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Abstract: The recent wave of digitalization is characterized by the widespread deployment of sensors
in many different environments, e.g., multi-sensor systems represent a critical enabling technology
towards full autonomy in industrial scenarios. Sensors usually produce vast amounts of unlabeled
data in the form of multivariate time series that may capture normal conditions or anomalies.
Multivariate Time Series Anomaly Detection (MTSAD), i.e., the ability to identify normal or irregular
operative conditions of a system through the analysis of data from multiple sensors, is crucial in many
fields. However, MTSAD is challenging due to the need for simultaneous analysis of temporal (intra-
sensor) patterns and spatial (inter-sensor) dependencies. Unfortunately, labeling massive amounts
of data is practically impossible in many real-world situations of interest (e.g., the reference ground
truth may not be available or the amount of data may exceed labeling capabilities); therefore, robust
unsupervised MTSAD is desirable. Recently, advanced techniques in machine learning and signal
processing, including deep learning methods, have been developed for unsupervised MTSAD. In this
article, we provide an extensive review of the current state of the art with a theoretical background
about multivariate time-series anomaly detection. A detailed numerical evaluation of 13 promising
algorithms on two publicly available multivariate time-series datasets is presented, with advantages
and shortcomings highlighted.

Keywords: anomaly detection; IoT; multivariate time series; sensor networks

1. Introduction

The paradigm Internet of Things (IoT) has enabled the recent widespread digitalization
in a vast array of application domains. IoT is characterized by the pervasive deployment of
smart and heterogeneous devices (e.g., sensors, actuators, RFIDs) interconnected through
the Internet for direct communications without human intervention. Currently, there are
more than 12 billion IoT devices and by 2030, the number of deployed IoT devices is
expected to reach 125 billion [1]. Accordingly, a massive increase in the amount of data
generated by IoT is realistic and expected to reach 79.4 zettabytes (ZB) by 2025 [2].

Industrial applications have heavily exploited the opportunities provided by the IoT,
resulting in the Industry 4.0 revolution. Industry 4.0 is characterized by the integration of
data, artificial intelligence (AI) algorithms, industrial machines and IoT devices to create an
intelligent and efficient industrial ecosystem. Industrial IoT (IIoT) solutions have played a
significant role in the digitalization of various industrial processes, including manufacturing
and power generation. With IIoT and related digital technologies, advanced analytics and
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enhanced decision-support systems are in place leading to increased automation and
efficiency [3].

IoT-gathered data are commonly used for monitoring and/or predicting the behavior
of specific environments or systems of interest. They thereby enable, for example, device
health assessments, anomaly detection for fault diagnosis and if–then analysis [4]. The data
are typically structured as multivariate time series, which are ordered variable values
sampled at regular or irregular time intervals. They describe the simultaneous tempo-
ral evolution of multiple physical or virtual quantities of interest. Thus, they represent
the natural mathematical framework for describing and analyzing data collected from
sensors in IoT systems. The time series may contain irregular patterns or anomalous fea-
tures for various reasons, including system failures, sensor failures or malicious activities
and detecting these patterns and features can be crucial for successful monitoring and
prediction. Multivariate Time Series Anomaly Detection (MTSAD) is therefore an important
research area and reliable detection methods are required for properly deploying digital
technologies, especially for safety-critical applications.

The joint analysis of temporal patterns and measurement dependencies across dif-
ferent sensors (often exhibiting complex behavior) makes MTSAD a challenging problem.
Additionally, labeling massive volumes of IoT-generated data is practically impossible in
many real-world scenarios; thus, the need for effective unsupervised approaches. Unsu-
pervised MTSAD has become extremely relevant in the era of Industry 4.0 for monitoring
and predictive maintenance. To be labeled robust and effective, an unsupervised MTSAD
algorithm must yield high recall for tolerable false alarm rates; detect (possibly complex)
anomalies in high-dimensional, co-dependent data; and be noise-resilient [5].

1.1. Related Work

Over the past few years, numerous anomaly detection techniques have been developed
in a wide range of application domains. The approaches can be model-based, purely data-
driven or hybrid analytics, each with unique advantages and disadvantages and applied
to different sensor measurements, such as images, videos and time-series datasets. With
the continuous generation of massive IoT data, data-driven machine learning techniques
are employed to detect anomalies in multi-sensor IoT systems. Different learning tasks
are implemented in a supervised, semi-supervised or unsupervised mode. Unsupervised
MTSAD encompasses a wide range of techniques, from conventional statistical and ma-
chine learning approaches such as time series autoregression, distance-based methods,
clustering-based techniques, density-based methods and one-class classification models to
advanced learning methods including Autoencoders, convolutional networks, recurrent
networks, graph networks and transformers. For massive multivariate sequence datasets,
the performance of conventional statistical and machine learning approaches in detecting
anomalies is sub-optimal [6]. Recently, deep learning algorithms have been utilized for
time series anomaly detection and have achieved remarkable success [5]. Deep learning
approaches rely on deep neural networks (DNN) and are effective at learning representa-
tions of complex data such as high-dimensional time series and unstructured image, video
and graph datasets. The automatic feature learning capability of DNNs eliminates the need
for feature engineering by domain experts. It is thus effective in unsupervised large-scale
anomaly detection.

The present work complements an array of earlier surveys and analyses of anomaly de-
tection techniques. Chandola et al. [7] provide a comprehensive review of the conventional
anomaly detection methods in a variety of domains such as intrusion detection, fraud detec-
tion and fault detection. Chalapathy et al. [6] present an overview of deep learning-based
approaches, including Autoencoders, recurrent neural networks and convolutional neural
networks. Cook et al. [8] provide an overview of IoT time series anomaly detection with
a discussion on major challenges faced while developing an anomaly detection solution
for the dynamic systems monitored by IoT systems. Pang et al. [5] also provide a recent
survey on deep anomaly detection with a comprehensive taxonomy with the underlying
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assumptions, advantages and disadvantages of different DNN architectures. Erhan et al. [9]
review state-of-the-art anomaly detection methods in the specific area of sensor systems in-
cluding cybersecurity, predictive maintenance, fault prevention and industrial automation.
Choi et al. [10] provide a background on anomaly detection for multivariate time-series
data and comparatively analyze deep learning-based anomaly detection models with sev-
eral benchmark datasets. Sgueglia et al. [11] present a systematic literature review on the
IoT time series anomaly detection including potential limitations and open issues. While
most of the earlier related works on anomaly detection only offer a theoretical framework,
a few incorporate performance analysis of different approaches. Garg et al. [12] present
a systematic comparison of multivariate time series anomaly detection and diagnosis by
proposing new composite metrics.

1.2. Motivation and Contribution

This paper has two main contributions:

• A comprehensive, up-to-date review of unsupervised anomaly detection techniques
for multivariate time series. This is motivated by the continuous, rapid progress in
development of unsupervised MTSAD techniques. Moreover, in comparable existing
reviews (cf. Section 1.1), we consider a broader range of techniques while focusing our
attention on multivariate data from physical or soft sensors.

• A thorough performance analysis of 13 diverse, unsupervised MTSAD techniques,
featuring two publicly available datasets. Both quantitative performance results and
qualitative user-friendliness assessments are considered in the analysis.

