabilities. These fixes are inserted by modifying the AST.
ESAPI sanitizes inputs, but the API is deprecated, and it is
not recommended to use. Both ASIDE and ESVD propose all
possible auto fixes for each detected vulnerability, e.g., they
propose fixes for SQL Injections for XXE vulnerabilities. Kim
et al. [27] created a tool for automatically fixing non-software
security related bugs. They used Eclipse JDT’s AST API to
apply their fixes to the source code.

III. METHOD

A. Research method to answer RQ1

RQ1 was answered by designing and creating a new test
bed for automatically evaluating the tool to detect and auto
fix XXE vulnerabilities. The test bed is designed based on
flow variants from the Juliet Test Suite. For each test case, a
set of tests for evaluation of the effectiveness and correctness
of detection and auto fix were created. We discovered that
the flow variants from Juliet Test Suite could not sufficiently
detect XML vulnerabilities. Therefore we implemented 11
additional test cases with more complex data flows. These
test cases are created to identify the limits of intraprocedural
analysis in FindSecBugs, i.e. the test cases were limited to
one method, which introduced multiple instances of parsers
and other objects.

199

B. Research design to answer RQ2

To be able to improve the detection of XXE, we started by
identifying the shortcomings of existing tools. FindSecBugs
was discovered to be the best performing tool [28]. Therefore
it was chosen as a basis for our research. The existing XXE
vulnerability detectors in FindSecBugs was evaluated for XXE
using the test bed proposed in answering RQ1.

After the evaluation, we have implemented several new
detectors to address the limitations discovered in FindSecBugs.
The most promising technique was implemented within Find-
SecBugs and evaluated on all the tests in the test bed proposed
in answering RQ1. The detectors were also evaluated on
the entirety of Juliet Test Suite to see if the new detection
would bring any negative side effects, e.g., increased false
positive rate or decreased time performance. Some function
and variable names used are based on a closed pull request to
the FindSecBugs GitHub repository [29].

C. Research design to answer RQ3

Many existing classical bug fix tools and auto fix tools for
software security were found to use AST to perform their auto
fixes and were found to perform well [27, 30]. Additionally,
FindSecBugs was found to be the most promising tool to
extend with auto fix functionality, since it was discovered to
be an extensible tool minimizing the groundwork needed to be
done. RQ3 was answered by designing and creating a new auto
fix mechanism for XXE vulnerabilities based on modifying
the AST. The auto fixes were implemented using parts of
[31] which contains fixes for classical Java bugs detected by
SpotBugs.

IV. RESEARCH RESULTS

The source code for the test bed, the instance tracking based
detectors, and the AST based auto fix tool detailed below have
been made available in [32].

A. Results of RQ1

1) Test Bed Design: To ensure the test bed had a repre-
sentative enough number of test cases for the different flow
variants tested, it was designed based on the flow variants from
the Juliet Test Suite. These test cases were created for the
seven XML parsers included in the test bed, i.e., SAXParser,
DocumentBuilder, EventReader, FilteredReader, Transformer-
Factory, XMLReader, and XMLStreamReader. The first 17
variants from Juliet [33] were chosen since these are the ones
that are applicable to XXE and only include intraprocedural
data flows.

Since Juliet only covers test cases with one parser wrapped
in different control flows, e.g., for-loops and if-statements, we
created additional test cases with more complex data flows.
This included different ways of initializing an object as well
as different ways of invoking methods on an object instance
which may affect the detection and auto fix performance of a
tool. 11 additional test cases were enumerated to better cover
these cases:

• Six test cases with variations of class field and method
variable were added. SAXParser p and SAXParserFactory
f are either a class field or a method variable, for example:
// Test case 1
InputStream is = new FileInputStream(filePath);
// Factory initialized into method variable
SAXParserFactory f = SAXParserFactory.newInstance();
// parser initialized into class field
p = f.newSAXParser();
PrintHandler h = new PrintHandler();
p.parse(is, h);

• Four test cases with multiple parsers being made secure
and insecure in the same method were added. In the code
shown below, SAXParser p1 is vulnerable. SAXParser p2
is secure since the factory f has been made secure prior
to initializing the parser:
// Test case 7
InputStream is = new FileInputStream(filePath);
SAXParserFactory f = SAXParserFactory.newInstance();

SAXParser p1 = f.newSAXParser();
PrintHandler h1 = new PrintHandler();
p1.parse(is, h1); // Insecure

f.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING,
true);

SAXParser p2 = f.newSAXParser();
PrintHandler h2 = new PrintHandler();
p2.parse(is, h2); // Secure

• One test case where an object with the same secure
method as an XML parser, and an XML parser, was
added. If instances are not tracked, it is impossible to
know if the .setFeature() method has been called on the
factory or on a different object. An example of this is
shown below:
// Test case 11
Bar b = new Bar();
// Calls the setFeature method with correct parameters
// but on the wrong object
b.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING,

true);

InputStream is = new FileInputStream(filePath);
SAXParserFactory f = SAXParserFactory.newInstance();
SAXParser p = f.newSAXParser();
PrintHandler h = new PrintHandler();
p.parse(is, h); // Insecure

2) Evaluation Process: The automatic evaluation of the
auto fixes is performed by running a JUnit test suite for the test
cases in the test bed. The JUnit tests check that the auto fixes
preserved the intended functionality of the function and that
it successfully mitigated the vulnerability in the test case. The
evaluation outputs a list showing the broken and the vulnerable
functions after the auto fix is applied. This data can then be
used to calculate the number of successful fixes, missed fixes,
and incorrect fixes. The unit test for checking if a test case is
vulnerable is shown below.
@Test
public void vulnerable() {
Boolean vulnerable = true;
try {

CWE611_XML_External_Entities__SAXParser_01 parser
= new CWE611_XML_External_Entities__SAXParser_01();

String res = parser.bad("bad.xml");

if(res.equals("vulnerable")) {
vulnerable = true;

} else {
vulnerable = false;

}

} catch (SAXParseException e) {
vulnerable = false;

}catch (Throwable e) {

200

e.printStackTrace();
}
assertFalse(vulnerable,

"Parser should not be vulnerable to XXE");
}

3) Automatic Validation of Fixes: The effectiveness of auto
fixes is evaluated by a unit test attempting to parse an XML
file with external entities. If the content of the external entity
is retrieved, then the parser is insecure. If the parser throws a
specific exception, e.g., SAXParserException, for the unit test
shown in the code listing above, then the parser is secure.

