
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Mohamed Ismail

HW/SW Co-design Implementation of
Hyperspectral Image
Classification Algorithm

Master’s thesis in Embedded Computing Systems

Supervisor: Milica Orlandic

June 2020

Mohamed Ismail

HW/SW Co-design Implementation of
Hyperspectral Image
Classification Algorithm

Master’s thesis in Embedded Computing Systems
Supervisor: Milica Orlandic
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

Hyperspectral Imager for Oceanographic Applications (HYPSO) mission is being de-
veloped as a part of SmallSat laboratory at NTNU. The goal of the mission is to develop,
launch, and operate a series of small satellites specially made for maritime observation
and surveillance, e.g. monitoring of algae, plankton, oil spills, arctic ice etc. Satellites
will be equipped with Zynq-7000 on-board processing system consisting of ARM®-based
processor with the hardware programmability of an FPGA.

In this thesis, on-board hyperspectral image classification on FPGA is explored. Based
on the hyperspectral data collected by the satellites, the detection of algae blooms or
other material in the Norwegian sea can processed by classification. Classification aims
to distinguish and label material signatures on a given hyperspectral image. This thesis
presents implementations of clustering-type unsupervised classification algorithms for
hyperspectral images. Two algorithms are implemented in software; a novel segment-
based clustering algorithm and a spectral clustering algorithm. The software implement-
ations are implemented in MATLAB R2019a and Python 3.7.3, respectively. Expirements
on the algorithms are carried on 8 different publicly available hyperspectral scenes with
ground truth data and results are compared with a state-of-the-art segment-based clus-
tering method using NMI and Purity evaluation scores. Results of the software experi-
ments are further analysed prior to FPGA implementation.

Based on the software analysis, spectral clustering algorithm is implemented as a
novel hardware-software partitioned system on Xilinx Zynq-7000 development plat-
form. The hardware-software co-design is implemented to gain the most efficiency com-
pared to the standalone software solution. FPGA VHDL modules for graph construction
are developed and synthesized using Xilinx Vivado Design Suite 2019.1 and HDL Coder™

R2020a from MathWorks. Eigenvalue and eigenvector decomposition is implemented
using Vivado HLS 2019.1 and synthesized using Xilinx Vivado tool. This implement-
ation illustrates productivity benefits of a C-based development flow using high-level
synthesis (HLS) optimization methods. Resource utilization, performance, and classific-
ation scores are reported for the HW/SW co-design of spectral clustering algorithm.

iii

Preface

This master’s thesis is the final part of my European Master degree in Embedded Com-
puting Systems (EMECS). The thesis work was conducted at the Norwegian University
of Science and Technology (NTNU) within a SmallSat project (HYPSO) and is a con-
tinuation of the work done in a specialization project at NTNU. Hyperspectral image
classification on FPGAs is a challenging topic and represents a very promising area of
research. This thesis allowed me to both acquire and enrich my knowledge and skills by
exploring a wide spectrum of topics and tools involved in hyperspectral image classsi-
fication. Moreover, as a student, I find it always wonderful and exciting to learn new
topics, and even though it has been a challenging learning experience, it has also been
a rewarding and gratifying experience.

First of all, I would to like express my thanks, appreciation, and gratefulness to my
supervisor Milica Orlandić, for guiding me through this work, for always being available
for my questions and discussions, for enlightening me to possible research dimensions
in my work, and for emotionally and academically supporting me through the events of
the 2020 coronavirus global pandemic.

Finally, a special thanks to my family and friends for being a very solid support
system, a positive company, and for ensuring I am physically and psychologically well
through these months and weeks.

Mohamed Ismail
June 24, 2020.

v

Contents

Abstract . iii
Preface . v
Contents . vii
Figures . ix
Tables . xiii
Code Listings . xv
1 Introduction . 1

1.1 Motivation . 1
1.2 HSI Classification in the context of HYPSO mission 2
1.3 HYPSO mission payload . 3
1.4 Main Contributions . 4
1.5 Structure of the Thesis . 5

2 Background . 7
2.1 Hyperspectral Data Representation . 7
2.2 HSI Classifcation Algorithms . 9

2.2.1 Convolution Neural Networks . 9
2.2.2 Clustering Classification Algorithms 10

2.3 State-of-the-art HSI Classification Algorithms 11
2.3.1 Supervised vs. Unsupervised Learning Methods 12
2.3.2 Segment-based Clustering . 13
2.3.3 Method Choice . 14

2.4 Binary Partition Trees and HSI . 14
2.4.1 Pre-segmentation using Watershed Method 15
2.4.2 BPT Building . 16
2.4.3 BPT Pruning . 18

2.5 Filtering Algorithm . 19
2.6 Spectral Clustering . 21

2.6.1 Building the Similarity Graph . 21
2.6.2 Finding an Optimal Partition . 21
2.6.3 Eigenvalue and Eigenvector Decomposition 26
2.6.4 Spectral Clustering Example . 29
2.6.5 Nyström Extension . 32

2.7 Overview of Zynq-7000 Functional Blocks . 36
2.7.1 DSP blocks on Zynq . 37
2.7.2 AXI Protocols . 38
2.7.3 AXI DMA . 40

vii

viii

2.7.4 Block RAM . 40
2.8 Vivado HLS . 42

3 Software Implementation . 43
3.1 Segment-based Clustering using BPT . 43

3.1.1 Pre-Segmentation . 44
3.1.2 BPT Building . 45
3.1.3 BPT Pruning . 50
3.1.4 K-means Clustering . 51

3.2 Fast Spectral Clustering . 52
4 Software Results . 55

4.1 Software Results for CLUS-BPT and FSC . 55
4.2 Experimental Datasets . 55
4.3 Evaluation Metrics . 59

4.3.1 Parameter Settings . 59
4.4 Results and Comparisons . 60

4.4.1 Effect of Number of Clusters . 60
4.4.2 Computational Time . 64

4.5 Algorithm Choice . 66
5 HW/SW Co-design Implementation . 67

5.1 Overall System Structure (HW/SW) . 67
5.2 BRAM for Input and Processing Logic . 69
5.3 Similarity Graph Construction . 70

5.3.1 Sampling . 70
5.3.2 Graph Construction . 71

5.4 Eigenvalue and Eigenvector Decomposition 75
5.5 Spectral Embedding and K-means Clustering 81

6 HW/SW Co-design Results . 85
6.1 Performance Analysis . 85
6.2 Resource Utilization . 86
6.3 Clustering Performance Analysis . 88

7 Conclusion . 93
7.1 Future Work . 94

Bibliography . 95
A Dimensionality Reduction . 99
B Gauss Jordan Elimination . 101
C Using HW/SW Co-design Implementation on Zynq Platform 103

C.1 Create Project . 103
C.2 Synthesis and Simulation . 103
C.3 Post-synthesis and Implementation . 106
C.4 Xilinx SDK . 106

Figures

1.1 The Autonomous Ocean Sampling Network (AOSN) [3]. 3

2.1 Illustration of a hyperspectral image [9]. 7
2.2 Spectral signatures of different materials [9]. 8
2.3 Hyperspectral Image BIP Storage Format. 8
2.4 A cartoon drawing of a biological neuron (left) and its mathematical

model (right) [10]. 9
2.5 K-means algorithm 2D example. 11
2.6 Flowchart of PCMNN. Dashed lines indicates that the local band selection

approach is incorporated within these operations [18]. 13
2.7 Example of hierarchical region-based representation using BPT [9]. 15
2.8 Topographic representation of a 2D mountain image [23]. 16
2.9 BPT construction using a region merging algorithm [9]. 17
2.10 A grid representing the set of spectra for a region R containing M pixels

and modelled into one column of spectra. 17
2.11 Region-based pruning of the Binary Partition Tree using PR = 3 18
2.12 Candidate z is pruned because C lies entirely on one side of the bisecting

hyperplane H [8]. 19
2.13 A case where minimum cut gives a bad partition [32]. 22
2.14 Similarity graph corresponding to matrix W 30
2.15 Spectral embedding example. 32
2.16 Architectural Overview of Zynq-7000 [40]. 37
2.17 Basic DSP48E1 Slice Functionality [41]. 38
2.18 Block diagram of AXI interconnects connecting the processor and DMA

(in PS) to AXI DMA and a processing logic block (in PL). 39
2.19 AXI4-Lite interface [42]. 39
2.20 AXI4-Stream Interface. 40
2.21 Vector storage using BRAM. 41
2.22 Vivado HLS Design Flow [46]. 41

3.1 Flowchart of CLUS-BPT. 43
3.2 Overall software modules hierarchy. 44
3.3 Example operations of dilation and erosion on a hyperspectral image. . . . 45
3.4 A tree node data structure. 46
3.5 Variation of final segmentation maps for PaviaU image. 51
3.6 PCA and segmentation map embedding example. 52

ix

x

3.7 Flowchart of FSC. 52

4.1 Salinas scene ground truth map and labels reference. Salinas-A is high-
lighted with a red box [47] . 56

4.2 Pavia Center scene ground truth map with labels reference [47] 56
4.3 Pavia University scene ground truth map with labels reference [47] 57
4.4 Indian Pines ground truth map and labels reference [47] 57
4.5 Samson scene ground truth map and labels reference [47] 58
4.6 Jasper Ridge ground truth map and labels reference [47] 58
4.7 Urban dataset scene ground truth map and labels reference [47] 58
4.8 Average NMI values (10 runs) versus the number of regions (PR) for (a)

PaviaC and PaviaU, (b) Salinas and Indian Pines, (c) Jasper Ridge and
Urban, and (d) Salinas-A and Samson. 61

4.9 NMI values obtained at different number of clusters for the proposed
method. 62

4.10 NMI values obtained at different number of clusters for the proposed
method, for Salinas and Indian Pines images. 62

4.11 HSI ground truth and results. 63
4.12 HSI ground truth and results. 64
4.13 Computational time measured at different number of regions PR for the

proposed method. 65

5.1 PS and PL Partitions in the Zynq-7000 HW/SW co-design. 67
5.2 Block diagram of BRAM module with register file. 69
5.3 16-bit LFSR. 70
5.4 Implemented RTL design for graph A calculation. 72
5.5 Implemented state machine for matrix A calculation. 72
5.6 HLS SVD block design. 76
5.7 y pointer array points to the rows of E. 82

6.1 Resource utilization as a function of varying number of spectral bands for
BRAM module. 87

6.2 Resource utilization as a function of varying number of spectral bands for
Processing Logic modules. 88

6.3 Cluster maps obtained from (a) FSC [12], (b) proposed CLUS-BPT, (c)
proposed HW/SW, (d) ground reference image, and (e) ground reference
color codes of classes for Urban image. 90

6.4 Cluster maps obtained from (a) FSC [12], (b) proposed CLUS-BPT, (c)
proposed HW/SW, (d) ground reference image, and (e) ground reference
color codes of classes for Jasper Ridge image. 90

6.5 Cluster maps obtained from (a) FSC [12], (b) proposed CLUS-BPT, (c)
proposed HW/SW, (d) ground reference image, and (e) ground reference
color codes of classes for Samson image. 91

6.6 Cluster maps obtained from (a) FSC [12], (b) proposed CLUS-BPT, (c)
proposed HW/SW, (d) ground reference image, and (e) ground reference
color codes of classes for Salinas-A image. 91

Figures xi

C.1 Synthesis block diagram of HW/SW solution. 104
C.2 Graph construction simulation waveform . 105
C.3 SDK - change project settings. 106

Tables

2.1 Vivado HLS optimization directives [46]. 42

3.1 User defined parameters. 44

4.1 Best purity and NMI values obtained by PCMNN, FSC, and CLUS-BPT for
Salinas and PaviaU images. 61

4.2 Best purity and NMI values obtained by FSC and CLUS-BPT for the rest
of the images. 62

4.3 Computational time for FSC and CLUS-BPT obtained for the best purity
and NMI results for all datasets. 65

5.1 Generic parameters and example values for HW/SW codesign. 69
5.2 AXI-lite register file description. 70
5.3 SVD Implementation Controls. 75

6.1 Performance comparison for HW/SW codesign solution. 85
6.2 Maximum frequency for HW/SW codesign solution modules. 86
6.3 Post-Synthesis resource utilization report. 87
6.4 Best purity and NMI scores obtained by HW/SW co-design proposed method,

FSC SW, and CLUS-BPT SW for images. 89

xiii

Code Listings

3.1 Initialize node structures . 47
3.2 Update node structures - Step 1. 48
3.3 Update node structures - Steps 2, 3, & 4. 48
3.4 Final step in buildBPT. 49
3.5 BPT Pruning. 50
3.6 Python code in LATEX document . 53
5.1 HLS SVD C code. 76
5.2 HLS SVD built-in function. 77
5.3 svd2x2 function. 78
5.4 SVD top function continued 1. 79
5.5 Spectral Embedding in Zynq PS. 81
5.6 K-means Clustering function call. 82
5.7 K-means Clustering function. 82
B.1 Gauss Jordan implemented in C. 102

xv

Chapter 1

Introduction

1.1 Motivation

Under certain conditions in the sea, phytoplankton (tiny microscopic plants) may grow
out of control and form harmful algal blooms (HABs). A bloom does not have to produce
toxins in order to be harmful to the environment. It can also cause anoxic conditions,
where oxygen is depleted from the water. Dense blooms can block light to organisms
lower in the water column, or even damage fish gills. On the other hand, blooms may
also produce extremely toxic compounds that have a detrimental effect on fish, shell-
fish, mammals, birds, and even people [1]. Harmful algal blooms are one of the biggest
challenges to fish health and welfare in Norway. In 2019, an algae bloom killed most of
the fish in the Norwegian sea and as a result, incurred a loss of 2.4 billion Norwegian
Kroner (NOK) to the salmon farming industries in Norway as reported by the Norwe-
gian Seafood Research Fund (FHF) [2]. This is where HYPSO mission makes its impact
by trying to find indicators of water pollution, algae bloom and other metrics that may
inflict the well being and quality of the fish.

Hyper-Spectral Imager for Oceanographic Applications (HYPSO) mission is being de-
veloped at the NTNU SmallSat lab, Trondheim [3]. The main focus of the mission is
for both oceanographic measurements and synoptic in-situ field measurements. This
is a novel approach and has a remarkable potential for reducing cost and improving
data quality in oceanography. The imager will observe the oceanographic phenomena
by using a small satellite equipped with a hyperspectral camera on-board, operating in
cooperation with aerial, surface, and underwater vehicles [3].
Based on the hyperspectral data that is collected, the detection of algae blooms can done
by classification. Luckily algae blooms are very distinct in the spectral domain, which
is part of the data obtained by the HSI. This way, with a good enough classification al-
gorithm, one is able to detect algae blooms and classify whether it is a harmful bloom or
not based on their spectral signatures. This master thesis is a part of the HYPSO mission.

1

2 1.2 HSI Classification in the context of HYPSO mission

1.2 HSI Classification in the context of HYPSO mission

Hyperspectral image classification is the task of assigning a class label to every pixel
on the image. In the context of HYPSO mission, HSI classification should provide fast,
meaningful, and accurate characterisation to the obtained hyperspectral image. Some
of the objectives of the mission are listed below [3]:

• To provide and support ocean color mapping through a Hyperspectral Imager
(HSI) payload, autonomously processed data, and on-demand autonomous com-
munications in a concert of robotic agents at the Norwegian coast;

• To collect ocean color data and to detect and characterize spatial extent of algal
blooms, measure primary productivity using emittance from fluorescence-generating
micro-organisms, and other substances resulting from aquatic habitats and pollu-
tion to support environmental monitoring, climate research and marine resource
management;

• Operational data shall be compressed, have at least 20 spectral bands, and include
radiometric calibration, atmospheric correction, classification, super-resolution and
target detection;

Classification of hyperspectral images has been initiated since 1980 by using traditional
multispectral classification approaches. Most widely used classifiers are known as "hard
or traditional classifiers" [4]. However, such methods face challenges dealing with high
resolution data and produce inaccurate classification results. Significant efforts have
been reported for classification and feature extraction of hyperspectral images methods.
Such advancements reported high accuracies and good efficiency on the state-of-the-art
public datasets. These classification algorithms can be divided into two categories:

1. Supervised learning HSI classification.
2. Unsupervised learning HSI classification.

The supervised classification is the process of using samples of known identity to as-
sign unclassified pixels to one of several informational classes. On the other hand, the
unsupervised one is the identification of natural groups or structures on a given image
dataset without the user providing sample classes.

In the literature, existing hyperspectral image classification algorithms, both super-
vised and unsupervised, may suffer from "curse of dimensionality" resulting from large
number of spectral dimensions, high computational complexity, and scarcity of labelled
training examples [5]. The specialization project work provided detailed analysis on the
state-of-the-art for supervised and unsupervised classification methods [6]. Based on the
analysis, unsupervised classification development is chosen for the thesis. An improved
shorter summary version of the specialization project analysis is in section 2.3.
In this thesis, two machine learning algorithms based on unsupervised clustering clas-
sification are developed and implemented in software. The two algorithms are experi-
mented with eight publicly available HSI datasets and their results are compared. Based
on the result analysis, hardware-software co-design for FPGA platform is developed. The
algorithms do not require prior knowledge about the hyperspectral images and hence,
are applicable in the context of the HYPSO mission where there is a scarcity of water
based hyperspectral images datasets.

Chapter 1: Introduction 3

1.3 HYPSO mission payload

At NTNU, the HYPSO team is working to design, develop, and test a hyperspectral pay-
load for a small satellite, called HYPSO satellite. The satellite will carry a hyperspectral
payload to provide hyperspectral images to the Autonomous Ocean Sampling Network
(AOSN). As depicted in Figure 1.1, this network includes aerial, surface, and underwa-
ter vehicles working together to investigate the areas of interest using the data provided
by the small satellite. The payload of the small satellite is to be integrated into a Cube-
Sat framework delivered by Nano Avionics (NA) and is equipped with PicoZed board
System-on-module (SoM) with a Zynq-7030 Processing System (PS). For testing pur-
poses, Xilinx Zynq-7000 All Programmable System on Chip (SoC) is provided to test
and process the hyperspectral data.

Figure 1.1: The Autonomous Ocean Sampling Network (AOSN) [3].

Owing to the complexity and dimensionality of HSI, many classification algorithms are
considered computationally intensive. This often leads to the requirement of hardware
accelerators to speed up computations. Over the years, FPGAs have become one of the
preferred choices for fast processing of hyperspectral data [7]. FPGAs have significant
advantages in efficiently processing HSIs due to the following reasons. First, FPGAs have
competent levels of performance closing to those offered by GPUs with much lower
power consumption. Another is that FPGA devices with increased levels of tolerance to

4 1.4 Main Contributions

ionizing radiation, making it suitable for space and are widely used as the solution for
onboard processing at Earth observation satellites. In addition, FPGAs have the inherent
ability to change their functionality through partial or full reconfiguration, hence, opens
the possibility to select algorithms from a ground station [7].

The provided Xilinx Zynq-7000 SoC contains an ARM Cortex-A9 processor along with
FPGA programmable logic and offers high performance ports to connect ARM processing
system and FPGA programmable logic. This is very desirable for hardware and software
codesigned implementations. By deciding which elements will be performed by the pro-
grammable logic, and which elements will run on the ARM Cortex-A9, the computation
system is partitioned leading to the accelerated execution of hyperspectral processing
algorithms including classification algorithms.

1.4 Main Contributions

The specialization project [6] recommended the fulfillment of the following tasks in the
master thesis:

• Incorporation of methods like segmentation before classification (segment-based
classification) for initially partitioning the hyperspectral image spatially. The pro-
posed approach in the specialization project partitioned the regions by dividing
the HSI image into k regions iteratively by going through the whole image; which
is considered simple partitioning.

• Development of a two-level filtering algorithm before/during k-means clustering.
• Change tree structure. The kd-trees discussed in the project represent strict rect-

angular partitions of the image which is very useful for plotted data points but
may not be suitable for hyperspectral images.

• Incorporation of dimensionality reduction methods including principal component
analysis (PCA).

These tasks were approached in this thesis by development of two proposed solutions.
The first one is a segment-based clustering where a full segmentation method based
on Binary Partition Trees (BPT) processes the HSI data before filtering k-means cluster-
ing classification is applied. This framework represents a further development and en-
hancement to the method presented in the specialization project [6], making it a novel
framework in literature. The second one is an adaptation of a near-real time clustering
method for unsupervised HSI classification based on spectral clustering.
Both frameworks are developed in software and are experimented on eight different
HSI datasets, including both land-cover and water-based datasets. Furthermore, exper-
imental results are compared to state-of-the-art clustering methods. According to the
analysis of the experiments and the implementation of the methods, a novel HW/SW
co-design solution is developed for the chosen method: spectral clustering.

To the best of the author’s knowledge, the HW/SW implementation in this work is
a novel implementation for spectral clustering type methods on FPGA platforms. Con-
sequently, a novel method for hyperspectral image clustering classification on FPGAs. In
literature, the only clustering implementation for hyperspectral images on FPGAs has

Chapter 1: Introduction 5

been developed by [8] and is based solely on k-means clustering.
In addition, this thesis proposes a new segment-clustering software framework for hyper-
spectral images based on a three-stage scheme: (i) pre-segmentation, (ii) segmentation,
and (iii) PCA and k-means clustering.

1.5 Structure of the Thesis

This section describes the organization of the rest of this thesis.
Chapter 2 discusses the background information necessary for development of

the two HSI classification methods, for both software and hardware implementation. In
addition, brief overview of Zynq-7000 platform is provided, with a short discussion on
the state-of-the-art HSI classification algorithms.

Chapter 3 presents the software implementation of both methods.
Chapter 4 provides the experimental details including parameter settings. It also

analyzes the results obtained by the experiments and accordingly, the bases of choosing
a suitable algorithm for HW/SW implementation.

Chapter 5 discusses the HW/SW co-design implementation of the spectral cluster-
ing method.

Chapter 6 shows the synthesis results and metrics of the final design including
hardware performance, resource utilization, and classification performance.

Chapter 7 concludes the work with discussion and some remarks.
Appendix consists of extra background information as well as guidlines for HW/SW

co-design setup and use.

Chapter 2

Background

2.1 Hyperspectral Data Representation

Hyperspectral sensors collect multivariate discrete images in a series of narrow and con-
tiguous wavelength bands. The resulting datasets contain numerous image bands, each
of them depicting the scene as viewed with a given wavelength λ. This whole set of
images can be seen as a three dimensional data cube where each pixel is characterized
by a discrete spectrum related to the light absorption and/or scattering properties of
the spatial region that it represents. Figure 2.1 shows an illustration of a hyperspectral
image.

Figure 2.1: Illustration of a hyperspectral image [9].

The entire data Iλ can be seen as a three dimensional data cube formed by a set
of Nz discrete 2D images Iλ = Iλ1

, j = 1, . . . , Nz . Each Iλ j
is formed by a set of Np pixels

where each pixel p represents the spatial coordinates in the image. Consequently, given
a specific wavelength λ j , Iλ j

(p) is the radiance value of the pixel p on the waveband Iλ j
.

As depicted in Figure 2.1, the spectral signature denoted by Iλ(p) is the vector pixel p
containing all the radiance values along the range of Nz wavelengths.

This signature provides insightful characteristics of the material represented by the

7

8 2.1 Hyperspectral Data Representation

pixel as shown for some materials in Figure 2.2.

Figure 2.2: Spectral signatures of different materials [9].

The spectral space is important because it contains much more information about
the surface of target materials than what can be perceived by the human eye. The spa-
tial space is also important because it describes the spatial variations and correlation
in the image and this information is essential to interpret objects in natural scenes. Hy-
perspectral image classification methods highly desired goals include automatic feature
extraction using either one or both data information (spectral and spatial), in order to
distinguish different materials for a meaningful application.

In this work, the HSI image for the input logic is organized such that all spectral
components of one pixel are written in subsequent locations, followed by another pixel
in a frame. Next row is formed for the next frame captured by the imager. Hence, bands
1 to 3 are written for pixel 1 which is part of frame 1, followed by components of pixel
2, and so on. This organization scheme is called band interleaved by pixel (BIP) format
and is used throughout this work. An illustration is presented in Figure 2.3.

Figure 2.3: Hyperspectral Image BIP Storage Format.

Chapter 2: Background 9

2.2 HSI Classifcation Algorithms

As introduced in section 1.2, HSI classification algorithms can be categorized into su-
pervised methods and unsupervised methods. Due to the noises and redundancy among
spectral bands, many feature extraction, band selection, and dimension reduction tech-
niques have been used for HSI classification in the past years. Supervised methods are
popularly known to go through these techniques and follow it by training and labeling.
The first common step among supervised methods consists of transforming the image to
a feature image to reduce the data dimensionality and improve the data interpretability.
This processing phase is optional and comprises techniques such as principal compon-
ent analysis. In the training phase, a set of training samples in the image is selected to
characterize each class. Training samples train the classifier to identify the classes and
are used to determine the criteria for the assignment of a class label to each pixel in the
image.

2.2.1 Convolution Neural Networks

Convolution Neural Networks (CNNs) are the most popular supervised learning classi-
fiers. They are part of deep learning neural network architectures. Deep learning is part
of the machine learning field which utilizes learning algorithms that derive meaning out
of data by using a hierarchy of multiple layers. These multiple layers are constructed of
neurons that mimic the neural networks of our brain.

Figure 2.4: A cartoon drawing of a biological neuron (left) and its mathematical model
(right) [10].

A single neuron is shown in Figure 2.4 (right) with an activation function. An
activation function f takes a single number and performs a certain fixed mathematical
operation on it. It defines the output of that node given an input or set of inputs. A
relative example would be a standard computer chip circuit. It can be seen as a digital
network of activation functions that can be "ON" (1) or "OFF" (0), depending on input.
An example neural network would consist of a multiple of neurons where each neuron
computes the scores s for different visual categories given the image using the formula
s =

∑

i wi x i , where x is an input array of image pixels and wi are parameters to be
learned throughout the process via backpropagation.
The wi parameters, also called weight vectors, are essentially the hidden layers of a
neural network. Number of hidden layers determine the complexity of the network,
which is high for high dimensional data like hyperspectral images.

10 2.2 HSI Classifcation Algorithms

2.2.2 Clustering Classification Algorithms

Clustering algorithms are a common technique used for unsupervised learning. Clus-
tering refers to grouping objects into a set number of clusters whilst ensuring that the
objects within each cluster group are similar to one another. In other words, we try to
find homogeneous subgroups within the data such that data points in each cluster are as
similar as possible according to a similarity measure, such as Euclidean-based distance.
This technique is considered as an unsupervised learning method since it does not re-
quire to make use of the ground truth data information for the method’s development.
In addition, ground truth data may not be used to evaluate a clustering method’s per-
formance. In this work, two clustering algorithms are explored which make use of the
popular k-means method.

