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1. Introduction

Bases and frames are indispensable tools in functional analysis, and their stability 
under small perturbations or deformations is a well-studied topic. The study of pertur-
bations of bases began with the work of Paley and Wiener on nonharmonic Fourier series 
[47]. A frame is a generalized basis that allows for robust, but non-unique expansions. 
By definition, a sequence (gj)j∈J in a Hilbert space H is a frame if there exist A, B > 0
such that

A‖f‖2 ≤
∑
j∈J

|〈f, gj〉|2 ≤ B‖f‖2 (1)

for all f ∈ H. Frames were introduced by Duffin and Schaeffer in [12], and have found 
major applications to sampling theory [1], wavelet theory [10,11] and pseudodifferential 
operators [21], to name a few. A systematic study of perturbations of frames was initiated 
by Christensen in [8,9], and since then, a number of perturbation results have been proved 
for various types of frames, including frames of exponentials, wavelet frames and Gabor 
frames [4,7,43,44].

There are natural notions of perturbations and deformations of structured function 
systems like Gabor systems and wavelet systems. A Gabor system is a set G(g, Δ) :=
{e2πi〈ω,·〉g(· − x) : (x, ω) ∈ Δ} of time-frequency translates of a single function g ∈
L2(Rn), where the translates come from a discrete point set Δ in the time-frequency 
plane R2n. A Gabor frame is a Gabor system that satisfies the frame property (1). One 
can then raise the natural question of whether the frame property of a Gabor system is 
retained after a sufficiently small deformation of either the point set Δ or the window g.

The first result in this direction is due to Feichtinger and Kaiblinger [16], and concerns 
linear deformations of uniform Gabor frames with windows in the modulation space 
M1(Rn), also known as the Feichtinger algebra S0(Rn) [15]. A linear deformation of 
the point set Δ is implemented by a matrix A ∈ GL2n(R), while uniform means that 
the point set Δ has the structure of a lattice (a discrete, cocompact subgroup) in R2n. 
Their main result states that Gabor frames of this type are stable both under linear 
deformations of the point set Δ and under small changes in the S0(Rn)-norm of g:

Theorem 1.1 (Feichtinger–Kaiblinger [16]). Let g ∈ S0(Rn), and let Δ be a lattice in R2n. 
If G(g, Δ) is a Gabor frame, then there exists a neighbourhood W of I2n ∈ GL2n(R) and 
a neighbourhood U of g ∈ S0(Rn) such that G(h, AΔ) is a Gabor frame for all A ∈ W

and h ∈ U .

Ascenci, Feichtinger and Kaiblinger generalized the result to linear deformations of 
arbitrary point sets using the theory of pseudodifferential operators in [2]. Later, stability 
of nonuniform Gabor frames under a large class of nonlinear deformations was proved 
by Gröchenig, Ortega-Cerdà and Romero [23].
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In this paper, we initiate the study of deformations of Gabor frames on a (second-
countable) locally compact abelian group G. In this setting, a time-frequency shift of 
f ∈ L2(G) by (x, ω) ∈ G × Ĝ is defined as follows:

π(x, ω)f(t) = ω(t)f(x−1t), t ∈ G.

Here, Ĝ denotes the Pontryagin dual of G. The Gabor system with window g ∈ L2(G)
over the discrete point set Δ ⊆ G × Ĝ is defined as

G(g,Δ) = {π(z)g : z ∈ Δ} ⊆ L2(G).

Even though time-frequency analysis is most commonly done in the Euclidean case G =
Rn, many of the fundamental results hold in the locally compact abelian setting, such as 
density and duality results for uniform Gabor frames and Zak transform considerations 
[20,30,31]. Gabor analysis on other groups appear naturally in applications. For instance, 
the integers Z, finite cyclic groups Z/nZ and the circle group T are important when 
sampling or periodizing Gabor frames on R [29,32,33,42]. Other considerations on general 
locally compact abelian groups include [25,29,35], and Balian–Low type phenomena were 
proved to hold for finite groups in [36].

In general, one refers to the groups R, Z, T and Z/nZ and their products as elemen-
tary LCA groups. A rather different class of LCA groups come from algebraic number 
theory. Given an algebraic number field or a global function field, the associated adele 
ring is a restricted product of completions of the given field with respect to its different 
absolute values. Among the many applications of the adele ring is an elegant statement of 
the Artin reciprocity law from class field theory [45]. In the case of the rational numbers, 
the associated adele ring is built from R and the fields of p-adic numbers Qp for a prime 
p. Gabor frames on the adele ring of the rational numbers were recently constructed in 
[14].

In the Euclidean case G = Rn, there is an immediate notion of a linear deformation of 
G, and the group GLn(R) of such deformations is again Euclidean, thus providing a famil-
iar topology to formulate deformation results. In the general context of a locally compact 
abelian group G, there is a natural topology on the automorphism group Aut(G), called 
the Braconnier topology. First introduced by Braconnier in [5], it is a topology defined 
in such a way that the operations of composition and taking inverses of automorphisms 
are continuous. Thus, Aut(G) itself becomes a topological group. In specific situations, 
the Braconnier topology coincides with the topology one would expect—in particular, 
Aut(Rn) ∼= GLn(R) as topological groups. Our first result is a generalization of the 
result of Feichtinger and Kaiblinger (Theorem 1.1), and states that in the setting of a 
locally compact abelian group G, we can replace GL2n(R) = Aut(Rn × R̂n) with the 
group Aut(G × Ĝ), equipped with the Braconnier topology:

Theorem 1.2 (cf. Theorem 4.6). Let G be a locally compact abelian group, let Δ be a 
lattice in G × Ĝ and let g ∈ S0(G). If G(g, Δ) is a Gabor frame, then there exist a 
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neighbourhood W of idG ∈ Aut(G × Ĝ) and a neighbourhood U of g ∈ S0(G) such that 
G(h, α(Δ)) is a Gabor frame for all α ∈ W and h ∈ U .

Our main tools are the duality theory for uniform Gabor frames on LCA groups 
[31], continuity of various maps between the Feichtinger algebra of different groups [28], 
and the existence of dual windows in the Feichtinger algebra [3,22]. At the heart of our 
approach is the continuity of dilation on S0(G) by automorphisms from Aut(G), see 
Theorem 4.3. We establish this result using a particular description of the Feichtinger 
algebra, see Proposition 3.1, and a similar continuity result for L1(G) already proved in 
[5], see Proposition 4.2.

To give examples of applications of Theorem 1.2 to groups other than G = Rn, we 
introduce a class of groups which we call higher dimensional S-adeles. These groups are 
built from a global field K, a set S of finite places on K and a natural number n. If S is 
the set of all finite places on K and n = 1, one recovers the usual adele ring of K, and if 
K = Q and S = ∅, one recovers G = Rn. We apply Theorem 1.2 to all of these groups 
when K = Q, and the following is the statement for the higher dimensional full adele 
ring over the rationals:

Theorem 1.3 (cf. Proposition 6.7, Theorem 6.11). Let AQ denote the rational adele ring, 
and identify Q with its diagonal copy inside AQ (see Section 6). Then any lattice Δ in 
An
Q × Ân

Q
∼= A2n

Q is of the form

Δ = AQ2n := {(A∞q,A2q,A3q, A5q, . . .) : q ∈ Q2n}

for a collection of matrices A = (A∞, A2, A3, A5, . . .) where A∞ ∈ GL2n(R), Ap ∈
GL2n(Qp), with Ap ∈ GL2n(Zp) for all but finitely many primes p. Moreover, if G(g, Δ)
is a Gabor frame with Δ as above, then there exist open neighbourhoods W∞ ⊆ GL2n(R)
of A∞, Wp ⊆ GL2n(Qp) of Ap, p prime, with Wp = GL2n(Zp) for all but finitely many p, 
and a neighbourhood U of g in S0(AQ) such that G(h, BQ2n) is a Gabor frame whenever 
B = (B∞, B2, B3, B5, . . .) ∈ W∞ ×W2 ×W3 × · · · and h ∈ U .

The Balian–Low theorem

Our second main goal is to link the deformation result in Theorem 1.2 to The 
Balian–Low theorem for locally compact abelian groups. In the Euclidean setting, the 
Balian–Low theorem is a cornerstone of time-frequency analysis, and concerns the nonex-
istence of well-localized Gabor frames at the critical density. One of the consequences 
of the deformation result of Feichtinger–Kaiblinger (Theorem 1.1) is that it gives as 
an immediate consequence the Balian–Low theorem for all lattices of volume 1 in the 
time-frequency plane. We present the theorem and the proof given in [2] below.

Theorem 1.4 (Feichtinger–Kaiblinger [16]). Let Δ be a lattice in R2n of volume 1, and 
let g ∈ S0(Rn). Then the Gabor system G(g, Δ) is not a frame for L2(Rn).
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Proof. Let Δ = AZ2n be a lattice in R2n with vol(Δ) = | detA| = 1. Let G(g, Δ) be a 
Gabor frame with g ∈ S0(Rn). Then by Theorem 1.1, there exists an ε > 0 such that 
G(g, Δ′) is a Gabor frame, where Δ′ = ((1 + ε)A)Z2n. But then

vol(Δ′) = |det((1 + ε)A)| = (1 + ε)n > 1

which contradicts the density theorem for Gabor frames. �
For the above proof to work, it is crucial that the determinant function is open, i.e. it 

maps open sets to open sets. The (absolute value of the) determinant describes how the 
Lebesgue measure of a set changes as a linear deformation is applied. In the setting of a 
locally compact abelian group G, the role of the determinant is played by the Braconnier 
modular function modG : Aut(G) → (0, ∞) which is defined via the property

μ(α(S)) = modG(α)μ(S) (2)

where μ is any Haar measure on G and S is any Borel set of positive measure. The 
Braconnier modular function is continuous with respect to the Braconnier topology on 
Aut(G). It is clear from the proof of Theorem 1.4 that one gets a similar result in 
the locally compact abelian setting, provided that the Braconnier modular function of 
G × Ĝ is open. In Theorem 2.10, which is one of our main technical results, we prove 
that the openness of modG is equivalent to a number of other conditions. One of them 
is the noncompactness of the identity component of G, as well as the openness of the 
Braconnier modular function of G ×Ĝ. The characterization relies on the structure theory 
of locally compact abelian groups and van Dantzig’s theorem for totally disconnected 
groups. Using this characterization, we proceed, in the exact same manner as in the proof 
of Theorem 1.4, to show the following:

Theorem 1.5 (cf. Theorem 5.1). Let G be a locally compact abelian group with noncom-
pact identity component. Let Δ be a lattice in G × Ĝ of volume 1, and let g ∈ S0(G). 
Then the Gabor system G(g, Δ) cannot be a frame for L2(G).