The functionality of the test case after the fix is evaluated
by a unit test that parses an XML file without external
entities. The unit test is similar to the unit test evaluating the
effectiveness. The XML document should be parsed correctly
and without any exceptions. If the contents of the XML file
is returned, the test case’s functionality is preserved after the
auto fix.

B. Results of RQ2

1) Results of evaluating existing XXE vulnerability detec-
tors: FindSecBugs already supports detecting vulnerabilities
related to the parsers XMLStreamReader, DocumentBuilder,
SAXParser, XMLReader, and Transformer for Java. This de-
tection was evaluated on XML test cases based on the Juliet
Test Suite, as well as the 11 additional test cases we created
for evaluating instance based vulnerabilities.

The results of evaluating the existing detectors on the flow
variants from the Juliet Test Suite is shown in Table I. Since
the test cases based on the relevant flow variants test different
control flows, but not how these different control flows affect
the methods called on the class instances, it can be expected
that the precision and recall of the existing detectors for the
different parsers are high.

Parser TP FP FN Precision Recall
DocumentBuilder 17 0 0 100% 100%

XMLStreamReader 17 0 0 100% 100%
XMLEventReader 17 0 0 100% 100%

FilteredReader 17 0 0 100% 100%
SAXParser 17 0 0 100% 100%

XMLReader 17 0 0 100% 100%
Transformer 34 0 0 100% 100%

TABLE I
SUMMARY OF THE TRUE POSITIVES, FALSE POSITIVES, AND FALSE

NEGATIVES AFTER EVALUATING THE EXISTING DETECTION ON TEST
CASES BASED ON THE FLOW VARIANT FROM JULIET TEST SUITE FOR

XML VULNERABILITIES

The result of evaluating on the 11 additional test cases
created for evaluating instance based vulnerabilities is shown
in Table II. There is a high number of true positives and a low
number of false positives. However, the high number of false
negatives shows that the detectors miss a lot of vulnerabilities.
All of the detectors were able to handle test case one through
six, which tests different ways of initializing the parser, but
fell through on test case seven through eleven. Test case seven
through ten tests the use of multiple parsers within the same
method. Test case 11 tests the use of a parser and a separate
instance with the same secure method as the parser in the same

method. The reason for the false negatives in test case seven
through 11 is that the existing detectors do not keep track of
which instance the secure calls have been called on.

Parser TP FP FN Precision Recall
DocumentBuilder 6 0 10 100% 38%

XMLStreamReader 6 0 4 100% 60%
XMLEventReader 6 0 4 100% 60%

FilteredReader 6 0 4 100% 60%
SAXParser 6 0 10 100% 38%

XMLReader 2 0 10 100% 17%
Transformer 20 0 12 100% 63%

TABLE II
SUMMARY OF THE TRUE POSITIVES, FALSE POSITIVES, AND FALSE

NEGATIVES AFTER EVALUATING ON TEST CASES CREATED FOR
EVALUATING INSTANCE BASED VULNERABILITIES

The result of evaluating the performance of the existing
detectors for XML vulnerabilities has been summarized in
Table III. The execution time was measured on a PC with
16G of memory and a 3.9GHz CPU using Windows 10 pro.
The test bed detailed in subsection IV-A and the existing Juliet
Test Suite was evaluated separately to show the execution time
for test cases without XML vulnerabilities and test cases with.
FindSecBugs allows enabling and disabling specific detectors.
Therefore, only the XML vulnerability detectors were enabled.
This is useful for comparing the detection performance of
the new detectors presented later. A cold run denotes running
the detection after restarting Eclipse and clearing all the bug
markers. A hot run denotes running the detectors after only
clearing the bug markers. The difference in execution time
for a cold run and a hot run is due to caching performed by
FindSecBugs.

Test suite LOC Execution time
cold run

Execution time
hot run

Test cases with
XML vulnerabil-
ities

24,087 4.6s 1.5s

Juliet Test Suite 5,143,930 84.1s 79.1s
TABLE III

EXECUTION TIME FOR THE EXISTING DETECTORS

2) Instance Tracking: Evaluating the existing detectors in
FindSecBugs showed that the main weakness of the existing
analysis is that it is not capable of knowing which instance the
secure or vulnerable methods have been called on. Therefore,
a detector that can track the instance and the methods called
on this instance is needed.

The instance tracking approach we implemented is ex-
plained in the flow chart shown in Figure 1.

The approach can be broken down into four steps:
1) Find the instances to track: In this step, the opcodes

corresponding to object initialization are used to find
which instances to track the calls of. These instances
are identified by their initialization instruction. The
pseudocode for this step is shown below

201

Find Instance to track Change tracked instance Find secure and vulnerable calls
for instance

Select opcode from
stack

Check if instruction
initializes instance

No

Add to list of tracked
objects Yes

No

Invocation on
tracked instance

Check if invocation on
tracked instance

Check if return value
of invocation is

tracked

No

YesTracked return
value?

Add returned instance
to tracked instance

Check tracked calls

Yes

No Call insecure?

