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A B S T R A C T

The characterization of 3D structures in porous media is crucial for predicting physical properties in many
industries, such as CO2 capture and storage, hydrology, oil & gas. In contrast to the expensive and time-
consuming acquisition of 3D images, 2D imaging can provide cheap and fast data. However, the reconstruction
of a 3D image from a single 2D image is a complex non-deterministic inverse problem. Several statistical and
deep learning-based algorithms have been introduced in the past, however, most of them fail to generalize
structures and textures for different types of rocks, in addition to being time-consuming and only able to
generate relatively small images (3003 voxels cube).

In this work, we propose a size-invariant multi-step 3D generation workflow from a single 2D image using
a combination of Vector-Quantized Variational AutoEncoder(VQ-VAE), size-invariant Generative Adversarial
Networks(GAN), and Image Transformer. The proposed workflow tackles several major challenges in the
generation of 3D images since it is designed to not only satisfy the large size constraint (>10003 voxels cube)
but also to generate statistically representative pore structures. The combination of these different generative
techniques allows us to overcome the scalability, stability, and complexity associated with GAN approaches.

We trained the proposed workflow using several types of rocks with different physical properties, sizes, and
resolutions. To validate our methodology, we have generated several large-size 3D rock images and compare
them to real 3D images in terms of physical properties (porosity, permeability, and Euler characteristic).
. Introduction

Characterization of porous media properties such as transport prop-
rties, storage capacity, and capillary-trapping, is an essential step in
any important applications including CO2 capture and storage, under-

round water management, oil & gas reservoir management, and mate-
ial sciences. The derivation of these properties from three-dimensional
omputed tomography(CT) images is a disruptive technology that can
undamentally change the way porous media are characterized. How-
ver, the process of acquiring CT images is expensive, time-consuming,
nd limited to a certain resolution range given by the scanner. The
bility to generate realistic 3D micro-structures from 2D images can
ignificantly extend the technology’s capabilities by using, for example,
heaper and higher resolution SEM or thin section images.

Several mathematical methods have been presented in the literature
o generate a 3D image from a single 2D image; among them, process-
ased modeling (Bakke and Øren, 1997; Øren and Bakke, 2002) and
tochastic-based methods (Strebelle, 2002; Tahmasebi et al., 2012,
014) have been used and developed over the years. Process-based
odeling simulates the rock formation processes, which in many cases
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E-mail addresses: johan.phan@ntnu.no (J. Phan), leonardo.ruspini@petricore.com (L. Ruspini).

can be extremely complex or even unknown. On the other hand,
stochastic-based methods use statistical information from the 2D image
to stochastically populate a 3D volume. However, these processes are
time-consuming and often result in quite homogeneous porous struc-
tures (Pant, 2016; Okabe and Blunt, 2004; Čapek et al., 2009). In
addition, both process-based and stochastic-based methods require a
high degree of iterative interaction with expert users, e.g. geologists, to
input a significant number of parameters which in general are adjusted
by trial and error.

In recent years, several deep learning-based methods, primarily
GAN, have been applied for 3D porous media image generation (Mosser
et al., 2017, 2018; Feng et al., 2019, 2020). Although the proposed
deep learning-based methods promise a faster and fully-automatic way
to generate 3D images, these studies have been limited to a single type
of rock for each model and only managed to generate small, fixed-
size images (643 to 2563 voxels cube). As described in Bruns et al.
(2017), large enough 3D rock images are required to obtain represen-
tative physical properties, especially for complex heterogeneous rocks
where the representative size can be several thousand voxels in each
vailable online 21 May 2022
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direction (Ruspini et al., 2021). Consequently, a significant increase
n generation size needs to be achieved before deep learning-based
ethods can be used in real-world applications.

Therefore, the main goal of this work is to develop an automatic
orkflow for 3D generation from a single 2D rock image. The design

equirements for this new workflow are:

• It should generate statistically representative 3D images from a
single 2D image.

• It should be capable of generating 3D images of any size, and it
should work with input images of any resolution and size.

