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Abstract

A recurring challenge for speech enhancement (SE) systems, is that removing/re-
ducing noise and reverberance does not necessarily increase the intelligibility or
the quality of the speech for human listeners.

Deep neural networks (DNNs) are promising models for speech enhancement
systems due to their highly adaptive non-linear nature. While these models can
be trained with standard deep learning (DL) techniques to perform a wide vari-
ety of tasks, their real-life performance is dependent on the predictive power of
the evaluation tools that guide the development process of speech enhancement
systems.

This thesis focuses on evaluating the reliability of popular objective performance
metrics of DNN-based speech enhancement systems. For this purpose, a variety
of single channel and multichannel SE systems were developed and subjectively
evaluated with listening tests.

None of the tested metrics proved to be reliable indicators for subjective changes
in performance. This lack of reliable indicators critically impedes progress within
the field of speech enhancement systems for human listeners.
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Preface

Approximately ten years ago, during my job interview for a researcher position at
the Acoustics group at SINTEF, I was asked whether I considered it an option to
take a PhD. This took place approximately two minutes after I had been shown
the corporate slides showing ambitious targets for a high percentage of employees
with a doctorate degree. “Of course,” I said “if the right project comes along, that
is.”

I did not expect that to really happen. And soon after, I was also way too busy
being what Norwegians call ‘a potato’: a label that is apparently not meant as an
insult, but a reference to versatility(?). As a research scientist at SINTEF’s Acoustics
group I worked with aircraft noise calculations, algorithms for automatic audi-
ometry, community noise annoyance surveys, military noise calculation software
development, a hearing assistive app prototype, and then 3D-audio. I focused
more and more on programming and became increasingly interested in machine
learning.

And then, the right project did come along. It started with last-minute midnight
proposal writing, an invaluable Dilbert cartoon, and funding that disappeared
literally two weeks after I had been admitted to the PhD programme. The project
was disrupted twice due to the birth of my two wonderful boys. And then the
Covid-19 pandemic came upon us with its lockdowns, quarantine regulations,
shortened child-care opening times and travel restrictions. However, this very same
pandemic also turned my PhD topic into something that friends, family and the
media frequently discussed. Suddenly ‘everyone’ was asking for better microphones
and complaining about participants that forget to unmute.

My 20 % position at SINTEF provided me with a constant stream of projects
that I also wanted to work on, and far too often I felt that I never seemed to get a
full week of work done anywhere, due to all of life’s other distractions. However,
I am also thoroughly convinced that the two main sources behind most of these
distractions (who I love more than I’ll ever be able to explain to them), also kept
me from getting completely stuck on unimportant details during the project.

Sanity itself, however, I owe to my husband Wouter, for being with me through
it all. This of course includes the nightly stomach-flue duty shifts and other not-so
glorious moments of family life, but more importantly, the moments that tip the
balance clearly to where it needs to be. Whether it is through forcing me away
from my desk for short lunch-walks while sharing a home office or dragging the
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whole family on camping trips into magical places like Femund: he always seems
to know what I really need, especially when I’m too busy to see it myself.

I’m also thankful to the many other people that have helped me get here. In a
very literal sense, this PhD would never have happened without Odd Kr. Pettersen,
whose ‘cat herding’ skills are unsurpassed: at times, even I thought this whole
thing was my idea. I want to thank my main supervisor, Tor Andre Myrvoll, who
was always available to discuss statistics, signal processing and Unix-systems, and
my second supervisor, Torbjørn Svendsen, for his critical questions and valuable
feedback on all written work.

I’m also highly appreciative for the input from the other co-authors for the
papers included in this thesis: Tron V. Tronstad (who gets bonus points for sitting
through countless listening tests), Izzie Yi Liu, and Johannes Kvam. I want to thank
Nancy Eik-Nes, who is better with a red pen than anyone else I know. And of
course, I am thankful to all participants of the different listening tests. I know it
is boring to listen to sentences like “Benjamin har 3 fine kasser”1 over and over
again. Really, I know.

Likewise, I’m grateful to my parents, who’ve brainwashed me from an early
age into thinking that science is fun. And then there are my friends here in Norway
and abroad, who I need to thank for being ‘there’, wherever that is, physically
or digitally. A special mention goes to those who kept me here in Norway when
we suddenly found ourselves completely isolated from all our friends, family and
our safety net in the Netherlands. Inga, Karoline and Kjersti: you made all the
difference.

Lastly, I want to dedicate this thesis to my deceased grandmother, ‘oma Anneke’,
whose intellect and kindness have always been an inspiration. Suffering from severe
hearing loss, she was the first to introduce me to the need for speech enhancement,
even though it took a long time before I could understand the truth in her words:

“It’s not that I can’t hear well enough anymore: it is just so noisy
everywhere”.

1“Benjamin has 3 nice boxes”
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Chapter 1

Introduction

“You’re on mute.”
When the Covid-19 pandemic hit, and countries one by one went into lockdown,

this phrase rapidly claimed its place in the English language (and many others).
Almost overnight, the expression was recorded 10 times more frequently in business
phone transcripts [6], and in 2021, British adults working from home voted it
to be the most annoying overused expression from the pandemic [7]. But the
phrase does not directly mention the virus or the concept of working from home.
Instead, more than anything else, it is about the failure of speech enhancement
(SE) systems.

In physical meetings, participants do not need to be muted. They can breathe,
shift in their chairs, drink coffee from their coffee cups and take notes, without
annoying or interrupting anyone. And while privacy is naturally more of an issue
when meetings take place from (literally) anywhere, the sound of the TV playing
in the background (to keep the kids quiet) really should not bother those on the
other side of the call any more than it bothers the ones who are actually in the
same room as the source.

Speech enhancement is about improving the intelligibility and quality of speech
in a recorded signal. The online meeting/conference situation (including the extra
challenging hybrid meetings where some participants are in the same room, whilst
others are calling in), is just one of its telecommunication applications. Other
applications are, for example, in telephony (mobile phones, call centers, etc.) and
in radio communication (with cockpit to flight tower communication being an
example of a situation with extreme noise levels). Speech enhancement is also
important for hearing assistive devices and as a front-end for automatic speech
recognition (ASR).

Speech enhancement is something that the human brain is great at, but that the
field of speech processing has struggled with since the invention of the telephone,
well over a hundred years ago. Especially, to improve the the intelligibility and
quality of a recorded speech signal, so that a human listener consistently under-
stands more of, and indicates preference over, the original noisy record, has been
shown to be quite the challenge, again and again [8–11].

1
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To be able to say anything about the performance of a newly developed speech
enhancement system, the SE system needs to be evaluated. To evaluate speech
enhancement systems, there are both ‘subjective’ and ‘objective’ evaluation methods.
‘Subjective methods’ provide a direct measure of human response with tests that
involve human subjects. In contrast, ‘objective’ methods attempt to predict this
human response by means of an algorithm, generally implemented in easy-to-use
scripts. Subjective testing is time-consuming and expensive, but can provide a true
measure of the SE system’s performance. Objective evaluation is fast and does
not require manual labour, which means that it can be repeated frequently during
the SE system development process. As such, objective evaluation methods guide
the development of SE systems, while subjective evaluation is used to evaluate
final system performance. Therefore, the ability of objective metrics to correctly
estimate changes in subjective SE system performance is crucial to the SE system
development process and therefore also the final SE system performance.

This thesis focuses both on the development of modern speech enhancement
systems and the predictive power of commonly used objective evaluation tools.

The rest of this introduction presents a short review of relevant background
on the speech enhancement systems themselves and on the methods used for
evaluating these systems.

1.1 Speech Enhancement

A speech enhancement system can either be single channel or multichannel, de-
pending on the number of speech signal channels (which equals the number of
microphones used to record the speech) it receives as input.

Single channel speech enhancement systems are more widely applicable, as
only one microphone is required. However, microphone elements have become
more affordable, and many devices (like smartphones, laptops and webcams)
now come with microphone arrays: multiple microphones placed (slightly) apart.
This allows for multichannel speech enhancement, where the small differences
between the different recordings of the same speech signal can be utilised. As such,
the single and multichannel speech enhancement branches are fundamentally
different, even if the task for these systems is the same.

Traditional single channel speech enhancement

In the late seventies and early eighties, the growing popularity of ‘speech com-
munication systems’ (including telephony, radio broadcasting and public-address
systems) already provided a wide range of applications for speech enhancement
systems. During this time, these systems relied on single microphone input, and
for many of the applications, bandwidth compression was required.

The bandwidth compression systems were based on models of clean speech sig-
nals, and therefore significantly reduced the speech quality and intelligibility when
the input was not clean, but instead degraded by additive noise (and reverberance).
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This lead to considerable focus on the topic of single channel speech enhancement,
which resulted in several methods that are still in use today, and/or from which
many current methods are derived. Well-known examples of these ‘traditional’
speech enhancement methods are spectral subtraction [12], Wiener filtering [13,
14], and minimum mean-square error (MMSE) estimation [15]. These methods
can reduce the amount of stationary background noise, but generally introduce
residual noise (musical noise) and distortion, and are unsuitable for non-stationary
noise types.

A case for artificial neural networks

Part of the difficulty of speech enhancement lies in the fact that speech is a complex
signal that varies widely depending on what is being said, who is saying it, and
in what conditions. At the same time, the noise signal also varies, and may be
very different from the speech, or very close to it. This limits what ‘physics’ or
‘model/rule-based’ enhancement approaches (such as the traditional methods
mentioned above) can achieve.

The human brain, on the other hand, is excellent at understanding speech
in noise, and it has been shown that this is a skill that children learn over time:
young adults in their early twenties can tolerate several dB more noise in speech
than twelve-year-old children [16]. The ability to understand speech in noise is
‘learned’ by exposure to many different degraded speech signals, from which the
noise coping strategies are then indirectly inferred. This inspires the strategy to
‘train’ speech enhancement systems in a similar manner: not by dictating rules,
or outlining physics-based models, but by exposing the system to many different
degraded signals while giving it the task to estimate the the underlying clean
speech. This type of approach is called ‘supervised (machine) learning’.

The speech enhancement problem can therefore be defined as a supervised
machine learning problem, where the goal is to find the highly complex and non-
linear mapping (the regression relationship) between the degraded and clean
speech. While supervised learning methods are very general and can also be
applied to simple forms of regression (such as linear and logarithmic regression),
the complexity of the mapping between degraded and clean speech motivates the
use of non-linear complex functions called ‘artificial neural networks’ (ANNs), or
‘neural networks’ (NNs) for short.

ANNs are made up of a network of nodes, where each node receives input from
other nodes, and then sends its output to other nodes. Each of these connections
is associated with adjustable weights. This, combined with a non-linearity at each
node, ensures that the ANN becomes a very general function, which can behave in
just about any way possible, where the exact behaviour depends on the values of
all its weights.

Recently there has been a great deal of focus on ANNs in both scientific and
non-scientific channels, as ANNs are currently the technological core of the majority
of systems that solve common problems in the fields of ‘artificial intelligence’ (AI).
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The general nature of ANNs makes them relevant for widely different applications,
and well-known uses include image classification, face recognition, automatic
speech recognition, chatbots, etc. etc. However, ANNs are not new, and ANNs
were already used for single channel speech enhancement back in the eighties and
nineties [17–19]. Early ANNs had fewer nodes than modern ANNs, due to hardware
restrictions and a lack of the appropriate methodology required for the ‘training’
(the optimizing of the weights) of these more complex neural networks. Therefore,
the early ANNs could not hope to estimate the complicated relationship between
noisy speech and clean speech. So for decades, the focus was on other supervised
learning techniques, like Gaussian mixture models (GMMs) [20], support vector
machines (SVMs) [21], and non-negative matrix factorization (NMF) [22]

At the same time, neural network technology continued to improve. In 2012,
the victory of the convolutional neural network called ‘AlexNet’ in the image
recognition contest ImageNet initiated a cascade of deep-learning (DL) based
technology development. Here ‘deep’ refers to the fact that the nodes of the neural
network are organized in ‘layers’, where each layer (a collection of nodes) acts as
a function nested in the subsequent layer. Deep learning is therefore a particular
type of machine learning in which deep (multilayered) artificial neural networks,
called ‘deep neural networks’ (DNNs), are trained for particular tasks.

In 2013, Wang et al. showed that combining DNNs with SVMs could outperform
SVMs at the speech enhancement task [23]. This system attempted to estimate
the ideal binary mask (IBM): a spectral mask with values that are either equal to
one (the frequency band will not be blocked) or zero (the frequency band will be
blocked). In the same year, Lu et al. published a paper where a deep autoencoder
was used for speech enhancement, introducing the first deep architecture that
attempted to find the direct mapping (without the use of a mask) between noisy
and clean speech [24]. This was also the strategy of Xu et al. in 2016, where a DNN
was trained to map the low power spectrum of noisy speech to clean speech [25].

These early deep learning based systems had promising results and motivated
a new wave of interest in the topic. Recently, Microsoft has been organizing Deep
Noise Suppression (DNS) challenges at the two major conferences for the speech
processing community: INTERSPEECH and ICASSP [26–28]). While earlier men-
tioned systems generally were designed with both automatic speech recognition
(ASR) and human listeners in mind, the DNS challenges specifically encourage
research into improving subjective quality for human listeners. Among the contribu-
tions to these challenges, DNN-based approaches are the norm, and the same two
‘branches‘ within deep learning-based speech enhancement (namely masking-based
approaches vs direct mapping) are still equally relevant today [29, 30].

Multichannel speech enhancement

While the DNS challenges have only put focus on speech enhancement for human
listeners in the past few years, regularly repeated CHiME (Computational Hearing
in Multisource Environments) speech separation and recognition challenges have
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put focus on noise robust automatic speech recognition for over a decade [31–
36]. From the very beginning, datasets for these CHiME challenges have been
multichannel, to allow for spatial filtering, in other words, the ability to separate
sources (such as noise and speech) based on the fact that they are at different
locations.

Model based methods for spatial filtering are collectively called ‘beamform-
ing’ models. Beamforming is about boosting (any kind of) desired signal that is
arriving from a specific direction, while attenuating the signals coming from other
directions. How well it works depends on the microphone array configuration, the
reverberation in the room, and how much the sources are separated in space.

Beamforming strategies can give improved speech intelligibility, even for the
very small arrays on hearing aids (see for example [37, 38]). Beamforming has
also proven to be valuable in ASR applications, especially when combined with
DNN-based speech enhancement [39, 40]. While beamforming on its own can give
impressive results, it only does so when the reverberation is limited, the direction
of the speaker is known (and the noise comes from somewhere else), and/or
when the noise signal itself is also known (which is especially difficult for transient
noises).

As such, it is a natural next step to consider combining beamforming and deep
neural networks for better supervised multichannel speech enhancement systems
for human listeners. This step requires multichannel training datasets, which can
be acquired by augmenting single channel datasets with simulated room impulse
responses (RIRs), one for each microphone element in the array.

Both the CHiME and DNS Challenges have provided simulated and real data
test sets. These allow for comparison of performance of systems on these sets.
While there is a general trend that indicates that systems that perform better on
simulated data also perform better on real data, there are clear performance gaps
and outliers to the trend [33]. This motivates looking into the generation of more
realistic multichannel data for the training of DNN-based speech enhancement
systems.

1.2 Evaluation of Speech Enhancement Systems

To ensure that an SE system indeed enhances a signal, performance needs to be
measured. Performance indicators also allow for comparison of different systems
and can guide the development of new algorithms.

The signal-to-noise ratio (SNR) is possibly the performance metric with the
longest history. But it is quite easy to raise the SNR, while simultaneously in-
troducing distortion and degrading the speech for human listeners. Therefore it
is important to consider the effect on human perception in evaluation methods.
Developing such metrics is a field of research on its own, but the results are of
crucial importance for the field of speech enhancement.

First of all, it is important to separate the concepts of intelligibility and quality.
Intelligibility refers to the amount of spoken information the listener has actually
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understood. Quality, on the other hand, is an opinion-based indicator: how an-
noying is the noise, how would you rank this clip with respect to this other clip?
Both intelligibility and quality increase in lower noise conditions, but this does not
mean that SE systems tend to achieve the same. Instead, already in 1979, Lim et
al. observe that many SE algorithms can improve quality, but that almost all of
these systems reduce intelligibility and that those that do not, tend to degrade the
quality [8].

For both quality and intelligibility, it is the human perception of the signal that
determines the performance. Both measures can therefore be measured subjectively
with listening tests. However, listening tests are expensive, time consuming, and
do not show where the performance difference comes from. As such, they are
poor tools for guiding the development of speech enhancement systems, especially
when relying on the highly iterative process of machine learning.

Therefore, objective measures of both quality and intelligibility have been
developed. Popular examples are PESQ (perceptual evaluation of speech quality),
POLQA (perceptual objective listening quality analysis), STOI (short-time objective
intelligibility), ESTOI (extended STOI), HASPI (hearing-aid speech perception
index), CSII (coherence speech intelligibility index) and NCM (normalized covari-
ance metric). These metrics are algorithms that attempt to predict the response
of human listeners with respect to the quality or intelligibility of speech. While
practical and popular tools for system development, their usability stands or falls
with their predictive power. Given the complex nature of human hearing and audio
perception, it comes as no surprise that objective measures of speech intelligibility
and quality often struggle to estimate human response [41–44].

Therefore it is important to validate the use of popular objective performance
metrics for DNN-based speech enhancement, by comparing predicted performance
with subjective results.

1.3 Topics of this Thesis

In summary, this thesis investigates different topics motivated by the presented
background. For this purpose, multiple single channel and multichannel speech
enhancement systems were implemented and evaluated both objectively and
subjectively. Specific background for the topics studied, is presented in the papers
themselves.

For this thesis, the following speech enhancement systems were evaluated:

1. single channel: A fully connected feed forward network that estimates the
log magnitude spectra of clean speech [Paper I][Paper II]

2. single channel: Same as 1, but with an added global variance normalization
postprocessing step [Paper I]

3. single channel: Same as 1, but where the target is to reduce the noise,
instead of removing it [Paper II]
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4. single channel: A convolutional recurrent network that estimates a complex
ratio mask to be applied to the noisy input combined with a dereverberation
block [Paper IV][Paper V]

5. Multichannel: The system used in 4 combined with a beamformer, where
the direction of the beam was estimated from noisy input [Paper IV][Paper
V]

6. Multichannel: Same as 5, but with oracle direction input for the beamformer
[Paper IV][Paper V]

All of these speech enhancement systems were expected to enhance the speech,
with respect to intelligibility and/or quality according to the predictions by objective
metrics. Therefore, the investigations specifically focused on:

• Do any of these systems improve subjective intelligibility? [Paper I][Paper
II][Paper V]
• Do either the first and/or third system improve subjective quality? [Paper II]
• Is STOI a reliable indicator for the change in speech recognition thresholds

for speech processed by any of these systems? [Paper I][Paper II][Paper V]
• Is POLQA a reliable indicator for the change in mean opinion scores for

speech processed by the first and/or third system? [Paper I][Paper II][Paper
V]
• Are NCM, CSII, ESTOI and HASPI reliable indicators for the change in speech

recognition thresholds for systems four to six? [Paper V]

To train the multichannel systems, multichannel data had to be acquired. Here, the
effect of using different simulation methods (aiming to reduce the gap between
real and simulated data) was investigated through the application of direction of
arrival estimation (DOA):

• Is the final performance of a DOA estimation system affected by the room
impulse response simulation method used to generate training data? [Paper
III]

1.4 Mathematical Notation

Throughout Part I of this thesis, bold font is used to indicate any kind of multidi-
mensional tensor (vectors, matrices and multidimensional arrays), while signals,
functions, and scalars are in regular font. For signals, uppercase indicates that
the signal is defined in the frequency domain, whereas lowercase is used for time
domain signals. For tensors, the choice of uppercase vs lowercase is based on
convention, and does not convey any information. For signals, square brackets are
used for discrete arguments, while parentheses indicate continuous arguments.
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1.5 Thesis Structure

This thesis is a compilation thesis and is divided into two parts. The first part
presents the theory, relevant literature, methodology, and results in a combined
manner. The second part, the papers and articles of this thesis, presents these
topics as self-contained studies.

Part I contains seven more chapters in addition to this introduction. In the first
three of these, the different building blocks of a speech enhancement pipeline are
discussed. Chapter 2 goes into the details of degraded speech data, showing what
needs to be ‘removed’ in order for speech to be enhanced. Chapter 3, explains the
general deep learning techniques needed to understand how state-of-the-art speech
enhancement systems work. Then, in Chapter 4, the question of how enhancement
systems can be evaluated is discussed: How can performance be measured?

Building upon the tools outlined in these earlier chapters, Chapter 5 presents
the single channel speech enhancement networks evaluated for this thesis. The
multichannel speech enhancement systems are covered in Chapter 6. Here the the-
ories behind microphone arrays, direction of arrival estimation, and beamforming
are also discussed. Results of all tested systems are presented in Chapter 7.

Finally, in Chapter 8, general conclusions of the combined body of work are
drawn, with additional focus on opportunities for further work.



Chapter 2

Degraded Speech Data

Recording ‘clean’ speech is practically impossible and there are two main reasons
for this. Firstly, there is the issue of noise: Other sources of sound are almost always
present. Secondly, there is the presence of reverberation: The speech signal itself is
usually reflected into different directions by nearby objects (including walls, floors
and ceilings), causing several non-exact copies of the same speech signal to arrive
at the microphone at different moments in time.

The speech recorded in an anechoic chamber is the ‘cleanest’. Anechoic rooms
are built with absorbing surfaces to stop reflections of sound, and they are generally
isolated to prevent sound from outside of the room to enter. There is no such thing
as a perfectly sound-proofed anechoic room, and all microphones have at least
some self-noise. Moreover, the vast majority of speech recordings are not obtained
in highly specialized rooms with high-end equipment. Instead, meeting participants
record their speech with whatever device they have available at the time, and from
just about anywhere: their (home) office, a meeting room, the bus stop or a car.
Most speech recordings therefore contain noisy reverberant speech that is more
difficult to understand and less comfortable to listen to than clean speech. Not
only that, the recordings are usually also worse than the real-life non-recorded
sound would have been; that is, if the listener’s ears had been located where the
microphone was.

This effect is not because microphones are so much worse at picking up a
signal than human ears. Instead it has to do with how the signal is presented. The
human brain normally spatially filters everything it hears, automatically adapting
the experience to even the most minor movements of the head. It does this by
interpreting the tiny but crucial differences of the two signals received at the
two ears. When in a (conference) call, the signal is usually presented as either a
single channel (one ear) signal, or a stereo signal, with two equal signals at both
ears. This prevents the brain from being able to spatially filter the speech, thus
the subjective experience is noisier and more reverberant. Speech enhancement
systems attempt to improve the intelligibility and quality of speech, and the most
obvious route to this is by removing the noise and reverberance.

9
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This chapter starts at the very beginning of the SE processing pipeline. First the
degraded (to be enhanced) speech signal is defined and different presentations of
this signal are presented. These different presentations are relevant, both to be able
to visualize important concepts, and to be able to present the speech to trainable
SE systems. Additionally, relevant methods for the simulation of degraded speech
are explained.

2.1 Signal Representation

2.1.1 Time domain

Audible sound — including speech, the interfering noise and reverberance —
consists of acoustical waves propagated by vibrations in air. Microphone elements
pick up these sound waves and convert them into electronic signals. Electronic
signals can either be analogue or digital.

The noisy reverberant speech signal recorded by an analogue microphone
element can be called x(t), with t for time. Then its digital equivalent, sampled
at a fixed sampling frequency is x[n], with n indicating the time step. This x[n]
depends on the additive noise signal at the microphone(v[n]), and the clean speech
signal produced at the source (s[n]), as follows:

x[n] = h[n] ∗ s[n] + v[n], (2.1)

where h[n], is the complete transfer function from the speech source to the record-
ing unit (including the impulse response (IR), other possible transmission artefacts,
and the microphone response). For signals recorded indoors, it is common to refer
to the impulse response as the room impulse response (RIR). The noise signal may
come from one or more sources, and each of these will have their own reverberance,
but all of these signal components are here collected in the definition of n[n].

Both noise and reverberance degrade the intelligibility and quality of speech [45,
46]. Therefore, from a mathematical point of view, the goal of speech enhancement,
is to recover the signal s[n].

The amount of noise varies with time, and can be anything from barely audible,
to completely dominating over the speech signal. Another important concept is
therefore the signal-to-noise ratio (SNR). When only additive noise is taken into
account, the SNR is:

SNRadditive noise = 10 log10

∑N
n=1 s[n]2
∑N

n=1 v[n]2
, (2.2)

where N is the total number of samples over which the SNR is obtained. When
including distortions and reverberation, the SNR becomes:

SNR= 10 log10

∑N
n=1 s[n]2
∑N

n=1 q[n]2
, where (2.3)
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q[n] = h[n] ∗ s[n] + v[n]− s[n] = x[n]− s[n]. (2.4)

Care needs to taken when comparing SNRs for speech. Given a noise source
that is constant through time and an equal speech signal, the SNR will depend
on the duration of the recording. Longer recordings will contain more segments
where only noise is present, and these recordings will have a lower SNR, even if the
level of the speech and noise sources are unchanged. However, the intelligibility
and quality will not change accordingly, as the amount of noise present during the
speech has not been altered.

Figure 2.1 shows example plots of clean speech (s[n]), reverberant speech
(h[n] ∗ s[n]), the noise signal (v[n]), and noisy reverberant speech (x[n]). Here
the SNR of the noisy reverberant speech equals 5 dB.
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Figure 2.1: Time domain signals of the clean speech, reverberant speech, noise
and noisy reverberant signals

All these signals are time domain signals. It is possible to send these signals
to a loudspeaker to listen to them, but from a visualization perspective, the time
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domain signal is not very informative. The plots show very little information about
the type of noise in the recording, and the presence of reverberance is not/barely
noticeable at all.

This is because all the different frequency components of audio signals are
present in the time domain signal, but they are hard to discern as they are all
added on top of each other at each time step.

2.1.2 Frequency domain

The frequency domain gives a more informative representation of the signal. The
discrete Fourier transform (DFT), or its inverse, can be calculated with the fast
Fourier transform (FFT). However, the speech signals also vary over time and it is
critical that this information is not lost during the transformation.

Therefore, speech signals are often transformed with the short-time Fourier
transform (STFT) algorithm. Here, the DFT is obtained (using the FFT) for over-
lapping windows of the signal. The windows are obtained by applying a sliding
Hann (or similar) window to overlapping segments of the signal. The idea is that
the windows are chosen short enough, so that the signal can be assumed to be
stationary for the duration of the window.

The STFT can be used on all signals to obtain the frequency domain signals
X [m, k], H[m, k], S[m, k], and V [m, k], where m refers to the STFT frame index,
and k refers to the frequency bin.

X [m, k] = H[m, k]S[m, k] + V [m, k], (2.5)

The STFT coefficients are complex, and therefore their real (ℜ) and imaginary
(ℑ) parts can be presented separately, or as a combination of the magnitude and
phase.

Magnitude and phase

The magnitude (|X [m, k]|) and phase (θX [m,k]) of the noisy signal are:

|X [m, k]|=
q

ℜ (X [m, k])2 + ℑ (X [m, k])2, and (2.6)

θX [m,k] = tan−1 ℑ (X [m, k])
ℜ (X [m, k])

. (2.7)

Figure 2.2 shows the magnitude spectra of the STFT of clean speech (S[n, k]).
In these magnitude spectra, there is limited detail visible due to the large dynamic
range of the magnitude coefficients. A more sensible presentation is therefore
given in Figure 2.3, which shows the magnitude coefficients transformed with
the log operator. The log-magnitude spectra show how the frequency content of
signals varies over time.

However, to be able to reconstruct the time domain signal, the phase spectrum
is also required. Here there are two options: to estimate the phase of the clean
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Figure 2.2: Magnitude spectrum of the STFT of the clean speech signal
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target speech, or to reuse the noisy phase directly, letting the enhancement system
only work on the magnitude spectra.

Research from the early eighties advocated the ‘unimportance’ of estimating
the phase. Wang et al., for example, concluded that “an effort to more accurately
estimate the phase from the noisy speech is unwarranted in the context of speech
enhancement if the estimate is used to reconstruct a signal by combining it with
an independently estimated magnitude” [47].

Therefore, based on the presumed lack of contribution by the phase, it has
been common to enhance speech by combining the enhanced magnitude spectrum
with the noisy (unaltered) phase. This was also the chosen method for the earlier
papers in this thesis [Paper I][Paper II].

More recently, Paliwal et al. however presented clear evidence related to the
importance of phase [48]. Their study showed that enhancement of the phase on
its own (in other words, even without enhancing the magnitude) could already
improve the subjective quality of the reconstructed signal. Additionally, they con-
cluded that accurate phase spectrum estimates have the potential to significantly
improve the performance of existing magnitude spectrum-based methods.

However, just because the retrieval of the clean phase is important, does not
mean that it is easy. The ‘shortcut’ of reusing the noisy phase was additionally
motivated from the machine learning perspective. Figure 2.4, shows the phase
spectrum of the STFT coefficients of the clean speech signal. This spectrum con-
tains very little structure — it appears rather random/noisy. This also means it
will be difficult/impossible to learn anything from the phase spectra [49]. While
there has been considerable effort put into clean phase retrieval, the task remains
challenging [50].
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Figure 2.4: Phase spectrum of the STFT of the clean speech signal

Real and imaginary

Given that the phase actually is important, but too unstructured to be learned,
other representations of the signal become more relevant. Both the phase and the
magnitude spectra are obtained from the real and imaginary STFT coefficients.
Therefore, improving the real and imaginary spectra will affect both phase and
magnitude. Furthermore, Figures 2.5 and 2.6 show that these spectra do contain
both temporal and spectral structure, making it possible to learn an informative
mapping [49]. Therefore, the later work of this thesis utilised the real and imaginary
spectra as input to the SE network [Paper IV][Paper V].
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2.1.3 Multichannel

So far, this chapter has discussed the signals obtained by a single microphone. A
microphone array is nothing more than a collection of multiple microphones (each
located at a unique location). Therefore, the signal notation can be expanded to a
multichannel problem using index i for each microphone element:

X [i, m, k] = H[i, m, k]S[m, k] + V [i, m, k], i = 1 . . . N , (2.8)

where N is the number of microphone elements in the array.
Here, the clean speech signal S[m, k] does not depend on the microphone index

(the speech source signal is the same, independent of where or how it is recorded).
The RIR H[i, m, k], however, is highly dependent on the relative positions of the
speaker, the reflective surfaces, and the exact microphone element location. Also
V [i, m, k] depends on the microphone index, because here all different noise
sources and their RIRs are combined into a single term. Adding the exact same
noise to all channels would lead to a unrealistic situation where this noise can be
used as a reference signal for direction of arrival estimation.

The microphone elements can be arranged in any possible configuration, but
the multichannel SE systems from [Paper III][Paper IV][Paper V] are based on
a circular microphone array. This particular array is shown in Figure 2.7. It is a
prototype for a table top microphone, with a total of 37 microphone elements. The
elements are configured in 4 concentric circles with diameters that increase from
4 cm to 16 cm in steps of 4 cm, plus a microphone placed in the center.

Figure 2.7: Photograph of the table top microphone array prototype. Here the
backside of the array shows the 37 microphone elements.

While preliminary experiments were conducted with several different sets of
microphone elements, all the published work on multichannel speech processing
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is based on the circular configuration of nine of the microphone elements shown
in Figure 2.8 [Paper V][Paper III][Paper IV].
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Figure 2.8: Configuration of the selected microphone array channels. Blue crosses
indicate all available elements, red circles indicate the selected channels.