Mark instance as
vulnerable

Mark instance as
secure

Add vulnerabilities for
vulnerable calls

Yes

Instance
initialized?

Check for more opcodes and
report

Check if there are
more opcodes

No

Yes

More opcodes? Report vulnerabilities
found on instances

Start End

Fig. 1. Flow chart for the instance tracking approach

for each opcode in method
if opcode is in list of initialization instructions
add instance to list of tracked instances
add vulnerabilities to the instance

end if
end for

2) Combine instances that should be treated as the same
instance: In this step, the opcodes corresponding to
methods called on an instance being tracked are ana-
lyzed to find instances that should be tracked as part
of the same instance with the same vulnerabilities. The
pseudocode for this step is shown below
for each opcode in method

if opcode is invocation instruction
if invocation invoked on tracked instance

add the return value to the tracked instance
end if

end if
end for

3) Identify the secure and vulnerable calls called on the
tracked instances: In this step, the methods called on an
instance being tracked are analyzed to identify methods
that make the instance secure, and methods that make
the instance vulnerable. The pseudocode for checking
the calls is shown below
if invocation is singular tracked call

if parameters of invocation corresponds to tracked call
mark call as found
if call is secure:

remove the vulnerability reported by it
end if
if call is vulnerable:

add the vulnerability reported by it
end if

end if
end if
if invocation is multiple tracked call
for each singular tracked call

if parameters of invocation corresponds\
to tracked call

if singular call is secure
mark call as found

end if
if singular call is vulnerable
mark call as not found
add the vulnerability reported by

the multiple tracked call
end if

end if
end for
if all singular calls for multiple tracked call found

remove the vulnerability reported by it
end if

4) Report the vulnerabilities found for each instance: In
this step, all the vulnerabilities found for each tracked
instance are reported. The pseudocode for this step is

shown below
for each tracked instance

for each vulnerability
report vulnerability

end for
end for

A summary of the evaluation on the 11 test cases created for
evaluating instance based vulnerabilities is shown in Table IV.
There is a high number of true positives and a low number
of false positives. Additionally, there is a low number of false
negatives compared to the results shown in Table II. Compared
to the existing detectors in FindSecBugs, a higher number of
vulnerabilities were identified.

Parser TP FP FN Precision Recall
DocumentBuilder 16 0 0 100% 100%

XMLStreamReader 10 0 0 100% 100%
XMLEventReader 10 0 0 100% 100%

FilteredReader 10 0 0 100% 100%
SAXParser 16 0 0 100% 100%

XMLReader 12 0 0 100% 100%
Transformer 32 0 0 100% 100%

TABLE IV
SUMMARY OF THE TRUE POSITIVES, FALSE POSITIVES, AND FALSE

NEGATIVES AFTER EVALUATION OF THE PARSERS

The new detectors were also evaluated on the test cases
based on the flow variants in Juliet. The results are shown in
Table V. As can be seen, the new detectors are still able to
identify all the test cases based on the control and data flow
variants from the tests based on Juliet. The new detectors were
also run on the entirety of the existing Juliet Test Suite which
does not include any test cases for XXE. The results show that
the changes do not lead to any negative side-effects.

Parser TP FP FN Precision Recall
DocumentBuilder 17 0 0 100% 100%

XMLStreamReader 17 0 0 100% 100%
SAXParser 17 0 0 100% 100%

XMLReader 17 0 0 100% 100%
Transformer 34 0 0 100% 100%

TABLE V
SUMMARY OF THE TRUE POSITIVES, FALSE POSITIVES, AND FALSE

NEGATIVES AFTER THE PRELIMINARY EVALUATION OF THE PARSERS ON
THE JULIET STYLE TEST CASES

The result of evaluating the performance of the new de-
tectors for XML vulnerabilities have been summarized in
Table VI. The execution time was measured on a PC with 16G
of memory and a 3.9GHz CPU using Windows 10 pro. The
test bed detailed in subsection IV-A and the existing Juliet Test
Suite was evaluated separately to show the execution time for
test case without XML vulnerabilities and test cases with. A
cold run denotes running the detection after restarting Eclipse
and clearing all the bug markers. A hot run denotes running the
detectors after only clearing the bug markers. The difference
in execution time for a cold run and a hot run is due to caching
performed by FindSecBugs.

C. Results of RQ3

In this section, a novel auto fix approach for instance related
vulnerabilities based on traversing and modifying the AST is

202

Test suite LOC Execution time
cold run

Execution time
hot run

Test cases with
XML vulnerabil-
ities

24,087 4.21s 1.75s

Juliet Test Suite 5,143,930 110s 98.9s
TABLE VI

EXECUTION TIME FOR INSTANCE TRACKING DETECTORS

presented. This is useful for developers who are not domain
experts to help them mitigate XML vulnerabilities by inserting
the fixes at the correct location in the code. Given a detection
mechanism, it is desirable with an auto fix mechanism to make
mitigating the vulnerabilities easier. There are many different
APIs and features that need to be set for different parsers to
make them secure. Having an auto fix mechanism will help
reduce the complexity, time, and effort spent identifying the
correct fixes for the different parsers.

The AST based auto fix approach is summarized in Figure 2.

Find AST node of
vulnerability

Check if vulnerable
method called on

variable or directly on
instance

No

Yes

Called directly
on instance?

Split AST node of
initialization of instance
and method invocation

Insert AST nodes to fix
after initialization

Traverse AST nodes

Find Node Apply FixPrepare AST node for
auto fix

Check if more than one
method invocation on

the AST node

Yes NoMore than one
invocation?

Check if AST node
where instance

initialized is found

No

YesAST node
found?

