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Comprehensive small RNA-sequencing of primary myeloma
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BACKGROUND: Small RNAs (sRNAs), a heterogenous group of non-coding RNAs, are emerging as promising molecules for cancer
patient risk stratification and as players in tumour pathogenesis. Here, we have studied microRNAs (miRNAs) and other sRNAs in
relation to survival and disease severity in multiple myeloma.
METHODS: We comprehensively characterised sRNA expression in multiple myeloma patients by performing sRNA-sequencing on
myeloma cells isolated from bone marrow aspirates of 86 myeloma patients. The sRNA expression profiles were correlated with the
patients’ clinical data to investigate associations with survival and disease subgroups, by using cox proportional hazards (coxph)
-models and limma-voom, respectively. A publicly available sRNA dataset was used as external validation (n= 151).
RESULTS: We show that multiple miRNAs are differentially expressed between ISS Stage I and III. Interestingly, we observed the
downregulation of seven different U2 spliceosomal RNAs, a type of small nuclear RNAs in severe disease stages. Further, by a
discovery-based approach, we identified miRNA miR-105-5p as a predictor of poor overall survival (OS) in multiple myeloma.
Multivariate analysis showed that miR-105-5p predict OS independently of established disease markers.
CONCLUSIONS: Overexpression of miR-105-5p in myeloma cells correlates with reduced OS, potentially improving prognostic risk
stratification in multiple myeloma.
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BACKGROUND
Multiple myeloma is incurable cancer arising from the clonal
proliferation of terminally differentiated plasma cells in the bone
marrow. Myeloma accounts for about 10% of all haematological
malignancies [1]. Clinical manifestations include high levels of
monoclonal antibodies in serum and urine, anaemia, multiple
organ failure, immune suppression and bone disease [1]. Major
improvement of treatment has increased median OS from 2.5 year
in 1997 to more than 6 years as of today [2]. Today, about 16% of
patients are long-term survivors with OS of more than 8 years [3],
but still, nearly a quarter of patients continue to have median OS
of only 2–3 years [4]. The International Staging System (ISS) has
since 2005 been the standard risk stratification system for
myeloma and is based on two parameters; level of serum β2-
microglobulin which reflects tumour mass and renal function, and
level of serum albumin which reflects bone marrow inflammation
[5]. This score identifies three patient Groups, I, II and III, with
different prognoses [1]. In 2015, the Revised-ISS (R-ISS), including
also high-risk chromosomal abnormalities and serum lactate
dehydrogenase levels, was introduced [6]. However, myeloma is

a heterogenous disease with OS ranging from 3 months to more
than 20 years. In light of the great inter-patient variability, there is
need for further differentiation of patients for the use of more
personalised, risk-adapted treatment approaches [7].
sRNAs are defined as non-coding RNAmolecules shorter than 300

nucleotides in length [8]. miRNAs are among the most studied
groups of sRNAs, and play an important role in gene regulation in
human tissues [9]. miRNA biogenesis starts with transcription of a
larger primary transcript in the nucleus. Following the processing by
nucleases, a stem-loop-structured precursor miRNA is transported
into the cytosol. The ~22 nucleotide long miRNA duplex is loaded
onto a RNA-induced silencing complex (RISC) while one of the
strands is degraded. The RISC complex mediates the degradation of
mRNA targets through a 3´UTR complementary target site to the
miRNA [9]. miRNAs repress gene expression by either mRNA
cleavage or translational repression, depending on the degree of
target complementarity [9]. miRNAs are frequently dysregulated in
cancers due to defects in the miRNA biogenesis machinery,
abnormal transcriptional regulation, epigenetic changes and
amplification or deletion of miRNA genes, and may act both as
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tumour suppressors and oncogenes [10]. miRNAs have become
increasingly popular as biomarkers for disease, mainly due to their
stability in tissue and circulation and their frequent dysregulation in
disease. miRNAs are easily isolated from circulation and are also
more stable in formalin-fixed, paraffin-embedded (FFPE) material
and other biopsy specimens than messenger RNAs (mRNAs), and
may therefore be particularly suitable as biomarkers [11].
Many miRNAs are differentially expressed in myeloma patients