2.2 Clean Speech

As discussed in the introduction to this chapter, clean speech is hard to come by. It
is possible to record speech in an anechoic chamber, but this is an expensive process
that will limit the overall size of the database given time and cost restrictions.
Therefore, for the purpose of trainable SE systems, it is common to rely on the next
best thing: near-mouth microphone recordings in (relatively) quiet surroundings.
Due to the short distance between the microphone and the signal source (the
speaker’s mouth), the direct signal should strongly dominate over all the reflections,
and any background noise.

2.2.1 Speech databases

Many of the earlier speech databases used for speech enhancement were actually
designed for automatic speech recognition (ASR). An example of such a database is
TIMIT [51], which contains recordings of 630 speakers of eight major dialects/ac-
cents of American English, at a sampling frequency of 16 kHz. All speakers read
ten phonetically rich sentences and the corpus includes time-aligned orthographic,
phonetic and word transcriptions. Over the course of 2013 and 2014, a similar
Norwegian database was collected: NB Tale [52]. NB Tale contains annotated 48
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kHz recordings of 380 speakers, categorized by the main Norwegian dialects. The
first papers included in this thesis relied on these databases [Paper I][Paper II].

The advantage of these databases is that they are controlled recordings, and
all segments have passed through quality assurance. However, they are limited
in size, and annotation data — while crucial for ASR — is not needed for speech
enhancement.

Therefore, the speech data open-sourced for the 2021 INTERSPEECH Deep
Noise Suppression Challenge [27] was used for the later papers in this thesis
[Paper IV][Paper V]. The ‘English read’, the ‘English emotional’, and the ‘Foreign
language’ speech subsets were included. Non-English languages included in this
dataset are French, German, Italian, Mandarin, Russian and Spanish. Note that
the Norwegian speech database was specifically not included in the training data,
for easier comparison to other literature, and under the assumption that a system
trained on large amounts of data from related languages like German and English
should generalize well to Norwegian.

All subjective tests with listeners were based on 5-word Hagerman sentences
speech material from Øygarden’s speech-in-noise test [53]. These sentences were
recorded in an audiometric room with a near-mouth microphone.

2.3 Additive Noise

People speaking in noisy environments often raise their voice, not only changing
the SNR, but also the pitch of their voice. However, from a signal processing point
of view, the noise signal is considered to be independent of the speech signal. This
is shown in Equation 2.1 where the noise is simply additive.

For most applications of speech enhancement, there is little knowledge about
the noise that may be present. There are countless sources of noise around us: it
could be a dog barking in the background, a door being slammed shut, or a coffee
machine grinding beans.

For the purpose of speech enhancement, it is therefore important to develop
systems that generalize well to this wide variety of noise types. A general learning-
based approach is therefore to expose trainable systems to all different sorts of
noise, in the hope that it will eventually learn to find the speech signal, independent
of the type of noise present.

2.3.1 Noise databases

The availability of audio databases containing suitable noise clips for training
speech enhancement systems has increased a lot over the years. In 2015, Xu et
al. presented their system for which they designed what was then considered a
large training set, with many noise types [25]. Their noise database contained 104
different noise recordings of different noise types [54], and this set set was used
for the earlier works of this thesis [Paper I][Paper II].
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However, since then, Google has released a noise dataset called ‘Audioset’ with
more than 2 million human labeled sound clips taken from YouTube videos [55]. In
2020, Microsoft provided a cleaned and more balanced subset of this database for
their Deep Noise Suppression Challenges [26–28], containing 60 000 clips for 150
unique audio classes, plus an additional 10 000 clips from other sources. Here the
noise types were specifically chosen based on their relevance for the VoIP (voice
over internet protocol) application. This database is several orders of magnitudes
larger than the one from Xu et al.. The later work of this thesis therefore relied on
this much more extensive noise database [Paper IV][Paper V].

2.3.2 Recordings

For the purpose of evaluating multichannel speech enhancement systems, a set of
noises was recorded with the microphone array prototype shown in Figure 2.7. The
type of noises were chosen with the main application in mind: SE for the hybrid
meeting setting. All noises are therefore typical ‘meeting room’ noises. Figure 2.9
shows random segments of the recorded noise types.
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Figure 2.9: Random segments of the log-magnitude spectra of the recorded noise
types. Only one channel shown.
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The noises were recorded in a real meeting room at SINTEF, and contained
therefore not only the chosen events, but also the general background noise in
this room. This noise floor was dominated by the hum from the air-conditioning
system, which is a stationary type of noise that only changes slowly over time.
The other noises (like the clicking of a pen, or the movement of a chair) show
more transient behaviour: they last only for a short time. This also means that SE
systems should be able to deal with transient noises, where the long-term statistics
of past segments have little relevance to the segment to be cleaned.

For the purpose of evaluating the single channel speech enhancement systems
of [Paper I] and [Paper II], two noise clips were recorded: traffic noise and babble
noise. These were recorded locally, at a crossroad in Trondheim, and in one of the
university cafeterias of the NTNU, respectively.

2.4 Reverberance

Recorded speech signals are reverberant, because microphones also record all
reflections of the direct speech signal signal that arrive at different moments in
time. Reverberance is frequency dependent, as different frequencies are reflected
and absorbed to different degrees.

The reverberance of the signal is captured by the impulse response h of Equa-
tion 2.1, and H[m, k] of Equation 2.5. Each microphone element has its own RIR,
which depends on the microphone’s position relative to the speaker and all surfaces
in the room.

The RIR can be separated into three main components: the direct path, the
early reflections and the late reverberation tail. Figure 2.10 shows an example of a
measured RIR.
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Figure 2.10: Example of a measured RIR
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Often the direct path is the first and highest peak. However, this is not neces-
sarily the case. For example, if the speaker is facing away from the microphone,
the direct signal will be the damped signal coming out of the back of the head of
the speaker. In this case, an early reflection from from a nearby wall or object in
front of the speaker may be much louder.

The early reflections are relatively strong reflections of the signal that have
‘bounced off’ a limited number of surfaces before arriving at the microphone.
The late reflections on the other hand have become ‘diffuse’. They are caused by
scattering effects due to small details on the surfaces in a room, and generate a
sort of constant noise floor.

When anechoic clean speech is convolved with a measured RIR, the resulting
signal should be exactly equal to a direct recording of the reverberant speech.
However, recording RIRs takes time. The availability of RIR databases has increased
in the recent years, but such databases are either for single channel microphones,
or specific for the used microphone array.

Therefore, for the papers in this thesis, RIRs have been simulated and measured
for the training and testing of the systems, respectively.

2.4.1 Simulations

The MCRoomSim package was used to simulate RIRs [56]. MCRoomSim operates
in the frequency domain, where the phase of a source’s directional response can
also be simulated. MCRoomSim relies on the image source method (ISM) method
to simulate the early reflections, and the diffuse rain algorithm for the diffuse
reflections. Different combinations of these features are combined to generate
different sets of RIRs.

Image Source Method

Allen et al. proposed the image source method (ISM) back in 1979 [57] and it has
become the standard method for simulating RIRs for indoor environments. The
idea behind this method is that sound hitting a wall, ‘bounces’ off this wall like
light reflected by a mirror, with so-called ‘specular’ reflections.

With this in mind, the signal received at a microphone is obtained by adding
the direct signal and all signals from ‘image sources’ located in ‘mirror-rooms’. This
concept is illustrated in Figure 2.11.

Figure 2.11 shows only one image source in a 2D situation with just one wall.
In reality, each image will also have its own image sources, and there are four
walls plus a ceiling and a floor. The number of image sources to include in the
summation increases exponentially with the order of reflections.

Additionally, walls are not perfectly rigid: surfaces have finite impedance.
This means that some of the incoming sound does not bounce off, but is instead
absorbed or transmitted by the wall, where the degree to which this occurs is
highly dependent on the angle of incidence. However, it is complicated to model
the effects of surfaces with finite impedance [57]. Instead, the ISM assumes the
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Figure 2.11: Illustration of the image source method

point image model even for nonrigid walls and defines the reflection coefficient
for nonrigid walls to be finite and independent on angle.

Mathematically, the ISM defines the Fourier domain RIR (H), produced by a
point source at position X = (x , y, z), and received by a microphone element at
position X ′ = (x ′, y ′, z′) as:

H(n, X , X ′) =
1
∑

p=0

∞
∑

r=−∞
β ×

δ
�

n−
��

�Rp + Rr

�

�/c
��

4π
�

�Rp + Rr

�

�

(2.9)

where r = (u, v, w) and p = (q, j, s) (both integer vector triplets), and

β = β |u−q|
x1
β |u|x2
β |v− j|

y1
β |v|y2
β |w−s|

z1
β |w|z2

(2.10)

Rp = (x − x ′ + 2qx ′, y − y ′ + 2 j y ′, z − z′ + 2sz′) (2.11)

Rr = 2(uLx , vL y , wLz) (2.12)

where Lx , L y , and Lz are the dimensions of the room. The sums over the vector
triplets p and r indicate three sums each; one for each of their components. These
sums are therefore both over a three-dimensional lattice of points [57].

Diffuse Rain Algorithm

The diffuse sound field in a room is due to scattering effects from rough surfaces
(see Figure 2.12).

The diffuse rain algorithm is a ray-tracing technique [56]. Like the ISM, ray
tracing models the sound as travelling in ‘rays’, or beams of sound. These rays are
(as with the ISM) partially reflected at different boundaries, and it is the energy of
the rays that reach the location of the microphone that contribute to the RIR.
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microphone
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Figure 2.12: Scattering of sound on a rough surface

However, ray tracing is different in several ways. With ray tracing, the process
is stochastic, and rays bounce off the reflective surfaces at random angles (instead
of with specular reflections). Unlike with ISM (where only the exact rays that
end up at the microphone are simulated), ray tracing is based on having a large
number of rays, of which only a small proportion will reach the microphone and
contribute to the simulated RIR. The accuracy of ray tracing increases with the
number of simulated beams.

Ray tracing is used to simulate the scattering effect that occurs because surfaces
are not perfectly smooth. The result is the diffuse field, which makes up all the
late reflections in the RIR’s tail.

Directional speakers

Figure 2.13 shows average directivity patterns for male and female speakers. A
speaking person is not an omnidirectional source that emits an equal amount of
sound in all directions. Instead, the speech signal is clearest when the speaker is
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Figure 2.13: Male and female directivity patterns. Used directivity patterns are
defined in 3D and 256 frequency bands, but only zero elevation for a few selected
frequencies ( 1 kHz, 2 kHz, 4 kHz, and 8 kHz) ares shown here.
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looking straight at the listener/receiver, and both attenuated and distorted when
coming from behind. Note that the patterns depend on frequency.

When speakers are directional, it suddenly becomes relevant whether they are
speaking towards the array or not. For an omnidirectional source, there will always
be a strong direct path, but this is no longer the case for a speaker who is instead
facing the opposite direction.

Simulated RIR sets

To ensure the task given to the learnable system is representative, the SE system
input needs to represent the reverberant reality. This is true even if the goal is
to just remove the noise, without any form of dereverberation. When exposed
to reverberant input, trainable systems may also be able learn to extract useful
information from the reverberance, and/or learn to remove it.

Additionally, it is important that the simulated reverberance then represents
reality as closely as possible. Real recordings of speech are reverberant, due to both
the specular reflections and scattering effects, and real speakers are directional
sources.

To investigate which of these properties matter, four different datasets of RIRs
were simulated, using four different simulation methods. First, 6000 (2000) virtual
training (validation) rooms were modelled. Each room was randomly configured
with parameters drawn from the uniform distributions specified in Table 2.1. Each
room contained three speakers, and three noise sources, all placed randomly in
the room within the restrictions given in the table.

Table 2.1: Details of the random virtual room configuration. Table adapted
from [Paper III] (©2021 IEEE).

Item Parameter Min. Max.

Room width 3 m 8 m
size length 3 m 10 m

height 2.5 m 6 m
RT60 0.2 s 1 s
scattering coefficient 0 1

Array from walls 1 m -
position from floor 0.6 m 0.9 m
Speaker from walls 0.5 m -
positions from floor 1 m 1.8 m
(3x) from array 0.5 m -

yaw (directive speakers only) -180◦ 180◦

Noise from walls 0 m -
positions from floor 0 m -
(3x) from array 0.5 m -
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Positions were drawn such that they were evenly distributed in all directions.
The average absorption of a room was determined from the random drawn RT60
time with Eyring’s [58] algorithm with air absorption taken into account. Here
RT60 stands for the time it takes for the sound to decay by 60 dB: the reverberation
time. The RT60 depends on frequency, as different frequencies lose their energy at
different rates.

Then for each source (three speakers plus three noise sources), four RIRs with
the following methods were simulated:1

• ISM-omni: the basic RIR generated by ISM where sources are modelled as
omnidirectional. No scattering and no diffuse field.
• ISM-dir: Like ISM-omni, but now sources are modelled as directive speakers,

with either an average male or female directivity. No scattering and no diffuse
field.
• WithDiffuse-omni: An advanced RIR with not just specular reflections,

but also a diffuse field due to scattering, where sources are modelled as
omnidirectional.
• WithDiffuse-dir: Like WithDiffuse-omni, but sources are again modelled as

directive speakers.

2.4.2 Measurements

To be able to determine the effect of using different methods for generating training
data, real data is needed to test the trained neural networks. For this purpose, RIRs
were measured in the same meeting room as there where the background noise
was recorded.

All measurements were obtained in the same room, which was one of SINTEF’s
meeting rooms. This particular room has dimensions 4.5 m x 3.8 m x 2.6 m,
and RT601kHz of 0.3 s. It is a rather typical medium-sized room, with two glass
walls, two wallpapered hardboard walls, carpet on the floor, and sound-absorbing
ceiling tiles. Centered in the room, there is a large oval table surrounded by eight
chairs. The layout of the room where measurements were conducted is shown in
Figure 2.14.

The exponential sine sweep (ESS) method proposed in [59] was used to
measure the RIRs. A sine signal with exponentially varied frequency is played over
a NTi TalkBox [60], placed at various locations in the room. This loudspeaker has
head-size dimensions and is specifically designed for human speech measurement.
The signal was recorded by a microphone array that was positioned approximately
in the middle of the meeting room’s table. The loudspeaker was aimed either
towards the array, or rotated at a 90◦ angle. To obtain the room impulse response,
the recorded signal was then convolved with the inverse of the original sine sweep.

The prototype microphone array (See Figure 2.7) interfaces through a LAN
network communication port. As such, recordings had to be synced in time with the
audio playback. For this purpose, a single earbud was mounted directly adjacent

1List of methods copied from [Paper III] (©2021 IEEE)
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Figure 2.14: Room layout for RIR measurements

to the center microphone of the microphone array. A maximum length sequence
(MLS) pulse was then played at a known delay before the sine sweep, allowing for
time-synchronization of the final RIR.

A total of 57 RIRs were obtained for a speaker facing towards the array, and
107 with the speaker rotated at a 90◦ angle. The true DOAs were measured with an
uncertainty of ± 1◦, from positions approximately evenly spread out over the room,
within the restraints of the furniture present. The overall aim was to collect RIRs
at ‘natural’ speaker positions - both standing and seated, facing towards potential
meeting participants, or towards the whiteboard or TV-screens. The distance to
the microphone varied from 1 to 2 m.

From the RIR measurements, two test sets (to be convolved with speech) were
obtained, dubbed ‘Easy’ and ‘Challenging’. The first of these contained all RIRs
where the speaker was facing towards the array, the second all RIRs where the
speaker was facing away.





Chapter 3

Deep Learning

This chapter describes the general deep learning technology used in the speech
enhancement systems based on deep neural networks (DNNs) and the direction of
arrival (DOA) estimation system that were developed for this thesis. Supervised
regression machine learning is presented, followed by a discussion of the types
of neural nets and layers relevant to this work. The purpose of this chapter is to
introduce the concepts needed to understand later chapters.

Complete systems often contain preprocessing and postprocessing steps in
addition to the DNN core. In this chapter, the focus is only on the DNN model.
To stress this, the following general variables will be used: y0 as the model input
(meaning the input to the first layer), ŷ for the model output, and y for the model’s
target (the desired output). Note that while y is used for all these, they do not
have to be similar in any way. For example, the input to a model can be the STFT
coefficients of a speech signal, while its output may just be a scalar: the direction
from which the speech is coming.

In the next section, the model is first treated as a black box that applies some
weight dependent function to its input, to obtain an output. This, because the
training framework does not change with the type of layers used in the model.
Then, in Section 3.2, the different layer types used in the DNN-based systems
included in this thesis are discussed. The details of the exact systems used in the
work included in this thesis will be explained in Chapter 5 and 6.

3.1 Supervised Regression Learning

A computer program is said to learn if its performance of a task, improves with
experience [61]. Any type of machine learning that tries to learn from paired
input/target data is called ‘supervised’. Regression is the term used for the general
technique to estimate the relationship between two variables.

It is therefore quite natural to define the speech enhancement problem as a
supervised regression learning problem. For this thesis, the main goal is to learn
the relationship between pairs of clean and degraded speech. However, supervised

29
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regression is equally suitable for the work on direction of arrival estimation, where
the goal instead is to find the mapping between input speech and the azimuth of
where the speaker is located.

3.1.1 A trainable system

For a DNN model to learn something, it needs to be ‘trained’. This means that the
model is exposed to input samples (y0), from which it estimates a target y. The aim
is to obtain information from each exposure and to use it to improve the model.
The model is defined as the function f (y0,w), where w are the tunable weights1.
This gives:

ŷ= f (y0,w), (3.1)

where ŷ is the model’s estimate of y.
Applying the model f (y0,w) to the input is called the forward pass. At first

the weights are initialized to random values2, making the first estimate of ŷ also
rather random. However, once the first estimate is obtained, the error between
this estimate and the target can be obtained with a loss function. Based on the
output of the loss function, the weights of the network are updated, with the aim
to make it a better estimator for the samples to come. This part where the weights
are updated is called the ‘backward pass’, and it only takes place during training.

Therefore, during training, the loss function plays a key role. Generally speak-
ing, the loss function can be defined as L(y0,y,w), which depends on the noisy
inputs, the clean targets and the weights of the model.

A very commonly used loss function is the mean squared error (MSE) function:

MSE=
1
m

m
∑

i=1

(ŷi − yi)
2 (3.2)

=
1
m

m
∑

i=1

�

f (yo)i − yi

�2
, (3.3)

where m is the total number of samples over which the loss function is calculated,
and i the index of the sample pair. The MSE loss is very versatile, because its general
underlying concepts are relevant for many applications. First of all it reduces to
zero when the estimate and target are equal, and an error in one direction (i.e.
ŷi > y)) is punished exactly like an equal deviation in the opposite direction
(ŷi < y)). Furthermore, the squaring operation ensures that large deviations are
punished relatively more than small ones, which encourages convergence and is
sensible for many applications. The MSE loss was used for the work on earlier SE
systems and DOA estimation in [Paper I][Paper II][Paper III], but there are also
many other options.

1Here lowercase w indicates both the weights and biases, which will later separate into the
variables W and B

2This a simplification. There are for example, also initialization approaches that rely on (unsu-
pervised) pre-training or heuristics.
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The same loss function has a very different effect for different presentations of
the output of the network and the target. Using the MSE loss with a time domain
target and a time domain output will have a very different outcome than when
using the same MSE loss with a spectral target and and network output that is a
spectral mask of the noisy signal, for example.

All loss functions give a loss landscape, in the highly dimensional space of
all the weights of the model. Somewhere, this (usually extremely) complicated
landscape has minima, and this is where the estimates are closest to the targets.
Learning/training means searching for a minimum: optimizing/minimizing the
loss function

In the work of this thesis, Adam (adaptive moment estimation) [62] has been
used for all final systems. This optimization method computes individual adaptive
learning rates for the different parameters from estimates of the first moment
(the mean) and second moment (the uncentered variance) of the gradients. While
some sources have shown that Adam, despite its popularity, is not a one-size-fits-all
solution for all problems [63], our experiments consistently showed it worked well
for the systems developed for this thesis.

3.1.2 Validation

During training, a model is fitted to the training data. Validation is then used, to test
how well the model works for unseen data. However, validation is not the same as
testing the final performance of the model, which is described in detail in Section 4.
Instead, validation is the phase where the model is checked for overfitting, and
where different hyperparameters are tried, so as to select the model that performs
best, for further testing.

During validation the backward pass is not applied, even if the loss function is
calculated. In other words: the weights are not updated.

When relying on DNNs, which by their very nature can provide highly com-
plicated mappings, the risk of overfitting is substantial. Overfitting means that the
mapping is too specific to the training data, and does not generalize well to unseen
data.

To check that the model is not overfitting, it is important to test it on unseen
data. For the models of the earlier papers in this thesis, where the number of hours
of speech was limited, it was assured that the validation set was a gender/dialect
balanced subset of the whole training set, where speakers were never part of
both sets. Also, different unseen noise types were selected for validation. For later
models, the subsets suggested by the DNS database [27] were used.

3.2 Deep Neural Network Types

Two types of DNNs were used during the work for this thesis. For the earlier speech
enhancement systems of [Paper I] and [Paper II] and the direction of arrival
system of [Paper III], the networks were so-called fully connected feed forward
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networks (also called fully connected neural networks, or multilayer perceptrons
(MLPs)). Later work was based on a network with both convolutional and recurrent
layers. In the following sections, the basics of these layers and the encoder-decoder
architecture are explained. A far more extensive introduction can, for example, be
found in [61].

3.2.1 Fully connected layers

Figure 3.1 shows a typical visualization of a deep neural net, with fully connected
feed forward layers. The name feed forward comes from the fact that all information
flows forward in this network (from left to right), and fully connected from the
fact that all nodes are connected to all nodes in the layer before and after, as
represented by the many arrows in Figure 3.1. These models are called networks,
because they combine different functions, and they are called deep, because of the
multiple layers.

Figure 3.1: Deep neural net with fully connected layers. The circles represent the
elements of each vector, the arrow the weights. Here the biases are not drawn, as
is common practice.

The network (or model) is essentially a mapping function with learnable
parameters. These learnable parameters are generally called weights, but this
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concept can be divided into the weights W and biases B. Both of these parameters
are learned during optimization.

For the ith layer, the output yi is then:

yi = f (i) (yi−1,Wi,Bi) = g(i)
�

Wi
Tyi−1 +Bi

�

, (3.4)

where g(i) is the non-linear function of the ith layer, applied element-wise to
its input Wi

Tyi−1 + Bi, where Wi is the weight matrix of this layer, and Bi the
corresponding bias vector.

Strictly speaking, the activation g at the different layers can also be linear, but
a linear function of a linear function, would still be linear. Having a nonlinear
activation function is essential to achieve the befamed nonlinear behaviour of
DNNs.

The systems of this thesis mostly rely on the rectified linear unit (ReLU) or one
of its close cousins (like LeakyReLu and PReLU) to introduce the non-linearity (see
Figure 3.2). These functions are ‘almost’ linear (piecewise linear), which means
the network will still have many of the properties that make linear models easy
to optimize with gradient-descent-based algorithms. However, when there is one
such ‘slightly’ non-linear component at each and every node of the hidden layers
in the network, the resultant mapping functions can be extremely complicated.
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(b) PreLU or LeakyReLU

Figure 3.2: Different ReLU type activation functions. The difference between
PreLU and LeakyReLU is that the slope for x < 0 is learned, while for LeakyReLU
the slope is fixed to a specific value.

As shown in Figure 3.2, the ReLU function’s output is either equal to its input,
or zero, if the input is below zero:

ReLU(z) =max {0,z} . (3.5)

Each layer in a feed forward network is a function, with an input based on
the layer before, and an output that is sent to the next layer. As such, the layers
become a function of nested functions.

For the network of Figure 3.1 there are two hidden layers and one output layer,
this gives:

ŷ= f (y0) = f (3)
�

f (2)
�

f (1) (y0,W1,B1) ,W2,B2

�

,W3,B3

�

, (3.6)
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where f (1) is the first hidden layer, f (2) the second hidden layer, and f (3) the output
layer. The input layer merely represents the network’s input (not a function), and
is therefore equal to the input vector y0. The other layers have the previous layer
as input, and all layers have their own respective weights W1, W2 and W3 and
biases B1, B2 and B3.

To ensure it is possible to get any possible output (including negative numbers),
linear activation is often used at the output layer. Then for the network of Figure 3.1:

ŷ1 =max
�

0,W1
Ty0 +B1

	

ŷ2 =max
�

0,W2
T max
�

0,W1
Ty0 +B1

	

+B2

	

ŷ=W3
T max
�

0,W2
T max
�

0,W1
Ty0 +B1

	

+B2

	

+B3,

(3.7)

where ŷ j is the output of a specific layer, with j as the index of that layer.
A key property of fully connected feed forward layers is that every output unit

is based on every input. This means these models can learn extremely complicated
mappings, but they are also prone to overfit. The issue of overfitting can be reduced
with regularization techniques. However, a related problem is that there is ‘a lot to
learn’ due to all the possible relations between all inputs and output — many of
which may have little relevance.

To feed noisy speech to a fully connected neural network, the vectors of the
STFT frames can be stacked into a single long input vector. It is likely that there
are certain frequencies that tend to be more noise dominated, but the values
for this particular frequency band are now located separately in the input vector.
This does not matter for the feed forward network that does not assume stronger
relationships between values that are closer to one another in the input. However,
it does mean that the feed forward layers always have to learn such relationships
from ‘scratch’, which requires extra data.

3.2.2 Convolutional layers

Unlike fully connected layers, convolutional networks have layers with ‘sparse
interaction’ — the outputs depend only on a subset of the inputs. Here the input is
not stacked into a single vector, but instead kept as a 2D matrix. For speech en-
hancement, y0 is then generally some form of spectral input. For the convolutional
layer to be the ‘right’ type of layer to use, it is important that y0 contains localised
information, i.e. that there is meaning behind the fact that values are close to one
another in the matrix.

As the name suggests, the convolution operation is key for convolutional layers.
The input y0 is namely convolved with a kernel: the matrix containing the trainable
weights W. To result in a sparsly connected layer, the kernel must be smaller than
the input.

The convolution process is shown in Figure 3.3. The kernel (in this case sized
3x3) slides over the 2D input y0, creating a single output value in each sliding step.
Here it is also possible to increase the step size, or ‘stride’ above 1, which leads to
subsampling.
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(a) Step 1 (b) Step 2

Figure 3.3: Visualization of the convolution operation. Subfigures display how
the kernel (grey, 3x3) slides over the input (blue, 5x5), here shown with stride 2.
Dashed lines indicate zero padding. Images taken from [64], Vincent Dumoulin
and Francesco Visin, distributed under the MIT Licence.

Figure 3.4 shows a typical visualization of an input layer and two convolu-
tional layers. Following the same notation as in Section 3.2.1, the three stacked

Input
Convolutional

Figure 3.4: Convolutional neural net

convolutional layers of Figure 3.4 give:

f (A1) = f (2)
�

f (1) (y0,W1,B1) ,W2,B2

�

, (3.8)

where the output layer f (3) has been removed.
Most deep learning libraries do not contain convolution directly, but instead

the related cross correlation function. This is the same as convolution, without
‘flipping the kernel’ (see [61] for a detailed explanation and derivation). As the
weights are learned, their exact location in the kernel has no significance, meaning
that in practice cross correlation and convolution give the same final performance.

The kernel (W) could have the exact same number of dimensions as the input
to the convolutional layer (as shown in Figure 3.3), but it is common to give it one
extra dimension for the number of desired output channels. These ‘channels’ should
not be confused with audio channels. Instead the number of channels indicates the
number of ‘feature maps’ coming out of the convolutional layer. Intuitively, these
kernels can be seen as a set of filters (one for each output channel), where each
filter obtains different features from the input.
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The cross correlation function is linear, so again a non-linear activation is
needed. Like in Section 3.2.1, ReLU is applied element-wise to the output of the
convolution for this example. Given a (spectral) 2D input y0, the output of the first
convolutional layer (ŷ1) is then obtained as follows:

ŷ1 =









ŷ1,1
ŷ1,2

...
ŷ1,N2









, (3.9)

where N2 is the number of desired output feature maps, and

ŷ1,i =max
�

0,B1,i +W1,i ⋆ y0

	

, (3.10)

where ⋆ indicates cross correlation, B1 and W1 are the trainable bias and weight
matrices of the first convolutional layer, and i is the index of the output feature
map.

The output of the first layer (ŷ1) has one more dimension than the original
input (y0) as there are now N2 feature maps. The second convolutional layer (with
output ŷ2) will therefore have to aggregate the feature maps. Subsequently:

ŷ2 =









ŷ2,1
ŷ2,2

...
ŷ2,N3









, (3.11)

where N3 is the number of output feature maps for the second layer, and

ŷ2,i =max

(

0,B2i
+

N2
∑

j=1

W2,i, j ⋆ ŷ1, j

)

. (3.12)

The convolutional layers are still feed forward: There is no information going
back from later layers to earlier layers. Due to the limited size of the kernel, the
layers are, however, not fully connected. Another important difference is that for
the fully connected networks, the number of nodes in the network defines the
length of the vector obtained at that layer. Therefore, for a fully connected layer,
the number of nodes in the output layer can always be set to be equal to the input
vector length. This makes sense for a speech enhancement network where the
output is either a cleaned version of the input, or a mask: it should have the same
dimensions.

Now with the convolutional layers, the output dimensions depend on the num-
ber of filters in W. While it is desirable to have many filters (to obtain many different
feature maps), it also must be possible to go back to a tensor that represents the
speech signal, or a mask of this signal.

Therefore, transposed convolutional layers can be applied to reverse the con-
volution operation. This is demonstrated in Figure 3.5.
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(a) Step 1 (b) Step 2

Figure 3.5: Visualization of the transposed convolution operation. Subfigures
display how the kernel (grey, 3x3) slides over the input (blue, 5x5), here shown
with unit stride. Dashed lines indicate zero padding. Images taken from [64],
Vincent Dumoulin and Francesco Visin, distributed under the MIT Licence.

3.2.3 Recurrent layers

Both fully connected and convolutional layers are feed forward: no output is ever
presented to anything other than later layers. Another interpretation of this is that
feed forward layers have no memory. This is where recurrent layers are crucially
different.

For human listeners, context is very important for understanding speech. Even
when just considering the speech signal itself (ignoring other context such as
location, the time of the day, etc.), misheard words can be guessed, based on what
comes before and after those words. On a smaller timescale, this process is (almost)
completely subconscious: in noisy situations, humans are constantly guessing and
filling in the blanks [65].

From that perspective, it makes sense to let SE model ‘remember’ what has
been said (and for applications where delay is acceptable, to include what comes
after). One option for this is to put past (and future frames) together with the
current STFT frame in the input. Alternatively, it is possible to use recurrent layers
that can learn what information should be remembered.

A particular popular recurrent layer is the long short-term memory (LSTM)
layer [66]. Figure 3.6 shows an LSTM ‘layer’, which actually consists four interacting
neural network layers. An LSTM has three inputs: the previous cell state ct−1, the
previous hidden state ht−1, and the actual input vector y0,t , as used before, but
now with a t subscript to keep track of the different time steps. The initial values
of the cell and hidden states are zero.

The LSTM has only two outputs: the updated cell state and the ct , the updated
hidden state ht . Both will be remembered for reuse in this same LSTM layer, while
ht will additionally be passed on to the next (LSTM) layer: acting as y0,t for the
next layer.
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Figure 3.6: A single LSTM layer

An LSTM layer contains four neural layers named i) the forget gate (with
output ft), ii) the input gate (with output it), iii) the output gate (with output ot)
and iv) the cell input (with output c̃t). Each of these layers has their own set of
weights for the input y0,t (W f , Wi, Wo and Wc), weights for the hidden state ht
(U f , Ui , Uo and Uc) and biases (B f , Bi , Bc and Bo.)