YesStart

End

Fig. 2. Flow chart for the auto fixing approach

The approach can be broken down into three steps:
1) Find node to insert auto fix on: In this step, the lo-

cation of the vulnerability reported by a vulnerabil-
ity detector is used to find the AST node to insert
the auto fix on. First, the AST node of the vulner-
able source code line is obtained. Then a check is
made to identify if the vulnerable method is called
on a variable, e.g. for p.parse() the vulnerable method
parse is called on the p variable, or directly on
an instance, e.g. for SAXParserFactory.newInstance().
newSAXParser().parse() the vulnerable method parse is
called directly on the instance created. If the vulnerable
method is called on a variable, then the auto fix approach
attempts to traverse the predecessors of the AST nodes
of this variable until it finds the AST node of the variable
where the instance to be auto fixed was initialized to. It
does this by matching the names of the variables with
each other.
For the vulnerable parser example shown in section I,
the AST node of p.parse() is found to be initialized
by f.newSAXParser() so a mapping between p and f
is made. Then f is found to have been initialized by
SAXParserFactory.newInstance() so a mapping between
f and SAXParserFactory.newInstance() is made. The
type of this node is SAXParserFactory, which is used

to determine that an instance where the auto fix should
be inserted has been found. The pseudocode for this step
is shown below
vulnerableNode = null
nodeToFix = null
visit each node n in class:

if n corresponds to vulnerability location:
vulnerableNode = n

visit each node n1 in vulnerableNode:
if vulnerable method called on variable:

visit each node n2 in parent method:
if variable initialized:

nodeToFix = n2
if vulnerable method called on instance:

nodeToFix = n1

2) Prepare node for auto fix insertion: In this step, a
check is first made to identify if there are mul-
tiple methods invoked on the AST node. If there
are, then the AST node of the initialization of the
instance and the remaining calls are split up us-
ing an auxiliary variable. E.g. for SAXParserFactory.
newInstance().newSAXParser().parse(), the fix should be
inserted on the AST node between SAXParserFactory.
newInstance() and .newSAXParser().parse(). Hence why
SAXParserFactory.newInstance() first needs to be stored
in a variable e.g. f, and then the remaining calls are
called on this variable e.g. f.newSAXParser().parse().
The pseudocode for this step is shown below
nodeToFix = node
numberOfMethodCalls = 0
visit each node n in nodeToFix:

if node is method call:
numberOfMethodCalls++

if numberOfMethodCalls > 1:
instance = nodeToFix.instance
remainingCalls = nodeToFix.calls

else:
instance = nodeToFix

3) Apply auto fix: In this step, the AST nodes correspond-
ing to the missing secure method calls are inserted after
the initialization of the instance by modifying the AST.
The result of this is equivalent to inserting line three
in the secure parser example shown in section I. The
necessary imports are also added. The pseudocode for
this step is shown below
instance = node
fixes = list of fixes to apply
imports = list of imports to add
for each fix in fixes:

instance.insertCall(fix)
end for
for each import in imports:

instance.parentClass.add(import)
end for

A summary of the evaluation of the auto fix on the 11
test cases created for evaluating vulnerable instances is shown
in Table VII. There is a high number of successful fixes
for all the parsers. The number of successful fixes, missed
fixes, and incorrect fixes for DocumentBuilder, SAXParser,
and Transformer are identical. There were no missed fixes.
The incorrect fixes are due to the auto fix not removing or
modifying code that makes a factory explicitly vulnerable. A
minimal example of such a case is shown below. The fix is
inserted on the second line making the factory secure which
in turn makes parser p1 secure. However, line four makes the
factory insecure again making parser p2 insecure. If line four
is manually removed by a developer, then the fix inserted on

203

line two makes both parser p1 and p2 secure.
SAXParserFactory f = SAXParserFactory.newInstance();
f.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, true);
SAXParser p1 = f.newSAXParser();
f.setFeature(XMLConstants.FEATURE_SECURE_PROCESSING, false);
SAXParser p2 = f.newSAXParser();

The new detectors described in subsubsection IV-B2 will
keep reporting these parsers as vulnerable, and notify the
developer that they need to remove the insecure code for the
auto fixes to be effective. These fixes were still regarded as
incorrect fixes since a future improvement would be to give the
developer the option to automatically remove the vulnerable
code as part of the auto fix.

Parser Successful fixes Missed fixes Incorrect fixes
DocumentBuilder 14 0 2

XMLStreamReader 9 0 1
XMLEventReader 9 0 1

FilteredReader 7 0 3
SAXParser 14 0 2

XMLReader 10 0 2
Transformer 14 0 2

TABLE VII
SUMMARY OF THE SUCCESSFUL FIXES, MISSED FIXES, AND INCORRECT

FIXES AFTER EVALUATING THE AUTO FIXES

The auto fixes were also evaluated on the test cases based
on Juliet. The result of this evaluation is shown in Table VIII.
As can be seen, the auto fixes were successfully able to fix
all the vulnerabilities in these test cases with no missed or
incorrect fixes.

Parser Successful fixes Missed fixes Incorrect fixes
DocumentBuilder 17 0 0

XMLStreamReader 17 0 0
XMLEventReader 17 0 0

FilteredReader 17 0 0
SAXParser 17 0 0

XMLReader 17 0 0
Transformer 17 0 0

TABLE VIII
SUMMARY OF THE SUCCESSFUL FIXES, MISSED FIXES, AND INCORRECT
FIXES AFTER EVALUATING THE AUTO FIX MECHANISM ON THE JULIET

STYLE TEST CASES

The result of evaluating the performance of the auto fixes for
XML vulnerabilities is shown in Table IX. The execution time
was measured on a PC with 16G of memory and a 3.9GHz
CPU using Windows 10 pro. These numbers were obtained
by fixing all vulnerabilities for each parser using the test bed
detailed in subsection IV-A. As can be seen, auto fixing close
to 30 vulnerabilities takes less than a second for each parser.