One of the most used clustering algorithms is k-means due to its simplicity. This clus-
tering method aims to partition the D-dimensional dataset X = x j , j = 1, . . . , D into
clusters Ci , i = 1, . . . , k such that each observation or data sample belongs to the cluster
with the nearest mean. This results in a partitioning of the data space into disjoint sets
C1 . . . Ck such that D = C1 ∪ C2 ∪ · · · ∪ Ck.

Given a partition of the data into k clusters, the center µi (i.e, mean, center of mass)
computed of each cluster i:

µi =
1
ni

∑

x j ∈ Ci

For a well formed cluster, its points are close to its center according to a distance meas-
ure. We measure this with sum of squared error (SSE)

J =
K
∑

i=1

∑

x j∈Ci

||x j −µi||2

Hence, the main goal is to find the optimal partitioning C∗ which minimizes the objective
function J :

C∗ = ar gmin
C∗={C1,...,Ck}

K
∑

i=1

∑

x j∈Ci

||x j −µi||2

Algorithm 1 Standard Kmeans Algorithm
Select k random samples from D as centers
Do

for each example x i ,
assign x i to cluster C j such that the distance d(µi , x i) is minimized

for each cluster j, update its cluster center such that

µi =
1
ni

∑

x j ∈ Ci

Until convergence or number of iterations is reached

Chapter 2: Background 11

Figure 2.5 shows an illustrative 2D example of the k-means algorithm application
on a random plotted data points. In the example, for each iteration, we assign each train-

Figure 2.5: K-means algorithm 2D example.

ing example to the closest cluster centroid (shown by "painting" the training examples
the same color as the cluster centroid to which is assigned); then we move each cluster
centroid to the mean of the points assigned to it. It can be observed that the algorithm
has converged when no further changes happen to the dataset.

2.3 State-of-the-art HSI Classification Algorithms

A review over the state-of-the-art hyperspectral image classification algorithms has been
discussed in the specialization project, including implementations on FPGA [6]. How-
ever, due to further development of the two proposed methods in this thesis, their clus-
tering method type is much specified and hence, the compared state-of-the-art methods
on software development is redefined and restated.

In the literature, many HSI classification algorithms have been proposed and have
achieved excellent performances on state-of-the-art public datasets described in section
4.2. However, most existing methods face challenges in dealing with large-scale hy-
perspectral image datasets due to their high computational complexity. Challenges for
hyperspectral image classification also include:

• Curse of dimensionality resulting from large number of spectral dimensions.
• Scarcity of labelled training examples.
• Large spatial variability of spectral signature.

As discussed in section 1.2, HSI classification algorithms can be divided into supervised
learning and unsupervised learning methods. A detailed discussion of different methods
can be found in the specialization project. A quick summary is presented below along
with the discussion of a new unsupervised state-of-the-art method.

12 2.3 State-of-the-art HSI Classification Algorithms

2.3.1 Supervised vs. Unsupervised Learning Methods

The first step in a supervised learning method consists of transforming the image to a
feature image to reduce the data dimensionality and improve the data interpretability.
This processing phase comprises techniques such as principal component analysis (PCA).
In the training phase, a set of training samples of the original image is selected and
patched to characterize each class. The classifier is trained using the training samples
with certain parameters that affect the rate of learning. During the training process,
a patch of test samples (ground truth data) is used to validate the classifier learning
progress and to find out if the classifier requires more training. Eventually, the classifier
ends up with an assignment criteria for each class label of a certain hyperspectral image.

High accurate supervised methods incorporate Convolution Neural Networks (CNNs),
discussed in 2.2.1. These networks act like convolution filters to extract features when
applied to data. They can be designed in 1D, 2D or 3D forms. The difference is the
structure of the input data and how the filter, also known as a convolution kernel or
feature detector, moves across the data.
In the HSI context, it is evident from the literature that using just either 2D-CNN or 3D-
CNN had a few shortcomings such as missing channel relationship information or very
complex model, respectively [11]. The main reason is due to the fact that hyperspectral
images are volumetric data and have a spectral dimension as well. The 2D-CNN alone
isn’t able to extract good discriminating feature maps from the spectral dimensions.
Similarly, a deep 3D-CNN is more computationally complex and alone seems to perform
worse for classes having similar textures over many spectral bands.
In Feb 2019, a hybrid-CNN model which overcomes these shortcomings of the previous
models have been proposed in [11]. It consists of 3D-CNN and 2D-CNN layers which
are assembled in such a way that they utilise both the spectral as well as spatial feature
maps to their full extent to achieve maximum possible accuracy.

HSI classification based on such supervised methods provide excellent performance
on standard datasets, e.g., more than 95% of the overall accuracy [11]. However, these
existing methods face challenges in dealing with large-scale hyperspectral image data-
sets due to their high computational complexity [5]. Challenges for hyperspectral image
classification also include the "curse of dimensionality", resulting from large number of
spectral dimensions, and scarcity of labelled training examples as discussed earlier [12].

On the contrary, clustering-based techniques do not require prior knowledge and
are commonly used for hyperspectral image unsupervised classification but still face
challenges due to high spectral resolution and presence of complex spatial struc-
tures. Apart from removal of noisy or redundant bands, the optimal selection of spectral
band(s) is one of the major tasks during classification for HSI. To address the high spec-
tral resolution problem, the most common clustering approach utilizes feature extraction
methods for pre-processing such that one common subspace is produced for the whole
data set where clustering takes place. In [13], k-means clustering method was used to
form different clusters from the data obtained after applying principal component ana-
lysis (PCA) as a pre-processing technique. A local band selection approach is proposed
in [14] where relevant set of bands is obtained using both relevancy and redundancy

Chapter 2: Background 13

among the spectral bands. This approach takes care of redundancy among the bands by
making use of interband distances.

2.3.2 Segment-based Clustering

One of the ways to tackle the complex spatial structures present in hyperspectral im-
ages is to make use of image segmentation to incorporate spatial information [15]. Im-
age segmentation is a process in which an image is partitioned into multiple regions
where pixels within a region share same characteristics and therefore have the same la-
bel [16]. These regions form a segmentation map that can be used as spatial structures
for a spectral-spatial classification technique as described in [15]. Recently, different pro-
posed frameworks made use of segment-based clustering classification for hyperspectral
images [14, 17, 18]. The general idea is to apply clustering on the refined segments of a
segmentation map instead of on pixels of hyperspectral images. In [19], spatial inform-
ation is derived from the segmentation map, which is obtained by applying partitional
clustering algorithms including projected clustering and correlation clustering. Projec-
ted clustering algorithms focus on identification of subspace clusters where each pixel
is assigned to exactly one subspace cluster [20]. A similar approach is also proposed in
[14] where k-means clustering is applied on the hyperspectral image to obtain an initial
segmented map. The segmented map is further refined using multi-resolution segment-
ation for region merging. Furthermore, similar regions are merged by making use of
their shape and spectral properties and hence refining the segmented map. Along the
region merging stage and projected clustering stage, a local band selection approach.
A more recent approach incorporating local band selection is proposed in [18] and its
flowchart is found in Figure 2.6.

Figure 2.6: Flowchart of PCMNN. Dashed lines indicates that the local band selection
approach is incorporated within these operations [18].

The obtained segmented map from the first stage is converted to a cluster map. The
clusters are then merged by using the mutual nearest neighbour (MNN) information. In
the last stage, the method identifies the k significant clusters using a criterion based on
entropy. The final cluster map is obtained by assigning all the remaining clusters to these
k significant clusters. The framework is considered the state-of-the-art for segment-based
clustering methods for hyperspectral images, and is termed as, PCMNN (Projected Clus-
tering using Mutual Nearest Neighbour) scoring highest accuracies on four HSI datasets.
What is common among these techniques is that they use a three-step scheme in order (i)
pre-segmentation of HSI, (ii) segmentation/region merging, and finally (iii) projected
clustering for the HSI classification problem.

14 2.4 Binary Partition Trees and HSI

2.3.3 Method Choice

For HSI classification algorithms, in the context of the HYPSO mission objectives, the
leading state-of-the-art supervised algorithm is the HybridSN CNN [11] with the fol-
lowing classification accuracies: 99.99% on Pavia University dataset, 99.81% on In-
dian Pines, and 100% on Salinas Scene. HybridSN seems to be the best choice for the
HSI classification problem as it is the leading state-of-the-art algorithm, however, using
clustering-based method implementation on FPGAs is preferred for a number of reasons:

1. It is generally difficult to generalize the architecture of a very complex deep learn-
ing model. Different layers have different parameters. The main challenge is that
CNN architectures do not usually have identical layer parameters, which increases
the difficulty of designing generic hardware modules for the FPGA. For example,
there are 1-D convolutional layers with different kernel sizes such as 3x1 and 5x1.

2. We notice that the recent developed CNNs are biased towards the 3 datasets (Pavia
University, Indian Pines, and Salinas Scene), which are land-cover based datasets,
and hence might not perform well for other datasets such as Samson, Urban, and
Jasper Ridge which incorporate "water" as one of the classes. CNNs might also not
perform well on such datasets because images may not be of the expected high
quality or the dataset itself is small.

3. The highest classification reached for the HSI classification problem is approxim-
ately 100% on the 3 datasets. Hence, there is a tendency in research for improving
the other classification methods, e.g. clustering, so that it performs better for other
datasets, including small datasets or unlabeled datasets which is not efficient for
CNNs to learn from. In this study, 8 HSI datasets are experimented on, which are
both land-cover and water based images.

4. The simple control flow and inherent parallelism of distance computations makes
clustering suitable for dedicated hardware implementations such as FPGAs and
this found to be proven in [21].

Based on the specialization project [6] and the method choice above, this thesis
presents implementations of clustering-type unsupervised classification algorithms for
hyperspectral images. Two algorithms are implemented in software; a novel segment-
based clustering algorithm and a spectral clustering algorithm. Furthermore, based on
coming experiments and analysis in Chapter 4, the spectral clustering method is imple-
mented for FPGA. Necessary background information for both hardware and software
implementations is detailed in the sections below.

2.4 Binary Partition Trees and HSI

The implemented segment-based clustering method makes use of binary partition trees
(BPTs) for segmentation. BPT is a hierarchical region-based representation of relation-
ships among data. It is a set of hierarchical regions of data stored in a tree structure [22].
The tree structure consists of tree nodes representing image regions, and the branches
represent the inclusion relationship among the nodes. Figure 2.7 is an illustration of a
hierarchical representation of regions using BPT. In this tree representation, three types
of nodes can be found: Firstly, leaves nodes representing the original regions of the ini-

Chapter 2: Background 15

tial image partition; secondly, the root node representing the entire image support and
finally, the remaining tree nodes representing regions formed by the merging of their
two child nodes corresponding to two adjacent regions. Each of these non leaf nodes
has at most two child nodes, this is why the BPT is defined as binary.

Figure 2.7: Example of hierarchical region-based representation using BPT [9].

In the context of hyperspectral images, a BPT representation is generated using
(i) a given region model and (ii) a region merging criterion, both recently developed
by [9]. Given the initial partition of small regions, the BPT is constructed in such a way
that the most meaningful regions of the images are represented by nodes. The leaf nodes
correspond to the initial partition of the image. From this initial partition, an iterative
bottom-up region merging algorithm is applied by keeping track of the merging steps
where the most similar adjacent regions are merged at each iteration until only one
region remains. This last region represents the whole image and is the root of the tree.
The creation of BPT relies on three important notions:

1. The method obtaining the initial partition, also called, pre-segmentation.
2. The region model MRi

which defines how regions are represented and how to
model the union of two regions.

3. The merging criterion O(MRi
, MR j

), which defines the similarity of neighboring re-
gions as a distance measure between the region models MRi

and MR j
and involves

determining the order in which regions are going to be merged.

In [9], different region models with their compatible region merging criterion were de-
scribed to construct the BPT.

2.4.1 Pre-segmentation using Watershed Method

A watershed is a transformation defined on a grayscale image. To perform watershed
segmentation, a 2D image is viewed as a topographic map that shows hills and valleys as
it can be observed in Figure 2.8. In that map/image, the value of each pixel corresponds
to the elevation at that pixel point. Thus, dark areas (low pixel value) are valleys, while
bright areas (high pixel value) are hills. The watershed transform finds catchment basins
(or dark areas) in this landscape. For example, when it rains on a mountain, water slides

16 2.4 Binary Partition Trees and HSI

onto two different paths (two catchment basins). Thus, the ridgeline at the top of the
mountain is also a line that divides two catchment basins so that each basin is associated
with one minimum and hence, divides the image as in Figure 2.8 [23].

Figure 2.8: Topographic representation of a 2D mountain image [23].

The watershed transformation is usually applied to the gradient function of the
image. An image gradient is a directional change in the intensity or color in an image,
it defines transitions between regions such that the borders between reigons have high
transitional values [23]. A gradient on a multivariate function can be obtained in differ-
ent ways. One way is to calculate on each image channel a modulus of a gradient, and
to take the sum or the supremum of the gradients [24]. Another way is to use vectorial
gradients based on distance between vector pixels, distances can be Euclidean-based
[25]. The gradient function used in this work is based on obtaining the supremum of
the gradients. To obtain an oversegmentation, the gradient is obtained for each spec-
tral band and then the spatial gradient is computed as the maximum gradient value of
all the bands. [23] provides thorough explanation for watershed segmentation on hy-
perspectral images. The output of the watershed transform is a partition of the image
composed of regions (sets of pixels connected to the same local minimum) and of wa-
tershed pixels (WHEDs, the borders between the regions). By the end of this stage, an
initial segmented map of oversegmented regions is obtained as shown in Figure 3.1.

2.4.2 BPT Building

The BPT leaf nodes correspond to the initial partition of the image. From this initial
partition, an iterative bottom-up region merging algorithm is applied by keeping track of
the merging steps where the most similar adjacent regions are merged at each iteration
until only one region remains. Figure 2.9 depicts the BPT building process.

The framework makes use of the first-order parametric model for region modelling
due to its simplicity in definition leading to simple merging order process [9].
Given a hyperspectral region R formed by NRp

spectra containing Nn different radiance
values, the first-order parametric model MR is defined as a vector of Nn components
which corresponds to the average of the values of all spectra p ∈ R in each band λi
shown in Figure 2.10.

MR(λi) =
1

NRp

NRp
∑

j=1

Hλi
(p j) i ∈ [1, . . . , Nn] (2.1)

Chapter 2: Background 17

Figure 2.9: BPT construction using a region merging algorithm [9].

Note that Hλi
(p j) represents the radiance value in the wavelength λi of the pixel

whose spatial coordinates are p j .

Figure 2.10: A grid representing the set of spectra for a region R containing M pixels
and modelled into one column of spectra.

Using the first-order parametric model (2.1), a merging criterion is defined as the
spectral angle distance, dSAD, between the average values of any two adjacent regions:

O(MRa
, MRb

) = dSAD = arccos

�

RT
a Rb

||Ra||||Rb||

�

, (2.2)

18 2.4 Binary Partition Trees and HSI

where Ra, Rb are two different regions and MRa
, MRb

are their corresponding spectrum
column region model.
The region merging stage runs until there are no more mutual best neighbours available
for merging. Further, before merging regions, small and meaningless regions in the initial
partition of the previous stage may result in a spatially unbalanced tree during BPT
construction. Those regions are prioritized to be merged first in the region merging
order by determining whether they are smaller than a given percentage (typically 15%)
regions created by the merging process of the average region size of the initial partition
[9].

2.4.3 BPT Pruning

Until this point, we have obtained a BPT representation of the hyperspectral image incor-
porating its spatial and spectral features. The next step is to process the BPT such that we
get a partition featuring the N most dissimilar regions created during the construction
of the binary partition tree. This can be done by extracting a given number of regions
PR (pruned regions), hence pruning the tree. Different BPT pruning strategies lead to
different results [26]. Furthermore, there exists several BPT pruning strategies suited
for a number of applications like classification, segmentation, and object detection [27,
28].

Figure 2.11: Region-based pruning of the Binary Partition Tree using PR = 3

For the purpose of this stage of the proposed framework, we further prune the BPT
for the segmentation goals by using a simple pruning strategy based on the number of
regions [26]. The region-based pruning provides the last PR regions remaining before
the completion of the BPT building process. This can be obtained by traversing the tree
in an inverse order to its construction and stop when the desired number of regions
PR ≥ 0 has been reached. In other words, the final segmentation map will be composed
of the PR merged regions according to the merging order during BPT construction. For
instance, if the building of the nodes was done in the order R4⇒ R5⇒ R6⇒ R7 and
PR = 3, the BPT will be pruned after the merging of regions R3 and R4 into R5 as it can
be seen in Figure 2.11.

The main advantage of this pruning strategy is its simplicity and it also shows

Chapter 2: Background 19

whether the BPT was constructed in a meaningful way or not since the last PR regions
are the most dissimilar regions. By the end of this stage, a well refined segmentation
map of the hyperspectral image is obtained which can be further used by a k-means
filtering algorithm.

2.5 Filtering Algorithm

K-means algorithm complexity goes up linearly in k centres, the number of data points
and the number of dimensions in a dataset, and the number of iterations [29]. This is
because a straightforward implementation of k-means standard algorithm can be quite
slow due to the cost of computing nearest neighbors; we want to find the minimum
argument for each cluster group and calculate the distances of each point in a cluster to
the centroid of that cluster. Thus, it becomes infeasible in high dimensional spaces with
many data points such as hyperspectral images.

Furthermore, getting the argmin of the objective function J defined in section 2.2.2 is
computationally expensive for hyperspectral images [29]. In [30], a filtering algorithm
was developed for a multidimensional binary search tree, called a k-d tree. A k-d tree is
a space partitioning tree data structure for organizing data points in a K-Dimensional
space. The main goal of the filtering algorithm is to prune (filter) down the search space
for the optimal partition such that the computation burden is reduced [21]. In this work,
we make use of the filtering algorithm for another binary tree structure that allows
flexibility in region splitting (BPT discussed in section 2.4).

Figure 2.12: Candidate z is pruned because C lies entirely on one side of the bisecting
hyperplane H [8].

Assume that the hyperspectral image is segmented into regions using a segment-
ation method and is represented by a binary tree structure such that the leaves of the
tree represent the partitions within the HSI cube. At the initial iteration of clustering,
the regions of the segmentation map act as a base for the algorithm to start from. Dur-
ing clustering, these regions are either differentiated or joined by assigning them cluster
labels as the tree is traversed for a number of iterations.
Algorithm 2 shows pseudo code for one iteration of the filtering algorithm. Each tree

20 2.5 Filtering Algorithm

node u represents a region and is associated with the bounding box (C) information as
well as the number of pixels (count) and the vector sum of the associated pixels (the
weighted centroid, wgtCent) which is used to update the cluster centres when each
iteration of the algorithm completes. The actual centroid is just wgtCent/count. In ad-
dition, for each node of the tree, we maintain a set of possible candidate centers Z that
is propagated down the tree. This is defined to be a set of center points that can be the
nearest neighbor for some pixel within a tree node. It follows that the candidate centers
for the root node consist of all k centers.

For a tree node u, the closest candidate center z∗ ∈ Z to the midpoint of the bound-
ing box is found during clustering. The closest centre search involves the computation
of the Euclidean distances. The remaining z ∈ Z \ {z∗} is pruned to the following node
down the tree if no part of C is closer to z than the closest centre z∗ since it is not the
nearest center to the pixels within C . Figure 2.12 shows an illustration where the set of
points are enclosed by the closed cell C and z∗ is the closest center point to the points in
C . Hence, the center z is not further considered as a center since no part of C is closer
to z than to z∗ and z is removed from the center candidate list for the closed cell C . If
u is an internal node, we recurse on its children. The centre update occurs if a leaf is
reached or only one candidate remains.

Algorithm 2 The filtering algorithm introduced in [30]
function Filter (kdNode u, CandidateSet Z) {
C ← u.C
if (u is a leaf) {

z∗← the closest point in Z to u.point
z∗.wgtCent ← z∗.wgtCent + u.point
z ∗ .count ← z∗.count + 1 }

else {
z∗← the closest point in Z to C’s midpoint
for all (z ∈ Z \ {z∗}) do

if z.isFarther(z∗, C) then Z ← Z \ {z}
end for
if (|Z |= 1) {

z∗.wgtCent ← z∗.wgtCent + u.wgtCent
z ∗ .count ← z∗.count + u.count }

else {
Filter(u.le f t, Z)
Filter(u.ri ght, Z) }

}
}
for all (z ∈ Z)

z← z.wgtCent/z.count

The isFar ther function of Algorithm 2 checks whether any point of a bounding
box C is closer to z than to z∗. The function returns true if the sum of squares differ-
ence between the candidate z and the closest candidate z∗ is greater than 2 × the sum of
squares difference between either boundary points (high or low) and the closest candid-

Chapter 2: Background 21

ate center z∗. On termination of the filtering algorithm, center z is moved to the centroid
of its associated points, that is, z← z.wgtCent/z.count.

2.6 Spectral Clustering

Spectral clustering techniques are widely used, due to their simplicity and empirical per-
formance advantages compared to other clustering methods, such as k-means [31]. This
type of clustering can be solved efficiently by standard linear algebra methods. The basic
idea is to represent each data point as a graph-node and thus transform the clustering
problem into a graph-partitioning problem. Thus, the goal is to identify communities of
nodes in a graph based on the edges connecting them. A typical implementation con-
sists of two fundamental steps: 1. Building a similarity graph and 2. Finding an optimal
partition of the constructed graph.

2.6.1 Building the Similarity Graph

Given a set of data point samples x1, . . . , xn, the method first builds a similarity graph
G = {Ver t ices, Ed ges} such that each vertex represents a sample x i and the edge to
another point x j is weighted by the similarity wi j where wi j is positive or larger than a
certain threshold. The problem of clustering can now be reformulated using the similar-
ity graph: we want to find a partition of the graph such that the edges between different
groups have very low weights where points in different clusters are dissimilar from each
other, and the edges within a group have high weights such that points within the same
cluster are similar to each other.
In general, the corresponding similarity (or affinity) matrix W can be denoted as

Wi j = exp
−||x i − x j||22

2σ2
, i, j = 1, 2, . . . , n, (2.3)

whereσ is the width of the neighbors of the samples and n is the number of graph nodes.

2.6.2 Finding an Optimal Partition

Let A and B represent a bipartition of Vertices, where A ∪ B = Vertices and A ∩ B =
;. The simplest and most direct way to construct a partition of the graph is to solve
the minimum cut (mincut) problem. For a given number k of subsets, the mincut ap-
proach simply consists in choosing a partition A1, . . . , Ak which minimizes cut(A,B) =
∑

i∈A, j∈B Wi j . Hence, cut(A,B) denotes the sum of the weights between A and B. In this
case, there are two partitions, k = 2, and the mincut problem is relatively easy to solve
[31]. However, in practice the solution often does not lead to satisfactory partitions. The
problem is that in many cases, the solution of mincut simply separates one individual
vertex from the rest of the graph. Figure 2.13 illustrates such case. Assuming the edge
weights are inversely proportional to the distance between the two nodes, it can be ob-
served that the cut partitioning node n1 or n2 will have a very small value. In fact, any
cut that partitions out individual nodes on the right half will have smaller cut value than
the cut that partitions the nodes into the left and right halves. Of course this is not what

22 2.6 Spectral Clustering

we want to achieve in clustering, as clusters are expected to represent reasonably large
groups of points.

Figure 2.13: A case where minimum cut gives a bad partition [32].

One way to circumvent this problem is to explicitly request that the partitions
A1, . . . , Ak are "reasonably large". This is done by transforming the problem into an ob-
jective function, called normalized minimum cuts (NCuts), such that the size of a parti-
tion A of a graph is measured by the weights of its edges, its volume vol(A). The volume
of a partition is defined as the sum of the degrees within that set: vol(A) =

∑

i∈A dii
where dii =

∑

j Wi j . Furthermore, D is an N × N diagonal matrix with dii on its diag-
onal. Hence, the normalized cut between A and B can be considered as follows:

NCut(A, B) =
cut(A, B)

vol(A)
+

cut(B, A)
vol(B)

(2.4)

The following mathematical background analysis and steps are based on [32] with
some additional derivations done in this thesis.
Let x be an indicator vector of the size N , x i = 1 if node i is in A and -1, otherwise.
Using the definitions of x and d, we can rewrite NCut(A, B) as:

NCut(A, B) =

∑

(x i>0,x j<0)−wi j x i x j
∑

x i>0 di
+

∑

(x i<0,x j>0)−wi j x i x j
∑

x i<0 di
.

Let m be a constant; m =
∑

xi>0 di
∑

i di
, and 1 be an N × 1 vector of all ones. Using the fact

that 1+x
2 and 1−x

2 are indicator vectors for x i > 0 and x i < 0, respectively, 4× [NCuts]
can be written as:

=
(1+ x)T (D−W)(1+ x)

m1T D1
+
(1− x)T (D−W)(1− x)

(1−m)1T D1

=
(x T (D−W)x + 1T (D−W)1)

m(1−m)1T D1
+

2(1− 2k)1T (D−W)x
m(1−m)1T D1

(2.5)

This can be shown by the following: Let us consider there are 3 nodes such that 2 nodes
in partition A and 1 node in partition B. Then, x = {1,1,−1} where x i = 1 indicates

Chapter 2: Background 23

that the node belongs to A, otherwise, it belongs to B. Then the first numerator part of
NCut(A,B) is:

∑

(x i>0,x j<0)

−wi j x i x j = −w13 x1 x3 −w23 x2 x3 = w13 +w23.

Hence, 4× [NCuts] (1st part numerator) can be written as:

(1+ x)T (D−W)(1+ x) =>
�

2 2 0
�





w12 +w13 −w12 −w13
−w21 w21 +w23 −w23
−w31 −w32 w31 +w32









2
2
0





This is equal to 4 × (w13 + w23) as expected. A similar argument can be made for the
2nd part of the numerator of 4× [NCuts].
As for the denominator part,

m=

∑

x i>0 di
∑

i di
=

w11 +w12 +w21 +w22 +w13 +w23

w11 +w12 +w13 +w21 +w22 +w13 +w23 +w33
,

then,

m1T D1=
w11 +w12 +w21 +w22 +w13 +w23

w11 +w12 +w13 +w21 +w22 +w13 +w23 +w33
×

(w11 +w12 +w13 +w21 +w22 +w13 +w23 +w33) =
∑

x i>0

di .