On the other hand, if G has compact identity component, then modG takes values 
in the rational numbers (Theorem 2.10), so the argument for Theorem 1.5 cannot be 
carried out.

It was already observed by Kaniuth and Kutyniok in [35] that Balian–Low phenomena 
are valid in certain locally compact abelian groups with noncompact identity component. 
Their main result concerns the zeros of the Zak transform, which is an essential tool used 
to study Gabor systems over lattices in the time-frequency plane of the form Λ ×Λ⊥ for 
Λ a lattice in G. The result goes as follows:

Theorem 1.6 (Kaniuth–Kutyniok [35]). Let G be a locally compact abelian group that is 
compactly generated and has noncompact identity component. Then for every lattice Λ
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in G and every f ∈ L2(G) such that the Zak transform ZΛf is continuous, ZΛf has a 
zero.

A vital assumption in their argument is that the group is compactly generated. Using 
Theorem 1.5, we go from a Balian–Low theorem to a statement about the zeros of the Zak 
transform, and we are able to remove the assumption of G being compactly generated:

Theorem 1.7 (cf. Theorem 5.8). Let G be a locally compact abelian group with noncom-
pact identity component. Then for any lattice Λ in G and any f ∈ L2(G) for which the 
Zak transform ZΛf is continuous, ZΛf has a zero.

Note that in contrast to the main result of [35], the above result applies to e.g. the 
group of adeles, as this is not a compactly generated group. Note also that while we 
restrict to second-countable groups in the present paper, the result of [35] holds without 
this assumption.

Having established a general Balian–Low theorem for S0(G) in groups with noncom-
pact identity component, the question of what happens when the identity component is 
compact arises—or equivalently, when G contains a compact open subgroup (see The-
orem 2.10). Gröchenig observed in [20] that if G contains a compact, open subgroup, 
then the Balian–Low theorem fails in the following strong sense: There exists a discrete 
set Δ in G × Ĝ and a function g ∈ S0(G) such that G(g, Δ) is an orthonormal basis for 
L2(G). However, the question still stands whether one can obtain a result for uniform 
Gabor frames, i.e. if Δ can be chosen to be a lattice (in the case that lattices exist). In 
this paper, we prove the following:

Theorem 1.8 (cf. Theorem 5.6). Let G be a locally compact abelian group with compact 
identity component, and let Λ be a lattice in G. Then there exists a g ∈ S0(G) such that 
G(g, Λ × Λ⊥) is an orthonormal basis for L2(G).

Hence, the Balian–Low theorem for uniform lattices fails in a very strong sense if the 
group has compact identity component. To prove Theorem 1.8, we rely on our charac-
terization of groups with compact identity component in Theorem 2.10. Of course, for 
Theorem 1.8 to be applied, one needs the existence of a lattice in the first place, and 
there are many LCA groups without lattices, the p-adic numbers Qp being an example.

Finally, we apply our characterization of the groups G for which the Balian–Low 
theorem for S0(G) holds to the higher dimensional S-adeles associated to a global field 
K. We show that we do get a Balian–Low theorem precisely when K is an algebraic 
number field. This generalizes [13, Theorem C], where it was shown that a Balian–Low 
theorem for a certain lattice in the time-frequency plane of the group R × Qp holds. 
Below, we state our result for the full adeles associated to a global field:

Theorem 1.9 (cf. Theorem 6.12, Proposition 6.13). Let K be a global field and let n be 
a natural number. Denote by G = An

K the n-dimensional adeles associated to K. Then
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the following hold:

(i) If K is an algebraic number field, then the Balian–Low theorem holds for G. That 
is, for any lattice Δ in G × Ĝ of volume 1 and any g ∈ S0(G), the Gabor system 
G(g, Δ) is not a frame for L2(G).

(ii) If K is a global function field, then the Balian–Low theorem does not hold for G. 
In fact, for every lattice Λ in G, there exist g ∈ S0(G) such that G(g, Λ × Λ⊥) is 
an orthonormal basis for L2(G).

Finally, we want to remark that our deformation and Balian–Low type results only 
cover the case of uniform sampling, i.e. the point set Δ is a lattice. For Gabor frames 
on G = Rn, the state of the art is non-uniform Gabor frames, such as in [2,23]. In fact, 
some of the cornerstones of Gabor analysis on Rn, such as the density theorems and 
the Balian–Low theorem, have in the last few years found non-uniform generalizations 
beyond the setting of time-frequency analysis [18,24]. In a recent paper of Gröchenig, 
Romero, Rottensteiner and van Velthoven [19], a (nonuniform) Balian–Low type theorem 
for homogeneous Lie groups was established. While their main theorem generalizes the 
Balian–Low theorem for Gabor frames on G = Rn, it does not generalize Theorem 1.5: 
Many locally compact abelian groups, e.g. the adeles over the rationals, are not Lie 
groups. Thus, an interesting question is whether there exists a Balian–Low type theorem 
that simultaneously generalizes the main result of [19] and Theorem 1.5.

The paper is structured as follows: In Section 2, we cover the basics of locally compact 
abelian groups and their automorphisms, including Theorem 2.10 where we characterize 
groups with noncompact identity component. In Section 3, we review time-frequency 
analysis on LCA groups. In Section 4, we prove continuity and deformation results for 
Gabor frames on locally compact abelian groups, including the main result Theorem 4.6. 
In Section 5, we prove that the Balian–Low theorem for S0(G) holds for groups with 
noncompact identity component and fails for groups with compact identity component. 
In Section 6, we introduce the higher-dimensional S-adeles and apply our results for 
LCA groups to them.

Acknowledgments

The first and third author wish to thank Hans Feichtinger for enlightening discussions 
in Vienna and Lisbon. The first author wants to thank Nadia Larsen and Sven Raum 
for helpful discussions about the Braconnier topology and totally disconnected groups, 
respectively.

2. Locally compact abelian groups and their automorphisms

Throughout the paper, we will assume, unless otherwise stated, that G is a locally 
compact (Hausdorff) abelian group. Such a group always carries a translation invariant 
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regular Borel measure called a Haar measure, which is unique up to a positive constant. 
We will also add the standard assumption that G is second-countable in order to use 
results from [28,30,31], although we remark that many stated results throughout the 
present paper hold without this assumption. We write the group operation multiplica-
tively and we denote by 1 the identity element of G.

If H is a closed subgroup of G, then both H and G/H are locally compact abelian 
groups. The relation between the Haar measure on these three groups can be given as 
follows: Once two out of three Haar measures have been chosen on G, H and G/H, the 
last one can be chosen so that Weil’s formula [40, Proposition 3.3.11] holds:∫

G

f(x) dμG(x) =
∫

G/H

∫
H

f(xy) dμH(y) dμG/H(xH) for all f ∈ Cc(G). (3)

A closed subgroup H of G is called cocompact if the quotient group G/H is compact. 
A subgroup Λ is a lattice in G if it is both discrete and cocompact. If one fixes a Haar 
measure μG on G and chooses the counting measure on Λ, then there exists a unique 
measure μG/Λ on G/Λ such that Weil’s formula (3) is satisfied. Since G/Λ is compact, 
the measure μG/Λ is finite, and we define the volume of Λ to be the number

vol(Λ) = μG/Λ(G/Λ). (4)

Note that vol(Λ) depends on μG.
Denote by Ĝ the Pontryagin dual of G. If H is a closed subgroup of G, the set

H⊥ :=
{
ω ∈ Ĝ : ω(x) = 1 for all x ∈ H

}
(5)

is a closed subgroup of Ĝ called the annihilator of Λ. If Λ is a lattice in G, then Λ⊥ is a 
lattice in Ĝ [41, Lemma 3.1]. A proof of the following formula is found in [20]:

vol(Λ) vol(Λ⊥) = 1. (6)

We will need the following lemma later, which contains elementary observations on 
lattices in LCA groups.

Lemma 2.1. The following hold:

(i) Let Λ ⊆ H ⊆ G be a sequence of closed subgroups such that G/H is compact. Then 
Λ is a lattice in H if and only if Λ is a lattice in G.

(ii) Let ϕ : G → H be an open surjective map such that kerϕ is compact. Let Λ be a 
lattice in G. Then ϕ(Λ) is a lattice in H. In particular, this applies when K is a 
compact subgroup of G and ϕ is the quotient map G → G/K.

(iii) Let L ⊆ Λ ⊆ G be a sequence of closed subgroups such that Λ/L is finite. Then Λ
is a lattice in G if and only if L is a lattice in G.
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Proof. (i) Note first that H/Λ is closed in G/Λ ([27, 5.39b]). Thus if G/Λ is compact, 
then H/Λ is compact. Conversely, if H/Λ is compact, then by [27, pp. 5.25, 5.35] it 
follows that G/Λ is compact.

If Λ is discrete in H, then there exists an open set U of G such that (U∩H) ∩Λ = {1}, 
but then U ∩ Λ = {1}, so Λ is discrete in G. The converse is trivial.

(ii) Since Λ is discrete in G, we can find an open set U around the kernel K such that 
Λ ∩K ⊆ U and U∩(Λ ∩Kc) = ∅ (i.e., U∩Λ = K∩Λ). By [27, Theorem 4.10] there exists 
an open set V around 1 such that V K ⊆ U . Therefore π(V K) ∩π(Λ) ⊆ π(K ∩Λ) = {1}, 
so 1 is isolated in G/K.

Moreover, ΛK is closed in G since it is the inverse image of π(Λ)). Thus, there is a 
surjective map G/Λ → G/(ΛK), given by xΛ 
→ xΛK. This means that the image is 
compact.