Parser Number of vulnerabilities Execution time
DocumentBuilder 33 668ms

XMLStreamReader 27 604ms
XMLEventReader 27 764ms

FilteredReader 27 684ms
SAXParser 34 861ms

XMLReader 29 799ms
Transformer 33 807ms

TABLE IX
EXECUTION TIME FOR AUTO FIXES

V. DISCUSSION

Comparing to existing test beds, e.g., Juliet Test Suite [21],
WebGoat [22], and ManyBugs [23], the automatic evaluation
of auto fixes of web vulnerabilities for Java is the main
contribution of the test bed. No such feature exists for security
auto fixing tools. The automatic evaluation makes checking the
performance of auto fixing tools much simpler than it would be
without this feature. This test bed allows researchers to quickly
and easily do a thorough evaluation of their auto fixing tool.
The test bed also has more robust testing of intraprocedural
data flows than Juliet. The test bed also includes cases for
XXE, which is not found in other test beds like Juliet.

The main strength of the new detectors based on the
instance tracking approach is that they are able to handle more
complex control and data flow variants with no false positives,
compared to FindSecBugs. All of the Juliet style test cases and
all the instance based test cases in our test bed are handled by
instance tracking.

The instance tracking approach handles a general number
of parameters, secure and insecure calls, and singular and
multiple calls needed to determine if a parser is secure. The
sequence of the calls called on the instance is kept track of,
which means that the approach is able to identify when an
instance is vulnerable and when it is secure. Due to keeping
track of the calls performed on different instances, it is also
capable of knowing which parsers within a method that is
vulnerable and which is secure.

The main strength of the new detector implementations
based on the instance tracking approach is that they are able
to handle more complex control and data flow variants in
addition to the simplest forms of XML vulnerabilities with
no false positives, compared to FindSecBugs. All of the Juliet
style test cases and all the instance based test cases are
handled by this approach. Another strength of the instance
tracking we implemented for XXE is that it is generalizable to
other vulnerabilities with insecure instances, such as insecure
cookies. In java, cookies are not set as secure by default [34].
After creating a cookie, the method .setSecure(true) needs to
be called on the cookie instance to make it secure. Therefore,
the cookie can be viewed as a vulnerable instance missing the
setSecure call, which can be handled by the instance tracking
approach presented in this paper.

The main weakness of the instance tracking we imple-
mented so far is that it performs only intraprocedural analysis
and not interprocedural analysis. However, it was designed to
perform only intraprocedural analysis to focus on supporting
the auto fixing tool.

Another weakness of the instance tracker is that it takes
longer to run compared to the existing detectors. However, our
evaluation shows that is only 31% slower than FindSecBugs’
XXE detectors on 5 million lines of code and the performance
is comparable on 24K lines of code. Additionally, this is only
a one-time penalty due to FindSecBugs only scanning files
that have changed after the initial run.

The main strength of the auto fixes we implemented is that
they provide specific auto fix suggestions for XXE. This allows

204

bulk auto fixes to be performed. ASIDE [25] and ESVD [12]
suggests all auto fixes for each detected vulnerability.

When applying fixes to source code using ASTs, developers
are assured that the code change will not break the semantics
of the code. This means that the fix will not leave any incorrect
tokens such as curly braces or commas.

Our implementation of the auto fix approach has been
done in a generalizable manner. The core algorithm has been
extracted to a superclass allowing subclasses to supply the
algorithm with which nodes to look for, and which AST nodes
to insert to perform the auto fix. The approach can be used to
auto fix other vulnerabilities with insecure instances, such as
insecure cookies.

The main weakness of our AST based auto fix approach
is that it cannot fix parsers that have been made explicitly
vulnerable through calls to insecure methods as explained
in subsection IV-C. The insecure calls need to be manually
removed by a developer for the fixes to be effective. Another
weakness of our implementation at the moment is that it only
supports intraprocedural fixes and not interprocedural fixes
because our detectors implemented currently only support
intraprocedural analysis.

Our auto fixes are backward compatible with the existing
detectors in FindSecBugs which means that they can be
applied using the existing detectors and the instance tracking
based detectors we have implemented. FindSecBugs reports
a vulnerability where it can be exploited not where the fix
should be inserted. These two locations may differ as well
as the instance the fix should be inserted on. For the secure
parser example shown in section I, the vulnerability is reported
on line six on the SAXParser instance, but the fix is inserted
on line three on the SAXParserFactory instance. Extending
FindSecBugs means that the auto fix needs to traverse the
AST to find the location of and which instance the fix should
be inserted on. This makes the auto fixes more complicated.
If instead the vulnerability was reported where the fix should
be inserted, the location of and the instance to fix could be
directly obtained.

A. Threats to Validity

1) Threats to Internal Validity: The soundness of our
findings depends on the soundness of Eclipses APIs and
FindSecBugs’ underlying detection framework. If these do not
perform as intended, the auto fixing tool proposed will not
perform as demonstrated. This risk is the reason that improving
the detection was made to be a part of this research. To reduce
the risk of incorrect detection by FindSecBugs the tool was
evaluated thoroughly, and changes were made to ensure a
better and more reliable detection mechanism.

The auto fixes may be tailored for the test bed. This would
result in better evaluation scores when evaluating the auto fixes
and detection on this test bed than on other test beds. This was
mitigated by examining known detection and fixing techniques
and evaluating these as objectively as possible.

2) Threats to External Validity: One threat to the external
validity of our research is the limited test bed used for

evaluation. The results of this evaluation cannot simply be
generalized and compared to results from evaluations on other
test beds. This is the result of possible selection bias when
creating test cases for the test bed. To mitigate selection bias,
the test bed was made to be as similar as possible to the
Juliet Test Suite, the most common test bed for evaluation of
security analysis tools. This should help ensure our results are
comparable to evaluations on other test beds. The evaluations
done in this study also only focused on intraprocedural data
flows. The results can therefore not be directly compared to
results of tools evaluated on test beds including interprocedural
data flows.