All four neural layers have a nonlinear activation, but it is not a ReLU type
function. Instead, three of the layers act as gates, because they rely on the sigmoid
activation (σg). The cell input layer with c̃ output is the exception, and relies
on the hyperbolic tangent function (σc). These activation functions are shown in
Figure 3.7.
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Figure 3.7: The sigmoid (σg) and tanh (σc) activation functions

As shown in Figure 3.6, the updated cell state ct is calculated as follows:
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ft = σg(W f y0,t +U f ht−1 +B f ) (3.13)

it = σg(Wiy0,t +Uiht−1 +Bi) (3.14)

c̃t = σc(Wcy0,t +Ucht−1 +Bc) (3.15)

ct = ft ∗ ct−1 + it ∗ c̃t . (3.16)

Given the updated ct , the actual LSTM output (ht , also called its hidden state),
becomes:

ot = σg(Woy0,t +Uoht−1 +Bo) (3.17)

ht = ot ∗σc(ct) (3.18)

This means that information in the network is no longer just moving forward.
Instead, the output of an LSTM layer is reused as input to that same layer. This gives
the LSTM layer the ability to remember useful information from earlier frames1.

While it is possible to use LSTMs as the major building blocks for SE systems,
the later papers included in this thesis relied on a combination of convolutional
and LSTM layers, to benefit from their different strengths.

3.2.4 Convolutional recurrent encoder-decoder structure

For speech enhancement the output of the model is often either the enhanced input
directly, or a mask to be applied to the input. In both cases, the input and output
of the network have equal dimensionality. Encoder-decoder model architectures
are suitable for this purpose.

In a model with an encoder-decoder architecture, the input is translated to a
latent space by an encoder, while the decoder translates tensors from this latent
space to the output. Other layers (those between the encoder and decoder) can
act on the encoded input, before the decoder is applied, but not all encoder-
decoder architectures have such layers. Any kind of layer can be used both in
the encoder and the decoder. Examples of well known neural networks with an
encoder-decoder architecture are SegNet [67] with only convolutional layers,
and Google’s recurrent (see Section 3.2.3) sequence to sequence learning neural
network [68]. Fully connected layers are mostly used for autoencoders (i.e. [69]):
a type of encoder-decoder architecture where the training targets are equal to the
input of the model.

In a convolutional encoder-decoder structure, convolutional layers are used to
first encode the signal into relevant feature spaces where the task of the model
is easiest to achieve. This task can be to separate speech from noise — the main

1It is also possible to implement a so-called bi-directional LSTM layer, that doesn’t just remember
from the past, but also relies on input from future frames. Its implementation is conceptually similar
to the LSTM discussed here, but outside of the scope of this work as none of the final SE networks
included in this thesis had bi-directional LSTM layers
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interest of this thesis — or something completely different (like reducing redundant
information, or segmentation). Then, the encoding process is reversed with a set
of transposed convolutional layers in the decoder.

Ronneberger et al. [70] proposed the ‘U-Net’ architecture for biomedical image
segmentation: a convolutional encoder-decoder with so called ‘skip connections’.
Figure 3.8 shows the general layout of this kind of network.

Input
Convolutional
Transposed convolutional
Output

Figure 3.8: Encoder-decoder structure with convolutional layers, transposed
convolutional layers and skip connections. Arrows indicate skip connections.

With skip connections, the output of the encoding steps is concatenated to the
input of the respective decoder. This gives the decoder the input signal (transformed
into a specific set of feature maps), in addition to the signal altered by later layers.
This allows the network to make use of finer details that may have been lost on
the way.

The original U-Net had max pooling layers for downsampling, but the convolu-
tional encoder-decoder-based models used in this thesis instead use the stride of
the convolution for downsampling. Additionally, LSTM layers are added between
the encoder and decoder (while U-Net has no such layers). Further details of
and argumentation for the exact chosen network architecture are presented in
Section 5.2.



Chapter 4

Evaluating Enhancement

The goal of speech enhancement is to recover the speech signal s[n] from the noisy
signal x[n]. This turns speech enhancement systems into speech signal estimators.
To be able to estimate ŝ[n], a measure of how close the estimate is to its target, is
needed. This in order to be able to say that the estimate is closer to it, than the
noisy input was. Such a measure is relevant both to be able to train supervised SE
systems, and to be able to evaluate their performance at a later stage.

It is common to separate the goal of speech enhancement into two dimensions:
improving quality versus improving intelligibility. For both it is beneficial to reduce
the noise and reverberance [45, 46]. However, quality and intelligibility are not
the same thing.

The quality of a speech signal is determined by a person’s opinion of that signal.
Is it bad, or excellent? Preferred over another, or ranked as ‘more annoying’ or ‘less
natural’? The intelligibility of a speech signal is defined by how much a person
understands of its content. How much can the listener repeat correctly?

An old-fashioned text-to-speech voice, reciting a phone number by merging
separate voice recordings, is a typical example of a highly intelligible speech sample
(all numbers are easily understood) that is low in quality; it is unnatural, robotic,
and has a strange intonation. On the other end of the spectrum is a conversation
in a foreign language. The signal can be as natural, clear and crisp as can be, but
is quite possibly entirely unintelligible.

This shows that improving quality does not necessarily improve intelligibility,
and vice versa. However, this somewhat counter-intuitive effect also occurs at a
more subtle level. Already in the earliest papers included in this thesis, it was
shown that reducing noise can lead to improved quality ratings of listeners, but
quality came at the cost of intelligibility [Paper I][Paper II]. The fact that the price
of increasing quality is often a reduction in intelligibility has been known for many
decades [8].

Given that quality and intelligibility are independent factors, different methods
are required to determine the quality and intelligibility of speech signals. For both,
however, scores can be obtained in an objective manner, or a subjective manner.
Here objective means that an algorithm provides a prediction of how the signal

41
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will be perceived by human listeners. Subjective means that the scores are directly
obtained from human listeners who have listened to different samples of speech.

Note that the aim of the measures of quality is to estimate how a signal is
perceived (i.e. the user’s opinion of this signal), and they are therefore often
referred to as subjective measures.

In this thesis, the use of the terms objective and subjective are to be understood
as follows:

• objective means based on an algorithm,
• subjective means based on listening tests.

Objective scoring is far more practical: quick, cheap and deterministic. Subject-
ive testing is far more time-consuming, requires repeated measures to compensate
for individual differences, and is more expensive. However, appropriate subjective
testing provides the answer directly, instead of an estimate of this answer (which
is what objective measures give us).

A main focus of the work for this thesis is on testing the validity and reliability
of objective measures, and on comparing objective scores to subjective scores in
three of the contributions [Paper I][Paper II][Paper V].

4.1 Speech Quality

The quality of a signal is a measure of opinion: Does the listener like the sound?
There are many factors that play a part in this highly subjective measure: natural-
ness, clarity, pleasantness, brightness, etc. Quality evaluation often tries to capture
all of these factors into a single score.

4.1.1 Subjective quality

There are many subjective methods for evaluating speech quality. These can be
broadly categorized into two groups: relative preference (i.e. which out of the two
clips do you prefer?) and absolute quality (i.e. rate the quality of this clip).

The mostly widely used methods require listeners to rate the quality of a speech
signal on a five-point scale [71]. An average score, commonly referred to as the
Mean Opinion Score (MOS) is obtained by averaging over multiple listeners. The
ITU-T standard (P.835) [72] standardizes methodology to obtain MOS scores with
focus on the speech signal alone, the background signal alone, and the complete
signal. Table 4.1 shows the ratings and verbal scales of the English version of P.835.

The newer ITU-T standard (P.808 [73]) addresses how a P.835-like test can be
performed with a crowd-sourcing approach, where the participants are connected
via an online platform, and evaluate speech quality in their own environments,
using their own devices. This has become a popular alternative to P.835, especially
since Microsoft released an open source implementation of this standard, to be
used in conjunction with their DNS-challenges [26–28]. P.808 implements several
methods that attempt to compensate for the lack of having a controlled setting;
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Table 4.1: English version of the ordinal scales used in ITU-T P.835 [72]. Table
taken from [Paper II] (©2019 IEEE).

Rating Speech Noise Overall quality
5 Not distorted Not noticeable Excellent
4 Slightly distorted Slightly noticeable Good
3 Somewhat distorted Noticeable but not in-

trusive
Fair

2 Fairly distorted Somewhat intrusive Poor
1 Very distorted Very intrusive Bad

these methods include ensuring the listening environment works as expected, and
including gold standard (samples with extremely high or alternatively extremely
low quality, to check whether the participant responds as expected) and trap
questions (questions that are not visually different, but ask the participant to select
a specific answer).

However, this implementation was not yet available for the work included in
this thesis. Instead, P.835, was implemented with Norwegian translations of the
five point scales shown in Table 4.2, and listening tests were conducted in SINTEF’s
audio lab.

Table 4.2: Norwegian translation of the ordinal scales used in ITU-T P.835. Table
taken from [Paper II] (©2019 IEEE).

Rating Speech Noise Overall quality
5 Ikke forvrengt Ikke hørbar Veldig god
4 Litt forvrengt Hørbar, men ikke på-

trengende
God

3 Ganske forvrengt Litt påtrengende Middels
2 Betydelig forvrengt Påtrengende Dårlig
1 Voldsomt forvrengt Veldig påtrengende Veldig dårlig

The translation is based on the official English and French versions, and the
Danish version presented in [74]. The Norwegian translation is not a literal transla-
tion from English. Instead of using ‘slightly noticeable’, ‘noticeable but not intrusive’
and ‘somewhat intrusive’ as rating 4, 3 and 2, the Norwegian version uses ‘notice-
able but not intrusive’, ‘somewhat intrusive’ and ‘intrusive’. The reason for this
adjustment was that several of the participants of a pilot study provided feedback
that it was difficult to distinguish between ‘slightly noticeable’ and ‘noticeable but
not intrusive’.

4.1.2 Objective quality

There are many objective measures that estimate the quality of a speech signal, but
PESQ (Perceptual Evaluation of Speech Quality [75]) is the most popular. PESQ
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is recommended by ITU (the same body that is behind the subjective evaluation
recommendations P.835 [72] and P.808 [73]) for speech quality assessment in ITU
P.862 [75] and ITU P.862.2 [76].

PESQ is an intrusive measure, where ‘intrusive’ means that it requires both a
clean reference signal, and the noisy/distorted/processed signal to be tested. These
two signals are then compared, and their ‘closeness’ determines the PESQ score.
This closeness is based on several signal transforms that are perceptually motivated.
The final PESQ score is based on a weighted sum of different components.

PESQ was originally standardized in ITU P.862 [75] for quality assesment of
narrow-band telephone networks and speech codecs. With this original PESQ, the
test and reference signals are first level aligned. Then they are filtered using an FFT
to model the standard telephone handset. Next, the signals are also aligned in time
and processed through an auditory transform. The results of this transform for the
two signals are subtracted from one another, and two parameters of distortion are
obtained. Finally, these parameters of distortion are aggregated in frequency and
time and mapped to the subjective mean opinion scores (MOS) [77].

PESQ was then extended for wideband applications in ITU P.862.2 [76]. There
were only two differences. Firstly, the filter that mimics the standard telephone
handset was replaced with a filter that is more suitable for headphones, with a
flat response above 100 Hz, and a gentle roll-off below 100 Hz. Separate filter
coefficient are defined for 16 kHz (wideband) and 8 kHz (narrowband) input.
Secondly, the output-to-MOS mapping function was replaced to include calibration
for wideband listening test conditions.

There are therefore three variants of PESQ: the original PESQ for narrowband
telephony [75], PESQ narrowband for 8 kHz input [76], and PESQ wideband for
16 kHz input [76].

Furthermore, ITU has updated P.862 with P.863: POLQA (Perceptual Object-
ive Listening Quality Analysis) [78]. POLQA is calculated in a similar manner,
but adds new capabilities for super-wideband (HD) and full-band voice signals,
along with support for most recent voice coding and VoIP/VoLTE transmission
technologies [78].

The early work for this thesis relied on POLQA, assuming this metric would
take over PESQ in popularity, and because of licensing concerns. For the later work,
both PESQ narrowband and wideband were used in order to accommodate easier
comparison with work in the literature.

4.2 Speech Intelligibility

Speech intelligibility is a measure of how understandable a speech signal is. In-
telligibility evaluation often tries to capture this concept into a single percentage
indicating the ratio that is understood. Speech intelligibility can be measured by
asking a listener to repeat what they have heard. Objective measures try to predict
this response.
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But the intelligibility of a signal is not only determined by how audible the
different phonemes1 of the speech are. Speech is embedded in a lot of context.
Who is talking, the topic, the structure of sentences, the language used, etc. all
aid the brain in filling in the parts that are not audible. Knowing that someone
has a friend called Addison, will make a person (unconsciously) assume he/she is
talking about Addison (instead of Madison), in noisy conditions where only the
’-dison’ part was actually audible. There are experiments that show how easy it is
to trick the brain into ‘hearing’ something recognizable that is not being presented
at all [79]. Here language familiarity is an important factor: the brain will only
hear words it knows, to the degree that it simply cannot discern phonemes that it
doesn’t know, even in the absence of noise.

Additionally, to be able to repeat a segment of speech, the brain not only needs
to hear the segment, but also needs to remember it. Remembering a longer segment
(like a five-word sentence), is more difficult than remembering shorter segments
(like a three-word sentence) in the same noise conditions. Context and memory
effects also add up: it is nearly impossible to remember/repeat they lyrics of a
song in a language you have only limited familiarity with.

This means that the exact speech intelligibility test setup highly influences the
score/percentage obtained in subjective testing. From the SE system developer’s
point of view, this is not really a problem. The interesting part is being able to
compare different processing pipelines: does the system increase intelligibility,
or does it make it worse? It is also from this perspective, that this thesis aims to
evaluate the predictive power of the objective measures.

4.2.1 Subjective intelligibility

As mentioned, language familiarity is very important for subjective intelligibility.
To ensure access to a sufficient number of native speakers, a Norwegian speech-in-
noise test was chosen: the five-word Hagerman sentence test proposed by Øygarden
in [53], because the material of this test was designed to be suitable for repeated
measurements on the same person.

Øygarden’s test is suitable for repeated tests, because the five-word Hagerman
sentences are build up with the form [Name]-[Verb]-[Numeral]-[Adjective]-[Noun],
and there are ten alternatives for each of these word categories. As such, it is
possible to generate 100000 unique sentences; from these, a large number of
phonemically balanced sets for testing. Therefore, the risk that a listener recognizes
a sentence from an earlier test is negligible.

For this thesis, the internal SINTEF implementation2 of Øygarden’s test was
adapted to the use-case. This implementation presents the listener with a table
from which all the correct answers can be selected, see Figure 4.1.

1Phonemes are units of sound that can distinguish one word from another in a particular
language

2Originally implemented by Tron V. Tronstad in 2009
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Figure 4.1: GUI of the speech intelligibility test. Figure taken from [Paper I]
(©2017 ISCA).

First, 500 noise and reverberation free 5-word sentences were obtained. For the
earlier work, these sentences were corrupted with additive noise [Paper I][Paper II].
For the last study, the sentences were corrupted with measured RIRs and recorded
noise samples [Paper V]. For all studies, each test sentence was corrupted with
noise with SNRs ranging from -36 dB to 10 dB in steps of 2 dB. Sentences were
then processed with the enhancement systems to be tested, to create multiple test
sets, each containing 500 x 24 = 12 000 sentences.

Each listener first had to complete a training round of the speech-in-noise
test, and then one round for each system to be tested. Systems were presented in
random order to ensure the training effect would not affect the results averaged
over all participants. Every round consisted of 20 sentences, each containing five
words, giving 100 stimuli per round.

The SNR of each test sentence was dependent on the responses given by the
listener, as they were calculated using an adaptive estimation procedure called
the Ψ method [80]. This method attempts to always test at the SNR that provides
the maximum amount of information required to estimate the psychometric func-
tion. The psychometric function shows each listener’s intelligibility score (as a
percentage) against SNR. After twenty sentences, the SNR at which 50 % of the test
material was understood is obtained from the estimated psychometric function:
the speech recognition threshold (SRT).

4.2.2 Objective intelligibility

As with objective quality evaluation, there are many objective intellgibillity met-
rics (OIMs) to estimate subjective intelligibility. Also here there is the distinction
between intrusive measures (that require a clean reference signal in addition
to the test signal), and non-intrusive measures (that need only the test signal).
Intrusive measures generally give more accurate predictions than non-intrusive
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measures [81], while the latter have a wider application range. However, for speech
enhancement systems trained in a supervised manner, the clean reference is readily
available (already required as a target), making intrusive measures the logical
choice.

There are, however, many such intrusive measures. For this thesis, five relatively
commonly used metrics were chosen for comparison to subjective results: the short-
time objective intelligibility (STOI) [82, 83], the extended STOI (ESTOI) [84], the
normalized covariance metric (NCM) [85, 86], the coherence speech intelligibility
index (CSII) [87], and the hearing-aid speech perception index (HASPI) [88, 89].
A brief descriptions of these metrics is provided below.

All these methods are similar in the sense that first the reference and test
signal are transformed, and then a measure of how close the two signals are is
obtained. However, the intelligibility of speech does not only depend on the speech
degradation, but also on the subjective testing conditions. Longer test sentences,
for example, are more difficult to remember, than single words. Test sentences can
also contain context from which the listener can guess missing parts. Therefore
the speech recognition thresholds obtained for the exact same speech material can
vary widely even for the same individual.

As such, it is common to map the measure of proximity to the average intelli-
gibility percentages obtained for listeners during subjective testing. Some of the
metrics come with this mapping (obtained for various testing conditions), while
others are only proposed as a score that still has to be mapped.

For the speech enhancement application, only the change in intelligibility from
the unenhanced to the enhanced signal is of relevance (not the absolute scores
of the listeners, specific to the testing conditions). Therefore, for [Paper V], all
metrics (including those that already came with a mapping function) were mapped
to the subjective results of the noisy unprocessed baseline test condition during
subjective testing. Then the test setup and the mapping were kept constant for
evaluation of all other processing conditions (the different models to be tested).

For STOI and ESTOI, the mapping function proposed [82–84] was used:

Î =
100

1+ exp (aĨ + b)
, (4.1)

where Î is the predicted intelligibility (in percentage correct), Ĩ the predicted score
from STOI or ESTOI, and a and b are the mapping coefficients to be determined
with the non-linear least squares method.

This same mapping function was empirically found to also work well for NCM
scores. For CSII, non-linear least squares were used to find the coefficients a1, a2,
a3, and a4 of the mapping function proposed by the original authors of CSII [87]:

c = a1 + a2CSIILow + a3CSIIMid + a4CSIIHigh, (4.2)

Î =
100

1+ exp (−c)
, (4.3)
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where CSIILow,CSIIMid and CSIIHigh are separate CSII scores for all segments with
low-level, medium-level, and high-level speech (See Section 4.2.2).

For HASPI (which has already been fit to subjective data), it was found that
simply translating objective results along the SNR-axis gave the closest match.

The following sections discuss the chosen intellgibility metrics in greater detail.

NCM (normalized covariance metric)

The normalized covariance measure (NCM) was originally proposed in [85], and
updated with signal dependent weights in [86].

For NCM, the test signal and the clean reference are first band-pass filtered
into different frequency bands. Then the normalized covariance (the Pearson
correlation coefficient) is calculated for each of the frequency bands. Using the
normalized covariances, an apparent SNR for each frequency band is calculated.
These SNRs are limited to be within a -15 dB to 15 dB range. A linear transformation
subsequently turns the apparent SNRs into a single transmission index (TI) for
each frequency band. Finally, the NCM index is obtained by taking a weighted
average of the transmission indices of all frequency bands.

CSII (coherence speech intelligibility index)

The coherence speech intelligibiligy index (CSII) was originally proposed in [87] as
an extension of the speech intelligibility index (SII) metric, which is standardized
in ANSI S3.5-1997 [90].

With CSII, the clean reference signal is first separated into windowed segments.
For each of these windows, the root-mean-squared (RMS) level is calculated, and
used to determine whether this particular segment is a low-level segment (10 to
30 dB below the overall RMS), a mid-level segment (0 to 10 dB below the overall
RMS), or a high-level segment (at or above the overall RMS). Then a separate CSII
score (CSIILow,CSIIMid and CSIIHigh, respectively) is calculated for for these three
levels.

For the CSII calculations, first the reference and test signal are time-aligned.
Then the magnitude-squared coherence function is obtained, from which a speech
power spectrum and noise power spectrum can be estimated. These are then used
to obtain a signal-to-distortion ratio (SDR) for each frequency band. From this
SDR, and the estimated speech and noise power spectra, the CSII is calculated
following the SII procedure, standardized in ANSI S3.5-1997 [90].

STOI (short-time objective intelligibility)

Short-time objective intelligibility (STOI) index was originally proposed in [82,
83].

With STOI, the signal first has to be resampled to a 10 kHz signal. Silent
regions (those segments with at least 40 dB less energy than the maximum energy
of the reference signal speech frames) are removed. Then a one-third octave band
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analysis is performed for both signals, and for each band (each time-frequency (TF)
unit) the norm is obtained. From these TF units, the short-time temporal envelope
of both the reference and the test signal. After this step, the test signal’s envelope
is normalized and clipped, before being compared to the refence signal’s envelope
with the Pearson correlation coefficient. Finally, the STOI score is obtained by
averaging the correlation coefficient results over all bands and frames.

ESTOI (extended STOI)

The extended short-time objective intelligibility (ESTOI) was originally proposed
in [84] as an extension to STOI.

ESTOI is similar to STOI, but does not assume mutual independence between
frequency bands and incorporates spectral correlation, to improve its performance
on modulated noise sources.

HASPI (hearing-aid speech perception index)

HASPI was first introduced in [88], and later updated to better predict the intelli-
gibility of reverberant speech (HASPI version 2) [89].

HASPI relies on a complex auditory model that includes biologically motivated
steps, such as a middle-ear transfer function, an auditory filterbank, outer hair-cell
dynamic-range compression, two tone suppression and adaptation of the inner
hair-cell firing rate. The model can also account for hearing loss.

With HASPI version 1, both the reference signal and the test signal are passed
through the auditory model, which outputs both a signal envelope and a signal
temporal fine structure (TFS). The two signal envelopes are compared with cepstral
correlation. The TFS parameters are compared by averaging the cross correlation
coefficient calculated for each segment in each frequency band. Finally, the cepstral
correlation and auditory coherence results are weighted and transformed with a
logistic function to obtain the HASPI index score. Here the weights were found by
mapping the HASPI index to subjective intelligibility datasets.

With HASPI version 2, two modifications were made. Firstly, an envelope
modulation filterbank was used instead of the TFS calculation, and secondly, the
parametric model was replaced with a neural network.





Chapter 5

Single Channel Speech
Enhancement

The guiding concept behind machine learning is that the mapping between the
input and output is learned, rather than designed. Thus, feature engineering —
transforming model input with rule-based models — is less relied upon than
before. The idea is that the complexity of DNNs and the abundance of training
data allows the systems to learn the optimal mapping directly from the data. There
are therefore researchers working with end-to-end SE systems [91–93], where the
time domain systems are directly used as input and output.

However, the best systems from recent challenges still include STFT prepro-
cessing [29, 30, 94, 95]. An important argument against end-to-end SE systems, is
that, for example, the discrete Fourier transform step leads to more informative fea-
tures at less computational cost than a network that has to find this mapping from
the data. It is questionable whether one should try to learn something, when there
are solutions available that do not require learning and cost less computational
power.

Thus, in addition to the trainable DNN model, the speech enhancement systems
used in the work for this thesis have preprocessing and postprocessing steps without
any learnable parameters. The following sections describe the two main single
channel systems used during this thesis.

5.1 Fully Connected Log Magnitude Estimator

Figure 5.1 shows an overview of the fully connected log magnitude estimator
(FCLME) systems.

This model was inspired by the model proposed by Xu et al. [25], but pretraining
with restricted Boltzmann machines was omitted, and LeakyReLU activation was
used instead of sigmoid activation.
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(a) Preprocessing

(b) Training

Figure 5.1: Training of the single channel FCLME system. Here s is a speech signal,
x the log10 magnitude preprocessing output, and p the phase. The subscripts c
and n indicate ‘clean’ and ‘noisy’, respectively. The model’s target is y , while ŷ is
the model’s estimate. Figures taken from [Paper I] (©2017 ISCA).

Three different variants of the FCLME were tested [Paper I][Paper II]:

1. Model 1: The system of Figure 5.1, trained to remove noise
2. Model 2: The same system as 1, but trained to reduce noise, instead of

remove it. This means that the target speech samples had a 10 dB lower SNR
than the noisy input

3. Model 3: The same system as 1, but with an extra postprocessing step as
shown in Figure 5.2

Figure 5.2: The postprocessing steps of FCLME, Model 3. The postprocessing
pipeline for Models 1 and 2 are nearly identical, but for these models the ‘Normalise
GV’ step is skipped. Here ŷ is the model’s estimate, p the noisy phase of the input
speech, and ŝe the estimated speech. Figure taken from [Paper I] (©2017 ISCA).



Chapter 5: Single Channel Speech Enhancement 53

5.1.1 The data

The FCLME systems were all trained with noisy speech (no reverberance, additive
noise only), downsampled to 8 kHz. The noise dataset contained 104 noises (first
collected by Xu et al.) from either the Aurora database [96] or Guoning Hu’s
collection [54]. Clean speech was obtained from the Norwegian-language library
NB Tale, often referred to as ‘Språkbanken’ [52]. SNRs ranged from -5 dB to 20 dB.

The speech data for validation was taken from the same speech database, but
the validation and training sets were balanced with respect to gender and dialect,
and no specific speakers or sentences occurred in more than one set. Unseen
noise types for validation were taken from the Aurora [96] and NOISEX-92 [97]
databases.

This gave 1984 hours of training data and 98 hours of validation data.

5.1.2 Training

The processing pipeline starts with a preprocessing/feature extraction block. This
is where the raw time-domain samples are transformed into to the input to the
neural network. For this system, the neural network input y0 equals log10 |X [n, k]|,
the noisy log magnitude spectrum. This was obtained through the STFT operation
as explained in Section 2.1.2. The noisy phase was kept for later use during
postprocessing, but did not pass through the network.

The neural net was trained to predict the clean log magnitude spectrum, one
frame of the STFT at a time. For this purpose it was fed with 21 noisy frames: the
current frame, ten historic frames, and ten future frames. Note that these frames
were all 50 % overlapping. Inclusion of this kind of context allows the network to
improve its estimate, based on the signal before and after the current timeframe —
a concept that is familiar to human hearing where the brain ‘fills in the gaps’ when
listening to noisy speech.

The MSE loss function was used to compare the noisy and estimated log
magnitude spectra. The system was loosely based on the system proposed by Xu et
al. [25]. However, the unsupervised pretraining stage with multiple restricted
Boltzmann machines (RBMs) was skipped and LeakyReLU activation was used
(instead of sigmoid), together with the Adam optimizer and 50 % dropout.

5.1.3 Usage

Figure 5.3 shows the SE system in enhancement mode. Once the network has
estimated a log magnitude spectrum, postprocessing is required to obtain a time
domain signal. During postprocessing, the preprocessing steps are reversed, and the
noisy phase is used together with the inverse STFT to obtain a time domain signal.
Postprocessing steps for Model 3 are shown in Figure 5.2. The Postprocessing steps
for Model 1 and 2 are almost identical, but for these models the ‘Normalise GV’
step is skipped.
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Figure 5.3: The single channel FCLME system during use. In this Figure, sn is the
noisy input speech, pn the noisy phase, xn the noisy log10 magnitude preprocessing
output, ŷ the model’s esimate, and ŝe the estimated enhanced speech. Figure taken
from [Paper I] (©2017 ISCA).

5.1.4 The model layers

The DNN model had three fully connected layers, each layer with 2048 nodes, all
with LeakyReLU activation. The output layer had linear activation.

5.1.5 Evaluation

Two test conditions were used to evaluate the different variants of the FCLME
model. Both test conditions relied on the subjective speech material of Øygarden’s
Norwegian speech-in-noise test (see Section 2.2.1). The sentences were corrupted
with additive noise at SNRs ranging from -36 dB to 10 dB in steps of 2 dB. The
test conditions differed according to the type of locally recorded noise used: traffic
noise versus babble noise (See Section 2.3.2).

Models 1 and 2 were evaluated for objective quality with POLQA and for
subjective quality with a Norwegian translation of ITU-T P.835. Here both the
traffic and babble noise conditions were tested with 23 listeners.

All three model variants were evaluated for objective intelligibility with STOI
and for subjective intelligibility with Øygarden’s Norwegian speech-in-noise test
(see Section 4.2.1). For this purpose, two rounds of subjective intelligibility tests
were conducted. During the first round, subjective performance of Model 1 and
Model 3 was evaluated with 15 listeners for the traffic noise conditions. Then,
during the second round, 12 listeners evaluated Model 1 (babble noise only), and
Model 2 (both noise types).

All subjective intelligibility evaluation results were tested for significance with
the Wilcoxon signed rank test. For the subjective quality evaluation, a cumulative
link model (clm) from the ordinal package [98] in R [99] was used. The objective
quality results were tested with a two sample t-test.

5.2 Deep Complex Convolutional Recurrent Mask Estim-
ator

Later work included in this thesis was based on the Deep Complex Convolutional
Recurrent Network (DCCRN) originally proposed by Hu et al. in [30].
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For the work of this thesis, the DCCRN of [30] was adapted in only two ways:
different training data was used (with the major difference being to rely on the
RIRs simulated with directed speakers, as described in Section 2.4.1), and some
minor hyperparameter optimization was conducted. To distinguish the original
DCCRN by Hu et al. from the DCCRN system used here, the system will be referred
to as the DCCRN-dir where the difference is relevant. Note that this distinction was
not used in the paper where the system was proposed ([Paper IV]). DCCRN-dir
is used both as a single channel baseline system, and as a building block that is
incorporated into the multichannel systems described in Chapter 6.

The single channel DCCRN system was objectively evaluated in [Paper IV] and
subjectively evaluated in [Paper V].

5.2.1 The data

The single channel DCCRN-dir was trained with noisy and reverberant input
speech. The speech and noise datasets for training were obtained from the DNS
Challenge dataset [27], while the RIRs were simulated using the six different
methods described in Section 2.4.1. Pilot tests did not provide evidence that
training with different RIR sets would give different final performance. Therefore,
the ISM-dir dataset was chosen, as it led to the highest performance with respect
to direction of arrival estimation in [Paper III]. The network was trained to remove
noise, but the target speech was still reverberant.

All speech data was resampled to 16 kHz and cut into 4 s segments. With 441
hours of clean speech, 70 000 noise clips, and 24 000 unique RIRs, the number of
unique random combinations of these was essentially limitless.

5.2.2 Training

Figure 5.4 shows the training process of the DCCRN. As with the fully connected
feed forward system, the processing pipeline starts with a preprocessing/feature
extraction block where the raw time domain samples are transformed to the input
to the neural network.

STFT Model iSTFTMasking

Loss

Figure 5.4: Training of the single channel DCCRN-based SE system. Here s is the
reverberant speech signal, x the noisy reverberant speech signal, y0 the concaten-
ation of the real and imaginary STFT coefficients of the noisy reverberant speech
signal, ŷ the estimate of a mask for the model’s input, Ŝ the estimate of the STFT
coefficients of reverberant speech, and ŝ the estimate of the reverberant speech
signal.
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For this system, however, y0 was the concatenation of y0,ℜ and y0,ℑ, where

y0,ℜ =ℜ (X[m, k]) and (5.1)

y0,ℑ = ℑ (X[m, k]) . (5.2)

The coefficients of X[m, k] were obtained through the STFT operation as ex-
plained in Section 2.1.2. Only the current frame was presented to the DCCRN,
as recurrent layers indirectly allow the network to use historic context (See Sec-
tion 5.2.4).