Let
α(x) = x T (D−W)x ,

β(x) = 1T (D−W)x ,

γ= 1T (D−W)1,

and
Q = 1T D1,

then, Equation 2.5 can be further expanded as:

=
(α(x) + γ) + 2(1− 2m)β(x)

m(1−m)Q

=
(α(x) + γ) + 2(1− 2m)β(x)

m(1−m)Q
−

2(α(x) + γ)
Q

+
2α(x)

Q
+

2γ
Q

.

Dropping the last constant term such that it equals to 0, we get

=
(1− 2m+ 2m2)(α(x) + γ) + 2(1− 2m)β(x)

m(1−m)Q
+

2(α(x) + γ)
Q

=
1−2m+2m2

(1−m)2 (α(x) + γ) +
2(1−2m)
(1−m)2 β(x)

m
(1−m)Q

+
2α(x)

Q
.

24 2.6 Spectral Clustering

Since γ= 0, then 2bγ
bQ = 0 and letting b = m

(1−m) , it becomes

=
(1+ b2)(α(x) + γ) + 2(1− b2)β(x)

bQ
+

2bα(x)
bQ

=
(1+ b2)(α(x) + γ) + 2(1− b2)β(x)

bQ
+

2bα(x)
bQ

−
2bγ
bQ

.

Substituting back, it becomes

=
(1+ b2)(x T (D−W)x + 1T (D−W)1)

b1T D1
+

2(1− b2)1T (D−W)x
b1T D1

+
2b(x T (D−W)x)

b1T D1
−

2b1T (D−W)1
b1T D1

=
(1+ x)T (D−W)(1+ x)

b1T D1
+

b2(1− x)T (D−W)(1− x)
b1T D1

−
2b(1− x)T (D−W)(1+ x)

b1T D1

=
(1+ x)T (D−W)(1+ x)

b1T D1
+

b2(1− x)T (D−W)(1− x)
b1T D1

−
2b(1− x)T (D−W)(1+ x)

b1T D1
.

Using matrix transpose properties, we get

=
[(1+ x)− b(1− x)T (D−W)[(1+ x)− b(1− x)]

b1T D1
. (2.6)

The goal now is to formulate expression 2.6 such that we find a minimum objective
function with conditions.
Setting y = (1+ x)− b(1− x), where (1+ x) is a vector with all the nodes in the partition
A (x i > 0) and the vector (1− x) is otherwise (x i < 0). And since (A− B)T = AT − BT ,
we can see that

y T D1=
∑

x i>0

di − b
∑

x i<0

di =
∑

x i>0

di − (
m

1−m
)
∑

x i<0

di

=
∑

x i>0

di −

∑

x i>0 di
∑

x i<0 di

∑

x i<0

di = 0.

We can deduce that

y T D y =
∑

x i>0

di + b2
∑

x i<0

di = b
∑

x i<0

di + b2
∑

x i<0

di

= b(
∑

x i<0

di + b
∑

x i<0

di)

= b1T D1

Hence, the minimum objective function for expression 2.6 becomes

minx Ncut(x) = miny
y T (D−W)y

y T D y
(2.7)

with the condition y T D1= 0.
The right hand side of Equation 2.7 is the Rayleigh quotient if y is relaxed to take on

Chapter 2: Background 25

real values such that the matrices and vectors are real [32]. Hence, the problem can be
minimized by solving the generalized eigenvalue system:

(D−W)y = λD y. (2.8)

Let z = D
1
2 y , then the generalized eigenvalue system 2.8 becomes

(D−W)D−
1
2 z = λDD−

1
2 z,

multiply D−
1
2 on both sides,

D−
1
2 (D−W)D−

1
2 z = λD−

1
2 DD−

1
2 z,

D−
1
2 (D−W)D−

1
2 z = λz. (2.9)

We reach the standard eigensystem 2.9 which is to be minimized.
Note that D −W is considered the "Laplacian Matrix" L. The Laplacian is just another
matrix representation of a graph which has the following properties:

• L is a positive semidefinite matrix.
• The smallest eigenvalue of an eigensystem of L is 0, the corresponding eigenvector

is the constant 1 vector.
• L has n non-negative, real-valued eigenvalues such that 0= λ1 ≤ λ2 ≤ . . .λn.

According to spectral graph theory, an approximate resolution of Equation 2.7 can be
considered as thresholding the eigenvector corresponding to the second smallest eigen-
values of the normalized Laplacian L. The second smallest nonzero eigenvalue is called
the spectral gap. The spectral gap gives us some notion of the density of the graph. If this
graph was densely connected (all pairs of the n nodes had an edge), then the spectral
gap would be n, where n is number of nodes.

The direct relation between the eigenvalues of a Laplacian matrix and clustering is
summarized below:

• When the nodes in a graph are completely disconnected, then all eigenvalues are
0.

• Otherwise, the 1st eigenvalue is always 0 since there is only one connected com-
ponent which is the graph itself.

• The 2nd eigenvalue approximates the minimum graph cut needed to separate the
graph into two connected components.

• Near zero 2nd eigenvalue shows that there is almost a separation of two compon-
ents.

• Each value in the 2nd eigenvector gives us information about which side of the
cut a node belongs to, either positive or negative.

Algorithm 3 summarizes shows the established spectral clustering algorithm.

26 2.6 Spectral Clustering

Algorithm 3 Spectral Clustering
Input: dataset S = {s1, s2, . . . , sn}, number of clusters k
Output: k-clustering of S

Wi j = exp
−||x i−x j ||22

2σ2 , i, j = 1,2, . . . , n
Di j = dii =

∑

j Wi j

L = D−
1
2 (D−W)D−

1
2

Find X = SmallestEigenVectors(L, k)
Y = Normalize(X)
k = Cluster(Y)

In summary, as shown in Algorithm 3, once the affinity/similarity matrix is computed,
the graph Laplacian matrix can be constructed. The first k eigenvectors of L are then
normalized (to be considered as NCuts not mincut) and clustered using any k-clustering
algorithm such as k-means discussed in Section 2.2.2.

2.6.3 Eigenvalue and Eigenvector Decomposition

This subsection focuses on the eigenanalysis of the Laplacian matrix L. Recall that ei-
genvalues are defined as roots of the characteristic equation det(A−λIm) = 0, where A
is any (m×m) matrix. In matrix format, the eigenvalue equation for A is defined as

AU = UΛ,

where we put together the set of eigenvectors of A in a matrix denoted U . Each column
of U is an eigenvector of A. The eigenvalues are stored in a diagonal matrix (denoted Λ),
where the diagonal elements give the eigenvalues (and all the other values are zeros).
Multiplying both sides by U−1, A can be also written as

A= UΛU−1.

From section 2.6.2, recall that L is a positive semi-definite. This means that it can be
obtained as the product of a matrix multiplied by its transpose [33]. This further implies
that a positive semi-definite matrix is always symmetric since the product of a matrix
and its transpose results in a symmetric matrix (m× n)× (n×m) = (m×m). Thus, L
can be obtained as:

L = X T X

for a certain matrix X containing real numbers. The important properties of L is that
its eigenvalues are always positive or null, and its eigenvectors are pairwise orthogonal
when their eigenvalues are different. Hence, since eigenvectors corresponding to differ-
ent eigenvalues are orthogonal, it is possible to store all the eigenvectors in an ortho-
gonal matrix (recall that a matrix is orthogonal when the product of this matrix by its
transpose is the identity matrix) [34]. In other words, UU T = I and this implies that
U−1= U T . Hence, L becomes

L = UΛU T ,

which is called the diagonalization of L.
The goal is to obtain the diagonalization of L. This can be done by making use of the
singular value decomposition (SVD).

Chapter 2: Background 27

Singular Value Decomposition

According to [35], for a rectangular matrix A (m×n), let p = min{m, n} the SVD theorem
states that

A= UΣV T , where

• U = (u1, . . . , um) ∈ Rm×m is orthogonal.
• V = (v1, . . . , vn) ∈ Rn×n is orthogonal.
• Σ= diag(σ1, . . . ,σp) ∈ Rm×n,σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

σi are called the singular values, ui are the left singular vectors, and vi are the right
singular vectors. The singular values, σi , are the square roots of the eigenvalues of AT A
and of AAT (these two matrices have the same eigenvalues).

Corollary 1 If A is a symmetric matrix the singular values are the absolute values of the
eigenvalues of A : σi = |λi| and the columns of U = V are the eigenvectors of A.

PROOF: If A is symmetric then AAT = AT A= A2 and U , V,Σ are square matrices. The ei-
genvectors of A are also the eigenvectors of A2 with squared corresponding eigenvalues.
The singular values are the absolute values of the eigenvalues of A. �

This implies that for the symmetric matrix L, L = UΛU T is the SVD of L where U and
Λ are the eigenvalues and the eigenvectors of L, respectively. Hence, finding the SVD of
the Laplacian matrix corresponds to finding its eigenvalue decomposition.

Jacobi Method

Jacobi methods are quite popular in hardware implementation of SVD solution because
the computation can be done in parallel. The main idea of a Jacobi method in SVD con-
text is to get the eigenvectors of A using a sequence of "Jacobi rotations" to diagonalize
it [36]. Diagonalizing a matrix essentially means that the off-diagonal entries of that
matrix are zeros. An off-diagonal entry is any entry of a matrix that is not on its main
diagonal. For example, we may define a diagonal matrix as being a square matrix whose
off-diagonal entries are all equal to zero. A Jacobi rotation matrix, J(p, q,θ), is defined
as:

where c = cosθ and s = sinθ . The matrix J is accordingly an identical matrix,
except its four elements c, s, c, and −s. This matrix, when applied as a similarity trans-
formation to a symmetric matrix A (n×n), rotates rows and columns p and q of A through

28 2.6 Spectral Clustering

the angle θ so that the (p, q) and (q, p) off-diagonal entries are zeroed as shown below
(∗ is any entry ai j):

























∗ · · · ∗
. . .

app · · · apq
...

...
. . .

...
...

aqp · · · aqq
. . .

∗ · · · ∗

























→

























∗ · · · ∗
. . .

a′pp · · · 0
...

...
. . .

...
...

0 · · · a′qq
. . .

∗ · · · ∗

























.

Based on the number of angles required for annihilating the off-diagonal elements, Jac-
obi methods are broadly classified as One-sided and Two-sided Jacobi methods. Two-
sided Jacobi method is implemented in this work. The simplified stages of Two-sided
Jacobi for solving eigenfunction problems can be described as:

1. Choose an index pair (p,q) from matrix A such that 1< p < q < n.
2. Calculate a (c,s) pair for the rotation matrix J such that the 2 × 2 subproblem

matrix is diagonal:

�

a′pp a′pq
a′qp a′qq

�

=

�

c1 s1
−s1 c1

�T �
app apq
aqp aqq

��

c2 s2
−s2 c2

�

(2.10)

3. Repeat by selecting the next (p,q) pairs. The algorithm fetches the next index pair
(p, q) such for a sequence of N jacobi rotations, called sweep. The matrix A is
overwritten at each step A← J T A J .

The 2nd stage involves solving for off-diagonal elements and equating to zero (a′pq and
a′qp are equal to zero):

app.sinθ1cosθ2 + aqp.cosθ1cosθ2 − apq.sinθ1sinθ2 + aqq.cosθ1sinθ2 = 0, (2.11)

app.cosθ1sinθ2 − aqp.sinθ1sinθ2 − apq.cosθ1cosθ2 + aqq.sinθ1cosθ2 = 0. (2.12)

Adding and subtracting Equations 2.11 and 2.12, gives the required Jacobi rotation
angles:

tan(θ1 + θ2) =
apq + aqp

aqq − app
; tan(θ1 − θ2) =

apq − aqp

aqq + app
. (2.13)

θ1 and θ2 are called half angles. The goal is to diagonalize matrix A in terms of θ1 and
θ2. Equation 2.10 can be re-written as:

�

a′pp 0
0 a′qq

�

=

�

cosθ1 −sinθ1
sinθ1 cosθ1

��

app.cosθ2 − apq.sinθ2 app.sinθ2 + apq.cosθ2
aqp.cosθ2 − aqq.sinθ2 aqp.sinθ2 + aqq.cosθ2

�

(2.14)
Replace cosθ1 ⇒ c1, sinθ1 ⇒ s1, cosθ2 ⇒ c2, and sinθ2 ⇒ s2, and carry out matrix
multiplication of Equation 2.14, a′pp and a′qq become:

a′pp = c1.(app.c2− apq.s2)− s1.(aqp.c2− aqq.s2), (2.15)

Chapter 2: Background 29

a′qq = s1.(app.s2+ apq.c2) + c1.(aqp.s2+ aqq.c2). (2.16)

Hence, the rotation angles cos(θ1+θ2), cos(θ1−θ2), sin(θ1+θ2), sin(θ1−θ2) can
all be obtained by solving Equation 2.13. Thus, a solution is obtained for a′pp and a′qq in
�

a′pp 0
0 a′qq

�

. The Two-sided Jacobi algorithm for SVD is formulated in Algorithm 4.

Algorithm 4 Two-sided Jacobi for eigenvalues and eigenvectors.
Step 1. Read the symmetric matrix A. Let U = 1 be a matrix of the same size as A.

Step 2. Construct matrix U and V that are identical to the unit matrix, except for

Upp = Uqq = Vpp = Vqq = cosθ , Upq = Vpq = sinθ , and Uqp = Vqp = −sinθ .

Step 3. Find the off-diagonal element from A= [apq].

Step 4. Find the rotational angles using Equation 2.13. And hence, find U ′ and V ′

Step 5. Then compute the matrix products A′ = V T AU , Uout = U ′.U , and Vout = V ′.V ;

A′pq becomes zero by this operation, the other elements in rows and columns p and q

are changed.

Step 6. If the number of iterations is reached or the largest absolute value of the off

diagonal elements Apq is larger than a threshold, repeat the process from step no. 3

with A′ instead of A, Uout instead of U , and Vout instead of V . Upon convergence, A′

contains the eigenvalues, and Uout and Vout contain the eigenvectors.

Algorithm 4 concludes with singular value decomposition of the symmetric matrix A.

2.6.4 Spectral Clustering Example

For illustration, consider a graph G with 5 vertices, the similarity matrix for the graph
is found using some criterion to be for example:

W =











0 1 1 0 0
1 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0











An entry in the matrix W , wi j represents whether node i and j share an edge. The graph
corresponding to matrix W is presented below: It can be observed that for example that
node 1 shares 3 edges with nodes 2,3, and 5, hence, the entries (1,2),(1,3),(1,5) are
ones in the matrix W . In addition, the diagonal entries of W are zero.
The degree matrix D discussed earlier represents the sum of weights for each node, i.e.,

30 2.6 Spectral Clustering

Figure 2.14: Similarity graph corresponding to matrix W .

number of connections each node has. In this example the degree matrix D becomes:

D =











2 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1











The degree of node i j = 11 is 2 in this case.
The Laplacian matrix L can be found by L = D−W :

L =











2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1











The diagonal of L represents the degrees of the nodes while off the diagonal are binary
entries of 0 or -1; 0 means that a pair of given nodes is not connected and -1 that the
pair of nodes is connected. Next step is to find the eigenvalues of the matrix L.
First, we compute LLT and LT L. Using Corollary 1, we know that LLT = LT L = L2,
then L2 is:

L =











6 −3 −4 1 0
−3 6 −4 1 0
−4 −4 12 −5 1
1 1 −5 6 −3
0 0 1 −3 2











We can determine the eigenvalues of the matrix L2 using the roots of the characteristic
equation det(L2 −λIm) = 0.

det





















6 −3 −4 1 0
−3 6 −4 1 0
−4 −4 12 −5 1
1 1 −5 6 −3
0 0 1 −3 2











−λ











1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





















: −λ5+32λ4−306λ3+916λ2−225λ

= −λ(λ4 − 32λ3 + 306λ2 − 916λ+ 225) = −λ(λ− 9)(λ3 − 23λ2 + 99λ− 25) = 0.

Chapter 2: Background 31

Solving the last equation gives the sorted eigenvalues of L2:










λ1 = 0
λ2 = 0.269
λ3 = 5.341
λ4 = 9

λ5 = 17.390











Hence, the singular values (eigenvalues of L) are σi =
p

λi sorted:










σ1 = 0
σ2 = 0.5188
σ3 = 2.311
λ4 = 3
λ5 = 4.17











We find that the first eigenvalue of L, σ1, is 0 as expected. The eigenvalues are
sorted to find the 2nd smallest eigenvalue, λ2 = 0.5188 where the corresponding vector
is:











−0.59696
−0.59696
−0.28725
0.48119

1











The nodes on the graph can be labelled with 0 or 1 classes according to each value in
the eigenvector (positive or negative). It gives us information about which side of the
cut a node belongs to.

Extensions to multiple partitions are possible via recursive bipartitioning or through
the use of multiple eigenvectors. In this work, we make use of multiple eigenvectors to
find partitions of more than just 2 clusters. This is done by spectral embedding. Spec-
tral embedding aims to represent a graph in some Euclidean space of low dimension,
say RNE where NE � n. Hence, each node i ∈ V is represented by vector ei ∈ RE . The
structure of the graph must be encoded in its representation e1, e2, . . . , en such that two
close nodes i, j in the graph G correspond to two close vectors ei , e j in the embedding
space.
The importance of spectral embedding in spectral clustering can be shown in Figure
2.15. Mapping the nodes of the graph into higher dimensions shows the distances between
the nodes. Eigenvectors of the Laplacian matrix provide an embedding of the data based
on similarity, i.e, groups the closer nodes together. To find such an embedding for the
normalized cut problem, [37] computed the n× NE matrix of the leading eigenvectors
V and the NE × NE diagonal matrix of eigenvalues Λ of the system:

D−
1
2 (D−W)D−

1
2 V = VΛ.

The ith embedding representation of the jth pixel is then given by

Ei j =
Vi+1, j
Æ

Dj j
, i = 1, . . . , NE , j = 1, . . . , N , (2.17)

32 2.6 Spectral Clustering

Figure 2.15: Spectral embedding example.

where the eigenvectors have been sorted in ascending order by eigenvalue. Thus, each
pixel is associated with a column of E and the final partitioning is accomplished by
clustering the columns for each individual pixel. This corresponds to the normalization
of the first k eigenvectors that takes place in 3 before using k-means to discover groups
of pixels in this embedding space.

2.6.5 Nyström Extension

Solving eigensystem problems with large matrices such as the ones expected to be con-
structed for hyperspectral images can be high computationally expensive. The Nyström
extension is a technique for finding numerical approximations to eigenfunction prob-
lems formulated out of large matrices such as the similarity matrix of a hyperspectral
image. The method finds the numerical solution of an integral equation by replacing the
integral with a representative weighted sum. [12] introduced making use of Nyström
extension for spectral clustering of hyperspectral images to obtain cluster results effi-
ciently by finding approximations for the leading eigenvectors of the Laplacian matrix
and hence, a solution of the eigenfunction problem.
This is done by taking a sample pixels from the original input data set, and get the affin-
ity matrix for it. Then, we find eigenvalue decomposition of the obtained affinity matrix
including the eigenvectors V . Nyström method extends the eigenvectors obtained to Ve
such that Ve is an approximation of the original eigenvectors.
The goal in the coming discussion is to approximate the similarity matrix by consider-
ing it to be an eigenfunction problem and then extend the result to the normalized cut
concept discussed in section 2.6.

Chapter 2: Background 33

In the context of hyperspectral images, the affinity matrix considers both the reflect-
ance value of the pixels and their spatial location in order to define the similarity between
two samples x i and x j . Hence, equation 2.3 of section 2.6 can be redefined as:

Wi j = exp
−||li − l j||22

2σ2
l

. exp
−||x i − x j||22

2σ2
x

, i, j = 1, 2, . . . , n, (2.18)

where li and l j are the spatial locations of the HSI’s pixels and σl and σx are the
bandwidth of neighbouring pixels. σl and σx are sensitive to different hyperspectral
images. According to [38], these parameters can be related to li and l j and x i and x j ,
and we can define σ̄l and σ̄x as

σ̄l =
1
n2

n
∑

i=1

n
∑

j=1

||li − l j||22, σ̄x =
1
n2

n
∑

i=1

n
∑

j=1

||x i − x j||22. (2.19)

Substituting back to Equation 2.8, it becomes:

Wi j = exp
−||li − l j||22

2ασ̄l
2 . exp

−||x i − x j||22
2ασ̄x

2 , i, j = 1, 2, . . . , n, (2.20)

where α is a parameter or factor to control the number of neighbors for each node in
the affinity matrix.

Let A be a matrix defined by Equation 2.18, then A is an affinity matrix of m chosen
samples. The similarity matrix of the remaining n−m samples and the chosen samples
are denoted as B. In addition, let C denote the affinity matrix for the remaining samples
alone. The affinity matrix W of equation 2.8 can be rewritten as

W =

�

A B
BT C

�

, (2.21)

where BT is the transpose of matrix B. Hence, A∈ Rm×m, B ∈ Rm×n, and C ∈ Rn×n.
The affinity matrix C can be extremely large for HSI images. According to Nyström
extension, if we know A and B we can find an approximation for matrix C such that
C = BT A−1B. In other words, given only m rows of the matrix W , we can find the values
of the entire n× n matrix W . In the following discussion, we establish the explanation
of Nyström extension method in the steps similiar to [39].

Eigenfunction problems in which the Nyström extension is used are in the form

∫ b

a
W (x , y)φ(y)dy = λφ(x).

According to [39], we can approximate this integral equation by evaluating it at a set
of evenly spaced points ε1,ε2, . . . ,εn on the interval [a, b] and employing an approx-
imation (called, quadrature rule; more information can be found in Appendix 2) of the
definite integral of the function W (x , y)φ(y) such that it becomes:

34 2.6 Spectral Clustering

(b− a)
n

n
∑

j=1

W (x ,ε j)φ̂(ε j) = λφ̂(x), (2.22)

where φ̂(x) is an approximation to the true φ(x). Set x = εi and equation 2.22
becomes

(b− a)
n

n
∑

j=1

W (εi ,ε j)φ̂(ε j) = λφ̂(εi) ∀i ∈ {1 . . . n}. (2.23)

Let [a, b] be [0,1], we structure the system 2.23 as a matrix eigenvalue problem:

AbΦ= nbΦΛ

where Ai j =W (εi ,ε j) and bΦ= [φ̂1, φ̂2, . . . , φ̂n] are the n eigenvectors of A corres-
ponding to λ1,λ2, . . . ,λn placed on the diagonals of the matrix Λ. Substituting back to
equation 2.22 yields the Nyström extension for each eigenvector φ̂i:

φ̂i(x) =
1

nλi

n
∑

j=1

W (x ,ε j)φ̂i(ε j). (2.24)

This expression allows us to extend an eigenvector computed for a set of sample points
to an arbitrary point x using W (.,ε j) as the interpolation weights.

Considering A again to be the affinity matrix present in matrix W of Equation 2.21. It
has been established in Section 2.6 that the Laplacian matrix is a positive semi-definite
matrix. Recall the eigenvalue decomposition analysis of A from Section 2.6.3:

A= UΛU T

which is called the diagonalization of A.
Going back to the Nyström extension for φ̂i in 2.24, since matrix B represents the weights
between the sample points and the remaining points, then, the matrix form of the Nys-
tröm extension is BT UΛ−1 where BT corresponds to W (ε j , .), the columns of U , the
eigenvector, corresponds to φ̂i(ε j)s, and Λ−1 corresponds to 1/λis. Recall the matrix W
of 2.21, letting Ū denote the approximate eigenvectors of W , then

Ū =

�

U
BT UΛ−1

�

, (2.25)

since U is the eigenvectors of A and BT UΛ−1 is the Nyström extension matrix form.
Furthermore, we can approximate W , which we denote, cW , such that

Chapter 2: Background 35

cW = ŪΛŪ T (2.26)

=

�

U
BT UΛ−1

�

Λ
�

U T Λ−1U T B
�

(2.27)

=

�

UΛU T B
BT BT A−1B

�

(2.28)

=

�

A B
BT BT A−1B

�

(2.29)

=

�

A
B

�

A−1
�

A B
�

(2.30)

(2.31)

since UU T = I = ΛΛ−1. Hence, C = BT A−1B according to the approximation of the
matrix W using Nyström extension.

We are left to extend the above approximation to the normalized cut defined earlier
in section 2.6. We know that by definition, bd represent the row sum of matrix W , hence,

bd =cW1=

�

A1m + B1n
BT 1m + BT A−1B1n

�

, (2.32)

where A1m and B1n are the row sum of matrices A and B and BT 1m is the column
sum of matrix B. 1m is a vector row of 1s of size m.
Having d̂, we can approximate the blocks of D−

1
2 (D−W)D−

1
2 , (similar to the embedding

done in Equation 2.17) such that the matrix A and B can be formulated as:

Ai j =
Ai j

Ç

Òdi
Òd j

(2.33)

Bi j =
Bi j

Ç

Òdi
bd j+m

(2.34)

and we can get the normalized affinity matrix D−
1
2cW D−

1
2 , hence,

D−
1
2cW D−

1
2 =

�

A
B

�

A−1
�

A B
�

. (2.35)

In summary, Algorithm 3 becomes

36 2.7 Overview of Zynq-7000 Functional Blocks

Algorithm 5 Spectral Clustering with Nyström extension method [37].
Input: dataset S = {s1, s2, . . . , sn}, number of clusters k
Output: k-clustering of S

Wi j = exp
−||li−l j ||22

2σ2
l

. exp
−||x i−x j ||22

2σ2
x

, i, j = 1, 2, . . . , n.

Di j = dii =
∑

j Wi j .
Calculate matrices A and B using Equations 2.33 and 2.34.
Compute the normalized Laplacian

L = D−
1
2cW D−

1
2 =

�

A
B

�

A−1
�

A B
�

.

Find v1, v2, . . . , vk = SmallestEigenVectors(L, k).
Let V ∈ Rn×k be the matrix containing the vectors v1, v2, . . . , vk as columns.
Find the embedding Ei j =

Vi+1, jp
D j j

, i, j = 1, . . . , k.

For i = 1, . . . , n, let yi ∈ Rk be the vector corresponding to the i-th row of E.
Cluster the points (yi)i=1,,...,n in Rk with the k-means algorithm into clusters C1, . . . , Ck.