Another threat is that the study was based on FindSecBugs
and the Eclipse IDE and its APIs. FindSecBugs might be
implemented differently than other analysis tools, and Eclipse
could have APIs that are not found in other IDEs. This could
mean that the results discovered for adding auto fixes to
Eclipse based on FindSecBugs might not be applicable for
other analysis tools and other IDEs. To avoid this, generalized
approaches such as modifying an AST and using data flow
analysis were used.

VI. CONCLUSION AND FUTURE WORK

A test bed for evaluation of detection and auto fixes of XXE
has been proposed. Using this test bed the state of the art in the
detection of XXE vulnerabilities has been evaluated. A novel
instance tracking approach has been proposed and evaluated
using the test bed. A novel auto fix approach based on AST for
fixing XXE vulnerabilities is also proposed. Our results show
that the test bed is effective for evaluating XXE detectors and
auto fixes. Instance tracking was found to perform significantly
better than the existing state of the art detectors for XXE
vulnerabilities with high numbers of precision and recall. The
auto fixes were able to fix a high number of vulnerabilities
with a high number of successful fixes, and a low number of
missed or incorrect fixes. The performance impact of instance
tracking is only 31% slower on 5 million lines of code and
comparable on 24k lines of code. The performance impact of
auto fixing is negligible.

Future work is to add interprocedural support to the test
bed, the instance tracking approach, and the auto fix approach.
Additional support for more parsers can be added to the test
bed, and detectors and auto fixes can be created for these.
The generation of test cases can be automated. A study can
be conducted to figure out where developers want the bug
to be reported by the detectors. The auto fixes should let the
developer remove vulnerable code as part of adding the secure
calls. Additionally, if parts of the secure calls are present the
auto fixes should only add the remaining ones.

REFERENCES

[1] The OWASP Foundation, “Owasp top 10 -
2017,” 2017, accessed January 21st, 2019. [Online].
Available: https://www.owasp.org/images/7/72/OWASP
Top 10-2017 (en).pdf.pdf

205

[2] MITRE, “Common vulnerabilities and exposures (cve),”
2019, accessed September 22, 2019. [Online]. Available:
https://cwe.mitre.org/

[3] ——, “Cwe view: Weaknesses in the 2019 cwe top
25 most dangerous software errors,” 2019, accessed
November 23, 2019. [Online]. Available: https://cwe.
mitre.org/data/definitions/1200.html

[4] ——, “Cwe-611: Improper restriction of xml external
entity reference,” 2019, accessed Jun 01, 2020. [Online].
Available: https://cwe.mitre.org/data/definitions/611.html

[5] ——, “Cwe-776: Improper restriction of recursive
entity references in dtds (’xml entity expansion’),”
2019, accessed Jun 01, 2020. [Online]. Available:
https://cwe.mitre.org/data/definitions/776.html

[6] C. Späth, C. Mainka, V. Mladenov, and J. Schwenk,
“Sok: Xml parser vulnerabilities,” in WOOT, 2016.

[7] S. Jan, C. D. Nguyen, and L. Briand, “Known xml vul-
nerabilities are still a threat to popular parsers and open
source systems,” in 2015 IEEE International Conference
on Software Quality, Reliability and Security, Aug. 2015,
pp. 233–241.

[8] R. A. Oliveira, N. Laranjeiro, and M. Vieira,
“Wsfaggressor: An extensible web service framework
attacking tool,” in Proceedings of the Industrial
Track of the 13th ACM/IFIP/USENIX Interna-
tional Middleware Conference, ser. MIDDLEWARE
’12. New York, NY, USA: Association for
Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2405146.2405148

[9] A. Falkenberg, C. Mainka, J. Somorovsky, and
J. Schwenk, “A new approach towards dos penetration
testing on web services,” in 2013 IEEE 20th International
Conference on Web Services, 2013, pp. 491–498.

[10] P. Arteau, “Find Security Bugs,” 2019, accessed
September 22, 2019. [Online]. Available: https:
//find-sec-bugs.github.io/

[11] F. Yan and T. Qiao, “Study on the detection of cross-site
scripting vulnerabilities based on reverse code audit,” in
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 9937 LNCS. Springer Verlag,
2016, pp. 154–163.

[12] L. Sampaio and A. Garcia, “Exploring context-sensitive
data flow analysis for early vulnerability detection,”
Journal of Systems and Software, vol. 113, pp. 337 –
361, 2016. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121215002873

[13] OWASP, “OWASP ASIDE Project,” 2016, accessed
September 22, 2019. [Online]. Available: https://www.
owasp.org/index.php/OWASP ASIDE Project

[14] The OWASP Foundation, “OWASP LAPSE Project,”
2017, accessed September 22, 2019. [Online].
Available: https://www.owasp.org/index.php/OWASP
LAPSE Project

[15] C. Artho and A. Biere, “Combined static and dynamic
analysis,” in Electronic Notes in Theoretical Computer

Science, vol. 131, May 2005, pp. 3–14.
[16] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A

checksum-aware directed fuzzing tool for automatic soft-
ware vulnerability detection,” in 2010 IEEE Symposium
on Security and Privacy, May 2010, pp. 497–512.