It is easy to see that the converse does not hold.
(iii) Clearly, Λ is discrete in G if and only if L is discrete in G. Again by [27, pp. 5.25, 

5.35] it follows that G/L is compact if and only if G/Λ is compact. Note that there is a 
quotient map from G/L onto G/Λ. �

The identity component G0 of G is the connected component of G containing the 
identity element 1 of G. This is a closed, connected subgroup of G. We call G totally 
disconnected if its underlying topology is disconnected, i.e. the connected components of 
G are exactly the one-point sets. Equivalently, the identity component G0 is the trivial 
subgroup of G. The quotient G/G0 is always a totally disconnected, locally compact 
abelian group, see [27, Theorem 7.3].

We will need the following famous result on totally disconnected groups, known as 
van Dantzig’s theorem:

Proposition 2.2. Let G be a locally compact abelian, totally disconnected group. Then 
every neighbourhood of the identity of G contains a compact, open subgroup.

See [27, Theorem 7.7] for a proof. A consequence of van Dantzig’s theorem is the 
following description of the identity component (see [27, Theorem 7.8] for a proof):

G0 =
⋂{

H : H is an open subgroup of G
}
. (7)

2.1. Group automorphisms

By an automorphism of G, we will mean a group isomorphism G → G which, at the 
same time, is a homeomorphism with respect to the topology of G. The set Aut(G) of 
automorphisms of G becomes a group with respect to composition of automorphisms. 
This group carries a natural topology which makes it into a topological group itself. 
The topology was introduced by Braconnier in [5]. The following proposition describes 
a neighbourhood basis at the identity for this topology, see [27, Theorem 26.5].
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Proposition 2.3. Let G be a topological group. Given a compact set K ⊆ G and an (open) 
neighbourhood U of the identity of 1, define

N (K,U) = {α ∈ Aut(G) : α(x)x−1 ∈ U and α−1(x)x−1 ∈ U for all x ∈ K}.

Then these sets form a neighbourhood basis at the identity for Aut(G), and we call the 
topology they generate the Braconnier topology on Aut(G).

For the rest of the paper, we will view Aut(G) as a topological group with the Bra-
connier topology. One thing to note is that even if G is locally compact (Hausdorff), 
Aut(G) need not be, see [37, p. 12.1.3].

Fix a Haar measure μ on G and let α ∈ Aut(G). Then the mapping S 
→ μ(α(S))
for Borel sets S ⊆ G defines another Haar measure on G, so there exists a constant 
modG(α) ∈ (0, ∞) such that

μ(α(S)) = modG(α)μ(S) (8)

for all Borel sets S ⊆ G. The constant modG(α) is independent of the choice of Haar 
measure. Moreover, it defines a continuous group homomorphism

modG : Aut(G) → (0,∞) (9)

where the latter is the group of positive real numbers under multiplication. This ho-
momorphism is called the Braconnier modular function. Note that we use the original 
convention due to Braconnier as in [5, p. 75], rather than the convention of e.g. [37, p. 
1275]. Extending to integrals, one obtains∫

G

f(α(x)) dx = modG(α)−1
∫
G

f(x) dx (10)

for f ∈ L1(G).

Example 2.4. If G = R, then any automorphism α ∈ Aut(R) is given by α(x) = ax

for some a ∈ R× = R \ {0}. This gives an isomorphism Aut(R) ∼= R×, and under this 
isomorphism, the Braconnier modular function is given by modR(a) = |a|. Similarly, if 
G = Qp, then Aut(Qp) ∼= Q×

p and modQp
(a) = |a|p, where | · |p denotes the p-adic 

absolute value.

Example 2.5. ([46, Corollary 3]). Let F be a locally compact field, and set G = Fn for 
some n ∈ N. Then we can identify Aut(G) with GLn(F ), and the Braconnier modular 
function on G is given by

modG(A) = modF (detA).
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If α ∈ Aut(G) and H is a closed subgroup of G, we say that H is invariant under α if 
α(H) ⊆ H. If H is invariant under α for all α ∈ Aut(G), then H is called a characteristic 
subgroup of G. Note that if H is a characteristic subgroup and α ∈ Aut(G), then in fact 
α(H) = H, which comes from the fact that H is also invariant under α−1.

If H is a closed subgroup invariant under α, then we get induced automorphisms 
α|H ∈ Aut(H) and α̃ ∈ Aut(G/H) given by α̃(xH) = α(x) H for x ∈ G. By replacing f
in Weil’s formula (3) with f ◦ α and using (10), one deduces that

modG(α) = modH(α|H) modG/H(α̃). (11)

In particular, if H is a characteristic subgroup of G, then (11) holds for all α ∈ Aut(G).
The identity component G0 is always a characteristic subgroup of G, since an auto-

morphism α must map the connected component of x ∈ G into the connected component 
of α(x), and the identity of G is mapped to itself.

Since we assume that G is abelian, we can also consider the automorphism group of 
the dual group of G. The relation to the automorphism group of the original group is 
given as follows, see [27, Theorem 26.9]:

Proposition 2.6. Let G be a locally compact abelian group. Then the map Aut(G) →
Aut(Ĝ) given by α 
→ α̂ where

α̂(ω) = ω ◦ α

for ω ∈ Ĝ, is an anti-isomorphism of topological groups.

It will be important to us to determine when the Braconnier modular function of a 
group is open. The following lemma states that when a group factorizes into a product 
containing a factor of R, then this is indeed the case:

Lemma 2.7. Let G be a locally compact abelian group. Then the Braconnier modular 
function of R ×G is open.

Proof. First, note that modR×G is surjective. Indeed, if α ∈ Aut(R) and β ∈ Aut(G), 
denote by α × β the automorphism of R × G given by (α × β)(x, y) = (α(x), β(y)) for 
(x, y) ∈ R ×G. Then for any t > 0 we have that modR×G(·t × idG) = t, where ·t : R → R

denotes multiplication by t.
Next, let U be an open set in R × G containing 1 and let K be a compact set in 

R × G. Consider the element N (K, U) of the neighbourhood basis at the identity of 
Aut(R × G) described in Proposition 2.3. We will show that modR×G(N (K, U)) has 
nonempty interior, from which it will follow by [27, (5.40) (b)] that modR×G is an open 
map. We can find open sets U1 and U2 in R and G, respectively, containing the identity, 
such that U1 × U2 ⊆ U . Moreover, there are compact sets K1 and K2 in R and G, 
respectively, such that K ⊆ K1 × K2. Set S = {α × idG : α ∈ N (K1, U1)}. Then 
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S ⊆ N (K, U), so modR(N (K1, U1)) = modR×G(S) ⊆ modR×G(N (K, U)). Since modR
is an open map, this shows that modR×G(N (K, U)) has nonempty interior, which finishes 
the proof. �

On the other hand, if G has compact identity component, then its Braconnier modular 
function is not open. In fact, we have the following:

Proposition 2.8. Suppose G is a locally compact abelian group with compact identity 
component. Then the Braconnier modular function of G takes values in the rational 
numbers.

Proof. Suppose that G0, the identity component of G, is compact. Then the modular 
function of G0 is constantly equal to 1. Since G0 is a characteristic subgroup, we have 
from (11) that

modG(α) = modG/G0(α̃) (12)

for all α ∈ Aut(G). Now G/G0 is totally disconnected, so by [37, Corollary 12.3.18], 
modG/G0 takes values in the rational numbers. But then by (12), modG also takes values 
in the rational numbers. This finishes the proof. �

We will need the following result, which is one of the consequences of the structure 
theory for locally compact abelian groups [27, Theorem 24.30]:

Proposition 2.9. Let G be a locally compact abelian group. Then G ∼= Rd × H, where 
d ≥ 0 is an integer and H is a locally compact abelian group containing a compact, open 
subgroup. Furthermore, if Rd ×H ∼= Rd′ ×H ′ where both H and H ′ are locally compact 
abelian groups containing compact, open subgroups, then d = d′ and H ∼= H ′.

We are now ready to give various characterizations of the openness of the Braconnier 
modular function of G.

Theorem 2.10. Let G be a locally compact abelian group. Then the following are equiva-
lent:

(i) G ∼= Rd ×H where d ≥ 1 and H is a group containing a compact, open subgroup.
(ii) G ∼= R ×H ′ for some locally compact abelian group H ′.
(iii) G has noncompact identity component.
(iv) G has no compact, open subgroups.
(v) The Braconnier modular function of G is open.
(vi) The Braconnier modular function of G × Ĝ is open.

Proof. By Proposition 2.9, G ∼= Rd × H where d ≥ 0 is an integer and H is a locally 
compact abelian group containing a compact, open subgroup, d is unique and H is unique 
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up to isomorphism. The identity component of G is then given by Rd ×H0, where H0

denotes the identity component of H. The following implications are sufficient to prove 
the equivalence of (i)–(vi):

(i) ⇐⇒ (ii): It is clear that (i) implies (ii), and the reverse implication comes from 
using Proposition 2.9 on H ′.

(iii) ⇐⇒ (iv): Suppose G contains a compact open subgroup K. Then by (7), 
G0 ⊆ K, so G0 must also be compact. Conversely, suppose G0 is compact. Then the 
quotient map p : G → G/G0 is proper. Since G/G0 is totally disconnected, van Dantzig’s 
theorem (Proposition 2.2) gives the existence of a compact, open subgroup K̃ in G/G0. 
The preimage p−1(K̃) is then a compact, open subgroup of G.

(i) =⇒ (iii): If d ≥ 1 then G0 = Rd ×H0 is not compact.
(iv) =⇒ (i): We prove the contrapositive. If G is not of the form Rd × H with 

H containing a compact open subgroup and d ≥ 1, then by the uniqueness part of 
Proposition 2.9, we must have d = 0. But then G = H and H contains a compact open 
subgroup.

(ii) =⇒ (v): This is Lemma 2.7.
(v) =⇒ (iv): We prove the contrapositive. If G contains a compact, open subgroup, 

then by Proposition 2.8 the Braconnier modular function of G takes values in the rational 
numbers. Consequently, modG(Aut(G)) cannot be an open subset of (0, ∞) as it is a 
subset of Q. This shows that modG is not an open map.

