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Abstract
Recently, the autoencoder (AE) based method plays a critical role in the hyperspectral
anomaly detection domain. However, due to the strong generalised capacity of AE, the
abnormal samples are usually reconstructed well along with the normal background
samples. Thus, in order to separate anomalies from the background by calculating
reconstruction errors, it can be greatly beneficial to reduce the AE capability for
abnormal sample reconstruction while maintaining the background reconstruction per-
formance. A memory‐augmented autoencoder for hyperspectral anomaly detection
(MAENet) is proposed to address this challenging problem. Specifically, the proposed
MAENet mainly consists of an encoder, a memory module, and a decoder. First, the
encoder transforms the original hyperspectral data into the low‐dimensional latent rep-
resentation. Then, the latent representation is utilised to retrieve the most relevant matrix
items in the memory matrix, and the retrieved matrix items will be used to replace the
latent representation from the encoder. Finally, the decoder is used to reconstruct the
input hyperspectral data using the retrieved memory items. With this strategy, the
background can still be reconstructed well while the abnormal samples cannot. Experi-
ments conducted on five real hyperspectral anomaly data sets demonstrate the superiority
of the proposed method.

1 | INTRODUCTION

Hyperspectral image (HSI) is a 3‐D cube data [1], where the
two dimensions reflect the spatial structure of the land cover
and another dimension provides hundreds of spectral bands.
Benefitted from the rich spectral–spatial information [2], HSI
has been widely used for change detection [3, 4], classification
[5–10], unmixing [11, 12], and anomaly detection [13–15].
Anomaly detection in HSI (HAD) has drawn much attention
due to its significance in military surveillance and mineral
exploration [16]. Normally, anomalies are significantly
different from their surrounding pixels in the spectral or
spatial domain. Thus, hyperspectral anomaly detection often
refers to finding anomalies within the HSI by comparing
the anomaly‐restrain reconstructed background and the
original image.

To detect anomalies effectively, the researchers designed
various detectors from different perspectives. The statistical

modelling‐based methods assume the HSI obeys a certain
statistical distribution, for example, Gaussian normal distri-
bution, and the background can be estimated using the sta-
tistical variables [17]. The Reed‐Xiaoli detector (RX) [18]
detected anomalies by calculating the Mahalanobis distance
between the target pixel and background pixels. Afterwards,
numerous variants of RX based methods are proposed, such as
the local RX detector (LRX) [19], kernel RX detector (KRX)
[20], and weighted RX detector [21]. Recently, a higher‐order
statistics‐based method was proposed for HAD in Ref. [22].
Specifically, the distribution of the target and background is
modelled by Adaptive Cosine Estimation based statistical hy-
pothesis, and the higher‐order statistics are used to replace the
mean and covariance matrix in the original RX detector. To
improve the accuracy of the KRX detector, the Fourier fea-
tures and the Nystrom approach were used in Ref. [23].
However, the multivariate Gaussian distribution of the back-
ground may not be reasonable due to the complex scenes in
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the real world [24] and usually results in lower detection ac-
curacy in a certain background.

To avoid distribution errors, the representation modelling‐
based methods use spatial neighbourhoods to represent the
background pixel [17, 25–27]. The background joint sparse
representation [25] method is a typical sparse representation‐
based method, which represents background samples by us-
ing an overcomplete dictionary. Li and Du first introduce the
collaborative representation theory (CRD) into the HAD
domain [26], and the authors use neighbourhood pixels to
represent the centre pixel, then reconstruction errors are
employed to detect anomalies. To reduce computing time, Ma
et al. [27] designed a fast CRD method. The original CRD
detector assumes that each band has an equal contribution
during the collaborative representation, but the case is not
reasonable in practical applications. To alleviate this issue, Wang
et al. [17] designed a new objective function by combining
weight learning and collaborative representation. Due to the
superiority of the deep network, a novel hyperspectral anomaly
detection method that combines stacked autoencoder (AE) and
CRD is proposed in Ref [28]. The encoder is constrained by a
collaborative representation during feature extraction, and then
the preliminary detection result is obtained by using CRD on
the acquired features. Finally, a carefully designed anomaly
detection procedure is used to improve the detection accuracy.
For most CRD based methods, the appropriate window size is
difficult to choose [29].

The matrix decomposition modelling‐based methods as-
sume that background pixels have low‐rank property, and
anomalies are sparsely distributed in the HSI scenes. Zhang
et al. [30] decomposed HSI into a low‐rank part and sparse
part, then the anomalies are detected by using Mahalanobis
distance on the sparse part. Xu et al. [31] estimated the
background by adopting a background dictionary, and the
anomalies appear as the response of the residual matrix. Qu
et al. [32] proposed a spectral unmixing‐based anomaly de-
tector, which combined the unmixing method and dictionary
learning for HAD. Considering the correlation of adjacent
bands in HSI, a spectral difference low‐rank representation
learning framework for HAD was proposed in Ref. [33].
Specifically, the difference of the dictionary is obtained by the
residual of adjacent bands, in which the redundancy of adjacent
bands and low rankness of the background are considered.
Different from previous low‐rank and sparse decomposition‐
based models, Feng et al. [34] detect anomalies utilising both
the sparse part and the low‐rank part. For most matrix
decomposition‐based methods, the parameters are difficult to
determine due to the lack of prior knowledge about anomalies
or background [17, 35].