2.7 Overview of Zynq-7000 Functional Blocks

Zynq-7000 is a family of Xilinx System-on-Chip (SoC) products which offers the flexib-
ility and scalability of an FPGA, while providing performance, power, and ease of use.
The SoC architecture enables implementation of custom logic in the processing logic
(PL) and custom software in the processing system (PS), and thus, enables implement-
ations of HW/SW co-designs. The overview of the Zynq architecture is shown in Figure
2.16, showing the functional blocks of both the PL and the PS.
The processing system comprises four major blocks:

• Application Processor Unit (APU) which includes 2 ARM Cortex-A9 cores.
• Memory Interfaces: A dynamic memory controller and static memory interface

modules.
• I/O Peripherals (IOP) which contains the data communication peripherals.
• Central Interconnect through which the APU, memory interface unit, and the IOP

are all connected to each other and to the PL.

Making use of the four main blocks of the PS along with a special PS-PL interface allows
high performance communication between PS and PL cores on a single chip, which
further makes HW/SW co-design implementations possible. The processing logic cores
used in this thesis include DSP blocks, BRAM blocks, and DMA core. The PS-PL interface
is conducted by AXI protocols explained below in this section.

Chapter 2: Background 37

Figure 2.16: Architectural Overview of Zynq-7000 [40].

2.7.1 DSP blocks on Zynq

Digital signal processing (DSP) applications typically require a large number of math-
ematical operations to be performed quickly and repeatedly on a series of data samples.
Such applications have constraints on latency, and dedicated hardware chips are de-
signed to meet these constraints. Zynq SoC has 220 dedicated, full-custom, low-power
DSP slices, combining high speed with small size while retaining system design flexibility
[41]. A DSP slice found on Zynq SoC is depicted in Figure 2.17. Each DSP slice contains
a pre-adder, 25×18 bit multiplier, and a 48-bit accumulator, all capable of operating up
to 741 MHz. In addition, three pipeline data registers are provided to run at full speed.

The DSP48E1 multiplier has asymmetric inputs and accepts two’s complement op-
erands of 25 and 18-bits. The multiplier stage produces a 43-bit two’s complement result
in the form of two partial products. These partial products are sign-extended to 48 bits
in the multiplexer and fed into three-input adder for final summation. This results in a
43-bit multiplication output, which has been sign-extended to 48 bits. The C input port
allows the formation of many 3-input mathematical functions, such as 3-input addition
or 2-input multiplication with an addition. The second stage adder/subtracter accepts
three 48-bit two’s complement operands and produces a 48-bit two’s complement res-
ult. In addition, the DSP48E1 slice is the only FPGA architecture that supports pattern
detection which is used for convergent rounding and overflow/underflow detection.

38 2.7 Overview of Zynq-7000 Functional Blocks

Figure 2.17: Basic DSP48E1 Slice Functionality [41].

2.7.2 AXI Protocols

All devices in a Zynq system communicate each other based on a device interface stand-
ard developed by ARM, called AXI (Advanced eXtended Interface). There are three types
of AXI bus interfaces: AXI (full), AXI-lite and AXI-stream. As Zynq SoC uses AMBA 4.0
(Advanced Microcontroller Bus Architecture) released in 2010 [40], the focus is placed
on that interface version which consequently includes AXI-4, AXI-4 Stream, and AXI4-
Lite. Figure 2.18 illustrates the AXI interconnects that will be used in this work. The
processor and DDR memory controller are contained within the Zynq PS. The AXI DMA
and PL Block are implemented in the Zynq PL. The AXI-lite bus allows the processor
to communicate with the AXI DMA to setup, initiate and monitor data transfers. The
AXI_MM2S and AXI_S2MM are memory-mapped AXI4-Stream buses and provide the
DMA access to the DDR memory. AXI4-Lite and AXI4-Stream interconnects are discussed
below.

AXI4-Lite Interface

The AXI4-Lite interface developed by ARM [42], consists of five channels: read address,
read data, write address, write data, and write response. All five transaction channels use
a VALID/READY handshake process to transfer address, data, and control information.
Each channel is independent from each other and has its own couple of VALID/READY
handshake signals. The information source drives the VALID signal to inform the des-
tination entity that the payload on the channel is valid and can be read. Similarly, the
READY signal is generated by the information destination to indicate that it can accept
that information. The handshake completes if both VALID and READY signals in a chan-
nel are asserted during a rising clock edge.

Communication over an AXI4-Lite bus incorporates two interconnects, a master
and a slave. An AXI4-Lite read and an AXI4-Lite write using the five channels is shown
in Figure 2.19. To start a read transaction, the master has to provide data address and
data length on the Read address channel. After the usual VALID/READY handshake,

Chapter 2: Background 39

Figure 2.18: Block diagram of AXI interconnects connecting the processor and DMA (in
PS) to AXI DMA and a processing logic block (in PL).

(a) AXI4-Lite read channels. (b) AXI4-Lite write channels.

Figure 2.19: AXI4-Lite interface [42].

the slave has to provide the data corresponding to the specified address on the Read
data channel as shown in Figure 2.19(a). Similarly, writing transaction is started by the
master by sending an address on the write address channel and corresponding data on
the write data channel. After the transaction completion on both channels, the slave has
to send back to the master the status of the data write over the Write response channel
as depicted in Figure 2.19(b).

AXI4-Stream Interface

AXI4-Stream by ARM [43], is used as a standard interface to connect components that
wish to exchange a continuous stream of data. The interface can be used to transport
data streams of arbitrary width in hardware. Most usually 32-bit bus width is used to be
connected to the DMA core which performs memory-mapped to stream (MM2S) con-
version. The interface handshake protocol is similar to AXI4-Lite but uses an additional
handshake signal (TLAST) and is depicted in Figure 2.20. The interfaces of this type do
not use data addresses.

40 2.7 Overview of Zynq-7000 Functional Blocks

Figure 2.20: AXI4-Stream Interface.

In AXI4-Stream, TDATA width of bits is transferred per clock cycle. The transfer
is started once the master signals TVALID and the slave responds with TREADY which
represents that it is ready to receive data. TLAST signals the last byte of the stream.
TUSER is an optional signal which is a user defined sideband information that can be
transmitted alongside the data stream [43]. In addition, TID and TDEST are two op-
tional signals where TID usually identifies which master the stream originated from,
and TDEST is used to route the stream to the appropriate destination.

2.7.3 AXI DMA

Direct Memory Access (DMA) cores are used to allow direct memory access to peripher-
als with minimal CPU intervention. In the case of a Zynq system, AXI DMA provided by
Xilinx [44], is instantiated in PL and it is used to transfer data from DDR memory to the
FPGA cores with AXI-stream interfaces as shown in Figure 2.18. The AXIS_MM2S and
AXIS_S2MM are AXI4-streaming buses, which source and sink a continuous stream of
data without addresses. In this work, we use the DMA to transfer data from memory to
an PL block and back to the memory. In principle, the PL block could be any kind of data
producer/consumer. In our case, it is the processing logic block of the intended HW/SW
co-design.

2.7.4 Block RAM

One of the main challenges in hardware implementation of matrix operations is storing
the data. As the real symmetric matrix is quite huge, it needs to be stored in memory
and filled into and pulled from the memory to perform operations on it. The Xilinx block
RAM (BRAM) is a dual-port RAM module instantiated into the FPGA fabric to provide
on-chip storage for a relatively large set of data. Zynq-7000 features 36Kb BRAM dual-
port units which allow for parallel, same-clock-cycle access to different locations [45].
In this work, the BRAM is modified such that it has 1 write and 2 read ports for a vector
of data. In other words, there are two read pointers to data addresses which can be
decoded into 2 separate or the same data row. Figure 2.21 shows the design of a dual-
port vector BRAM with write enable (we) used in this work. The BRAM is defined by its
size (BRAM_ADDR_WIDTH) and width of each row (BRAM_DATA_WIDTH). For a write
operation, din represents the input data to be written on the RAM address specified by
the row (w_addr) on the BRAM. Each row is associated with a write enable signal (we).

Chapter 2: Background 41

On the other hand, on each rising clock edge, the specified addresses, r_addr_1 and
r_addr_2, are read and given to dout_1 and dout_2, respectively.

Figure 2.21: Vector storage using BRAM.

Figure 2.22: Vivado HLS Design Flow [46].

42 2.8 Vivado HLS

2.8 Vivado HLS

The Vivado High-Level Synthesis (HLS) is part of Vivado Design Suite produced by Xilinx
[46]. This HLS tool converts algorithmic descriptions written in C-based design flow into
hardware descriptions (RTL). The RTL implementations can be further synthesized for
FPGA platforms on Xilinx products, such as, Zynq-7000.

Figure 2.22 shows the Vivado HLS design flow. The user starts the design flow by
supplying a functional C code design and a C testbench design. Along with the C code,
the user may also specify the directives which direct the HLS to implement a specific
behaviour or hardware optimization. The functional verification of C code is done by C
simulation.
Next, C-to-RTL HLS is done by C Synthesis along with the provided directives and con-
straints used to define and refine the RTL implementation. Until this stage, the user is
provided with an estimation of the list of hardware resources. Once the RTL is gener-
ated using HLS, C/RTL cosimulation verifies the RTL output using the same testbench,
however, the HW testbench is also generated by the HLS tool. The user is provided with
a report to observe the HW and the SW results and a functional comparison can be de-
duced. Finally, the implemented RTL can be exported to hardware for use on different
platforms, including Vivado Design Suite, by packing it into an intellectual property (IP)
block.

Table 2.1: Vivado HLS optimization directives [46].

Directive Description
#pragma HLS interface Specify RTL I/O port types for the

top function level. For example,
AXI_Stream I/O, bram, etc.

#pragma HLS inline Removes a function as a separate en-
tity in the hierarchy. After inlining, the
function is dissolved into the calling
function and no longer appears as a
separate level of hierarchy in the RTL.

#pragma HLS unroll Unroll loops to create multiple in-
dependent operations rather than a
single collection of operations.

#pragma HLS pipeline Reduces the initiation interval by al-
lowing the concurrent execution of
operations within a loop or function.

In this thesis, Vivado HLS is used to implement the singular value decomposi-
tion (SVD) to obtain the eigenvalue and eigenvector decomposition of the Laplacian
matrix for the Spectral Clustering solution. The HLS SVD implementation is described
in Chapter 5. Throughout the implementation, frequently used Vivado HLS directives
(pragmas) are utilized and described in Table 2.1. A user can make use of the directives
to transform an initial RTL design into both a low-area and high-throughput implement-
ation. Thus, optimizing the design. In addition, optimization directives can be used to
define the desired I/O interfaces to the HLS core.

Chapter 3

Software Implementation

In this chapter, the software implementations of both methods developed in this thesis
are discussed. First, the implementation of a new segment-based clustering is detailed.
Then, the application of a spectral clustering based method is explained.

3.1 Segment-based Clustering using BPT

Figure 3.1: Flowchart of CLUS-BPT.

The method implemented in the specialization project [6] is further improved by
adding to it a binary partition tree pruning algorithm. The framework developed in
this thesis, termed as CLUS-BPT (Clustering using Binary Partition Trees), is based on a
three-stage scheme: (i) pre-segmentation, (ii) segmentation, and (iii) PCA and k-means
clustering. The framework is an implementation of different components described by
[9] and [30]. The way the components are connected and used together is the novelty
behind this framework.
Figure 3.1 depicts the working procedure of the proposed scheme. As shown, CLUS-
BPT starts by making use of an initial partition to form the segmentation map (spatial
discrimination), which is then used for BPT construction along which region modelling
and region merging is included. In the next step, principal component analysis (PCA)
(explained in Appendix A) is applied to the original HSI cube to obtain the maximum
data variance direction (1st PCA component) and the result is embedded with the final
segmentation map produced by BPT. Finally, the filtering algorithm-based k-means clus-
tering method is carried over the refined segments to output the cluster map as shown
in Figure 3.1.

43

44 3.1 Segment-based Clustering using BPT

Figure 3.2: Overall software modules hierarchy.

The software implementation is carried out using MATLAB. The hyperspectral cube is
loaded with dimensions of (x× y×z), where x and y are the spatial dimensions (image
size) and z is the number of bands. Throughout this implementation, the data structure
maintained is a binary tree data structure. Each parent node has two children nodes as
depicted in Figure 2.7. The software is designed and implemented to be able to provide
a structural overview and to easily be able to determine the location of each module.
Figure 3.2 shows the overall design of the software implementation of CLUS-BPT. At the
top hierarchy level is the main function which contains the start of the software. The
main function also calls the other sub-functions as shown in the figure. Furthermore,
the main function accepts user defined parameters shown in Table 3.1.

Table 3.1: User defined parameters.

Parameter Parameter Description Allowed Values
File_path_1 Path to input hyperspectral data mat datatype file & string

PR Number of pruned regions Positive integer
PCA_components Number of PCA components Positive integer

k Number of clusters Positive integer
File_path_2 Path to output evaluation results string
File_path_3 Path to output clustered labels string

3.1.1 Pre-Segmentation

The iterative region merging algorithm for building the tree starts by making use of
either the original pixels of the HSI cube or an initial region partition. The initial parti-
tion of the hyperspectral cube helps in reducing the computational time for BPT build-
ing, rather than using the original set of pixels [26]. This is because the initial partition
consists of regions in which each region contains a number of pixels grouped together.
Furthermore, the region merging algorithm will deal with a smaller size of input rather
than the whole HSI cube.
In this work, Watershed segmentation method is utilized to obtain an initial partition
of the HSI cube. The reason behind using this method is to avoid obtaining an under-
segmented map (different regions with large spatial size) in which regions will not be
allowed to be split later during the process. This is because the BPT will be built on

Chapter 3: Software Implementation 45

those splits and the segment sizes will further increase throughout the building process.
Instead, an oversegmented map is produced which contains regions small and accurate
enough to be able to be reconstructed with good accuracy in the BPT building process
[26].

The implementation is based on three built-in MATLAB functions. Two of those func-
tions are used to obtain the gradient for each spectral band, namely, imdilate and imerode
functions. Figure 3.3 shows an illustration of the two functions on a hyperspectral im-
age. Using a square structuring element of size 3, imdilate dilates the given image by
gradually enlarging the boundaries of regions of foreground pixels. On the other hand,
imerode erodes away the boundaries of regions of foreground pixels. Thus areas of fore-
ground pixels shrink in size, and holes within those areas become larger. The step of
subtracting the dilated image from the eroded image produces light and dark pixels
which can be considered as boundaries of each region for every spectral band, called
gradient values. The gradient function then gets the maximum of gradient value for
each spectral band. Finally, the built-in watershed MATLAB function finds "watershed
ridge lines" in the output image by treating it as a surface where light pixels represent
high elevations and dark pixels represent low elevations (like high and low elevations
in a mountain that is split by the watershed line).
By the end of this stage, an initial segmented map of oversegmented regions is obtained
as shown in Figure 3.1.

Figure 3.3: Example operations of dilation and erosion on a hyperspectral image.

3.1.2 BPT Building

In this stage, a struct type of data is created (called DATA). DATA has the following fields:
data_input, initsegmap, regionmodel, merging_criterion, spec_merging.
The buildBPT function takes the DATA struct and returns the tree structure of BPT. The
function starts by reshaping the data input passed through the data_input field. The

46 3.1 Segment-based Clustering using BPT

built-in MATLAB reshape function is used to resize the data from (x , y, z) to (x×y, z). The
buildBPT function then calls three subfunctions sequentially: initStruct, updateStruct,
completeStruct.

initStruct

This subfunction takes the initial segmentation map and hyperspectral data to create
the tree data structure and initializes it. The data structure of a tree node is presented
in Figure 3.4. Each node represents a region on the segmentation map.

Figure 3.4: A tree node data structure.

• number: Unique node number. The tree size is 2 ∗ N − 1 where N =max(x , y).

• definition: This field is a struct containing the description of the region’s size,
model representing that region, and the region bounding box.

• construction: This is another struct of data containing the neighbours surrounding
the current region’s bounding box, the distances between the current node and its
neighbours, and a value representing the minimum distance.

• nodeInfo: This is also a struct of information noting:

◦ The closest neighbor, called sibling.

◦ The current node may have leaves which represent an array of the first nodes
merged at the updateStruct function to form the current node in the tree,

◦ Number of leaves (nb_leaves),

◦ 2 children and 1 parent form the final structure of the tree at completeStruct

Chapter 3: Software Implementation 47

function. An internal node can possibly be formed by a merge between one
node that is a leaf, and another that is not a leaf, hence, the term children.

◦ Branch represents an ordered set of nodes starting from the current node up
to the root of the tree to keep track of data.

◦ The height of the tree.

◦ The build iteration. This value is a counter that is maintained to keep track of
the order of nodes being added to the tree. It is used by pruneBPT to prune
tree nodes having a build order greater than iteration.

The model of the node is found by getting the pixel values (along all the z bands)
of the labels corresponding to the same labels on the given initial segmentation map.
The function then computes their mean (the mean of each row as in Figure 2.10) and
the number of these pixel values represent the size of the region.
initStruct function then computes the bounding box for the formed model. It does that
by making use of a built-in MATLAB function called
regionprops(map,’Boundingbox’) which returns position and size of the smallest box
containing a region inside the initial segmentation map provided by the Watershed
method. The bounding box rectangle for a node is then defined as [xmin xmax ymin
ymax].
The bounding box position information can be used further to identify the neighbors’
labels which is an array stored in the construction field. initStruct then executes the be-
low Listing 3.1 to initialize the rest of the construction and nodeInfo fields. Lines 7 - 11
calculates the spectral angle mapper (SAM) between a tree node and all its neighbors.
Lines 13 - 17 assigns the shortest distant neighbour to the sibling field.

Code listing 3.1: Initialize node structures

1 for i=1:N
2 neigh = tree(i).construction.neighbors; % get the list of neighbors
3 Nei = neigh(neigh>tree(i).label);
4 % for all neighbours with labels greater than the current label
5 % (so that we go ascending order and not repeat the process with the past nodes)
6 D = zeros(size(Nei));
7 for j=1:length(Nei) % calculate SAM for both ij and ji.
8 D(j) = SAM(tree(i).descriptors.model,tree(Nei(j)).descriptors.model);
9 ind = tree(Nei(j)).construction.neighbors == i;

10 tree(Nei(j)).construction.alldist(ind) = D(j); % D12=D21
11 end
12 tree(i).construction.alldist(neigh>tree(i).label) = D; % write to node i
13 tree(i).construction.dist = min(tree(i).construction.alldist);
14 %find the index of the shortest distance neigbhour
15 ind=find(tree(i).construction.alldist ...
16 ==min(tree(i).construction.alldist),1,’first’);
17 tree(i).nodeinfo.sibling = neigh(ind); % make it as sibling
18 tree(i).nodeinfo.leaves = []; % no leaves
19 tree(i).nodeinfo.iteration = 0;
20 end

updateStruct

The updateStruct function implements the behaviour depicted in Figure 2.9. In this
function, tree regions are merged according to the shortest distance between all siblings

48 3.1 Segment-based Clustering using BPT

for all tree nodes, this defines the merging order, which is an array of tree node labels to
be merged together in ascending order. However, as discussed in Chapter 2, small and
meaningless regions are prioritized to be merged first. Regions are considered small
if their size is less than a percentage (alpha) of the mean region size for the initial
segmentation map.
In Listing 3.2, the MATLAB function starts by sorting all tree node sibling distances while
keeping label information. Next, an inspection for small region sizes is done and the
merging order is updated accordingly.

Code listing 3.2: Update node structures - Step 1.

1 D = [tree.construction];
2 D = [D.dist]; % list of all distances
3 [D,merging_order] = sort(D,’ascend’);
4 % Step 1: find the merging order
5 alpha = 0.15;
6 Nregions = length(merging_order);
7 mean_size_region = size(map,1)/Nregions; % mean size of a region
8 thresh = round(alpha*mean_size_region); % threshold for small regions
9 F = regsize(merging_order)<thresh;

10 % F is a flag binary vector where 1 means that the concerned regions gets
11 % the merging priority
12 merging_id = find(F,1,’first’); % find the ID of the first 1 in F
13 if isempty(merging_id)
14 % if no siblings have priority merging, merge the first two siblings
15 merging_id = 1;
16 end

The next step involves retrieving the two merging nodes information by making use of
merging_id as in Listing 3.3. The following step creates a new node structure where the
merging occurs. Lines 13-23 perform the sibling node merging for the descriptors field.
The updatenewnode function in Line 24 updates the nodeInfo and construction fields
of the tree. This is done by marking node i and node j as the children of the new label,
transferring node i and node j neighbours to the new node, recalculating SAM distances
between the new node and those neighbours, and finally, marking node i and node j
as leaves if both nodes do not have leaves from a previous update. The merging order
array is then updated and the next two siblings are fetched and merged. The loop keeps
going until two regions are remaining.

Code listing 3.3: Update node structures - Steps 2, 3, & 4.

1 %Step 2: retrieve the two regions which are to merge
2 for i=1:N_iteration-2 % looping until there are two regions remaining
3 % make a copy of the merging nodes
4 node_i = tree(merging_order(merging_id));
5 node_j = tree(S(merging_id)); % S is a list of siblings
6 %empty the info about the first node merged
7 S(merging_id) = []; merging_order(merging_id) = [];
8 D(merging_id) = []; F(merging_id) = [];
9 % Step 3: Create the new structure in tree

10 newlabel = N_iteration+i;
11 tree(newlabel).label = newlabel;
12 % merge the two models by multiplying the two models by their sizes
13 Si = node_i.descriptors.size;
14 Sj = node_j.descriptors.size;
15 tree(newlabel).descriptors.size = Si+Sj;
16 %field model
17 Ri = node_i.descriptors.model; Rj = node_j.descriptors.model;

Chapter 3: Software Implementation 49

18 tree(newlabel).descriptors.model = (Si*Ri+Sj*Rj)/(Si+Sj);
19 %field boundingbox
20 bbi = node_i.descriptors.boundingbox;
21 bbj = node_i.descriptors.boundingbox;
22 D.boundingbox = [min(bbi(1),bbj(1)) max(bbi(2),bbj(2)) ...
23 min(bbi(3),bbj(3)) max(bbi(4),bbj(4))];
24 updatenewnode(node_i.label,node_j.label,newlabel);
25 tree(newlabel).nodeinfo.iteration = i;
26 % Step 4: update merging order
27 % If priority function, update only when no regions with priority remain
28 if all(F==false)
29 [D,order] = sort(D,’ascend’);
30 merging_order = merging_order(order);
31 S = S(order);
32 end
33 end

The fusion of the last two regions is a simple merge procedure similar to Listing 3.3,
however, in this case, it is required to identify the root of the tree as the last element on
the tree structure by setting the node’s height to 1.

completeStruct

This subfunction finalizes the buildBPT function by representing the tree structure as
parents and children nodes. This is done by traversing the tree from the root children
to the leaves (last children) such that the branch of each node is formed by a list of
it’s parents as depicted in Listing 3.4. First, the list of children is copied to child in Line
1. Then, the parent label of the two children is found and added to the branch of the
children’s labels. For example, the labels of the root of the tree and it’s 2 children are
23833 and [23832,23811], respectively. Then, the parents list of Line 4 for both children
will be just 23833 since the root does not have a branch (see the definition of branch
in initStruct). The child list is then updated with the children of 23832 and 23811.

Code listing 3.4: Final step in buildBPT.

1 child = tree(end).nodeinfo.children;
2 while ~isempty(child);
3 parentlabel = tree(child(1)).nodeinfo.parent;
4 parents = cat(2,parentlabel,tree(parentlabel).nodeinfo.branch); % add to list
5 tree(child(1)).nodeinfo.branch = parents;
6 tree(child(1)).nodeinfo.height = length(parents)+1;
7 tree(child(2)).nodeinfo.branch = parents;
8 tree(child(2)).nodeinfo.height = length(parents)+1;
9 if ~isempty(tree(child(1)).nodeinfo.children); % if the 1st child have children

10 child = cat(2,child,tree(child(1)).nodeinfo.children);
11 % child list has the childinfo for the 1st child
12 end
13 if ~isempty(tree(child(2)).nodeinfo.children);
14 child = cat(2,child,tree(child(2)).nodeinfo.children);
15 end
16 child([1 2]) = []; %the child of the previous parent are deleted
17 end

The tree is then passed to pruning stage.

50 3.1 Segment-based Clustering using BPT

3.1.3 BPT Pruning

This function extracts a given number of regions (PR) which will constitute a partition
featuring the PR most dissimilar regions created during the construction of the BPT. A
new indicator field is added to the tree structure, called pruning, such that 1 indicates
that a node i is to be pruned, otherwise, not pruned. If PR is greater than the number
of leaves, then all the leaves will be pruned and the tree will not be used. In other
words, the initial segmentation map is passed to the k-means directly. This is because
the number of regions in the initial segmentation map is the number of leaves on the
tree as established earlier in Chapter 2. Otherwise, the pruneBPTnbregions function
listed in Listing 3.5 is called. The iteration assigned to each tree node keeps track of
the build order which will be used to prune the tree. Lines 4-6 initializes the pruning
field for all tree nodes to 0. Tree nodes are then pruned based on their build iteration.
The number of required regions is interpreted as (root iteration - PR) iterations, called
iteration cut (IterCut). The function then finds the node such that it has a build iteration
number greater than or equal to iteration cut. In other words, the node on a branch that
is closest to the root in addition to the most recent built node.

Code listing 3.5: BPT Pruning.

1 function tree = pruneBPTnbregions(tree,NbReg)
2 N = length(tree);
3 Nbleaves = (N+1)/2;
4 for i=1:N
5 tree(i).pruning = 0;
6 end
7 IterMax = tree(end).nodeinfo.iteration;
8 IterCut = IterMax - NbReg;
9 i = N-1;

10 while (tree(i).nodeinfo.iteration >= IterCut)
11 tree(i).pruning = 1;
12 i = i - 1;
13 end
14 end

An important notion to understand is the difference between a segmentation map and
a cluster map. In a segmentation map, the set of pixels which are not spatially adjacent
but share the same cluster label will always be considered as different segments/regions.
But in a cluster map, pixels with same cluster label can be spatially connected as well as
can be located elsewhere in the image space. Hence, the regions on the segmentation
map are not necessarily equal to the number of clusters, since 1 or more region can have
the same cluster label (a roof label can be placed on different buildings on an image). In
addition, if PR < k, then the k-means clustering will not have enough regions to cluster.
On the other hand, if PR� k, then the k-means clustering will independently cluster the
labels by merging regions that are similar, hence, the segmentation stage does not have
an effect on the outcome of clustering.