The DCCRN was not trained to clean the noisy input, but instead to estimate a
mask, to be applied to the noisy input. This means that the input to the network
was also used for a postprocessing block that is applied during training.

The model’s output ŷ was a complex mask, defined in the Fourier domain,
and consisted of ŷℜ concatenated with ŷℑ. Hu et al. found that the the masking
approach in polar coordinates led to the best performance [30]. In accordance
with those findings, the estimated STFT coefficients of the clean speech (Ŝ) were
obtained as follows:

Ŝ=
�

�y0

�

� ·
�

�ŷ
�

� · eθy0
+θŷ , (5.3)

where the magnitudes and phases of the model input and output were obtained as
described in Section 2.1.2.

Another key feature of the DCCRN training process is that the loss was ob-
tained in the time domain. Namely, the system was trained with the SI-SNR loss,
LSI-SNR [100]:

starget =
〈ŝ, s〉 · s
∥s∥2

(5.4)

enoise = ŝ− s (5.5)

LSI-SNR = 10 log10

�

∥starget∥2

∥enoise∥2

�

, (5.6)

where ŝ is the estimate of the clean speech s, which is obtained from Ŝ via the
inverse STFT transform.

5.2.3 Usage

Usage of the network did not require any additional steps as a time-domain signal
is already produced during the training process.

5.2.4 The model layers

Figure 5.5 shows the layers of the DCCRN. A set of six convolutional layers encoded
the signal into learned feature spaces. They relied on PReLU activation and no
max-pooling was added. The kernel depths of the encoder layers were: 32, 64,
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Figure 5.5: DCCRN model for the single channel SE system

128, 128, 256, and 256. The stride of the convolution was set to two. The figure
shows how the dimensions of the input changed at each step.

Then, in the learned feature spaces most of the mask is, in essence, estimated in
a form that is translated to the encoded feature space. The LSTM layers can retain
information from earlier layers for this purpose. There were two LSTM layers, each
with 256 nodes.

A set of subsequent transposed convolutional decoder layers returned the signal
to the Fourier domain. Also here PReLU activation was used. Skip connections
between corresponding encoder and decoder layers ensured that the decoder also
had the encoder input available at each decoding steps. This allowed fine detail
to be restored, meaning that the decoder layers also contributed directly to the
final mask. The kernel depths of the decoder layers were the same as those of the
encoder layers, but in opposite order, so that they reversed the encoder steps.

5.2.5 Evaluation

The single channel DCCRN-dir was evaluated for objective quality using both
narrowband and wideband PESQ (see Section 4.1.2) to be able to compare it to
the original DCCRN from [30], and another winning system of the Interspeech
2020 DNS Challenge [26]. Here the test set of the DNS Challenge was used, to
allow for direct comparison.

PESQ wideband and STOI results were then obtained for the performance of
DCCRN-dir on the multichannel datasets based on the ‘Easy’ and ‘Challenging’
RIR sets (see Section 2.4.2). The measured RIRs in each set were convolved
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with random speech samples from ‘NB Tale’ [52] (see section 2.2.1). Then, noise
recorded with the same array as used for RIR measurement was added to obtain
SNRs of 0 dB, 5 dB or 10 dB. Here, a variation of typical meeting room noises
was used (see Section 2.3.2). As DCCRN-dir is a single SE system, only the first
channel of each multichannel test sample was processed, while all other channels
were discarded.

Furthermore, DCCRN-dir was evaluated with five different objective intelli-
gibility metrics (i.e.: NCM, CSII, STOI, ESTOI and HASPI) in order to be able to
compare the predictions to subjective results. Therefore, in this case, the subjective
speech material of Øygarden’s Norwegian speech-in-noise test (see Section 2.2.1)
was used. The sentences were first made reverberant with a random RIR from the
‘Easy’ and ‘Challenging’ RIR sets (see Section 2.4.2), and then corrupted with one
type of recorded multichannel noise at SNRs ranging from -36 dB to 10 dB in steps
of 2 dB. Here the chosen noise type was keyboard typing, with a climate control
system audible in the background (See Section 2.3.2).

The subjective evaluation was conducted with the same noisy reverberant
speech data, using Øygarden’s Norwegian speech-in-noise test (see Section 4.2.1).
This time 50 listeners were recruited, with an intentional inclusive recruitment pro-
cess that also accepted non-native listeners and listeners with self-reported hearing
loss, in addition to native speakers with normal hearing. These participants were
then divided into three groups depending on their speech recognition threshold
for the noisy baseline test.



Chapter 6

Multichannel Speech
Enhancement

Humans can hear direction, mainly because they have two ears. These ears are
present already before birth, but spatial hearing is a skill that needs to be learned:
it develops slowly during childhood. Children first learn to follow movement, then
to discriminate between left and right, and then finally to localize sources and
to spatially filter speech from noise [101]. The fact that spatial hearing, and the
ability to understand speech in noise, are so closely linked, strongly motivates the
use of multiple microphones for speech enhancement.

The multitude of microphone elements in a microphone array, give multichan-
nel recordings. Generally, the microphone elements are all located close together,
and record the same sources. However, due to slightly different paths between
sound source and element, the recorded signal will also differ slightly. The differ-
ences provide information that enable direction of arrival estimation (determining
where the source signal is coming from), and beamforming (making the array
‘listen’ in a specific direction).

This chapter first delves into these two concepts, before they are combined
with a DNN for the multichannel speech enhancement systems proposed in [Paper
IV].

6.1 Direction of Arrival Estimation

Direction of arrival (DOA) estimation is, as the name suggests, about estimating the
direction that a signal is coming from. This is not the exact same as sound/speech
source localization (SSL), which also requires knowing how far away the source is
located. From an SE perspective, this distance is often of less importance, while
the direction can play a crucial role in beamforming (See Section 6.2).

The circular table top microphone array used for the work of this thesis, has a
diameter of 8 cm. When the microphone is placed on a table in a meeting room,
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speaker distances of more than a meter will be natural. As such, DOA estimation
can be formulated as a far-field problem here.

If the source is in the far field, the sound waves will be travelling in parallel by
the time they reach the array. Figure 6.1 shows such a wave hitting two microphone
elements. The normal to the wavefront makes an angle θ with plane that connects
the two elements. The signal received at the second microphone element is, in this
case, a time delayed (but could also have been a time advanced) version of the
signal reaching the reference sensor [102].

Figure 6.1: Direction of arrival problem in the far field. The wavefront needs
more time to reach the second microphone element, as it is further away from the
source.

In the figure, the time delay between the elements, the time-difference-of-
arrival (TDOA) is equal to d cosθ/c, where c is the speed of sound. Once the TDOA
is known, the direction of arrival is also known.

The figure illustrates this problem along one axis, but it can be expanded to all
three axes of space. Given a circular array, where all elements lay in a ‘flat’ circle
(have equal height, so to say), it is impossible to measure TDOAs along the z-axis.
Therefore, the tabletop microphone in this thesis, can only be used to estimate the
direction in 2D space. The DOA angle is here equal to the azimuth, and the angle
of elevation is arbitrarily set to zero: all sources are projected onto the same plane
of the microphone.

Finding the azimuth of a source is easy if that source is the only source, and if
there is no reverberation (called ‘free-field’ conditions). In that case, the signals
arriving at the different elements would merely be delayed and attenuated copies
of each other. Then, it is possible to find the delay for two elements (the TDOA),
by determining for which estimated delay τ̂CC, the cross correlation of the two
recordings is maximum.

rCC (p) = E [x1 (t) x2 (t +τ)] , (6.1)

τ̂CC = argmax
τ

rCC(τ). (6.2)

This still works if the recorded signal contains noise uncorrelated to the noise
at the other sensor (like self-noise of the microphone element), or if the noise is
really low and barely contributes to the output of the cross correlation.
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However, in more realistic conditions, the reverberance and presence of correl-
ated noise (coming from other directions) complicates the problem.

Generalized Cross Correlation

One of the most popular approaches to TDOA estimation, is the generalized cross
correlation (GCC) algorithm. It is very similar to the direct cross correlation method
already described, but the signals are first filtered, with frequency dependent filter
weights ϑ( f ). The cross correlation coefficient r then becomes:

rGCC (τ) =

∫ +∞

−∞
ϑ( f )E
�

X1 ( f )X
∗
2 ( f )
�

e j2π f τ d f , (6.3)

and the estimated delay τ̂GCC:

τ̂GCC = arg max
τ

rGCC(τ). (6.4)

Here the filtering function ϑ( f ) can be chosen to best fit the application.

Generalized Cross Correlation with Phase Transform

One popular filtering function is to discard the amplitude, leaving only the phase
as a contributor to the cross correlation coefficient.

ϑ( f ) =
1

�

�E
�

X1 ( f )X ∗2 ( f )
��

�

(6.5)

In this case, the cross correlation coefficient becomes

rGCC-PhaT(τ) =

∫ +∞

−∞
e j2π f (τ−τ̂GCC) d f , (6.6)

which is infinitely high when τ̂GCC = τ and zero everywhere else.
This is called the phase transform (PhaT) method, or GCC-PhaT. It is a com-

putationally efficient method that performs reasonably well in moderately noisy
environments [102]. It is suboptimal in non-reverberant conditions, but it relatively
robust to reverberation.

With GCC-PhaT, a delay for each pair of microphones is obtained. For most
arrays, there is a redundancy in microphone signals, giving a redundancy in TDOA
estimates. These can be combined with the root-mean-squared-error (RMSE)
minimization technique, to improve the accuracy of the individual TDOA estimates.

Steered Response Power with Phase Transform

The Steered Response Power with Phase Transform (SRT-PhaT) [103] technique,
on the other hand, combines the microphone signals instead of the TDOA estimates,
in order to improve the accuracy of the final TDOA estimates.



62 F.B. Gelderblom: Evaluating Performance Metrics for DNN-based SE Systems

It does this through beamforming, a concept that is further explained in Sec-
tion 6.2. Specifically, it relies on the simplest form of beamforming: the delay-
and-sum beamformer. With this kind of beamformer, the different signals are
time-aligned and summed, so that the parts of the signal that come from the same
direction add constructively, while uncorrelated noise, and signals from other
directions do not.

SRP-PhaT repeats this beamforming action over all the locations in a fine coarse
search grid. Its output (a collection of beamformed signals for each location on
the grid) is called a ‘steered response’, referring to the fact that the beamformer is
being steered over the region.

SRP-PhaT also, as the name suggests, includes the PhaT filtering explained in
Section 6.1. This filter is specifically useful for TDOA estimation. The individual
beamformer outputs of the steered response are not meant to be listened to, but
instead, expected to give a high power output at the source location.

DiBiase already showed in his original thesis where he introduced the SRP-PhaT
method, that the power response of a PhaT filtered delay-and-sum beamformer (P)
for a pair of microphones, can also be written in terms of the GCC-PhaT coefficient
(rGCC-PhaT) of these microphones [103].

P =
M
∑

m1=1

M
∑

m2=1

rGCC-PhaT, (6.7)

where m1 and m2 are the two elements of the microphone pair, M is the total num-
ber of microphones of the array and rGCC-PhaT is calculated for the τ corresponding
to the delay expected for the grid position for which the power response P is being
calculated.

SRP-PhaT is a very popular DOA method, that has been shown to be robust in
reverberation. The biggest issue with SRP-PhaT is not its accuracy performance,
but the fact that it is computationally heavy.

DNN-based Direction of Arrival

As part of the work for this thesis, a DNN-based DOA estimation system was
proposed in [Paper III]. Here, the problem of DOA estimation was formulated as a
supervised problem (See Figure 6.2).

The training data was obtained by first simulating RIRs (See Section 2.4.1).
These RIRs were convolved with clean speech, to obtain reverberant speech. For
each of the microphone pairs in the simulated microphone array, GCC vectors
were obtained from their respective reverberant speech signals. The input to the
trainable DOA system was then a flattened matrix of truncated GCC vectors, one
for each microphone pair. Figure 6.3 shows examples of the final input features,
when only the method of RIR simulation is changed.

Each input, was paired with a target to be estimated: the azimuth of the source
as used during the simulation of RIRs. Two different regression formulations and
two different classification formulations were used.
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Preprocessing Model Loss

Figure 6.2: Overview of the DNN-based DOA estimation system. Here θ is the
target azimuth, θ̂ the estimated azimuth, s[n] the clean speech signal, h[n] the
RIR, and y0 the GCC vector model input.
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Figure 6.3: Examples of the final GCC vector input features. Here the elements
of the GCC vector on the y-axis represent different values of τ, while the colour
intensity indicates the value of rGCC-PhaT(τ) for each microphone pair. Figure taken
from [Paper III] (©2021 IEEE).
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For regression, the formulations differed by the exact type of loss functions used.
The two different loss functions were based on the general mean squared error
(MSE) and mean absolute error (MAE) loss functions, respectively, but then defined
such that the calculation always obtained the minimal error between two angles,
which can either be clockwise or anticlockwise. Additionally, two classification
formulations of the same problem were tested. Here the target angles were first
binned into different classes (either 1◦ bins or 5 ◦ bins). These ‘classification’ models
were trained with the categorial crossentropy loss.

A simple feed forward DNN with fully connected layers was used for this study,
since the aim was not to find the best DOA estimation model. Instead, the goal was
to find how different sets of RIRs (simulated using a different method) changed
the final performance.

Therefore, all systems were tested with the two sets of reverberant speech.
These sets were based on the ‘Easy’ and ‘Challenging’ RIR sets (see Section 2.4.2)
and clean speech from ‘NB Tale’ [52] (see section 2.2.1).

Results of the performance evaluation of this DOA estimation system are
presented in [Paper III]. Here it is the variance of the error from the true direction
that indicates system performance (assuming zero bias error). Therefore the Brown-
Forsythe statistical test [104] was applied. This test evaluates whether the variance
of a pair of distributions is statistically significant without a strong assumption of
normality.

6.2 Beamforming

The concept of beamforming has already been briefly discussed in Section 6.1,
because of its role in the SRP-PhaT algorithm. While it can be used for direction of
arrival estimation, it is better known for recovering a signal from noisy reverberant
recordings.

The technique of beamforming multichannel signals is not specific to speech
recordings. Instead, it has a longer history in the field of radio frequency pro-
cessing. However beamforming speech recordings is quite different, as speech is a
highly reverberant wideband signal, where the noise often has the same spectral
characteristics as the desired signal, and the human ear is extremely sensitive over
a wide dynamic range [102]. All of these factor have an effect on the process of
beamforming multichannel speech signals.

The most intuitive beamforming algorithm is the delay-and-sum beamformer.
If the source location is known (or has been estimated), the signals of the different
microphones in the array are delayed by their respective TDOAs (see Section 6.1).
Then the signals are simply added together, where constructive interference oc-
curs for the signals from the right direction. The delay-and-sum beamformer is a
so-called ‘fixed’ beamformer, where the beam pattern (how much each frequency
is amplified/attenuated in what direction) does not depend on the recorded mi-
crophone signals.
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For speech enhancement, the minimum variance distortionless response (MVDR),
usually has higher performance, in the sense that there is less distortion of the
estimated source signal. It is an adaptive beamformer, that adapts its beampattern
to the signal it processes.

The ‘distortionless’ aspect is extremely important from a human speech percep-
tion perspective. The MVDR algorithm implements the criterion that the desired
signal is not distorted. Bound by this constraint, the algorithm then attempts to
minimize the output power of the beamformer, which is the same as maximizing
the output SNR.

When using the MVDR beamformer, the enhanced output Fourier domain
speech signal (Ŝ[k]) is a weighted sum of the noisy input X [k] :

Ŝ[k] = wH
MVDRX [k], (6.8)

where the MVDR beamformer itself is then defined as the following set of weights
(See [105] for a complete derivation):

wH
MVDR =

aH V [k]−1

aH V [k]−1a
, (6.9)

where V [k] is the noise signal, and a the steering vector, which is known when
the TDOAs are known.

The disadvantage of the MVDR beamformer is its reliance on the noise signal,
which is unknown. One solution to this, which works well for stationary noise, is
to assume the noise signal is largely constant and can therefore be obtained from
earlier speechless frames. This however, does not work for the typical meeting noise
recorded during for this thesis, many of which are transient in nature (clinking of
coffee cup, closing of door, etc.).

Another option is to estimate the noise signal using a DNN-based network.
This is the approach taken, for example, by Heymann et al. in [39] and Erdogan
et al. in [40]. Heymann et al. additionally obtain the steering vector by taking
the principal component of the power spectral density matrix of the estimated
speech [39], while Erdogan et al. rely on a formulation of the MVDR that does not
explicitly contain the steering vector [40]. This means that for these approaches,
the beamformer’s behaviour is inherently dependent on the model’s ability to
estimate the noise (and speech) signal(s), and so is its ‘distortionless’ behaviour.

Closely related to the MVDR beamformer, is a beamformer called the minimum
power distortionless response (MPDR). The weights of the MPDR beamformer are
obtained as follows:

wH
MPDR =

aH X [k]−1

aH X [k]−1a
(6.10)

Here, the weights depend on the noisy reverberant input X [k] (where the
capitalization indicates the frequency domain) so that the steering vector is the
only unknown in the equation. Given a correct steering vector, the MPDR weights
are equal to the MVDR weights, and the performance of the two beamformers will
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be equal [105]. The downside is that the MPDR beamformer performs worse for
inaccurate steering vectors.

However, the MPDR also opens up the possibility of a multichannel approach
that is different from the neural beamformers proposed in [39, 40]. With a direction
guided MPDR, the speech enhancement model, DOA system, and beamformer are
completely separate items of the SE pipeline, where the ‘disortionless’ behaviour
of the beamformer depends only on the accuracy of the steering vector, not on the
model’s ability to separate speech and noise.

6.3 Multichannel DCCRN

Figure 6.4 shows a process diagram of the proposed multichannel speech enhance-
ment system. Different variants of this network were tested in [Paper IV] and
[Paper V].
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Figure 6.4: The multichannel DCCRN-based SE system. Here x is the multichannel
noisy and reverberant input speech signal, and ŝ the estimated clean speech. Figure
taken from [Paper IV] (©2021 IEEE).

The multichannel noisy reverberant speech x is transferred into complex STFT
coefficients, which are passed into a weighted prediction error (WPE) block to
reduce the amount of reverberation. Here the reverberation tail is estimated and
subtracted from the noisy reverberant speech using a maximum likelihood ap-
proach [106]. To prevent further delay in the processed signal, only one iteration is
used. WPE dereverberation is included as a separate step, as, based on results from
pilot studies, the DCCRN topology did not seem to be able to reduce reverberation:
performance on reverberant signals got worse when clean instead of reverberant
targets were used.

Following dereverberation, the output is passed on to the model, the MPDR
beamformer (See Section 6.2), and (only when testing with estimated TDOAs) to
a GCC-Phat block (See section 6.1).

The model estimates a separate complex ratio mask for each channel, using one
DCCRN per channel (See Section 5.2), where all DCCRNs have the same weights.
All masks are subsequently merged into a single mask, by taking the median over
each TF units for all masks.
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This mask is then applied to the beamformer’s output, and the signal is trans-
formed to the time domain with the inverse STFT operation.

6.3.1 Variants

The following multichannel DCCRN-based SE systems were proposed and evaluated
in [Paper IV] and/or [Paper V].

• MPDR (estimated TDOAs) + DCCRN-dir: Multichannel noisy and reverber-
ant speech that has been passed through the complete multichannel system
shown in 6.4. Here the DCCRN-dir model was trained separately, and TDOAs
were estimated from the dereverberated output of the WPE blocks using
GCC-Phat.
• MPDR (oracle TDOAs) + DCCRN-dir: Multichannel noisy and reverberant

speech that has been passed through the complete multichannel system
shown in 6.4. Here the DCCRN-dir model was trained separately, and oracle
TDOAs were used.
• Jointly trained system (estimated TDOAs): Multichannel noisy and re-

verberant speech that has been passed through the complete multichannel
system shown in 6.4. Here the DCCRN-dir model was trained jointly with
the MPDR, and TDOAs were estimated from the dereverberated output of
the WPE blocks using GCC-Phat.
• Jointly trained system (oracle TDOAs): Multichannel noisy and reverberant

speech that has been passed through the complete multichannel system
shown in 6.4. Here the DCCRN-dir model was trained jointly with the MPDR,
and oracle TDOAs were used.

Note also that several other systems where explored, but not published, as
they showed lower objective performance. These variants included i) using the
enhanced signals as input to the beamformer, ii) providing the model with 2-
channel input (one channel from the center array elements and a second from
the beamformer output) as two separate feature spaces of the first convolutional
layer of the DCCRN, and iii) a multichannel DCCRN that directly obtained all
microphone channels as separate feature spaces of the first convolutional layer of
the DCCRN. Furthermore, it was discovered that it is important to use the same
mask for all channels, but that it did not matter significantly whether this mask
was obtained through the median (as proposed) operator, the mean operator, or
simply by obtaining it from the first channel.

6.3.2 The data

For the combined ‘MPDR + Single channel DCCRN’ systems (either with estim-
ated or oracle TDOAs), the DCCRN was trained with the datasets described in
Section 5.2.1.

For the jointly trained systems, the training data was changed only in the
following manners:
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• Noise was also made multichannel and reverberant, using omnidirectional
RIRs simulated with the ISM-omni method (See Section 2.4.1).
• The target was set to clean speech (instead of reverberant speech, as done

for the training of the single channel DCCRN)

6.3.3 Training

For the combined ‘MPDR + Single channel DCCRN’ systems (either with estimated
or oracle TDOAs), the DCCRN was trained as described in Section 5.2.2. For the
jointly trained systems, both the WPE and beamformer blocks were included in
the training process. During training, the beamformer was supplied with oracle
TDOAs.

As with the single channel DCCRN system, the pipeline of the multichannel
systems starts with a preprocessing/feature STFT extraction block. The STFT
coefficient of all nine microphone array channels are then passed on to the WPE
block for intial dereverberation. The concatenation of real and imaginary STFT
coefficients of the WPE output was then passed to a multitude of DCCRN networks
with shared weights, which all estimated a mask for their respective channels. A
single mask was then obtained by using the median operator on all masks. The
final mask was applied to the output of the beamformer, which had beamformed
the noisy input.

As with the single channel DCCRN, the loss is obtained in the time domain
with the SI-SNR loss.

6.3.4 Usage

During usage, TDOAs can either be estimated using GCC-PhaT, or set to the oracle
TDOAs.

The jointly trained networks do not require any other additional steps as the
time-domain signal is produced in the same manner as during the training process.
For the combined systems, the separately trained single channel DCCRN is set to
produce the mask as output. Then operation is as described in Section 6.3.3.

6.3.5 Evaluation

The multichannel SE systems listed in 6.3.1 were evaluated in [Paper IV] and/or
[Paper V]. Here [Paper IV] presents only objective results, while [Paper V] includes
both objective and subjective results.

For comparison, the following baseline systems were defined:

• Noisy: Single channel noisy and reverberant speech.
• MPDR (estimated TDOAs): The MPDR beamformer on its own, with or

without WPE dereverberation (as indicated separately), where TDOAs were
estimated using GCC-Phat on the noisy reverberant input.
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• MPDR (oracle TDOAs): The MPDR beamformer on its own, with or without
WPE dereverberation (as indicated separately), where TDOAs were oracle
TDOAs.
• ConferencingSpeech 2021 baseline: The baseline system for the INTER-

SPEECH 2021 ConferencingSpeech challenge 2021 [107].
• GEV (oracle IBM mask) with BAN: A multichannel neural beamformer

system proposed by Heymann et al. [39].
• DCCRN-dir: The single channel DCCRN described in Section 5.2, based on

the DCCRN proposed by Hu et al., but trained with directive RIRs, with or
without WPE dereverberation (as indicated separately).

Table 6.1 shows which SE/baseline variants were evaluated for this thesis,
and in what manner. Here WPE stands for weighted prediction error, which is an
dereverberation technique proposed in [106].

Table 6.1: verview of the differenct processing conditions and evaluation methods
used. Objective results are reported in [Paper IV] and [Paper V], subjective only
in [Paper V].

Quality Intelligibility
SNR [dB] WPE Obj. Subj. Obj. Subj.

No enhancement No ✓ ✗ ✓ ✓

Yes ✓ ✗ ✓ ✗

ConferencingSpeech No ✓ ✗ ✓ ✗

2021 baseline [107] Yes ✓ ✗ ✓ ✗

DCCRN-dir No ✓ ✗ ✓ ✗

Yes ✓ ✗ ✓ ✓

GEV (oracle IBM mask) with No ✓ ✗ ✓ ✗

BAN, by Heymann et al. [39] Yes ✓ ✗ ✓ ✗

MPDR (estimated TDOAs) No ✗ ✗ ✗ ✗

Yes ✗ ✗ ✓ ✓

MPDR (oracle TDOAs) No ✗ ✗ ✗ ✗

Yes ✗ ✗ ✓ ✓

MPDR (estimated TDOAs) No ✗ ✗ ✗ ✗

+ DCCRN-dir Yes ✗ ✗ ✓ ✓

MPDR (oracle TDOAs) No ✓ ✗ ✓ ✗

+ DCCRN-dir Yes ✓ ✗ ✓ ✓

Jointly trained system No ✓ ✗ ✓ ✗

(estimated TDOA) Yes ✓ ✗ ✓ ✗

Jointly trained system No ✓ ✗ ✓ ✗

(oracle TDOAs) Yes ✓ ✗ ✓ ✗

For objective evaluation, PESQ wideband and STOI results were then obtained
to estimate the performance of the systems on the multichannel datasets based
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on the ‘Easy’ and ‘Challenging’ RIR sets (see Section 2.4.2). The measured RIRs
in each set were convolved with random speech samples from ‘NB Tale’ [52]
(see section 2.2.1). Then, noise recorded with the same array as used for RIR
measurement was added to obtain SNRs of 0 dB, 5 dB or 10 dB. Here, a variation
of typical meeting room noises was used (see Section 2.3.2).

Furthermore, the systems that were evaluated subjectively, were also addition-
ally evaluated objectively with five different objective intelligibility metrics (i.e.:
NCM, CSII, STOI, ESTOI and HASPI) in order to be able to compare the predictions
to subjective results. Therefore, the subjective speech material of Øygarden’s Nor-
wegian speech-in-noise test (see Section 2.2.1) was used. The sentences were first
made reverberant with a random RIR from the ‘Easy’ and ‘Challenging’ RIR sets
(see Section 2.4.2), and then corrupted with one type of recorded multichannel
noise at SNRs ranging from -36 dB to 10 dB in steps of 2 dB. Here the chosen noise
type was keyboard typing, with a climate control system audible in the background
(see Section 2.3.2).

The subjective evaluation was then conducted with the same noisy reverberant
speech data. For this purpose, Øygarden’s Norwegian speech-in-noise test (see
Section 4.2.1) was used. A total of 50 listeners were recruited, with an intentional
inclusive recruitment process that also accepted non-native listeners and listeners
with self-reported hearing loss, in addition to native speakers with normal hearing.
These participants were then divided into three groups, depending on their speech
recognition threshold for the noisy baseline test.

The jointly trained systems (where the DCCRN blocks were trained together
with the beamformer and WPE blocks) had the highest objective performance
in [Paper IV]. However, the difference from the combined systems where the
DCCRN was trained separately, was minimal and not statistically significant at
the lower SNRs relevant for speech intelligibility. Additionally, a small subjective
pilot indicated the jointly trained system would do worse in the subjective test.
Therefore, the combined system was chosen for further subjective evaluation.
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Results

7.1 Single Channel Speech Enhancement

7.1.1 Fully connected log magnitude estimator

Speech quality results

The objective and subjective quality performance of two variants of the fully
connected log magnitude estimator (FCLME) network (see Section 5.1), were
evaluated in [Paper II]. The variants studied are Model 1 and Model 2, where the
latter is mostly equal to the first, but it attempts to reduce noise instead of remove
it.

Figures 7.1 and 7.2 show the POLQA results of the two models and the noisy
baseline condition for traffic noise and babble noise, respectively.
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Figure 7.1: Objective quality results of the FCLME for traffic noise. The histograms
show the relative probability of POLQA scores for traffic noise. The vertical gray
lines and numbers represent median values. Figure taken from [Paper II] (©2019
IEEE).
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Figure 7.2: Objective quality results of the FCLME for babble noise. The histograms
show the relative probability of POLQA scores for traffic noise. The vertical gray
lines and numbers represent median values. Figure taken from [Paper II] (©2019
IEEE).

For traffic noise, POLQA predicts changes without clear direction. For babble
noise, Model 2 always outperforms Model 1, which in its turn gets higher scores
than the noisy baseline condition data (apart from at SNR = 20 dB, where per-
formance is nearly equal for all processing conditions).

Figures 7.3 and 7.4 show the subjective results from the ITU-T P.835 evaluation
on the same dataset.

Both Models 1 and 2 reduce noise, as evident from significantly higher scores
for the Noise evaluation of ITU-T P.835 for all noise conditions except for babble
noise at an SNR of 20 dB, where the change was insignificant for the two models.

However, both models also lower the quality of speech for all noise conditions,
even if Model 2 does not distort the speech as much as Model 1. This is evident
from the reduction in subjective scores obtained for the ‘Speech’ and the ‘Overall’
quality categories of the ITU-T P.835 evaluation.

Model 1 significantly degrades the overall quality of speech for all noise con-
ditions, apart from at an SNR of 0 dB; here it does not affect the quality at all.
Model 2 on the other hand improves the overall quality of speech for babble noise
at an SNR of 0 dB, while leaving the overall quality unaffected for all other noise
conditions.

There appears to be little correlation between the subjective scores of the
overall quality as measured with ITU-T P.835 and the predictions by POLQA. In
approximately half of the noise situations, POLQA’s predictions are completely
off: It predicts a relatively large improvement, while subjective testing shows a
significant degradation, or it predicts no change, while subjective testing either
shows significant degradation or improvement.
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Figure 7.3: Subjective quality results of the FCLME for traffic noise. Histograms
of ITU-T P.835 MOS ratings for the different SE models and SNRs. Three asterisks
(***) indicate p < .001, two asterisks (**) indicate p < .01, one asterisk (*)
indicates p < .05, and ns means ‘not significant’. The arrows beside the asterisk(s)
indicate the direction of change. Figure adapted from [Paper II] (©2019 IEEE).
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Figure 7.4: Subjective quality results of the FCLME for babble noise. Histograms
of ITU-T P.835 MOS ratings for the different SE models and SNRs. Three asterisks
(***) indicate p < .001, two asterisks (**) indicate p < .01, one asterisk (*)
indicates p < .05, and ns means ‘not significant’. The arrows beside the asterisk(s)
indicate the direction of change. Figure adapted from [Paper II] (©2019 IEEE).
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Speech intelligibility results

The objective and subjective intelligibility performance of all three variants of the
fully connected log magnitude estimator (FCLME) network (see Section 5.1), were
studied in [Paper I] and [Paper II].

Figure 7.5 shows the STOI scores obtained for the different variants. At an SNR
of -6 dB, all models improve STOI scores by 8-12 %, with the exact improvement
depending on the type of noise and, to a lesser degree, on the model variant. For
really low SNRs (where intelligibility can be expected to be close to zero), the
models that attempt to remove noise (Models 1 and 3) obtain scores below the
noisy baseline condition. The model that attempts to reduce the noise (Model 2),
instead obtains approximately equal STOI scores as the noisy reference at these
SNRs. For the SNR range relevant to speech intelligibility, STOI predicts increased
intelligibility for all model variants and both noise types.
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Figure 7.5: Objective intelligibility results of the FCLME for traffic noise and
babble noise. Model 3 was only tested with traffic noise. Legend: Noisy,
Model 1, Model 2 (like Model 1, but with reducing noise), and Model 3
(like Model 1, but with global variance normalization (GVN)).