The rest of the paper is organized as follows: Section 2 describes the mathematical
framework to operate with multivariate time series; Section 3 provides a detailed overview
of the various approaches to unsupervised MTSAD; a description of the datasets considered
for the quantitative performance assessment and related performance metric is placed
in Section 4; Section 5 discusses and compares the numerical performance of selected
unsupervised MTSAD algorithms over the various scenarios; some concluding remarks are
given in Section 6.

2. Multivariate Time Series

A multivariate time series is a multi-dimensional sequence of sampled numerical
values, e.g., representing the collection of measurements from multiple sensors at discrete
time instants. Such values are usually collected in matrix form. More specifically, for a
system with K sensors, we define the system state at discrete time n as

x[n] = (x1[n], x2[n], . . . , xK[n])t , (1)

where (·)t denotes the transpose operator. Thus, a multivariate time series related to K
sensors and N discrete time instants can be represented as a matrix

X = (x[1], x[2], . . . , x[N]) =


x1[1] x1[2] · · · x1[N]
x2[1] x2[2] · · · x2[N]

...
...

. . .
...

xK[1] xK[2] · · · xK[N]

 , (2)

where the (n, k)th entry xk[n] represents the measurement sensed by the kth sensor at the nth
time instant (in most cases, samples are taken at regular time intervals. If this is not the case,
the sequence of values x is coupled with the sequence of sampling times t = [t1, t2, . . . , tN ]

t).
In the case of a single sensor (K = 1), the time series is named univariate.

Anomalies in univariate time series are usually classified as point anomalies, con-
textual anomalies or collective anomalies. A point anomaly occurs when a single sensor
measurement deviates significantly from the rest of the measurements (e.g., an out-of-range
measurement); these anomalies are often caused by unreliable/faulty sensors, data logging
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errors or local operational issues. Contextual anomalies occur when sensor measurement is
anomalous in a specific context only, i.e., the measured value could be considered normal
on its own, but not in the context of the preceding/subsequent measurements. Finally,
collective anomalies are characterized by a sub-sequence of sensor measurements behaving
differently than other sub-sequences. Graphical representations of these anomaly categories
are shown in Figure 1.

20

30 Point Anomaly

20

30

Contextual Anomaly
Contextual Normal

0 100 200 300 400 500

20

25

Collective Anomaly

Figure 1. Types of anomalies.

In the case of multivariate time series data, the relationship between the measurements
across time domain and across different sensors is more complex and the classification
of point, contextual and collective anomalies is less precise. Even if an observation is
not exceptionally extreme on any one sensor measurement, it may still be considered an
anomaly if it deviates significantly from the typical pattern of correlation present in the rest
of the time series. Therefore, the combination of individual analysis for each constituent
univariate time series does not provide a complete view on the possible anomalous patterns
affecting a multivariate time series [10]. Anomaly detection methods for multivariate time
series must consequently take into account all variables simultaneously.

When designing various unsupervised MTSAD methods, we assume that a multi-
variate time series Xtrain ∈ RK×N containing measurements under normal conditions is
available for training, i.e., creating a representation of the system g{·} that is sufficiently
accurate to capture how measurements are generated under regular operation. For perfor-
mance evaluation, we assume that a multivariate time series Xtest ∈ RK×M, with M� N,
containing measurements both under normal and anomalous conditions is available for
testing, i.e., the location of the anomalies is known. We denote a = (a1, a2, · · · , aM)t the
vector identifying the locations of the anomalies, i.e., am = 1 (resp. am = 0) if an anomaly is
present (resp. absent) at discrete time m. The goal of the training algorithm is to identify a
representation such that y = g{Xtest} with y being as close as possible to a according to
some pre-defined metric.

3. Unsupervised MTSAD

The exponential growth of data generated by IoT devices makes manually labeling for
anomaly detection infeasible in many practical applications. Thus, unsupervised anomaly
detection solutions, which do not require any data labeling, are becoming increasingly rele-
vant. In this section, we present and discuss a diverse selection of important unsupervised
MTSAD strategies.
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One possible way of categorizing the various unsupervised MTSAD methods is based
on the underlying approach they use to detect an anomaly in the data. Most methods
fall within one of the three approaches listed in Figure 2, i.e., reconstruction approach,
prediction approach and compression approach.

Unsupervised
MTSAD

Reconstruction
Approach

Prediction
Approach

Compression
Approach

Figure 2. Approaches to unsupervised MTSAD.

In reconstruction-based approaches, the training multidimensional time series is com-
pressed to a low-dimensional latent space and reconstructed back to its original dimension.
These approaches are based on the assumption that anomalies are not well reconstructed,
so we can use the reconstruction error or reconstruction probability as an anomaly score.
The most common algorithms in this category are principal component analysis (PCA) and
Autoencoders (AE).

In the prediction-based approach, we use current and past (usually from a finite-size
sliding window) values to forecast single or multiple time steps ahead. The predicted
points are compared to the actual measured values and an anomaly score is calculated
based on the level of deviation: a significant difference in the observed and predicted
data is considered anomalous. Vector autoregressive (VAR) models and Recurrent Neural
Networks (RNN) are two common examples of such methods.

Compression methods, like reconstruction techniques, encode segments of a time
series in a low dimensional latent space. However, instead of using the latent space to
reconstruct the subsequences, the anomaly score is computed in the latent space directly.
Dimensionality reduction methods reduce computation time and can also be used as a way
to reduce model complexity and avoid overfitting. If the dimensions of the latent space
are uncorrelated, compression methods also enable use of univariate analysis techniques
without disregarding dependencies between variables in the original data.

Another common classification of unsupervised MTSAD methods utilizes the follow-
ing three classes: (i) Conventional techniques, based on statistical approaches and non-
neural network based machine learning; (ii) DNN-based methods, based on deep learning;
and (iii) composite models, combining two or more methods from the previous categories
into a unified model. Figure 3 shows the classification of relevant unsupervised MT-
SAD methods according to this classification, where the color of each method is selected
according to the underlying approach previously discussed.

3.1. Conventional Techniques

Time series anomaly/outlier detection techniques have been used in statistics and ma-
chine learning for a long time. This section provides a brief summary of conventional time
series anomaly detection methods that paved the way for more recent data-intensive methods.
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Unsupervised
MTSAD

Conventional
Techniques

Autoregressive Models

Control-Chart Methods

Spectral Analysis

Clustering Algorithms

Tree-based Methods

DNN-based
Methods

Autoencoders

Generative Models

Recurrent Networks

Convolutional Networks

Transformers

Graph Networks

Composite
Models

Figure 3. Unsupervised MTSAD methods. The colors red, green and blue indicate approach type as
in Figure 2. Teal indicates that both compression and reconstruction approaches can be used.

3.1.1. Autoregressive Models

A time series collected from a non-random process contains information about its
behavior and suggests its potential future evolution. The autoregressive models are a
type of regression model that uses past values to make predictions about the system’s
future states. The autoregressive models can be used to detect anomalies by assigning an
anomaly score based on the degree to which the actual value deviates from the predicted
one. Autoregression (AR), moving average (MA), autoregressive moving average (ARMA)
and autoregressive integrated moving average (ARIMA) models are the most common
types of autoregressive models for univariate time series. More specifically, the AR(p)
model is composed of a linearly weighted sum of p previous values of the series, whereas
the MA(q) model is a function of a linearly weighted sum of q previous errors in the
series. The ARMA(p, q) model incorporates both the AR and MA components and the
ARIMA(p, d, q) model adds a time-difference preprocessing step to make the time series
stationary. The difference order (d) is the number of times the data has to be differenced to
make it stationary.