(i) ⇐⇒ (vi): Note that G × Ĝ ∼= R2d ×H × Ĥ. If K is a compact, open subgroup 
of H, then K⊥ is a compact, open subgroup of Ĥ. Hence K ×K⊥ is a compact, open 
subgroup of H × Ĥ. Using the equivalence of (i) and (v) with G × Ĝ in place of G, we 
see that modG×Ĝ is open if and only if 2d ≥ 1, which happens if and only if d ≥ 1. Thus 
(i) and (vi) are equivalent. This finishes the proof. �

The following proposition describes how the volume of a lattice as in (4) changes when 
an automorphism is applied.

Proposition 2.11. Let Λ be a uniform lattice in a locally compact abelian group G, and 
let α ∈ Aut(G). Then α(Λ) is also a lattice in G, and

vol(α(Λ)) = modG(α) vol(Λ).

Proof. If U is any open set in G such that U ∩ Λ = {1}, then α(U) is open in G
and α(U) ∩ α(Λ) = α(U ∩ Λ) = {1}. Moreover, the map α̃ : G/Λ → G/α(Λ) given by 
xΛ 
→ α(x)α(Λ) is a topological isomorphism. This shows that α(Λ) is a lattice in G.

Fix a Haar measure on G, equip the lattices Λ and α(Λ) with the counting measure, 
and let μG/Λ and μG/α(Λ) be measures on G/Λ and G/α(Λ) respectively, such that 
Weil’s formula (3) holds. The pushforward measure of μG/Λ along α̃ is a Haar measure 
on G/α(Λ). It follows that there exists a constant K > 0 such that
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∫
G/Λ

g ◦ α̃ dμG/Λ = K

∫
G/α(Λ)

g dμG/α(Λ) (13)

for all g ∈ L1(G/α(Λ)). Letting f ∈ L1(G), we have that∫
G

f(x) dμG(x) = modG(α)
∫
G

f(α(x)) dμG(x) by (10)

= modG(α)
∑
λ∈Λ

∫
G/Λ

f(α(y)α(λ)) dμG/Λ(yΛ) by (3)

= modG(α)K
∑

γ∈α(Λ)

∫
G/α(Λ)

f(y′γ) dμG/α(Λ)(y′Λ) by (13)

= modG(α)K
∫
G

f(x) dμG(x) by (3).

This shows that K = modG(α)−1. Setting g = 1G/α(Λ) in (13), we obtain

μG/Λ(G/Λ) =
∫

G/Λ

1G/Λ dμG/Λ

=
∫

G/Λ

1G/α(Λ) ◦ α̃ dμG/Λ

= modG(α)−1
∫

G/α(Λ)

1G/α(Λ) dμG/α(Λ)

= modG(α)−1μG/α(Λ)(G/α(Λ)).

By definition of the volume of a lattice, we then have that

vol(α(Λ)) = modG(α) vol(Λ). �
3. Time-frequency analysis

As usual, let G be a (second-countable) locally compact abelian group, and let Ĝ be 
the Pontryagin dual of G. The group G × Ĝ is called the time-frequency plane associated 
to G.

Given x ∈ G and ω ∈ Ĝ, we define two unitary linear operators Tx and Mω on L2(G)
by

(Txf)(t) = f(x−1t), (Mωf)(t) = ω(t)f(t) (14)
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for t ∈ G, f ∈ L2(G). These two operators are called time shift by x and frequency shift
by ω, respectively. They obey the following commutation relation:

MωTx = ω(x)TxMω, x ∈ G,ω ∈ Ĝ (15)

We also set π(x, ω) = MωTx and call it a time-frequency shift. From (15), one calculates 
that

π(x, ω)π(y, τ) = τ(x)π(xy, ωτ) (16)

for (x, ω), (y, τ) ∈ G × Ĝ.
Let Δ be a lattice in the time-frequency plane G × Ĝ, and let g ∈ L2(G). The set

G(g,Δ) := {π(z)g : z ∈ Δ}

is called the Gabor system with window g over the lattice Δ. If this set is a frame for 
L2(G), i.e. there exist A, B > 0 such that

A ‖f‖2
2 ≤

∑
z∈Δ

|〈f, π(z)g〉|2 ≤ B ‖f‖2
2 (17)

for every f ∈ L2(G), then G(g, Δ) is called a Gabor frame.
Fix a Haar measure μ on G. The Fourier transform is the map F : L1(G) → C0(Ĝ)

given by

f̂(ω) = F(f)(ω) =
∫
G

f(t)ω(t) dμ(t) (18)

for f ∈ L1(G), ω ∈ Ĝ. The dual measure μ̂ on Ĝ corresponding to the chosen measure 
μ on G is the Haar measure on Ĝ appropriately scaled such that the Plancherel formula
holds [27, (31.1)] for all f ∈ L1(G) ∩ L2(G):∫

G

|f(t)|2 dμ(t) =
∫
Ĝ

|f̂(ω)|2 dμ̂(ω) (19)

From this formula, one extends F in the usual fashion to a unitary linear map of Hilbert 
spaces L2(G) → L2(Ĝ).

3.1. The Feichtinger algebra

Let g ∈ L2(G). The short-time Fourier transform [20, p. 215] of a function f ∈ L2(G)
(with respect to g) is the function Vgf : G × Ĝ → C given by
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Vgf(x, ω) = 〈f, π(x, ω)g〉 =
∫
G

f(t)ω(t) g(x−1t) dt (20)

for (x, ω) ∈ G × Ĝ.
The Feichtinger algebra [15,28] is the set S0(G) consisting of those functions f ∈ L2(G)

for which ∫
G×Ĝ

|Vff(z)|dz < ∞. (21)

For fixed nonzero g ∈ S0(G), the expression

‖f‖S0(G),g =
∫

G×Ĝ

|Vgf(z)|dz (22)

for f ∈ S0(G) defines a norm on S0(G) turning it into a Banach space, and any other 
choice of g ∈ S0(G) yields an equivalent norm. Specifically, we have for all f, g1, g2 ∈
S0(G) that

c‖f‖S0(G),g2 ≤ ‖f‖S0(G),g1 ≤ C‖f‖S0(G),g2 (23)

where c = ‖g1‖2
2‖g2‖−1

S0(G),g1
and C = ‖g2‖−2

2 ‖g1‖S0(G),g2 ([28, Proposition 4.10]). When 
the function g in (22) is not important, we will omit it from the notation and just write 
‖ · ‖S0(G).

Let F denote the Fourier transform on G. If f ∈ S0(G), then F(f) ∈ S0(Ĝ). Specifi-
cally, one has the following equality of norms for f, g ∈ S0(G):

‖F(f)‖S0(Ĝ),F(g) = ‖f‖S0(G),g. (24)

If α ∈ Aut(G), then the dilation operator Dα : L2(G) → L2(G) given by Dαf =
modG(α)1/2f ◦ α is unitary. It also implements a Banach space isomorphism S0(G) →
S0(G), and one has the following equality of norms:

‖Dαf‖S0(G),Dαg = ‖f‖S0(G),g f, g ∈ S0(G). (25)

The Fourier algebra of G is the space

A(G) = {f ∈ C0(G) : there exists g ∈ L1(Ĝ) such that F−1(g) = f}.

If G is discrete then S0(G) = �1(G) and if G is compact then S0(G) = A(G), cf. [28, 
Lemma 4.11]. The Feichtinger algebra has a number of different descriptions, and one 
that we will make use of is the following.
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Proposition 3.1. Let G be a locally compact abelian group. Let K̃ be a compact set in 
Ĝ with nonempty interior. Then S0(G) consists of all functions f ∈ A(G) that can be 
written as a sum f =

∑
n∈N Mωn

gn where gn ∈ L1(G) with supp(ĝn) ⊆ K̃ for each 
n ∈ N, ωn ∈ Ĝ for each n ∈ N and 

∑
n∈N ‖gn‖1 < ∞. Moreover, an equivalent norm 

on S0(G) is given by

‖f‖S0(G),K̃ = inf
(gn)n∈N

∑
n∈N

‖gn‖1

where the infimum is taken over all such representations of f . In particular, there exists 
a constant C ≥ 0 such that for all f ∈ S0(G) with supp(f̂) ⊆ K̃ we have that

‖f‖S0(G) ≤ C‖f‖1. (26)

Proof. The first part of the proposition follows from the description of S0(G) by the set 
N in [28, Proposition 8.1]. To see that (26) holds, note that if f ∈ S0(G) is such that 
supp(f̂) ⊆ K̃, then one gets a representation of f as f =

∑
n∈N Mωn

gn where g1 = f , 
gk = 0 for k > 1 and ωk = 1 for all k ∈ N. By the description of the S0(G)-norm, we 
then have that

‖f‖S0(G),K̃ ≤
∑
k∈N

‖gk‖1 = ‖f‖1.

The constant C ≥ 0 then comes from the fact that the norm above is equivalent to any 
other norm on the Feichtinger algebra. �

We will make use of the following properties of the Feichtinger algebra. See [28, Corol-
lary 5.5(ii), Theorem 5.7(i), Lemma 4.15(iii)] for proofs.

Proposition 3.2. Let G be a locally compact abelian group. Then the following hold:

(i) The map S0(G) × S0(G) → S0(G × Ĝ) given by

(f, g) 
→ Vgf

is continuous.
(ii) If H is a closed subgroup of G, then restriction

f 
→ f |H

is a well-defined, continuous map S0(G) → S0(H). In particular, if H is discrete, 
this is a continuous map S0(G) → �1(H).
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(iii) For any f ∈ S0(G), the map G × Ĝ → S0(G) given by

(x, ω) 
→ π(x, ω)f

is continuous.

3.2. Duality theory for regular Gabor frames

Let μ be a Haar measure on G. If another Haar measure cμ, c > 0, is chosen on G, 
then the dual measure is given by ĉμ = c−1μ̂. It follows that the product measure on 
G × Ĝ constructed from any Haar measure on G and the corresponding dual measure 
on Ĝ is independent of the choice of Haar measure on G. Consequently, any lattice Δ in 
G ×Ĝ has a canonically defined volume as in (4). The volume vol(Δ) gives an obstruction 
to the existence of Gabor frames over Δ which is summarized in the following theorem:

Proposition 3.3 (Density theorem). Let Δ be a lattice in G × Ĝ, where G is a locally 
compact abelian group. If G(g, Δ) is a Gabor frame, where g ∈ L2(G), then

vol(Δ) ≤ 1.