Recently, deep learning has achieved good results on a
variety of visual tasks [36–38], and it has also shown superiority
in HSI processing [39, 40], especially for classification,
denoising, unmixing [11], and anomaly detection [3, 41]. Based
on the fact that anomalies usually occur with a lower proba-
bility compared with normal samples, the AE network is
mainly trained by the normal samples, and the reconstruction
errors with the AE network can be seen as the abnormal score

[42]. A stacked denoising autoencoder (SAE) for hyperspectral
anomaly detection is proposed in Ref. [43], which uses SAE to
estimate the background. Zhao and Zhang [44] proposed a
method named LRaSMD‐SSSAE for HAD in which the ma-
trix decomposition and AE are combined into a joint frame-
work. Chang et al. [45] applied sparse AE for HAD through a
dual concentric window. To further use spectral–spatial infor-
mation, Lei et al. [46] utilised a deep brief network and attri-
bute filter for HAD. Wang et al. [17] utilised the skip
connections for the encoder and decoder, and an adaptive
weighted loss is designed to punish the anomaly reconstruc-
tion. Sun et al. [47] used 3D convolutional AE for feature
extraction, and anomalies are separated from the feature image.
Zhang et al. [48] designed a 3D variational AE for HAD. Lu
et al. [13] used the manifold learning skill to constrain the
processing of the encoder for HAD, which achieves promising
results by combining the local and global reconstruction errors.
Jiang et al. [1] proposed an algorithm based on generative
adversarial network. For better learning the distribution of
background, the multivariate Gaussian distribution was applied
to the encodings of the encoder through a discriminator.
Concurrent to this method, a semi‐supervised AE‐based
adversarial learning was proposed in Ref. [49]. The distribu-
tion of background is estimated by the generative adversarial
network, and the anomalies are detected via Mahalanobis dis-
tance in the reconstructed data. Adversarial autoencoders for
HAD were proposed in Ref. [50], and the preliminary result is
obtained by removing the background of the latent represen-
tation. Then the Mahalanobis distance is used for anomaly
detection on the rectified data. From these literature, it can be
seen that the major challenge for HAD is how to accurately
represent the background without the anomalies. However,
due to the high dimensionality and redundant information of
the complex image scenes, it's always hard to represent the
background well.

Although the previous AE‐based methods have achieved
promising results, a common issue has been ignored. As shown
in Figure 1, when the AE generalises very well or the decoder
is too strong, the abnormal samples may also be well recon-
structed [51]. In this case, abnormal samples have lower
reconstruction errors and often results in the failure of
detecting anomalies. To further improve the detection accu-
racy, it is beneficial to guide the AE to generate large recon-
struction errors for anomalies. In this paper, a memory module
is introduced into the AE architecture for hyperspectral
anomaly detection [51], where the memory items are used to
record the prototypical patterns of background spectral sam-
ples. In this way, the augmented AE can still reconstruct the
background well but not for the anomalies, thus the anomalies
can be detected by checking the reconstruction errors. The
whole scheme of the memory‐augmented autoencoder for
hyperspectral anomaly detection (MAENet) consists of three
steps: First, the encoder extracts features from the hyper-
spectral images, and then the encodings as query features are
applied to retrieve the most similar items in the memory
module. Finally, the selected items are used as the input for the
decoder to reconstruct the hyperspectral data.
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The major contributions of MAENet are threefold:

1. A new hyperspectral anomaly detector is proposed based on
memory‐augmented autoencoders. Specifically, a memory
module is used to record the prototypical patterns of
background spectral samples, and the background can be
reconstructed well but not for anomalies.

2. To further highlight the reconstruction errors of anomalies,
the L2 distance between latent representation and retrieved
items is added into the traditional mean square error (MSE)
loss. Thus, the consistency of background samples can be
preserved, which is beneficial for anomaly detection.

3. To demonstrate the superiority of the MAENet, the com-
parison experiment with an ablation study was conducted
on five real hyperspectral data sets with seven methods, and
the MAENet obtained promising AUC values.

The rest of this paper is organised as follows: The pro-
posed MAENet is introduced in Section 2. The parameter
analysis and detection results are show in Section 3. Section 4
gives the conclusions.

