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Abstract

This paper investigates four methods of downward continuation of free-air gravity anoma-
lies to sea-level, an iterative process based on the Poisson’s integral, a linear simple formula, a
method based on the Pellinen approximation and the one based on the topographc-isostatic
potential proposed by Sjoberg. Mean free-air gravity anomalies in 6’ x 10" cells from a
test area with topographical heights between 71-396 metres have been successfully down-
ward continued to sea-level. The effect of the downward continuation is everywhere positive
on the geoid, while it is negative and positive on gravity anomalies. The results show
some differences between these methods. The methods based on the Poisson’s integral and
topographic-isostatic potential have the smallest difference among the methods. A mean
difference of 0.97 cm for the downward continuation effect on the geoid is computed between
these two methods. In the Poissons’ integral, long-wavelength contributions have been evalu-
ated using a global gravity model and in the method based on topographc-isostatic potential,
30’ x 30" heights information over the world are used to consider the long-wavelength con-
tributions. They are missing in the other two methods. The correctness of the solution has
then been checked by back substitution of the gravity values at the geoid to estimate them
at the surface of the Earth. The Poisson’s integral uses the gravity anomalies, directly, for
the downward continuation of them to the geoid, while the Sjéberg’s method implies the
height data. Also, because some approximation made in the latter, the iterative process of
the Poisson’s integral is preferred.
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1 Introduction

Geoid determination by Stokes well known formula requests that the gravity anomalies Ag
represent boundary values at the geoid, which implies all topographic masses are removed or
reduced and gravity anomalies Ag must refer to the geoid. For satisfying the second condition,
as the observations (gravity values g) are available on the surface of the Earth, we have to reduce
them from the Earth’s surface to the geoid. This reduction is called ”downward continuation”.
The main problem with the downward continuation is the masses between the surface level
and the geoid and irregularity of the density distribution, which causes the disturbing potential



1s non-harmonic outside the geoid. However, the reduction problem would only fail, if a fully
analytical approach be used. As terrestrail gravity anomalies are only available at discrete points
or as mean grid values, therefore a unique solution could be expected. The free-air model has
been used in the solving of the Molodenskii’s problem (Heiskanen and Moritz, 1967; Moritz,
1980).

Bjerhammar (1962) and (1963) pointed out that it is always possible to downward continue
point gravity anomalies (at least for a limited set of observations Ag) to an internal sphere of
radius R (the Bjerhammar sphere) embedded in the Earth. In this study, we carry out the
downward continuation of mean free-air anomalies. Hence, the smooting (due to avergaing) in
the methods studied herein are present.

Heiskanen and Moritz (1967) also proposed an iterative process to downward continue the
free-air gravity anomalies from surface level to the geoid. This process uses Poisson’s integral,
directly, which is more accurate than the linear and planar approximations (see ibid). Assuming
that the gravity anomalies Ag are linearly correlated with elevation, Moritz (1980) proposed a
method to downward continue gravity anomalies to sea-level based on the Pellinen approxima-
tion.

Sjoberg (1998) has developed another way to downward continue the gravity anomalies. His
study is based on the external type of topographic-isostatic potential and gravity anomaly and
its vertical derivatives, derived from the Airy/Heiskanen model. The effect is estimated on the
geoid for the downward continuation of gravity to sea-level in the application of Stokes formula.

We have also to mention that recent investigation by Vanicek et al. (1996) and Sun and
Vanicek (1996) and (1998) concentrated on the downward continuation of mean Helmert grvaity.
They showed that the downward continuation of mean Helmert’s anomaly is a well posed problem
with a unique solution in 5’ x 5 cells and can be done routinely to any accuracy desired in the

geoid computation.

2 Downward continuation of free-air anomaly by the Poisson’s
integral

The Stokes’s integral requires that the disturbing potential 7' is harmonic on the geoid, which

implies that there are no masses outside the geoid. Assume a fictious field of gravity anomalies

Ag* on the geoid, which generate on the ground level the measured free-air anomalies Ag.