The PR parameter plays a great role in the classification accuracy. Different PR regions
generate different segmentation maps as shown in Figure 3.5 for the PaviaU dataset
with 9 different classes, which essentially means that the number of clusters, k, is also 9
(datasets are discussed more in Chapter 4). With PR = 3, a large number of regions are
left out and hence the classification will not be able to label those regions. For PR = 10,

Chapter 3: Software Implementation 51

(a) PR = 3. (b) PR = 10. (c) PR = 100. (d) PR = 600.

Figure 3.5: Variation of final segmentation maps for PaviaU image.

the number of regions is close to the number of clusters but still, there might be more
regions having the same label. This creates more possibility of classification errors. As
for PR values between 50 and 100, the segmentation map presents meaningful partitions
of the image as it can be observed. Using PR = 600 might be time consuming for the
next stage to cluster those regions by giving a large number of regions the same label;
the effect of BPT is unnoticeable. The effect of PR on classification accuracy is further
discussed in Chapter 4. By the end of this stage, a well refined segmentation map of the
hyperspectral image is obtained as depicted in Figure 3.1.

3.1.4 K-means Clustering

In this stage, CLUS-BPT performs an efficient k-means clustering specifically designed for
tree-based data structures, like BPT. Hyperspectral images have high spectral resolution,
i.e., very narrow band gap of such images, hence, there is high redundancy in the data
which are taken from the neighboring bands. Therefore, to reduce the dimension and
redundancy, principal component analysis (PCA) is utilized for dimensionality reduction
of the hyperspectral image, specifically, for feature extraction purposes. It aims to reduce
the size of the image by choosing information only from the significant bands. The ex-
tracted features are embedded with the segmentation map of the BPT stage. Throughout
this work, the number of chosen PCA components is 1 (explained in Appendix A), thus,
a 2D-data out of the hyperspectral cube is formed. However, the number of components
can be set by the user to more than 1. The PCA process is independent of the segment-
ation stages and can be done in parallel.
An example illustrating the embedding of the segmentation map with the reduced di-
mension data is shown in Figure 3.6. The segmentation map in the figure is a set of
boundaries between data points of the values obtained by PCA. The purpose of cluster-
ing then is to give labels to those formed regions by making use of their data points. This
framework implements the Filter clustering function described in Algorithm 2. Initially,
3 new data fields, candidateSet, wgtCent, and count, are associated with all pruned
nodes of the BPT tree. The candidateSet is initialized with random centers in the range
of the available data. The distances between the points and centers in this function are
calculated using the Euclidean distance. The set is then pruned using the Filter function
to obtain the final cluster map.

52 3.2 Fast Spectral Clustering

Figure 3.6: PCA and segmentation map embedding example.

3.2 Fast Spectral Clustering

Fast Spectral Clustering (FSC) method is based on incorporating spectral clustering with
Nyström extension for efficient approximation of the eigenfunction problem. Algorithm
5 of section 2.6.5 describes the used FSC method. The framework is illustrated in Figure
3.7 and is implemented in this work based on the work of [37] in Python. Using only

Figure 3.7: Flowchart of FSC.

those pixels marked by stars on the input image, a narrow strip of the full W matrix of
Equation 2.21 is computed, shown as the [AB] matrix. Each row contains the affinities
from a sample point to the entire image. The Nyström extension allows one to then dir-
ectly approximate the C matrix using the Laplacian matrix. Consequently, approximate
the leading eigenvectors and cluster the image using k-means clustering as described by
Algorithm 5.
Listing 3.6 implements FSC on input hyperspectral cube X . The loaded input has the
dimensions of pixels × bands. In addition, the function FSC takes m samples and the
parameter sigma as inputs. It starts by randomly choosing samples from the input data
of size m and accordingly create two subsets of data. Lines 11 and 12 make use of a
built-in function to calculate the Euclidean distance between the points. d1 and d2 in
Lines 19 and 21 correspond to the rows of d̂ in Equation 2.32 of Chapter 2. Matrices A
and B are updated using di,dj,dj+m in Lines 25 and 26. The Laplacian matrix L is then
formed in Line 30. Singular component decomposition built-in function is used to obtain
the eigenvectors of L.
Line 34 constitutes the spectral embedding which is done by normalizing each embed-
ding vector by first eigenvector (V (:, 1) selects all the rows of the 1st column of V).
Algorithm code from [37] embedding(:, i−1) = V (:, i)./V (:, 1) is used. Finally, the first
k eigenvectors are chosen which are then clustered using Python library built-in k-means

Chapter 3: Software Implementation 53

clustering.

Code listing 3.6: Python code in LATEX document

1 def FSC(X, m, sigma, cosine=True)
2 set_Z_tmp = X.ravel() % convert data to 1D array
3 # randomly create the set Z based on the input data
4 set_Z = np.random.permutation(set_Z_tmp)
5 subset_X = set_Z[0:m] # select the first m samples as A
6 subset_Y = set_Z[m:] # remaining part of the graph is B
7 # selection of the subgraph
8 Xm = X[subset_X] # Xm size is m x m
9 Xnm = X[subset_Y] # Xnm size is (n-m) x (n-m)

10 # Euclidean distance in constructing the affinity matrix
11 DXX = sc.cdist(Xm, Xm, ’sceuclidean’, np.float64)
12 DXY = sc.cdist(Xm, Xnm, ’sceuclidean’, np.float64)
13 Wxx = np.exp(-DXX/(2*sigma)) # affinity matrix A
14 Wxy = np.exp(-DXY/(2*sigma)) # affinity matrix B
15 Wyx = Wxy.T # affinity matrix B transpose
16 # affinity matrix C = B^T A^-1 B
17 # To extend to NCut, calculate the row sum of matrix W
18 # Normalisation of Wxx and Wxy
19 d1 = np.sum(np.vstack((Wxx, Wyx)), axis=0) # A + B
20 # B^T + B^T x A^-1 x B
21 d2 = np.sum(Wyx, axis=0) + np.sum(Wyx, axis=0).dot(np.linalg.pinv(Wxx).dot(Wxy))
22 dhat = np.sqrt(1 / np.hstack((d1, d2))) # square root of d
23 d_i = np.array([dhat[0:m]]) # di or dj
24 d_j_m = np.array([dhat[m:]]) # d(j+m)
25 Wxx = Wxx * (d_i.T.dot(d_i)) # updating A Equation 2.19
26 Wxy = Wxy * (d_i.T.dot(d_j_m)) # updating B Equation 2.20
27 Wyx = Wxy.T # B^T
28 Wxx_inv = np.linalg.pinv(Wxx) # A^-1
29 # Laplacian Matrix
30 L = np.vstack((Wxx, Wxy)).dot(Wxx_inv).dot(np.hstack((Wxx, Wxy)))
31 # Estimation of eigen vectors in L
32 S, V, D = np.linalg.svd(L)
33 k = 4 #number of clusters
34 # Normalize each embedding vector by first eigenvector. Algorithm code was:
35 # for i = 2:embedLength+1 # i starts from 2
36 # embedding(:,i-1) = V(:,i)./V(:,1);
37 # end
38 # The other option from the literature was to use this:
39 # embedding_i,j = V_i+i,j./sqrt(Djj) -> Algorithm 5
40 embed = numpy.zeros((V.shape[0], V.shape[1]))
41 for i in range(k): # i starts from 0 # V[:,0] is 1st eigenvector
42 embed[:,i] = numpy.divide(V[:,(i+1)], V[:,0])
43 Xres = np.zeros((embed.shape[0], embed.shape[1]))
44 idx = S.argsort()[::-1]
45 eigenValues = S[idx] #sorted Eigenvalues
46 embed = embed[:,idx]
47 Xres[:, k] = embed # choose the first k sorted embeddings
48 km = KMeans(n_clusters=k)
49 km.fit(Xres)
50 y = km.predict(Xres)
51 return y

Chapter 4

Software Results

In this chapter, clustering performance of the segment-based clustering using Binary
Partition Trees framework (described in section 3.1) and the Fast Spectral Clustering
(described in section 3.2) is tested and compared with one other state-of-the-art clus-
tering method. The experiments are performed on eight different hyperspectral images.
To evaluate their performance, metrics such as Normalized Mutual Information (NMI)
and Purity are used. This analysis serves as a basis for the algorithm choice for FPGA
implementation.

4.1 Software Results for CLUS-BPT and FSC

To assess the effectiveness of the CLUS-BPT and the FSC method, it is compared with the
segment-based projected clustering using mutual nearest neighbour (PCMNN) method
[18] discussed earlier in section 2.3.2. Note that for Fast Spectral Clustering (FSC), the
values mentioned are the reported ones from the HSI spectral clustering implementa-
tion by [12] since it provided more accurate results than the implementation of Listing
3.6 and hence, more challenging results.
Further, to test the performance of the proposed frameworks, evaluation is carried on
HSI datasets, and then several useful analysis are discussed. The experiments were
ran under the same environment: Intel(R) Core(TM) i7-5930K CPU, 3.50 GHz, 64 GB
memory, Windows 10 OS, Matlab version R2019a and Python 3.7.3.

4.2 Experimental Datasets

Experiments were conducted on eight widely used hyperspectral datasets.

• Salinas scene was collected by the 224-band AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) sensor over Salinas Valley, California, and is character-
ized by high spatial resolution (3.7-meter pixels). Salinas covers 512 lines by 217
samples at as scale of 512× 217. Salinas ground truth contains 16 classes.

• Salinas-A is a small subscene of Salinas image and it comprises 86×83 pixels loc-
ated within the same scene as Salinas at [samples, lines] = [591–676, 158–240].
It includes vegetables, bare soils, and vineyard fields. Salinas-A ground truth con-
tains 6 classes.

55

56 4.2 Experimental Datasets

Figure 4.1: Salinas scene ground truth map and labels reference. Salinas-A is highlighted
with a red box [47]

• PaviaC is acquired by the ROSIS (Reflective Optics System Imaging Spectrometer)
sensor over the city center of Pavia (referred as PaviaC), central Italy. After removal
of noisy bands, 102 bands were used for classification. The original dimension
of the image, 1096 × 715 with the spatial resolution of 1.3 m, is used in this
experiment. The dataset consists of nine land cover classes.

Figure 4.2: Pavia Center scene ground truth map with labels reference [47]

• PaviaU is also acquired by the ROSIS senser over University of Pavia, central Italy.
The image of Pavia University is of a size of 610×340 and it has a spatial resolution

Chapter 4: Software Results 57

of 1.3 m. A total of 115 spectral bands were collected, at the range 0.43–0.86 µm.
Twelve spectral bands were removed due to noise and the remaining 103 bands
were used for classification. The ground reference image available with the data
has nine land cover classes.

Figure 4.3: Pavia University scene ground truth map with labels reference [47]

• Indian Pines scene was gathered by AVIRIS sensor over the Indian Pines test site in
North-western Indiana and consists of 145× 145 pixels and 224 spectral reflect-
ance bands in the wavelength range 0.4 − 2.5 10−6 meters. The scene contains
two-thirds agriculture, and one-third forest or other natural perennial vegetation.
There are two major dual lane highways, a rail line, as well as some low density
housing, other built structures, and smaller roads. The ground truth available is
divided into sixteen classes.

Figure 4.4: Indian Pines ground truth map and labels reference [47]

• Samson scene is an image with 95× 95 pixels. Each was recorded at 156 chan-
nels covering the wavelengths from 401 nm to 889 nm. The spectral resolution is
high up to 3.13 nm. There are three target end-members in the dataset, including
“Rock”, “Tree”, and “Water”.

58 4.2 Experimental Datasets

Figure 4.5: Samson scene ground truth map and labels reference [47]

• Jasper Ridge is one of the most widely used hyperspectral image datasets, with
each image of size 100×100 pixels. Each pixel was recorded at 198 effective chan-
nels with the wavelengths ranging from 380 to 2500 nm. The spectral resolution
is up to 9.46 nm. There are four end-members latent in this dataset, including
“Road”, “Soil”, “Water”, and “Tree”.

Figure 4.6: Jasper Ridge ground truth map and labels reference [47]

• Urban scene consists of images of 307×307 pixels with spatial resoultion of 10 m.
Each pixel was recorded at 210 channels with wavelengths ranging from 400 nm
to 2500 nm. There are three versions of the ground truth, which contain 4, 5 and
6 end-members respectively. In this experiment, we use 4 end-members including
"Asphalt", "Grass", "Tree", and "Roof".

Figure 4.7: Urban dataset scene ground truth map and labels reference [47]

Chapter 4: Software Results 59

4.3 Evaluation Metrics

In the experiments, clustering results are evaluated by Purity and Normalized Mutual In-
formation (NMI). Let C be the set of classes obtained from ground reference information
and ω be the set of clusters obtained from a clustering method/framework.

• Purity is an external evaluation criterion of cluster quality. It is the most common
metric for clustering results evaluation and can be defined as

Puri t y(ω, C) =
1
n

∑

i

max
j
|ωi ∩ C j| (4.1)

where n denotes the number of data points. The worst clustering result is very
close to 0 and the best clustering result has a purity of 1. Purity counts the number
of correctly assigned points for each cluster and divides the total by n where n is
the total number of points.

• NMI is a normalization of the mutual information score (MI). M I can be obtained
as:

M I(ω, C) =
∑

i

∑

j

p(ωi ∩ C j) log2

p(ωi ∩ C j)

p(ωi).p(C j)
(4.2)

where P(ωk), P(C j), and P(ωk∩C j) are the probabilities of a point being in cluster
ωk, class C j , and in the intersection of ωk and C j , respectively. Then the NMI can
be obtained as follows:

N M I(ω, C) =
M I(ω, C)

max[H(ω), H(C)]
(4.3)

where H(ω) = −
∑

i p(ωi) log2 p(ωi) and H(C) = −
∑

j p(C j) log2 p(C j) are the
entropies ofω and C , respectively. The larger is the NMI, the better is the clustering
result.

High purity is easy to achieve when the number of clusters is large - in particular, purity
is 1 if each point gets its own cluster. Thus, we cannot use purity to trade off the quality
of the clustering against the number of clusters. NMI allows us to make this trade off
since it is normalized. The main advantage of using NMI evaluation metric is that since it
is normalized, it can measure and compare the accuracy between different cluster maps
having different number of clusters. Thus, an unsupervised clustering method does not
need to know the number of clusters of data beforehand for evaluation. For example, it
is possible to calculate the mutual information (accuracy/correlation) between a cluster
map with 6 clusters and another cluster map with 4 clusters.

4.3.1 Parameter Settings

CLUS-BPT requires input for two parameters PR and k as shown earlier in Table 3.1 .
First, for all the experimented HSI images, NMI values are obtained for the proposed
method by varying the number of pruned regions PR. PR is varied from k to 5 × k re-
gions, in steps of k for all HSI images except PaviaC, PaviaU, and Urban. In the case of
PaviaC and PaviaU, PR is varied from 150 to 400, in steps of 50 regions. For Urban, PR

60 4.4 Results and Comparisons

is varied from 4 to 128, in steps of PRi
where i is the current step number.

Identification of k for a data set is a non-trivial task. Hence in this study, for all the
hyperspectral images, accuracies are obtained for the proposed method CLUS-BPT by
varying the value of k in steps of 2. In case of Salinas-A, k is varied from 6 to 16, for
PaviaU and PaviaC, k is varied from 9 to 19. k is varied from 16 to 26 for both Indian
Pines and Salinas. For Samson image, k is varied from 3 to 13 and for Urban and Jasper
Ridge images, k is varied from 4 to 14. Throughout the experiements for CLUS-BPT, the
number of principal components (PCA) are chosen to be 1 such that they are able to
account for at least 99% of the total variance in the image.
Variation of k further proves that the framework is unsupervised. Otherwise, the frame-
work will be instructed to cluster for a specific k number of clusters.

4.4 Results and Comparisons

Initially, the influence of the number of regions on the NMI values obtained for the
proposed method is investigated. Figure 4.8 illustrates the variation of NMI with respect
to the different number of regions (PR) of the segmentation map. These values of NMI
are obtained by setting k equal to the number of classes in an image and the values
represent the average of 10 runs for each different setting. From Figure 4.8, it can be
observed that different images have different values for PR at which the NMI is the
highest. Furthermore, Salinas-A image had the highest NMI at PR = k = 6. A downward
trend is noticeable for PaviaC, Salinas-A, and Indian Pines images as number of regions
increases. However, in case of PaviaU image, from Figure 4.8 (a), it can be observed that
the quality of clustering increases with more segments across the segmentation map,
whereas for Jasper Ridge and Urban images, at k = 4, the NMI values tend to converge
around a certain value. Once the optimal value of PR is determined for every image, NMI
values are obtained at different number of clusters for the proposed CLUS-BPT method.

4.4.1 Effect of Number of Clusters

Figures 4.9 and 4.10 show the behavior of NMI as a function of increasing k for all the
experimented images. From Figure 4.9, it can be observed that the proposed method
scored the highest NMI when k is the original number of clusters for almost all the
images. However, for PaviaC, the peak NMI value of 0.5806 is achieved at k = 17 for
the proposed method. In the case of Salinas and Indian Pines images, CLUS-BPT scored
the peak NMI values at k = 26 and k = 20 respectively.

Table 4.1 reports the best NMI values and corresponding purity values for all the
compared methods on Salinas and PaviaU images. For Salinas, the values shown for
the proposed method, are the best values corresponding to k which have achieved the
highest NMI value. Both PCMNN and the proposed method achieved the highest NMI
at k = 26. The Salinas image cluster map obtained by the proposed method is shown
in Figure 4.11(d). Figure 4.11(d) reveals that the proposed method identified all the
16 classes of Salinas image except grapes untrained, which is assigned to vineyard un-
trained class.

In the case of PaviaU, Table 4.1 shows that all methods had close accuracies. CLUS-
BPT scored the highest NMI value of 0.5806 at k = 17 while FSC scored the lowest,

Chapter 4: Software Results 61

150 200 250 300 350
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of regions (PR)

N
M

I

PaviaC
PaviaU

(a)

16 32 48 64 80
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of regions (PR)

N
M

I

Salinas
Indian Pines

(b)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of regions (PR)

N
M

I

Jasper Ridge
Urban

(c)

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of regions (PR)

N
M

I

Salinas-A
Samson

(d)

Figure 4.8: Average NMI values (10 runs) versus the number of regions (PR) for (a)
PaviaC and PaviaU, (b) Salinas and Indian Pines, (c) Jasper Ridge and Urban, and (d)
Salinas-A and Samson.

0.5654 at k = 13. The cluster maps corresponding to the optimum k mentioned in Table
4.1 for the proposed method are shown in Figure 4.11(h).

For Indian Pines and Salinas-A, Table 4.2 shows that CLUS-BPT resulted in higher
NMI and purity values compared to FSC method. CLUS-BPT scored the highest NMI
value at k = 20 and k = 6 for Indian Pines and Salinas-A, respectively. The cluster
maps corresponding to the optimum k for the proposed method are illustrated in Fig-
ures 4.11(b) and 4.11(f).

Table 4.1: Best purity and NMI values obtained by PCMNN, FSC, and CLUS-BPT for
Salinas and PaviaU images.

Framework
Dataset Salinas PaviaU

Purity NMI k Purity NMI k
PCMNN [18] - 0.8586 26 - 0.5654 13

FSC [12] 0.62 0.72 16 0.61 0.57 9
CLUS-BPTa,b 0.7638 0.8882 26 0.6996 0.5806 17

aValues are obtained at PR = 48 for Salinas.
bValues are obtained at PR = 400 for PaviaU.

62 4.4 Results and Comparisons

0 2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of clusters (k)

N
M

I

Salinas-A
PaviaC
Samson
PaviaU

Jasper Ridge
Urban

Figure 4.9: NMI values obtained at different number of clusters for the proposed
method.

14 16 18 20 22 24 26 28
0.4

0.5

0.6

0.7

0.8

0.9

Number of clusters (k)

N
M

I

Salinas
Indian Pines

Figure 4.10: NMI values obtained at different number of clusters for the proposed
method, for Salinas and Indian Pines images.

Table 4.2: Best purity and NMI values obtained by FSC and CLUS-BPT for the rest of the
images.

Dataset
Framework FSC [12] CLUS-BPT

Purity NMI k Purity NMI k PR

Indian Pines 0.46 0.49 16 0.5758 0.6025 20 32
Salinas-A 0.80 0.81 6 0.8753 0.8572 6 6
Samson 0.85 0.75 3 0.6896 0.6698 3 6
Urban 0.51 0.21 4 0.90 0.2906 4 128

Jasper Ridge 0.83 0.71 4 0.7652 0.5658 4 32
PaviaC - - - 0.8412 0.8369 9 150

Chapter 4: Software Results 63

(a) GT (Indian Pines) (b) Result (Indian Pines)

(c) GT (Salinas) (d) Result (Salinas)

(e) GT (Salinas-A) (f) Result (Salinas-A)

(g) GT (PaviaU) (h) Result (PaviaU)

(i) GT (Samson) (j) Result (Samson)

(k) GT (Jasper Ridge) (l) Result (Jasper Ridge)

Figure 4.11: HSI ground truth and results.

Fast spectral clustering resulted in less number of misclassification errors for Sam-
son and Jasper Ridge. However, CLUS-BPT scored 90% purity for Urban image. This

64 4.4 Results and Comparisons

means that each cluster Ci in CLUS-BPT result has identified a group of pixels as the
same class that the ground truth has indicated. This can be seen on Figures 4.12 (a) and
(b) where the only misclassified class out of the total 4 is the roof (marked in yellow)
which makes a small part of the image.
Cluster label coloring is different between PaviaC ground truth and result as it can be
observed in Figures 4.12 (c) and (d), while the accuracy is high as indicated by purity
and NMI in Table 4.2. This is because clustering algorithms do not necessarily learn the
specific label number, hence, class label numbers of ground truth and cluster results may
not match but may point to the same object on an image.

(a) GT (Urban) (b) Result (Urban)

(c) GT (PaviaC) (d) Result (PaviaC)

Figure 4.12: HSI ground truth and results.

4.4.2 Computational Time

Figure 4.13 lists the computational time on Salinas, PaviaU, Salinas-A, and Indian Pines
datasets as experimented on the proposed CLUS-BPT method. The computational time
is calculated as a function of increasing number of regions PR from 50 to 1000, in steps
of 50. Further, the best achieved number of clusters k is fixed for every image which
corresponds to the k as indicated in Tables 4.1 and 4.2 for Salinas, PaviaU, Salinas-A, and
Indian Pines, respectively. We ran the experiments under the same environment: Intel(R)
Core(TM) i7-5930K CPU, 3.50 GHz, 64 GB memory, Windows 10 OS, and Matlab version
R2019a.

From Figure 4.13, it can be observed that the computational time grew rapidly
along with the increase of the number of regions for Salinas and PaviaU images while
the proposed method performed better for Indian Pines and Salinas-A images. This dif-
ference owes to having images with high spatial dimensions, such as 512 × 217 and
610×610 for Salinas and PaviaU, respectively. On the other hand, Salinas-A has an im-
age dimension of 86 × 83 which is about 7× smaller than Salinas and PaviaU. Figure
4.13 shows a near linear execution time for Salinas image. It can be concluded that
large spatial dimension images lead to large number of regions to be processed, hence,
increases the computational time. A slight improvement can be made by parallelizing
the PCA stage since it depends on the input data alone.

Chapter 4: Software Results 65

0 100 200 300 400 500 600 700 800 9001,000
0

10
20
30
40
50
60
70
80
90

100
110
120

Number of regions PR

C
om

pu
ta

ti
on

al
ti

m
e

(s
)

Salinas
PaviaU

Indian Pines
Salinas-A

Figure 4.13: Computational time measured at different number of regions PR for the
proposed method.

Table 4.3: Computational time for FSC and CLUS-BPT obtained for the best purity and
NMI results for all datasets.

Dataset
Framework

FSC CT(s) [12] CLUS-BPT CT(s)

PaviaU 1.34 58.2
Salinas 1.62 7.48

Indian Pines 0.53 2.72
Salinas-A 0.17 1.56
Samson 0.10 1.52
Urban 3.01 2.15

Jasper Ridge 0.11 2.78
PaviaC - 18.26

Table 4.3 illustrates the average time taken in seconds to complete the execution
experiments on eight publicly available datasets as reported by FSC [12] and experi-
mented on CLUS-BPT. The displayed values are the average of ten runs. These values
are obtained by setting the parameters as indicated in Tables 4.1 and 4.2. As it can
be observed, CLUS-BPT framework took more time than FSC to output the best results
in almost all the datasets except for Urban and PaviaC images. PaviaU image experi-
ment achieved the largest timing difference while the difference in clustering accuracies
between CLUS-BPT and FSC are not substantial. On the other hand, the clustering ac-
curacy difference is significant for Salinas image and hence the large timing difference
can be justified. The execution time difference between CLUS-BPT and FSC is smaller
for the other datasets including Indian Pines, Salinas-A, Samson, and Jasper.

66 4.5 Algorithm Choice

4.5 Algorithm Choice

In order to choose the adequate algorithm for FPGA implementation, experiments of
both methods were carried out in this chapter on eight different HSI datasets. Evaluation
performance included purity, NMI, and computational time. According to the following
observations made on Tables 4.1, 4.2, and 4.3, the Fast Spectral Clustering (FSC) method
is chosen for FPGA Implementation:

• Fast Spectral Clustering (FSC) execution time on almost all datasets is much lower
than that of CLUS-BPT. On some datasets, the computational time is near real-time.

• Classification performance of both methods are quite comparable with slight pos-
itive difference for CLUS-BPT. Hence, the choice is a trade-off between speed and
accuracy.

• CLUS-BPT involves a long list of components including watershed segmentation,
BPT construction, BPT pruning, PCA, and filtering algorithm for k-means cluster-
ing. While on the other hand, FSC uses less number of components and also has
the advantage of deploying numerical approximations.

• In addition, FSC involves matrix processing functions which has been implemen-
ted on FPGAs in literature.

Chapter 5

HW/SW Co-design Implementation

5.1 Overall System Structure (HW/SW)

A HW/SW co-design solution for Fast Spectral Clustering of Algorithm 5 is developed for
Zynq-7000 SoC. The block diagram of the implemented system is illustrated in Figure
5.1. The design is partitioned into PS and PL. The processing logic blocks are described
in detail in the following sections. The design makes use of two BRAM modules to store
the hyperspectral image cube and the constructed graph matrix A. In addition, the co-
design also utilizes two different AXI DMAs to transfer vast amounts of data to and from
two different hardware accelerators using appropriate AXI interfaces, including AXI4-
Stream and AXI4-Lite.