compared to healthy controls, and miRNAs may promote tumour
progression by influencing the survival and proliferation of
myeloma cells [11]. In addition, miRNA expression has been
linked to distinct molecular subgroups and prognosis [11]. Several
studies have identified circulating miRNAs in serum and plasma as
predictors of progression-free survival (PFS) and OS in myeloma
[12, 13], but the cellular sources of circulating miRNAs are largely
unknown. Among endogenously expressed miRNAs from primary
myeloma cells, miR-15a, miR-33b, miR-17, miR-886-5p and miR-
181a have been identified as prognostic factors by qPCR- and
microarray-based methods [14–16]. These survival-associated
miRNAs were identified after being detected as differentially
expressed in multiple myeloma or between ISS subgroups and
significance was not adjusted for multiple testing across all
expressed miRNAs in the cell.
While miRNAs represent a highly studied class of sRNA in

myeloma, other types of sRNA have been largely overlooked. In
recent years, the sRNA landscape has expanded and the expression
of sRNAs is shown to be more widespread than previously
anticipated. sRNA-seq can detect several types of sRNAs, such as
transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), small
nuclear RNAs (snRNAs), long non-coding RNAs (lncRNAs) and
piwi-interacting RNAs [17]. In cancer research, there has been an
undeserved lack of attention to sRNAs, which are essential in
“house-keeping” processes in the cells, including RNA splicing
(snRNAs) and amino-acid peptide elongation (tRNAs) and post-
translational modifications (snoRNAs) [9, 18–20]. These essential
cellular processes are often dysregulated in cancer and may reflect
the influence of sRNAs on tumorigenesis. An obstacle in evaluating
sRNA dysregulation and differential expression in diseased vs non-
diseased tissue has been the quantification of sRNA levels, due to
the lack of poly(A) tails and the presence of other molecular
modifications, however, current sRNA-seq technologies have
proven efficient in mapping most classes of sRNAs [8, 21]. More
recently, many classes of sRNAs are shown to have prognostic value
and to play functional roles in cancer [8]. For example, dysregulation
of snRNAs, which are important components of the spliceosome,
may affect the splicing of tumour-suppressor or oncogenic
transcripts [22] and have prognostic value [8].
Here, we performed comprehensive sRNA-seq on CD138+ cells

isolated from bone marrow aspirates of 86 myeloma patients. We
characterised differential sRNA expression between disease
stages and analysed if expression of sRNAs was associated with
survival. The data are available in an interactive web application
that can be used to explore the relation between sRNAs and
clinical parameters, including patient survival. In the current
study, we found novel associations between snRNAs, miRNAs and
ISS stage. Further, by a discovery-based approach, we identified
miR-105-5p expression in myeloma cells as a prognostic factor for
patient OS.

MATERIALS AND METHODS
Patient cohort
The patient cohort consisted of 86 multiple myeloma patients with a
median age of 67 (31–88) years, all diagnosed with myeloma C90.0. The
patient’s bone marrow samples were obtained at the time of diagnosis.
The patients were diagnosed in the 2012–2017-year interval in Norway,
and samples were stored in Biobank1, the research biobank of the Central
Norway Regional Health Authority. Patients were stratified based on the

original ISS system and 34.8%, 20.9%, 32.5% of the patients were classified
in Stages I, II and III, respectively, while for 11.6% of patients’ ISS stage was
not determined. The cytogenetic abnormalities del(17p13) and t(4;14),
were evaluated by fluorescence in situ hybridisation (FISH) analysis, while
bone disease were determined either by X-ray when diagnosed before
2014 (N= 24), or whole-body low-dose computed tomography (CT) when
diagnosed after 2014 (N= 62). The median PFS and OS for the patient
cohort were 27 and 57 months, respectively. Further details about the
patients’ clinicopathological characteristics are summarised in Table 1.
The Regional Committee for Medical and Health Research Ethics

(REK2011/2029) approved the study, and all patients provided written
informed consent.

Isolation of CD138+ plasma cells and patient selection
CD138+ plasma cells were isolated from bone marrow aspirates obtained
at diagnosis. The cells were isolated by RoboSep automated cell separator
using Human CD138 Positive Selection Kit (StemCell Technologies,
Grenoble, France) [23]. The purity of plasma cell isolates as estimated by
counting plasma cells on cytospins was >95%. The cells were pelleted and
stored at −80 °C at the hospital biobank (Biobank1, St. Olavs University
Hospital HR, Trondheim, Norway). Before the sequencing experiment,
86 samples were randomly selected from the biobank without prior
knowledge of the groups and investigations performed in the current
study. The sample size was chosen based on available samples in the
biobank, experience from similar studies by the authors, and sample sizes
form similar published studies in multiple myeloma.