These two anomalies can be related by the Poisson’s formula (excluding the spherical harmonics
of degrees zero and one)(Kellogg, 1929; MacMillan, 1930):
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where

t:E; 7’=R+HP.
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In this equation spherical approximation has been used; R is the mean radius of the Earth, Hp
is the orthometric height of the surface point P, o is the unit sphere and
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where £ and 9 are the spatial and spherical distances between the surface point P and the running
points under integral. The observed values Ag at level surface are obtained by measurements,
and the free-air anomalies Ag* at sea-level are desired. In this sense, Eq. (1) can be solved in
different ways; for example by a linear approximation as:

0Ag

Ag}‘; = Agp — B_IEHP . (2)

After Bjerhammar (1962), Heiskanen and Moritz (1967) proposed an iterative process to solve
the integral (1), which is more accurate than linear approximation in Eq. (2). An alternative
expression for Eq. (1) is (Heiskanen and Moritz, 1967):

. 2(1—12) [[ Ag* — Ag
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which can be used as the recursive formula that lends to an iterative solution. As a first

approximation one can set
Ag* = Ag, (4)

i.e. taking the known free-air gravity anomalies at the surface level as the first iteration for all

points in the area of interest. This iterative process downward continues the free-air anoamalis
from surface level (Ag) to the geoid (Ag*). If we convolve downward continuation correction
on gravity anomaly with Stokes’s kernel, the effect on the geoid for the downward continuation
of gravity to sea-level is obtained. The physical interpretation of this process is that the free-
air gravity anomalies Ag* at geoid, computed by the iterative method, generate on the level
surface gravity anomalies Ag, which are identical with actual grvaity anomalies generated by
observations.

The convergence of the iterative process has to be paied enough attention, because the
solution of integral equations of first kind (like the Poisson’s integral) may be unstable and
cause some errors in the sought free-air anomaly at the geoid (Vanicek et al., 1996). The
prescribed limit of the convergence of the iterative process is set up to 10 uGal to guarantee
the magic level 1 cm for the accuracy of the geoid (Vanicek and Martinec, 1994). The iterative
process uses gravity anomalies as a main input data to downward continue them to the geoid.
The height data used in the Poisson’s integral is in second degree of importance compared with
the gravity anomalies.

Fortunately, the Poisson’s integration kernel vanishes quickly with growing the distance from
the computation point P. It means that it is enough to integrate Eq. (3) over a small area of
oo around the computation point, instead of the whole Earth (over o). But, limiting the area of
integration to og causes an error which is, here, called truncation error. We have tested different
radius of integration and found out that a radius of integration 1y = 1° gives small truncation



error (see also, Vanicek et al., 1996) . To obtain accurate results for the downward continuation
correction, we have also modified the Poisson’s kernel by the minimizing the upper limit of the
truncation error (see e.g. Molodenskii et al., 1962; Sjoberg, 1984; Vanicek and Sjcberg, 1991 ).
Discribing the Poisson’s kernel by

R(r? — R?) =
) = S en 4 )P cosy) (5)

n=0

K(H,y) =
the modified Poisson’s kernel can be evaluated from
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where s, is the unknown coefficients to be computed from the following system of equations
(Molodenskii et al., 1962)

L
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n=0 2
i=0,1,---,L (7)
where
ein(th0) = /w " Py(cos ) Py (cos ) sinpdp , (8)
QulH, %0) = /qp " K(H, )Py (cos ) sinpdyp (9)

We have selected L=20 in our computations. The contribution of the rest of the world
(T'g(P)=truncation error) is quite small (will be shown in numerical investigations) and can
be evaluated using a global gravity model as (see, e.g. Vanicek et al., 1996):

sz‘;n ~ 1)Qn(H, %0)TnmYnm(P) (10)
where
Gn(H, o) / K™ (H, 1, o) Pa(cos ) sindyp (11)
and the modified Poisson’s kernel in a spectral form is
K™(H, ,40) = ZO 20t L G (H, o) Palcos ) . 12)

7 is the normal gravity, Ty, are the potential coefficients taken from a global gravity model
and Y,,,, are the fully normalized spherical harmonics.

We have also subtracted the low degree harmonics Agy, from the gravity anomalies Ag at
the surface of the Earth ( see, also Vanicek et al., 1996). Agy, have been computed from EGM96
global model (Lemoine et al, 1997). We have downward continued this long-wavelength part,



separately. Finally, the contributions from these long-wavelength part and corrections due to the
truncation error are added to the short-wavelength downward continued part of free-air anomaly
determined by the iterative process.

To have a simpler computing procedure, in opposite with the iterative process, Eq. (2)
is used instead of the Poisson’s integral. To downward continue the gravity anomalies by this
simple expression, one need to know the vertical gradient of gravity anomalies. We have assumed
that the free-air gravity anomaly changes linearly with elevation according to the Bouguer plate
correction 2wGph, and this change is only dependent to the variations in computation point P.
G is the gravitational constant and p is the density of the terrain. Hence, Eq. (2) can be written
to

Agp = Agp — 2nGpHp . (13)

This formula will next be compared with the results of the iterative process.