Figure 5.1: PS and PL Partitions in the Zynq-7000 HW/SW co-design.

The co-design solution goes through the following procedure where the PS is im-
plemented in C programming language and the PL is implemented in VHDL:

1. Processing system is initialized.

2. Hyperspectral cube is loaded from the SD card to the DDR memory.

67

68 5.1 Overall System Structure (HW/SW)

3. BRAM module and 2 AXI_DMAs transfers are configured via AXI-lite register file
through AXI_Interconnect.

4. HSI cube is written to BRAM by making use of a General Purpose AXI master port
(GP0) in the Zynq PS.

5. Graph Construction module reads the HSI data band per pixel, processes the af-
finity matrices A and writes it back to the BRAM. Meanwhile, matrix B is being
computed and streamed through AXI_DMA_0.

6. Matrices A and B are read by the PS and saved in DDR memory.

7. The PS forms the Laplacian matrix as means of this expression

�

A
B

�

A−1
�

A B
�

by

making use of the necessary matrix multiplication and matrix inverse.

8. The High Performance (HP0) port of Zynq PS connected to the external DDR
memory and is used along with AXI_DMA_1 to stream the Laplacian matrix to
the high-level synthesis module of SVD.

9. The eigenvalue and eigenvector decompositions computed by SVD core are streamed
back to the PS.

10. The PS C code sorts the eigenvalues and the corresponding eigenvectors. In addi-
tion, it clusters the sorted eigenvectors using K-means clustering.

11. Finally, clustering results are written to the SD card. Results can be plotted using
MATLAB/Python.

Before loading HSI cube from the SD card to the DDR memory, the design requires
data preprocessing, which is done by reducing the HSI spectral bands dimension to 16
using PCA on MATLAB. Generic data parameters are kept consistent throughout the
project and are designed to be modular such that the generic parameters control the
design size. Table 5.1 shows the generic parameters, their description, and example
values used throughout the HW/SW co-design modules. The default values for pixel
dimensions are based on the reduced Salinas-A dataset.

Chapter 5: HW/SW Co-design Implementation 69

Table 5.1: Generic parameters and example values for HW/SW codesign.

Generic Parameter Description Default Value

NUM_BANDS Number of bands in HSI 16
NUM_PIXELS Number of pixels in HSI (Image

dimension x − b y − y)
4096

NUM_VALUES NUM_BANDS × NUM_PIXELS 65536
M_SAMPLES Number of random samples m 100
σ sigma parameter in similarity

matrix W
0.1

k Number of clusters k 16
BRAM_DATA_WIDTH Bit width of input and pro-

cessing data
32

BRAM_ADDR_WIDTH Address bit width of input HSI
data

16

BRAM_ADDR_WIDTH_A Address bit width of Matrix A
data

14

5.2 BRAM for Input and Processing Logic

The BRAM module designed in this work is inspired by [48]. HSI data is transferred to
and stored on the BRAM as shown in Figure 5.1. The BRAM module consists of block
RAM modules and an AXI-Lite register file which is used to initialize and update the data
stored in BRAM. Figure 5.2 shows two registers pointing to a specific BRAM module
and one additional register (register 3) used as an adddress controller by the Zynq PS
to read the Matrix A data. Register 1 and 2 point to two BRAM modules explained in
section 2.7.4. Both modules are of the three port mode (2 reads and 1 write) type. One
port is used for writing from PS/PL, and two read ports from PL.

Figure 5.2: Block diagram of BRAM module with register file.

For the input logic, the BRAM module gets HSI data from the DDR (PS) by making
use of a General Purpose AXI master port (GP0) which is connected to one AXI slave re-
gister on the BRAM module. This allows sequentially data send transfers from the Zynq
PS.
As for the processing logic, the HyperCube input BRAM module comprises 2 read ports

70 5.3 Similarity Graph Construction

corresponding to 2 different read addresses initiated from the Graph Construction mod-
ule discussed in the next section. The 2 read addresses output 2 HSI data pixels of size
BRAM_DATA_WIDTH. It takes 1 clock cycle for each read transaction processed by the
HSI BRAM module. In addition, the affinity matrix A is stored in the BRAM module using
the corresponding write signals while graph matrix A formation is being processed. The
register file used to handle the BRAM logic is shown in Table 5.2.

Table 5.2: AXI-lite register file description.

Register Value Description

1 Data Writing HSI data.
2 Data Reading matrix A.
3 Address Address for reading matrix A row.

5.3 Similarity Graph Construction

5.3.1 Sampling

The first stage of spectral clustering involves sampling random pixels from the stored
HSI data. This is done by producing a random number in the range of the BRAM matrix
size holding the HSI data. The BRAM matrix size in this case is the BRAM address width
(log2(Num_Pixels × Num_bands)). One popular way of generating pseudo-random
numbers in HW is by means of an LFSR (Linear-Feedback Shift Register).

The input bit to the shift register is a linear function of its previous value as shown in
Figure 5.3. The linear function consists of XOR of some bits of the overall shift register
value. The study to generate these sequences is based on linear algebra, where the re-
gister is interpreted as a polynomial. Each bit in the register is the coefficient of order
n of such a polynomial. Hence, a register of length n can generate a pseudo-random
sequence of maximum length 2n − 1. In this case, the length of the LFSR is the BRAM
address width used to store the HSI cube (BRAM_ADDR_WIDTH). Figure 5.3 shows an
implemented LFSR corresponding to the Salinas-A data. The feedback linear polynomial
function represented here is x16 + x14 + x13 + x11 + 1.

Figure 5.3: 16-bit LFSR.

Chapter 5: HW/SW Co-design Implementation 71

The address produced by the LFSR is read by the BRAM module and the corres-
ponding HSI data is fetched for the next stage. Sampling stage justifies the reason behind
storing the HSI data on the BRAM module rather than streaming the data from the PS
to the PL. Note that it takes 1 clock cycle to produce a new random address.

5.3.2 Graph Construction

In this solution, the similarity graph implemented of chosen m pixels of a hyperspec-
tral image considers only the reflectance value of the pixels (x i , x j) for simplicity. The
similarity between samples can be defined as:

Ai j = exp
−||x i − x j||22

2ασ̄x
2 , i, j = 1,2, . . . , m, (5.1)

where σ̄x is defined as

σ̄x =
1
n2

n
∑

i=1

n
∑

j=1

||x i − x j||22. (5.2)

and α is a parameter to control the number of neighbors for each node in the affinity
matrix.

The Euclidean distance : ||x i−x j||22 is usually calculated for a set of points (a vector)
but in our case, it is between two points of 1 dimension and is simply=

Æ

(x i − x j)2. This
can be further simplified by the square root to be: x i − x j . Hence, calculating ||x i − x j||22
requires one subtraction unit.
Ai j can be further simplified by setting the parameters α and σ beforehand, to 10 and

0.1 respectively [12]. This leads to (exp
x j−x i

2). Division by 2 can be simply implemented
by right shifting before applying the exponential function.

In literature, there are many methods to implement the normal use of the exponential
function in hardware. A simple solution is to make use of a lookup table (LUT). A lookup
table is basically a table that determines what the output is for any given input.
In this work, the exponential function is implemented using HDL Coder from MathWorks
[49]. HDL Coder tool is very similar to Vivado HLS discussed in section 2.8, except that
HDL Coder makes use of MATLAB code based functions instead. Given a particular range
for x , the ex p(x) function is replaced with a lookup table. The range used in this design
is (x : −10 to 10) and thus, the input reflectance values are scaled down accordingly
during pre-processing of the HSI cube. The RTL design of the graph construction for
either A or B matrix is depicted in Figure 5.4. As it can be observed, X i is saved in a
32-bit register while X j runs from 1 to m. The 32-bit register is updated when Ai is
computed. This process is controlled by a finite state machine to control as shown in
Figure 5.5.

The graph construction for matrix A is implemented using the finite state machine
involves the following states:

• Sampling: This is where the LFSR is used to generate random addresses. The
addresses are saved in a block RAM of size m samples.

72 5.3 Similarity Graph Construction

Figure 5.4: Implemented RTL design for graph A calculation.

Figure 5.5: Implemented state machine for matrix A calculation.

• Idle: In this state, the state machine waits for the sampling process to be done and
for the HyperCube data to be saved in the BRAM. This state is also reached when
matrix A is fully calculated.

• Fetch: This state decides which 2 addresses i and j to get from the addresses BRAM
initiliazed in the Sampling stage. Reading an address requires one clock cycle.

• Decode: The 2 chosen addresses are sent to the main BRAM module to select from
the HyperCube data. It takes one cycle to get the X i or X j reflectance values.

• Execute: This is where Ai is calculated. It takes 4 clock cycles for subtraction, right
shift, and 1 exponential function.

• Save Ai: In this state, Ai write address and actual value are sent to matrix A BRAM
to save it. This state also decides whether to continue to the next i, j or the process
of calculating matrix A is done.

As explained earlier, the state machine starts at Sampling on reset. Given the number of
m samples, the state generates the random addresses and saves them in a BRAM. Con-

Chapter 5: HW/SW Co-design Implementation 73

currently, the BRAM module accepts the input HyberCube data sent from the Zynq PS,
since the Sampling state does not depend on the input data rather, the size of the data
which is set as a generic parameter (NUM_VALUES). Graph_en signals the Idle state that
the random number generation is done and saved. Once the input data is loaded on the
HSI BRAM, HyperCube_Ready signals the Fetch state that the full input data is captured
and ready for processing.

Fetch state is directly reading from the BRAM of sample addresses. Counters i and j
are pointers corresponding to the addresses of the BRAM sample addresses. However,
read access is done per 1 instruction for either i or j and not concurrently. The idea of
the coming states is to fix an address i and increment address j until m and then incre-
ment i for every j = m reached until i = m.

If it is a new round/loop, then j = 0 and a new address i is fetched. The fetched ad-
dress is sent to the BRAM to decode, which takes 1 clock cycle equivalent to the Decode
state. Meanwhile, address j is fetched from the sample addresses BRAM. Next, the state
machine goes to another Decode state to decode the j address. Meanwhile, the decoded
X i value is saved in a 32-bit register for usage in the coming loop. If it is not a new
round/loop, then j 6= 0 and a similar Fetch, Decode process applies for address j.

The Execute state already has the saved X i as one of the operands of the subtraction
unit. After calculation of Ai , the value is written to the matrix A BRAM, which can be
also read by the Zynq PS. The Save Ai state goes to Fetch if the calculation is not done
(i 6= m), otherwise, it goes to the Idle state.

The critical path for the matrix A calculation is 9m2 + 1 with 1 subtraction unit, 1 LUT,
and 1 right shift operation. m sampling clock cycles take place while HyperCube data
input is being written to the BRAM so it is not considered as part of the critical path. The
+1 represents the first Idle state. Fetch and Decode states take 1 clock cycle each and 1
clock cycle for saving X i in a register. Furthermore, the critical path for 1 loop is 9 clock
cycles with the longest path: Fetch→ Fetch Address i→ Decode Address i→ Save X i →
Execute→ Save Ai .

Matrix B calculation follows a similar RTL implementation as in Figure 5.4 as well as
the finite state machine in Figure 5.5. However, for the RTL implementation, i : 0→ m
and j : 0→ (n−m). Hence, resource-wise, matrix B computation requires the same set
of resources as matrix A.
As for the FSM, matrix B calculation differs in the Save Bi stage. The size of B is
m× (n−m) where n� m = 128× (65536− 128) = 8372224 values, using the generic
parameters. Hence, it is expensive, resource-wise, to store matrix B on the BRAM. In-
stead, it is saved in the DDR memory on Zynq PS. Master Output module, adapted from
[48], streams the calculated matrix Bi to Zynq PS by communicating with AXI_DMA_0.
The output module acts as an AXI stream master interface setting the different AXI4-
Stream channels TDATA and TLAST. Moreover, the AXI stream on the DMA is connected
to a high performance AXI slave interface which provides a high bandwidth data-path
from the master modules (such as Master Output) in PL to the DDR on Zynq PS.

74 5.3 Similarity Graph Construction

Laplacian Matrix Formation

To this end, Zynq PS has matrix B stored in the DDR memory. Matrix A can be read
from the BRAM register address 0. Both matrices A and B are used to form the Laplacian
matrix L on Zynq PS as in Algorithm 5. The matrix L size is expected to be n− b y − n
where n= 65536 is NUM_VALUES. Hence, a total number of 65536x65536 values will
have to be streamed to the HLS SVD IP core to compute the eigenvalue and eigenvector
decomposition and send back to the PS three matrices of size n− b y−n each. This com-
prises large utilization of BRAM resources used to store partial results of SVD (discussed
in the next section). Consequently, the design may require to use BRAM resources more
than the resource limit available on the Zynq-7000 platform. Thus, a work-around is to
compute the eigenvalue and eigenvector of a smaller size matrix.

[37] found that if A is positive definite, then we can solve for the approximate eigen-
vectors in one step. Let A

1
2 denote the symmetric positive definite square root of A, then,

define Q:

Q = A+ A−
1
2 BBT A−

1
2 , (5.3)

and find its eigenvalue and eigenvector decomposition Q = UΛU T where U is the ei-
genvector of Q and Λ contains the corresponding eigenvalues. Define a matrix V such
that:

V =

�

A
BT

�

A−
1
2 UΛ−

1
2 . (5.4)

[37] proved that the approximated similarity graph of the whole data, cW , in Equation
2.26 is diagonalized by V and Λ such that cW = VΛV T where V is the eigenvector of cW
and Λ contains the corresponding eigenvalues.

Accordingly, we can obtain the approximated eigenvalue and eigenvector decom-
position of the whole HSI cube. Note that the size of Q is (m − b y − m = 128 × 128)
which is much smaller than n− b y − n. Moreover, m random samples is a user defined
parameter and can be chosen to be smaller than 128 as well.

To form the matrix Q, first, the inversion of A is obtained using Gauss-Jordan Elim-
ination Algorithm in embedded C programming language (explained in Appendix B).
Matrix B is also transposed to form BT.

Next, bd of Equation 2.32 is calculated using A1m and B1n, which are the row sum
of matrices A and B and BT 1m is the column sum of matrix B. 1m is a vector row of 1s of
size m. Ai j and Bi j are accordingly updated as in Equations 2.33 and 2.34 given by Nys-
trom Extension. Finally, 3 matrix multiplications and 1 matrix addition are computed to
form the matrix S.
The matrix Q is then streamed to the HLS SVD core using the address of the AXI_DMA_1
connected to the PL core in order to obtain its eigenvalue Λ and eigenvector U decom-
position. This implementation differs from the Listing 3.6 where the SVD decomposition
is found for the Laplacian matrix in the software implementation.

Chapter 5: HW/SW Co-design Implementation 75

5.4 Eigenvalue and Eigenvector Decomposition

The HLS SVD IP core is used to obtain the eigenvalues and eigenvectors of matrix Q.
Vivado HLS tool comes with C libraries that allow common hardware design constructs
and functions to be easily modeled in C, and therefore, synthesized to RTL [46]. One
of the popular libraries is the HLS Linear Algebra Library which provides a number of
commonly used linear algebra functions including SVD using Two-sided Jacobi. In this
work, a top C function is designed in HLS to stream in and out the input and outputs
of the built-in SVD C function. In addition, the built-in function is modified to include
user directives from Table 2.1 to achieve resource and throughput optimizations. These
directives are included in special implementation controls within the HLS SVD func-
tion shown in Table 5.3 [46]. The HLS SVD function implements Algorithm 4 listed
in Chapter 2. The top level function (svd_top) developed in this thesis is designed to

Table 5.3: SVD Implementation Controls.

Control Description
Off-diagonal loop pipelining Off-diagonal entries calculation loop

pipelined. If > 4, enables Vivado HLS
to further resource share and reduce
the DSP utilization.

Diagonal loop pipelining > 1: Enables Vivado HLS to resource
share.

Iterations (NUM_SWEEPS) Number of iterations (sweeps) for
convergence. Literature typically sug-
gests 6 to 10 iterations to successfully
converge [46].

comply with AXI-stream master and slave interface and communicate with DMA. It syn-
thesizes to the IP core shown in Figure 5.6. The input stream represents the matrix Q
of size ROWS × COLS where ROWS = COLS = m. The output stream port is used to
transfer the matrices S, V, and D one after the other. On the other hand, those matrices
are collected and reconstructed by the Zynq PS.
The top level function is listed in Listing 5.1. The SVD controls can be configured us-

ing a class template, svd_traits and added as an argument to the svd_top function
from the Linear Algebra Library as shown in Lines 1-4. AXI_VAL in Line 6 is a data-
type which expresses the side channel information associated with AXI4-stream, namely
<TDATA,TUSER,TID,TDEST>. TID, TDEST, and TUSER are all optional signals on the
interface. Lines 11 - 16 specify the I/O interfaces to communicate with the SVD IP core.
The input and output matrices are all assigned AXI_Stream interfaces. The control bus
port is used for signaling whether or not the HLS core is ready to accept new data.
Furthermore, this port is assigned AXI_Lite interface for configuration. Note that matrix
Q −→ A and matrix U −→ D in the C code of the Listing 5.1 below.

Data is read from the streams as a means of packing/unpacking (poped/pushed) from
the AXI_VAL stream datatype. Lines 22-27 shows data elements are poped from the input
stream and saved in a 2D matrix to form the input A. Line 28 calls the built-in Vivado

76 5.4 Eigenvalue and Eigenvector Decomposition

Figure 5.6: HLS SVD block design.

HLS SVD function with the user defined control configuration. The computed SUV data
stored in memory (BRAM tiles when converted to RTL) is pushed to the output stream
sequentially in Lines 30-47. Notice that a TLAST signal is concatenated with the last V
element in Line 45. This signal is set high when (k = ROWS ∗ COLS ∗ 3− 1), in other
words, the last computed element is streamed.

Code listing 5.1: HLS SVD C code.

1 struct MY_CONFIG : hls::svd_traits<A_ROWS,A_COLS,MATRIX_IN_T,MATRIX_OUT_T>{
2 static const int NUM_SWEEPS = 6;
3 static const int DIAG_II = 4;
4 static const int OFF_DIAG_II = 4;
5 };
6 typedef ap_axiu<32,1,1,1> AXI_VAL;
7 // The top-level function to synthesize
8 //
9 void svd_top (AXI_VAL INPUT_STREAM[A_ROWS*A_COLS], AXI_VAL OUTPUT_STREAM[A_ROWS*A_COLS*3])

10 {
11 #pragma HLS INTERFACE axis port=INPUT_STREAM
12 #pragma HLS INTERFACE axis port=OUTPUT_STREAM
13 // axi lite interface is used by the ARM processor to control the execution of this accelerator
14 // this line also creates an interrupt port for this module which later will be used by
15 // Zynq PS code to signal that data is ready.
16 #pragma HLS INTERFACE s_axilite port=return bundle=CONTROL_BUS
17 MATRIX_IN_T a_i[A_ROWS][A_COLS];
18 MATRIX_OUT_T s_i[A_ROWS][A_COLS];
19 MATRIX_OUT_T u_i[A_ROWS][A_ROWS];
20 MATRIX_OUT_T v_i[A_COLS][A_COLS];
21 // Copy input data to local memory
22 a_row_loop : for (int r=0;r<A_ROWS;r++) {
23 a_col_loop : for (int c=0;c<A_COLS;c++) {
24 int k = r*A_ROWS + c;
25 a_i[r][c] = pop_stream<float,1,1,1>(INPUT_STREAM[k]);
26 }
27 }
28 hls::svd<A_ROWS, A_COLS, MATRIX_IN_T, MATRIX_OUT_T>(a_i, MY_CONFIG, s_i, u_i, v_i);
29 // Copy local memory contents to outputs
30 s_row_loop : for (int r=0;r<A_ROWS;r++) {
31 s_col_loop : for (int c=0;c<A_COLS;c++) {
32 int k = r*A_ROWS + c;
33 OUTPUT_STREAM[k] = push_stream<float, 1, 1, 1>(s_i[r][c]);
34 }

Chapter 5: HW/SW Co-design Implementation 77

35 }
36 u_row_loop : for (int r=0;r<A_ROWS;r++) {
37 u_col_loop : for (int c=0;c<A_ROWS;c++) {
38 int k = r*A_ROWS + c + (A_ROWS*A_COLS);
39 OUTPUT_STREAM[k] = push_stream<float, 1, 1, 1>(u_i[r][c]);
40 }
41 }
42 v_row_loop : for (int r=0;r<A_COLS;r++) {
43 v_col_loop : for (int c=0;c<A_COLS;c++) {
44 int k = r*A_ROWS + c + (2*A_ROWS*A_COLS);
45 OUTPUT_STREAM[k] = push_stream<float, 1, 1, 1>(v_i[r][c], k == (A_ROWS*A_COLS*3 - 1));
46 }
47 }
48 }

The below Listing 5.2 describes the built-in (svd) function called from Listing 5.1
and is obtained from the HLS Library [46]. In this work, all directives from Table 2.1 are
used to optimize the design.
The function is mainly controlled by the number of iterations for Steps 3 - 6 in Algorithm
4. Loop unrolling optimization is applied to the 3 loops going through the number of
iterations, rows, and columns of A.
svd starts by fetching app, apq, aqp, and aqq of Equation 2.10 in Chapter 2, termed as
w, x , y, z, respectively in Lines 40-57. If it is the first iteration, then the values are read
from the A matrix, otherwise, the values are fetched from s_in which is the transformed
A from previous iteration. The function then calls svd2x2 to carry out the calculation of
the diagonal entries, a′pp and a′qq.

Code listing 5.2: HLS SVD built-in function.

1 void svd(const InputType A[RowsA][ColsA],
2 class SVDTraits,
3 OutputType S[RowsA][ColsA],
4 OutputType U[RowsA][RowsA],
5 OutputType V[ColsA][ColsA])
6 {
7 // Assert that the matrix is symmetric
8 #ifndef __SYNTHESIS__
9 assert(RowsA==ColsA);

10 #endif
11
12 // Internal memories for partial results
13 typename SVDTraits::SIntType s_in[RowsA][ColsA];
14 typename SVDTraits::UIntType u_in[RowsA][ColsA];
15 typename SVDTraits::VIntType v_in[RowsA][ColsA];
16
17 // Current S,U,V values being worked on
18 typename SVDTraits::SIntType w_in, x_in, y_in, z_in;
19 typename SVDTraits::SIntType w_out, x_out, y_out, z_out;
20 typename SVDTraits::UIntType uw_in, ux_in, uy_in, uz_in;
21 typename SVDTraits::UIntType uw_out, ux_out, uy_out, uz_out;
22 typename SVDTraits::VIntType vw_in, vx_in, vy_in, vz_in;
23 typename SVDTraits::VIntType vw_out, vx_out, vy_out, vz_out;
24
25 // 2x2 Rotation values // c1 , s1, -s1, c1, c2, s2, -s2, c2
26 typename SVDTraits::CSIntType uw_new, ux_new, uy_new, uz_new;
27 typename SVDTraits::CSIntType vw_new, vx_new, vy_new, vz_new;
28
29 sweep_loop: for(int sweepnum = 0; sweepnum < SVDTraits::NUM_SWEEPS; sweepnum++){
30 // NOTE: MIN_DIM = RowsA = ColsA

78 5.4 Eigenvalue and Eigenvector Decomposition

31 #pragma HLS UNROLL FACTOR = SVDTraits::DIAG_UNROLL_FACTOR
32 row_loop: for(int top_left = 0; top_left < SVDTraits::MIN_DIM; top_left++) {
33 #pragma HLS UNROLL FACTOR = SVDTraits::DIAG_UNROLL_FACTOR
34 col_loop: for(int bottom_right = top_left+1;
35 bottom_right< SVDTraits::MIN_DIM; bottom_right++) {
36 // loop unrolling and Pipelining
37 #pragma HLS UNROLL FACTOR = SVDTraits::DIAG_UNROLL_FACTOR
38 #pragma HLS PIPELINE II = SVDTraits::DIAG_II
39 // Fetch w,x,y,z values
40 if (sweepnum == 0 && top_left == 0) {
41 if (bottom_right == 1) {
42 w_in =A[top_left] [top_left];
43 x_in =A[top_left] [bottom_right];
44 y_in =A[bottom_right][top_left];
45 } else {
46 // Now revist values already updated in first diagonal pass
47 w_in =s_in[top_left] [top_left];
48 x_in =s_in[top_left] [bottom_right];
49 y_in =s_in[bottom_right][top_left];
50 }
51 z_in =A[bottom_right][bottom_right];
52 } else {
53 w_in =s_in[top_left] [top_left];
54 x_in =s_in[top_left] [bottom_right];
55 y_in =s_in[bottom_right][top_left];
56 z_in =s_in[bottom_right][bottom_right];
57 }
58
59 // Diagonal
60 svd2x2(w_in, x_in, y_in, z_in, uw_new, ux_new,
61 uy_new, uz_new, vw_new, vx_new, vy_new, vz_new,
62 w_out, x_out, y_out, z_out);

svd2x2 function is described in Listing 5.3. This function is inlined when being called
by svd in the previous code listing. Lines 22-33 compute half angles θ1 and θ2 by mak-
ing use of arctan for Equation 2.13. Next, Lines 36-61 carry out matrix multiplications
which corresponds to Equations 2.15 and 2.16 by making use of an inlined function,
vm2x1(a1, b1, a2, b2, c), which simply computes c = a1 ∗ b1+ a2 ∗ b2.

Code listing 5.3: svd2x2 function.