The vector autoregression (VAR) model is a common type of regressive model for
multivariate time series. The VAR model is based on the idea that the current value of a
variable can be represented as a linear combination of lagged values of itself and/or the
lagged values of other variables, plus a random error term that accounts for all factors that
the historical values cannot explain [13].

For a zero-mean multivariate time series {x[n]}, the VAR(p) model is:

x[n] = A1x[n− 1] + A2x[n− 2] + · · ·+ Apx[n− p] + ε[n] , n = 0,± 1,± 2, . . . (3)

where each Aj (j = 1, 2, . . . , p) is a matrix with constant coefficients and ε[n] is a multivariate
zero-mean white noise. VAR models can predict multivariate time series by capturing the
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interrelationship between variables, making them applicable to multivariate time series
anomaly detection tasks [14,15]. However, such regressive models are computationally
expensive for huge datasets and thus less efficient for IoT anomaly detection.

3.1.2. Control Chart Methods

Control charts are statistical process control (SPC) tools used to monitor the mean and
variance shift of time series data. They are used to determine if the variation in the process
is background noise (natural variations) or caused by some external factor. The presence of
natural variations indicates that a process is under control, while special variations indicate
that it is out of control. A control chart consists of a center line representing the average
measurement value, the upper control limit (UCL) and the lower control limit (LCL) of the
normal process behavior. The Shewhart X-chart, the cumulative sum (CUSUM) and the
exponentially weighted moving average (EWMA) are the most frequently used control
charts for determining if a univariate measurement process has gone out of statistical
control [16]. For multivariate time series, the common multivariate control charts include
Hotelling T2 control chart, multivariate cumulative sum (MCUSUM) and multivariate
EWMA (MEWMA) [17].

There are two stages in the control chart setting: Phase I focuses on the design and
estimation of parameters (including control limits, in-control parameters and removal of
outliers), while Phase II collects and analyzes new data to see if the process is still under
control. Let X = (x[1], x[2], . . . , x[N]) represent a stream of N measurements from K sensors
modeled as identical and independently random vectors according to a K-dimensional
multivariate normal distribution with unknown mean vector µ and covariance matrix
Σ, i.e., x[n]∼N (µ, Σ). The sample mean vector and the sample covariance matrix for N
observations are computed as:

x =
1
N

N

∑
n=1

x[n], S =
1

N − 1

N

∑
n=1

(x[n]− x)(x[n]− x)t, (4)

respectively. Moreover, the T2 statistic for the nth measurements is computed as follows [18]:

T2
n = (x[n]− x)S−1(x[n]− x)t, (5)

and follows a Chi-squared distribution with K degrees of freedom. An anomaly is detected
if T2

n is larger than a threshold related to the UCL [19]. MCUSUM uses a similar detection
mechanism, but uses both past and current information to compute the test statistics [20].
Control charts usually requires an assumption of specific probability distributions of the
data and may not be applicable to all datasets.

3.1.3. Spectral Analysis

Spectral techniques attempt to approximate the data by combining attributes that
capture most of the data variability. Such techniques assume that data can be embedded in a
lower-dimensional subspace in which normal instances and anomalies appear significantly
different [7]. Principal component analysis (PCA) and singular spectrum analysis (SSA) are
two common methods in this category.

PCA is commonly employed to reduce data dimensions and improve storage space
or computational efficiency by using a small number of new variables that are able to
explain accurately the covariance structure of the original variables. Principal compo-
nents are uncorrelated linear combinations of the original variables obtained via the sin-
gular value decomposition (SVD) of the covariance matrix of the original data and are
usually ranked according to their variance [21]. Let C be a K × K sample covariance
matrix calculated from K sensors and N measurements and denote (e1, e2, . . . , eK)
and (λ1, λ2, . . . , λK) the eigenvectors of C and the corresponding eigenvalues, respec-
tively; then the ith principal component of the standardized measurements (Z) is com-
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puted as yi = et
i Z. Z = (z[1], z[2], . . . , z[p])t is a vector of measurements defined as

z[i] = (x[i]− x)/σ, where x and σ are sample mean and standard deviation, respectively.
Multivariate anomalies can be easily identified using PCA. One method involves eval-

uating how far each data point deviates from the principal components and then assigning
an anomaly score [7]. The sum of the squares of the standardized principal components,

q

∑
i=1

y2
i

λi
=

y2
1

λ1
+

y2
2

λ2
+ · · ·+

y2
q

λq
, q ≤ k (6)

has a chi-square distribution with the degrees of freedom q. Given a significance level α,
observation x is an anomaly if

q

∑
i=1

y2
i

λi
> χ2

q(α) (7)

where χ2
q(α) is the upper α percentage in chi-square distribution and α indicates false alarm

probability in classifying a normal observation as an anomaly.
SSA is a non-parametric spectral estimation method that allows us to identify time

series trends, seasonality components and cycles of different period size from the original
signal without knowing its underlying model. The basic SSA for 1D time series involves
transforming the time series to the trajectory matrix, computing the singular value decom-
position of the trajectory matrix and reconstructing the original time series using a set of
chosen eigenvectors [22]. For multivariate time series, instead of applying SSA to each time
series, multidimensional singular spectrum analysis (MSSA) is used [23]. When performing
MSSA, we join the trajectory matrices of all time series, either horizontally (HMSSA) or
vertically (VMSSA) and proceed to apply the same method [24].

SSA is a useful tool for detecting anomalies in time series due to its ability to separate
principal components from noise in time series. SSA-based anomaly detection algorithms
are based on the idea that the distance between the test matrix (obtained via target segmen-
tation of time series) and the base matrix (reconstructed via k-dimensional subspace) can be
computed using a series of moving windows [25]. A Euclidean distance (D) between the
base matrix and the test matrix can be used as indicator for anomaly [26]. PCA anomaly de-
tection requires assumption of specific distributions and SSA is computationally expensive
for large IoT datasets.

3.1.4. Clustering Algorithms

Clustering is a form of unsupervised machine learning in which data points are par-
titioned into a number of clusters with the goal of maximizing the similarity between
points within the same cluster while minimizing the similarity between clusters. Maximum
inter-cluster distance and minimum intra-cluster distance are two criteria for effective clus-
tering [27]. A typical clustering anomaly detection algorithm consists of two phases: (i) time
series data are clustered; (ii) dispersion of data points from their respective clusters is used
to compute anomaly scores [28].

The K-means algorithm is among the most popular clustering approaches. The al-
gorithm groups N data samples ({x[i]}i = 1, ..., N) into K clusters, each of which contains
roughly the same number of elements and is represented by a centroid ({µk}k = 1, ..., K).
The optimal centroids can be determined by minimizing a cost function related to the
intra-cluster variance [29]:

J =
K

∑
k = 1

∑
i ∈ Ck

|| x[i]− µk ||2 . (8)

The algorithm is iterative and based on the following steps [30]: (i) cluster centroids are
randomly initialized; (ii) data points are assigned to clusters based on their distance from
the corresponding centroid (measured via Euclidean or other type of distance); (iii) cen-
troids are updated by computing the barycenters of each cluster according to the assigned
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points; (iv) steps two and three are repeated until a stopping criterion is satisfied. Due
to the unsupervised nature of this algorithm, the number of clusters must be specified in
advance or determined using heuristic techniques. The elbow method is a popular choice
for determining the number of clusters [31]: it involves plotting the cost function against
different values of K. The point where the curve forms an elbow is selected as the optimum
number of clusters (larger values provide negligible improvements). The K-means algo-
rithm is prone to the cluster centroids initialization problem and does not perform well with
multivariate datasets. PCA or other dimensionality reduction approaches are commonly
employed as a form of pre-processing for reducing the impact of those issues [32]. Finally,
anomalies are identified based on the distance from the centroids of the clusters [33,34].