• Since rock samples from different places are unique due to their
formation processes; we would expect images of new types of
rock to be periodically added to our training dataset. Therefore,
our models should be stable and robust during training so that a
continuous training pipeline can be applied to incorporate new
rock types periodically. This requirement poses a limitation to
GAN-based approaches, well known for being unstable during
training with changing datasets due to catastrophic forgetting and
mode collapse (Thanh-Tung and Tran, 2020).

• The total generation time for large images (>20003 voxels cube)
should be limited to not more than a day.

. Related works

D Rock image generation

Generating a statistical representative 3D rock image from a single
D image is a long-standing problem in the field of digital rock analysis.
raditionally, process-based modeling (Bakke and Øren, 1997; Øren

and Bakke, 2002) and stochastic methods (Adler et al., 1990; Strebelle,
2002; Blair et al., 1996; Tahmasebi et al., 2012, 2014) have been used
for 3D reconstruction using indirect information from 2D images.

Process-based modeling is based on simulating the processes in-
olved in rock formation (e.g., sedimentation, compaction, and di-
genesis). However, this method limits its use to relatively simple
nd homogeneous rock types, e.g., Bentheimer sandstone. Even if the
imulated processes continue evolving for more complex rock types
uch as carbonates (Ruspini et al., 2021), they fail to describe multi-
cale structures and variations intrinsically associated with a large part
f reservoir rocks.

The stochastic methods, on the other hand, construct 3D structures
sing spatial statistical constraints extracted from 2D images. These
ethods are often time-consuming (tens of hours for 3003 voxels cubes)

and require simplifications of rock structures to work properly, i.e., in
general, they produce unrealistic-looking 3D images.

Recently, deep learning-based methods have gained popularity
due to the rise of deep learning technology. With sufficient data and
computational power, deep learning-based methods can theoretically
be trained to generalize the information in a single 2D image to recon-
struct a corresponding 3D image. Among the deep learning methods,
GAN (Goodfellow et al., 2014) has been favored in most recent works.
The first proposed GAN models only worked for a single rock type and
did not produce satisfactory results for all the cases (Mosser et al., 2017,
2018). In later works, Conditional-GAN models were used to generate
a 3D rock image with a 2D image as input (Volkhonskiy et al., 2019;
Valsecchi et al., 2020; Zhao et al., 2021; Coiffier et al., 2020). A hybrid
model combining GAN and Variational autoencoder (VAE) (Zhang
et al., 2021) has also been proposed for a more stable training process.
All the mentioned works were limited to relatively small size image
generation (between 643 and 2563 voxels cube). Even using a size
invariant GAN to generate larger images is possible, training on a
large dataset with multiple types of rocks would still be an extremely
challenging problem. This problem is due to the implicit nature of
GAN-based generation methods, where a 3D image is generated from
a latent vector sampled from a random distribution. In most cases,
2

e

this randomly generated latent vector also defines the structure of the
generated image. This poses a fundamental problem of using a GAN
since instead of gradually propagating the structural information from
the 2D to the 3D image, GAN uses the latent vector to generate the
structure of the 3D image directly and then adjust the results to fit
the 2D input image. Moreover, a continuous distribution latent space is
unsuitable for describing a dataset consisting in different types of rock,
where each type has a distinctive structure.

Autoregressive models for image synthesis

GAN models have traditionally dominated the landscape of deep
learning-based image synthesis; however, they are notorious for being
difficult to train due to the mode collapse problem (Thanh-Tung
and Tran, 2020). On the other hand, autoregressive models with
tractable likelihood such as PixelCNN (Oord et al., 2016), VQ-VAE-
2 (Razavi et al., 2019), Image Transformer (Parmar et al., 2018), and
mageGPT (Chen et al., 2020) are simpler to train and better to capture
he diversity in the data distribution. In addition to 2D image synthesis,
utoregressive models have also been successfully applied in video
rediction from a single image where VQ-VAE and GPT were combined
o achieve state-of-the-art results (Yan et al., 2021). The main drawback
f using autoregressive models is that they have a slow inference time
ue to the need to sequential sample pixel-by-pixel, and therefore they
truggle with scalability, especially for large image generation.