[17] G. Novark, E. D. Berger, and B. G. Zorn, “Exterminator:
Automatically correcting memory errors with high
probability,” Commun. ACM, vol. 51, no. 12, pp. 87–95,
Dec. 2008. [Online]. Available: http://doi.acm.org/10.
1145/1409360.1409382

[18] L. Sampaio, “Early Security Vulnerability Detector
- ESVD,” 2019, accessed September 22, 2019.
[Online]. Available: https://marketplace.eclipse.org/
content/early-security-vulnerability-detector-esvd/

[19] J. Thomé, L. K. Shar, D. Bianculli, and L. C. Briand,
“Joanaudit: A tool for auditing common injection
vulnerabilities,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2017. New York, NY, USA: ACM, 2017,
pp. 1004–1008. [Online]. Available: http://doi.acm.org/
10.1145/3106237.3122822

[20] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir,
L. R. Kosta, A. Rangamani, L. H. Hamilton, G. I.
Centeno, J. R. Key, P. M. Ellingwood, E. Antelman,
A. Mackay, M. W. McConley, J. M. Opper, P. Chin,
and T. Lazovich, “Automated software vulnerability
detection with machine learning,” Feb. 2018. [Online].
Available: http://arxiv.org/abs/1803.04497

[21] NIST, “Test suites,” 2017, accessed October 29,
2019. [Online]. Available: https://samate.nist.gov/SRD/
testsuite.php

[22] OWASP, “Webgoat project,” 2019, accessed December
4, 2019. [Online]. Available: https://www2.owasp.org/
www-project-webgoat/

[23] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun,
P. Devanbu, S. Forrest, and W. Weimer, “The manybugs
and introclass benchmarks for automated repair of c
programs,” IEEE Transactions on Software Engineering,
vol. 41, no. 12, pp. 1236–1256, Dec. 2015.

[24] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”
SIGPLAN Not., vol. 39, no. 12, pp. 92–106, Dec. 2004.
[Online]. Available: http://doi.acm.org/10.1145/1052883.
1052895

[25] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton, “ASIDE:
IDE support for web application security,” in ACM Inter-
national Conference Proceeding Series, 2011, pp. 267–
276.

[26] OWASP, “Owasp enterprise security api,”
accessed November 21, 2019. [Online].
Available: https://www.owasp.org/index.php/Category:
OWASP Enterprise Security API

[27] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic
patch generation learned from human-written patches,”
in Proceedings - International Conference on Software
Engineering. IEEE Computer Society, 2013, pp. 802–
811.

206

[28] T. D. Oyetoyan, B. Milosheska, M. Grini, and D. Soares
Cruzes, “Myths and facts about static application security
testing tools: An action research at telenor digital,” in
Lecture Notes in Business Information Processing, vol.
314. Springer Verlag, 2018, pp. 86–103.

[29] MaxNad, “Implement a base detector to track
specific calls (#211),” 2016, accessed Jun 19, 2020.
[Online]. Available: https://github.com/find-sec-bugs/
find-sec-bugs/pull/220

[30] V. Balachandran, “Fix-it: An extensible code auto-fix
component in review bot,” in IEEE 13th International
Working Conference on Source Code Analysis and Ma-
nipulation, SCAM 2013. IEEE Computer Society, 2013,
pp. 167–172.

[31] kjlubick, “fb-contrib eclipse quick fix plugin,” accessed
November 19, 2019. [Online]. Available: https://github.
com/kjlubick/fb-contrib-eclipse-quick-fixes

[32] A. Berger and T. Molland, “xxe-autofix-tool,” 2020,
accessed Jun 21, 2020. [Online]. Available: https:
//github.com/Berger-and-Molland/xxe-autofix-tool

[33] NIST, “Juliet test suite v1.2 for java user
guide,” 2012, accessed May 12, 2019. [Online].
Available: https://samate.nist.gov/SRD/resources/Juliet
Test Suite v1.2 for Java - User Guide.pdf

[34] The OWASP Foundation, “Secure Cookie Flag,” 2020,
accessed Jun 01, 2020. [Online]. Available: https:
//owasp.org/www-community/controls/SecureFlag

207

Andreas N
esbakken Berger and Torstein

M
olland

Autom
atic D

etection and Fixing of XXE Vulnerabilities U
sing Static Source Code Analysis and Instance Tracking

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Andreas Nesbakken Berger and Torstein Molland

Automatic Detection and Fixing of XXE
Vulnerabilities Using Static Source Code
Analysis and Instance Tracking

Master’s thesis in Computer Science

Supervisor: Jingyue Li

June 2020

	Summary
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Static Code Analysis
	Pattern Matching
	Control Flow
	Data Flow
	Bytecode Analysis
	Source, Sink, and Sanitizer
	Early and Late Detection

	Java Virtual Machine
	Abstract Syntax Trees
	Evaluation Metrics
	OWASP Top 10 2017
	A1:2017-Injection
	A2:2017-Broken Authentication
	A3:2017-Sensitive Data Exposure
	A4:2017-XML External Entities (XXE)
	A5:2017-Broken Access Control
	A6:2017-Security Misconfiguration
	A7:2017-Cross-Site Scripting (XSS)
	A8:2017-Insecure Deserialization
	A9:2017-Using Components with Known Vulnerabilities
	A10:2017-Insufficient Logging and Monitoring

	Other Web Application Vulnerability Classifications
	Session management

	Importance of Mitigating XXE
	Mitigation Strategies for XXE Vulnerabilities

	Common Weakness Enumeration (CWE)
	Static Analysis and Automatix Code Fixing in IDEs
	Description of Tools to be Extended
	FindSecBugs Project Structure
	SpotBugs Project Structure

	Related Work
	Existing Detection and Auto Fix Tools for Software Security
	ASIDE
	ESVD
	FindSecBugs
	JoanAudit
	LAPSE+
	Snyk

	Detection and Auto Fix Methods
	Overview of Detection Methods
	Auto Fixing Based on Bytecode Analysis
	Dynamic Analysis for Auto Fixing
	Pattern Matching
	Data Flow Analysis for Auto Fixing
	Machine Learning Approaches
	Other Security Auto Fixing Approaches
	Classical Auto Bug Fixes
	General Limitations of Existing Auto Fix Tools