2 | PROPOSED METHOD

In this paper, a memory‐augmented AE network is proposed
for hyperspectral anomaly detection (MAENet). The back-
ground of the HSI is reconstructed by the AE augmented with

a memory module [51], and the anomalies are then represented
as reconstruction errors. The overall architecture of the
MAENet is shown in Figure 2. Given an input spectral sample,
the encoder first transforms it into a latent representation also
named query feature. Then, the query feature is used to retrieve
fewer but the most relevant items in the memory module by
using an attention‐based sparse addressing operator. Theoret-
ically, the anomalies have low probabilities of being recon-
structed by those selected background‐relevant samples.
Finally, the retrieved items are used as the input for decoder to
reconstruct the input HSI, and the anomalies can be detected
by comparing the input and reconstructed HSI. To better
represent the encodings of background spectral samples and
suppress the abnormal encodings, a self‐perception loss con-
sisting of one original pixel‐level spectral reconstruction term
and one high‐level latent reconstruction term is designed.
Accordingly, the consistency of background samples between
latent representation and retrieved feature is preserved, while
the anomalies are not.

Table 1 listed the architecture of the AE in the proposed
method. The architecture of the decoder is symmetric with the
encoder, except for removing the LReLu activation function in
the last layer. Each part has three layers, and every layer con-
tains a fully connected component, a batch normalisation
component and LReLu activation function. The encoder aims
to convert the complex high‐dimensional hyperspectral data
into low‐dimensional informative latent representation, which
is also named query feature. Then, the query feature is used to
search for the most similar items in the memory module, and
those selected items are used by the decoder to reconstruct the
input HSI. In Table 1, d denotes the hidden nodes of the last
layer in the encoder, which is important for the network.
Session 3.4 will show the effect of final detection accuracy in
detail.

2.1 | Encoder‐decoder architecture

Let X ∈ ℝD�M , _X ∈ ℝD�M , and Z ∈ ℝd�M represent the input
hyperspectral data, reconstructed data, reconstructed data, and
the latent representation, respectively. D and d stand for the
channel of input data and latent data, and M represents the
total number of pixels in the HSI. The workflow of MAENet
to reconstruct the HSI data can be expressed as follows:

Z¼ f e X ; θe; beð Þ ð1Þ

_
X¼ fd

_
Z; θd; bd
� �

ð2Þ

where θe and θd denote the weight matrixes, be and bd are the
bias terms, fe (⋅) and fd (⋅) represent the encoder and decoder,
respectively. Normally, when the latent representation Z is
directly used as the input for decoder to reconstruct the HSI,
the anomalies may also be reconstructed well due to the good
generalisation performance of AE. In this paper, a memory
module is built to record various prototypical patterns of

F I GURE 1 The abnormal samples can be reconstructed well using the
traditional autoencoder (AE) based method. In this case, the detection
accuracy is limited by using reconstruction errors. The Ano_i denotes ith
abnormal pixel, and Bac_i is ith background pixel. The Re_Ano_i and
Re_Bac_i represent the reconstructed spectral pixel
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background encodings during the training phase, and the
encodings act as the query features to search for the most
relevant items

_
Z in the memory module. Finally,

_
Z as the

input for decoder is used to reconstruct the input hyper-
spectral data.

There are two cases for the representations (encodings):
abnormal or normal. Since the memory matrix is initialised
with a Gaussian distribution and forced by self‐perception loss,
it can record the prototypical patterns of the background. If
the encodings are normal, it will have strong correlations with
memory items. Then, the retrieved items tend to be back-
ground samples. Otherwise, the input samples are anomalies,
just a few but the most relevant samples because the memory
items are similar to normal samples. Therefore, anomalies have
high reconstruction errors compared with normal samples, and
the reconstruction errors are then used for anomaly detection.

2.2 | Memory module

The memory module in the proposed method is built to search
for the prototypical patterns of the background encodings, and
the latent representations generated from the encoder are used
as query features to retrieve fewer but the most relevant items
in the memory module by using an attention‐based sparse
addressing operator. Then, those items are put into the
decoder to reconstruct the original HSI. Figure 3 shows the
process of the attention‐based sparse addressing operator.

As shown in Figure 3, the memory module is a matrix
M ∈ ℝN�d , which contains N vectors with the same dimension
d as latent representation. N defines the capacity of the
memory matrix to describe the background, which should well
represent all the background categories. Similar to the
dictionary‐learning approach, the memory matrix is essentially
a dictionary, but it is updated in an end‐to‐end fashion by using
back‐propagation. In Ref. [52], the author shows that the closer
the background resembles a Gaussian distribution, the better

the performance of hyperspectral anomaly detection. Inspired
by this, the memory matrix is initialised by Gaussian normal
distribution, and it upgrades with the parameters of the AE
network during the training phase. The parameter of N will be
discussed in Section 3.4.

Let zif gMi¼1 ∈ ℝd�1 denote the i−th query feature of Z, and
the row vector mj

� �N
j¼1 ∈ ℝ1�d denote the j−th row of M.