3 Downward continuation of free-air anomaly by the Pellinen
approximation

The vertical gradient of gravity anomaly in Eq. (2) is needed to be evaluated correctly for accu-
rate computation of downward continuation of free-air gravity anomalies. It can be estimated
from ( Heiskanen and Moritz, 1967)

0Ag R? Ag — Agp
or E//a g % (14)

where ¢y = 2Rsin -’g Assuming that there are linear correlation between gravity anomalies
and heights, Moritz (1980) came to the following expression for the vertical gradient of gravity
anomalies based on the Pellinen approximation:

0Ag R? H—-Hp
W = 27I'Gp§ //0- Td(f 5 (15)

Inserting Eq. (15) into Eq. (2), one can estimate downward continuation effect of Ag to the
geoid (Ag*).

4 Downward continuation of gravity anomaly by a method based
on topographic-isostatic compensation potential

Sjoberg (1998) has studied downward continuation of gravity anomalies on the geoid in a dif-
ferent way. His study would mainly apply the downward continuation of the gravity anomaly
and its effect on the geoid, directly. Moritz (1980) assumed that the free-air anomaly changes
linearly with elevation. This linear correlation derived based on the simplified Airy/Heiskanen
compensation potential. In Sjoberg (1998), the effect on the geoid is considered for the down-
ward continuation of free-air gravity to sea-level using original Airy/Heiskanen compensation



potential. The gravity anomaly can analytically be continued down to sea-level, e.g by the
Taylor expansion
0 1 2 &

A¢g*=(1—-Hp— — —H5—
g (1 Parp 2 P(‘)r%

- )Ag. (16)

Sjoberg (1998) used the external type of topographic-isostatic potential and gravity anomaly
and its vertical derivatives, derived from the Airy/Heiskanen model for isostatic compensation.
From the first and the second radial derivatives of the gravity anomaly, the effect on the geoid
is estimated for the downward continuation of gravity to sea-level in the application of Stokes’s
formula. This effect is composed of two parts as

R
ONgye = 4_/ S(¢)agdwcd0'
7!")’ o
= ONgye +Ngue » (17)

where S(1) is Stokes function, v is the normal gravity and §ggy,. is the downward continuation
of free-air gravity anomaly to sea-level. The first part of the correction can be obtained from

(Sjoberg, 1998):

1
ONue = 1= / /U S(4)(AHS, + BHY)dog (18)
or in spectral form
M 1 n
WNiwe = 3.7 2 [AH)nm + BH)pm]Yam(P), (19)
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where
1
(H" )nm = E// H'Ypmdo; v=3,4, (20)

A =0.585 m/km3
B=-49x%x10"% m/km*

and M is the maximum degree of expansion. We have used M =360 in our computations.

The first correction term has mostly short-wavelength nature and contributes locally. It is
the dominent part of downward continuation. The second part of the correction, 6 N gw > expected
to have a long-wavelength nature (see Sjoberg, 1998) and a spherical harmonic representation

has been used for numerical investigations. It can be written (Sjoberg, 1998):
2
6N3wc == Z 7 — 1Cannm ) (21)

n,m
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where



%’1 + 2% may be computed from:

Ag ¢ R\ n+2

— 2= DTnm(— Y;

v +2r nz,;n(n'i' ) nm(r) nm > (23)
where Tp,,,, are the potential coefficients and ( is the height anomaly. Formula (21) can also be
written:

1 Ag ¢
2 e = — H(== +22)do.
V3o = —5r [ ) ( 7 +2))do (24)

Then the total effect on geoid from downward continuation of gravity anomalies to sea-level, can
be computed from the summation of the local contribution (5Na}wc and the global contribution
5N3wc~ In the formula (17), the direct gravity anomaly effect, caused by the reduction of the
terrain, has also been applied to the gravity anomalies at the surface level. In iterative process
this direct effect has not been applied. It has also to be mentioned that in the main part of the
downward continuation (§N},.) in formula (17), the input data needed for the computation is
the height data. It is in opposite with the iterative process by the Poisson’s integral, which the
gravity anomalies are the main input data.

Equation (18) is an integral formula with the Stokes’s kernel. One is supposed to evaluate
this integral over the whole Earth, which is impractical. Therefore, a modification procedure,
the same as for the Poisson’s kernel, has been performed and the modified Stokes’s kernel used
in further computations. The inner zone integration area for the short-wavelength contributions
is set to 99 = 6°. The long-wavelength contributions of the rest of the world are computed from
a global height data set using Eq. (19).