The above version of the density theorem for (not necessarily rectangular) lattices in 
locally compact abelian groups is due to Jakobsen and Lemvig, see [31, Theorem 5.6]. 
For a historical exposition of the density theorem, see [26].

Given a lattice Δ in G × Ĝ, the dual lattice of Δ is defined as

Δ◦ =
{
z ∈ G× Ĝ : π(z)π(w) = π(w)π(z) for all w ∈ Δ

}
. (27)

This is also a lattice in G ×Ĝ, see [41, p. 265] and [31, p. 234]. In time-frequency analysis 
Δ◦ is often called the adjoint lattice, see [17].

The dual lattice is central to the duality theory of regular Gabor frames, which we 
summarize in the following proposition:

Proposition 3.4. Let Δ be a lattice in G × Ĝ, where G is a locally compact abelian group, 
and let g, h ∈ S0(G). Then the following hold:

(i) The Gabor frame-type operator Sg,h,Δ : L2(G) → L2(G) given by

Sg,h,Δf =
∑
z∈Δ

〈f, π(z)g〉π(z)h (28)

is bounded, and has the following representation, where the sum converges abso-
lutely:

Sg,h,Δ = 1
vol(Δ)

∑
〈π(z)h, g〉π(z). (29)
z∈Δ◦
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(ii) The Gabor system G(g, Δ) is a frame for L2(G), if and only if the Gabor frame 
operator Sg,Δ := Sg,g,Δ is invertible on L2(G), if and only if there exists a function 
h ∈ S0(G) such that

Sg,h,Δ = I. (30)

Furthermore, h satisfies (30) if and only if

〈g, π(z)h〉 = vol(Δ)δz,0, for all z ∈ Δ◦ . (31)

Such a function h is called a dual window for g, and the particular choice h = S−1
g,Δg

will always be a dual window called the canonical dual of g.

The boundedness of Sg,Δ for g ∈ S0(G) is proved in [31, Corollary A.5]. The formula in 
(29) is known as the Janssen representation and is proved in [31, p. 250]. We mention that 
the same formula for the Schwartz–Bruhat space can already be derived from Rieffel’s 
work on Heisenberg modules [41]. The relation in (31) is known as the Wexler–Raz 
relation, and part (ii) of Proposition 3.4 is proved in [31, Theorem 6.1].

We end this section with a description of the dual lattice of α(Δ) where α ∈ Aut(G ×Ĝ)
and Δ is a lattice in G ×Ĝ. In general, for a homomorphism φ : G → H of locally compact 
abelian groups, we denote by φ̂ : Ĥ → Ĝ the homomorphism given by φ̂(ω) = ω ◦ φ for 
ω ∈ Ĥ. We identity α̂ as an automorphism of Ĝ×G. Denote by J : G × Ĝ → Ĝ×G the 
map J(x, ω) = (ω, x−1) and set α◦ = J−1α̂−1J . Then similarly as in the real case [16]
one checks that

(α(Δ))◦ = α◦(Δ◦). (32)

4. Deformation results

4.1. Continuity of dilation

As stated in the introduction, a continuity of dilation result is at the heart of our 
approach towards proving a deformation result for Gabor frames over locally compact 
abelian groups. Throughout this section, as in the previous two sections, G is assumed 
a (second-countable) locally compact abelian group. We will need the following lemma:

Lemma 4.1. Suppose {fk : k ∈ N} is a family of continuous functions on G and that 
K is a compact subset of G such that supp(fk) ⊆ K for all k ∈ N. Then there exists a 
neighbourhood W ⊆ Aut(G) of idG and a compact subset K ′ of G such that supp(fk◦α) ⊆
K ′ for all α ∈ W and k ∈ N.

Proof. Let U be any neighbourhood of 1 in G with compact closure. Set W = N (K, U)
and K ′ = KU . If x ∈ K and α ∈ W , then α−1(x)x−1 ∈ U , so α−1(x) ∈ xU ⊆ K ′. This 
shows that α−1(K) ⊆ K ′ for α ∈ W . Hence, for k ∈ N and α ∈ W we have that
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supp(fk ◦ α) = α−1(supp(fk)) ⊆ α−1(K) ⊆ K ′. �
A proof of the following proposition can be found in [5, p. 78, Proposition 2], but we 

include a proof here for the sake of completeness.

Proposition 4.2. For any locally compact abelian group G the map L1(G) × Aut(G) →
L1(G), (f, α) 
→ f ◦ α is continuous.

Proof. First, note that if f, f0 ∈ L1(G) and α, α0 ∈ Aut(G), then

‖f ◦ α− f0 ◦ α0‖1 ≤ ‖f ◦ α− f0 ◦ α‖1 + ‖f0 ◦ α− f0 ◦ α0‖1

= modG(α)−1‖f − f0‖1 + ‖f0 ◦ α− f0 ◦ α0‖1.

Thus, by continuity of the Braconnier modular function, it suffices to show that α 
→ f ◦α
is continuous for all f ∈ L1(G). In fact, since

‖f ◦ α− f ◦ α0‖1 = modG(α0)−1‖f ◦ (αα−1
0 ) − f‖1

it suffices to show continuity at α0 = idG. So, fix f ∈ L1(G). To begin with, suppose 
that f is compactly supported, say on K. Let ε > 0. Let U ⊆ G be any neighbourhood 
of the identity with compact closure, and set W = N (K, U). Then if x ∈ K and α ∈ W , 
we have α−1(x)x−1 ∈ U , so α−1(x) ∈ xU ⊆ KU =: C. This shows that supp(f ◦ α) =
α−1(K) ⊆ C whenever α ∈ W . Consequently, the function |f ◦ α − f | is supported on 
the compact set C for all α ∈ W .

Let φ ∈ Cc(G) satisfy 0 ≤ φ ≤ 1 and φ|C = 1 pointwise. Since f is continuous and 
compactly supported, it is uniformly continuous, so there exists an open neighbourhood 
of the identity V such that

yz−1 ∈ V =⇒ |f(y) − f(z)| < ε

μ(supp(φ)) (33)

for all y, z ∈ G. Set W ′ = N (C, V ). Then we have that

x ∈ C and α ∈ W ′ =⇒ |f(α(x)) − f(x)| < ε

μ(supp(φ)) . (34)

Thus, for α ∈ W ∩W ′, we have

‖f ◦ α− f‖1 =
∫
G

|f(α(x)) − f(x)|dx

=
∫

|f(α(x)) − f(x)|φ(x) dx (since φ|C = 1)

G
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≤ sup
x∈C

|f(α(x)) − f(x)|
∫
G

φ(x) dx

≤ ε

μ(supp(φ)) · μ(supp(φ)) (by (34))

≤ ε.

This shows continuity for the case when f is in Cc(G). By a standard approximation 
argument this extends to all f ∈ L1(G). �

We are now ready to prove the following important result:

Theorem 4.3. For any locally compact abelian group G the map S0(G) ×Aut(G) → S0(G), 
(f, α) 
→ f ◦ α is continuous.

Proof. We begin as in the proof of Proposition 4.2 and reduce the problem to showing 
continuity in the Aut(G)-variable. Let f, f0, g ∈ S0(G) and α, α0 ∈ Aut(G). Then using 
(25) and the explicit constant in the upper bound of (23), we have that

‖f ◦ α− f0 ◦ α0‖S0(G),g ≤ ‖f ◦ α− f0 ◦ α‖S0(G),g + ‖f0 ◦ α− f0 ◦ α0‖S0(G),g

= modG(α)−1‖f − f0‖S0(G),g◦α−1 + ‖f0 ◦ α− f0 ◦ α0‖S0(G),g

≤ modG(α)−1‖g‖−2
2 ‖g ◦ α−1‖S0(G),g‖f − f0‖S0(G),g

+ ‖f0 ◦ α− f0 ◦ α0‖S0(G),g.

We need to show that the term ‖g ◦ α−1‖S0(G),g above is bounded above when α is 
sufficiently close to idG. To this end, we can assume that ĝ is compactly supported. By 
Lemma 4.1 and Proposition 2.6, we can find a compact subset K̃ of Ĝ and a symmetric 
neighbourhood W ⊆ Aut(G) of idG such that supp(ĝ ◦ α̂) ⊆ K̃ for all α ∈ W . By 
Proposition 3.1, there exists a constant C ≥ 0 such that ‖ĝ ◦ α̂‖S0(Ĝ),ĝ ≤ C‖ĝ ◦ α̂‖1 for 
all α ∈ W . By Fourier invariance of S0(G) (see (24)), we then get that

‖g ◦ α−1‖S0(G),g = ‖ĝ ◦ α̂−1‖S0(Ĝ),ĝ ≤ C‖ĝ ◦ α̂−1‖1 = C modG(α)‖ĝ‖1

for α ∈ W . Thus it suffices to show continuity of the map α 
→ f ◦α for fixed f ∈ S0(G). 
In fact, it suffices to show continuity of this map at α = idG since

‖f ◦ α− f ◦ α0‖S0(G),g = modG(α0)−1‖f ◦ (αα−1
0 ) − f‖S0(G),g◦α−1

0
.

Therefore, let f ∈ S0(G), and let ε > 0. Let C̃ be a compact set in Ĝ with nonempty 
interior. By Proposition 3.1, we can write

f =
∑

Mωk
gk
k∈N
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where ωk ∈ Ĝ for each k, gk ∈ L1(G) with supp(ĝk) ⊆ C̃ for every k and 
∑

k∈N ‖gk‖1 <

∞. Using this expression for f , we have that

‖f ◦ α− f‖S0(G) =

∥∥∥∥∥∑
k∈N

(Mωk
gk) ◦ α−

∑
k∈N

Mωk
gk

∥∥∥∥∥
S0(G)

≤
∑
k∈N

‖Mωk◦α(gk ◦ α) −Mωk
gk‖S0(G)

≤
∑
k∈N

‖Mωk◦α(gk ◦ α) −Mωk◦αgk‖S0(G)

+
∑
k∈N

‖Mωk◦αgk −Mωk
gk‖S0(G)

=
∑
k∈N

‖gk ◦ α− gk‖S0(G) (35)

+
∑
k∈N

‖Mωk◦αgk −Mωk
gk‖S0(G). (36)

We must show that both of the terms (35) and (36) can be made sufficiently small by 
choosing α sufficiently close to idG.