Based on the inherent spectral characteristics of hyperspectral
vectors, the cosine similarity between the memory items and
the query features is used to construct the initial addressing
matrix. The cosine similarity is defined as:

d zi; mj
� �

¼
zimT

j

kzik
�
�mj

�
�

ð3Þ

In order to keep the addressing weight having physical
meaning, the softmax operator is applied to wj:

F I GURE 2 Flowchart of the proposed MAENet

TABLE 1 Detailed features for experimental data sets

Layer Configuration

Encoder1 Hidden nodes: 128

BN + ReLu

Encoder2 Hidden nodes: 64

BN + ReLu

Encoder3 Hidden nodes: d

BN + ReLu

Decoder1 Hidden nodes: 64

BN + ReLu

Decoder2 Hidden nodes: 128

BN + ReLu

Decoder3 Hidden nodes: input channel

BN + ReLu
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wj ¼
exp d zi; mj

� ���

PN
j¼1exp d zi; mj

� ��� ð4Þ

Equation 4 shows that the more similar the query fea-
tures with memory items, the bigger the value of wj. Thus,
the retrieved memory items

_
Zi with wj can be obtained as

follows:

_
Zi ¼WM¼

XN

j¼1
wjmj ð5Þ

From Equations 3, 4 and 5, the query features (i.e.
encoding features) can be represented by memory items. The
aim of the memory module is to record various prototypical
patterns of the background encodings, and the normal query
features can be well represented by memory items, while the
abnormal query features cannot. However, because of the
powerful generalisation of AE and the mixed pixels existing
in HSI (the abnormal pixels have some common character-
istics with normal pixels), the anomalies may still have pos-
sibilities to be represented with a complex combination of
memory items. In this case, the anomalies will correspond to
small reconstruction errors and make it difficult to distinguish
from background samples. In order to alleviate this issue, a
hard attention mechanism is introduced for addressing vector
wj [51]:

_
wj ¼

max wj − δ; 0
� �

⋅ wj
�
�wj − δ

�
�þ ε

ð6Þ

where δ denotes the threshold, and the items with similarity
bigger than δ are used to construct the addressing matrix. In
this way, there is no need to use dense combinations of
memory items to represent the query feature. The effect of δ
for the final detection result is discussed in Section 3.4. The ε is
a smaller positive scalar, which keeps the denominator from
being zero. Finally, the modified addressing vector

_
wj is used to

retrieve memory items:

_
Zi ¼

_wM¼
XN

j¼1

_
wjmj ð7Þ

_
Zi denotes the final retrieved memory items of the i−th

query feature, which is used to reconstruct the input HSI by
the decoder.

2.3 | Training loss and abnormal detection

To better highlight the anomalies and suppress the back-
ground, a self‐perception loss comprising two items is
designed for training the network. As shown in Equation 8, the
first term is the original pixel level reconstruction loss, and
another one is the high‐level latent reconstruction loss. For the
hyperspectral dataset xif gMi¼1 with M samples, let f_xig

M
i¼1,

zif gMi¼1 and f_zig
M
i¼1 denote the reconstructed samples, latent

representation, and retrieved memory items, respectively. The
loss functions can be formulated as:

L θe; θd; Mð Þ ¼
1
M

XM

i¼1

�
�xi − _xi

�
�
2

2
þλ
�
�zi − _zi

�
�
2

2

� �

ð8Þ

where λ is a weight parameter, which is used to balance two
items during the training procedure. The effect of λ will be
further discussed in Section 3.4.

When the network converges, the MSE is applied as s, the
criterion for anomaly detection:

eðiÞ ¼
1
D

XD

d

�
�xdi − _x di

�
�
2

2
ð9Þ

where e(i) denotes the abnormality score of the i−th pixel, andD
represents the dimension of input HSI. Compared with the
abnormal samples, the normal samples are more similar to the
retrieved features, which correspond to small reconstruction
errors. Thus, the reconstruction errors can be used to detect the
anomalies.

3 | EXPERIMENTS

3.1 | Data sets

Five real‐world HSIs are used in our experiments, the details
are listed in Table 2.

1. AVIRIS‐I Data Set: This HSI is commonly used by many
previous works, and it was collected by the Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) sensor. The orig-
inal image is 400� 400 pixels, including 224 spectral channels
in the range 366–2496nm. In our experiments, a sub‐image
with the size of 100 � 100 pixels are applied for the test
and denoted as AVIRIS‐I [30], Consistent with previous
literature, the bad bands are removed. The details of AVIRIS‐
I are listed in the first rowof Table 2, and the image scene and
ground truth (GT) are shown in Figure 4a and 4f.

F I GURE 3 Procedure of attention‐based sparse addressing operator
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2. AVIRIS‐II Data Set: The size of the AVIRIS‐II data set is
100 � 100 pixels, and three aeroplanes with 134 pixels are
regarded as anomalies. The pseudo colour image and GT
are shown in Figure 4b and 4g, respectively.