The concept of medoid is used for the K-medoids clustering algorithm. Medoids are
cluster representatives that have the smallest possible sum of distances to other cluster
members. The K-medoids algorithm selects the center of each cluster among the sample
points and is more robust to the presence of outliers, whereas the K-means algorithm does
not (the barycenter of a set of sample points is not necessarily a sample point) and is very
sensitive to outliers [35].

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [36] is a
popular unsupervised clustering approach widely used for tasks requiring little domain
expertise and relatively large samples. It operates on the principle that a point is part of
a cluster if it is in close proximity to many other points from the same cluster and high-
density regions are typically separated from one another by low-density areas. DBSCAN
clusters multi-dimensional data using two model parameters: the distance that defines
the neighborhoods (ε) and the minimum number of points in the neighborhoods (M).
The ε-neighborhood of a point xi is defined as Nε(xi) = {x ∈ D | dist(xi, x) ≤ ε},
where dist(·, ·) is a distance function between two points and determines the shape of
the neighborhood. Each sample point is categorized as a core point, boundary point
or outlier based on these two parameters. More specifically, a point xi is a core point if its
surrounding area with radius (ε) contains at least M points (including the point itself), i.e.,
when | Nε(xi) |≥ M; a border point is in the ε-neighborhood of a core point but has fewer
than M in its ε-neighborhood; a point is an outlier if it is neither a core point nor accessible
from any core points. The DBSCAN algorithm can be implemented in the following four
steps: (i) for each data point, find the points in the ε-neighborhood and identify the core
points as those with at least M neighbors; (ii) create a new cluster for each core point,
if that point is not already associated with one of the existing clusters; (iii) determine all
density-connected points recursively and assign them to the same cluster as the core point;
(iv) iterate through the remaining data points which have not been processed. The process
is complete once all points have been visited and the points that do not belong to any
cluster are considered noise. DBSCAN and its variants are commonly used in unsupervised
anomaly detection [37,38] and rely on the assumption that points belonging to high-density
(resp. low-density) regions are normal (resp. anomalous). When processing multivariate
time series, DBSCAN treats each time window as a point, with the anomaly score being
the distance between the point and the nearest cluster [39]. One-class support vector
machine (OC-SVM) [40] is another data clustering algorithm that employ kernel ticks. OC-
SVM separates normal training data from the origin by finding the smallest hyper-sphere
containing the positive data. Clustering-based approaches for anomaly detection require
high time and space complexity, but do not need any prior data labeling [28].

3.1.5. Tree-Based Methods

Tree-based methods use tree structures to recursively split the data into non overlap-
ping leaves and are particularly effective for high-dimensional and non Gaussian data
distributions [41]. The Isolation Forest (IF) [42] and its variants are the most common meth-
ods in this category. IF is an ensemble unsupervised anomaly detection approach based on
Decision Trees and Random Forests. In the IF algorithm, random sub-samples of data are
processed in a binary isolation tree (also known as iTree) using randomly selected features.
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The samples that go further down on the iTree are less likely to be anomalies because they
require more cuts to isolate them. Shorter branches indicate abnormalities because the
tree can quickly isolate them from other data. The algorithm can be summarized in the
following steps: (i) a random attribute XA and a threshold T between the minimum and the
maximum value are selected; (ii) splitting the dataset into two subsets (if XA < T), the point
is assigned to the left branch; otherwise, it is sent to the right branch; (iii) recursively repeat
the above steps over the dataset until a single point is isolated or a predetermined depth
limit is reached. The process then recursively repeats steps (i) through (iii) to generate a
number of Isolation Trees and, eventually yielding an Isolation Forest. The IF algorithm
operates in a similar way to the Random Forest algorithm. However, the Random Forest
algorithm uses criteria such as Information Gain to create the root node. The Isolation
Forest algorithm is employed alone [43,44] or in combination with other techniques [45]
to identify anomalies in sensor time series data. IF anomaly detection is based on the
assumption that outliers will be closer to the root node (i.e., at a lower depth) on average
than normal instances. The anomaly score is defined using the average depths of the
branches and is given by the equation:

s(x, n) = 2
−E(h(x))

c(n) (9)

where c(n) = 2H(n− 1)− (2(n− 1)/n). n is the sample size, h(x) represents the path
length of a particular data point in a given iTree, E(h(x)) is the expected value of this path
length across all the iTrees, H(i) is the harmonic number and c(n) is the normalization
factor defined as the average depth in an unsuccessful search in a Binary Search Tree
(BST). S(x, n) is a score between 0 and 1, with a larger value indicating a high likelihood
of an anomaly [46]. IF is easy to implement and it is computationally efficient. However,
it assumes individual sensor measurement are independent, which may not always be the
case in real-world IoT data.

3.2. DNN-Based Methods

Recently, techniques based on deep learning have improved anomaly detection in
high-dimensional IoT datasets. These approaches are capable of modeling complex, highly
nonlinear inter-relationships between multiple sensors and are able to capture temporal
correlation efficiently [5].

3.2.1. Recurrent Networks

A common approach for DNN-based time series anomaly detection is the use of
regression concepts to forecast one or more future values based on past values and then of
the prediction error to determine if the predicted point is anomalous or not. Currently, sev-
eral DNN-based series prediction models rely on Recurrent Neural Networks (RNN) [47],
Long Short-Term Memory networks (LSTM) [48] and Gated Recurrent Units (GRU) [49].
RNNs are an extension of feed-forward neural networks with internal memory and are
commonly used for modeling sequential data, such as time series, text and video. The RNN
architecture consists of an input layer, a hidden layer and an output layer; however, unlike
feed-forward networks, the state of the hidden layer changes over time. In the hidden
layer, neurons are not only connected with the input layer and output layer but also with
the neurons located in the same hidden layer. More specifically, the RNN input layer with
K neurons receives a sequence of vectors (. . . , x[t− 1], x[t], x[t + 1], . . .) and the input
units are connected to the hidden layer with M hidden units h[t] = (h1, h2, . . . , hM)t via a
weight matrix Wih. The recursive relation in the hidden layer (responsible for the memory
effect) is expressed as:

h[t] = fh(Wihx[t] + Whhh[t− 1] + bh) (10)

where fh(·) is the hidden layer activation function, Whh is a weight matrix defining the
connection between the current and previous hidden state and bh is the bias vector in
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the hidden layer. The hidden state at time t is a function of the current input data and
the hidden state at time t − 1. The output layer with L units y[t] = (y1, y2, . . . , yL)

t is
determined by:

y[t] = fo(Whoh[t] + bo) (11)

where fo(·) is the activation functions for output layer, Who is weight matrix defining the
connection between hidden units and output layer and bo is the bias vector in the output
layer. RNNs are trained via a gradient descent approach referred to as backpropagation
through time (BPTT) [50]; however, the exponential decay of the gradient makes RNN
perform poorly when modeling long-range temporal dependencies (vanishing gradient
problem) [51]. Recurrent networks such as LSTM and GRU have been introduced to avoid
those problems affecting RNNs by utilizing different gate units to control new information
to be stored and overwritten across each time step [52].