In the next section, we propose a method that uses VQ-VAE to
assively compress large images into compact discrete representation

ectors even at the cost of high information loss so that an autore-
ressive model can be applied more effectively. To compensate for the
nformation loss, we also employ a GAN model in our method.

. Method

Fig. 1 illustrates our new approach to generate large-scale 3D im-
ges from a single 2D image. The proposed method consists of 3 main
omponents:

1. VQ-VAE (Oord et al., 2017; Razavi et al., 2019): VQ-VAE is an
ncoder–decoder based model that maps an input image into a discrete
epresentation vector. In this work, we use VQ-VAE to compress the
nput 3D image by 163 times using a code-book of 128 indices. This
igh compression level helps extract the structural information from
he 3D image such as pore distribution and grain structure from a rock
mage into an information-dense discrete vector.

2. Image Transformer (Parmar et al., 2018): Image Transformer is
n autoregressive generation technique that uses self-attention mecha-
isms to model the distribution of image contents with tractable like-
ihood. Since the memory consumption of transformer scales quadrati-
ally with the input length (Gupta et al., 2021), working directly with
hese 3D images would not even cover a single grain. Therefore to
aximize the receptive fields for tracking spatial dependencies, we

rain our transformer on the compressed vector produced by the VQ-
AE. In order to generate large images, we use 3D Local Attention with
maximum receptive field of 16 × 16 × 10 voxels to query voxel by

oxel in a raster-scan order. This approach is similar to how pixelCNN
as used in the VQ-VAE-2 (Razavi et al., 2019), but in a 3D context
here the PixelCNN is replaced with a transformer. The transformer
sed in this work uses the GPT-3 architecture, see Brown et al. (2020),
ut has only a vocabulary size of 128 words, 16 attention heads, 16
ayers, and a total of 50 million trainable parameters.

3. Size invariant GAN: We loosely based the architecture of our
AN on the residual-based architecture proposed in StyleGan-v2 (Kar-

as et al., 2020) for effective gradient passing when training. The use
f GAN, in this case, serves a similar role as a super-resolution model,
.e., populate texture and high-resolution details to the structures gen-
rated in the previous steps.
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Fig. 1. 3D generation workflow from a single 2D image – Our generation workflow consists of 4 steps: (1) Encode/quantize to compress the image into a compact and discrete
representation vector of 163 times smaller size; (2) Iteratively sample the next data-point of the quantized vector with a transformer until the desired size is met; (3) Decompress
and de-quantize this generated vector; (4) Regain the detailed textures with GAN. In addition, we also give the decoder and the GAN the 2D input as additional information.
(
t

Method description

First, the 2D input image is passed through the encoder to get the
first layer of the quantized vector (Fig. 1 step 1). Then, we complete the
quantized vector from the first layer by iteratively passing it through
the transformer to get the likelihood distribution of the next data point
and sample it with a top 𝑘 sampling strategy (𝑘 = 10) (Fan et al.,
2018) (Fig. 1 step 2). Using a sampling strategy (e.g., top-𝑘, nucleolus
sampling) is imperative to prevent cascade degeneration since our
generation target is often significantly longer than the model receptive
field of view (Holtzman et al., 2019).

This workflow allows the transformer to focus on the global struc-
tures while the GAN generates the detailed texture (Fig. 1 step 4).
The approach is well suited for the nature of the problem since the
structural features of a rock image, e.g., grains packing, are strictly
bounded by the statistical and physical properties of the rock type. On
the other hand, detailed features such as the surface texture of each
grain are local and less complex to generate, thus are suited for GAN.
Another motivation to combine a transformer with a VQ-VAE and GAN
is to maximize the receptive field to capture the spatial image context.
Although a 163 voxels image is a small volume, it has a sequence
length of 4096 words when flattened, which is longer than most Natural
Language Generation (NLG) models input length. Therefore, the use
of VQ-VAE allows the transformer to have a spatial context window
equivalent to 2563 voxels cube in terms of image structure even with
just a 163 voxels input.