RNA isolation, library preparation and sequencing
RNA for sRNA-seq was isolated using miRVana total RNA isolation,
following the protocol, (ThermoFisher, #AM1560). sRNA-seq libraries were
randomly prepared from 400 ng of RNA using the NEXTFLEX Small RNA-
Seq Kit v3 (PerkinElmer, #NOVA-5132-05) using 16 PCR cycles and using
the thermal settings as recommended in the protocol. Ten synthetic
calibrator RNAs were mixed with the input RNA during the first ligation
step as previously described [24]. After library preparation, sRNAs quality
and size were evaluated using Eukaryote 4 total RNA pico assay on the
2100 Bioanalyzer (Agilent Technologies) and sRNA-fragments with size
larger than 140 nts (adaptors are 140 nts) and shorter than 413 nts
(longest detected fragment) were excised and included in the
sequencing.
Bioanalyzer result is presented in Supplementary Fig. 1C. The sequen-

cing libraries were sequenced on the NextSeq 500 System from Illumina.
mRNA-seq was performed on the same patient samples and these data

can be accessed in the web application together with the sRNA data. The
methods and workflow for the sequencing and analysis of mRNA data are
published and previously described [25].

Data processing of sRNA-seq
The raw sequencing data were processed using the following procedure:
quality control of the raw sequence data was performed using fastQC [26]
trimming of sequence adaptors and random nucleotides from the 3’- and
5’ end of the raw sequences was performed using cutadapt-1.2.1 [27]. The
trimmed sequences were collapsed with the fastx collapser tool [28] into
single unique reads along with their total read count and mapped to the
human (hg38) genome using bowtie2 [29] allowing for up to ten
alignments per read to account for reads from duplicated miRNA loci
(bowtie2 – k10), and else default parameters. MiRNA-counts were
calculated using htseq-count from the HTseq python package [30]. These
reads were further filtered to identify those with perfect alignment to the
genome, and the total read count for mature miRNAs were then computed
by summing the total read count per sequence (isomiR) overlapping each
miRNA locus. Mature miRNAs and non-coding RNAs were annotated using
miRBase (Release 22, 2014) and RNA Central release 17 (http://
rnacentral.org), respectively. In order to compare miRNA expression
between samples, read counts were normalised using the calibrator RNA
normalisation factors calculated in limma, followed by counts per million
(cpm) normalisation. The calibrator RNAs were not filtered prior to
normalisation and the calcNormFactors in limma were calculated using the
full calibrator count matrix.

Differential expression analysis
Differentially expressed sRNAs were detected using the limma (v3.5) package in
R with voom transformation [31]. Limma-voom robustly estimates the
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mean-variance relationship in the data and work with log-cpm normalised
counts which enables statistically robust differential expression analysis. The
statistical tests in limma-voom are applied after performing mean-variance
normalisation, ensuring that standard statistical test such as t test can be
applied to counts data. The count matrices were filtered to contain RNAs that
were expressed with at least 1 cpm in at least 25% of the samples. The
analyses were adjusted for the patient’s age and sex. P value adjustment was
performed using Benjamini–Hochberg. The R-script used to detect differentially
expressed sRNAs can be found in the Supplemental Information.

Survival analyses
Survival analyses are performed using a coxph model in R using the
survival package and the functions coxph and Surv. Each sRNA-class was
analysed individually, and the P values were corrected for multiple testing
across all sRNAs within each sRNA-class using the function qvalue in R. The
discovery survival analysis was adjusted for age, sex and ISS. The R-script
for survival analyses is available in Supplemental Information.
Multivariate analysis on miR-105-5p specifically was performed using

coxph by including clinical parameters that were significantly associated
with OS as covariates in the model, including age, sex, ISS, haemoglobin,
creatine, calcium, albumin and B2M. The R-script for the multivariate
analysis can be found in Supplemental Information.

Kaplan–Meier survival curves and calculation of cutoff value
The Cutoff algorithm was applied to determine the optimal cutoff point for
high- and low expression of the miRNAs. Specifically, the normalised
expression matrix was uploaded to Cutoff Finder (https://
molpathoheidelberg.shinyapps.io/CutoffFinder_v1/) and the cutoff values were
determined using the “Fit of mixture model” method. These cutoff values
were applied to both the discovery and validation dataset. For miR-105-5p,
the cutoff values were High: log2cpm>1.031 and Low: log2cpm ≤ 1.031.