The LSTM architecture consists of a cell state and three control gates (input, forget
and output gates). The cell state is the memory unit of the network and carries information
that can be stored, updated or read from a previous cell state. The control gates regulate
which information is allowed to enter the cell state. Input and forget gates regulate
update/deletion of long-term memory retained in the cell state, while the output gate
regulates the output from the current hidden state [48]. The internal operations of the
LSTM cell are described by the following equations:

i[t] = σ(Whih[t− 1] + Wxix[t] + bi) (12)

f[t] = σ(Wh f h[t− 1] + Wx f x[t] + b f ) (13)

o[t] = σ(Whoh[t− 1] + Wxox[t] + bo) (14)

C̃[t] = tanh(Whch[t− 1] + Wxcx[t] + bc) (15)

C[t] = f[t]� C[t− 1] + (1− ft)� C̃t (16)

h[t] = ot � tanh(Ct) (17)

where i[t], f[t] and o[t] represent input, forget and output gates, respectively, C̃[t] is the
candidate cell state, C[t] is the cell state, h[t] is the hidden state and cell output, σ(·) is
the sigmoid function, � is the Hadamard product, W is a weight matrix and b is the bias
vector in each gate.

Recurrent networks are frequently utilized for time series anomaly detection tasks
because of their prediction capabilities and temporal correlation modeling [53]. More
specifically, the resulting prediction errors are assumed to follow a multivariate Gaussian
distribution (with mean vector and covariance matrix usually computed via Maximum
Likelihood Estimation), which is utilized to determine the probability of anomalous be-
havior. Telemanom is a framework based on standard LSTMs to detect anomalies in
multivariate spacecraft sensor data [54].

3.2.2. Convolutional Networks

Convolutional neural networks (CNNs) are feed-forward deep neural networks origi-
nally introduced for image analysis [55] and then used also for processing multidimensional
time series and extracting correlations effectively. CNNs use convolution operations (in at
least one layer) to extract patterns from the underlying (spatio)temporal structure of the
time series. In comparison to fully connected networks, this often yields more efficient
training and increased performance for similar model complexity.

A CNN typically consists of convolution, activation function, pooling and fully con-
nected layers; each convolution layer consists of several filters whose values are learned
via training procedures [56]. A window of multivariate time series is taken to create a
matrix X and multiple filters of width w and height h (equal to the number of channels) are



Sensors 2023, 23, 2844 12 of 24

applied to generate multiple feature maps. In 1D convolution, the kth filter traverses in one
direction on the input matrix X and outputs [57]:

hk = fc(Wk ∗ X + bk) (18)

where hk is the kth output vector, ∗ represents the convolution operation, fc is the activation
function and W and b are weight and bias, respectively.

Temporal Convolutional Networks (TCNs) are a variant of CNNs developed for
sequential data analysis [58]. TCNs produce sequences by causal convolution, i.e., no
information leakage from the future into the past. Modeling longer sequences with large
receptive fields requires a deep network or a wide kernel, significantly increasing the
computational cost. As a result, an effective TCN architecture employs dilated causal
convolutions rather than causal convolutions, resulting in an exponentially increasing
receptive field. DeepAnT [59] is a CNN-based approach developed to identify point and
contextual anomalies in time series. The algorithm is a two-stage process, with the first step
consisting of a CNN-based time series predictor that trains on the time series windows to
make future predictions. The second phase involves an anomaly detector, which calculates
the anomaly score from 0 to 1 based on the Euclidean distance between the predicted
and actual values. Afterward, a threshold is set to identify normal and anomaly data.
A TCN-based time series anomaly detection is employed in [60] with prediction errors
fitted by a multivariate Gaussian distribution and used to calculate the anomaly scores.
In addition, a residual connection is implemented to enhance prediction accuracy.

3.2.3. Autoencoders

Multi-layer perceptron Autoencoders (MLP-AE) [47] is a type of unsupervised ar-
tificial neural network composed of sequentially linked encoder (E) and decoder (D)
networks. The encoder maps the input vector x[n] = (x1[n], x2[n], . . . , xK[n])t to a
lower-dimensional latent code, z[n] = (z1[n], z2[n], . . . , zL[n])t where L � K and a de-
coder transforms the encoded representation back from the latent space to output vector
x̂[n] = (x̂1[n], x̂2[n], . . . , x̂K[n])t that is expected to approximate the input vector x[n]. The
input and reconstructed vectors are related via x̂[n] = D(E(x[n])), where E(·) and D(·)
denote the encoder and decoder operators, respectively, and the difference between the
two vectors is called reconstruction error. AEs are trained to reduce the reconstruction error
and usually the mean square error is the metric considered for the minimization procedure
employed during the training process.

The conventional Autoencoders (AE)-based anomaly detection method is based on
semi-supervised learning. The reconstruction error determines the anomaly score and sam-
ples with high reconstruction errors are considered anomalies. In the training phase, only
normal data will be used to train the AE to identify normal data characteristics. During the
testing phase, the AE will be capable of reconstructing normal data with minimal reconstruc-
tion errors. However, the reconstruction errors will be much higher than usual if the AE is
presented with anomalous data (unseen before). An AE can determine whether the tested
data are anomalous by comparing the anomaly score to a predefined threshold [61,62].

In conventional feedforward AEs, the two-dimensional spatial and temporal corre-
lation are disregarded. To account for spatial correlation, more advanced reconstruction
networks such as Convolutional AEs (CAEs) have been introduced [63]. CAEs exploit
convolutions and pooling in the encoding stage, followed by deconvolution in the de-
coding stage. CAEs are frequently employed for image and video anomaly detection.
In multivariate time series anomaly detection, the encoding process involves performing
convolution operations on the input window of the time series, thus obtaining a low di-
mensional representation. The decoder process performs a deconvolution operation on
latent representation to reconstruct the selected window: the convolution operation in
CAEs generates spatial-feature representations among different sensors.

Variational AEs (VAEs) are another class of AEs which replace the reconstruction
error with the reconstruction probability [64]. VAEs are unsupervised deep-learning gen-
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erative methods that use Bayesian inference to model training data distribution and are
based on three components: encoder, latent distribution and decoder. VAEs differ from
conventional AEs due to a probabilistic interpretation for the anomaly score [65]. In VAEs,
two conditional distributions are learned from the data to represent the latent variable
given the observation in the original space, namely qφ(z[n]|x[n]) and the observation in
the original space given the latent variable, namely pθ(x[n]|z[n]), where φ and θ are the set
of parameters to be learned during training (e.g., weighting coefficients in case of neural
networks are used for learning those distributions). The Kullback–Leibler divergence
(or some approximated versions) is commonly used as the cost function to be minimized
during the training procedure. In contrast to deterministic Autoencoders, VAE reconstructs
the distribution parameters rather than the input variable itself. Consequently, anomaly
scores can be derived from probability measures.