Figure 7.6 shows the speech recognition threshold (SRT) scores obtained from
the subjective evaluation of the same models under the same noise conditions.
Here, all models raise the SRT, which means that intelligibility is actually reduced.
The results shown in Figure 7.6 are obtained for two subgroups of participants.
However, a Wilcoxon rank sum test shows no significant difference between the
SRT results for the noisy reference for the two subgroups, which means that the
groups performed equally well on the noisy condition.

The reduction in intelligibility of the processed speech is, on the other hand,
statistically significant for all models (p < 0.05) according to the Wilcoxon signed
ranks test. All models degrade the intelligibility of the speech signal.

The subjective results are therefore in the opposite direction as the predictions
by STOI. Furthermore, STOI predicted no significant difference in the performance
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Figure 7.6: Subjective intelligibility results of the FCLME for traffic noise and
babble noise. The connected lines represent results from each of the test subjects
from noisy clips to the model indicated on the horizontal axis. Results were
obtained from two separate studies with different listeners: [Paper I] and
[Paper II]

of Model 1 and Model 2 in the SNR range relevant to speech intelligibility. Instead,
Model 2 performs significantly better than Model 1 for both noise types. The
estimated improvement of the SRT from M1 to M2 is 3.0 dB for traffic noise, and
1.9 dB for babble noise. STOI did predict correctly that adding GVN processing,
would give no significant improvement (the performance of Model 3 and Model 1
is similar).

7.1.2 Complex convolutional recurrent mask estimator

Speech quality results

Performance with respect to speech quality of the single channel complex convo-
lutional recurrent mask estimator (the DCCRN) was only evaluated objectively
([Paper IV]).

First, PESQ performance was compared to values of competitive systems from
the literature (See Table 7.1). Here the difference between the DCCRN-E [30] and
this thesis’ DCCRN-dir is limited to using a different training set (with directional
sources for RIR simulation), and general hyperparameter tuning.

PESQ performance on the non-reverberant DNS Challenge test set is similar
to the performance of the reference systems. however, DCCRN-dir has superior
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Table 7.1: Objective quality results of DCCRN-dir for the DNS Challenge 2020
dataset. Narrowband and wideband PESQ results, where the reverberant speech
signal is used as reference.1 Result without partial dereverberation, for unbiased
comparison. Table taken from [Paper IV] (©2021 IEEE).

PESQ nb PESQ wb
No

reverb
Reverb No

reverb
Reverb

Noisy 2.16 2.52 1.58 1.82
PoCoNet [94] - - 2.75 2.831

DCCRN-E [30] 3.27 3.08 - -
DCCRN-dir 3.28 3.44 2.76 2.94

performance on the reverberant set, when compared to the original DCCRN-E,
and also possibly when compared to PoCoNet [94], depending on the standard
deviation of their test scores (not published).

The same system was also tested on the two different datasets aquired with
RIR measurements (See Section 2.4.2 and [Paper III]). Here ‘Easy’, indicates that
the speaker is facing the array, while ‘Challenging’ means that the speaker is facing
away at a 90◦ angle. PESQ results for these datasets are shown in Table 7.2.

Table 7.2: Objective quality results of DCCRN-dir for the ‘Easy’ and ‘Challeng-
ing’ datasets. Wideband PESQ results, where the clean speech signal is used as
reference.

WPE Easy Challenging
SNR [dB] 0 5 10 0 5 10

No enhancement No 1.25 1.33 1.39 1.22 1.29 1.35
Yes 1.33 1.44 1.56 1.27 1.36 1.46

DCCRN-dir No 1.46 1.49 1.51 1.41 1.44 1.46
Yes 1.64 1.71 1.76 1.55 1.61 1.66

Independent of the test set used, PESQ predicts that all enhancement systems
improve the quality of speech and that all enhancement systems also benefit from
the WPE preprocessing step.

Intelligibility

Performance with respect to intelligibility of the single channel complex convolu-
tional recurrent mask estimator (the DCCRN) was evaluated objectively (in [Paper
IV] and [Paper V], and subjectively in [Paper IV]).

Table 7.3 shows the STOI performance on the two different datasets aquired
with RIR measurements (See Section 2.4.2 and [Paper III]). STOI predicts that all
enhancement systems improve intelligibility and also predicts that all enhancement
systems benefit from the WPE dereverberation block.
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Table 7.3: Objective intelligibility results of DCCRN-dir for the ‘Easy’ and ‘Chal-
lenging’ datasets. STOI score results, where the clean speech signal is used as
reference.

WPE Easy Challenging
SNR [dB] 0 5 10 0 5 10

No enhancement No 0.69 0.72 0.74 0.60 0.62 0.63
Yes 0.72 0.76 0.78 0.18 0.66 0.68

DCCRN-dir No 0.73 0.75 0.75 0.64 0.64 0.65
Yes 0.77 0.78 0.79 0.68 0.69 0.70

Table 7.4 shows the predictions of change in speech recognition threshold
(SRT) for five different measures of objective intelligibility, together with the SRT
changes obtained for different groups of listeners through subjective testing.

Table 7.4: Objective intelligibility results of DCCRN-dir for the speech-in-noise
test dataset. All statistically significant changes in SRT (predicted or measured)
are marked with an asterisk (∗).

NCM CSII STOI ESTOI HASPI

Predicted -7.4∗ -4.5∗ -4.0∗ -3.1∗ -3.8∗

Low SRT group 2.5∗

Medium SRT group 0.8
High SRT group -0.2

All measures predict statistically significant negative changes (improved intel-
ligibility), while subjective evaluation either shows reduction in intelligibility, or
no significant change.

7.2 Direction of Arrival Estimation

The direction of arrival (DOA) system described in Section 6.1 was proposed and
evaluated in [Paper III]. Tables 7.5 and 7.6 show the mean absolute error (MAE)
results for the different test sets, variants of the model, and when trained with dif-
ferent datasets based on the RIR simulation techniques described in Section 2.4.1.

For the ‘Easy’ test set, where the speaker was always facing the array, perform-
ance is high for all formulations and training sets.

The RIR simulation method matters more for the ‘Challenging’ dataset, where
the speakers all looked away from the array at a 90◦ angle. For this dataset, both the
ISM-dir and the WithDiffuse-dir based datasets, led to models that had significantly
higher performance than the SRP-PhaT (see Section 6.1) baseline system.

The overall performance difference between ISM-dir and WithDiffuse-dir was
insignificant, meaning that adding a diffuse field has no significant effect for the
testing conditions.
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Table 7.5: Mean absolute error for the ‘Easy’ test set, where speakers face directly
towards the array. Table taken from [Paper III] (©2021 IEEE).

Regression Classification
MSE∡ MAE∡ 1◦ bins 5◦ bins

SRP-Phat 1.5◦

ISM-omni 2.2◦ 2.1◦ 1.4◦ 1.3◦

ISM-dir 3.0◦ 2.1◦ 1.5◦ 1.5◦

WithDiffuse-omni 2.8◦ 1.1◦ 1.3◦ 1.4◦

WithDiffuse-dir 3.8◦ 1.4◦ 1.1◦ 0.9◦

Table 7.6: Mean absolute error for the ‘Challenging’ test set, where speakers face
90◦ away from the array. Table taken from [Paper III] (©2021 IEEE).

Regression Classification
MSE∡ MAE∡ 1◦ bins 5◦ bins

SRP-Phat 16.5◦

ISM-omni 18.2◦ 18.2◦ 19.1◦ 18.8◦

ISM-dir 12.7◦ 11.5◦ 8.9◦ 8.1◦

WithDiffuse-omni 19.7◦ 19.6◦ 18.6◦ 17.9◦

WithDiffuse-dir 13.0◦ 10.5◦ 9.9◦ 10.1◦

The effect of changing the simulation method gives similar performance
changes across the different model formulations, which provides evidence that the
obtained results are indeed due to the different training sets, and not locked to
the formulation of the problem, or caused by hyperparameter tuning.

For the ‘Challenging’ dataset, the model trained on RIRs simulated for directive
sources achieved up to 51 % lower mean absolute error than the industry standard
SRP-PhaT method, while the equivalent model trained with standard image source
method RIRs from omni-directional sources performed worse than the SRP-PhaT
baseline method.

7.3 Multichannel Speech Enhancement

Quality

Performance with respect to speech quality of the multichannel complex convolu-
tional recurrent mask estimator (the DCCRN) was only evaluated objectively (in
[Paper IV]). Table 7.7 shows the wideband PESQ results of the three variants of
the multichannel DCCRN, together with state-of-the-art reference systems and the
noisy unprocessed condition.

PESQ indicates that all speech enhancement systems statistically significantly
(independent two-sample t-test, p < 0.05) benefit from the WPE preprocessing
step. Furthermore, the independent two-sample t-test shows that all proposed
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Table 7.7: Objective quality results of the multichannel DCCRN for the ‘Easy’ and
‘Challenging’ datasets. Wideband PESQ results, with clean signal used as reference.
Best scores per SNR are shown in bold, where multiple highlighted values in the
same columns indicate that the difference was not statistically significant. Table
taken from [Paper III] (©2021 IEEE).

Easy Challenging
SNR [dB] WPE 0 5 10 0 5 10

No enhancement No 1.25 1.33 1.39 1.22 1.29 1.35
Yes 1.33 1.44 1.56 1.27 1.36 1.46

ConferencingSpeech No 1.33 1.36 1.48 1.27 1.31 1.41
2021 baseline [107] Yes 1.40 1.46 1.63 1.33 1.39 1.52
DCCRN-dir No 1.46 1.49 1.51 1.41 1.44 1.46

Yes 1.64 1.71 1.76 1.55 1.61 1.66
GEV (oracle IBM mask) with No 1.48 1.59 1.60 1.41 1.46 1.52
BAN, by Heymann et al. [39] Yes 1.58 1.75 1.80 1.49 1.58 1.67
MPDR (oracle TDOAs) No 1.68 1.73 1.76 1.54 1.59 1.62
+ DCCRN-dir Yes 1.89 1.98 2.04 1.71 1.79 1.85
Jointly trained system No 1.68 1.86 1.88 1.61 1.73 1.78
(oracle TDOA) Yes 1.80 2.02 2.06 1.74 1.89 1.94
Jointly trained system No 1.60 1.80 1.85 1.50 1.62 1.69
(estimated TDOAs) Yes 1.74 1.95 2.04 1.63 1.79 1.88

systems have statistically significant higher performance than the three reference
systems (p≪ 0.05)

For the ‘Easy’ set (where the speaker is facing directly towards the array), there
is no statistically significant difference in performance between integrating the
MPDR in the training loop, or simply adding it as a preprocessing step to the single
channel DCCRN.

For the ‘Challenging’ set (where the speaker looks away from the array at a
90◦ angle), there is a significant performance difference for the SNRs of 5 and 10
dB. Here the alternative to the proposed system (where the MPDR is added as a
standalone preprocessing step before the pretrained DCCRN) performs statistically
significantly worse (p < 0.05).

As expected, there is a statistically significant performance decrease from
moving from oracle TDOAs to estimated TDOAs for lower SNRs. However, the system
trained with estimated TDOAs still outperforms all baseline systems, indicating
that beamforming is useful, even when it is difficult to estimate exact TDOAs.

Intelligibility

Performance with respect to speech intelligibility of the multichannel complex
convolutional recurrent mask estimator (the DCCRN) was evaluated objectively in
[Paper IV] and [Paper V], and subjectively in [Paper V].
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Table 7.8 shows the STOI results of the three variants of the multichannel
DCCRN, together with state-of-the-art reference systems and the noisy unprocessed
condition, on the ‘Easy’ and ‘Challenging’ datasets.

Table 7.8: Objective quality results of the multichannel DCCRN for the ‘Easy’
and ‘Challenging’ datasets. STOI results, with clean signal used as reference. Best
scores per SNR are shown in bold, where multiple highlighted values indicate
that the difference was not statistically significant. Table taken from [Paper III]
(©2021 IEEE).

Easy Challenging
SNR [dB] WPE 0 5 10 0 5 10

No enhancement No 0.69 0.72 0.74 0.60 0.62 0.63
Yes 0.72 0.76 0.78 0.18 0.66 0.68

ConferencingSpeech No 0.68 0.72 0.73 0.59 0.61 0.62
2021 baseline [107] Yes 0.71 0.75 0.77 0.63 0.66 0.67
DCCRN-dir No 0.73 0.75 0.75 0.64 0.64 0.65

Yes 0.77 0.78 0.79 0.68 0.69 0.70
GEV (oracle IBM mask) with No 0.77 0.78 0.79 0.61 0.66 0.67
BAN, by Heymann et al. [39] Yes 0.78 0.80 0.81 0.68 0.69 0.71
MPDR (oracle TDOAs) No 0.80 0.81 0.81 0.71 0.72 0.73
+ Single channel DCCRN Yes 0.81 0.82 0.83 0.74 0.74 0.75
Jointly trained system No 0.80 0.82 0.83 0.75 0.76 0.77
(oracle TDOA) Yes 0.80 0.83 0.83 0.76 0.77 0.78
Jointly trained system No 0.78 0.81 0.82 0.72 0.73 0.75
(estimated TDOAs) Yes 0.79 0.82 0.83 0.73 0.75 0.77

From a STOI performance perspective, integrating the MPDR in the training
loop, or having it as a separate step, does not always give significantly different
results. However, at SNRs 5 and 10 dB, and for the ‘Challenging’ dataset (where
the speaker is not facing directly towards the array), the integrated MPDR obtains
significantly (two-sample t-test, p < 0.05) higher STOI scores. For all SE systems,
the WPE dereverberation step always leads to an improved STOI score, although
the difference is not at all times statistically significant. The independent two-
sample t-test shows that the three proposed systems have statistically significant
higher STOI performance than the three reference systems (p≪ 0.05).

Figure 7.7 shows the predicted psychometric functions (intelligibility versus
SNR), from five different objective intelligbility metrics. Here the scores from the
metric have been converted to intelligibility in percentage (see Section 4.2.2).

Figure 7.7 shows the predicted intelligibility performance of two variants (with
estimated or true TDOAs) of the multichannel DCCRN, where the MPDR was
added as a separate block (and not integrated in the training loop). Additionally,
results for several baseline systems are presented: the noisy condition, MPDR-only
systems, and the single channel DCCRN-dir.
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Figure 7.7: Objective Intelligibility (psychometric function) results of the mul-
tichannel DCCRN for the speech-in-noise test dataset. Conditions: noisy,
Single channel DCCRN, MPDR (estimated TDOAs), , MPDR (estimated
TDOAs) + single channel DCCRN, MPDR (oracle TDOAs), MPDR (oracle
TDOAs) + single channel DCCRN. Figure taken from [Paper V].

The noisy condition and the MPDR-only system with estimated TDOAs are
predicted to have equal performance by all metrics. All other systems are predicted
to achieve higher intelligibility than these baseline systems. This improvement is
also predicted to be present, by all metrics, over the entire range of SNRs.

Figure 7.8 is a summary of Figure 7.7. It shows the expected change in speech
recognition threshold (SRT) as predicted by each metric for each system, where
the noisy unprocessed condition is taken as the baseline.
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Figure 7.8: Objective Intelligibility (change in SRT) results of the multichannel
DCCRN for the speech-in-noise test dataset. The following systems are compared
to the single channel noisy condition: Single channel DCCRN, MPDR
(estimated TDOAs) only, MPDR (estimated TDOAs)+ single channel DCCRN,

MPDR (oracle TDOAs) only, MPDR (oracle TDOAs) + single channel
DCCRN. Negative numbers indicate improvement in speech intelligibility. Figure
taken from [Paper V].

As before, the MPDR-only baseline system with estimated TDOAs is predicted
to lead to similar intelligibility as the noisy baseline condition, as only ESTOI and
HASPI predict significant changes (p < 0.05), and in those cases the predicted
changes are still small.

All metrics predict significant decreases in SRT (meaning improved intelligibil-
ity) for all other systems with (p≪ 0.01).
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Figure 7.9 shows the subjective results for all processing conditions, together
with their respective objective predictions by the different metrics. These results
were obtained from 16 respondents with SRTs below -15 dB on the single channel
noisy baseline condition: the best hearing subjects.
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Figure 7.9: Subjective Intelligibility (psychometric function) results of the mul-
tichannel systems for the speech-in-noise test dataset. Psychometric functions ob-
tained from normal hearing native speakers for the different processing pipelines.
The subjective responses (error bars indicating confidence intervals) and their
logistic fits are shown in black ( ), together with the corresponding predictions
from the objective metrics: CSII, HASPI, NCM, ESTOI, and

STOI. Figure taken from [Paper V].

For the noisy condition, the objective scores have been mapped to the obtained
subjective intelligibility, to calibrate the scores to the evaluation setup, which is
held constant when testing the other processing conditions. All mappings slightly
underestimate the slope of the psychometric function, but even at the extreme
ends, the effect of this is minor. The same mapping also works reasonably well
for the other baseline systems (Figure 7.9, top row), although there seems to be a
slight systematic overestimation of intelligibility performance of the MPDR with
oracle TDOAs.

However, for the DCCRN based systems, all metrics overestimate intelligibility
across the entire SNR range relevant to intelligibility.

Only the MPDR systems supplied with oracle TDOAs obtain lower SRT scores
(indicating improved intelligibility) than those obtained for the noisy condition. The
MPDR-only system supplied with oracle TDOAs, also outperforms the multichannel
DCCRN with oracle TDOAs. All other ‘enhancement’ systems instead degrade the
subjectively measured intelligibility of speech.

This is also apparent from Figure 7.10, which shows the subjective results for
three different subject groups (where subjects were divided by their SRT obtained
for the noisy condition) and the six processing conditions.



84 F.B. Gelderblom: Evaluating Performance Metrics for DNN-based SE Systems

-30 -20 -10 0 10

SNR [dB]

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 I
n
te

lli
g
ib

ili
ty

Low SRT subgroup (n=16)

-30 -20 -10 0 10

SNR [dB]

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 I
n
te

lli
g
ib

ili
ty

Medium SRT subgroup (n=17)

-30 -20 -10 0 10

SNR [dB]

0

0.2

0.4

0.6

0.8

1

E
s
ti
m

a
te

d
 I
n
te

lli
g
ib

ili
ty

High SRT subgroup (n=16)

Figure 7.10: Subjective Intelligibility (psychometric function) results of the mul-
tichannel systems for the speech-in-noise test dataset, for the three subgroups
of subjects. Subgroups: noisy, Single channel DCCRN, MPDR (es-
timated TDOAs), , MPDR (estimated TDOAs) + single channel DCCRN,
MPDR (oracle TDOAs), MPDR (oracle TDOAs) + single channel DCCRN.
Figure taken from [Paper V].

Figure 7.11 shows the change in SRT obtained for these subject groups and
for the different systems. Again, only the MPDR systems supplied with oracle
TDOAs improve the SRT in a statistically significant manner (as determined by the
paired Wilcoxon rank sum test and marked with an asterisk). Other systems either
degrade the speech or have no statistically significant effect.
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Figure 7.11: Subjective Intelligibility (change in SRT) results of the multichannel
systems for the speech-in-noise test dataset, for the three subgroups of subjects. The
following systems are compared to the single channel noisy condition: Single
channel DCCRN, MPDR (estimated TDOAs) only, MPDR (estimated
TDOAs) + single channel DCCRN, MPDR (oracle TDOAs) only, MPDR
(oracle TDOAs) + single channel DCCRN. Positive numbers indicate a degradation
in speech intelligibility. Statistically significant changes are marked with an *.
Figure taken from [Paper V].

All objective metrics predicted increased intelligibility performance, but instead
all DCCRN-based systems have no significant effect on the intelligibility, or even
worse: They cause intelligibility to be reduced. Additionally, the metrics predicted
significant increases in intelligibility for all SNRs, making the OIMs unreliable
across the range.



Chapter 8

Conclusions and Further Work

This thesis aims to contribute to the search for speech enhancement systems that
improve intelligibility (and quality) of speech signals for human listeners. Particular
focus has been put on subjectively evaluating systems, to ensure findings are indeed
representative for human subjects.

In 2017, at the start of this study, single channel DNN-based speech enhance-
ment had begun to show potential for the purpose of automatic speech recognition
(ASR). With speech recognition, a machine, instead of a human, ‘listens’ to a speech
signal. The goal was to transfer the promising results from ASR to the domain of
speech enhancement for human listeners.

The early studies of this thesis [Paper I][Paper II] immediately encountered
the well-known, yet somewhat counter-intuitive challenge of subjective speech
enhancement: Reducing/removing noise is not all that difficult, but doing so
without making your signal less intelligible, is extremely challenging.

The first SE systems evaluated for this thesis were based on fully connected
feed forward DNN models that directly estimated the clean spectrum. The effect
of applying global variance normalization was evaluated with respect to subjective
intelligibility, and no change in performance was found [Paper I].

A less ‘aggressive’ SE system that attempted to reduce the noise, instead of
removing it all together, was then proposed. This system performed better than
the systems that tried to remove the noise completely: It resulted in higher subject-
ive quality ratings and improved subjective intelligibility scores. However, when
compared to the unprocessed noisy condition, the system only barely improved
subjective quality in one specific condition (leaving it insignificantly changed under
all other tested situations) and actually slightly degraded speech intelligibility [Pa-
per II]. So the concept of putting more focus on trying to avoid distortion was
shown to have potential, but the actual speech enhancement capability of these
fully connected feed forward networks was disappointing.

One of the major decisions during the work was then to move to multichan-
nel input. This was motivated by the fact that human hearing is directional, an
important ability that is lost in conference calls and most other applications of

85



86 F.B. Gelderblom: Evaluating Performance Metrics for DNN-based SE Systems

speech enhancement. Furthermore, multichannel speech enhancement had (again)
already lead to significant performance increases in the field of speech recognition.

To train the multichannel speech enhancement systems in a supervised man-
ner, multichannel data were required. The availability of measured room impulse
response data has recently increased, but the training process for a specific mi-
crophone array demands specific RIRs for an array’s exact element layout. Here
simulations provide a solution, and the the image source method is the standard
go-to method for this purpose.

However, the image source method overly simplifies reverberance. Therefore,
for the work of this thesis, alternative methods that include speaker directivity and
diffuse reflections were studied. Especially including the directivity of speakers,
lead to improved models for indoor direction of arrival estimation.

Following this work, several closely related multichannel speech enhancement
networks were proposed in [Paper IV], which were all trained with input that relied
on the directive RIRs. These multichannel networks were based on combining
beamforming with a more complex deep neural convolutional recurrent network
structure, and achieved much higher objective performance than the earlier fully
connected networks. The multichannel system, where beamformer output was
masked with a DNN, lead to reduced speech recognition threshold values (indic-
ating improved intelligibility) in subjective testing, but only when supplied with
oracle TDOAs. Comparison with a system that relied only on beamforming and did
not include the DNN, showed that the neural network model actually degraded
the signal, despite objective indicators predicting the exact opposite.

Therefore, the main contribution of this thesis, lies in showing that the tested
objective measures for speech intelligibility and quality are not reliable tools to guide
the development of DNN based speech enhancement systems, despite their popularity
among researchers for exactly this purpose.

This thesis shows this by documenting that:

• STOI predicted improvements in intelligibility for two fully connected feed
forward neural network based SE systems (which differed by including,
or not including global variance normalization), but both of these system
degraded subjective intelligibility [Paper I].
• STOI also predicted very similar improvements in intelligibility for two

otherwise equal SE systems that were trained to either remove the noise or
reduce it. However both systems degraded intelligibility and, additionally,
to a different degree [Paper II].
• There was no correlation between POLQA’s quality prediction for these

noise reducing and noise removing SE systems and subjective measured
quality [Paper II].
• NCM, CSII, STOI, ESTOI and HASPI all predicted large and significant im-

provements in intelligibility for the more advanced single channel DCCRN
and the multichannel DCCRN-based systems proposed as part of this thesis,
and still these systems degraded the actual subjective intelligibility [Paper
V].
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These findings are important, especially since relying solely on subjective testing
is far too time-consuming to guide system development. The development of speech
enhancement systems requires reliable objective estimation of performance, for
both the training and selection of models. This thesis shows that the field is lacking
tools for objective evaluation; this lack critically hampers progress.

It is also important to note that there are two sides to having unreliable objective
metrics. First of all, such metrics may lure developers into thinking they have
developed an enhancement system, while in practice the system only degrades
the speech. But arguably equally problematic, they might stop the development
of systems that may actually have had merit, by predicting (presumably just as
unreliably) that these systems will only degrade speech, or have no effect at all.

For example, while the results of this thesis in the field of DOA estimation were
promising, the focus on generating more realistic training data for the purpose of
speech enhancement was largely abandoned when the objective measures did not
predict similar effects for speech enhancement systems. This was done knowing
full well that the objective measures could not be relied upon, but they were the
only tools available.

8.1 Further Work

Combining the results of this thesis that were obtained in the fields of DOA estim-
ation and SE, a clear opportunity for multichannel speech enhancement can be
identified. Namely, with multichannel speech enhancement, the issue of unreliable
objective performance measures can be avoided altogether. Instead of training
models towards objective measures that do not represent reality, models can be
trained for improved speaker localization. Such a procedure includes beamformers
to maximally benefit from the understanding of the physics behind signals, while
the power of deep learning is put there where traditional models fall short: locating
a speaker in a highly noisy reverberant room. Most importantly, with direction of
arrival estimation, there is a mathematically well defined error between target and
estimate, which is in no way dependent on human hearing and perception.

The DOA models proposed in [Paper III], trained with directive RIRs achieved
up to 51 % error reduction compared to a traditional baseline system, while the
same models trained with RIRs from omnidirectional sources did worse than this
baseline. This shows that the importance of the data generation step has been
undervalued as a potential source of performance gain for speaker localization and
therefore further work is warranted here. The proposed system of [Paper III] was
intentionally kept simple, and focused only on the simulation of reverberance. Next
steps include using state-of-the art DOA networks and adding noise. Improved
speaker localization will lead to improved performance in all its applications,
including speech enhancement for human listeners.

However, for single channel speech, speaker localization is not an option.
Therefore, this thesis shows there is a dire need for further research on objective
metrics for deep learning based speech enhancement. Specifically, it is important
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to study why some signals, while being so much closer to their clean target signal,
are still harder to understand than their noisy unprocessed counterparts. Where is
the intelligibility lost? Which components of the speech signal are so important
that they should never be touched/distorted, even if that means leaving more
noise and reverberance in the enhanced signal? A deeper understanding of these
fundamental questions should lead to better objective metrics that can predict
whether a signal is enhanced or degraded. Without such metrics, the current
development process of single channel speech enhancement systems for improved
intelligibility, is essentially blind.
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Abstract
Recent literature indicates increasing interest in deep neural
networks for use in speech enhancement systems. Currently,
these systems are mostly evaluated through objective measures
of speech quality and/or intelligibility. Subjective intelligibility
evaluations of these systems have so far not been reported. In
this paper we report the results of a speech recognition test with
15 participants, where the participants were asked to pick out
words in background noise before and after enhancement using
a common deep neural network approach. We found that, al-
though the objective measure STOI predicts that intelligibility
should improve or at the very least stay the same, the speech
recognition threshold, which is a measure of intelligibility, de-
teriorated by 4 dB. These results indicate that STOI is not a
good predictor for the subjective intelligibility of deep neural
network-based speech enhancement systems. We also found
that the postprocessing technique of global variance normalisa-
tion does not significantly affect subjective intelligibility.
Index Terms: speech enhancement, deep neural network, sub-
jective evaluation, speech intelligibility

1. Introduction
The field of speech enhancement (SE) aims to improve the qual-
ity and/or intelligibility of speech that has been degraded [1]. In
the past few years, deep neural networks (DNNs) [2, 3] have
emerged as a promising approach for SE, outperforming ear-
lier approaches. SE has been proven useful as a preprocessing
step for automatic speech recognition systems to decrease their
word error rates [4, 5, 6], but the field also aims to make de-
graded speech easier to understand and/or more comfortable to
listen to for humans [5, 7, 8].

The performance of each of these SE approaches with
respect to intelligibility improvement is typically evaluated
through objective measures. Especially popular measures are
STOI [9], PESQ [10], or the word error rates of speech recog-
nition systems. PESQ was originally designed as a measure
for speech quality rather than intelligibility, but was then found
to also correlate reasonably well with subjective intelligibil-
ity [11]. None of today’s objective measures of intelligibility
can perfectly predict intelligibility to humans, and their correla-
tion depends on the type of speech degradation present [9, 12].

Thus, listening tests are necessary to quantify the benefit of
DNN-based SE for human listeners. Listening tests for speech
quality have previously been reported in the literature with posi-
tive results [5, 7, 8]. Quality is however highly subjective, since
whether a signal sounds ‘good’ or ‘poor’ is based on listeners’
preferences. Intelligibility tests are more objective in nature as
these allow for quantitative scoring of how much information
the listener actually understood. To our knowledge, and despite
its popularity, no one has tested the predictive power of STOI
for DNN-based SE against subjective listening tests.

In this work we report the results of a series of listening
tests for intelligibility, where our test subjects attempted to com-

prehend speech in background noise, before and after DNN-
based speech enhancement. Here, we evaluate whether STOI
correctly predicts change in subjective intelligibility for a rea-
sonably common DNN setup. Additionally, we analyse the ef-
fect of the ‘global variance normalisation’ postprocessing step
(described in sec. 2.1.3) on intelligibility.

2. Methods
2.1. DNN system overview

The speech enhancement system is loosely based on the system
Xu et al. proposed in [8], but omits pre-training with restricted
Boltzmann machines as their results indicate that the effect of
pre-training was negligible. The DNN was implemented using
Keras 1.0.5 [13].

2.1.1. Speech and noise preparation

For training, clean speech was combined with noise to ob-
tain noisy speech. The clean speech was obtained from the
Norwegian-language library ‘Språkbanken’ [14], to ensure that
the DNN trained on the same language as used during subjec-
tive evaluation. The setup of Språkbanken is similar to that of
the more widely used TIMIT. The clean speech database was
divided into a training set, a validation set, and a test set (not
used for this article). Care was taken to ensure that each set was
balanced with respect to gender and dialect, and that no spe-
cific speakers or sentences occurred in more than one set. The
final training set consisted of 1932 sentences from 137 unique
speakers, while the validation set contained 816 sentences from
48 speakers.

Periods of silence lasting longer than 75 ms were trimmed
to 75 ms where their levels were 40 dB or more below the peak
of the given sentence, to capture the average dynamic range of
speech [11]. The 75 ms length was arbitrarily chosen as a com-
promise between minimising the number of quiet training sam-
ples, and maintaining a clear separation between words.

Noisy speech was obtained by combining the clean speech
with the same 104 noises Xu et al. used in [8], all obtained from
either the Aurora database [15] or Guoning Hu’s collection [16].
Six different signal-to-noise ratios (SNRs) ranging from −5 dB
to 20 dB, with SNRs applied at sentence level, were used for
training. This range was chosen, despite the need for lower
SNRs during speech intelligibility testing, as a DNN trained
with a more suitable SNR range, but otherwise equal hyper-
parameters, actually performed worse in terms of STOI values
at all SNRs.

The noisy speech, along with clean speech (with ‘infinite
SNR’), was used as input for the DNN. This lead to a total of
1984 hours of training data. Noisy speech for validation was
obtained by combining the clean validation speech with the 15
unseen noises Xu et al. specified in [8], obtained from either the
Aurora or NOISEX-92 databases [15, 17]. This resulted in 98
hours of validation data. Both the noisy and clean speech sig-
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Figure 1: Diagram of training procedure. The clean and noisy
phases output by the preprocessing steps are discarded.

Figure 2: Diagram of preprocessing steps

nals were down-sampled to 8 kHz, as this was the lowest sam-
pling rate of any of the original signals.