Table 1. Clinical and histopathological characteristics of the
investigated patient cohort.

Clinical variable Number of
patients

Gender

Male 52

Female 34

Age

Median
(min–max)

67 (31–88)

Age intervals

31–49 6

50–59 17

60–69 27

70–79 28

80–88 8

ISS stage

I 30

II 18

III 28

Unknown 10

del(17p13)

Detected 7

Not detected 60

Unknown 19

t(4;14)

Detected 9

Not detected 54

Unknown 23

Albumin (g/L)

Median
(min–max)

37 (19.6–478)

Serum
M-component (g/L)

Median
(min–max)

25.3 (0–77.5)

Blood haemoglobin
(g/dL)

Median
(min–max)

11.1 (7.1–15.5)

Blood leukocytes (pr/L)

Median
(min–max)

5.25 (2.2–19.9)

Blood
thrombocytes (pr/L)

Median
(min–max)

205 (2.29–435)

Serum creatinine
(μmol/L)

Median
(min–max)

84 (30–871)

Serum B2M (mg/L)

Median
(min–max)

3.9 (1.6–27.9)

Blood calcium (mmol/l)

Median
(min–max)

2.4 (1.2–3.01)

Table 1. continued

Clinical variable Number of
patients

Bone diseasea

Yes 49

No 37

Overall survival

Median
(min–max)

52 (1.7–203)

Overall survival intervals

<12 months 9

>12 < 24 months 5

>24 < 36 months 8

>36 < 48 months 5

>48 months 18

Alive 41

Progressionb

Median
(min–max)

27 (1.7–134)

Progression invervalsb

<12 months 15

>12 < 28 months 19

>24 months 27

No progression 21

Unknown 4
aDefined as the presence of ≥1 osteolytic lesion as determined by X-ray
(when diagnosed before 2014, N= 24) or CT (when diagnosed after 2014,
N= 62).
bTime from diagnosis. Relapse is defined as >25% increase in serum
M-component or of involved/uninvolved free light chains.
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The survival curves were plotted and calculated using the function ggsurvplot
within the R package survminer. The script can be found in Supplemental
Information.

Analysis of validation cohort
Kryukov et al. [32] performed microarray RNA profiling by using the
Affymetrix GeneChip Human Gene 1.0 ST Array in CD138+ plasma cells from
151 newly diagnosed untreated multiple myeloma patients. The survival
data and processed expression data from this study were downloaded from
EMBL-EBI ArrayExpress (accession number: E-MTAB-1038 and E-MTAB-4032).
This microarray array also contains probes for several human miRNAs. The
miRNA probes were identifies using biomaRt in R using the annotations
available at Affymetrix: http://www.affymetrix.com/support/technical/
byproduct.affx?product=hugene-1_0-st-v1. The expression data for miR-
105-5p were extracted and plotted using ggsurvplot in R as described.

RESULTS
sRNA-sequencing of CD138+ cells from multiple myeloma
patients
To identify sRNA associated with disease severity and OS in
multiple myeloma, we performed sRNA-seq on RNA isolated
from purified bone marrow plasma cells from 86 patients at
diagnosis (Table 1 and Supplementary Table S1). The main steps
of the study workflow are presented in Fig. 1. On average, 54
million reads mapped to the human genome (Supplementary
Fig. 1A). We detected a total of 1757 unique miRNAs and 161 of
those were expressed with at least 1 count per million (cpm) in
all 86 samples. The highest expressed miRNA was miR-148a-3p,
and six miRNAs contributed with about 50% of the reads in the
libraries (Fig. 2a).

sRNA-sequencing

Illumina NextSeq 500

Sample collection
BM aspirates from multiple

myeloma patients at diagnosis
n = 86

Isolation of CD138+ cells

Filtering (Cutadapt)
Align to hg38 (Bowtie2)
Overlap miRBase (Htseq)
Overlap RNACentral (Htseq)

Differentially expression
between patient
subgroups (limma-voom)

Survival analyses (coxph)

Validation of miR-105-5p as a
prognostic factor in independent cohort

Analysis of associations between sRNAs
and clinical data

ISS-stage Survival

Multivariate
analysis
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P = 0.04
HR: 1.53
CI: 1.0–2.3

0.00

0.25

0.50

0.75

1.00

0 12 24 36 48 60 72

Overall survival (months)