5 Numerical investigations

In this section, we have numerically investigated the downward continuation of free-air gravity
anomaly by the Poisson’s integral based on the iterative procedure (Eqgs. 3-4), the simple formula
(Eq. 13), the method based on the Pellinen approximation (see Eq. 15) and the one developed
by Sjéberg based on the topographic-isostatic compensation potential (see Egs. 17-24). In the
last approach %-'1 - 2% has been computed according to Eq. (23) in 30" x 30’ cells all over the
whole Earth, which has then been used in Eq. (24). A test area of size 1° x 1° is chosen in
Sweden. It is limited by latitudes 57° N and 58° N and longitudes 13° E and 14° E, located
in the north-west of Sweden. The mean free-air anomalies at the surface of the Earth are in
6’ x 10’ cells. They vary between -32.17 mGal and 40.89 mGal. The mean heights, used in this
test area, are in 2.5' x 2.5 cells (GETECH, 1995a) and range from 70.92 to 395.60 metres. To
reduce the effect of leakage of the data coverage for the integration cap (along the edge of the
test area), we have increased the integration area 6° in each direction, so that the area for which
the downward continuation would actually be computed is 13° x 13°. But, to escape from the
edge effect, the original 1° x 1° test area is used at the end. The potential coefficients used in
this study are taken from EGM96 model .

First, the downward continuation correction by the Poisson’s integral is determined. To
do this, we define the modified Poisson’s kernel and then compute the truncation error in the



test area. Figure 1 represents the correction due to the truncation error on geoid. This effect
reaches to 3.64 mm. It should be mentioned that the effect of the truncation error on gravity
anomalies ranges from -0.18 mGal to 0.26 mGal. To minimize this contribution from the rest
of the world, low degree and order field is subtracted from the observed free-air anomalies and
downward continued, separately. This long-wavelength contributions have also been added to
the contributions from the iterative procedure (short-wavelength part). Downward continuation
correction by the simple formula and the Pellinen approximation as well as by the method based
on the topographic-isostatic potential are also determined. In the last method, second part of
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Figure 1: The correction due to the runcation error on geoid in the modified Poisson’s integral.
Contour interval is 0.5 mm.

the correction (6N2,.) has a global nature and is evaluated from Eqs. (21). The main part
of the correction (6N},,.), described by Eq. (18), has to be integrated over the whole Earth,
which is impractical. To investigate this, we have performed this effect in two integration areas
6° and 15°, and compared the results. The statistics of differences are presented in Table 1,
which indicate the effect of the farzone contributions. This was obvious because of the shape
of the Stokes’s kernel. Hence, we decided to modify Stokes’s kernel based on the minimization
of the upper limit of the truncation error. The integration area is selected to be 6° around the
computation point. The heights data used in this inner zone area are GETECH 2.5’ x 2.5' DTM
(GETECH, 1995a). The long-wavelength part can be evaluated from a spectral form (Eq. 19).
The harmonic coefficients of heights (H3),,, and (H*),m, are determined from Eq. (20). For
this, a 30’ x 30’ Digital Terrain Model (DTM) was generated using the GETECH 5’ x 5 DTM
(GETECH, 1995b). This 30’ x 30’ DTM is averaged using area weighting. Since the interest is in
continental elevation coefficients, the heights below sea level are all set to zero. The coefficients
were computed to degree and order 360. Finally, the low frequency part (6.V, 31” .) is added to the
results from the innerzone area.



Table 1: The statistics of the differences of downward continuation correction on geoid by the
method based on the topographic-isostatic potential in 6° and 15° integration area. Units in cm

o = 6°-3hg = 15°

Min 0.21
Max 5.02
Mean 2.60
SD 0.95

The statistics of the results of downward continuation of mean free-air anomaly by different
methods are shown in Table 2. It shows that the effect on geoid from downward continuation
gravity anomaly to sea-level is everywhere positive. In the next step, the statistics of differences

Table 2: The statistics of downward continuation correction on geoid computed by different
methods. Units in cm

Poisson’s integral topographic-isostatic Pellinen approximation Simple method

Min 14.27 16.78 23.72 22.09
Max 19.87 18.50 17.65 24.15
Mean 17.06 17.63 20.72 23.30
SD 1.45 0.53 1.59 0.54

the iterative process from other methods for each point of interest are shown in Table 3. The
results of Table 3 show that the downward continuation of mean free-air anomaly by the Poisson’s
integral and the method based on the topographic-isostatic potential have the smallest differences
among the other methods. Maximum of differences has been computed to 3.51 cm. This