3. EI Segundo Data Set: The channel of this HSI is 224, and
the spatial size of it is 250 � 300. The storage tanks and the
towers occupying 2048 pixels in the oil refinery are regarded
as anomalies. The pseudo colour image and GT are shown
in Figure 4c and 4h.

4. Texas Coast Data Set: The Texas coast data set has 207
spectral bands, and the wavelengths range from 0.45 to
1.35 μm. The spatial size is 100 � 100 pixels, and the spatial
resolution is 17.2 m/pix. The total of 155 pixels are
regarded as anomalies, and the pseudo colour image and
GT are shown in Figure 4d and 4i.

5. Los Angeles‐3 Data sets: The last data set comes from
Ref. [53], which is captured by the AVIRIS sensor. In the
image, the airports are regarded as anomalies. The size of
this data set is 100 � 100, and band number is 205. The
pseudo colour image and GT are shown in Figure 4e and 4j.

3.2 | Comparison detectors and evaluation
criterion

In our experiments, the receiver operating characteristic (ROC)
curve and the area under the curve (AUC) are shown as two
evaluation indicators [54]. Seven typical HAD methods are
employed to compare with our proposed MAENet. The RX
and LRX detectors are statistical‐based methods, and the CRD
detector is a representation‐based method. The low‐rank and
sparse representation detector (LRASR) belongs to one of the
decomposition‐based methods, and the deep autoencoder
anomaly detector (DAEAD) detects anomalies in the AE
framework. The kernel isolation forest detector (KIFD) is a
recently proposed detection method, and the attribute filter
based detector (AED) is an efficient detector. Specifically, the
DAEAD method and the proposed method are implemented
based on the TensorFlow framework, and the other five
methods are implemented by MATLAB 2018b. For the
MAENet, the number of epochs is 50, and the learning rate is
0.0001. The BatchSize for AVIRIS‐I and AVIRIS‐II is 64, and
the other data sets equal their pixel number. Furthermore, the
optimiser is Adam [55].

The compared detectors are introduced as follows:

1. The GRX (it is also named RX) detector is commonly used
for comparison, which detects anomalies by estimating the
global background statistics [18].

2. The LRX detector is the local version of the RX method
[19]. The performance of LRX is sensitive to the sliding
double window sizes (win and wout). In the experiment, the
win is ranging from 3 to 39 and wout is ranging from 5 to
55. The optimal window size is set as (13, 25), (37, 55),
(9, 31), (17, 19), and (15, 9) for the AVIRIS‐I, AVIRIS‐II,
EI Segundo, Texas Coast and Los Angeles‐3 data sets,
respectively.

3. The CRD detector assumes that the background samples
can be represented by their local neighbourhood, while
anomalies cannot [26]. Following the LRX method, the
optimal window sizes of the CRD method are set as
(19, 23), (39, 51), (13, 31), (23, 35), and (9, 7) for the
AVIRIS‐I, AVIRIS‐II, EI Segundo, Texas Coast and Los
Angeles‐3 data sets, respectively, and the regularisation
parameter λ is set as original paper.

4. The LRASR detector decomposes HSI into a low‐rank part
and a sparse part through dictionary learning, and anoma-
lies are determined by L1 norm in the sparse part [31].

5. The DAEAD detector is an AE‐based method and the
abnormal score is calculated from the reconstruction errors
[56].

6. The KIFD detector assumes that anomalies rather than the
background can be easily separated in the kernel space, and
the anomalies are detected by a recursive framework [57].

7. The AED detector uses the attribute filter and edge‐
preserve filter for anomaly detection, and their detection
results were convincing [53].

3.3 | Parameters analysis

The main parameters in MAENet include the number of items
N in the memory matrix, the shrinkage threshold δ, the weight
parameter λ in the loss function, and the hidden nodes d of the
AE network.

(1) The parameters of d and λ. The effect of d and λ for final
detection accuracy is shown in Figure 5, in which the y‐
axis is the AUC scores that used to reflect the effect of
different parameter settings. The number of hidden nodes
d is an essential parameter for the AE network, and d is
changing from 6 to 36. As shown in Figure 5a, with the

TABLE 2 Detailed features for experimental datasets

HSIs Captured place Sensor Resolution Spatial size Experimental bands Target size Type

AVIRIS‐I San Diego AVIRIS 3.5 m 100 � 100 189 57 pixels aeroplanes

AVIRIS‐II San Diego AVIRIS 3.5 m 100 � 100 189 134 pixels aeroplanes

EI Segundo Segundo AVIRIS 7.1 m 250 � 300 224 2048 pixels tanks

Texas Coast Texas Coast AVIRIS 17.2 m 100 � 100 207 155 pixels buildings

Los Angeles‐3 Los Angeles AVIRIS 7.1 m 100 � 100 205 170 pixels aeroplanes

6 - ZHAO AND SUN
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increase of the number of hidden nodes, the AUC tends to
rise, and it begins to decrease when d is greater than 18. In
addition, the weighted parameter λ balances the effect of
the high‐level latent reconstruction term in the loss
function during the training phase. As shown in Figure 5b,
when λ is bigger than 0.1, the AUC values of the AVIRIS‐
II and Texas Coast data sets become stable, but the
detection accuracy is decreasing for the EI Segundo and
AVIRIS‐II data set. For the Los Angeles‐3 data set, a larger
λ can obtain a better result. Thus, the optimal d is chosen
as 18, and λ = 0.4 for the Los Angeles‐3 data set, the other
data sets are set as 0.1.