	Existing Test Beds
	Test Beds Used for Evaluations of Vulnerability Detection and Fixing Approaches
	Classical Test Beds
	Metrics used for Evaluation
	Evaluation Methodology

	Studies into the Prevalence of XML External Entities

	Research Design
	Motivation
	Research Questions
	Research Method
	Participants
	Research Paradigm
	Final Deliverables and Dissemination

	Research Implementation
	RQ1: How can a Test Suite for Evaluating Web Sec Auto Fixes be Designed for XML External Entity attacks?
	RQ2: How can Detection of XXE be Improved?
	RQ3: How can Auto Fixing of XML External Entities be Implemented using an IDE Plugin

	Research Results
	RQ1: How can a Test Suite for Evaluating Web Sec Auto Fixes be Designed for XML External Entity attacks?
	Design of Existing Test Beds
	Explanation of Juliet Style Test Cases
	Explanation of Instance Based Test Cases
	Included XML Parsers
	Evaluation Process using the Test Bed
	Testing the Functionality After Applying the Auto Fixes
	Testing the Effectiveness of the Auto Fixes
	Output of Automatic Evaluation of Fixes

	RQ2.1: What are the Shortcomings of Existing Static Analysis Tools for the Detection of XML External Entity Attacks?
	Analyzing the Approach used by Existing XXE Detectors in FindSecBugs
	Evaluation of the Existing XML Detectors in FindSecBugs

	RQ2.2 How can the Detection of XML External Entities be Improved using Different Techniques?
	Instruction Based Data Flow Analysis Approach
	Evaluation Results of Instruction Based Data Flow Analysis
	Instance Tracking Analysis Approach
	Evaluation of Instance Tracking Based XXE Detectors
	Evaluation on Built in Test Cases in FindSecBugs

	RQ3: How can Auto Fixing of XML External Entities be Implemented using an IDE Plugin
	AST Based Auto Fix Approach for XML External Entities
	Evaluation of AST based Auto Fixes
	Summary of Auto Fix Evaluation Results
	Dependence of Auto Fixes on Correctness of Detection

	Discussion
	RQ1: How can a Test Suite for Evaluating Web Sec Auto Fixes be Designed for XML External Entity Attacks?
	Comparison with Classical Auto Fixing Test Beds
	Comparison With Other Software Security Test Beds
	Strengths and Weaknesses of Test Bed Design
	Comparison with Related Work

	RQ2.1: What are the shortcomings of existing static analysis tools for the detection of XML External Entity attacks?
	Strengths and Weaknesses of the Existing Detection of XXE in FindSecBugs
	Comparison with Related Work

	RQ2.2: How can the Detection of XML External Entities be Improved using Different Techniques?
	Strengths and Weaknesses of Instruction Based Data Flow Analysis
	Strengths and Weaknesses of Instance Tracking
	Extending FindSecBugs for Detection Compared to Making Stand Alone Tool
	Different Mitigation Strategies for XXE Vulnerabilities
	Comparison with Related Work

	RQ3: How can Auto Fixing of XML External Entities be Implemented using an IDE Plugin
	Strengths and Weaknesses of using AST Based Auto Fixes
	Strengths and Weaknesses of Backwards Compatible Auto Fixes
	Comparison with Related Work

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Conclusion and Future Work
	Summary of Related Work
	Research into Detection
	Research into Fixing
	Test Beds and Testing Methods

	Research Motivation
	Contributions and Conclusion
	RQ1: How can a test suite for evaluating web sec auto fixes be designed for XML External Entity attacks?
	RQ2.1: What are the shortcomings of existing static analysis tools for the detection of XML External Entity attacks?
	RQ2.2 How can the Detection of XML External Entities be Improved Using Different Techniques?
	RQ3: How can auto fixing of XML External Entities be implemented using an IDE plugin

	Future Work
	Improve Test Bed
	Improve Detection
	Improve Auto Fixing

	Bibliography
	Appendix
	Appendix Summaries of Papers About Auto Fix Tools
	Appendix Prestudy
	Implementation of the Literature Review
	Implementation of Empirical Evaluation of Existing Auto Fix Tools
	Results of Evaluating Tools
	Q1.1: What are the Existing Tools in the Market Today?

	Results of the Literature Review
	Q1.2: What are the Strengths and Weaknesses of Different Software Security Tools?
	Q2: The state of the Art In Evaluating Auto Fixing Tools and Methods

	Strengths and Weaknesses of Existing Approaches
	Limitations of Existing Tools
	Limitations of Existing Test Beds

	Appendix Test Bed Use Cases
	Appendix Test Case Flow Variants
	Instance Based Flow Variants
	Flow Variants in Juliet Test Suite

	Appendix Implementation Details of Existing XML Vulnerability detectors in FindSecBugs
	Appendix Implementation of Instruction based Data Flow Analysis
	Appendix Implementation of XML Vulnerability Detectors using Instance Tracking
	Implementation of Instance Tracking Approach
	The BetterDocumentBuilderDetector class
	The BetterSAXParserDetector class
	The BetterXmlStreamReaderDetector class
	The BetterTransformerFactoryDetector class
	The BetterXMLReaderDetector class

	Appendix Implementation of Detection of Insecure Cookies
	Appendix Implementation of the Auto Fix Approach
	Auto Fixing using Instance Tracking Resolution
	The DocumentBuilderResolution class
	The SAXParserResolution class
	The XMLStreamReaderResolution class
	The TransformerResolution class
	The XMLReaderResolution class

	Benefits of Extending FindSecBugs

	Appendix Implementation of AST based Auto Fixes of Insecure Cookies
	Appendix Research Paper