Table 3: The statistics of differences of downward continuation correction on geoid between the
Poisson’s integral and the other methods. Units in cm

Poisson - topographic/isostatic potential Poisson-Pellinen Poisson -simple method

Min -2.77 3.22 4.27
Max 3.51 4.28 8.01
Mean 0.97 3.66 6.24
SD 1.03 0.22 1.13

difference may be caused by the differences in the definition of these two methods. In the
former method the downward continuation is only applied to the surface gravity anomalies,
but in the latter, the direct gravity anomaly effect, caused by the reduction of the terrain



masses, has also been included in the solution. The topographic-isostatic model includes several
approximations/assumptions which might be the second reason for the differences (see, Sjoberg,
1998). Also, the effect of the truncation error is considered in the iterative process, while it
is not applied in the method based on the topographic-isostatic potential. Results of Table 3
also show that there are some differences between the iterative process, the simple formula and
the method based on the Pellinen approximation. A maximum difference of 8.01 cm has been
computed in the test area between the first two methods. This difference can be caused by the
linear approximation made in the latter method. Also, in the simple formula, we have assumed
that the vertical gradient of gravity is only dependent to the variation of gravity anomaly in the
computation point, and the effect of the other points are neglected. They are considered in the
former method.

The methods based on the Poisson’s integral and the Pellinen approximation are mostly in
good agreement with each other. A mean of differences 3.66 cm has been estimated in the test
area. There are some reasons for these differences. Firstly, a linear approximation is used to
evaluate the latter method. Also, in the method based on the Pellinen approximation, some
long-wavelength contributions might be missing due to the limitation of integration area. The
other reason is that free-air gravity anomalies may not simply change linearly with elevation
according to the Bouguer plate using Pellinen approximation. Such a linear correlation with
elevation was derived by Moritz (1968) based on a topographic-isostatic potential using a sim-
plified Airy/Heiskanen compensation, with a density layer at an internal sphere. Sjoberg (1998)
uses original Airy/Heiskanen compensation potential for the downward continuation of gravity
anomaly to sea-level. This explains the differences between the methods based on the Pellinen
approximation and the topographic-isostatic potential (see Table 2). It has to be mentioned that
there are not any convergence problem in the iterative process in this study. By 5 iterations the
results converge to an accuracy better than 0.01 mGal, which it makes sure that the downward
continuation is accurate enough. However, these procedures have to be tested in other test areas
with more rugged topography.

The question, if the cell size (in this study 6’ x 10’) of the gravity anomalies is enough dense
to guarantee the correctness of the iterative process, still remains. Subsequently, this question
arises that, if we have treated the Poisson’s integral correctly, by replacing it simply with the
summations. Otherwise, it has to be treated more carefully (see e.g. Vanidek et al., 1996). To
study this, the iterative process is recomputed with the gravity anomalies in 10’ x 12 cells in
the same test area. The statistics of the differences between the results computed with 6’ x 10’
and 10’ x 12 cells are shown in Table 4. Mean of differences are estimated to 0.60 cm with a
maximum difference of 2.02 cm. It means that the 6’ x 10’ free-air anomalies is enough dense in
this test area. Therefore, Poisson’s integral can safely be discretized by summations. The effect
of the cell size in more rugged area has still to be tested. It has to be mentioned that the effect
of downward continuation on gravity anomalies shows a very short-wavelength nature. Figure
2 shows this nature in the test area. However, convolving this effect with Stokes’s integral and
estimating the effect on geoid (which is our final goal), smooth the results. Contribution to the
geoid from the downward continuation of mean free-air gravity anomalies by iterative procedure

is shown in Figure 3.
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Table 4: The statistics of differences between the effect of downward continuation on geoid by
Poisson’s integral in 6’ x 10’ and 10’ x 12’ cells. Units are in cm.

6’ x 10’ -10" x 12/

Min -1.21
Max 2.02
Mean 0.60
SD 0.85
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Figure 2: Downward continuation of free-air gravity anomalies by Poisson’s integral in mGal.
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Figure 3: The effect on geoid from the downward continuation of free-air gravity anomalies.

Contour interval is 0.1 cm.