(2) The parameter of N and δ. The number of items N in the
memory matrix determines how many items should
represent the latent features, and the shrinkage threshold δ
prevents dissimilar items from representing encoding
features. Let N be set from [160, 240, 320, 400, 480], and δ
be chosen from [1/N, 1.5/N, 2/N, 2.5/N, 3/N].
Figure 6a‐e show the effect of different combinations of N
and δ for the AVIRIS‐I, AVIRIS‐II, EI Segundo, Texas
Coast and Los Angeles‐3 data sets, respectively. The
AVIRIS‐I, AVIRIS‐II, EI Segundo and Angeles‐3 data sets

are stable under different parameter settings, and the Texas
Coast data set achieves the promised result in suitable (N,
δ). The MAENet obtained a considerable performance for
all data sets when N and δ are set 320, 2/N, respectively.

3.4 | 3.4 detection performance

The detection maps, ROC curves, and AUC scores for the
eight detectors are shown in Figures 7–12 and Table 3,
respectively. The MAENet shows satisfactory performances
compared with other methods, and the AUC scores are highest
for three data sets.

(1) Detection Results on AVIRIS‐I Data Set. Figure 7 shows
the abnormal maps for the AVIRIS‐I data set. GRX and
LRX methods suppress the background well, but they
almost cannot detect the anomalies. Compared with the
RX detector, the CRD and DAEAD detect more
abnormal targets, but many background pixels are detected
as anomalies. The LRASR, KIFD, AED and MAENet can
recognise almost all anomalies, with the shapes and

F I GURE 4 Data sets and ground truth (GT). (a)–(e) are the Pseudo‐colour images of the AVIRIS‐I, AVIRIS‐II, EI Segundo, Texas Coast and Los Angeles‐
3 data sets, respectively. (f)–(j) are the corresponding GT of those data sets

F I GURE 5 The effect of the parameters for
final detection accuracy. (a) Number of hidden
nodes. (b) Weight parameter λ
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locations of anomalies clearly preserved. Compared with
LRASR and KIFD, the MAENet and AED can better
suppress the background. The abnormal‐background
separation map of the AED algorithm is more obvious,
so the visual perception is better than the proposed
algorithm.

To better illustrate the superiority of the proposed MAE-
Net, the ROC curves of the eight methods are shown in
Figure 12a. The curve of the MAENet and AED is higher than
the curves of the GRX, LRX, CRD, and DAEAD methods.

But there are some crossovers among LRASR, KIFD, AED
and the MAENet, thus, it cannot be used to judge which
method performs better directly. Moreover, to judge the per-
formance quantitatively, the AUC values are listed in Table 3.
The table shows that LRASR, KIFD, AED and MAENet are
larger than 0.98, and AED gets the highest AUC value, 0.9919,
and our MAENet is 0.9894.

(2) Detection Results on AVIRIS‐II Data Set. The detection
results of the AVIRIS‐II data set are shown in Figure 8.
The LRX and CRD methods lost their capacity to detect

F I GURE 7 Detection maps on the AVIRIS‐I data set. (a) memory‐augmented autoencoder for hyperspectral anomaly detection (MAENet). (b) GRX.
(c) local RX detector (LRX). (d) collaborative representation theory (CRD). (e) LRASR. (f) DAEAD. (g) KIFD. (h) AED

F I GURE 6 The effect of the number of items N in the memory matrix and the shrinkage threshold δ. (a) AVIRIS‐I data set. (b) AVIRIS‐II data set. (c) EI
Segundo data set. (d) Texas Coast data set. (e) Los Angeles‐3 data set
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abnormal targets due to the complex image scenes.
Meanwhile, some background pixels are mixed with
anomalies. The LRASR and GRX methods can accurately
detect the positions of the anomalies, but the shapes of the
abnormal objects are blurred. The DAEAD method can
detect most anomalies but cannot suppress the back-
ground in the bottom right corner of the image. The
contrast between aeroplanes and the background of the
KIFD, AED and MAENet is high, but the anomaly targets
detected by MAENet are relatively clearer than KIFD and
AED, which indicates the superiority of the proposed

method. As shown in Figure 12b, the ROC curves of
KIFD and MAENet are higher than the curves of the
other compared methods, which validates the effectiveness
and advantage of MAENet again. There is a crossover
between KIFD and MAENet. To further judge the per-
formance between KIFD and MAENet, the AUC values
are listed in Table 3. From the third Column of Table 3, it
can be seen that memory‐augmented autoencoder for
hyperspectral anomaly detection (MAENet) gets the
highest AUC value, 0.9949, while the KIFD obtains the
second‐highest AUC value, 0.9912.