S
ur

vi
va

l p
ro

ba
bi

lit
y

Validation cohort (OS)

61 49 38 32 21 12 9
88 72 59 44 30 24 20

Number at risk

High

miR–105–5p

Low

P = 0.00067
HR: 2.9
CI: 1.57–5.3

0.00

0.25

0.50

0.75

1.00

0 12 24 36 48 60 72 84 96 108

Overall survival (months)

S
ur

vi
va

l p
ro

ba
bi

lit
y

Discovery cohort (OS)

50 48 46 43 42 27 19 14 11 4
36 29 26 21 17 14 5 1 0 0

Number at risk

miR–105–5p

Low

High

P = 0.006

miR–125b–5p

1 2 3
6

9

12

15

18

ISS Stage

E
xp

re
ss

io
n 

(c
pm

, l
og

2)

Fig. 1 Workflow of the sRNA-seq study. Small RNAs isolated from bone marrow aspirates from 86 multiple myeloma patients were
sequenced using high-throughput sequencing. MiRNAs and other small RNAs were identified and quantified by using the databases miRBase
and RNACentral, respectively. The expression data was analysed with respect to the patient’s clinical data. An independent cohort with miRNA
expression data was used to validate the results from the survival analysis.
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miRNAs differentially expressed between myeloma disease
stages
We investigated if any of the expressed miRNAs were differentially
expressed between patients with ISS Stage III (high-risk disease) and
patients with ISS Stage I (low-risk disease). We detected seven
significantly differentially expressed miRNAs, let-7c-5p, miR-125-2-
3p, miR-125-5p, miR-3648, miR-3916, and miR-99a-5p, which were
upregulated in Stage III compared to Stage I. One miRNA, miR-873-
5p, was expressed lower in ISS Stage III compared with Stage I

(Fig. 2b). For the significant miRNAs, we observed a linear trend in
expression from Stage I to II to III, supporting that the expression is
associated with disease severity. When adjusting for ISS stage, none
of these sRNAs were associated with OS (Supplementary Table S2).

U2 spliceosomal snRNAs are differentially expressed between
myeloma disease stages
In addition to miRNAs, we detected sRNAs from several other
sRNA classes. The most abundant class of sRNAs were lncRNAs,
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rRNAs, snoRNAs and tRNAs (Fig. 2c and Supplementary Fig. 1A, B).
The distribution of sRNAs in the samples was equivalent to that
observed in solid tumour cancers [33]. Motivated by the significant
associations between miRNAs and ISS stage, we investigated if any
of the other classes of sRNAs were differentially expressed in ISS
stage. We detected significant changes in seven snRNAs, all of
which showed decreased expression in Stage III compared to
Stage I (Fig. 2d). All seven ISS-associated snRNAs belonged to the
U2 spliceosomal RNA class, although transcribed from different
genomic loci. To investigate if the changes in snRNA expression
were related to changes in the transcription of the corresponding
loci, we identified potential host genes of these snRNAs and
investigated if the host genes were related to ISS stage. Four of
the seven snRNAs were located within a host gene (see figure text
in Fig. 2d), however, we did not observe any significant
associations between the host gene expression and ISS stage
(data for host gene expression not shown), indicating that the
changes in snRNA expression are not directly linked to changes in
the transcription of the corresponding loci, but rather a sum of
different regulatory factors.