Combining Lemma 4.1 and Proposition 2.6 again, we can find a compact set K̃ ⊆ Ĝ

and a neighbourhood W1 ⊆ Aut(G) of idG such that ĝk ◦ α̂ is supported on K̃ for all 
k ∈ N and α ∈ W1. Again, by Proposition 3.1, but using K̃, there exists a constant c > 0
such that

‖h‖S0(G) ≤ c‖h‖1 (37)

for all h ∈ S0(G) with supp(ĥ) ⊆ K̃.
Pick k0 ∈ N such that

∑
k>k0

‖gk‖1 <
ε

16c . (38)

By continuity of the Braconnier modular function, we can find a neighbourhood W2 ⊆
Aut(G) of idG for which modG(α) < 2 when α ∈ W2. Combining this with (38), we have 
that

α ∈ W1 ∩W2 =⇒
∑
k>k0

‖gk ◦ α‖1 = modG(α)
∑
k>k0

‖gk‖1 <
ε

8c . (39)

By Proposition 4.2, we can find a neighbourhood W3 ⊆ Aut(G) of idG for which the 
implication
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α ∈ W3 =⇒
k0∑
k=1

‖gk ◦ αn − gk‖1 <
ε

4c (40)

holds. Hence, when α ∈ W1 ∩W2 ∩W3, we have that∑
k∈N

‖gk ◦ α− gk‖S0(G) ≤
∑

k∈N c‖gk ◦ α− gk‖1 (using (37))

= c
∑k0

k=1 ‖gk ◦ α− gk‖1 + c
∑

k>k0
‖gk ◦ α− gk‖1

≤ c
∑k0

k=1
ε
4c + c

∑
k>k0

(‖gk ◦ α‖1 + ‖gk‖1)

≤ ε
4 + ε

8 + ε
16 < ε

2 .

This gives us an estimate on the term (35).
Now for every h ∈ S0(G), the map Ĝ → S0(G), ω 
→ Mωh is continuous by Proposi-

tion 3.2 (iii). Thus we obtain a neighbourhood W4 ⊆ Aut(G) of idG such that

α ∈ W4 =⇒
k0∑
k=1

‖Mωk◦αgk −Mωk
gk‖S0(G) <

ε

4 . (41)

Moreover, we have that∑
k>k0

‖Mωk◦αgk −Mωk
gk‖S0(G) ≤

∑
k>k0

(‖Mωk◦αgk‖S0(G) + ‖Mωk
gk‖S0(G))

= 2
∑

k>k0
‖gk‖S0(G)

≤ 2c
∑

k>k0
‖gk‖1 (using (37))

< ε
8 . (using (38))

Combining the above estimate with (41), we obtain the following estimate for (36):

α ∈ W4 =⇒
∑
k∈N

‖Mωk◦αgk −Mωk
gk‖S0(G) <

ε

2 . (42)

Thus, combining our estimates of terms (35) and (36), we see that when α ∈ W1 ∩W2 ∩
W3 ∩W4, we obtain

‖f ◦ α− f‖S0(G) <
ε

2 + ε

2 = ε.

This finishes the proof. �
4.2. Deformations of Gabor frames

This subsection ends with a proof of the linear deformation result for uniform Ga-
bor frames on locally compact abelian groups. Our approach here is similar to [16]. 
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The following lemma is a generalization of [16, Lemma 3.5], but in our proof we avoid 
Wiener amalgam spaces completely, instead applying the continuity of maps between 
the Feichtinger algebras of G, Ĝ and Δ.

Lemma 4.4. For any locally compact abelian group G and lattice Δ in G × Ĝ the map

S0(G) × S0(G) × Aut(G× Ĝ) → �1(Δ), (g, h, α) 
→ (〈g, π(α(z))h〉)z∈Δ

is continuous.

Proof. We can write the map as a composition of three maps: The first is the map 
S0(G) × S0(G) × Aut(G × Ĝ) → S0(G × Ĝ) × Aut(G × Ĝ) given by

(g, h, α) 
→ (Vhg, α).

This is continuous by Proposition 3.2 (i). The second is the map S0(G × Ĝ) × Aut(G ×
Ĝ) → S0(G × Ĝ) given by

(F, α) 
→ F ◦ α.

The continuity of this map is precisely Theorem 4.3, with G × Ĝ in place of G. The final 
map is S0(G × Ĝ) →= �1(Δ) given by

F 
→ F |Δ

which is also known to be continuous by Proposition 3.2 (ii). �
The following lemma is a generalization of [16, Theorem 3.6(i)]:

Lemma 4.5. The map S0(G) × S0(G) × Aut(G × Ĝ) → B(L2(G)) given by

(g, h, α) 
→ Sg,h,α(Δ)

is continuous at (g0, h0, α0) whenever G(g0, α0(Δ)) and G(h0, α0(Δ)) are dual frames for 
L2(G).

Proof. Let g0, h0 ∈ S0(G) and α0 ∈ Aut(G × Ĝ) be such that G(g0, α0(Δ)) and 
G(h0, α0(Δ)) are dual frames for L2(G). Let ε > 0. For g, h ∈ S0(G) and α ∈ Aut(G ×Ĝ), 
define cg,h,α ∈ �1(Δ◦) by

cg,h,α(z) = 〈h, π(α(z))g〉, z ∈ Δ◦. (43)

By the Wexler–Raz relations (Proposition 3.4 (ii)) and (32) we have that
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cg0,h0,α◦
0 (z) = vol(α0(Δ))δz,0 = mod(α0) vol(Δ)δz,0 (44)

for all z ∈ Δ◦. For α ∈ Aut(G × Ĝ), set

Tα = 1
vol(α(Δ))

∑
z∈Δ◦

cg0,h0,α◦
0 (z)π(α◦(z)) = mod(α0)

mod(α) I.

Using the Janssen representation Proposition 3.4 (i) we get the following estimate:

‖Sg,h,α(Δ) − Tα‖ =

∥∥∥∥∥ 1
vol(α(Δ))

∑
z∈Δ◦

(cg,h,α◦(z) − cg0,h0,α◦
0 (z))π(α◦(z))

∥∥∥∥∥
≤ 1

modG(α) vol(Δ)
∑
z∈Δ◦

|cg,h,α◦(z) − cg0,h0,α◦
0 (z)|

Thus, by Lemma 4.4 and the continuity of the Braconnier modular function as well 
as the continuity of the assignment α 
→ α◦, we can find a neighbourhood U × V ×
W ⊆ S0(G) × S0(G) × Aut(G × Ĝ) of (g0, h0, α0) such that ‖Sg,h,α(Δ) − Tα‖ < ε/2 for 
(g, h, α) ∈ U × V ×W .

Next, since G(g0, α0(Δ)) and G(h0, α0(Δ)) are dual frames, it follows that Sg0,h0,α0(Δ)=
I. Thus, again by continuity of the Braconnier modular function, we can find a neigh-
bourhood W ′ ⊆ Aut(G × Ĝ) of α0 such that

‖Tα − Sg0,h0,α0(Δ)‖ =
∥∥∥∥mod(α0)

mod(α) I − I

∥∥∥∥ <
ε

2 (45)

when α ∈ W ′. Combining our two observations, we have that

‖Sg,h,α(Δ) − Sg0,h0,α0(Δ)‖ ≤ ‖Sg,h,α(Δ) − Tα‖ + ‖Tα − Sg0,h0,α0(Δ)‖ <
ε

2 + ε

2 = ε

when (g, h, α) ∈ U × V × (W ∩W ′). This finishes the proof. �
We are now ready to prove one of the main results of the paper. With all the previous 

lemmas and propositions taken care of, the proof below is exactly the same as the proof 
of [16, Theorem 3.8]. The deep fact that a Gabor frame G(g, Δ) with g ∈ S0(G) admits 
a dual frame with window also in S0(G) was proved for G = Rn in [22] and generalized 
to locally compact abelian groups in [3].

Theorem 4.6. Let G be a locally compact abelian group, and let Δ be a lattice in G × Ĝ. 
Then the set

{(g, α) ∈ S0(G) × Aut(G× Ĝ) : G(g, α(Δ)) is a Gabor frame for L2(G)}

is open in S0(G) × Aut(G × Ĝ).
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Proof. Let g0 ∈ S0(G). Suppose α0 ∈ Aut(G × Ĝ) is such that G(g0, α0(Δ)) is a Gabor 
frame. By [3, Theorem B] we can find a dual frame G(h0, α0(Δ)) with h0 ∈ S0(G). Then 
Sg0,h0,α0(Δ) = I. There exists an open neighbourhood V of I in B(L2(G)) containing 
only invertible elements. By Lemma 4.5, there exists an open set U of S0(G) × S0(G) ×
Aut(G × Ĝ) containing (g0, h0, α0) such that Sg,h,α(Δ) ∈ V for every (g, h, α) ∈ U . 
Consequently, the set

U ′ = {(g, α) ∈ S0(G) × Aut(G× Ĝ) : (g, h0, α) ∈ U}

is open in S0(G) × Aut(G × Ĝ). But then Sg,h0,α(Δ) is invertible whenever (g, α) ∈ U ′.
Now fix (g, α) ∈ U ′ and set h = S−1

g,h0,α(Δ)h0. Since Sg,h0,α(Δ) commutes with π(α(z))
for every z ∈ Δ, we have that

Sg,h0,α(Δ)Sg,h,α(Δ)f = Sg,h0,α(Δ)
∑
z∈Δ

〈f, π(α(z))h〉π(α(z))h

=
∑
z∈Δ

〈〈f, π(α(z))h〉π(α(z))Sg,h0,α(Δ)h

=
∑
z∈Δ

〈〈f, π(α(z))h〉π(α(z))h0

= Sg,h0,α(Δ)f.