2.1.2. Training

Figure 1 shows a block diagram of the training procedure. The
model learns in a supervised manner, with the standard mean
squared error (MSE) loss function

MSE =
1

n

∑

k

(ŷk − yk)2 , (1)

where ŷk and yk represent the kth frequency bins of the en-
hanced and clean log-power spectral features, respectively. The
features were obtained through the preprocessing steps shown
in Figure 2. During preprocessing, the signal is first separated
into windows that overlap by 50 %. The windows consist of
256 samples, and thus represent a timeframe of 32 ms at 8 kHz.
The Hann window function is then applied to each window be-
fore the result is Fourier transformed. Redundant information
above the Nyquist frequency is discarded from the resulting
magnitude spectrum to obtain a single-sided output. Finally,
log-power spectrum features are calculated for each window.
After preprocessing, the input vector is obtained by stacking
21 sequential 50 % overlapping windows that contain the log-
power spectral features. This provides the DNN with 160 ms
historic and 160 ms future context. The phase of both clean and
noisy speech is ignored during training. No normalisation of
input or output was applied.

The DNN model is a multi-layer perceptron, a feedforward
neural network with fully connected layers. It has three hidden
layers, each with 2048 nodes and LeakyReLU activation func-
tions. The model is trained with 50 % dropout on the hidden
layers using the Adam optimiser with a learning rate of 10−5.
The activation function of the output layer is linear.

Training continued until the STOI value reached a maxi-
mum for the validation set at the 8th epoch. The model’s state at
this epoch was used for enhancement. We also trained a number
of different models with different hyperparameters; the model
described here was selected due to its better STOI performance.

Figure 3: Diagram of enhancement procedure

Figure 4: Diagram of postprocessing steps

2.1.3. Enhancement

After training, the model could be used to enhance noisy
speech. Figure 3 shows the enhancement procedure, and Fig-
ure 4 shows the postprocessing steps.

Postprocessing mainly consists of reversing the steps that
were taken during preprocessing, using the noisy phase for
waveform reconstruction. The first step, global variance nor-
malisation (GVN), is the exception to this reversal. This step
aims to prevent over-smoothing by enforcing the variance of
the enhanced speech to be equal to the variance of actual clean
speech. During GVN, the DNN’s output features are multiplied
with a frequency bin independent factor calculated as

β =

√
varm,k[yk(m)]

varm,k[ŷk(m)]
, (2)

where varm,k represents the variance over all values of m and
k, with m indexing examples in the training set, and k indexing
frequency bins. Furthermore, from the law of total variance we
can calculate this variance as

var
m,k

[ak(m)] =
1

K

∑

k

var
m

[ak(m)] + var
k

(
var
m

[ak(m)]
)
, (3)

where K equals the total number of frequency bins and ak(m)
represents either yk(m) or ŷk(m). This specific method for
the calculation of the global variance combines readily with
Welford’s online algorithm for variance computation, which is
well suited to working with large data sets [18]. Two systems
were tested for this work; one with, and one without the GVN
step.

2.2. Objective evaluation

The short-term objective intelligibility (STOI) measure [9] was
used to test the model’s performance. The advantages of STOI
include a documented strong correlation with subjective speech
intelligibility [9] and the possibility to compare obtained results
with earlier publications [8]. Additionally, unlike with some
other popular objective measures like PESQ, use of STOI is not
restricted by licencing.

Objective evaluation results were obtained both for the val-
idation set and for the signals used during subjective testing.

2.3. Subjective evaluation

The subjective evaluation of intelligibility was performed us-
ing a speech recognition test. Figure 5 shows the user interface
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Figure 5: The GUI of the Norwegian-language subjective test

implemented in MATLAB [19]. Random five-word sentences,
all uttered by the same male speaker, were presented at differ-
ent SNRs to determine the speech recognition threshold (SRT).
All sentences were in Norwegian and structured the same way:
[Name], [Verb], [Numeral], [Adjective], [Noun], with 10 op-
tions for each. The subjects’ task was to pick out which word in
each category was in the sentence they just heard. The speech
material has been taken from Øygarden’s hearing in noise test,
which is based on Hagerman sentences [20].

To keep the subjective test to a manageable length, only one
noise file was used: a road traffic recording from a crossroad
in central Trondheim, a common type of background noise in
cities. Each sentence was mixed with a random section of this
noise file at the desired SNR. The SNR was calculated from the
root-mean-square (RMS) value for the sentence without noise
and the RMS value for the selected section of the noise signal.
The background noise was kept constant at a comfortable level
while the speech was varied to achieve the correct SNR. The
speaker, utterances, and noise used in this test had not been in-
cluded during DNN training nor during validation.

Each subject completed three tests. For each test case, all
material was first down-sampled to 8 kHz. One test set was
left otherwise untreated (‘Noisy’), while for the other cases
the speech was enhanced according to the method described in
sec. 2.1.3 (‘DNN with/without GVN’), where the GVN step was
only included for one of these cases. The material of each test
set was subsequently up-sampled to 44.1 kHz before being pre-
sented to the subject. All sentences were presented binaurally
with Sennheiser HDA-200 headphones via an external sound
card (Roland Edirol UA-101).

An adaptive procedure called the Ψ method [21] was used
to determine the presentation levels during testing. The method
uses the entropy of the posterior probability distribution in the
determination of the next stimuli level. The Palamedes MAT-
LAB toolbox [22] was used for the realisation of the Ψ method.

The test was not forced choice, but the test subjects were
encouraged to guess whenever they thought they (partly) recog-
nised a word. Both the guess and lapse rate were set to 0.01 in
the method. The threshold and slope value were allowed to vary
in the estimation of the psychometric function. The stimulation
range of the SNRs was from -36 dB to 10 dB, in 2 dB steps.

15 persons, with ages from 39 to 65 (Mean = 54.2, SD =
9.5), participated. The only selection criteria observed was that
all participants had to have Norwegian as their first language.
All test subjects were given a training session before the three
situations (Noisy, DNN with GVN, and DNN without GVN)
were tested and the test sequence was randomised between each
individual to reduce any further training effect that could occur
during the session. The test subjects were also allowed to take
a break during the test if they desired.

Table 1: STOI results for the validation set. Results are aver-
aged over the 15 unseen noise types and stated together with
their sample standard deviation.

SNR Noisy DNN without GVN DNN with GVN

20 0.95 (0.01) 0.92 (0.01) 0.91 (0.01)
15 0.91 (0.02) 0.90 (0.01) 0.89 (0.01)
10 0.85 (0.03) 0.86 (0.02) 0.85 (0.02)
5 0.76 (0.04) 0.80 (0.02) 0.79 (0.02)
0 0.65 (0.04) 0.71 (0.03) 0.71 (0.03)
-5 0.55 (0.04) 0.61 (0.04) 0.60 (0.04)

3. Results
3.1. Objective evaluation

Table 1 shows the STOI results for the validation set. The GVN
step shows no significant effect on the STOI results. DNN pro-
cessing leads to improved scores as compared to the baseline
for all SNRs under 10 dB. Looking at our unprocessed ‘noisy’
baseline, our STOI results at low SNRs are lower by 0.05 than
what Xu et al. [8] found using the TIMIT speech library. As we
use the same noise types, and we were able to reproduce their
‘noisy’ STOI scores using TIMIT, this discrepancy shows that
STOI predicts different intelligibility for the two libraries under
equal noise conditions.

Figure 6 shows a plot of the average STOI scores obtained
for the files processed for subjective evaluation. As with the
validation set results, the use of GVN did not significantly af-
fect model performance. At higher SNRs, DNN processing per-
forms worse than the noisy baseline. However, for low SNRs
STOI scores suggest improvement even outside the training
range. According to the objective evaluation, DNN processing
ought to be beneficial for all SNRs in between -14 dB and 4 dB.

3.2. Subjective evaluation

Figure 7 shows the results from the subjective tests. Specif-
ically, it shows the differences between the reference and the
two DNN models, both for the SRT and the slope of the psy-
chometric function at SRT. All test subjects performed worse
on the SRT, while the slope values are more mixed.

To assess the normality of the data, we performed an
Anderson-Darling test on all the differences. The SRT differ-
ences for the DNN without GVN failed the normality test. The
non-normality is presumably a consequence of the small sam-
ple size. To cope with this, we performed a Wilcoxon signed
rank test to compare the models with the reference. The tests
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Figure 6: STOI results for the subjective evaluation set
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Figure 7: Comparison between unenhanced reference data
and DNN data. Upper: Speech recognition thresholds (SRT).
Lower: Slope of the psychometric function at SRT.

showed a significant difference (W = 120, p = .0001 for both)
between the models and the reference; not surprisingly, since
all the test subjects performed worse on the DNN models (see
Figure 7). The differences in median SRT values were (using
Hodges-Lehman estimators) 3.8 [3.2, 4.4] and 3.9 [3.2, 4.8] for
DNN with GVN and without GVN, respectively. The numbers
in brackets are the 95 % confidence intervals.

The slope of psychometric functions were compared using
a two sample F -test. Neither DNN with GVN (F14,14 = .91,
NS), nor DNN without GVN (F14,14 = .69, NS) showed any
significant difference from the reference.

4. Discussion
The STOI results for unprocessed noisy validation files from the
Norwegian database (Table 1) differ from those obtained for the
TIMIT database by Xu et al. [8]. This complicates comparing
model performance directly. However, the results are similar
to those of Xu et al. in the sense that STOI improvement is
arguably insignificant for SNRs of 10 dB and above. For lower
SNRs, STOI predicts our system will achieve improvements of
up to 6 percent on the subjective scale. This is less than Xu et
al. achieved, but significant enough to predict that subjective
SRTs ought to decrease, or at the very least, stay the same.

The DNN model was not trained at SNRs below -5 dB, but
surprisingly, the STOI results shown in Figure 6 indicate that
the model enhances noisy speech with SNRs up to 9 dB be-
low its training range. This means that during subjective test-
ing, 93.8 % of sentences presented to the listener had an SNR
that fell in the functional range of the model (from -14 dB to
4 dB). All test subjects also achieved SRT values within this
range. Nonetheless, the results from the subjective testing
showed that the DNN models performed significantly worse
(SRTs increased with approx. 4 dB) than the unprocessed sen-
tences. Even from a conservative perspective where we could
say that the changes the model attains in STOI are insignificant,
the SRTs should not have increased this much. Thus, STOI sig-
nificantly overestimates the speech intelligibility of our DNN-
based speech enhancement system.

On the other hand, STOI correctly predicts that GVN has no
significant effect on speech intelligibility. According to Xu et
al. [8], PESQ results are, in contrast, significantly affected when
GVN is used during postprocessing of a DNN-based speech en-
hancement system. This may indicate that GVN matters more

to speech quality, but we did not investigate this further.
Our DNN model was selected because it obtained better

STOI scores than similar networks trained for a larger range of
SNRs or with different hyperparameters. Our results however
indicate that STOI fails to predict the intelligibility of a DNN-
based speech enhancement system. This directly undermines
our model selection criterion. It is therefore possible that one of
our other models would have lead to better subjective scores.

All test sentences were uttered by the same male speaker;
it is likely that the DNN model will perform differently for dif-
ferent speakers. Similarly, the results are presumably affected
by the choice of background noise. We expect that the traffic
noise used here performs better than for example noise that con-
sists mainly of human speech (babble), since the DNN models
might try to enhance some of the speakers in the noise as well.
Similarly, other types of noise may again be easier for the sys-
tem to handle. A more comprehensive study of the suitability of
STOI as an objective evaluation measure for DNN-based speech
enhancement would need to include a variety of speakers and
noises. Such a comprehensive study will be time-consuming
and the material for the speech-in-noise tests will need to be
carefully constructed for unbiased results.

The choice of sampling frequency (8 kHz) might also have
affected the results. Increasing the sampling frequency to
16 kHz, or higher, would probably have improved the speech
recognition for all the tests [23], but it is not clear if this would
have changed the results of this study.

Another possible bias in this study is the effect of hearing
loss. As the analysis of the subjective testing looked at the dif-
ference between a reference and the DNN models, we assumed
that a hearing loss would not alter the results. Only one test
subject had a hearing aid, but this was not used during the sub-
jective test. Since the test subjects’ ages were relatively high
(mean = 54.2) it can be assumed that several of the test sub-
jects were affected by presbycusis. Even if the intra-subject
change in SRTs should be independent of hearing impairment,
this may have affected results.

Our analysis is limited to speech intelligibility, and does not
consider the effect of DNNs on speech quality. The relation-
ship between these two parameters is not fully understood. For
many communication systems, intelligibility may be approach-
ing 100 %, while user satisfaction is still limited. Here, listening
effort tests, where a speech intelligibility test is combined with
another task, may provide a good compromise between provid-
ing objective results for the more quality related question of how
comfortable or easy it is to listen to the enhanced speech.

5. Conclusion
We have tested a DNN-based speech enhancement system with
listening tests to determine the subjective intelligibility of pro-
cessed noisy speech. Our results show a significant degrada-
tion in intelligibility, even though STOI scores predicted other-
wise. Therefore we advise against solely relying on STOI when
designing DNN-based speech enhancement systems for human
listeners. Our results further show that the postprocessing tech-
nique of global variance normalisation does not significantly af-
fect subjective intelligibility.
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Subjective evaluation of a noise-reduced training
target for deep neural network-based speech

enhancement
Femke B. Gelderblom, Tron V. Tronstad, Erlend Magnus Viggen

Abstract—Speech enhancement systems aim to improve the
quality and intelligibility of noisy speech. In this study, we
compare two speech enhancement systems based on deep neural
networks. The speech intelligibility and quality of both sys-
tems was evaluated subjectively, by a Speech Recognition Test
based on Hagerman sentences and a translation of the ITU-
T P.835 recommendation, respectively. Results were compared
with the objective measures STOI and POLQA. Neither STOI
nor POLQA reliably predicted subjective results. While STOI an-
ticipated improvement, subjective results for both models showed
degradation of speech intelligibility. POLQA results were overall
hardly affected, while the subjective results showed significant
changes in overall quality, both positive and negative, in many
of the tests. One of the systems was trained to remove all noise; a
strategy that is common in speech enhancement systems found in
the literature. The other system was trained to only reduce the
noise such that the signal-to-noise ratio increased with 10 dB.
The latter system subjectively outperformed the system that
attempted to remove noise completely. From this, we conclude
that objective evaluation cannot replace subjective evaluation
until a measure that reliably predicts intelligibility and quality for
deep neural network based systems has been identified. Results
further indicate that it may be beneficial to move away from
more aggressive noise removal strategies towards noise reduction
strategies that cause less speech distortion.

Index Terms—speech enhancement, artificial neural networks,
subjective evaluation, speech intelligibility, speech quality

I. INTRODUCTION

THE field of speech enhancement (SE) deals with improv-
ing speech signals that have been degraded by noise [1].

Speech enhancement is commonly applied in automatic speech
recognition (ASR) systems as a preprocessing step to improve
these systems’ accuracy in noisy environments [2], [3], [4].
Recently, research into this application has flourished, result-
ing in significant performance increases of ASR systems. This
success has also lead to a renewed interest in the application
of speech enhancement for human listeners, where the goal

Femke B. Gelderblom and Tron V. Tronstad and Erlend Magnus Viggen
are with the Acoustics Research Centre, Connectivity Technologies and
Platforms, SINTEF Digital, Trondheim, Norway. Erlend Magnus Viggen is
additionally with the Centre for Innovative Ultrasound Solutions, Department
of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences,
NTNU – Norwegian University of Science and Technology, Trondheim,
Norway, and is supported by grant no. 237887 from the Research Council
of Norway.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. The material consists
of tables containing detailed results of the statistical analysis. Contact
tronvedul.tronstad@sintef.no for further questions about this material.

This post-print has been accepted for publication by IEEE/ACM Transac-
tions on Audio, Speech and Language Processing. c©2018 IEEE.

is to make the speech easier to understand (i.e., increase
speech intelligibility) and/or more comfortable and less tiring
to listen to (i.e., increase speech quality) [3], [5], [6]. The
latter application is especially important within the fields of
telecommunication and hearing assistive technology.

There exists a wide range of SE techniques. As in many
other fields, techniques based on deep neural networks (DNNs)
[7], [8] are currently receiving a lot of interest due to their
potential to outperform earlier techniques. For ASR systems,
performance is measured by a SE system’s ability to decrease
the word error rate. For human listeners, performance is
ideally determined through subjective evaluation of speech
intelligibility and/or speech quality [1]. These tests generally
compare the listeners’ evaluations of noisy speech before
and after enhancement, to quantify the effect of different SE
strategies.

However, since these subjective evaluations are time-
consuming to perform, objective measures are often calcu-
lated instead. These objective measures typically quantify
a degraded speech signal in comparison to a clean speech
signal. For speech intelligibility, a popular objective measure
is STOI, which performs well against competing intelligibility
measures [9] and has a reference implementation freely avail-
able [10]. For speech quality, popular measures are PESQ [11]
and its successor POLQA [12]. Although PESQ also has a
downloadable reference implementation [13], licenses must be
purchased to use PESQ and POLQA.

When evaluating the change in intelligibility or quality
obtained with SE systems, measures based on clean speech
and unenhanced noisy speech are calculated to establish a
reference. Then, the same measures are calculated for clean
speech and enhanced noisy speech. Comparison of these
results then predicts how much the SE system affects speech
intelligibility or quality.

However, these objective measures have been designed to
predict intelligibility or quality for relatively simple degrada-
tions, such as additive noise, and do not necessarily perform
well for more complex degradations [9], [14], [15]. DNN-
based SE systems perform a complex nonlinear processing of
the noisy signal, and multiple authors have found that STOI
is not a reliable predictor of whether or not a given DNN-
based system actually improves speech intelligibility [16],
[17], [18]. Until a specific objective measure has been shown
to give reliable predictions for these systems, time-consuming
subjective evaluations are required to test DNN-based SE
systems.
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When training a DNN using supervised learning techniques,
we must always specify the format of the input and the
target output. In speech enhancement, a common input is the
logarithmic half-spectra of several adjacent semi-overlapping
frames of the noisy speech signal, and a common target output
is the logarithmic half-spectrum of one corresponding frame
of the clean speech signal [5], [6], [17], [4], [19], [20], [21],
[22], [23], [24]. In this way, the training process leads the DNN
towards returning perfectly noise free speech. This approach
has shown significant merit for application in ASR systems.

While SE systems often manage to reduce or even remove
the presence of noise, the output speech is generally audibly
degraded by this process, especially at low signal-to-noise
ratios (SNRs), as SE systems cannot perfectly distinguish
between speech and noise when attempting to remove only the
latter [25], [24]. In fact, our previous study on one possible
realization of a DNN-based SE system [17] found that this
degradation significantly reduced the speech intelligibility,
compared to that of the noisy speech before the enhance-
ment was carried out. We found that the speech recognition
threshold (SRT), which is the SNR at which 50 % of words
are understood, degraded on median by around 4 dB, in stark
contrast with the positive performance predicted by STOI.

However, this is not surprising, when put in the perspective
that humans are very sensitive to degradation in speech signals,
while capable of scoring 100 % intelligibility despite noisy
conditions. This motivates studying training methods that look
for a suitable compromise between noise reduction and speech
degradation, in addition to methods that focus on finding noise
free speech.

Supervised training of a DNN involves optimizing some
statistical measure, called the loss function, which is based on
the difference between the desired DNN output and the actual
DNN output for a given input. A typical loss function in DNN-
based SE is the mean-squared-error (MSE) value based on
the target clean speech and the DNN’s output. By iteratively
adjusting the weights of the DNN to obtain a lower MSE, the
training process moves the DNN’s output towards the target
output.

One way of shifting the “focus” of the DNN training
towards speech and away from noise, in the hope of indirectly
reducing speech degradation, would be to use more speech-
aware loss functions. Kumar et al. proposed using a weighted
squared error based on absolute thresholds of hearing, but
did not report results that allow for direct performance of
this loss function to a standard MSE approach [25]. Others
investigated using STOI as a training target, but did not obtain
improvements of such a degree that it is obvious that they
will show in a subjective evaluation [26], [27], [28]. We
also investigated a number of other options, such as an MSE
loss function weighted according to the SII band importance
weights [29] or gammatone weights inspired by the objective
intelligibility measure by Dau et al. [30]. However, none of our
unpublished pilot studies based on these approaches showed
enough promise to warrant continuing with subjective testing
on a larger scale.

Another alternative to guide the training process is to go
away from using a noise free target. This article investigates

using a DNN target output that is not perfectly clean speech;
rather, it corresponds to the input signal at a 10 dB higher
SNR. This target, which is closer to the input, ensures that
noise is still significantly reduced relative to the speech, but in
a less aggressive manner. This may reduce the overall speech
degradation, and consequently increase the speech quality and
intelligibility compared to the more aggressive clean-speech
target where the noise reduction likely has a stronger negative
impact on the speech [25], [24]. A 10 dB improvement in
SNR is clearly perceptible, since it perceptually corresponds
to a halving/doubling of the loudness of the noise/speech
signal [31]. Even though intelligibility improvement rates have
been shown to vary a lot between test situations (from 1 % per
dB to 44 % per dB, with a mean value of 7.5 % per dB) [32],
a 10 dB improvement of the SNR should always be clearly
measurable in subjective testing. The optimal may both be
higher (less noise) or lower (less distortion), but finding an
optimal value of the target’s SNR improvement is out of the
scope of this study.

In the study reported in this article, we trained two DNN-
based SE systems based on these two targets, as described in
Section II-A. We subsequently generated a large number of
sound clips where clean sentences were mixed with different
background noises at various SNRs and enhanced with either
of the SE systems, as described in Section II-B. Our test
subjects (Section II-E) were asked to perform subjective eval-
uations of the speech intelligibility (Section II-C) and speech
quality (Section II-D) of these clips. Additionally, we calcu-
lated STOI and POLQA scores for comparison (Section II-F).
We provide our results in Section III and discuss them further
in Section IV, before we conclude in Section V.

II. METHOD

A. Data and DNN setup

In this work, we used the same general DNN setup as in
our previous work [17], which is loosely based on the system
by Xu et al. [6] and implemented using Keras [33]. As the
details are given in [17], we will only give the essentials here.

The clean speech for training and validation of the
DNN was taken from the Norwegian speech audio dataset
NB Tale [34]. This forms part of the Norwegian language
library Språkbanken, and is set up similarly to the widely used
English-language TIMIT dataset. Periods of silence lasting
longer than 75 ms were trimmed to 75 ms where their levels
were 40 dB or more below the peak of the given sentence,
to capture the average dynamic range of speech [35]. The
clean speech was divided into training, validation, and test
sets that did not overlap in either speakers or sentences, with
1932 sentences from 137 speakers in the training set and 816
sentences from 48 speakers in the validation set. We chose to
use Norwegian primarily because of our access to Norwegian
native speakers as test subjects. However, we expect our results
to be transferable to e.g. English, as the two are closely related
Germanic languages.

During training and validation, the input was based on
noisy speech constructed by combining this clean speech with
noises taken from the Aurora database [36], the NOISEX-92



3

database [37], and Guoning Hu’s collection [38]. We chose
the same 104 noises for training and 15 unseen noises for
validation as Xu et al. Both sets contained both stationary and
non-stationary noise sources. For each set, we combined every
type of noise with every sentence in that set, giving us a total
of 1984 hours of training data and 98 hours of validation data.
For the input data, six different SNRs uniformly spaced from
−5 dB to 20 dB were used during training. Before they were
combined, the speech and noise signals were downsampled to
8 kHz, the lowest sampling rate among the noise types.

The input was constructed from single-sided log-power
spectra of frames of this noisy speech. Each frame was found
from a 256-sample (32 ms) Hann window of the time signal.
Adjacent frames overlapped by 50 % in time. These windowed
frames were Fourier transformed and redundant information
above the Nyquist limit was discarded, giving a single-sided
spectrum. Then, the log-power spectrum was found by taking
the base-10 logarithm of the magnitude of each frequency bin.
The final input vectors were found by stacking 21 such log-
power spectra, based on the adjacent overlapping frames, after
each other. The task of the DNN was to enhance only the
middle frame, and the stacking thus provided the DNN with
160 ms of past context and 160 ms of future context.

When training the DNN, we used two different training
targets, leading to two different DNN models:

• Model 1: Here, the training target was the single-sided
log-spectrum of a frame of clean speech, unaffected by
noise. This is the model we reported earlier [17].

• Model 2: Here, the training target was the single-sided
log-spectrum of a frame of clean speech mixed with the
exact same noise as in the input, but at a 10 dB higher
SNR.

The loss function was a standard mean squared error between
the DNN output and the training target.

In both models, the DNN was a simple feedforward network
with three hidden layers in addition to the input and output
layer. Each hidden layer used LeakyReLU activation functions.
The models were trained with 50 % dropout in the hidden
layers using the Adam optimizer. We trained a number of
different candidate networks over the same ranges of hyperpa-
rameters for both models. The ranges included hidden layers
with 1024, 2048, and 3072 units. The final network for each
model was chosen as the best epoch of all the candidate
networks, according to the STOI scores that we evaluated for
the validation set at 0 dB SNR after every epoch. The resulting
Model 1 used 2048 nodes per hidden layer and a learning rate
of 10−5, while Model 2 used 3072 nodes and a rate of 10−2.
The final epochs for Model 1 and Model 2 were the 8th and
the 33rd epochs, respectively.

In order not to change the experimental procedure more
than necessary, we picked Model 2 based on STOI scores
in the same way as we picked Model 1 in [17]. However,
as earlier work indicates that STOI is not a robust predictor
of the intelligibility of DNN-based SE systems, as explained
in Section I, this approach is hardly ideal as we cannot
truly expect the maximum-STOI epochs to perform best in
a subjective evaluation. However, given the relatively minor
performance changes reported in [39], [26], [27], [28] and
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Fig. 1. Long-term average spectra of the two background noises used in the
subjective evaluations. These spectra were computed using Welch’s method
using 2048-sample Hann windows, after the sounds had been normalized to
have RMS values of 1.

the fact that we merely used STOI for selection rather than
as a training target (with an expected weaker effect), we do
not expect that the approach with STOI as selection criteria
will have had a major impact on our results. Until one or
more objective measures are identified as a robust predictor of
intelligibility and/or quality, determining the best epoch or the
best hyperparameters will remain problematic, as subjective
evaluations of sufficient precision are generally too time-
consuming to be feasible for anything other than a final test
of a trained system. While an extensive study into this topic
is outside the scope of this article, Section IV does compare
STOI and POLQA scores with subjective evaluations of speech
intelligibility and speech quality, respectively.

When the trained network was used to enhance noisy
speech, the process of reconstructing a waveform from the
DNN output essentially consisted of reversing the steps used
to create the input data. As the log-spectrum output does not
contain phase information, we used the noisy input phase in
this process. Unlike in our previous publication [17], we did
not use the global variance normalization preprocessing step,
for two reasons: We found then that it did not affect the results
of the subjective intelligibility evaluation, and including it as a
factor would double the already considerable number of tests
to be performed by the test subjects.

B. Generation of test sounds

For the subjective evaluations, we generated a variety of
single-channel clips of speech in noise at various SNRs. We
generated clips both without enhancement and with enhance-
ment by Models 1 and 2.

In all the clips, the base speech was a randomly generated
five-word Hagerman sentence in Norwegian, generated as
described by Øygarden [40]. Each sentence was built up the
same way: [Name], [Verb], [Numeral], [Adjective], [Noun],
with 10 possible options for each class of word. As a basis,
we generated 500 reference speech clips of unique, noise-free
sentences.
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We then mixed these files with background noise at various
SNRs, as described later in Sections II-D and II-C. Two
different types of noise were used. We used one 17-second clip
of traffic noise from a crossroad in Trondheim, and one 25-
second clip of babble noise recorded in a university cafeteria
during a lunch break. Neither type of noise was present in
either the training or the validation described in Section II-A.
Both noises were originally recorded with a sampling rate of
44.1 kHz. The long-term average spectra of both noises before
downsampling is shown in Figure 1.

Finally, these unenhanced noisy clips were run through the
two trained DNN models described in Section II-A. Thus, for
each SNR, we ended up with 3000 unique degraded clips:
The 500 reference clips, times two types of noise, times three
types of enhancement (Unenhanced, Model 1, and Model 2).
Figure 2 shows spectrogram examples of one speech clip at
different points in this process.

C. Speech intelligibility

The speech recognition threshold (SRT), which is a common
measure of speech intelligibility [1], was determined using
the same method as in our previous work [17]. The five-
word test sentences were built up from five word categories as
described in Section II-B. The test subjects’ task was to select
the words they could hear using a graphical user interface with
ten possible words per category, a total of 50 words. Guessing
was allowed, but the test was not forced choice.

The test subject responses were given as input to an adaptive
psychometric function estimation procedure called the Ψ-
method [41], which continuously estimated the SRT during the
test. The final threshold estimate was found after 20 sentences
(i.e. 100 words in total). All parameters used in the method
were identical to the ones used in our previous study [17],
i.e. a guess and lapse rate of 0.01, psychometric function
based on a cumulative normal probability density function,
and stimulation range of the SNR from −36 dB to 10 dB in
2 dB steps.

The method was implemented in MATLAB [42] and the
sentences were presented binaurally for all test subjects. An
external sound card (Edirol UA-25) was connected with USB
cable to the computer. Headphones (Howard Leight Sync
Stereo Headband) with sound attenuating properties were used
for the playback. The test was performed in an ordinary single
room office with low background noise level. The background
noise level was not measured during the test, but considering
the headphones’ sound attenuating properties and the signal
levels involved, the results should not be affected.

Since the results from our previous study [17] did not
pass the normality distribution assumption, we decided to use
Wilcoxon tests to decide if differences were significant.

D. Speech quality

Speech quality was assessed using the method described in
ITU-T P.835 [43]. The ordinal scales presented in the recom-
mendation were translated to Norwegian by comparing and
combining the official English and French version, together
with a Danish version presented by [44]. The English and

TABLE I
ENGLISH VERSION OF THE ORDINAL SCALES USED IN ITU-T P.835 [43].

Rating Speech Noise Overall quality

5 Not distorted Not noticeable Excellent
4 Slightly distorted Slightly notice-

able
Good

3 Somewhat
distorted

Noticeable but
not intrusive

Fair

2 Fairly distorted Somewhat intru-
sive

Poor

1 Very distorted Very intrusive Bad

TABLE II
NORWEGIAN TRANSLATION OF THE ORDINAL SCALES USED IN ITU-T

P.835.

Rating Speech Noise Overall quality

5 Ikke forvrengt Ikke hørbar Veldig god
4 Litt forvrengt Hørbar, men ikke

påtrengende
God

3 Ganske forvrengt Litt påtrengende Middels
2 Betydelig

forvrengt
Påtrengende Dårlig

1 Voldsomt
forvrengt

Veldig
påtrengende

Veldig dårlig

Norwegian versions can be seen in Table I and II respectively.
Note that the Norwegian noise scale is slightly different than
the English version. Instead of using “slightly noticeable”,
“noticeable but not intrusive” and “somewhat intrusive” as
rating 4, 3 and 2, the Norwegian version uses “noticeable
but not intrusive”, “somewhat intrusive” and “intrusive”. The
reason for changing the scale was an observation made during
a pilot test for the study. Several of the participants noted that
it was difficult to distinguish between “slightly noticeable” and
“noticeable but not intrusive”. To cope with this problem, we
adapted the French version [45], which uses a slightly different
scale, in the translation.

Three different signal to noise ratios (SNRs) were tested for
both noise types; 0 dB, 10 dB, and 20 dB. Each combination
of noise type, SNR, and enhancement (including unenhanced
clips) was tested twice for different sentences, giving 36
sentences per test subject. As the subjects were asked to rate
the speech, noise, and overall quality of each sentence, each
subject made a total of 108 evaluations. The sound playback
and the test environment was the same as in the speech
intelligibility test described in Section II-C.