3.2.4. Generative Models

Generative Adversarial Networks (GANs) are unsupervised artificial neural networks
built upon two networks, respectively denoted generator (G) and discriminator (D), that are
simultaneously trained in a two-player min-max adversarial game and are also commonly
used in multivariate time series anomaly detection [66]. More specifically, the generator
aims at generating realistic synthetic data, while the discriminator attempts to distinguish
real data from synthetic data. The generator training goal is to maximize the likelihood of
the discriminator making a mistake, whereas the discriminator training goal is to minimize
its classification error, thus GANs are trained with the following objective function:

min
G

max
D

V(G,D) = Ex[n]∼pdata
{log(D(x[n])}+Ez[n]∼pz{log(1−D(G(z[n]))} (19)

where V(·, ·) is the value function of the two players.
GAN-based anomaly detection uses normal data for training and, after training,

the discriminator is used to detect the anomalies based on their distance from the learned
data distribution. Time Series Anomaly Detection with Generative Adversarial Networks
(TAnoGAN) is a GAN-based unsupervised method that uses LSTMs as generator and dis-
criminator models [67] while Multivariate Anomaly Detection with Generative Adversarial
Networks (MAD-GAN) applies a similar framework to multivariate time series [68].

3.2.5. Graph Networks

Graphs are a powerful tool for representing the spatial interactions among sensors;
thus, they have been recently used for MTSAD by exploiting both inter-sensor correlations
and temporal dependencies simultaneously. In a graph G = (V , E), each sensor is repre-
sented by a node/vertex v ∈ V and an edge e ∈ E models the correlations between two
nodes [69,70].

Among graph-based techniques, graph neural networks (GNNs) generalize CNNs (de-
fined over regular grids) by means of graphs capable of encoding irregular structures [71].
The use of GNNs for anomaly detection involves the identification of expressive represen-
tations on a graph so that normal data and anomalies can be easily distinguished when
represented in the graph domains [72]. Graph Deviation Networks (GDNs) are a type of
GNN that models the pairwise relationship via the cosine similarity of an adjacent matrix
and then uses graph attention-based forecasting [73]. Multivariate Time-series Anomaly
Detection via Graph Attention Network (MTAD-GAN) is a self-supervised graph frame-
work that considers each univariate time series as an individual feature and includes two
graph attention layers (feature-oriented and time-oriented) in parallel to learn the complex
dependencies of multivariate time series in both temporal and feature dimensions [74].
MTAD-GAN jointly optimizes a forecasting-based model and a reconstruction-based model,
thus improving time-series representations.
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3.2.6. Transformers

Modeling very long-term temporal dependencies and temporal context information
is challenging for recurrent models such as RNN, GRU and LSTMs. Recently, transform-
ers have achieved superior performances in many tasks of computer vision and speech
processing [75]. Several time-series anomaly detection models have been proposed us-
ing transformer architectures: a reconstruction-based transformer architecture for early
anomaly detection is proposed in [76]; a transformer-based anomaly detection model
(TranAD) with an adversarial training procedure is proposed in [77]. Graph Learning with
Transformer for Anomaly detection (GTA) has been studied to take advantage of both
graph-based and transformer-based representations [78].

3.3. Composite Models

Hybrid algorithms combine deep-learning tools with classical approaches from statis-
tics and signal processing. Some of the recent hybrid methods are briefly introduced below.
RNNs have been combined with AEs, producing methods such as GRU-AEs and LSTM-
AEs. EncDecAD is a method where both the encoder and decoder are based on LSTMs [79].
LSTM-VAEs combine LSTMs with VAEs [80]. OmniAnomaly proposes a stochastic RNN
model for detecting anomalies in multivariate time series, arguing that random outliers can
mislead deterministic approaches [81]. Multi-Stage Convolutional Recurrent and Evolving
Neural Networks (MSCRED) combine convolution with an LSTM in encoder–decoder
architecture in order to manage both spatial and temporal correlation [82]. Convolutional
Long-Short Term Memory (ConvLSTM) networks [83] capture temporal patterns effectively
in MSCRED by using the feature maps that encode inter-sensor correlations and temporal
information. The Deep Autoencoding Gaussian Mixture Model (DAGMM) combines AE
architecture with a GMM distribution for time series anomaly detection [84]. DAGMM
optimizes the parameters of the deep AED and the mixture model simultaneously. UnSu-
pervised Anomaly Detection (USAD) is a novel approach that employs AEs in a two-phase
adversarial training framework [85] and overcomes the inherent limitations of AEs by
training a model capable of identifying when the input data do not contain anomalies while
the AE architecture ensures stability during adversarial training. Some composite models
introduce a novel anomaly detection-based objective to build a model. Deep Support
Vector Data Description (DeepSVDD) [86] introduces a one-class classification objective for
unsupervised anomaly detection. It jointly trains a deep neural network while optimizing
a data-enclosing hypersphere in output space.

4. Experimental Setup and Performance Metrics

In this section, we describe the datasets, data pre-processing, training hyperparameters,
evaluation metrics, tools and selected methods.

4.1. Datasets

We have used two publicly available real-world multivariate time series datasets for
our comprehensive performance analysis. Table 1 summarizes the features and statistics of
each dataset.

(i) Secure Water Treatment (SWaT) dataset [87,88]: The SWaT system is an operational
water treatment testbed that simulates the physical process and control system of a
major modern water treatment plant in a large city. The testbed was created by the
iTrust research unit at the Singapore University of Technology and Design. The SWaT
multivariate time series dataset consists of 11 days of continuous operation, with 7 days
collected under normal operations and 4 days collected with attack scenarios. Each
time series consists of diverse network traffic, sensor and actuator measurements.
For the last 4 days, a total of 36 attacks were launched. Actuators, flow-rate meters
and water level sensors are all subjected to attacks, each with different intents and
time frames. For our purpose, we re-sample the data by 1 min for computational
efficiency.
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(ii) Server Machine Dataset (SMD) dataset [81]: SMD is a 5-week long (with 1-min sam-
pling time) dataset acquired from a large Internet company. It comprises data from
28 servers, each monitored by 33 metrics. The testing set anomalies are labeled by
domain experts. For our performance analysis, we used only one entity of the dataset.

Table 1. Summary of the datasets.

Dataset SWaT SMD

No. of channels 51 38
Entities 1 28

Average Train size 495,000 25,300
Average Test size 449,919 25,301

Anomaly rate 12.140% 4.21%

4.2. Data Pre-Processsing and Tools

In our analysis, we performed downsampling, feature normalization and windowing
of time series datasets. Downsampling speeds up neural network training and provides a
denoising effect on the normal training data. A min-max scaling was considered for feature
normalization and stable training of the models, i.e.,

x′ =
x−min(Xtrain)

max(Xtrain)−min(Xtrain)
(20)

where x is the actual measurement and x′ is the value after scaling. For some of the
algorithms, we utilized a sliding windowing of multi-sensor data to be used as input.
Different window sizes and strides are selected for different datasets.

Both the Pytorch and Tensorflow deep learning frameworks are used to train and
evaluate a selection of algorithms. In addition, the machine learning library Scikit-learn
is used for performance analysis. Models are trained in the Google Colaboratory Pro
environment using an NVIDIA T4 Tensor Core GPU processors.