Hence Sg,h0,α(Δ)Sg,h,α(Δ) = Sg,h0,α(Δ). Since Sg,h0,α(Δ) is invertible, we conclude that 
Sg,h,α(Δ) = I. Hence G(g, α(Δ)) is a Gabor frame, and the proof is finished. �
5. The Balian–Low theorem

In this section, we classify the locally compact abelian groups in which a Balian–Low 
theorem for the Feichtinger algebra holds.

From what we have done so far, it follows easily that the Balian–Low theorem holds 
in groups with noncompact identity component:

Theorem 5.1. If G is a locally compact abelian group with noncompact identity compo-
nent, then for any lattice Δ in G × Ĝ with vol(Δ) = 1 and any function g ∈ S0(G) the 
Gabor system G(g, Δ) cannot be a frame for L2(G).

Proof. Suppose for a contradiction that G(g, Δ) is a frame for L2(G), with g ∈ S0(G). By 
Theorem 4.6, there exists an open set U ⊆ Aut(G × Ĝ) such that G(g, α(Δ)) is a frame 
for L2(G) whenever α ∈ U . Moreover, I ∈ U . By Theorem 2.10, the Braconnier modular 
function of G × Ĝ is open. Thus, the set V = modG×Ĝ(U) is an open neighbourhood of 
1 in (0, ∞), so there exists an α ∈ Aut(G) with modG(α) > 1 such that G(g, α(Δ)) is a 
Gabor frame. But then, using Proposition 2.11, we get
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vol(α(Δ)) = modG×Ĝ(α) vol(Δ) > 1.

This violates the density theorem (Proposition 3.3), hence we have a contradiction. �
Our next goal is to show that if G has compact identity component, then the Balian–

Low theorem fails in a strong sense. To prepare, we need some lemmas.

Lemma 5.2. For i = 1, 2, let Gi be a locally compact abelian group, let Δi be a lattice in 
Gi × Ĝi and let gi ∈ L2(G) be such that G(gi, Δi) is an orthonormal basis for L2(Gi). 
Set G = G1 ×G2. Then, upon identifying G × Ĝ with G1 × Ĝ1 ×G2 × Ĝ2, we have that 
G(g1 ⊗ g2, Δ1 × Δ2) is an orthonormal basis for L2(G). Moreover, if gi ∈ S0(Gi) for 
i = 1, 2, then g1 ⊗ g2 ∈ S0(G).

Proof. Suppose that G(gi, Δi) is an orthonormal basis for L2(Gi) for i = 1, 2. Note that

π(z1, z2)(g1 ⊗ g2) = π(z1)g1 ⊗ π(z2)g2, (z1, z2) ∈ Δ1 × Δ2,

hence the Gabor system G(g1 ⊗ g2, Δ1 × Δ2) consists exactly of the tensor products of 
elements from the orthonormal bases G(gi, Δi), i = 1, 2. From this it follows immediately 
that G(g1 ⊗ g2, Δ1 × Δ2) is an orthonormal basis.

Also, if gi ∈ S0(Gi) for i = 1, 2, then the formula

Vg1⊗g2(g1 ⊗ g2)(z1, z2) = Vg1g1(z1)Vg2g2(z2)

shows that g1 ⊗ g2 ∈ S0(G1 ×G2). �
Lemma 5.3. The following hold:

(i) If D is a discrete abelian group, then Λ = D is a lattice in D, δ0 ∈ S0(D), and 
G(δ0, Λ × Λ⊥) is an orthonormal basis for L2(D).

(ii) If C is a compact abelian group, then Λ = {1} is a lattice in C, 1C ∈ S0(C), and 
G(1C , Λ × Λ⊥) is an orthonormal basis for L2(C).

(iii) If G = D×C where D is a discrete abelian group and C is a compact abelian group, 
then Λ = D × {1} is a lattice in G, δ0 ⊗ 1C ∈ S0(G), and G(δ0 ⊗ 1C , Λ × Λ⊥) is 
an orthonormal basis for L2(G).

Proof. We begin by proving (i). That Λ is a lattice follows from the fact that D is discrete 
and D/Λ = {1} is compact. Since S0(D) = �1(D) for D discrete ([28, Lemma 4.11]), we 
have that δ0 ∈ S0(D). Finally, since Λ⊥ = {1} ⊆ D̂, the Gabor system G(δ0, Λ × Λ⊥)
is nothing but the canonical orthonormal basis for �2(D). The proof of (ii) is dual, and 
(iii) follows by applying (i) and (ii) together with Lemma 5.2. �
Lemma 5.4. Let G be a locally compact abelian group, let H be a closed subgroup of G
of finite index and let Λ be a lattice in H. Then Λ is also a lattice in G. Furthermore, 
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suppose g ∈ L2(H) is such that G(g, Λ × Λ⊥
H) is an orthonormal basis for L2(H), where 

Λ⊥
H denotes the annihilator of Λ in H. Then there exists g̃ ∈ L2(G) such that G(g̃, Λ ×Λ⊥)

is an orthonormal basis for L2(G), where Λ⊥ denotes the annihilator of Λ in G. Finally, 
if g ∈ S0(H), then g̃ ∈ S0(G).

Proof. The first statement follows from Lemma 2.1 (i). Let {y1, . . . , yk} be a set of coset 
representatives for H in G, where k = [G : H]. We normalize the Haar measure on 
G such that Weil’s formula (3) holds with respect to a fixed Haar measure on H and 
the counting measure on G/H. To ease notation we will omit explicit reference to Haar 
measures μG, μH , etc. when integrating with respect to them. Define g̃ : G → C by

g̃(xyj) = 1√
k
g(x)

for x ∈ H and 1 ≤ j ≤ k.
Now Λ⊥

H
∼= Λ⊥/H⊥. Thus the orthonormality of G(g, Λ × (Λ⊥/H⊥)) means that 

〈g, π(λ, τH⊥)g〉 = 0 if and only if λ = 1 and τ ∈ H⊥. We calculate 〈g̃, π(λ, τ)g̃〉 in terms 
of 〈g, π(λ, τH⊥)g〉 as follows:

〈g̃, π(λ, τ)g̃〉L2(G) =
k∑

j=1

∫
H

g̃(xyj)τ(xyj)g̃(λ−1xyj) dx

= 1
k

k∑
j=1

∫
H

g(x)τ(yj)τ(x)g(λ−1x) dx

= 1
k

⎛⎝ k∑
j=1

τ(yj)

⎞⎠ 〈g, π(λ, τH⊥)g〉L2(H)

=
{

1
k

∑k
j=1 τ(yj) if λ = 1 and τ ∈ H⊥

0 otherwise.

But if τ ∈ H⊥ then 
∑k

j=1 τ(yj) = kδτ,1 as we are summing a character τ ∈ H⊥ ∼= Ĝ/H

over all the elements of the finite group G/H. Thus G(g̃, Λ × Λ⊥) is orthonormal.
We now show how completeness of G(g̃, Λ × Λ⊥/H⊥) in L2(H) implies completeness 

of G(g̃, Λ × Λ⊥) in L2(G). Note that

〈f, π(λ, τ)g̃〉L2(G) =
k∑

j=1

∫
H

f(xyj)τ(xyj)g̃(λ−1xyj) dx

= 1√
k

k∑
j=1

τ(yj)〈f(·yj), π(λ, τH⊥)g〉L2(H). (46)
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Now suppose that 〈f, π(λ, τ)g̃〉L2(G) = 0 for all λ ∈ Λ, τ ∈ Λ⊥. We can write τ = τ1τ2
uniquely in the sense that τ1H⊥ ∈ Λ⊥/H⊥ and τ2 ∈ H⊥ are uniquely determined. We 
then get

〈f, π(λ, τ)g̃〉L2(G) = 1√
k

k∑
j=1

τ2(yj)τ1(yj)〈f(·yj), π(λ, τ1H⊥)g〉L2(H) = 0

for all λ ∈ Λ⊥, τ1H⊥ ∈ Λ⊥/H⊥ and τ2 ∈ H⊥. Recognizing the above expression as an 
inner product in L2(G/H) and using that H⊥ is an orthogonal basis for L2(G/H), we 
deduce that

τ1(yj)〈f(·yj), π(λ, τ1H⊥)g〉 = 0

for all 1 ≤ j ≤ k, λ ∈ Λ⊥ and τ1H⊥ ∈ Λ⊥/H⊥. By completeness of G(g, Λ × Λ⊥/H⊥), 
this implies that f(xyj) = 0 for all x ∈ H and 1 ≤ j ≤ k, i.e. f = 0.

Finally, suppose that g ∈ S0(H). For h ∈ L2(G) Denote by V G
h the short-time Fourier 

transform on G × Ĝ and by V H
h the short-time Fourier transform on H × Ĥ. Since 

G/H is finite, we have that H⊥ ∼= Ĝ/H is finite (and of the same order) as well, say 
H⊥ = {τ1, . . . , τk}. Note that τj(t′) = 1 for each 1 ≤ j ≤ k and t′ ∈ H. Using this and 
Weil’s formula (3), we have∫

G×Ĝ

|V G
g̃ g̃(x, ω)|dx dω

=
k∑

i,j=1

∫
Ĝ/H⊥

∫
H

|V G
g̃ g̃(x′yj , ω

′τj)|dx′ d(ω′H⊥)

=
k∑

i,j=1

∫
Ĝ/H⊥

∫
H

∣∣∣∣∣∣
k∑

l=1

∫
H

g̃(t′yl)(ω′τj)(t′yl)g̃(x′−1y−1
j t′yl) dt′

∣∣∣∣∣∣ dx′ d(ω′H⊥)

≤ k−1/2
k∑

i,j,l=1

∫
Ĝ/H⊥

∫
H

∣∣∣∣∣∣
∫
H

g(t′)ω′(t′)g̃(x′ −1t′y−1
j yl) dt′

∣∣∣∣∣∣ dx′ d(ω′H⊥).

where we used that τj(t′) = 1 in the last line. Now for each 1 ≤ j, l ≤ k, we can 
write y−1

j yl = tj,lyrj,l for a uniquely determined tj,l ∈ H and 1 ≤ rj,l ≤ k. Hence 

g̃(x′−1
t′y−1

j yl) = g̃(x′−1
t′ti,jyri,j ) = g(x′−1

t′ti,j), so

∫
̂
|V G

g̃ g̃(x, ω)|dx dω ≤
k∑

j,l=1

∫
̂ ⊥

∫
H

∣∣∣∣∣∣
∫
H

g(t)ω′(t′)g(x′−1t′tj,l) dt′
∣∣∣∣∣∣ dx′ d(ω′H⊥)
G×G G/H
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=
k∑

j,l=1

∫
Ĝ/H⊥

∫
H

|V H
g g(x′t−1

j,l , ω
′)|dx′ d(ω′H⊥)

≤ k2
∫

H×Ĥ

|V H
g g(x′, ω′)|dx′ dω′.