1 void svd2x2(
2 AInType w_in, AInType x_in, AInType y_in, AInType z_in,
3 CSType &uw_out, CSType &ux_out, CSType &uy_out, CSType &uz_out,
4 CSType &vw_out, CSType &vx_out, CSType &vy_out, CSType &vz_out,
5 AOutType &w_out, AOutType &x_out, AOutType &y_out, AOutType &z_out)
6 {
7 // svd2x2 is inlined in into any functions calling svd2x2
8 #pragma HLS inline
9 const AOutType outZERO = 0;

10 CSType s1, c1, s2, c2;
11 AInType u1, u2;
12 std::complex<AInType> A, B;
13 CSType cosA_full, sinA_full, cosA_half, sinA_half;
14 CSType cosB_full, sinB_full, cosB_half, sinB_half;
15 bool A_is_pos_real, A_is_imag;
16 bool B_is_pos_real, B_is_imag;
17 CSType uw_int, ux_int, uy_int, uz_int;
18 CSType vw_int, vx_int, vy_int, vz_int;
19 AOutType w_out1, w_out2, z_out1, z_out2,
20 w_out_int, z_out_int;
21 // Determine first half angle required to zero off-diagonal values

Chapter 5: HW/SW Co-design Implementation 79

22 u1 = z_in - w_in; // theta1 - theta2
23 u2 = y_in + x_in; // theta1 - theta2
24 A = u2/u1;
25 calc_angle(A, cosA_full, sinA_full, cosA_half, sinA_half, A_is_pos_real,
26 A_is_imag);
27
28 // Determine second half angle, theta_1 + theta_2
29 u1 = z_in + w_in;
30 u2 = y_in - x_in;
31 B = u2/u1;
32 calc_angle(B,cosB_full, sinB_full, cosB_half, sinB_half, B_is_pos_real,
33 B_is_imag);
34
35 // Combine half angles to produce left and right rotations
36 vm2x1(cosA_half,cosB_half,sinA_half,sinB_half,c1); // c = a1*b1 + a2*b2;
37 vm2x1(sinA_half,cosB_half,-cosA_half,sinB_half,s1);
38 vm2x1(cosA_half,cosB_half,-sinA_half,sinB_half,c2);
39 vm2x1(sinA_half,cosB_half,cosA_half,sinB_half,s2);
40 // Build full U and V matrix
41 uw_int = c1;
42 ux_int = s1;
43 uy_int = -s1;
44 uz_int = c1;
45
46 vw_int = c2;
47 vx_int = s2;
48 vy_int = -s2;
49 vz_int = c2;
50 // Apply rotation
51 // - Uses the transpose version of U
52 // w_out -> a’pp
53 vm2x1(w_in,vw_int,x_in,vy_int,w_out1); // app.c2 - apq.s2
54 vm2x1(y_in,vw_int,z_in,vy_int,w_out2); // aqp.c2 - aqq.s2
55 vm2x1(uw_int,w_out1,uy_int,w_out2,w_out_int);
56 // c1.(app.c2 - apq.s2) - s1.(aqp.c2 - aqq.s2)
57 // z_out -> a’qq
58 vm2x1(w_in,vx_int,x_in,vz_int,z_out1);
59 vm2x1(y_in,vx_int,z_in,vz_int,z_out2);
60 vm2x1(ux_int,z_out1,uz_int,z_out2,z_out_int);
61 x_out = outZERO;
62 y_out = outZERO;
63
64 // Assign angle outputs
65 uw_out = uw_int;
66 ux_out = ux_int;
67 uy_out = uy_int;
68 uz_out = uz_int;
69 vw_out = vw_int;
70 vx_out = vx_int;
71 vy_out = vy_int;
72 vz_out = vz_int;
73 }

The svd function then updates the diagonal entries of the matrices S, U , D (or SVD)
using the outputs of svd2x2 in Listing 5.4. Matrix S is updated in Lines 2-11 for the next
iteration. Before updating U or V , Lines 16-32 assigns them to the identity matrix if they
are the first entry, otherwise, Lines 44-50 perform 2 matrix multiplications, Uout = U ′.U
and Vout = V ′.V where U ′ and V ′ are the new rotation angles obtained from svd2x2,
and U and V are the matrices from the previous iteration. The next iteration is then
fetched.

80 5.4 Eigenvalue and Eigenvector Decomposition

Code listing 5.4: SVD top function continued 1.

1 // Update S on diagonal // s_in is updated for the next iteration
2 s_in[top_left] [top_left] = w_out;
3 s_in[top_left] [bottom_right] = x_out;
4 s_in[bottom_right][top_left] = y_out;
5 s_in[bottom_right][bottom_right] = z_out;
6 if (sweepnum == SVDTraits::NUM_SWEEPS-1) { // if last operation
7 S[top_left] [top_left] = w_out;
8 S[top_left] [bottom_right] = x_out;
9 S[bottom_right][top_left] = y_out;

10 S[bottom_right][bottom_right] = z_out;
11 }
12
13 // Update U & V
14 // o On the diagonal use a 2x2 as per the sigma
15 // o Need to create the identity matrix in U & V at the start
16 if (sweepnum == 0 && top_left == 0) {
17 if (bottom_right==1) {
18 uw_in = 1; // identity
19 vw_in = 1;
20 } else {
21 // Now re-visiting diagonal values where u,v has been set
22 uw_in = u_in[top_left][top_left];
23 vw_in = v_in[top_left][top_left];
24 }
25 // identity matrix
26 ux_in = 0;
27 uy_in = 0;
28 uz_in = 1;
29
30 vx_in = 0;
31 vy_in = 0;
32 vz_in = 1;
33 } else { // previously updated U,V
34 uw_in = u_in[top_left] [top_left];
35 ux_in = u_in[top_left] [bottom_right];
36 uy_in = u_in[bottom_right][top_left];
37 uz_in = u_in[bottom_right][bottom_right];
38 vw_in = v_in[top_left] [top_left];
39 vx_in = v_in[top_left] [bottom_right];
40 vy_in = v_in[bottom_right][top_left];
41 vz_in = v_in[bottom_right][bottom_right];
42 }
43 // Update U, U_out = U’.U
44 mm2x2(uw_in, ux_in, uy_in, uz_in, uw_new, ux_new,
45 uy_new, uz_new, uw_out, ux_out, uy_out, uz_out);
46 // Update V, V_out = V’.V
47 mm2x2(vw_in, vx_in, vy_in, vz_in, vw_new, vx_new,
48 vy_new, vz_new, vw_out, vx_out, vy_out, vz_out);
49
50 // u_in, v_in for the next iteration.
51 u_in[top_left] [top_left] = uw_out;
52 u_in[top_left] [bottom_right] = ux_out;
53 u_in[bottom_right][top_left] = uy_out;
54 u_in[bottom_right][bottom_right] = uz_out;
55 v_in[top_left] [top_left] = vw_out;
56 v_in[top_left] [bottom_right] = vx_out;
57 v_in[bottom_right][top_left] = vy_out;
58 v_in[bottom_right][bottom_right] = vz_out;
59 if (sweepnum == SVDTraits::NUM_SWEEPS-1) {
60 U[top_left] [top_left] = uw_out;
61 U[top_left] [bottom_right] = ux_out;

Chapter 5: HW/SW Co-design Implementation 81

62 U[bottom_right][top_left] = uy_out;
63 U[bottom_right][bottom_right] = uz_out;
64 V[top_left] [top_left] = vw_out;
65 V[top_left] [bottom_right] = vx_out;
66 V[bottom_right][top_left] = vy_out;
67 V[bottom_right][bottom_right] = vz_out;
68 }

Upon completion, matrices SUV are streamed back to Zynq PS where S contains the
eigenvalues of Q and U = V contain the eigenvectors.

5.5 Spectral Embedding and K-means Clustering

Matrix V of Equation 5.4 is formed as means of 3 matrix multiplications involving the
eigenvector U and the square root inverse of eigenvalues matrix Λ in Zynq PS.
According to Algorithm 5, the next step at this stage is to carry out spectral embedding.
Lines 41-48 of Listing 3.6 in Chapter 3, are implemented in C for spectral embedding in
Listing 5.5 below. Lines 3-9 compute the spectral embedding of the eigenvectors using
the 1st eigenvector (V [row][0]). A built-in C function qsor t() is used in Line 19 for
sorting in descending order, the eigenvalues of Q obtained from the HLS output stream.
Qsort makes use of an implemented function, compare, which takes two void pointers as
arguments and returns their difference; this is how qsor t() determines which eigenvalue
is smaller, or larger, than the other. Lines 20-26 comprises the choice of the first k sorted
eigenvectors where k is the number of clusters, the size of embedmask is n− b y − k as
in Algorithm 5.

Code listing 5.5: Spectral Embedding in Zynq PS.

1 float embed [num_values][m_samples];
2 float embed_mask [num_values][k];
3 for (int col = 0 ; col<k ; col++)
4 {
5 for (int row = 0 ; row<num_values ; row++)
6 {
7 embed[row][col] = V_Mat[row][col+1]/V_Mat[row][0];
8 }
9 }

10 struct EigenValues { // storing eigenvalues of S into a struct
11 int index;
12 int eigenvalue;
13 };
14 struct EigenValues eigen[num_values];
15 for(int i=0 ; i<num_values ; i++) {
16 eigen[i].index = i;
17 eigen[i].eigenvalue = Q[i];
18 }
19 qsort (eigen, num_values, sizeof(struct EigenValues), compare); // std C quicksort function
20 for (int col = 0 ; col<k ; col++)
21 {
22 for (int row = 0 ; row<num_values ; row++)
23 {
24 embed_mask [row][col] = embed[row][eigen.index[col]]; // first k sorted eigenvectors
25 }
26 }

82 5.5 Spectral Embedding and K-means Clustering

The next step is to formulate the vector y of Algorithm 5 with size k as illustrated in
Figure 5.7. This is done by constructing a vector pointer y[i], corresponding to the i-th
row of E.

Figure 5.7: y pointer array points to the rows of E.

The implementation of k-means clustering follows the same steps as in Algorithm 2
of the standard k-means. Before clustering data, a random number of data points (total
k) are selected as centers to form the initial cluster centroids. This is done in Lines 1-11
of Listing 5.6. A centroid is defined as a row y[i] with size k. In other words, initially,
the algorithm randomly samples k centroids of the dimension size k from the list y .

Code listing 5.6: K-means Clustering function call.

1 srand((unsigned) 0);
2 point_num = rand();
3 dim = k;
4 float *centroids = (float *)malloc(sizeof(float) * dim * k);
5 for (int clust_num = 0; clust_num < k; clust_num++)
6 {
7 point_num = rand();
8 point_num = point_num % n;
9 for (int dim_num = 0; dim_num < dim; dim_num++)

10 {
11 centroids[clust_num*dim + dim_num] = y[point_num*dim + dim_num];
12 }
13 }
14 kmeans(dim, // dimension of data -> k columns of E
15 y, // 1D pointer to eigenvectos
16 n, // number of elements of y.
17 k, // number of clusters
18 centroids, // initial cluster centroids
19 final_cluster_assignment // output
20);

Listing 5.7 lists the k-means clustering implemented function. K-means clustering runs
for a number of iterations (MAX_I T ERAT IONS = 100). The function starts by calcu-
lating the distances between all the points and all the centroids, results for each vector
point y is saved in dist in Line 8. According to the distances calculated, clusters are
reassigned to the data points as well as cluster assignment holder is updated in Line 9.
This constitutes one iteration run. The same process is repeated for a specified number
of iterations. The C code developed is available on [50].

Code listing 5.7: K-means Clustering function.

1 void kmeans (int dim, float*y, int n, int k, float *centroids,
2 int *final_cluster_assignment)

Chapter 5: HW/SW Co-design Implementation 83

3 {
4 int MAX_ITERATIONS = 100;
5 float *dist = (float *)malloc(sizeof(float) * n * k);
6 int *cluster_assignment_cur = (int *)malloc(sizeof(int) * n);
7 // initial setup
8 calc_all_distances(dim, n, k, y, cluster_centroid, dist);
9 assign_all_clusters_from_distances(dim, n, k, dist, cluster_assignment_cur);

10 // update cluster centroids
11 calc_cluster_centroids(dim, n, k, y, cluster_assignment_cur, cluster_centroid);
12 int i = 1;
13 while (i < MAX_ITERATIONS)
14 {
15 // move all points to nearest cluster
16 calc_all_distances(dim, n, k, y, cluster_centroid, dist);
17 assign_all_clusters_from_distances(dim, n, k, dist, cluster_assignment_cur);
18 calc_cluster_centroids(dim, n, k, y, cluster_assignment_cur, cluster_centroid);
19 i++;
20 }
21 }

Chapter 6

HW/SW Co-design Results

This chapter presents results of HW/SW co-design of spectral clustering algorithm de-
veloped for Zynq-7000 SoC (in Chapter 5). The results are divided into three sections,
namely, HW/SW performance analysis, resource utilization, and classification perform-
ance analysis. Performance analysis and resource utilization discussion are based on
post-synthesis results of the generic values of Table 5.1

6.1 Performance Analysis

HW/SW co-design performance analysis are based on the generic values set for the Sa-
linas dataset. The original dataset is initially pre-processed by MATLAB to reduce its
dimensions to 16 spectral bands by making use of PCA. Furthermore, the HSI cube is
saved in an SD card as a binary file.
Table 6.1 shows the measured execution time of the spectral clustering algorithm on
Salinas-A dataset. The HW/SW co-design is tested on Zedboard Development board
containing Zynq-7000 SoC with -O3 compiler directive for performance optimization.
The speed-up is evaluated in comparison with the software solution execution time as
reported by FSC [12] running on Intel(R) Core(TM) i7-5930K CPU, 3.50 GHz, 64 GB
memory, Ubuntu 14.04.5 LTS system. The HW/SW co-design achieves a speed-up factor

Table 6.1: Performance comparison for HW/SW codesign solution.

Implementation Execution Time Speed-up Factor

FSC Intel i7-5930K [12] 4.62 s 1.723

HW/SW design (100MHz) 2.68 s 1

Graph Construction 0.75 s

HLS SVD (with optimizations) 0.67 s

HLS SVD (without optimizations) 2.98 s

Zynq PS operations 1.26 s

of 1.723 when clocked with frequency of 100 MHz compared to Fast Spectral Cluster-
ing solution. In addition, the table shows individual time taken for Graph Construction

85

86 6.2 Resource Utilization

of A and B module and the HLS SVD module. Hardware timings are measured using
AXI_TIMER and maximum clock latency/clock cycles. It can be observed that the HLS
SVD core is the most expensive module in time complexity. This is because of the large
matrix data that is decomposed into 3 other matrices of the same size. Furthermore,
time has been measured with and without the user directive, resource and throughput,
optimizations of Tables 2.1 and 5.3. The optimization owed to a speed-up factor of 4.45
for the HLS SVD core performance.
Zynq PS operations time includes the total time taken for HSI read from SD, two data
transfers, Q and V matrix formations, spectral embedding, and k-means clustering. Soft-
ware time is measured using C XTime library.

The highest achievable operating frequencies for modules synthesized on XC7Z020-
CLG484-1 SoC are shown in Table 6.2. Each hardware module in the design have been
individually analyzed to determine the maximum operating frequencies by making use
of the timing reports.

Table 6.2: Maximum frequency for HW/SW codesign solution modules.

Module Minimum Time Period Maximum Frequency

PS-PL System 9.955 ns 100.45 MHz

Graph Construction 6.270 ns 159.48 MHz

HLS SVD 6.343 ns 157.63 MHz

Master Output 2.362 ns 423.45 MHz

BRAM Module 3.363 ns 297.35 MHz

6.2 Resource Utilization

Post-synthesis resource utilization for HW/SW co-design using the generic parameters
is shown in Table 6.3. The table shows the total resources used and their percentage of
the total resources available on xc7z020clg484-1 SoC. HSI data input saved in BRAM
module is synthesized to use 64 BRAM tiles which accounts for approximately for 45.7%
of the available BRAM on the SoC device. As for HLS SVD core, the used BRAM tiles
accounts for 16.4% of the total BRAM tiles available.

The high use of BRAM tiles (77.14% with 16 spectral bands) can be a limitation
for this HW/SW co-design solution. Figure 6.1 shows the BRAM module resource utiliza-
tion of BRAM tiles, slice LUTs, and slice registers as a function of the number of spectral
bands varrying from 16 to 32 in steps of 4. The limitation can be observed at 28 spec-
tral bands where the total number of synthesized BRAM tiles (BRAM module + PL)
goes beyond the available resources (140 BRAM tiles). This is because as the number of
spectral bands increases, the size of the HSI cube increases as well. Consequently, the
BRAM_ADDR_WIDTH parameter increases and more BRAM rows are required by the
design. However, the design meets the requirements outlined in section 1.2 of operating
on at least 20 spectral bands. In addition, as expected, slice LUTs and registers slightly
increase with the number of spectral bands.

Chapter 6: HW/SW Co-design Results 87

Table 6.3: Post-Synthesis resource utilization report.

Module Slice LUTs Slice Registers DSP Blocks BRAM Tiles

PS-PL system 5066 6285 0 0
Input logic 1657 2293 0 82

AXI_DMA_1 1504 1975 0 2
BRAM module 153 318 0 80

Processing logic 15466 10558 41 25
Graph A and B 532 900 0 1
AXI_DMA_2 1504 1975 0 2

HLS SVD 13356 7603 41 23
Master Output 74 80 0 0

Total 22189 19056 41 108
Utilization % 41.71% 17.98% 18.64% 77.14%

16 20 24 28 32
0

50

100

150

200

250

300

350

Number of spectral bands

R
es

ou
rc

e

Regs
LUTs

BRAM
BRAM Util 100%

Figure 6.1: Resource utilization as a function of varying number of spectral bands for
BRAM module.

Processing logic designed in section 5.3 make use of the same resources in a pipelined
design approach rather than duplicating the use of resources and therefore, a parallel
design approach. The main idea is to share the resources between each stage of pro-
cessing. An example is the register used to hold X_i, 1 register is used to save the X_i
and that same register is reused for the entire computation process. In addition, the
size of the streaming packet in Master Output module is kept the same throughout the
variation of HSI size since the BRAM_DATA_WIDTH is the same. This is applicable in
matrix B where the size of the matrix increases greatly with the change of number of

88 6.3 Clustering Performance Analysis

spectral bands but it does not have an effect on the resource utilization since the matrix
data width size is not changed. The main constraint however, is on the time taken and
maximum operating frequency. On the other hand, HLS SVD core depends on the size
of matrix Q. In this case, Q’s size is kept constant at m− b y−m= 128×128 throughout
the experiments. This also leads to having a constant BRAM tiles usage size of 25 as
shown in Figure 6.2. Hence, the resource utilization for the PL solution changes slightly
or remains constant as the number of spectral bands increases. This can be observed in
Figure 6.2.

16 20 24 28 32

0.25

0.5

0.75

1

1.25

1.5

1.75

2
·104

Number of spectral bands
N

um
be

r
of

re
so

ur
ce

s
BRAM

BRAM Util 100%
Regs
LUTs

16 20 24 28 32
0

50

100

150

200

250

300

350

N
um

be
r

of
re

so
ur

ce
s

Figure 6.2: Resource utilization as a function of varying number of spectral bands for
Processing Logic modules.

6.3 Clustering Performance Analysis

The HW/SW co-design implementation of spectral clustering algorithm is experimented
on 4 different datasets, 2 of which are water-based datasets for the purpose of HYPSO
mission. Experimental datasets include Urban, Jasper Ridge, Samson, and Salinas-A. Ex-
periment results are compared with 2 other clustering methods including the Clustering
using Binary Partition Trees (CLUS-BPT) developed in this work, and Fast Spectral Clus-
tering (FSC)[12]. Furthermore, the experiments are carried out on the final produced
k-means clusters of each dataset for HW/SW co-design solution. The produced output
is saved as a binary file on the SD card and is further used for analysis. Moreover, the
classification labels are plotted as well as evaluated using NMI and Purity metric scores
on Python 3.7.3. The number of clusters for HW/SW solution are fixed according to the
corresponding number of classes of each dataset obtained from section 4.2.

Chapter 6: HW/SW Co-design Results 89

Table 6.4 shows the highest purity and NMI scores obtained by the compared meth-
ods for Urban, Jasper Ridge, Samson, and Salinas-A datasets. Figures 6.3, 6.4, 6.5, and
6.6 present the final cluster maps analogous to the valued mentioned in Table 6.4 for
each method. Note that the image results of FSC are horizontally flipped for comparison
reasons. Generally, cluster color labels may not match the ground truth color reference
because clustering methods do not learn the exact labels (supervised learning) but rather
assigns them. For example, label #1 in one cluster map may correspond to label #7 in the
ground reference image. The following observations are based on the aforementioned
table and figures results:

Table 6.4: Best purity and NMI scores obtained by HW/SW co-design proposed method,
FSC SW, and CLUS-BPT SW for images.

Dataset
Framework FSC (SW) [12] Proposed CLUS-BPT (SW) Proposed HW/SW

Purity NMI k Purity NMI k Purity NMI k
Urban 0.51 0.21 4 0.90 0.2906 4 0.8325 0.62 4

Jasper Ridge 0.83 0.71 4 0.7652 0.5658 4 0.8043 0.54 4
Samson 0.85 0.75 3 0.6896 0.6698 3 0.8653 0.793 3

Salinas-A 0.80 0.81 6 0.8753 0.8572 6 0.5528 0.6562 6

• Table 6.4 shows that the HW/SW solution resulted in significantly better values
for Urban image than the other methods. The high normalized mutual information
(NMI) score for those images shows that the percentage of how much informa-
tion is mutual (or common) between the clustered labels and the truth labels is
high. This can be observed further on Figure 6.3, the proposed HW/SW design
was able to identify all the class labels for Urban image, unlike CLUS-BPT which
completely misclassified the roof as asphalt. On the other hand, the software ver-
sion of spectral clustering (FSC) clustered the image with more than 4 clusters
and the comparison is inapplicable.

• As for Jasper-Ridge image, the proposed HW/SW solution resulted in comparable
scores to the ones obtained by CLUS-BPT using 4 clusters. In contrast, FSC scored
better than the proposed methods and this can be observed in Figure 6.4 where
the cluster map (a) had fewer classification errors than the cluster maps (b) and
(c). Moreover, the HW/SW cluster map misclassified a portion of the water class
as road while CLUS-BPT had some classification errors spread across the image.

• HW/SW solution scored another significant results with the Samson image. The
resulted purity and NMI socre are higher than FSC and CLUS-BPT. The cluster
map of the proposed solution had the least number of misclassification errors
and is very close to the ground truth labels compared to the other two meth-
ods. Moreover, FSC had some soil labels classified as Trees. However, all methods
successfully classified the water label.

• Both FSC and CLUS-BPT performed significantly better for Salinas-A as compared
to the proposed HW/SW co-design. The Salinas image in Figure 6.6 (d) contains 6
classes, all of which are well-localized spatially. However, it is a challenging image
since there is a high probability of mixing true clusters together. For example,
on the lower right of the image, all methods mix together the corn green weeds
and Lettuce romaine 7 weeks labels without any background label separation.

90 6.3 Clustering Performance Analysis

However, FSC and CLUS-BPT managed to separate distinct labels for the rest of
the image while the proposed HW/SW solution struggled in partially identifying
the lettuce romaine 5 weeks and mistakened it with lettuce romaine 6 weeks.

(a) (b) (c) (d)

(e)

Figure 6.3: Cluster maps obtained from (a) FSC [12], (b) proposed CLUS-BPT, (c) pro-
posed HW/SW, (d) ground reference image, and (e) ground reference color codes of
classes for Urban image.

(a) (b) (c) (d)

(e)

Figure 6.4: Cluster maps obtained from (a) FSC [12], (b) proposed CLUS-BPT, (c) pro-
posed HW/SW, (d) ground reference image, and (e) ground reference color codes of
classes for Jasper Ridge image.

Chapter 6: HW/SW Co-design Results 91

(a) (b) (c) (d)

(e)

Figure 6.5: Cluster maps obtained from (a) FSC [12], (b) proposed CLUS-BPT, (c) pro-
posed HW/SW, (d) ground reference image, and (e) ground reference color codes of
classes for Samson image.

(a) (b) (c) (d)

(e)

Figure 6.6: Cluster maps obtained from (a) FSC [12], (b) proposed CLUS-BPT, (c) pro-
posed HW/SW, (d) ground reference image, and (e) ground reference color codes of
classes for Salinas-A image.

Chapter 7

Conclusion

In this thesis, unsupervised clustering classification for hypersepctral imagery has been
presented as a very promising area of research [4]. Two solutions were proposed, namely,
a software framework of filtering k-means clustering based on binary partition trees seg-
mentation, and a hardware/software co-design implementation of spectral clustering
using Nyström Extension. The two algorithm implementations have been profiled on
software for performance including classification evaluation scores and computational
time. Furthermore, both software designs were tested on 8 widely used hyperspectral
image datasets. The results of the experimented designs serve as a solid ground for the
HW/SW solution implementation. The software versions of the two algorithms are de-
veloped using MATLAB R2019a and Python 3.7.3, respectively. On the other hand, the
HW/SW co-design made use of a number of different development tools including Xilinx
Vivado Design Suite, Vivado HLS, Xilinx SDK, and MathWorks HDL Coder™.

Unsupervised clustering classification has been preferred in this work to other classi-
fication methods since clustering succeeds in: 1) identifying the number of class labels
in an image regardless of how many/what classes is the data divided into and 2) be-
ing based on linear algebra computations which are very feasible to be implemented on
FPGAs.

For CLUS-BPT, the framework made use of segmentation based on binary partition
trees. This tree-based structure has been preferred in a hyperspectral image context
since BPT proved to be accurately presenting: 1) the decomposition of the image in
terms of regions representing significant parts of the hyperspectral image and 2) the in-
clusion relations of the regions in the scene [9]. Furthermore, given its fixed structure,
BPT allows implementing efficient and advanced application-dependent techniques on
it including k-means clustering algorithm. The k-means clustering is based on a filtering
algorithm that applies k-means clustering on tree-based data structures. Principal com-
ponent analysis is integrated in the design to get the maximum data variance direction
which is embedded with the final segmentation map in a new clustering framework.

Spectral clustering using Nyström Extension software algorithm was adapted from
[37] and its implementation on hyperspectral images was inspired from [12]. Moreover,

93

the affinity matrix of the entire HSI cube is efficiently approximated using Nyström Ex-
tension and is applicable to large-scale hyperspectral image datasets. The HW/SW solu-
tion made use of the algorithm presented in [37]where eigenvalue decomposition of the
Laplacian matrix represented a major challenge for this method. Instead, the eigenvalue
decomposition is found for a smaller size matrix using singular valued decomposition
(SVD). A more optimized high-level synthesis of singular value decomposition is imple-
mented using Vivado HLS. HW/SW cluster label results presented challenging evalu-
ation scores as compared to other clustering methods. Moreover, the HW/SW solution
maintains or even improves the clustering quality of the software version in 3 out of 4
experimented HSI datasets.

7.1 Future Work

Both designs of the proposed methods are divided into a number of different components
and stages that can be modified or replaced with other applicable parts. This creates
more room for future development and experiments, some of which are summarized
below:

• For CLUS-BPT, dimensionality reduction can be done using methods other than
PCA such as Linear Discriminant Analysis (LDA) and Non-negative matrix factor-
ization (NMF). Both methods are used in pattern recognition context for feature
extraction. In addition, NMF is able to preserve more information than PCA as
demonstrated by [51]. A further research can be done on the effect of number of
PCA components of a reduced HSI cube on the clustering performance.