4.3. Evaluation Metrics

For performance evaluations, we employed labeled test datasets and treated the
anomaly detection problem as a binary classification task. Five different metrics were
utilized to quantify the methods’ efficacy concerning this task: Precision, Recall, F1-score,
Area under curve (AUC) and Area under Precision Recall (AUPR). These rely on the
following parameters: the number of correctly detected anomalies, i.e., true positives
(TPs), the number of erroneously detected anomalies, i.e., false positives (FPs) or false
alarms, the number of correctly identified normal samples, i.e., true negatives (TNs) and the
number of erroneously identified normal samples, i.e., false negative (FN). One of the
most common performance metrics is the receiver operating characteristic (ROC), i.e., the
relation between the true positive rate (TPR) and the false positive rate (FPR), defined,
respectively, as

TPR =
TP

TP + FN
=

TP
P

, FPR =
FP

FP + TN
=

FP
N

, (21)

with P = TP + FN and N = FP + TN being the number of anomalous and normal
samples, respectively. A related metric is the area under the curve (AUC) which provides
the area bounded by the ROC on a (TPR, FPR) plane. Other common metrics, especially
in the case of unbalanced scenarios (i.e., when the number of anomalous samples is much
smaller than the number of normal samples), are precision, recall and F1-score (F1), defined,
respectively, as

Precision =
TP

TP + FP
=

1
1 + N

P
FPR
TPR

, Recall = TPR , F1 =
2 · Precision · Recall
Precision + Recall

. (22)
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A related metric is the area under the precision–recall (AUPR) curve which provides
the area bounded by the precision–recall curve on a (P, R) plane.

5. Numerical Results and Discussion

In our numerical experiments, we conducted extensive tests on 13 different MTSAD
algorithms covering all three of the main MTSAD categories discussed in Section 2. The
algorithms are PCA, IF [42], OC-SVM [40] (conventional methods); VAE [64], MLP-AE [62],
CNN-AE [89], GRU [49], LSTM [48], LSTM-AE [90], MAD-GAN [68] (DNN-based methods);
ConvLSTM [83], USAD [85] and DAGMM [84] (composite models). For PCA, the anomaly
score is the weighted Euclidean distance between each sample and the hyperplane formed
by the specified eigenvectors. The IF algorithm uses a 100-tree ensemble as its estimator,
splitting at a single node with the help of a single feature. The training data are sampled
without replacement and used to fit individual trees. A polynomial kernel with a degree of
5 is utilized for the OC-SVM. Both MLP-AE and VAE are built from a three layer encoder
and three layer decoder. The input channels are reduced to a 16 dimensional latent space
vector and trained to minimize the mean square loss for 100 epochs. For CNN-AE, a one-
dimensional convolution is applied with a kernel size of 5 and reduced from 128 filters to
32 filters in latent space. A multivariate window of time series is created with sequence
length of 32 and 96.875% overlap. A look back of 120 observations is used to predict one
step ahead for GRU, LSTM and ConvLSTM models. This means that the model takes
the past 120 time steps as inputs and predicts the value for the next time step based on
this historical information. Both GRU and LSTM have a similar architecture, consisting of
three layers of stacked cells, where each cell has 64 neurons. The three layers of cells in a
stacked RNN provide the network with the ability to learn complex temporal dependencies
in the input data. For ConvLSTM, two sub-sequences with 60 time steps are created to
apply convolution before using the result as input to LSTM cells. For backpropagation,
a mini-batch gradient descent with different batch size is utilized and the adaptive moment
estimation (ADAM) [91] optimizer is applied with a learning rate of 10−3. An early stopping
criterion is set using a validation split of 5%. In the hidden layer, the activation function
utilized is the Rectified Linear Unit (ReLU), whereas for the output layer, a Sigmoid function
is employed. To avoid the overfitting problem, L2 regularization is used.

The performance of these algorithms is evaluated on both the SWaT and SMD datasets
(and presented in Section 4.1). For each method, we report precision, recall, F1-score,
AUC and AUPR, as defined in Section 4.3. The results are shown in Tables 2 and 3 for
the SWaT and the SMD datasets, respectively, where the highest scores for each metric
are underlined. The ROC and precision–recall curves for the SWaT (resp. SMD) dataset
are shown in Figure 4 (resp. Figure 5). We highlight that both the SWaT and SMD test
datasets are significantly imbalanced. Therefore, F1-score and AUPR should be given
more emphasis than AUC, since the latter may indicate artificially high performance for
imbalanced datasets.

For the SWaT datasets, it is apparent that both conventional and DNN-based methods
show comparable precision and recall. The prediction-based approaches such as LSTM,
GRU and ConvLSTM show better performance than the Autoencoders (MLP-AE, CNN-
AE and LSTM-AE). ConvLSTM, a method for simultaneously modeling spatio-temporal
sequences outperforms other methods in terms of AUC (0.863) and F1-score (0.782), while
also being among the best performing methods in terms of PRC (0.765). This is likely
due to the high number of collective anomalies in the SWaT dataset, which ConvLSTM
is especially suited for handling thanks to its combination of convolutions and temporal
memory. The LSTM approach performs better in terms of AUPRC (0.777). This is because
LSTM architecture is specifically designed to handle long-term dependencies and complex
patterns in sequential data which allows it to be suited for collective anomalies present in
the SWaT dataset.
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Table 2. SWaT Results.

Method Precision Recall F1-Score AUC AUPR Train
Time (s)

Test
Time (s)

PCA 0.996 0.642 0.781 0.827 0.730 0.120 0.025
IF 0.998 0.617 0.762 0.854 0.766 0.752 0.217
OC-SVM 0.959 0.644 0.771 0.826 0.746 3.488 0.890
VAE 0.996 0.642 0.781 0.827 0.730 84.478 0.463
MLP-AE 0.996 0.620 0.764 0.836 0.738 29.342 0.489
CNN-AE 0.976 0.643 0.775 0.842 0.753 56.711 1.001
GRU 0.996 0.643 0.782 0.844 0.752 44.213 2.397
LSTM 0.998 0.643 0.782 0.862 0.777 35.060 2.812
LSTM-AE 0.856 0.610 0.712 0.822 0.604 33.244 2.067
ConvLSTM 0.998 0.643 0.782 0.863 0.765 157.828 1.824
USAD 0.989 0.614 0.758 0.808 0.706 269.967 3.274
DAGMM 0.971 0.614 0.752 0.807 0.707 226.149 2.896
MAD-GAN 0.912 0.589 0.716 0.801 0.700 682.528 1.947

Table 3. SMD Results.

Method Precision Recall F1-Score AUC AUPR Train
Time (s)

Test
Time (s)

PCA 0.399 0.489 0.439 0.861 0.477 0.107 0.045
IF 0.263 0.839 0.401 0.854 0.405 0.898 0.361
OC-SVM 0.281 0.714 0.403 0.844 0.408 71.983 27.043
VAE 0.424 0.699 0.528 0.883 0.510 261.104 1.742
MLP-AE 0.374 0.772 0.504 0.908 0.507 7.772 1.606
CNN-AE 0.475 0.605 0.532 0.900 0.607 152.477 3.185
GRU 0.454 0.785 0.576 0.937 0.568 178.168 7.267
LSTM 0.479 0.649 0.551 0.907 0.535 213.119 7.287
LSTM-AE 0.311 0.801 0.448 0.868 0.318 75.912 6.403
CONVLSTM 0.458 0.898 0.606 0.943 0.593 1192.153 6.245
USAD 0.095 1.000 0.173 0.915 0.549 969.609 15.762
DAGMM 0.095 1.000 0.173 0.918 0.533 826.505 13.248
MAD-GAN 0.095 1.000 0.173 0.852 0.465 2479.399 8.921
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Figure 4. ROC and PRC for SWaT dataset.
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Figure 5. ROC and PRC for SMD dataset.