All participants were given an instruction before starting
the test and they were allowed to adjust the sound volume to
their preferred level. They were also presented examples of the
sounds to be used in the test. These examples were randomly
taken from all the available sentences, and they were presented
to give the test participants some idea of what to expect during
the test.

Since it is not certain that the rating scale used has equal
steps size between all ratings (i.e. it is not necessary the case
that the size of the quality change going from 5 to 4 is the
same as when going from 2 to 1), an ordinal scale analysis was
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by Model 1 and 2. Each spectrogram is plotted with a dynamic range of 50 dB.

performed to evaluate the results. A cumulative link model
(clm) from the ordinal package [46] in R [47] was used to
determine if the models were significantly different from the
reference without SE.

E. Test subjects
The speech recognition test was performed by 12 persons,

from 40 to 66 years of age (mean value 53.1). These individ-
uals were a subset of the 15 participants from the listening
test in our previous study [17]. It is assumed that the learning
effect is large for the SRT test, therefore we used the same
participants as last time to reduce the time needed for training.

23 persons attended the speech quality test, 8 females and 15
males, from 38 to 74 years of age (mean value 54.7). None
of the listeners had performed any subjective listening tests
within the last three months.

F. Objective measures
While the subjective evaluations described in Sections II-D–

II-E give us the ground truth, it is still interesting to compare
these results with those of objective measures. This compari-
son gives us more information about the reliability of the tested
objective measures for DNN-based SE systems. In this work,
we calculated the intelligibility measure STOI using the STOI
reference code [10] and the quality measure POLQA using the
implementation in the software Voice Quality Testing by GL
Communications Inc. [48]. Even though PESQ has previously
been used as an objective measure for the speech quality of
DNN-based SE systems [5], [6], we chose to evaluate its
successor POLQA due to licensing rights.

The STOI measures were calculated using the same files
as in the speech intelligibility test, with SNRs from −36 dB
to 10 dB in 2 dB steps. As a preprocessing step before the
STOI calculations, the reference clips and degraded clips were
upsampled from 8 kHz to 10 kHz. The POLQA measures were
calculated from the same files used in the speech quality test,
namely with SNRs of 0 dB, 10 dB, and 20 dB. The POLQA
scores were calculated with the High Accuracy and Level
Alignment modes activated.

III. RESULTS

A. DNN output
The most basic way to analyze model performance is by

investigating the error between the target output and the actual
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Fig. 3. Statistics for the outputs of the two models, calculated from the
difference between the models’ target outputs in dB and the actual outputs in
dB

output. Figure 3 shows the mean and the standard deviation of
the error (the difference between the target output in dB and
the actual output in dB) for both models at various SNRs of
the input. These statistics were calculated over each frame of
the validation set. Frames where the speech signal was silent
are excluded from these statistics. This means that the leftover
noise shown in 2 during non-speech periods is not included
in the error analyses.

We find that Model 2 generally hits its target much better
(less biased and with lesser spread) than Model 1 does. This
does not necessarily tell us that Model 2 outperforms Model 1
as a SE system, only that it is better at achieving its given
task. We also see that Model 1 has a large negative mean
error that increases with decreasing SNRs. This shows that
its predicted “enhanced” output is higher than the noise-free
target output, which indicates that there is still quite a lot of
noise left in the output, and that this becomes increasingly true
with worsening SNR. For Model 2 the statistics depend less on
SNR, indicating that the Model 2 task difficulty is more similar
for low and high SNRs than it was for Model 1. Indeed, the
standard deviation results show the opposite behaviour with
respect to SNR as the Model 1 results did. Model 2 shows less
spread (i.e., performs its task with higher accuracy) at lower
SNRs. Although this might seem counter-intuitive at first (a SE
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model is generally not expected to do better at worse SNR),
it makes sense from the perspective that in a situation with a
lot of noise, it is easier for this noise to be identified and as
such easier to be reduced by 10 dB.

B. Objective measures

As described in Section II-B, 500 clips were available from
each combination of SNR, noise, and enhancement, i.e., one
clip for each of the 500 original clean speech clips. Thus, we
could use these various clips to calculate statistics for STOI
and POLQA scores for each of these combinations.

The mean values of the STOI scores are shown as lines for
each type of noise and enhancement in Figure 4. Additionally,
as the STOI scores of the 500 clips for each combination of
SNR, noise, and enhancement were approximately normally
distributed, we calculated approximate confidence intervals for
these mean values, which are also shown in Figure 4. Due
to the high number of clips, the confidence intervals of the
various enhancements are quite small and seldom overlap with
the means of the other enhancements. Thus, the STOI values
unambiguously rank the three enhancements for most SNRs.

The smaller number of SNRs where we calculated POLQA
scores allows us to show the scores’ distribution in more detail,
through the histograms in Fig. 5 and Fig. 6. The median scores
are shown as lines together with the median value.
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vertical gray lines and numbers represent median values.

Even if the distribution of the POLQA scores differ between
the models with varying skewness and variance, the statistical
analysis of the differences was performed using a two sample
t-test. The t-test assumes normally distributed data, but it has
been shown that for large sample sizes, the t-test might be
more robust than the non-parametric tests when the data are
a continuous variable [49]. While the mean value might not
be the best descriptor for the data, the test does gives a good
indication of whether the results differ or not. Note that the
median has been used in the illustration if Fig. 5 and Fig. 6
as this is a slightly better descriptor for skewed data. Table III
shows the results from the test performed with the function
t.test in R. An F-test to compare variances was also performed
(not shown) and used to decide if pooled variance should be
used in the t-test.

C. Subjective speech quality

The results from the speech quality test are illustrated
in Fig. 7 and Fig. 8. For more details about the statistical
analysis the reader is referred to the supplementary material
provided online. The setup for each figure is the same,
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TABLE III
RESULTS FROM TWO-SAMPLE T-TEST PERFORMED ON THE POLQA SCORES FOR THE UNENHANCED SIGNAL (U), MODEL 1 (M1) AND MODEL 2 (M2).

THE CONFIDENCE INTERVAL (95 % CI) MEANS THE CHANGE IN MEAN POLQA SCORE FOR THE MODELS BEING COMPARED.

Noise SNR Comparison p-value t df 95 % CI

Tr
af

fic

0
dB

U→M1 < .001 −4.8772 996 [−0.021 −0.050]
U→M2 < .001 18.641 994.49 [ 0.139 0.172]

M1→M2 < .001 25.336 998 [ 0.177 0.206]

10
d
B U→M1 < .001 −15.591 998 [−0.168 −0.131]

U→M2 < .001 −4.824 994.51 [−0.061 −0.026]
M1→M2 < .001 10.752 998 [ 0.086 0.125]

20
d
B U→M1 < .001 17.121 998 [ 0.129 0.163]

U→M2 < .001 14.017 998 [ 0.101 0.134]
M1→M2 .002 −3.1375 996.94 [−0.047 −0.011]

B
ab

bl
e

0
d
B

U→M1 < .001 22.321 996 [ 0.155 0.184]
U→M2 < .001 28.238 996 [ 0.209 0.241]

M1→M2 < .001 6.5668 991.34 [ 0.039 0.072]

10
d
B U→M1 .003 2.9975 998 [ 0.010 0.048]

U→M2 < .001 17.891 998 [ 0.151 0.189]
M1→M2 < .001 13.84 996.28 [ 0.121 0.161]

20
d
B U→M1 .1528 −1.4309 998 [−0.029 0.005]

U→M2 .8311 −0.213 34 998 [−0.019 0.015]
M1→M2 .2807 1.0793 998 [−0.009 0.030]

presenting the different quality assessments horizontally, and
different SNRs vertically. The bins consist of three groups;
the unenhanced reference, Model 1, and Model 2. Each plot
also indicates the significance and the direction of the change
in score when going from the unenhanced signal (U) to
the DNN models (M1: Model 1, M2: Model 2), as well as
similarly indicating the change when going from M1 to M2.
The changes’ significance is indicated by asterisks, and the
changes’ direction is indicated with arrows. We cannot show
the changes’ magnitude, as the statistical test we used does
not provide this information.

Both models have a negative effect on the quality of the
speech. All the tested situations have a significant shift in the
negative direction, i.e. the speech is more distorted. However,
we can see from the M1→M2 comparison that Model 2 does
not distort the speech as much as Model 1. This improvement
in speech quality from M1 to M2 is significant (p < .01).

The noise is reduced for both models and all cases except
20 dB SNR have significant differences. For 20 dB SNR, the
noise is generally evaluated as “noticeable, but not intrusive”.

The overall quality results are more mixed. Model 1 does
significantly worse for 10 dB and 20 dB SNR for both noise
types, and does not have any significant difference for 0 dB
SNR. The quality for the latter is not good, however, with score
one (“very bad”) as the most probable outcome. Model 2, on
the other hand, does not have any significant differences in
overall quality, except for 0 dB SNR with traffic noise, where
there is a significant positive effect. The overall quality shifts
from approximately equal probability for score one and two,
to a most probable outcome at score two. Model 2 performs
significantly better in all overall quality scores compared to
Model 1 (p < .05).

D. Speech recognition threshold

The results from the speech recognition test are presented
in Fig. 9. Each line represents results from one test subject.
We should point out that the “old” reference data from our
previous study [17] are similar to the ones in this study. Com-
paring the two reference results, using an Wilcoxon rank sum
test (also known as an independent two-group Mann-Whitney
U test), did not show any significant difference (Median
Uold ref = −9.07 dB (n1 = 15), Median Unew ref = −9.14 dB
(n2 = 12), W = 89, p = .98).

All the differences between the reference and the models
were tested using a Wilcoxon signed rank test. Table IV
shows the test statistics, and also show that all differences
are significant (p < .05). The median and confidence interval
values have been calculated using Hodges-Lehman estimators.

We also compared the two models, and the results can be
seen at the bottom of Table IV. The difference between the
results for the traffic noise was compared using a Wilcoxon
rank sum test since the two data sets had different number
of samples. For the babble noise a Wilcoxon signed rank test
was used. Again, Model 2 performs significantly better than
Model 1 for both noise types. The estimated improvement of
the SRT from M1 to M2 is 3.0 dB for traffic noise, and 1.9 dB
for babble noise.

IV. DISCUSSION

Model 1 and Model 2 were given different tasks. Where
Model 1 was trained to remove noise, Model 2 was trained to
only reduce noise such as to improve the SNR by 10 dB.

For both models, we used the noisy phase of the original
signal during speech synthetization. Such a noisy phase may
be expected to be better suited to the “less noisy” signal (from
Model 2) than the “clean” signal (from Model 1) as the former
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TABLE IV
SPEECH RECOGNITION THRESHOLD STATISTICS FROM THE ANALYSIS OF THE RESULTS.

Noise Comparison n p-value V Median 95 % CI

Traffic Uold → M1 15 < .001 120 3.9dB [ 3.2, 4.8]
Traffic U→M2 12 .002 75 1.4dB [ 0.7, 2.0]
Babble U→M1 12 < .001 78 2.4dB [ 1.7, 3.2]
Babble U→M2 12 .01 70 0.6dB [ 0.2, 1.1]
Traffic M1→M2 15(12) < .001 161+ −3.0dB [−3.9,−1.6]
Babble M1→M2 12 .002 75 −1.9dB [−2.7,−1.1]
+: Comparison was done with Wilcoxon rank sum test since the data sets had
different number of samples. The number is the observed rank sum W.

Uold M1 U M2

−10

−8

−6

−4

−2

0

SR
T

[d
B

]

Crossroad traffic noise

U M1 U M2

Cafeteria babble noise

Fig. 9. Speech recognition threshold results for traffic noise and babble.
The connected lines represent results from each of the test subjects from
unenhanced clips (U) to clips enhanced Model 1 (M1) or Model 2 (M2).
For crossroad traffic the results (Uold and M1) are taken from our previous
study [17].

is closer to the original input from which the noisy phase
was taken. Thus, different performance could possibly be the
result of better/worse suitability with respect to the speech
synthetization process. This in itself would be an advantage
of the approach taken in Model 2: After all, the noisy phase is
always readily available, whereas a clean phase would have to
be approximated. However, the mean and standard deviation
results presented in Figure 3 show that there is more going on.
First of all, from the rather large standard deviations obtained
for Model 1, one can easily argue that the resulting signal is
far from “clean”, and as such a clean phase won’t be optimal
either. Also, Model 2 performs better at its given task than
Model 1: The fact that the standard deviation of the difference
between targeted and obtained output is smaller, shows that the
model is more accurate at reducing noise rather than Model 1
is at removing it. There is also a marked lower dependence
on SNR, and the model is actually more accurate at noise
reduction when the SNR gets worse. This indicates that a
DNN-based SE system does indeed have less trouble with
reducing noise than with removing it, making the approach
worthy of investigation so long as systems aiming to remove
noise entirely do not achieve ideal results.

Both models were trained with an equal variety of hyper-
parameters, and in each case the model with the best STOI
score was selected for further subjective testing. This selection
method resulted in Model 2 having 3072 nodes per hidden

layer, where Model 1 only had 2048 nodes per hidden layer.
As such, Model 2 has a larger capacity than Model 1, and one
may argue that any differences in the results may be (partly)
due to this difference, rather than the difference in noise
removal/reduction strategy. However, the statistical results (not
reported in this article) akin to those presented in Figure 3 of
a model equal to Model 1 but with 3072 nodes per hidden
layer, show the same behaviour as the chosen Model 1. During
hyperparameter optimization, we also noticed that the lowest
MSE obtained for models with a noisy target was generally
much lower than for models with a clean target. Given this,
we are confident that any performance differences obtained
are not due to the different capacities of the model, but due
to the different noise cleaning strategies.

As in our previous study [17] the SE did not improve
the speech intelligibility. Even if STOI predicted a slight
improvement for both models in the SNR range of interest, our
subjective evaluation showed that both models did significantly
worse than the unenhanced signal. However, Model 2 per-
formed significantly better with respect to speech intelligibility
than Model 1 for both noise types, by 3.0 dB and 1.9 dB
for traffic and babble noise respectively. Compared to the
unenhanced signal, however, it still has an elevated speech
recognition threshold.

For the DNN models used in this study, calculated STOI
scores were used to select a final model from model candidates
over different sets of hyperparameters and different training
epochs. The results show that this approach might not be
justified as STOI does not seem to be a good predictor in our
case. This means that we may have trained other models that
could have performed better in our subjective evaluations, but
how to identify these models is as of yet an unsolved problem.

Even though we have shown that our selected DNN-based
SE systems did not end up actually improving speech intelli-
gibility, we should point out that other authors have trained
DNN-based systems that improve intelligibility to human
listeners [16], [50], [51]. Our results do by no means provide
evidence that DNN-based SE is not a generally promising
approach worthy to be further investigated.

In addition to the speech intelligibility test, this study also
evaluated the quality of the signal using the ITU-T P.835
recommendation. The results show that the models did not
give a general improvement of the overall quality of the signal.
No significant change to overall quality was found in 7 out
of 12 comparisons of unenhanced and enhanced signals, and
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Model 1 did actually significantly (p < .001) reduce the
overall quality in four of the six tests performed. The only
exception was for traffic noise at 0 dB SNR, where Model 2
did significantly (p < .01) better than the unenhanced signal.

For the evaluation of the quality of the noise separately,
the results were as expected. The models were trained to
reduce the background noise, and the results verify that they
achieve this in 9 out of 12 comparisons. Only the situation
with the highest SNR (20 dB), where the noise is already rated
as “noticeable but not intrusive”, does not show significant
improvement by both models. (This comes as no surprise, as
it is difficult and arguably unnecessary to improve upon a
situation that already does not bother listeners.) Note that the
highest noise score, “not noticeable”, is almost never used.
This may indicate that the step size from score four to five on
the noise scale is large, and that it is difficult to show minor
improvements of low-noise signals on this scale.

Another observation is that Model 2 performs similarly
to Model 1 with respect to noise reduction, except at the
lowest SNR (0 dB). This is surprising, since Model 2 does
not try to remove the noise, only reduce it. It is, however,
supported by the fact that a SNR of 30 dB often is referred to as
“effective clean speech”, and that people have little benefit of
improving the SNR beyond 20 dB. This suggests that it might
be beneficial to use variable training targets, with little noise
reduction for the signals with high SNR, and progressively
more reduction as the SNR gets worse. A common training
target at 20 dB SNR could be a possible solution.

The evaluation of the speech also comply with the results
from previous studies on noise reduction. Reducing noise will,
in most cases, also add distortion to the speech signal. While
Model 2 does perform better than Model 1 in all cases, it still
does add distortion to the speech.

Objective POLQA scores were compared to the overall
quality results from the subjective test to see if similar traits
could be found. The general impression is, however, that
POLQA does not predict the overall quality results from the
ITU-T P.835 test. Even if we found significant degradation
in quality for Model 1 compared to the unenhanced signal,
POLQA did not show a consistent correlation. The POLQA
scores were, in general, very similar within each SNR, and the
largest difference found was below 0.25. Even if this is more
than the theoretical accuracy for POLQA [52], such a small
difference would be very difficult to detect in a subjective
test. The subjective results does, however, show a significant
degradation of the overall quality for Model 1, while POLQA
actually shows a minor improvement in half of these situations.

Since the ITU-T P.835 recommendation was not available
in a Norwegian version, the quality assessment scales were
translated for this study. During the pilot test it was revealed
that the initial translation was confusing for the test subjects.
Several participants found it hard to differentiate between
the noise being “slightly noticeable” and “noticeable but not
intrusive”. To solve this, we used a slightly different wording,
closer to the French version of the recommendation [45].
Hence it might be difficult to compare the noise scores in
this paper with other results performed with the English scale.
The translation of the overall score labels might also affect

the (lack of) correlation with POLQA, but this minor textual
change to the scale cannot explain why the POLQA scores
and the subjective results are opposite for many of the tested
situations.

Another limitation of the study is the spoken material used
in the test. All the sentences used, both for the intelligibility
and quality test, were uttered by the same male speaker.
Strictly speaking, this means that the validity of the results
are limited to this speaker, and it might be possible that the
models could perform better for other speakers.

Similarly to our previous study [17] the sampling frequency
used was 8 kHz. This might affect the results since much high-
frequency information that might be important both for speech
intelligibility and quality assessment are lost. It is, however,
not obvious that an increased sampling frequency would have
affected the comparisons in this study since they were all done
using the same sampling frequency.

In this study two different background noises were used,
traffic noise from a busy crossroad and cafeteria babble. The
results showed similar improvements for the two noise types,
but it is possible that other types of noise could have given
different results. The SRT results are otherwise in accordance
with what we expect; it is more difficult to understand speech
in babble noise than in traffic noise.

Another possible bias is the effect of hearing loss. The
average age of the test subjects was relatively high, hence it
is expected that age-related hearing loss could be a problem.
None of the participants reported any problems with their
hearing, or wore hearing aids, but this does not mean that
they do not have an elevated hearing threshold. Such ele-
vation could have affected the results, especially the speech
intelligibility, which is known to deteriorate with increasing
hearing loss. Since all the comparisons were done within each
subject, it is expected that an improvement (or deterioration)
of the signal would affect both those with normal hearing and
those with hearing loss. It is, however, possible that a speech
enhancement is perceived differently for individuals with or
without hearing loss.

V. CONCLUSION

In this study, we compared two similar speech enhancement
systems based on deep neural networks. The first system,
Model 1, was trained with the target of removing all noise
from a noisy speech signal, as was done in previous studies [5],
[6], [17]. The second system, Model 2, was trained with the
target of improving the noisy signal’s signal-to-noise ratio by
10 dB.

A subjective evaluation of speech quality in terms of speech
degradation, noise intrusiveness, and overall quality showed
some interesting similarities and differences between the two
models. From the evaluation of overall quality, Model 2
represents a significant improvement to Model 1 in all six
situations tested. Both models significantly reduced the noise
intrusiveness except at the highest SNR of 20 dB, with Model 1
outperforming Model 2 only at the lowest SNR of 0 dB.
While both models significantly distort the speech at all SNRs,
Model 2, with its less agressive training target, distorts speech
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to a significantly smaller degree than Model 1 at all SNRs.
This reduction in distortion may be the reason why Model 2
outperforms Model 1 by 2–3 dB in a subjective evaluation
of speech intelligibility in terms of the speech recognition
threshold.

For these reasons, we believe that using less aggressive
training targets in DNN-based SE systems, along the lines
of our Model 2, is a promising approach that warrants further
investigation. However, we must point out that if we compare
our subjective evaluation results for the noisy speech enhanced
by Model 2 and the unenhanced noisy speech, we find that
Model 2 does not perform a general improvement to the signal.
Model 2 actually degrades the speech intelligibility slightly,
raising the speech recognition threshold by around 1 dB. It
however did make a significant improvement to the overall
quality in one of the six situations tested, while not affecting
performance in a statistically significant manner in the other
five situations.

In order to train better DNN-based SE systems than the
ones presented here, it is absolutely essential to be able to
distinguish between a good system and a bad one without
having to run a complete subjective evaluation, as these are
prohibitively time-consuming. However, our results comparing
the subjective evaluations with the objective measures STOI
and POLQA indicate that these measures are not appropriate
for this purpose. We found that the STOI results predicted
significant improvements in intelligibility for our DNN-based
SE systems while the subjective evaluations found significant
reductions. We also found that the weak changes in POLQA
scores failed to predict the significant changes in speech
quality found by the subjective evaluations. Therefore, we
must advise against solely using STOI and/or POLQA to
evaluate DNN-based SE systems, either for the purpose of
choosing which trained model candidate to proceed with, or
for the purpose of evaluating the final system in the place of
a subjective evaluation.

The studied systems are relatively simple implementations
of DNN-based SE. As such, their speech enhancing ability
is limited, even as indicated by objective measures. However,
there is no reason to assume that there will not also be a
mismatch between objective and subjective results in better
and/or more complicated DNN-based SE systems. Indeed,
similar mismatches have also been found elsewhere [16], [18].

Thus, we believe that we have pointed out an important issue
that impedes progress for DNN-based SE systems for direct
human applications like in telecommunication and hearing
assistive devices. To resolve this issue, we believe that it is
essential to identify or develop an objective measure that cor-
relates well with intelligibility and/or quality even for channels
with the complex nonlinear degradations that processing with
a DNN-based SE system can cause. A dedicated study on this
topic should be carried out.
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ABSTRACT

This paper investigates the use of different room impulse re-
sponse (RIR) simulation methods for synthesizing training
data for deep neural network-based direction of arrival (DOA)
estimation of speech in reverberant rooms.

Different sets of synthetic RIRs are obtained using the im-
age source method (ISM) and more advanced methods includ-
ing diffuse reflections and/or source directivity. Multi-layer
perceptron (MLP) deep neural network (DNN) models are
trained on generalized cross correlation (GCC) features ex-
tracted for each set. Finally, models are tested on features
obtained from measured RIRs.

This study shows the importance of training with RIRs
from directive sources, as resultant DOA models achieved
up to 51% error reduction compared to the steered response
power with phase transform (SRP-PHAT) baseline (signifi-
cant with p << .01), while models trained with RIRs from
omnidirectional sources did worse than the baseline. The per-
formance difference was specifically present when estimating
the azimuth of speakers not facing the array directly.

Index Terms— synthetic data, speech source localiza-
tion, direction of arrival estimation, room impulse response,
deep neural network, generalized cross correlation features

1. INTRODUCTION

DNN-based methods are nowadays successfully applied to
many different tasks in the field of speech processing. For
training such methods, there are large datasets available,
containing annotated single microphone recordings of clean
speech. These datasets can be converted into multichannel
datasets for microphone array processing by convolving the
clean speech with recorded room impulse responses (RIRs)
specific for each array element and acoustic setting.

However, learning-based methods can only be expected
to be widely applicable in realistic settings if they are trained
for exactly that. This issue is two-fold: first of all, to ensure
results apply to a wide range of rooms of varying acoustical
characteristics, the training set needs to contain a similar vari-
ety [1], and secondly, the training data must approach reality
as much as possible.

While recorded RIRs are a direct reflection of reality, it
quickly becomes too difficult or expensive to record a suf-

ficient number of RIRs from many different environments.
Instead models can be trained on single channel recordings
augmented with synthetic RIR data.

Here it is common to rely on the relatively simple image
source method (ISM) room impulse response (RIR) simula-
tion technique [2], where scattering effects that cause the late
reflections of the diffuse field are ignored for simplicity. Ad-
ditionally, all sources are assumed to behave in an omnidirec-
tional manner, while a speaking person is a directive source.

This paper therefore investigates how more advanced RIR
simulation methods can affect final model performance on
real data. We have chosen to do this through the DOA estima-
tion task, because of its central role in multi-channel speech
processing. The ability to discriminate on where speech
originates from is crucial for applications like multi-channel
speech enhancement, speaker identification and automatic
speech recognition.

Classic approaches to DOA estimation include multi-
ple signal classification (MUSIC) [3], the least squares (LS)
method [4], multi-channel cross correlation (MCCC) [5],
and the steered response power with phase transform (SRP-
PHAT) [6]. A main challenge is the multipath propaga-
tion effect where microphone sensors not only receive the
direct-path signal, but also attenuated signals due to both the
specular and diffuse reflections.

Inspired by the success of DNNs in many fields, several
such approaches have been proposed for sound/speech source
localisation (SSL) [7, 8, 9, 10, 11, 12, 13, 14].

Research based on training data generated from measured
RIRs is automatically constricted to a severely limited num-
ber of rooms [7, 8]. Others rely on the simulation of just one
or two acoustical environments [9, 10]. Xiao et al. and Per-
otin et al. simulated more varied data for DOA estimation of
speech [11, 12, 13], but they, as is common practise, relied on
ISM with omnidirectional sources for RIR simulation.

Only recently have researchers attempted to improve deep
learning model performance in speech processing tasks, by
improving the quality of the RIRs used for synthesizing data.
Tang et al. found significant performance increases on an au-
tomatic speech recognition and keyword spotting task in [15]
by using an acoustic simulation method that includes diffuse
reflections. Using the same method, Tang et al. also observed
improved performance at a DOA estimation task [14].

In this study we further investigate the effect of RIR sim-



ulation methods on final DOA model performance. Our study
is unique in that we are, as far as we know, the first to inves-
tigate the effect of simulating speakers as directive sources.
Like Tang et al. we also study the effect of diffuse reflections,
but we rely on the GCC speech features and the MLP archi-
tecture proposed in [11], instead of ambisonic features and
CRNN architecture. We focus only on reverberance (no noise
added), and use our own dataset, which includes two test
sets that allow us to differentiate between results for speak-
ers looking directly at the array, and the more challenging
situation where speakers face the array at a 90◦ angle.

2. DATA ACQUISITION

2.1. Synthetic RIRs for training

We simulated RIRs with four different simulation methods
using the MATLAB package MCRoomSim [16]:

• ISM-omni: the basic RIR generated by ISM where
sources are modelled as omnidirectional. No scattering
and no diffuse field.

• ISM-dir: Like ISM-omni, but now sources are mod-
elled as directive speakers, with either an average male
or female directivity. No scattering and no diffuse field.

• WithDiffuse-omni: An advanced RIR with not just
specular reflections, but also a diffuse field due to scat-
tering, where sources are modelled as omnidirectional.

• WithDiffuse-dir: Like WithDiffuse-omni, but sources
are again modelled as directive speakers.

For each method, 18 000 training and 6000 validation
RIRs were simulated from three random source positions in
6000 and 2000 virtual rooms. Each room was randomly con-
figured with parameters drawn from the uniform distributions
specified in Table 1, ensuring evenly distributed target DOAs
in all directions. The average absorption of a room was deter-
mined from the drawn reverberation time with Eyring’s [17]
algorithm with air absorption taken into account.

Table 1. Details of random virtual room configuration
Item Parameter Min. Max.

Room width 3 m 8 m
size length 3 m 10 m

height 2.5 m 6 m
RT60 0.2 s 1 s
scattering coefficient 0 1

Array from walls 1 m -
position from floor 0.6 m 0.9 m
Speaker from walls 0.5 m -
position from floor 1 m 1.8 m

from array 0.5 m -
yaw (directive speakers only) -180◦ 180◦

2.2. Measured RIRs for testing

To create realistic test data, RIRs were measured manually
with a 9-channel circular array (planar) with 4 cm radius, po-
sitioned on a table approximately in the middle of a typical
rectangular meeting room with dimensions 4.5 x 3.8 x 2.6
m, and RT601kHz of 0.3. An NTi TalkBox was used to pro-
duce the sinusoidal sweeps required for RIR measurements.
This loudspeaker has human head-size like dimensions and is
specifically designed for human speech measurements.

Of the measured RIRs, 47 where obtained with the
speaker facing towards the array (the ‘Easy’ set), and 107
with the speaker rotated at 90◦ (the ‘Challenging’ set). The
true DOAs were measured with an uncertainty of ± 1◦ at
random angles uniformly distributed around the array, at a
distance varying between 1 and 2 m (above critical distance).

2.3. Obtaining Speech Features

Our preprocessing steps are inspired by [11], but the specifics
differ. We used ‘NB Tale’, a Norwegian speech database.
This database contains circa 19 hours of training data and
circa 5 hours of validation data from a total of 380 speakers.

First the speech files were passed through the open source
voice activity detector from WebRTC with a hop length of
30 ms, zero minimum silence length and strength 3. They
were then convolved with (simulated or measured) RIRs to
create a reverberant multichannel speech sample, which was
resampled from 48 kHz to 16 kHz. We then selected a random
1 s long segment.

Lastly, GCC vectors with PHAT weighting were obtained
for each pair of microphone channels. For our array, the max-
imum distance between a pair of microphones is 8 cm, which
represents a maximum delay of 4 (0.08 m / 340 m/s × 16 000
Hz) time samples of each GCC vector. Hence, the GCC vec-
tor was truncated to the 9 centre time samples for each micro-
phone pair. From the 9 channels, we have 36 possible micro-
phone pairs, giving us 36 GCC vectors. Each of the vectors
was scaled so that its max value became 1, and then stacked
to obtain a single model input sample.

Due to the random selection of the speech segment, dif-
fuse reflections of earlier speech affect the model input sam-
ple, even if vector truncation removes later reflections. This
can be seen in Figure 1, which shows examples of the syn-
thetic input training samples for each simulation method,
given the same room size, source and array location. Less ag-
gressive truncation did not improve final model performance.

Using the above procedure, we created synthetic train-
ing and validation sets for each of the RIR simulation meth-
ods, with 18 000 training and 6000 validation samples per set.
The same procedure was also applied using the two types of
recorded RIRs to create two measured test sets called ‘Easy’
(speaker facing directly towards the array) and ‘Challenging’
(speaker at a 90◦ angle away from the array). The final test
sets had 517 ’Easy’ and 1177 ’Challenging’ input samples.
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Fig. 1. Examples of the GCC input feature for each method

3. DOA ESTIMATION MODEL

The DOA estimation task is most intuitively formulated as
a regression task where the continuous azimuth variable is
directly predicted from the input features. However, others
have noted advantages from converting the task into classi-
fication, where possible azimuths are separated into discrete
bins [11, 14]. In this paper, we include both.

For the regression formulation, we investigated two loss
functions, which we call the angular mean square error:

MSE� =
1

N

N∑

n=1

(
atan2

(
sin

(
ŷ − y

)
, cos (ŷ − y)

))2

,

(1)
and the angular mean absolute error:

MAE� =
1

N

N∑

n=1

∣∣∣ atan2
(
sin (ŷ − y) , cos (ŷ − y)

)∣∣∣, (2)

where ŷ and y are the true and estimated DOA respec-
tively, and the atan2 operator computes the arctangent of
the element-wise division of its first and second argument,
respecting signs of the arguments.

These are based on the general mean squared error (MSE)
and mean absolute error (MAE) loss functions, but ensure the
calculation is always based on the minimal error between two
angles, be it clockwise or anticlockwise. Output layers of
both regression formulations were given linear activation.