The edge effect, which is due to the incompleteness of data used in the boundary of the area
of interest, is the other problem which is here studied. We have performed the iterative process
in a smaller area being immerged in the 13° x 13° computing area. The results of downward
continuation for these two areas are next subtracted. The differences are depicted in Figure 4.
This figure presents clearly the boundary effect in the 6° x 5° area. Figure 4 also shows that the
area of integration could be safely chosen around 1° in each direction (see also Sun and Vani&ek,
1998).

In another experiment to check the correctness of the solution by Poisson’s integral, we
have back substituted the downward continued values at sea-level to compute the values at the
surface of the Earth. The results have been compared with the original values at the surface of
the Earth. Statistics of the differences are shown in Table 5. The results of the iterative process
agree with the original values at the surface of the Earth with an accurcay of better than 0.07
nGal.

6 Conclusions

We have numerically investigated four methods for the downward continuation of free-air anoma-
lies to the sea-level. The first method is an iterative process based on the Poisson’s integral.
A simple formula based on linear approximation and a method based on the Pellinen approx-
imation is the other two methods. The last one is based on the topographc-isostatic potential
derived from Airy/Heiskanen model.

Numerical investigations have been done in a test area of size 1° x 1°. To reduce the effect
of leakage of the data coverage in the edges of the test area, the integration area is increased

12
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Figure 4: The boundary effect in 6° x 5° ared due to the incompletness of the data. Contour
interval is 0.1 mGal.

Table 5: The statistics of differences between back substituted values by the Poisson’s integral
with the original values at the surface of the Earth. Units are in uGals.

back substituted values-original values

Min 0.002

Max 0.07

Mean 0.04
SD 0.002
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with 6° in each direction. Finally, to escape from the edge effects, we have only used the original
1° x 1° test area. Choosing 1° computation area around the point of interest guarantees that
the edge effect does not cause any problem.

Using the Poisson’s kernel in the iterative process may cause some problems due to this fact
that it has to be integrated over the whole Earth, which is impractical. We have overcome
this problem by using two integration areas, inner and outer zones. A 1° integration cap is
appropriate for the inner zone area. The effect of the outer zone area (truncation error) has
been found to be within 4 mm. This effect is evaluated from EGM96 gravity model. The
correction due to the truncation error is finally added to the short-wavelength contributions
coming from the iterative process. To minimize the effect of the outer zone, we have subtracted
the low degree and order field (to degree and order L=20) from the observed mean free-air
anomalies at surface of the Earth. This contribution is downward continued, separately, and
added to the downward continuation of the short-wavelength contributions, carried out by the
iterative process. It is demonstrated that mean free-air anomalies in 6’ x 10’ cells (the cell size
used in Sweden) can be successfully downward continued from the Earth’s surface to the geoid.
However, in the smaller cell sizes this might not have a unique solution. The smoothing induced
by averaging also helps to the solvability of the downward continuation. This is the case in
practice when the mean gravity anomalies are used instead of point gravity anomalies.

In the method based on the topographic-isostatic potential, the main part of the correction
(6Njy,.) has to be evaluated over the whole Earth, by convolution with the Stokes’s kernel. But,
because of the behaviour of Stokes’s kernel, we split the effect into two parts; low frequency part
computed from the convolution with modified Stokes’s kernel, and high frequency part computed
from a spectral form. We have modified the Stokes’s kernel according to the Molodenskii et al.
(1962) procedure. The contribution of the rest of the world has been evaluated from a 30’ x 30’
height data set in a spectral form. The results of the Poisson’s integral and this method have
the smallest differences among the methods computed. The method based on the topographic-
isostatic potential considers the direct effect in downward continuation of gravity anomalies.
However, this effect is not applied in the other methods. The other source of the the differences
is several approximations made in the method based on the topographic-isostatic potential.

The short- and long-wavelength contributions are considered in the iterative process based on
the Poisson’s integral and the method based on the topographic-isostatic potential. This might
be the reason for the better agreement of these two methods among the other methods. We have
also shown that the effect of downward continuation on gravity anomaly has short-wavelength
nature. However, this effect on geoid behaves smoother. The results also show that the density
of 6’ x 10" for the mean gravity anomalies are enough in this study.

Disregarding the simple method which is not accurate enough, the topographic-isostatic
model has the smallest computing labour, while it is the largest in the Poisson’s integral.

Finally, for the check of the correctness of the iterative solution, we have back substituted
the downward continued values at the sea-level, to compute them at the surface of the Earth.
The results show that the accuracy of the solution is within 0.07 pGal.
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