Size-invariant model
Given that rock images, in general, are not restricted to a fixed size

or dimension ratio, see Table 1, it is important to create a workflow
that is independent of the input size, i.e., size-invariant. Building a
model entirely with local operations such as convolution, pooling, and
quantization, allows us to theoretically generate images of any size as
long as the input image size is divisible by the size of the receptive field,
e.g. 643 voxels cube in our case. However, processing 3D images with
CNN is very memory demanding, e.g. our model requires over 20 GB of
GPU memory to generate/process a 1963 voxel cube image. Since most
real-world scenarios require images larger than 10243 voxels to cover
the representative volume, it is imperative to split the input image into
smaller patches and process each patch separately. However, naively
putting the generated image patches together into a large image would
result in an unnatural transition between each patch due to the border
effect caused by zero-padding, as shown in Fig. 2(a). Since zero-padding
provides CNNs with many important benefits, such as allowing CNNs
to encode position information and keeping the spatial size constant
3

t

Fig. 2. Output crops from the output of VQ-VAE – Our merging strategy allows a
smooth transition when combining patches into a large image.

after each layer (Islam et al., 2021; Kayhan and van Gemert, 2020),
one cannot simply refrain from using zero padding to avoid the border
problem. One way to deal with this problem is to use a merging
strategy. In Fig. 3 we illustrate our merging strategy where we process
the image patch-by-patch in a similar way to a sequential convolutional
operation. To generate a large image with a smooth transition, as
shown in Fig. 2(b), we introduce the concept of base-cube in both
training and inference, Fig. 4. The size of the Base-cube is defined as
the maximum receptive field, i.e. the size of the region in the input that
produces the feature, of our model.

When generating an image using base-cubes, we can eliminate the
border effect by simply discarding the cubes affected by the padding, as
shown in gray in Fig. 3. Since our objective is to merge the base-cubes
into a larger image, we need to train the model to learn to combine the
base-cubes. Therefore, instead of training with a single base-cube, we
vary the input size of the training data so that each batch consists of
multiple cubes arranged in a random order, as shown in Fig. 4

Training data

In this work, we use porosity images to train and evaluate our
models. To build a porosity image, two images are acquired by scanning
the rock sample in dry and brine–saturated states. Then a porosity
image is constructed as the difference between the two images, with an
attenuation correction as described in Arns et al. (2003), Golab et al.
2010). Our training dataset contains 9 porosity images of different
ypes of rocks (3 sandstones and 6 carbonates) with different resolu-
ions. They were acquired in different X-ray scanners, using different
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Fig. 3. 2D Merging strategy with base-cube – The use of convolutional padding can
lead to border artifacts, see Fig. 2(a). To avoid this problem, we discard all the cubes
that border unseen cubes (the discarded cubes is shown in gray color). This allows the
resulting merged image to be continuous as if we process the entire large image at
once without splitting.

Fig. 4. Training with multiple base-cubes.

image reconstruction and processing procedures in order to avoid
systematic problems. Due to resolution limitations of current imaging
technology (field of view versus spatial resolution), porosity images
from X-ray micro-CT images often contains a non-neglectful amount
of sub-resolution porosity, i.e., the pores in these regions are below the
image resolution. Therefore using porosity images provides an objective
way of normalizing our training data between 0 (pore) – 100 (solid) and
preserving the unresolved micro-porosity (1–99). The micro-porosity is
critical when working with complex rocks, e.g., carbonates, where a big
part of the image is represented by under-resolution pore structures.

For each training step, we make a random crop from a larger 3D
image with a size variation between 50% to 200% of the original input
size. Then, we resize the image with a tri-linear interpolation for up-
sampling and porosity averaging for down-sampling. The use of random
cropping as data augmentation reflects the variation in resolution and
grain sizes when working with rock images.