miR-105-5p is associated with reduced OS in multiple
myeloma
Having shown that multiple miRNAs and other sRNAs are
associated with the myeloma disease stage, we investigated if
miRNAs or other sRNAs can predict OS and PFS. Using cox
proportional hazards regression (coxph) with adjustment for
multiple testing across all expressed miRNAs and likewise for the
other sRNAs, we detected one miRNA, miR-105-5p, to be
significantly associated with OS. No other miRNA or sRNA were
significantly associated with PFS or OS after adjustment for
multiple testing. High expression of miR-105-5p was associated
with shorter OS (HR: 2.9; 95% CI: 1.57–5.3; P value: 0.00067 and 0.02
before and after correcting for multiple testing, respectively). The
optimal cutoff point for high and low miR-105-5p was calculated
using Cutoff Finder [34], which split the data at the 57th percentile,
resulting in 36 patients in the high-group (log2cpm> 1.031) and 50
patients (log2cpm ≤1.031) in the low-group (Supplementary
Fig. 2A). The Kaplan–Meier survival curves for miR-105-5p showed
clear differences in median survival between the groups (3313 days
for the “miR-105-5p low” group and 1398 days for the “miR-105-5p
high” group) (Fig. 3a). MiR-105-5p was also associated with PFS (HR:
1.84; 95% CI: 1.1–3.1; P value: 0.02) (Fig. 3b). Next, we performed OS
univariate coxph for the available clinical parameters for the
patient cohort. We identified seven clinical parameters to be
significantly associated with OS of which age, ISS stage, creatine,
calcium and beta-2 microglobulin (B2M) were negatively asso-
ciated with OS (HR > 1) and Haemoglobin and Albumin were
positively associated with OS (HR < 1) (Fig. 3c). We did not find any
significant association with the two available high-risk cytogenetic
aberrations, deletion 17p13 and translocation (4;14), most likely
due to small N (Supplementary Fig. 2B, C). We then evaluated the
independent prognostic value of miR-105-5p with respect to OS by
adjusting for age, sex, ISS stage, haemoglobin, creatine, calcium,
albumin and B2M in a coxph model. The multivariate OS model
showed that miR-105-5p retained its prognostic value (HR: 3.6; 95%
CI: 1.56–8.5; P value: 0.002) (Fig. 3d). Combining miR-105-5p
expression and ISS groups in a coxph-analysis showed that
patients with high miR-105-5p and high ISS (ISS III) had significantly
poorer survival compared to patients with low miR-105-5p and
high ISS (HR: 4.98; 95% CI: 1.65–15; P value: 0.004) (Supplementary
Fig. 3A and Supplementary Table S3). The patients with ISS III and
high miR-105-5p had median OS of 804 days, while the patients
with ISS III and low miR-105-5p lived 2480 days, indicating that
miR-105-5p distinguish the high-risk patients. The multivariate PFS
survival model was, however, not significant (HR: 1.85; CI: 0.9–3.8; P
value: 0.09), although pointed in the same direction as the
univariate PFS survival model.

To validate the prognostic value of miR-105-5p, we analysed the
microarray dataset of Kryukov et al. (n= 149) [32]. Supporting the
results from the discovery dataset, high expression of miR-105-5p
was associated with unfavourable OS in the validation cohort (HR:
1.53; 95% CI: 1–2.3; P value: 0.04) (Fig. 3e). PFS survival of miR-105-
5p was not significant in the validation cohort (P value: 0.6).

DISCUSSION
Myeloma is a heterogenous cancer with large differences in
survival between patients. Parameters for risk stratification include
(R)-ISS staging, cytogenetics and other host factors (such as age).
ISS staging combined with high-risk cytogenetics features /R-ISS is
the standard system in routinely clinical use [1]. The implementa-
tion of chromosomal abnormalities in the ISS risk evaluation
system has substantially improved the prediction of patient
survival, but even within R-ISS subgroups there are further risk
heterogeneity [7]. Identifying all high-risk myeloma patients is still
a challenge and there is still room for improvement of the current
stratification system. Precise risk prediction at diagnosis enables
early intervention and opens for the use of risk-adapted treatment
approaches and inclusion in clinical trials [35, 7].
In this study, we compared the expression of sRNAs in primary

myeloma cells obtained from different disease stages and
evaluated the association of sRNAs with patient prognosis. We
found one miRNA, miR-105-5p to be an independent prognostic
marker for poor OS in myeloma. sRNAs are promising biomarkers,
predominantly studied in liquid biopsies [36]. With miRNAs as an
exception [37], there is limited knowledge about this important
group of non-coding RNAs in myeloma. The limited number of
sRNA-seq studies may explain this knowledge gap. Previously, a
sRNA-seq study focusing on miRNA and miRNA-offset-RNA was
conducted on 30 myeloma patients [38]. MiRNA-offset-RNAs,
which are stable, sRNA molecules with unknown functions
transcribed from different miRNA loci [39], were found to associate
with patient molecular subgroups in myeloma [38]. However, the
characterisation of other sRNA species in the samples and how
sRNA expression associated with survival were not investigated
[38].
Here, using sRNA-seq, we identified snRNAs and miRNAs