• The HW/SW co-design takes advantage of the inherent parallelism in the design
implementation by using the pipeline approach. Hence, less hardware resources
are used but this trades-off the execution time. Accordingly, HW/SW design can be
intensively parallelized at many points including graph construction of matrices A
and B. In addition, further testing is necessary on different HSI datasets to define
possible improvements and limitations.

• Full FPGA implementation is possible for the software computations of the HW/SW
solution. This is because there exists in literature a number of FPGA implementa-
tions for matrix multiplications and k-means clustering. However, the design could
be limited by the hardware resources available to use on-board.

94

Bibliography

[1] S. Watson, B. Whitton, S. Higgins, H. Paerl, B. Brooks and J. Wehr, ‘Harmful algal
blooms’, in. Jun. 2015, pp. 873–920, ISBN: 9780123858764. DOI: 10.1016/B978-
0-12-385876-4.00020-7.

[2] The algae bloom in northern norway. [Online]. Available: https://www.kontali.
no/references/fhf_901574.

[3] Mariusz E. Grøtte, Roger Birkeland, Joao F. Fortuna, Julian Veisdal, Milica Or-
landic, Evelyn Honore-Livermore, Gara Quintana-Diaz, Harald Martens, J. Tommy
Gravdahl„ Fred Sigernes, Jan Otto Reberg, Geir Johnsen, Kanna Rajan, and Tor
A. Johansen, ‘Hyperspectral imaging small satellite in multi-agent marine obser-
vation system’, Unpublished-Internal document, 2018.

[4] D. Chutia, D. K. Bhattacharyya, K. K. Sarma, R. Kalita and S. Sudhakar, ‘Hyper-
spectral remote sensing classifications: A perspective survey’, Transactions in GIS,
Aug. 2015. DOI: 10.1111/tgis.12164.

[5] A. Signoroni, M. Savardi, A. Baronio and S. Benini, ‘Deep learning meets hyper-
spectral image analysis: A multidisciplinary review’, Journal of Imaging, vol. 5,
p. 52, May 2019. DOI: 10.3390/jimaging5050052.

[6] M. Ismail, ‘Unsupervised clustering for hyperspectral image classification’, 2019.

[7] J. Lei, L. Wu, Y. Li, W. Xie, C.-I. Chang, J. Zhang and B. Huang, ‘A novel fpga-based
architecture for fast automatic target detection in hyperspectral images’, Remote
Sensing, vol. 11, p. 146, Jan. 2019. DOI: 10.3390/rs11020146.

[8] D. Lavenier, ‘Fpga implementation of the k-means clustering algorithm for hyper-
spectral images’, Sep. 2000.

[9] S. Valero, P. Salembier and J. Chanussot, ‘Hyperspectral image representation and
processing with binary partition trees’, IEEE transactions on image processing : a
publication of the IEEE Signal Processing Society, vol. 22, Dec. 2012. DOI: 10.1109/
TIP.2012.2231687.

[10] Cs231n: Convolutional neural networks for visual recognition, class notes for Neural
Networks, Stanford, CA: Stanford Vision and Learning Lab, 2020. [Online]. Avail-
able: https://cs231n.github.io/neural-networks-1/.

[11] S. Roy, G. Krishna, S. R. Dubey and B. Chaudhuri, ‘Hybridsn: Exploring 3d-2d
cnn feature hierarchy for hyperspectral image classification’, Feb. 2019.

95

https://doi.org/10.1016/B978-0-12-385876-4.00020-7
https://doi.org/10.1016/B978-0-12-385876-4.00020-7
https://www.kontali.no/references/fhf_901574
https://www.kontali.no/references/fhf_901574
https://doi.org/10.1111/tgis.12164
https://doi.org/10.3390/jimaging5050052
https://doi.org/10.3390/rs11020146
https://doi.org/10.1109/TIP.2012.2231687
https://doi.org/10.1109/TIP.2012.2231687
https://cs231n.github.io/neural-networks-1/

[12] Y. Zhao, Y. Yuan and Q. Wang, ‘Fast spectral clustering for unsupervised hyper-
spectral image classification’, Remote Sensing, vol. 11, p. 399, Feb. 2019. DOI:
10.3390/rs11040399.

[13] S. Ranjan, D. Nayak, S. Kumar, R. Dash and B. Majhi, ‘Hyperspectral image clas-
sification: A k-means clustering based approach’, pp. 1–7, Jan. 2017. DOI: 10.
1109/ICACCS.2017.8014707.

[14] A. Mehta and O. Dikshit, ‘Segmentation-based clustering of hyperspectral images
using local band selection’, Journal of Applied Remote Sensing, vol. 11, p. 015 028,
Mar. 2017. DOI: 10.1117/1.JRS.11.015028.

[15] Y. Tarabalka, J. Benediktsson and J. Chanussot, ‘Spectral–spatial classification of
hyperspectral imagery based on partitional clustering techniques’, Geoscience and
Remote Sensing, IEEE Transactions on, vol. 47, pp. 2973–2987, Sep. 2009. DOI:
10.1109/TGRS.2009.2016214.

[16] V. Dey, Y. Zhang and M. Zhong, ‘A review on image segmentation techniques with
remote sensing perspective’, ISPRS TC VII Symposium - 100 Years ISPRS, vol. 38,
Jan. 2010.

[17] A. Mehta and O. Dikshit, ‘Projected clustering of hyperspectral imagery using
region merging’, Remote Sensing Letters, vol. 7, pp. 721–730, Aug. 2016. DOI:
10.1080/2150704X.2016.1182661.

[18] A. Mehta and O. Dikshit, ‘Segmentation-based projected clustering of hyperspec-
tral images using mutual nearest neighbour’, IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. PP, pp. 1–8, Nov. 2017. DOI:
10.1109/JSTARS.2017.2768079.

[19] A. Mehta, A. Ashapure and O. Dikshit, ‘Segmentation based classification of hy-
perspectral imagery using projected and correlation clustering techniques’, Geo-
carto International, vol. 31, pp. 1–28, Oct. 2015. DOI: 10.1080/10106049.2015.
1110207.

[20] C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu and J. Park, ‘Fast algorithms for projected
clustering’, vol. 28, Jun. 1999, pp. 61–72. DOI: 10.1145/304181.304188.

[21] F. Winterstein, S. Bayliss and G. A. Constantinides, ‘Fpga-based k-means cluster-
ing using tree-based data structures’, 23rd International Conference on Field pro-
grammable Logic and Applications, 2013. [Online]. Available: https://ieeexplore.
ieee.org/document/6645501/citations#citations.

[22] H. Futchs, Z. Kedem and B. Naylor, ‘On visible surface generation by a priori tree
structures’, vol. 14, Dec. 1988, pp. 39–48. DOI: 10.1145/800250.807481.

[23] Y. Tarabalka, J. Chanussot and J. Benediktsson, ‘Segmentation and classification
of hyperspectral images using watershed transformation’, Pattern Recognition,
vol. 43, pp. 2367–2379, Jul. 2010. DOI: 10.1016/j.patcog.2010.01.016.

[24] S. Beucher and F. Meyer, ‘The morphological approach to segmentation: The wa-
tershed transformation’, in. Jan. 1993, vol. Vol. 34, pp. 433–481, ISBN: 9781315214610.
DOI: 10.1201/9781482277234-12.

96

https://doi.org/10.3390/rs11040399
https://doi.org/10.1109/ICACCS.2017.8014707
https://doi.org/10.1109/ICACCS.2017.8014707
https://doi.org/10.1117/1.JRS.11.015028
https://doi.org/10.1109/TGRS.2009.2016214
https://doi.org/10.1080/2150704X.2016.1182661
https://doi.org/10.1109/JSTARS.2017.2768079
https://doi.org/10.1080/10106049.2015.1110207
https://doi.org/10.1080/10106049.2015.1110207
https://doi.org/10.1145/304181.304188
https://ieeexplore.ieee.org/document/6645501/citations#citations
https://ieeexplore.ieee.org/document/6645501/citations#citations
https://doi.org/10.1145/800250.807481
https://doi.org/10.1016/j.patcog.2010.01.016
https://doi.org/10.1201/9781482277234-12

[25] G. Noyel, J. Angulo and D. Jeulin, ‘Morphological segmentation of hyperspectral
images’, Image Analysis and Stereology, Nov. 2007. DOI: 10.5566/ias.v26.p101-
109.

[26] M. Veganzones, G. Tochon, M. Dalla Mura, A. Plaza and J. Chanussot, ‘Hyper-
spectral image segmentation using a new spectral unmixing-based binary parti-
tion tree representation’, IEEE transactions on image processing : a publication of
the IEEE Signal Processing Society, vol. 23, Jun. 2014. DOI: 10.1109/TIP.2014.
2329767.

[27] S. Valero, P. Salembier and J. Chanussot, ‘Comparison of merging orders and prun-
ing strategies for binary partition tree in hyperspectral data’, Oct. 2010, pp. 2565–
2568. DOI: 10.1109/ICIP.2010.5652595.

[28] S. Valero, P. Salembier, J. Chanussot and C. Cuadras, ‘Improved binary partition
tree construction for hyperspectral images: Application to object detection’, Aug.
2011, pp. 2515–2518. DOI: 10.1109/IGARSS.2011.6049723.

[29] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman and A. Wu, ‘An
efficient k-means clustering algorithm analysis and implementation’, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 881–892, Jul.
2002. DOI: 10.1109/TPAMI.2002.1017616.

[30] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman and A. Wu, ‘An
efficient k-means clustering algorithm analysis and implementation’, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 881–892, Jul.
2002. DOI: 10.1109/TPAMI.2002.1017616.

[31] U. Luxburg, ‘A tutorial on spectral clustering’, Statistics and Computing, vol. 17,
pp. 395–416, Jan. 2004. DOI: 10.1007/s11222-007-9033-z.

[32] J. Shi and J. Malik, ‘Normalized cuts and image segmentation’, IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 22, May 2002. DOI: 10.1109/
34.868688.

[33] R. Bhatia, Positive Definite Matrices. Princeton University Press, 2007.

[34] N. J. Salkind, Encyclopedia of measurement and statistics. Sage, 2007.

[35] G. Strang, Introduction to Linear Algebra, Fourth. Wellesley, MA: Wellesley-Cambridge
Press, 2009, ISBN: 9780980232714.

[36] M. Berry, D. Mezher, B. Philippe and A. Sameh, ‘Parallel algorithms for the sin-
gular value decomposition’, in. Jan. 2005, pp. 117–164.

[37] C. Fowlkes, S. Belongie, F. Chung and J. Malik, ‘Spectral grouping using the
nystrom method’, IEEE transactions on pattern analysis and machine intelligence,
vol. 26, pp. 214–25, Mar. 2004. DOI: 10.1109/TPAMI.2004.1262185.

[38] Y. Zhao, Y. Yuan, F. Nie and Q. Wang, ‘Spectral clustering based on iterative op-
timization for large-scale and high-dimensional data’, Neurocomputing, vol. 318,
Sep. 2018. DOI: 10.1016/j.neucom.2018.08.059.

[39] C. Fowlkes, S. Belongie and J. Malik, ‘Efficient spatiotemporal grouping using
the nystrom method’, vol. 1, Feb. 2001, pp. I–231, ISBN: 0-7695-1272-0. DOI:
10.1109/CVPR.2001.990481.

97

https://doi.org/10.5566/ias.v26.p101-109
https://doi.org/10.5566/ias.v26.p101-109
https://doi.org/10.1109/TIP.2014.2329767
https://doi.org/10.1109/TIP.2014.2329767
https://doi.org/10.1109/ICIP.2010.5652595
https://doi.org/10.1109/IGARSS.2011.6049723
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/TPAMI.2004.1262185
https://doi.org/10.1016/j.neucom.2018.08.059
https://doi.org/10.1109/CVPR.2001.990481

[40] Zynq-7000 soc data sheet, Xilinx, 2018. [Online]. Available: https://www.xilinx.
com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf.

[41] 7 series dsp48e1 slice, Xilinx, 2018. [Online]. Available: https://www.xilinx.
com/support/%20documentation/user_guides/ug479_7Series_DSP48E1.pdf.

[42] Axi4-lite specification, ARM, 2010. [Online]. Available: https://static.docs.
arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.
pdf?_ga=2.242520138.971183140.1590610019-178701575.1590610019.

[43] Axi4-stream specification, ARM, 2010. [Online]. Available: https : / / static .
docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_
spec.pdf.

[44] Axi dma v7.1, Xilinx, 2019. [Online]. Available: https://www.xilinx.com/
support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.
pdf.

[45] 7 series fpgas memory resources, Xilinx, 2019. [Online]. Available: https://www.
xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_
Resources.pdf.

[46] Vivado high-level synthesis, Xilinx, 2018. [Online]. Available: https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2018_2/ug902- vivado-
high-level-synthesis.pdf.

[47] (2018). Hyperspectral remote sensing scenes, [Online]. Available: http://lesun.
weebly.com/hyperspectral-data-set.html.

[48] Ð. Bovsković, M. Orlandić, S. Bakken and T. A. Johansen, ‘Hw/sw implementation
of hyperspectral target detection algorithm’, 2019 8th Mediterranean Conference
on Embedded Computing (MECO), pp. 1–6, 2019.

[49] Hdl coder user’s guide, MathWorks, 2020. [Online]. Available: https://ww2.
mathworks.cn/help/pdf_doc/hdlcoder/hdlcoder_ug.pdf.

[50] M. Ismail, https://https://github.com/mh3081995/HW-SW-HSI-Classification,
2020.

[51] B. Rén, L. Pueyo, G. Zhu, J. Debes and G. Duchene, ‘Non-negative matrix fac-
torization: Robust extraction of extended structures’, The Astrophysical Journal,
vol. 852, Dec. 2017. DOI: 10.3847/1538-4357/aaa1f2.

[52] R. Bro and A. Smilde, ‘Principal component analysis’, Analytical methods, vol. 6,
p. 2812, May 2014. DOI: 10.1039/c3ay41907j.

98

https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/%20documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/%20documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf?_ga=2.242520138.971183140.1590610019-178701575.1590610019
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf?_ga=2.242520138.971183140.1590610019-178701575.1590610019
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf?_ga=2.242520138.971183140.1590610019-178701575.1590610019
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html
https://ww2.mathworks.cn/help/pdf_doc/hdlcoder/hdlcoder_ug.pdf
https://ww2.mathworks.cn/help/pdf_doc/hdlcoder/hdlcoder_ug.pdf
https://https://github.com/mh3081995/HW-SW-HSI-Classification
https://doi.org/10.3847/1538-4357/aaa1f2
https://doi.org/10.1039/c3ay41907j

Appendix A

Dimensionality Reduction

Principal component analysis (PCA) is a useful statistical technique that has found ap-
plication in fields such as face recognition and image compression, and is a common
technique for finding patterns in data of high dimension, such as hyperspectral data.
In this thesis, PCA is used as a dimensionality reduction technique for reducing the hy-
perspectral image dimension. The first principal component band, describing the max-
imum data variance direction is embedded with the segmentation map in CLUS-BPT
framework in Chapter 3. Apart from reducing the number of dimensions, PCA ideally
suppresses present noise in the hyperspectral data.

PCA transformation [52] diagonalizes a sample covariance matrix C of the original
data X (of size x × y×z in HSI case), thus determining its eigenvalues and eigenvectors
decomposition. The covariance matrix is the measure of the correlation between two
or more variables. It indicates if the variables change together in the same direction
(high correlated) or in opposite directions (low correlated). Covariance value is always
calculated between two variables, hence, the covariance matrix for n-dimensional data
is made up of the covariances between every two variables and can be calculated using:

C(x i , x j) =

∑n
i=1 x i x j

n− 1
. (A.1)

Eigenvalue decomposition of the data covariance matrix can be determined by using an
eigenvalue and eigenvector decomposition method like Jacobi method, then the matrix
C can be expressed as:

C = VΛV T , (A.2)

where V is the eigenvector matrix and Λ is the matrix containing eigenvalues on the
diagonal.
After computing the eigenvectors and ordering them by their eigenvalues in descending
order, choose whether to keep all these principal components (eigenvectors) or discard
those of lesser significance (of low eigenvalues). In this work, the number of PCA com-
ponents used is 1. Hence, the highest data variance vector.
Finally, PCA transformation is:

X reduced = V T X , (A.3)

where X reduced is a 2 dimensional image of size x × y .

99

Appendix B

Gauss Jordan Elimination

Gauss-Jordan Elimination is an algorithm that can be used to solve systems of linear
equations and to find the inverse of any invertible matrix. In this thesis, Gauss-Jordan
elimination is used by Zynq PS to invert matrix A to be able to form the Laplacian matrix.

The idea here is to perform row reduction on the matrix [A|I]where A is augmented
with the identity matrix to obtain something of the form [I |B]. Then, B = A−1B = A
provides a solution to the inverse problem. Row operations include a sequence of two
steps:

1. Multiply one of the rows by a nonzero scalar.
2. Add or subtract the scalar multiple of one row to another row.

For example, consider [A|I]:

A=





2 6 −2 1 0 0
1 6 −4 0 1 0
−1 4 9 0 0 1



 ,

then, the first row operation is to make sure that the diagonal entry A[0][0] is 1. This
can be done by dividing the first row by 2.





2 6 −2 1 0 0
1 6 −4 0 1 0
−1 4 9 0 0 1



=⇒





1 3 −1 1
2 0 0

1 6 −4 0 1 0
−1 4 9 0 0 1



 .

A[0][0] is called a pivot, and the elements under the pivot must be 0. This can be done
by subtracting the first row from the second row. Furthermore, the first row can be added
to the third row to obtain the necessary 0s in the first column:





1 3 −1 1
2 0 0

1 6 −4 0 1 0
−1 4 9 0 0 1



=⇒





1 3 −1 1
2 0 0

0 3 −3 −1
2 1 0

0 7 8 1
2 0 1



 .

Repeat the same process for the diagonal A[1][1] as a pivot. Divide row 2 (R2) by 3,
and compute (R1 − 3R2) and (R3 − 7R2).





1 3 −1 1
2 0 0

0 1 −1 −1
6

1
3 0

0 7 8 1
2 0 1



=⇒





1 0 2 1 −1
3 0

0 1 −1 −1
6

1
3 0

0 0 15 5
3 −7

3 1



 .

101

For diagonal A[2][2], divide row 3 by 15, and compute (R1 − 2R3) and (R2 + R3).




1 0 2 1 −1
3 0

0 1 −1 −1
6

1
3 0

0 0 1 1
9 − 7

45
1
15



=⇒





1 0 0 7
9 − 1

45 − 2
15

0 1 0 − 1
18

8
45

1
15

0 0 1 1
9 − 7

45
1
15



 .

Thus, A−1 is:




7
9 − 1

45 − 2
15

− 1
18

8
45

1
15

1
9 − 7

45
1
15



 .

The code listing below performs the Gauss Jordan elimination to obtain the inverse of
a matrix A. The code is obtained from [48].

Code listing B.1: Gauss Jordan implemented in C.

1 void GaussJordan (int size, double A[size][size], double I[size][size])
2 {
3 int i, j, k;
4 double t;
5 for (i = 0; i < size; i++)
6 {
7 for (j = 0; j < size; j++) B[i][j] = 0;
8 B[i][i] = 1; // forming identity matrix
9 t = R[i][i];

10 for(k = 0; k < size; k++) // diagonal matrix
11 {
12 B[i][k] = B[i][k] / t;
13 R[i][k] = R[i][k] / t;
14 }
15 for(j = 0; j < size; j++)
16 {
17 if(i != j)
18 {
19 t = R[j][i];
20 for (k = 0; k < size; k++)
21 { //
22 B[j][k] = B[j][k] - B[i][k] * t;
23 R[j][k] = R[j][k] - R[i][k] * t;
24 }
25 }
26 }
27 }
28 }

102

Appendix C

Using HW/SW Co-design
Implementation on Zynq Platform

This tutorial describes the setup steps for HW/SW codesign implementation of spectral
clustering on ZedBoard development platform. The tutorial includes project creation,
block design generation, simulation, synthesis and usage of Xilinx SDK Environment
for interaction between software and hardware modules. In this tutorial, Xilinx Vivado
v2019.1 (64-bit) is used.

C.1 Create Project

Open Vivado Design Suite and click on Create Project, a new project Wizard will pop
up. Click next and select the Project location as the folder downloaded from GitHub
repository available at [50]. The VHDL folder contains all necessary VHDL files, VHDL
testbenches, and Tcl scripts required for Vivado Design Suite project setup. Click next
and check on "Do not specify sources at this time" under "RTL Project" and then click
next. Choose the Boards tab and locate "Zedboard Zynq Evaluation and Development
Kit". Using the Tcl Console, run project_SpectralClustering.tcl script by typing source pro-
ject_SpectralClustering.tcl on the console. This will recreate the project. The project is set
to xc7z020clg484-1 part number corresponding to Zedboard Zynq Evaluation and De-
velopment Kit board. First, the script will include all source files, IP repositories, default
timing constraints, and simulation files. The Tcl script will also set design_1_wrapper as
top module.

C.2 Synthesis and Simulation

Under IP Integrator, click on Open Block Design to view the synthesized block diagram
of the whole project design. The provided Tcl scripts create instances, set properties, and
create interface and the necessary port connections between corresponding IPs within
that block diagram. Figure C.1 shows the generated HW/SW co-design synthesized block
diagram. Simulation files are provided for in the Simulation Sources folder of the Project.
Chooses one of the sources as top-level for simulation by Settings −→ Simulation −→
Simulation top module name. An example waveform generated is shown in Figure C.2.

103

Figure C.1: Synthesis block diagram of HW/SW solution.
104

Figure C.2: Graph construction simulation waveform
105

C.3 Post-synthesis and Implementation

Using Vivado GUI, run synthesis, implementation and generate bitstream. Upon synthes-
izing the design, post-synthesis resource utilization and timing reports can be viewed
from Open Synthesized Design. Upon generating bitstream, the hardware is exported to
be used by the Xilinx SDK. This is done as follows: File −→ Export −→ Export Hardware,
make sure there is check on Include bitstream. Next, click on File −→ Launch SDK.

Figure C.3: SDK - change project settings.

C.4 Xilinx SDK

The hardware platform created in Vivado can be found on the Project Explorer of Xilinx
SDK GUI. Create a new application project by navigating to File −→ New −→ Applic-
ation Project. A create project Wizard will pop up. Set the desired project name, OS
platform to standalone and create new Board Support Package (BSP). Make sure that
design_1_wrapper_hw_platform_0 is selected as Hardware Platform. The Language is C.
Click Next and choose an Empty Application template.

The application project is now created, but we need to modify the Board Support Pack-
age (BSP) settings to add support for SD card reading and writing. Navigate to Project
Explorer tab and right click <application project name>_bsp. Click on BSP Settings. On
the Overiview tab, check xilffs (Generic FAT file system library) and click OK. This will
regenerate the necessary C libraries and drivers that will form the lowest layer of your
application software stack.

Navigate to C/C++ Build Settings by right clicking on<application project name>.
Under ARM v7 gcc linker −→ Libraries, add m by pressing the add button. Press add
again and add xilffs. This will provide libraries for both math functions and SD card
reading and writing functions. Under ARM v7 gcc compiler −→ Optimization, set the
optimization level to -O3.

106

Next, navigate to Run −→ Run Configurations and double click on Xilinx C/C++
application (System Debugger). System Debugger settings will be pop up as in Figure
C.3. Make sure that Reset entire system and Program FPGA are unchecked as in the Fig-
ure. Navigate to the Application tab and click check on ps7_cortexa9_0 processor. This
will enable a user to compile any further edited C code (for exmaple, edit user defined
parameters) before execution on Zedboard. Press close.

Copy the C files from the Github repository [50] to<application project name> on
the Project Explorer. main.c file runs the program which reads the data from SD card,
pre-processes the data, and initiates transfers using two different AXI DMA cores. The
design is ready to run. Click on Program FPGA to upload the bitstream on the FPGA
device and then navigate to Run −→ System Debugger on Local and click Run.
After all the execution of k-means clustering, the program reports the execution time
and writes the results to a file on SD card. The results can then be plotted on Python.

107

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Mohamed Ismail

HW/SW Co-design Implementation of
Hyperspectral Image
Classification Algorithm

Master’s thesis in Embedded Computing Systems

Supervisor: Milica Orlandic

June 2020

	Abstract
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Motivation
	HSI Classification in the context of HYPSO mission
	HYPSO mission payload
	Main Contributions
	Structure of the Thesis

	Background
	Hyperspectral Data Representation
	HSI Classifcation Algorithms
	Convolution Neural Networks
	Clustering Classification Algorithms

	State-of-the-art HSI Classification Algorithms
	Supervised vs. Unsupervised Learning Methods
	Segment-based Clustering
	Method Choice

	Binary Partition Trees and HSI
	Pre-segmentation using Watershed Method
	BPT Building
	BPT Pruning

	Filtering Algorithm
	Spectral Clustering
	Building the Similarity Graph
	Finding an Optimal Partition
	Eigenvalue and Eigenvector Decomposition
	Spectral Clustering Example
	Nyström Extension

	Overview of Zynq-7000 Functional Blocks
	DSP blocks on Zynq
	AXI Protocols
	AXI DMA
	Block RAM

	Vivado HLS

	Software Implementation
	Segment-based Clustering using BPT
	Pre-Segmentation
	BPT Building
	BPT Pruning
	K-means Clustering

	Fast Spectral Clustering

	Software Results
	Software Results for CLUS-BPT and FSC
	Experimental Datasets
	Evaluation Metrics
	Parameter Settings

	Results and Comparisons
	Effect of Number of Clusters
	Computational Time

	Algorithm Choice

	HW/SW Co-design Implementation
	Overall System Structure (HW/SW)
	BRAM for Input and Processing Logic
	Similarity Graph Construction
	Sampling
	Graph Construction

	Eigenvalue and Eigenvector Decomposition
	Spectral Embedding and K-means Clustering

	HW/SW Co-design Results
	Performance Analysis
	Resource Utilization
	Clustering Performance Analysis

	Conclusion
	Future Work

	Bibliography
	Dimensionality Reduction
	Gauss Jordan Elimination
	Using HW/SW Co-design Implementation on Zynq Platform
	Create Project
	Synthesis and Simulation
	Post-synthesis and Implementation
	Xilinx SDK