Validation metrics

In order to validate the quality of the generated images, we compare
the following petrophysical and topological properties to those of real
rock images.

• Porosity (𝜙): is the ratio between the pore and the total volume
of the porous material, i.e., capacity to hold a fluid.

• Permeability (𝑘): measures the hydraulic conductance of the
media, i.e., under the same driving forces, a higher permeability
means more fluid flow. We calculated the permeability by per-
forming a fluid simulation on a pore-network model extracted
4

Fig. 5. High-resolution (HR) Sandstone (1024 × 1024 × 1024 voxels) – Generated
image from a single high-resolution Sandstone image (top face) and the corresponding
ground-truth.

Fig. 6. Low-resolution (LR) Sandstone (1250 × 1250 × 2000 voxels) – Generated
image from a single low-resolution Sandstone image (top face) and the corresponding
ground-truth.

Table 1
Evaluation data – Our evaluation dataset comprises 4 images scanned at different
resolutions. Resolution (Res.) in low resolution (LR) and high resolution (HR) is
scanning resolution measured in μm per a voxels length.

Rock Type Voxel size Res.

X Y Z [μm]

1. HR Sandstone (Bentheimer) 1024 1024 1024 1.94
2. LR Sandstone (Berea) 1250 1250 2000 4.74
3. HR Carbonate (Reservoirs) 1200 1200 1500 3.33
4. LR Carbonate (Reservoirs) 1500 1500 3000 15.06

from the 3D image using the method described in Ruspini et al.
(2017), Øren et al. (2019), Ruspini et al. (2021).

• Euler characteristic (𝜒): is a dimensionless functional describing
the topology and connectivity of a structure, i.e., the relation
between the number of disconnected components and the number
of in-equivalent loops (Vogel, 2002). We calculate this number
using the algorithm proposed in Blasquez and Poiraudeau (2003)
and considering a 26-neighborhood connection.

4. Results and discussion

To evaluate our workflow, we use 4 validation rock samples with
different properties, resolutions, and image sizes, as shown in Table 1.
We have generated a 3D image from the top 2D slice of each sample.
The generated images and their corresponding GT are visualized with
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Fig. 7. High-resolution (HR) Carbonate (1200 × 1200 × 1500 voxels) – Generated
image from a single high-resolution carbonate image (top face) and the corresponding
ground-truth.

Fig. 8. Low-Resolution (LR) Carbonate (1500 × 1500 × 3000 voxels) – Generated
image from a single low-resolution carbonate image (top face) and the corresponding
to 3D ground-truth.

Paraview (Ahrens et al., 2005) and shown in Figs. 5–8. As shown in
these figures, our method is able to generate a completely different im-
age with the same 2D input for each sample, while visually preserving
the overall structure (e.g. grain sizes/shapes, porosity). In Figs. 9 and
10, we compare porosity and Euler characteristic for the generated and
ground-truth images. In order to analyze the variation of these proper-
ties, we have divided the image into multiple 2003 voxels cubes and plot
the distributions of their properties. In addition, we have calculated
the permeability in all three directions for each of the sub-samples
to build porosity vs. permeability plots. The slope and dispersion in
these plots reflect different types of porous media (Ruspini et al., 2017,
2021). Despite the fact that permeability is quite sensitive to the local
variations in both volume and shape of the pores, the generated images
and real images yield similar trends for all the different types of rocks.

Given that our generation method is based on autoregressive sam-
pling, each new generation produces a unique image. To demonstrate
this, in Fig. 12, we show several realizations that are generated from the
same input image. This is an important advantage of the new method
since it allows estimation of the properties variations within a given
rock type using just a single 2D image.

A common problem when working with transformers, and autore-
gressive models in general, is output degeneration (Holtzman et al.,
2019). A large-size generation often yields repetitive or unnatural
results. In order to analyze the degeneration effect, we have generated
5

Fig. 9. Porosity comparison – The generated images (GEN) shows similar porosity
distributions than the ground truths (GT) in all cases. We measure the porosity variation
by dividing our image into several 200 × 200 × 200 voxels cubes and calculate the
porosity for each of them. The results are plotted as a boxplot.