differentially expressed in disease stages of myeloma. With an
exception for miR-873-5p, which was downregulated in Stage III
compared to Stage I, expression of all the significant miRNAs,
including let-7c-5p, miR-125-2-3p, miR-125b-5p, miR-3648, miR-
3916, and miR-99a-5p was increased with increased severity of the
disease. The U2 snRNAs, on the other hand, were downregulated
in ISS III compared with ISS I, suggesting that reduction in mRNA
splicing may be an oncogenic driver. None of the miRNAs and
only some of the snRNAs that were associated with ISS stage are
located within an annotated host gene. Moreover, those that were
intragenic were not associated with ISS stage. This indicates that
the differential expression of sRNA with ISS stage is not a direct
effect of changes in host gene expression but may instead be
directly related to their function in disease.
snRNAs have recently been identified as an important class of

sRNAs that contributes to genome stability and in maintaining
correct mRNA splicing [40]. The U2 snRNAs is a crucial component
in the U2 small nuclear ribonucleoprotein, which is part of the
spliceosome complex that remove introns from eukaryotic
precursor mRNAs. The U2 snRNAs, which are important for both
spliceosome assembly, intron substrate recognition and protein
scaffolding are thought to play a role in cancer [41]. Knockdown
experiments with snRNAs in breast cancer led to alternative
splicing of genes frequently dysregulated in breast cancer,
pointing towards a role of snRNAs as global gene regulators
[22]. U2 knockdown primarily affected mRNA splice site recogni-
tion and exon inclusion [22]. The impact of U2 spliceosomal
snRNAs expression has not previously been characterised in
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myeloma, but aberrant RNA splicing has recently been related to
high-risk molecular subgroups and poor prognosis [42].
Previous miRNA studies that have investigated survival in

myeloma have selected their miRNAs based on disease-related
expression patterns such as differential expression in myeloma or
between ISS stages, and subsequently evaluated their prognostic
value. In our study, we identified all expressed miRNAs by sRNA-

seq and evaluated their prognostic significance by discovery-
based survival analysis, without a priori selection of specific
miRNAs. A limitation of this study is the number of patients
sequenced. Increasing the number of subjects would most likely
increase the number of significant discoveries as many sRNAs
were significantly associated with survival before adjusting for
multiple testing.
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Fig. 3 miR-105-5p associates with reduced OS. a Kaplan–Meier OS curves for miR-105-5p in the discovery cohort. The “+” sign on the curves
indicates censored patients. The number of patients at risk at each interval is shown. At diagnosis, 36 patients had a high miR-105-5p
expression, and 50 patients had low miR-105-5p expression. The P value is calculated by the log-rank test in the coxph-function in R. Hazard
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Considering this, miR-105-5p stands out as a robust prognostic
factor that predicts reduced survival, despite low N. Also, miR-105-
5p significantly predicted survival in a multivariate model,
indicating that it has an independent prognostic value. Finally,
miR-105-5p is a prognostic marker in another, independent
dataset, supporting the validity of our finding.
In our patient cohort the median OS time for patients with high

miR-105-5p was 3.8 years, while for the patients with low miR-105-
5p median survival was 9.07 year, thus miR-105-5p can be used to
distinguish high-risk patients from low-risk patients. Furthermore,
within the ISS III patient group, high miR-105-5p expressors had
significantly worse outcome compared to low miR-105-5p
expressors, suggesting that miR-105-5p may be used for further
discrimination of patients in the high-risk subgroup. Patients with
ISS III and high miR-105-5p had a median OS of 2.2 years while
patients with ISS III and low miR-105-5p that had a median OS of
6.8 years, thus miR-105-5p may be a marker that can further
stratify ultra-high-risk [43] patients from the other high-risk
patients. Our dataset includes patients diagnosed in the years
2012–2017, and t(14;16) and LDH measurements were not
available for the majority of patients. Thus, the patient’s disease
stage is therefore based on the “original” and not the R-ISS system,
which limits the possibility of investigating miR-105-5p with
respect to the R-ISS.
In summary, we provide a comprehensive characterisation of

sRNAs in primary cells from myeloma patients and identify
U2 spliceosomal snRNAs and miR-105-5p as novel potential
biomarkers for disease stage and patient survival, respectively.
The prognostic value of miR-105-5p was validated in an
independent dataset, and we suggest further evaluation of miR-
105-5p as a stratification parameter in future studies on myeloma
patients to determine the clinical relevance as a biomarker for
high-risk disease. Our study also warrants further investigation of
the functional roles of U2 spliceosomal snRNAs and miR-105-5p in
the pathogenesis of multiple myeloma.
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