The conventional approaches perform quite similarly, with IF showing high per-
formance. IF, an ensemble classification method, also performs quite well compared to
Autoencoders and has the higher AUC (0.825) and AUPRC (0.766) among the considered
Autoencoder methods. Autoencoders, on the other hand, have a number of hyperparame-
ters that can be tweaked to improve performance to the level of more traditional approaches.
Among the DNN-based group, LSTM-AE has the lowest F1-score (0.712) and ConvLSTM
the largest (0.782). This shows even complex neural reconstruction-based approaches are
less efficient in identifying patterns in multivariate time series. Composite models such
USAD and DAGMM do not perform well for SWaT, but better hyperparameter tuning
could improve the results. We note that MAD-GAN is unstable during training and its
performance depended sensitively on the hyperparameters used. The performance of
USAD is also affected by the unstable adversarial learning of the Autoencoder architecture.

Although some methods (in particular ConvLSTM and LSTM) perform better than
the others on the SWaT dataset, we highlight that all the methods perform “in the same
ballpark”. In fact, the difference between the largest and smallest AUPR (resp. AUC) is less
than 0.17 (resp. 0.06). Moreover, the ROCs and PRCs in Figure 4 all follow a similar pattern.
It appears that almost all the methods are able to correctly classify around 60% of the
anomalies in the test set without any false positives. However, as the anomaly threshold is
reduced further to increase the recall/TPR, this results mostly in an increase in the amount
of false negatives. That is, the precision decreases while the recall is more or less constant.
The most likely explanation is that the SWaT dataset contains a significant amount of
anomalies that are collective anomalies that are not outliers in the context of point anomalies.
Our belief is that these are complex contextual anomalies and anomalous correlations
between variables. In any case, it is clear that there is still significant room for improving
upon the current state of the art performance. This motivates future development of novel
MTSAD methods.

For the SMD dataset, low precision and high recall is observed due to the small amount
of anomalies in the test dataset. DNN-based approaches perform reasonably well compared
to the conventional methods. Again, ConvLSTM outperforms other techniques in terms
of AUC (0.943) and AUPR (0.593) and also F1-score (0.606). This demonstrates that the
approach is effective in capturing the temporal and spatial dynamics of multivariate time
series. For the SMD dataset, the MAD-GAN algorithm exhibits the lowest performance
with F1-score (0.173), AUC (0.852) and LSTM-AE with AUPR (0.318). We notice that
the GAN-based methods generally perform poorly, but still show very high recall. This
indicates that their discriminators have not been able to capture all the characteristics of
normal data.
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We conclude this section with some considerations related to the computational com-
plexity and user-friendliness of the various algorithms previously considered. The tradeoff
between computational cost and performance is a critical factor when selecting a MTSAD
algorithm for IoT time series. From our analysis, we note that the GAN-based and compos-
ite architectures generally require large training/testing time compared to conventional
methods. Kernel-based approaches, such as OC-SVM, also have heavy requirements in
terms of training/testing time. ConvLSTM is slightly worse than average in terms of train-
ing time (157.8 s for SWaT and 1192 s for SMD), but better than average in terms of testing
time (3.2 s for SWaT and 6.2 s for SMD). Among the considered methods in this paper,
GAN-based methods were the least user-friendly: GANs are notoriously difficult to train
due to the necessity of matching the discriminator and the generator to avoid saturation
of the adversarial cost function. It is worth mentioning that conventional methods like
PCA and IF are extremely user-friendly and performed reasonably well for both datasets.
In contrast, training composite models takes longer time due to their complex architecture.
Overall, as for the experiments reported in this work, ConvLSTM offered the best tradeoff
when considering user-friendliness, computational complexity and performance. We expe-
rienced the method as stable during training and not critically sensitive to hyperparameters.
Moreover, it achieved the highest AUPR score for both datasets.

6. Conclusions and Future Work

In this paper, we provided a comprehensive review of unsupervised Multivariate
Time Series Anomaly Detection (MTSAD) methods. Massive volumes of unlabeled data,
generated by IoT devices and sensors in the form of multivariate time series, capture either
normal or anomalous behavior of monitored systems/environments. Several applications
in various domains (industrial is one of the most relevant) require unsupervised MTSAD
to be available and effective. We categorized unsupervised MTSAD techniques into three
broad classes (according to the mechanism for outlier identification): reconstruction, pre-
diction and compression. We further classified MTSAD approaches into three groups:
(i) conventional approaches, which are based on statistical methods; (ii) deep learning-
based methods; and (iii) composite models. Several methods in each group were described
in detail; 13 specific techniques were selected for quantitative performance analysis and
comparison using two public datasets; the most promising techniques were highlighted.

Despite the existence of several unsupervised MTSAD techniques in the current state-
of-the-art, there are substantial challenges still open. Many methods are specific and tailored
to particular use cases and no one-size-fits-all approach is available. Further research is
needed to overcome the limitations of existing approaches and here we describe some of
the promising directions.

Collective anomaly detection. Most of the previous unsupervised MTSAD algorithms
primarily focus on point anomaly detection, while collective or sub-sequence time-series
anomalies (more common in IoT-based systems) have been handled less frequently. Deep
neural networks are expected to provide relevant improvements in this area.

Real-time anomaly detection. Although the capability to operate in (near) real-time is
crucial for many use cases (e.g., IIoT, smart traffic and smart energy) involving short-term
or automated decision-making, most existing methods lack the ability to detect anomalies
efficiently in data streams. Addressing the challenge of evolving data streams in the context
of IoT anomaly detection as well as related computational cost is crucial.

Irregular time series. Most unsupervised MTSAD techniques assume regular sampling
of time-series data, which is not true in many real-world scenarios. Processing data to build
a regular time series (e.g., using interpolation techniques) is not necessarily optimal; thus,
detecting anomalies in irregular domains represents a relevant area for future research.

Explainable anomaly detection. Decision-support systems need to interact with human
operators; thus, often the capability to provide a rationale for a decision is more relevant
than the decision itself. Explainable Anomaly Detection (XAD), i.e., developing methods
for anomaly detection coupled with related supporting motivation, is necessary for the
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methods themselves to be considered for final deployment in many relevant scenarios,
e.g., safety-critical systems.

Hybrid models. Combining model-based and data-driven approaches into hybrid mod-
els is a relevant research direction aiming at maintaining the explainability/interpretability
of the former and the accuracy of the latter. Complex non-stationary environments are
scenarios in which such combination is expected to have a large impact.

Graph-based approaches. Graph neural networks (GNNs) and other graph-based
methodologies are promising tools for dealing effectively with topology constraints in
complex data. The investigation of how GNNs can be exploited for MTSAD anomaly
detection is likely among the most promising directions for designing a new generation of
IoT systems.
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Nomenclature
X Multivariate time series represented as a matrix
xk[n] Measurement sensed by the kth sensor at the nth time instant
VAR(p) Vector autoregression (VAR) model order of p
T2 Hotelling statistics
χ2

q(α) Upper α percentage in chi-square distribution
c(n) Average depth in an unsuccessful search in a Binary Search Tree
h(x) Path length of a particular data point in a given iTree
S(x, n) Isolation Forest anomaly score
h[t] Recursive output in the hidden layer of recurrent networks
i[t], f[t], o[t] Input, forget and output gates of LSTM cell, respectively
σ(·) Sigmoid function
�,∗ Hadamard product, Convolution operation
W, b Weight matrix and Bias vector
J Cost function
Nε(xi) The ε-neighborhood of a point xi
E, D Encoder, Decoder networks
G, D Generator, Discriminator network
TPR True positive rate
FPR False positive rate
AUC Area under the ROC curve
AUPR Area under the precision–recall curve
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