Fig. 10. Euler number comparison – We measure the Euler number distribution on
several 200 × 200x200 voxels binary thresholded cubes taken from the larger image.
The generated images (GEN) shows similar Euler number distribution to the ground
truths (GT) in all cases.

an 8192 voxels deep image from a 512 × 512 2D input, shown in
Fig. 13. Then, we calculated porosity and Euler characteristic along the
generated direction using a rolling window of 512 × 512 × 256 voxels
in size and 64 voxels in step-length. By looking at the image and the
properties, no sign of degradation is observed even when the generated
image is 32 times longer than the model input length.

One of the main motivations for using VQ-VAE as a framework
to the transformer is to significantly reduce computational cost. In
Table 2, we show that the transformer step is the most time-demanding
part of the entire workflow. It is important to consider that even though
the input image size is a 10243 voxels cube, the size that we need to
sample using our transformer is only 643 voxels, thanks to the encoder-
quantization step. We estimate that generating a full-size 10243 cube
image using only a transformer would take around 4 years with the
same hardware. Moreover, using just a transformer in a generation
would also require a bigger receptive field, i.e, longer input sequence
length, to capture the image context.

When it comes to determining the input sequence length of the
model, the time constraint is an important factor to consider, as shown
in Fig. 14. Another limiting factor is the memory and computation
required to train a transformer, which grows quadratically with the
sequence length (Beltagy et al., 2020). Since we are working with
3D images, doubling the input image size in each direction increases
the input sequence length by 8-fold, thus massively increasing the
generation time and memory consumption. On the other hand, having
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Fig. 11. Permeability vs. porosity trends – We calculate permeability in all directions (X,Y,Z) using pore-network simulations on the sub-samples of each rock type. The results
show similar trends in permeability versus porosity between the generated images and the corresponding GTs. In Fig. 11b, the GT samples have a wider range of porosity and
permeability than the GEN sample, this is due to the GEN sample only using information from the 2D input to construct the 3D image thus preventing large variation in image
properties along the z-axes as shown in Fig. 13. However, this is not the case for some real rock samples where the properties of different image parts might vary significantly.
Fig. 12. 2D vertical slices along the central axis of different 3D realizations and the GT – An advantage of transformer-based generation methods is the ability to sample
different realizations from a given input. This figure show that given 1/4 of the ground truth image as conditions, each new generation has produced a unique completion of the
image. However all the four generated images still have a similar rock structure and properties, such as grain size and pore distribution. This ability could enable the user to
predict the distribution in physical properties of a certain type of rock with just a single input.
a longer input sequence length should, in most cases, improve the
generation quality (Parmar et al., 2018). Therefore the optimal solution
will always be delimited by these mentioned factors. In our case, we
have chosen to work with an input length of 16 × 16×10 due to the
memory limitation of our GPU (Graphics Processing Unit).

5. Conclusion

In this work, we have proposed a workflow that combines VQ-VAE,
Image Transformer, and size-invariant GAN, to solve the problem of
large 3D image generation from a single 2D rock image. To validate
our workflow results, we have generated several large-size 3D images of
different resolutions from 4 different types of rocks. We then compared
petrophysical and topological properties to those obtained for a real
6

Table 2
Time spent for each step – The wall time taken to generate a 10243

voxel cube with a RTX3090. The sampling process with the trans-
former (using a 16 × 16 × 10 input sequence length) is the most
time-consuming step. A shorter generation time could potentially
be achieved with proper optimization and model pruning.
Step Wall Time