F I GURE 9 Detection maps on the EI Segundo data set. (a) memory‐augmented autoencoder for hyperspectral anomaly detection (MAENet). (b) GRX.
(c) local RX detector (LRX). (d) collaborative representation theory (CRD). (e) LRASR. (f) DAEAD. (g) KIFD. (h) AED

F I GURE 8 Detection maps on the AVIRIS‐II data set. (a) memory‐augmented autoencoder for hyperspectral anomaly detection (MAENet). (b) GRX.
(c) local RX detector (LRX). (d) collaborative representation theory (CRD). (e) LRASR. (f) DAEAD. (g) KIFD. (h) AED
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Overall, the ROC curves, AUC values and detection maps
of the proposed method are better than those of other
methods on the AVIRIS‐II data set, which demonstrates the
superiority of our MAENet.

(3) Detection Results on EI Segundo Data Set. The detection
results of the EI Segundo data set are shown in Figure 9.
The GRX, LRX, and CRD methods can detect a few
anomalies, and the shapes of some targets are missing.
Compared with GRX, the LRASR and DAEAD methods

can find out the locations of the anomalies and obtain
better results, but they fail to suppress the background.
The KIFD, AED and MAENet can detect almost all the
anomalies, and the shapes of the targets are relatively clear.
In particular, a few background samples are also detected
as anomalies by KIFD and AED, but the MAENet can
suppress the background well. It is noticeable that the
intensity of anomalies of MAENet are weak. The main
reason is that anomalies occur with a relatively high
probability in this data set, and the memory items may

F I GURE 1 1 Detection maps on the Texas Coast data set. (a) memory‐augmented autoencoder for hyperspectral anomaly detection (MAENet). (b) GRX.
(c) local RX detector (LRX). (d) collaborative representation theory (CRD). (e) LRASR. (f) DAEAD. (g) KIFD. (h) AED

F I GURE 1 0 Detection maps on the Texas Coast data set. (a) memory‐augmented autoencoder for hyperspectral anomaly detection (MAENet). (b) GRX.
(c) local RX detector (LRX). (d) collaborative representation theory (CRD). (e) LRASR. (f) DAEAD. (g) KIFD. (h) AED
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record some abnormal characteristics. Figure 12c and the
fourth column of Table 3 show the ROC curves and AUC
values of all methods on the EI Segundo data set. It is easy
to find that the ROC curve of MAENet is more
outstanding than that of other methods. Meanwhile, it also
obtains the highest AUC scores, 0.9943.

(4) Detection Results on Texas Coast Data Set. Figure 10
shows the detection results of the Texas Coast data set.
The RX methods can almost detect all the anomalies, but
the shapes of anomalies are blurred. The LRX and CRD
method can suppress background well, but the detection
rate is lower. The LRASR and KIFD methods suffer from
the stripe noises, thus failing to detect anomalies. The

DAEAD, AED and MAENet can well detect all the
anomalies, and the shapes of anomalies are relatively clear.
Compared with the DAEAD method, MAENet can well
suppress the background and is close to the GT. More-
over, Figure 12d and the fifth column of Table 3 show the
ROC curves and AUC values of all methods on the Texas
Coast data set, respectively. It further demonstrates the
superiority of the MAENet.

(5) Detection Results on Los Angeles‐3 Data Set. For the Los
Angeles‐3 data set, the anomalies are numerous aero-
planes, and the image scene is more complex than other
data sets. The detection maps of eight detectors are shown
in Figure 11, and Table 3 shows their AUC values. The

F I GURE 1 2 ROC curves of five data sets under different compared methods. (a) AVIRIS‐I data set. (b) AVIRIS‐II data set. (c) EI Segundo data set.
(d) Texas Coast data set. (e) Los Angeles‐3 set

TABLE 3 AUC values for eight
detectors on five data sets

Data sets

Methods AVIRIS‐I AVIRIS‐II EI segundo Texas coast Los angeles

GRX 0.9055 0.9403 0.9841 0.9946 0.9288

LRX 0.9391 0.9680 0.9369 0.9092 0.9506

CRD 0.9721 0.9236 0.8633 0.9181 0.9167

LRASR 0.9871 0.9097 0.8888 0.9753 0.9228

DAEAD 0.9671 0.9573 0.9019 0.9839 0.9039

KIFD 0.9834 0.9912 0.9864 0.9242 0.9562

AED 0.9919 0.9846 0.9823 0.9987 0.9756

MAENet 0.9894 0.9949 0.9943 0.9994 0.9590
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AED obtains the highest AUC values, and our MAENet
gets the second AUC scores. From those detection maps,
we can see that the RX, LRX, and LRASR detectors
mostly cannot detect anomalies, and they get poor AUC
values. The ROC curve in Figure 12e further demonstrates
the performance of each algorithm, and our method is
second only to the AED.