For the classification formulation, we used the standard
categorical crossentropy loss with either 72 (5◦ per bin) or
360 (1◦ per bin) classes. Both classification models were
given an output layer with softmax activation.

As model we chose the MLP neural network. First a wide
hyperparameter search was conducted for all datasets using

the tree-structured parzen estimator (TPE) approach [18], to
determine a single model topology that worked well for all
datasets. This search included varying the number of hid-
den layers, number of nodes per layer, type of activation, rate
of dropout, �1 or �2 regularization, batch normalization and
learning rate for the Adam optimizer.

From this, a general model with 3 hidden layers, each with
3072 hidden nodes and relu activation, was chosen for all
datasets and problem formulations. No batch normalisation
was applied. A new optimisation process was then started for
each combination of the 4 datasets and 4 loss functions. Now
only the learning rate and level of dropout was varied to find
the best model for each set, to ensure that results would be di-
rectly comparable. Classification models converged best with
high levels of dropout (circa 0.8), while regression models did
best without dropout.

Table 2 shows the MAE results for all model types and
all simulation methods, obtained for a validation test set spe-
cific for each simulation method. These errors do not reflect
real-life performance, but performance on synthetic valida-
tion set that was created in the same way as the training set
used to train each model. Therefore, the consistently lower
MAE for methods with omnidirectional sources merely shows
that these tasks are easier to learn, but it is not an indication
of how the resulting MLPs will deal with real data.

Table 2. MAE for each method’s synthetic validation set
Regression Classification

MSE� MAE� 1◦ bins 5◦ bins

ISM-omni 2.4◦ 1.8◦ 1.6◦ 2.3◦

ISM-dir 5.5◦ 5.0◦ 4.6◦ 4.7◦

WithDiffuse-omni 2.0◦ 1.4◦ 1.1◦ 2.0◦

WithDiffuse-dir 6.3◦ 4.3◦ 4.0◦ 4.4◦

4. RESULTS

All final models were tested with the exact same two mea-
sured test sets (‘Easy’ and ‘Challenging’), and performance
was evaluated with MAE for all models (independent of the
training loss function used!), to allow for direct comparison.
For Table 3, test samples are based on RIRs where the speaker
was facing directly towards the array. Table 4 shows the re-
sults for RIRs where the speaker faced past the array at a 90◦

angle. Testing with MSE or accuracy within 5◦ or 10◦ in-
stead of MAE resulted in the same trends, and are therefore
not included in this paper.

In our application, the variance of the error from the true
direction indicates system performance (assuming zero mean
error). We therefore apply the Brown-Forsythe statistical test
[19], which tests the variance of the distributions without a
strong assumption of normality. We report the test’s probabil-
ity results p, for relevant pairs of systems, in Section 5.



Table 3. MAE for the ‘Easy’ test set, where speakers face
directly towards the array

Regression Classification
MSE� MAE� 1◦ bins 5◦ bins

SRP-Phat 1.5◦

ISM-omni 2.2◦ 2.1◦ 1.4◦ 1.3◦

ISM-dir 3.0◦ 2.1◦ 1.5◦ 1.5◦

WithDiffuse-omni 2.8◦ 1.1◦ 1.3◦ 1.4◦

WithDiffuse-dir 3.8◦ 1.4◦ 1.1◦ 0.9◦

Table 4. MAE for the ‘Challenging’ test set, where speakers
face 90◦ away from the array

Regression Classification
MSE� MAE� 1◦ bins 5◦ bins

SRP-Phat 16.5◦

ISM-omni 18.2◦ 18.2◦ 19.1◦ 18.8◦

ISM-dir 12.7◦ 11.5◦ 8.9◦ 8.1◦
WithDiffuse-omni 19.7◦ 19.6◦ 18.6◦ 17.9◦

WithDiffuse-dir 13.0◦ 10.5◦ 9.9◦ 10.1◦

5. DISCUSSION

From Table 3 we observe that for the relatively easy task of
finding the correct azimuth of a speaker facing the array, all
models are able to estimate the DOA with high accuracy.

The training data simulation method starts to matter when
testing with samples where speakers looked past the ar-
ray, giving increased confounding reflections. In this case
(see Table 4) all directional data based MLPs outperformed
their omnidirectional equivalents and the SRP-Phat baseline
method significantly (p << .01). Simulating with directional
sources also increased the difficulty of the task given to the
SSL method as evident from the increase in validation error
(see Table 2). As such, results show that the MLPs were able
to learn relevant information from the directional simulations
that turned out to be applicable on measured data.

This is crucial given that we found no studies that simu-
lated directive sources to train learning-based SSL models.
Also, given the importance of localisation for many other
speech processing tasks like speech recognition and speech
enhancement, the conclusion may be valid for many other
multichannel speech applications.

We observe that for each DNN topology, either the sim-
ulation methods ISM-dir or WithDiff-dir leads to the highest
performance, and overall the performance difference between
the two was insignificant (p > .01). Adding a diffuse field
when simulating sources as omnidirectional also did not have
a significant effect (p > .01).

As such, in contrast with [14], we do not find benefit
(nor deterioration) from adding the diffuse field. However,
this may simply be because the chosen preprocessing steps to

generate speech features may have stopped the models from
learning relevant information from the diffuse field. We also
have to be careful to draw conclusions based on measure-
ments taken in a single meeting room, as its diffuse field is
not representative for all meeting rooms.

Observed trends are independent of the choice of loss
function and whether the problem is formulated as a regres-
sion or classification task. This provides evidence that the
obtained differences are indeed due to the different datasets
used for training, and not due to effects of biased hyperpa-
rameter tuning.

Like others [11, 14], we note that defining the DOA esti-
mation task as a classification task is advantageous as this for-
mulation resulted in our best performing models. Especially
the directive training sets contain samples that are too chal-
lenging for the network to learn. The regression network with
MSE� loss penalises large errors harshest, and as such the
learning process focuses most on these outliers. The classifi-
cation networks are on the other end of the spectrum - penalis-
ing all predictions outside the target bin equally, and as such,
their training focuses on the more informative samples. Ad-
ditionally, all classification networks required high levels of
dropout, indicating that smaller networks may work equally
well for this task formulation.

The focus of this study was on the effect of using more ad-
vanced RIR simulation techniques for generating better train-
ing data, and not on finding the best DOA estimator.

6. CONCLUSION

We synthesized different training sets to train MLP models
for a DOA estimation task from 4 different RIR simulation
techniques. The model trained on data from RIR simulation
techniques with directive sources, achieved up to a 51% lower
mean absolute error on a measurement-based test set than the
industry standard SRP-PHAT method, while equivalent mod-
els trained on the standard image source method with omni-
directional sources performed worse than this baseline.

Results show that, for improved real-life performance,
sources should be modelled as directive speakers, rather than
omnidirectional sources, especially for the situation where
the speaker is not directly looking at the array. This is an im-
portant conclusion given the widespread use of simple ISM
RIRs, indicating that the complexity of the RIR simulation
technique has been undervalued as a source of performance
gain for learning-based SSL. We further speculate that the
conclusion may hold true for other applications within multi-
channel speech processing.

7. ACKNOWLEDGMENTS

We thank the Research Council of Norway and Huddly for
their support through project ‘256753 - Meet Easy’.



8. REFERENCES

[1] Chanwoo Kim, Ananya Misra, Kean Chin, Thad
Hughes, Arun Narayanan, Tara Sainath, and Michiel
Bacchiani, “Generation of large-scale simulated utter-
ances in virtual rooms to train deep-neural networks for
far-field speech recognition in Google Home,” in IN-
TERSPEECH, Stockholm, Sweden, 2017, pp. 379–383.

[2] Jont B. Allen and David A. Berkley, “Image method for
efficiently simulating small-room acoustics,” The Jour-
nal of the Acoustical Society of America, vol. 65, no. 4,
pp. 943–950, 1979.

[3] R. Schmidt, “Multiple emitter location and signal pa-
rameter estimation,” IEEE Transactions on Antennas
and Propagation, vol. 34, no. 3, pp. 276–280, 1986.

[4] Yiteng Huang, J. Benesty, G. W. Elko, and R. M.
Mersereati, “Real-time passive source localization:
A practical linear-correction least-squares approach,”
IEEE Transactions on Speech and Audio Processing,
vol. 9, no. 8, pp. 943–956, 2001.

[5] Jacob Benesty, Jingdong Chen, and Yiteng Huang,
“Time-delay estimation via linear interpolation and
cross correlation,” IEEE Transactions on Speech and
Audio Processing, vol. 12, no. 5, pp. 509–519, 2004.

[6] Joseph Hector DiBiase, A High-Accuracy, Low-Latency
Technique for Talker Localization in Reverberant En-
vironments Using Microphone Arrays, Ph.D. thesis,
Brown University, Providence, Rhode Island, USA,
2000.

[7] Ryu Takeda and Kazunori Komatani, “Sound source
localization based on deep neural networks with direc-
tional activate function exploiting phase information,”
in IEEE International Conference on Acoustics, Speech
and Signal Processing, Shanghai, China, 2016, pp. 405–
409.

[8] David Diaz-Guerra and Jose R. Beltran, “Direction of
Arrival Estimation with Microphone Arrays Using SRP-
PHAT and Neural Networks,” in IEEE 10th Sensor
Array and Multichannel Signal Processing Workshop,
Sheffield, UK, 2018, pp. 617–621.

[9] Zhaoqiong Huang, Ji Xu, and Jielin Pan, “A regression
approach to speech source localization exploiting deep
neural network,” in IEEE Fourth International Confer-
ence on Multimedia Big Data, Xi’an, China, 2018, pp.
1–6.

[10] Soumitro Chakrabarty and Emanuel A. P. Habets,
“Broadband DOA estimation using Convolutional neu-
ral networks trained with noise signals,” in IEEE Work-
shop on Applications of Signal Processing to Audio and
Acoustics, New York City, USA, 2017, pp. 136–140.

[11] X. Xiao, S. Zhao, X. Zhong, D. L. Jones, E. S. Chng,
and H. Li, “A learning-based approach to direction of ar-
rival estimation in noisy and reverberant environments,”
in IEEE International Conference on Acoustics, Speech
and Signal Processing, Brisbane, Australia, 2015, pp.
2814–2818.

[12] Laureline Perotin, Romain Serizel, Emmanuel Vincent,
and Alexandre Guerin, “CRNN-based Joint Azimuth
and Elevation Localization with the Ambisonics Inten-
sity Vector,” in International Workshop on Acoustic Sig-
nal Enhancement, Tokyo, Japan, 2018, pp. 241–245.

[13] Laureline Perotin, Romain Serizel, Emmanuel Vincent,
and Alexandre Guerin, “CRNN-Based Multiple DoA
Estimation Using Acoustic Intensity Features for Am-
bisonics Recordings,” IEEE Journal of Selected Topics
in Signal Processing, vol. 13, no. 1, pp. 22–33, 2019.

[14] Zhenyu Tang, John D. Kanu, Kevin Hogan, and Di-
nesh Manocha, “Regression and Classification for
Direction-of-Arrival Estimation with Convolutional Re-
current Neural Networks,” in INTERSPEECH, Graz,
Austria, 2019, pp. 654–658.

[15] Zhenyu Tang, Lianwu Chen, Bo Wu, Dong Yu, and Di-
nesh Manocha, “Improving Reverberant Speech Train-
ing Using Diffuse Acoustic Simulation,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing, Barcelona, Spain, 2020, pp. 6969–6973.

[16] Andrew Wabnitz, Nicolas Epain, Craig Jin, and André
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ABSTRACT

This paper proposes a neural network based system for multi-
channel speech enhancement and dereverberation. Speech
recorded indoors by a far field microphone, is invariably
degraded by noise and reflections. Recent single channel
enhancement systems have improved denoising performance,
but do not reduce reverberation, which also reduces speech
quality and intelligibility. To address this, we propose a deep
complex convolution recurrent network (DCCRN) based
multi-channel system, with integrated minimum power dis-
tortionless response (MPDR) beamformer and weighted pre-
diction error (WPE) preprocessing.

PESQ and STOI performance is evaluated on a test set of
room impulse responses and noise samples recorded by the
same setup. The proposed system shows a statistically signif-
icant improvement (p � 0.05) over competitive systems.

Index Terms— speech enhancement, microphone arrays,
deep neural networks, dereverberation, beamforming

1. INTRODUCTION

The field of speech enhancement (SE) has undoubtedly been
revolutionized by deep learning techniques. Now that the
whole world has been forced to adapt to online meetings at
an unseen rate, the topic is also more relevant than ever.

Rapid developments in the related field of automatic
speech recognition (ASR) have inspired many source separa-
tion and denoising systems. However, over the course of only
the past year, Microsoft has organized three SE challenges,
where the focus was on enhancing single channel signals
specifically for human listeners [1, 2, 3]. Additionally, the
challenge ConferencingSpeech 2021 targets multi-channel
speech enhancement for video conferencing [4].

Most results of these challenges are not yet available.
However, top performing systems of the first deep noise
suppression (DNS 2020) challenge, demonstrate remarkable
performance increases with respect to removing additive
noise from speech recordings.

Isik et al. proposed PoCoNet; a 2D UNet (with DenseNet
blocks and self-attention) with small kernels [5]. They also
utilized a semi-supervised method to increase the amount of

training data and investigated the effect of different augmen-
tation techniques. Their proposed system with approximately
50M parameters won first place in the non-real-time track.

Hu et al. proposed the deep complex convolution recur-
rent network (DCCRN) [6]. The DCCRN also follows the
UNet structure, but uses complex-valued convolutional en-
coders and decoders, and LSTMs to model the context de-
pendency. With only 3.7M parameters, the DCCRN models
ranked first for the real-time-track and second for the non-
real-time track. The lower complexity of this network, com-
bined with the fact that it was trained on less data, while ob-
taining such competitive performance, makes it an ideal can-
didate for further research.

However, speech quality and intelligibility is also nega-
tively affected by the presence of reverberance [7, 8]. The
DCCRN system does not attempt to remove reverberance at
all, and PoCoNet only attempted partial dereverberation.

From the field of multi-channel speech enhancement, we
know that there lies a huge potential in relying on multi-
channel signals as input, and in applying beamforming tech-
niques [9]. Heymann et al. proposed a system where a DNN
estimates an ideal binary mask (IBM) to deduce the cross-
power spectral densities of the target speech and noise. These
are then used for beamforming with a generalized eigenvec-
tor (GEV) beamformer [10]. Their system did really well on
the CHiMe-3 challenge for robust ASR, but as their network
estimates the IBM, and not the target signal, performance
is inherently capped. We also observe that, despite its def-
inite merits over earlier single-channel systems, the system
proposed by Heymann et al. struggles to outperform the
single channel DCCRN on our test set, even if we rely on
oracle IBM masks (see Table 2 in Section 5). Erdogan et
al. proposed a similar masked based MVDR system with a
spectrum magnitude based loss [11]. However, their final
system performance was lower.

In this paper, we therefore propose a far-field multi-
channel neural network for simultaneous speech dereverbera-
tion and enhancement that combines the recent advancements
in single channel speech enhancement for human listeners,
with mask based neural beamforming from the domain of
multi-channel speech enhancement. We integrated the DC-
CRN with a minimum power distortionless response (MPDR)
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Fig. 1: Overview of the proposed speech enhacement and dereverberation system. The highlighted WPE and GCC-Phat boxes are only
employed during inference. The red frame contains all blocks with trainable parameters, where each Encoder-Estimator-Decoder structure
represents a single channel DCCRN.

beamformer [12] and added weighted prediction error (WPE)
speech dereverberation [13] to the processing pipeline. As
such, our system crucially differs from the other mask based
beamformering approaches, by relying on a time domain
loss, and having complex spectral input features and complex
network layers. Furthermore, the usage of the MPDR sepa-
rates the steering vector estimation from the mask estimation
process. The proposed system only requires the corrupted
multi-channel speech signal during inference, and as such
does not need estimates of noise statistics, or information on
microphone layout.

We evaluate the system on two highly realistic test sets.
These sets were obtained by combining our own recorded
multi-channel room impulse responses (RIRs) with clean
speech from an open database, and our own multi-channel
noise recordings. The latter were recorded by the same array
placed at the same location in the same room as where the
RIRs were obtained. This setup allows for objective testing
with a clean reference signal, while simultaneously avoiding
the need for synthetic RIRs that would reduce the realism of
the test sets. Furthermore, with this setup we can differentiate
between results for speakers looking directly at the array, and
the more challenging situation where speakers face the array
at a 90◦ angle.

We compare the system to three state-of-the art baseline
systems; i) single channel DCCRN, ii) multi-channel base-
line system of the ConferencingSpeech 2021 Challenge, and
iii) mask based GEV beamformer with blind analytic normal-
ization postprocessing by Heymann et al.

2. THE SYSTEM

2.1. Overview

Figure 1 shows an overview of the proposed system. A multi-
channel noisy and reverberant speech signal x is transferred

to the frequency domain by a short time Fourier transform
(STFT) operation. The resultant signals are fed into the
weighted prediction error (WPE) block for deverberation. A
DCCRN neural net estimates masks for each channel, where
neural network weights are shared across channels (but input
is not). All resultant masks are then combined into a single
mask using the median operator, because of its resilience to
outliers. This mask is then applied to a beamformed result
of the dereverberated signal. Lastly, the enhanced signal is
taken back to the time domain by an inverse STFT (iSTFT).

The beamformer requires time difference of arrival (TDOA)
estimates to obtain an appropriate steering vector. During
training, this information is obtained from the known true
speaker direction. During the prediction stage, this infor-
mation is estimated directly from the WPE’s output, using
generalized cross correlation with phase transform (GCC-
PHAT). As such, the final system only requires the corrupted
signal as input.

The next subsections provide further processing details.

2.2. Short Time Fourier Transform

Adhering to the original DCCRN paper, we use a Hann win-
dow, a FFT length of 512 samples, a window length of 25 ms
(400 samples at 16000 Hz) and a hop size of 6.25 ms (100
samples at 16000 Hz) to obtain a complex-valued STFT [6].

2.3. WPE dereverberation

The idea of WPE is to estimate the reverberation tail of the
signal and subtract it from the observation with a maximum
likelihood approach [13]. We have tested our system with one
iteration (using the Nara-WPE implementation [14]), as this
has been shown to already provide significant benefit, while
multiple iterations quickly become highly time consuming.



2.4. Beamforming

Beamforming is a signal processing technique, where the
channels of a multi-channel signal are delayed, weighted,
and then combined into a single signal that is steered towards
a specific source/direction. Depending on the chosen algo-
rithm, a beamformer can both denoise and dereverberate a
multi-channel signal.

One popular beamformer, is the minimum variance distor-
tionless response (MVDR) beamformer. It requires statistical
noise characteristics, which are particularly difficult to obtain
when the noise is non-stationary as well as mixed with the
signal of interest.

One implementation of the MVDR-related algorithm
avoids this problem, by deriving the distortionless filter for a
specified steering direction that minimizes the mean square
output power, and as such only requires the corrupted input
signal. Although this implementation is often referred to as
an MVDR in the literature, we comply with Van Trees’ prac-
tice of referring to it as the minimum power distortionless
response (MPDR) beamformer for unambiguity [12].

The weights of the MPDR beamformer are obtained as
follows:

wH
mpdr =

vHX−1

vHX−1v
(1)

where X is the spectral matrix of the entire input, and v the
steering vector.

When the steering direction is equal to the desired sig-
nal direction, the MPDR beamformer reduces to the standard
MVDR beamformer [12]. As the target direction is known
during training, we effectively train the algorithm with an
MVDR beamformer. During inference, the target direction
has to be estimated as discussed in Section 2.5.

2.5. GCC-Phat

During inference, one cannot expect the true azimuth of
speakers to be available and once the steering vector starts to
deviate from the signal vector, the performance between an
MPDR and MVDR may differ significantly.

There are many DOA estimation techniques available,
both traditional [15, 16], and neural network based [17]. We
leave the problem of estimating the azimuth largely outside
the scope of this study, but present the results for the final sys-
tem, both for the ideal situation where the speaker azimuth
is known, and for an estimated azimuth using generalized
cross correlation with phase transform (GCC-PHAT) [15].
This method allows us to estimate the steering vector without
needing to provide the microphone layout.

2.6. DCCRN single channel speech enhancement

The DCCRN single channel SE system was first proposed in
[6]. Its goal is to estimate a complex ratio mask (CRM) for the
complex-valued STFT. The DCCRN therefore receives both

real and imaginary information. This in contrast with SE sys-
tems that try to enhance the magnitude of a signal, but rely on
the noisy phase.

The DCCRN network can be structured into three parts:
the encoder, the estimator and the decoder.

The encoder and decoder contain 6 encoder/decoder
blocks each. Each of these blocks consist of a 2D com-
plex convolutional (or deconvolutional) layer, followed by
real-valued 2D batch normalization (BN) and leaky ReLU
activation. Encoder and decoder blocks (with output chan-
nels [32, 64, 128, 128, 256, 256]) are furthermore connected
through skip connections.

The encoder extracts high-level features from the input,
while the symmetric encoder-decoder architecture ensures
that the decoder takes these features (after the estimator
stage) back to the same shape as the input. Skip connections
between encoder and decoder blocks, make that the noisy
input (translated into the corresponding feature spaces), are
available during decoding.

At the estimator stage, the network needs to identify the
desired signal from the noise, to construct a mask like struc-
ture in the encoded feature space. For this, it is important
to leverage long-term contexts, which the DCCRN does with
LSTM layers. The estimator therefore consist of two real val-
ued LSTM layers (not bidirectional, and each with 256 nodes)
followed by a linear layer (1024 nodes). We relied on the po-
lar coordinate masking approach (DCCRN-E).

3. TRAINING

3.1. Setup

We first trained a single channel DCCRN SE model as a pre-
training step. This model also functions as one of the ref-
erence systems. We then initialize the multi-channel system
with the obtained weights.

Both single channel and multi-channel systems were
trained with the SI-SNR loss function [6] and the Adam
optimizer. While the DCCRN model itself has been kept
equal to the original, we made changes to the data synthesis
process, updated to the newer 2021 dataset for training, and
changed the learning rate; all for improved performance. We
used a learning rate of .002, and .0005 during single channel
pretraining and multi-channel fine-tuning, respectively.

3.2. Training Data

3.2.1. Single channel pretraining dataset

The DNS Challenge 2021 speech and noise data was used
during the pretraining stage, but we relied on the ISM-dir
dataset described in [17] for the RIRs. RIRs in this set are
simulated with the image source method (ISM) where speaker
sources are modelled as directive sources with an average
speaker pattern directivity.



For 80% of the time, reverberant speech was obtained
from combining clean speech with a random single-channel
RIR. For the remaining 20%, speech was left non-reverberant.
Noise (always non-reverberant) was then added to obtain the
noisy input of SNR within the -5 to 20 dB range. We trained
the single channel model using reverberant speech as the tar-
get, as training to a clean reference did not improve perfor-
mance.

3.2.2. Multi-channel fine-tuning dataset

For the multi-channel system, also the noise was made
multi-channel and reverberant using synthetic RIRs, but here
sources were modelled as omnidirectional during simulation.
Speech and noise sources were simulated as if from the same
room, but at different random locations. The multi-channel
system was trained to a clean (non-reverberant) target, by
combining above RIRs with the DNS Challenge 2021 speech
and noise.

4. EVALUATION

4.1. Testing setup

We test the performance of our system with PESQ, an ob-
jective measure of speech quality, and STOI, an objective
measure of speech intelligibility. When calulating these
objective measures, it is important to compare to the right ref-
erence signal. A dereverberating system will appear to have
worse performance when a reverberant reference is used, as
it is ‘punished’ for dereverberating the input, bringing the
enhanced output away from the reference it is tested against.
However, the single channel systems from the literature were
tested against the reverberant speech signal. Therefore we
switch from using a reverberant reference signal for the
single-channel system (allowing for fair comparison), to the
clean non-reverberant target for the multi-channel system (to
take the dereverberation into account).

4.2. Testing Data

4.2.1. Single channel test set

To anchor the performance of the single channel SE system
to a known test set, we test it with the DNS Challenge 2020
test set.

4.2.2. Multi-channel test sets

To create realistic multi-channel test data, RIRs were mea-
sured manually with a 9-channel circular array (planar) with
4 cm radius, positioned on a table approximately in the mid-
dle of a typical meeting room. See [17] for further details.
Two types of RIRs were measured: i) speaker facing towards
the array (the ‘Easy’ set), and ii) the speaker rotated at 90◦

away from the microphone (the ‘Challenging’ set).

Obtained RIRs were combined with random speech sam-
ples from ‘NB Tale’, an open Norwegian speech database.
None of the training sets contained Norwegian speech.

Additionally, we recorded typical meeting room like
noises (see Figure 2) in the same room, using the same ar-
ray at the same location, as where the RIRs were measured.
This means that all recordings also contained more general
background noise, like the room’s ventilation system.

Fig. 2: Sample spectograms of recorded test noises (only the first
channel is shown)

The true DOAs were measured with an uncertainty of ±1◦

at random angles uniformly distributed around the array. As
such, it was also possible to test using the oracle steering di-
rection for the beamformer, which normally isn’t available
during inference.

4.3. Reference systems

We compare results to the performance of three reference sys-
tems from the literature, and an alternative to our proposed
system:

1. ConferencingSpeech 2021 baseline: The multi-channel
SE system described in [4], trained with our own multi-
channel training set.

2. Single channel DCCRN: The pretrained single chan-
nel DCCRN model, where we ignore all but the first
channel of our test data.

3. GEV (oracle IBM mask) with BAN: Mask based
GEV beamformer, where the IBM mask is not esti-
mated by a DNN, but obtained directly from the known
target/noise signals.



4. MPDR (oracle TDOAs) + Single channel DCCRN:
Here the MPDR beamformer (suplied with oracle
TDOAs) is added as a standalone preprocessing step
for the single channel DCCRN.

All of these systems are applied to the noisy signal di-
rectly, or to a signal that has first been preprocessed by a stan-
dalone WPE block.

5. RESULTS AND DISCUSSION

Table 1 shows the PESQ results for the pretrained DCCRN
system. Our single channel system performs on par with
the two winning systems, when looking at PESQ scores for
the non-reverberant test set. Furthermore, the changes to the
training setup give it superior performance on the reverb set,
when compared to the original DCCRN-E, and also possibly
when compared to PoCoNet, depending on the standard devi-
ation of their test scores (not published). From these results
we are confident that our DCCRN acts as a competitive base-
line system for our multi-channel results.

Table 1: Narrowband and wideband PESQ results for the DNS Chal-
lenge 2020 channel dataset. Reverberant signal used as reference.

PESQ nb PESQ wb
No reverb Reverb No reverb Reverb

Noisy 2.16 2.52 1.58 1.82
PoCoNet [5] - - 2.75 2.83a

DCCRN-E [6] 3.27 3.08 - -
Our DCCRN 3.28 3.44 2.76 2.94

aResult without partial dereverberation, for unbiased comparison

Table 2 shows the PESQ and STOI results for the multi-
channel testsets. Generally speaking, we obtain much lower
PESQ scores than those observed in Table 1, despite similar
SNRs in both test sets. This is because we are now calculating
PESQ with respect to the clean (instead of the reverberant)
speech signal.

Independent of the test set used, we see that all enhance-
ment systems benefit from the WPE preprocessing step, even
if for STOI scores the difference isn’t always significant. This
shows that although all systems are trained with reverberant
data, they do not learn to deal with it as effectively as WPE.

The independent two-sample t-test shows that all our three
systems have statistically significant higher performance than
the three reference systems (p � 0.05). This is true, both
when measuring performance in PESQ, or in STOI.

Table 2 furthermore shows that when the speaker is look-
ing at the array (‘Easy’ set), there is no statistically significant
difference in performance, between integrating the MPDR
in the training loop, or simply adding it as a preprocessing
step to the single channel DCCRN. The same comparison
does however find a significant performance difference for
the challenging dataset for the SNRs of 5 and 10 dB. Here
the alternative to the proposed system (where the MPDR is
added as a standalone preprocessing step before the pretrained
DCCRN) performs statistically significant worse (p < 0.05).
This suggest that integrating the MPDR into the training loop,
actually allows the enhancement system to learn information
that makes it better equipped to deal with a speaker looking in
the wrong direction, than the MPDR is capable of on its own,
unless there is too much noise.

The performance decrease from moving from oracle
TDOAs to estimated TDOAs is statistically significant for
lower SNRs, as expected. At low SNRs, the estimated

Table 2: Wideband PESQ and STOI results for the different multi-channel datasets. Clean signal used as reference. Best scores per SNR are
shown in bold, where multiple highlighted values indicate that the difference was not statistically significant.

Easy (looking towards array) Challenging (looking away at a 90◦ angle)
WPE PESQ wb STOI PESQ wb STOI

SNR [dB] 0 5 10 0 5 10 0 5 10 0 5 10

No enhancement No 1.25 1.33 1.39 0.69 0.72 0.74 1.22 1.29 1.35 0.60 0.62 0.63
Yes 1.33 1.44 1.56 0.72 0.76 0.78 1.27 1.36 1.46 0.18 0.66 0.68

ConferencingSpeech No 1.33 1.36 1.48 0.68 0.72 0.73 1.27 1.31 1.41 0.59 0.61 0.62
2021 baseline [4] Yes 1.40 1.46 1.63 0.71 0.75 0.77 1.33 1.39 1.52 0.63 0.66 0.67
Single channel DCCRN, No 1.46 1.49 1.51 0.73 0.75 0.75 1.41 1.44 1.46 0.64 0.64 0.65
by Hu et al. [6] Yes 1.64 1.71 1.76 0.77 0.78 0.79 1.55 1.61 1.66 0.68 0.69 0.70
GEV (oracle IBM mask) with No 1.48 1.59 1.60 0.77 0.78 0.79 1.41 1.46 1.52 0.61 0.66 0.67
BAN, by Heymann et al. [10] Yes 1.58 1.75 1.80 0.78 0.80 0.81 1.49 1.58 1.67 0.68 0.69 0.71
MPDR (oracle TDOAs) No 1.68 1.73 1.76 0.80 0.81 0.81 1.54 1.59 1.62 0.71 0.72 0.73
+ Single channel DCCRN Yes 1.89 1.98 2.04 0.81 0.82 0.83 1.71 1.79 1.85 0.74 0.74 0.75
Proposed system No 1.68 1.86 1.88 0.80 0.82 0.83 1.61 1.73 1.78 0.75 0.76 0.77
(oracle TDOA) Yes 1.80 2.02 2.06 0.80 0.83 0.83 1.74 1.89 1.94 0.76 0.77 0.78
Proposed system No 1.60 1.80 1.85 0.78 0.81 0.82 1.50 1.62 1.69 0.72 0.73 0.75
(estimated TDOAs) Yes 1.74 1.95 2.04 0.79 0.82 0.83 1.63 1.79 1.88 0.73 0.75 0.77



TDOAs are more likely to cause the MPDR to point to-
wards the noise, and this even more likely to happen when
the speaker is not looking at the array, weakening the direct
signal. However, the TDOA estimation method used, leaves a
lot of room for improvement to bring the performance closer.
As such, it is very promising that the effect size of the perfor-
mance degradation is this limited. It establishes the MPDR
beamformer as a valid candidate for speech enhancement, es-
pecially for challenging noise types where the noise statistics
are difficult to estimate.

6. CONCLUSION

We proposed a neural network-based system for multi-
channel speech enhancement and dereverberation, based
on WPE dereverberation, the MPDR beamformer and the
DCCRN denoiser. The proposed model outperforms state
of the art reference systems with respect to speech quality
as measured with PESQ and speech intelligibility measured
with STOI.

Future work will include improving the estimation of
TDOAs by investigating other methods, and exploring oppor-
tunities within the system. Furthermore, we plan to evaluate
the systems subjectively.
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