Encode and quantization 38 s
Sample with transformer 8 h 54 min 53 s
De-quantization and decode 1 min 33 s
GAN 1 min 1 s

rock image and found encouraging results. Since acquiring 2D images
is significantly cheaper and faster than 3D image acquisition, this
workflow could potentially reduce the cost of rock’s physical properties
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Fig. 13. Variation in properties of an 8192 voxels deep generated 3D image from a 512 × 512 2D input – Top image: The rotated 2D slice along the central axis of
the generated image. Middle plot: Porosity measured using rolling windows of 512 × 512 × 256 and 64 in step-length along the depth direction. Bottom plot: Euler number
measured using rolling windows of 512 × 512 × 256 in size and 64 in step-length along the depth direction.
Fig. 14. Input sequence length of the transformer is by far the most impacting
factor when it comes to generation time - The graph shows relationship between
input sequence length and time needed to generate a sequence of 262 144 length (643)
encoded and quantized from an 10243 voxels image cube.

characterization which is crucial in many industries, such as CO2
capture and storage, hydrology, oil & gas.

Limitations

Since we only train with porosity maps in this work, we would
need to add an extra step of converting other data-type into porosity
maps in order for the model to work. However, this conversion can, in
most cases, be done with image thresholding or existing segmentation
tools. When dealing with noisy/artifacts in input images, we advise
using a separate model for noise filtering as pre-process even though
it is possible to incorporate noise filtering capacity into our model. To
incorporate noise filtering capacity into our model, we would need to
make the three parts of our model noise-robust, since they all take
the 2D image as input. This could also have a negative impact on
the performance of the generative model since it would have to learn
another task.

This method is specifically built to solve the 2D to 3D generation
problem of rock images and therefore is expected to work best in this
domain. Based on our understanding, we expect the method to perform
well on problems that are strictly defined by some physical or statistical
distribution, such as material science or biology. However, we have not
tested our method on other domains since it is outside the scope of this
work.
7
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Appendix A. Model architectures

The architectures of the VQ-VAE and the GAN models use in this
work are shown in Figs. 15 and 16. For the transformer model, we use
the GPT-3 architecture without any modification.

Appendix B. Effect of transformer receptive field

In the Results and Discussion section, we show that increases in
the size of the receptive field are at least linearly proportional to
the generation/inference time of the transformer. However, the size
of the receptive field also has a significant effect on the generation
quality of our model, as shown in Figs. 17 and 18. The results in these
figures indicate that a smaller receptive field increases the likelihood
of generation degradation.

https://doi.org/10.1016/j.petrol.2022.110648
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Fig. 15. VQ-VAE architecture – The VQ-VAE model used in this work comprises an encoder and a decoder with 4 residual blocks each. Each residual block has 4 convolution
layers with PReLU activation. To discretize the encoded output (Z vector), we use an embedding dictionary with 128 indices and an embedding dimension of 512. We replace
each value in the encoded vector with the dictionary index that has the closest embedding value to create the Z’ vector, where Z’ is equal to Z in case of lossless quantization. In
addition to MSE (mean square error) loss between the input and the output images, quantization loss, defined as the absolute distance between the Z and Z’, is also used. Finally,
the first 2D slice (top face) of the input image is also used as an additional input for every decoder block.

Fig. 16. GAN architecture – Our GAN models take the output of the VQ-VAE and the 2D image as input. To concatenate the 3D image with the 2D image, we repeat the 2D
image into a 3D stack with the same size as the 3D input. Similar to the VQ-VAE, each residual block of the GAN models has 3 convolutional layers with PReLU activation. The
residual decoder block, in our case, uses pixel-shuffle for upsampling instead of de-convolutional to reduce the checkerboard artifact of GAN.

Fig. 17. The effect of transformer receptive field on images generated along the Z direction (the figures show XZ plane slice) – a small receptive field (16 × 16×2 to
16 × 16 × 6 voxels) increases the likelihood of output degeneration. However, the improvement can be minimal when the receptive field is above a certain size, in this case,
larger than 16 × 16 × 8 voxels.
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Fig. 18. Properties comparison between results generated with different transformer receptive field – As shown in Fig. 12, the images generated with a receptive field
of 16 × 16 × 2 voxels and 16 × 16 × 6 voxels have suffered from degradation along the 𝑍-axis, thus resulting in a significant difference in the calculated porosity and Euler
characteristic in these cases compared to the GT and other cases.
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