The competing time of the eight detectors are listed in
Table 4, and the RX and AED detectors are faster than other
methods. The window‐based methods require much more
time, such as the CRD detector. The main drawback of the
deep‐learning method is their training time, so the DAEAD
and MAENet are slower than the RX detector.

(6) Robustness Study. To further verify the robustness of the
proposed MAENet, we add Gaussian noise with different
signal‐to noise ratios (SNRs) to the Texas Coast data set,
and the results are shown in Figure 13. From Figure 13,
we can see that MAENet and AED algorithms are more
robust to noise and have good detection accuracy at a
relatively low SNR. For other detectors, they are sus-
ceptible to noisy images, and the detection accuracy de-
creases rapidly at low SNRs. In addition, MAENet
achieves the highest AUC values at almost all different
SNRs, thus demonstrating the robustness of the pro-
posed MAENet.

(7) Differences from existing methods. In this paper, a
memory‐augmented autoencoder is proposed for hyper-
spectral anomaly detection (MAENet). The aim of
MAENet is to increase the reconstruction error of
abnormal samples while ensuring that the background can
be reconstructed well, so as to improve the accuracy of
anomaly detection. There are many works that exploit AE
architecture for hyperspectral anomaly detection, such as
Refs. [13, 58]. In Ref. [13], the authors used the manifold
learning skill to constrain the processing of an encoder,
and the local features of HSI can be learnt by the encoder.
Then, the reconstructed HSI is obtained by the decoder,
and the local reconstruction errors together with global
reconstruction errors are utilised for anomaly detection.
Similar to this approach, Fan et al. proposed a graph AE

for hyperspectral anomaly detection [58]. To maintain the
geometric structure of the HSI, a graph constraint is added
into the encoding space. Unlike those approaches, our
MAENet reconstructs the encodings instead of con-
straining them. Afterwards, the aim of MAENet is to in-
crease the reconstruction errors of abnormal samples, but
not for learning the local features.

3.5 | Ablation study

In order to analyse the effect of loss function and memory
module on the final detection result, an ablation study on the
five data sets over the AUC scores is shown in Table 5. For
simplicity, let L1 represent the original spectral reconstruction
term in our loss function ði:e: L1¼ kxi − _xik

2
2Þ and L2

represent the remaining part ði:e: L2¼ kzi − _zik22Þ. There are
three comparative experiments. In the first experiment, only
the AE is used in the network architecture, where the recon-
struction errors are applied for anomaly detection. In the

TABLE 4 Computing time (in seconds)
of different methods

Data sets

Methods AVIRIS‐I AVIRIS‐II EI segundo Texas coast Los angeles

GRX 0.0874 0.0690 0.6262 0.1540 0.1001

LRX 90.7443 170.1347 1136.8556 60.4251 72.5761

CRD 61.8691 2047.9703 8176.0018 875.2952 6.6521

LRASR 17.6758 22.4709 159.1032 22.9348 22.9758

DAEAD 69.4188 69.8172 108.1950 75.4716 82.1239

KIFD 37.6012 35.8467 188.4894 42.5889 14.7329

AED 0.3807 0.4960 1.6539 0.4493 0.4414

MAENet 447.2579 458.7579 54.2990 31.3362 391.9876

F I GURE 1 3 Robustness analysis using single Gaussian noise with the
different signal‐to noise ratios (SNRs) on the Texas Coast data set
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second experiment, the memory module is introduced into the
AE architecture, and the AUC value of the EI Segundo data set
is 0.9915, which can prove the superiority of the memory
module. For the AVIRIS, Texas Coast and Los Angeles‐3 data
sets, the memory module can slightly improve the detection
results. In the final experiment, the constraint between latent
representation and the retrieved items is added into the loss
function, then the performance is further improved. Overall,
from those experiments, it can demonstrate the superiority of
the loss function and memory module in the MAENet.

4 | CONCLUSION

In this paper, a memory AE network is introduced for
hyperspectral anomaly detection (MAENet). Within MAENet,
the background is reconstructed by an AE augmented with a
memory module, and the anomalies are detected as the
reconstruction errors. Different from previously mentioned
AE‐based methods, the encodings generated from the encoder
are used as the query features to search for the most relevant
items in the memory matrix by using an attention‐based sparse
addressing mechanism, and then the retrieved items are used
for the decoder to reconstruct the original data set. Moreover,
to guarantee the memory items can well represent the
encodings, a self‐perception loss is induced to highlight the
reconstruction errors of anomalies while reconstructing the
background samples well. Compared with other methods, the
MAENet can obtain considerable results on five data sets.
However, we also note that the proposed algorithm has limited
detection accuracy for small and dense targets in the complex
scenes, so how to improve the detection accuracy in the
complex scenes is the main work in the future.
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