The above expression is finite because of the assumption that g ∈ S0(H). Hence g̃ ∈
S0(G), which finishes the proof. �
Lemma 5.5. Let G be a locally compact abelian group, let F be a finite subgroup of G and 
let Λ be a lattice in G that contains F . Denote by p : G → G/F the quotient map. Then 
p(Λ) is also a lattice in G/F . Moreover, suppose g ∈ L2(G/F ) is such that G(g, p(Λ) ×
p(Λ)⊥) is an orthonormal basis for L2(G/F ). Then there exists g̃ ∈ L2(G) such that 
G(g̃, Λ ×Λ⊥) is an orthonormal basis for L2(G). Finally, if g ∈ S0(G/F ), then g̃ ∈ S0(G).

Proof. This is dual to Lemma 5.4. Since F is a finite subgroup of G and F ⊆ Λ, F⊥

is a finite index subgroup of Ĝ with Λ⊥ ⊆ F⊥. It follows from Lemma 2.1 (i) that 
Λ⊥ is a lattice in F⊥, hence Λ is a lattice in G/F . Moreover, if g ∈ L2(G/F ) gives 
an orthonormal basis G(g, p(Λ) × p(Λ)⊥) for L2(G/F ), then FG(g, p(Λ) × p(Λ)⊥) =
G(ĝ, p(Λ)⊥ × p(Λ)) is an orthonormal basis for L2(F⊥). Again by Lemma 5.4, one gets 
a function γ ∈ L2(Ĝ) such that G(γ, Λ⊥ ×Λ) is an orthonormal basis for L2(Ĝ), and its 
inverse Fourier transform g̃ = F−1(γ) gives us an orthonormal basis G(g̃, Λ × Λ⊥) for 
L2(G). By Fourier invariance of the Feichtinger algebra, we have that g̃ ∈ S0(G). �

With these lemmas proved, we are ready to prove the following:

Theorem 5.6. Let G be a locally compact abelian group. If G has a compact identity 
component, then for any lattice Λ in G there exists a function g ∈ S0(G) such that 
G(g, Λ × Λ⊥) is an orthonormal basis for L2(G).

Proof. By Theorem 2.10, we can find a compact open subgroup K of G. Now KΛ is 
an open subgroup of G, so the quotient G/(KΛ) is discrete. In addition, we have a 
continuous surjection G/Λ → G/(KΛ), so G/(KΛ) must be compact as well. It follows 
that H = KΛ has finite index in G. Also, the intersection F = K ∩ Λ is finite. By 
Lemma 5.4 and Lemma 5.5, we can assume that G = KΛ and K ∩ Λ = {1}, i.e. 
G ∼= K × Λ. But then the existence of a g ∈ S0(G) such that G(g, Λ × Λ⊥) is an 
orthonormal basis for L2(G) follows from Lemma 5.3. �
5.1. The Zak transform

As mentioned in the introduction, we will obtain a generalization of a theorem due to 
Kaniuth and Kutyniok [35], at least in the second-countable setting. Let Λ be a lattice 
in G. We call a function F : G × Ĝ → C quasiperiodic (with respect to Λ) if
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F (xλ, ωτ) = ω(λ)F (x, ω) (47)

for all x ∈ G, ω ∈ Ĝ, λ ∈ Λ and τ ∈ Λ⊥.
The Zak transform of a function f ∈ L2(G) with respect to Λ is the function ZG,Λf

on G × Ĝ given by

ZG,Λf(x, ω) =
∑
λ∈Λ

f(xλ)ω(λ)

for (x, ω) ∈ G × Ĝ. The Zak transform of a function satisfies (47).
The following proposition is proved in [13, Theorem 5.5].

Proposition 5.7. For any locally compact abelian group G and any lattice Λ in G the 
following statements are equivalent:

(i) For every g ∈ S0(G), the Gabor system G(g, Λ × Λ⊥) is not a frame for L2(G).
(ii) For every g ∈ L2(G) such that the Zak transform ZG,Λg is continuous, ZG,Λg must 

have a zero.
(iii) Every continuous, quasiperiodic function F on G × Ĝ has a zero.

Combining the above proposition with Theorem 5.1 and Theorem 5.6, we obtain the 
following result:

Theorem 5.8. For any locally compact abelian group G and any lattice Λ in G the fol-
lowing statements are equivalent:

(i) The identity component of G is noncompact.
(ii) Every continuous, Λ-quasiperiodic function on G × Ĝ has a zero. In particular, 

whenever ZG,Λg is continuous for g ∈ L2(G), then ZG,Λg has a zero.

Proof. Note that by (6), Δ = Λ × Λ⊥ is a lattice of volume 1 in G × Ĝ. If G has 
noncompact identity component, it follows from Theorem 5.1 that there is no g ∈ S0(G)
such that G(g, Δ) is a Gabor frame. By Proposition 5.7, this is equivalent to every 
continuous, quasiperiodic function having a zero. On the other hand, if G has compact 
identity component then by Theorem 5.6, there exists g ∈ S0(G) such that G(g, Λ ×Λ⊥)
is an orthonormal basis for L2(G). By Proposition 5.7, this implies that some continuous, 
quasiperiodic function is nowhere zero. �

This removes the assumption of compact generatedness from the main result of [35], 
although it should be remarked that there is no assumption of second-countability in 
[35].
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6. Gabor analysis on the adeles of a global field

In this section, we introduce the higher dimensional S-adeles, show the existence 
of Gabor frames over these groups and apply our main results to this class of locally 
compact abelian groups.

6.1. The adeles of a global field

Let K be a field. An absolute value on K is a function | · | : K → [0, ∞) that satisfies 
the following axioms:

(i) For all x, y ∈ K, we have that

|x + y| ≤ |x| + |y|. (48)

(ii) For all x, y ∈ K, we have that

|xy| = |x||y|. (49)

(iii) For all x ∈ K, we have that |x| = 0 implies x = 0.

The function | · |0 on K given by

|x|0 =
{

0 if x = 0,
1 if x �= 0,

(50)

is an absolute value called the trivial absolute value. Two absolute values | · |1 and | · |2
on K are called equivalent if there exists s ≥ 0 such that |x|1 = |x|s2 for all x ∈ K. This 
is an equivalence relation on the set of absolute values on K. It is easy to establish that 
an absolute value equivalent to the trivial absolute value is also trivial. A place is an 
equivalence class of nontrivial absolute values on K.

An absolute value | · | on K induces a metric on K via

d(x, y) = |x− y| (51)

for x, y ∈ K. One can show that two absolute values on K are equivalent if and only 
if their induced metrics define the same topology on K. The metric associated to the 
trivial absolute value is the discrete metric on K.

An absolute value | · | on K is called non-archimedean if

|x + y| ≤ max{|x|, |y|} (52)
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for all x, y ∈ K. Note that (52) implies (48). An absolute value is called archimedean if 
it is not non-archimedean. Note that if | · |1 and | · |2 are equivalent absolute values then 
both or neither of them are non-archimedean. Hence, it makes sense to call a place on 
K non-archimedean (or archimedean).

A global field is a finite field extension of either Q (in which case it is called a number 
field) or the field Fq(t) of rational functions over the finite field Fq of q elements (in which 
case it is called a function field).

On Q, the usual Euclidean absolute value | · |∞ given by

|x|∞ =
{
x if x ≥ 0,
−x if x < 0,

is archimedean. For each prime number p, there is a non-archimedean absolute value, 
namely the p-adic absolute value | · |p, given by

|x|p = p−k

whenever x = pk(a/b) where a, b ∈ Z and p does not divide a or b. One also sets |0|p = 0.
On K = Fq(t) for q = pr, there is a non-archimedean absolute value | · |∞ given by∣∣∣∣fg

∣∣∣∣
∞

= pdeg(f)−deg(g) (53)

for f/g ∈ Fq(t). Furthermore, for each irreducible polynomial P ∈ Fq[t], there is a 
non-archimedean absolute value | · |P given by

|h|P = p−k (54)

whenever h = P k(f/g) where neither f nor g is divisible by P . One also sets |0|P = 0.
The following result is proved in [39, Theorem 4.30].

Proposition 6.1. The following hold:

(i) The Euclidean absolute value | · |∞ and the p-adic absolute values | · |p for p prime 
give a complete set of representatives for all the places on K = Q.

(ii) The absolute value | · |∞ and the absolute values | · |P for an irreducible polynomial 
P give a complete set of representatives for all the places on K = Fq(t).

If v is a place on a global field K, then we denote by Kv the completion of K with 
respect to the metric induced by v. This will be a locally compact field, i.e. a field with 
a nondiscrete topology for which all the algebraic operations are continuous.

For a global field K, let F denote either Q or Fq(t) depending on which field K is an 
extension of. If v is a place on K, then one obtains a place v|F on F by restriction. This 
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place is then classified by Proposition 6.1. If F = Fq(t), then we say that v is infinite if 
the restriction of v to F is equivalent to the place given by the absolute value | · |∞ on 
Fq(t). Otherwise, v is called finite. If F = Q, we simply define the infinite places to be 
the archimedean ones, and the infinite places to be the non-archimedean ones. We write 
v | ∞ to indicate that v is an infinite place, and v � ∞ if it is finite.

For a finite place v on K, we set

Ov = {x ∈ Kv : |x|v ≤ 1}

where | · |v is any representative of v. Note that the definition of Ov is independent of 
the choice of absolute value. Also, by (52), Ov is a subring of Kv. One also sets

O =
⋂
v�∞

Ov.

Another description of O is as the integral closure of Q in K if K is a finite extension 
of Q, and the integral closure of Fq(t) in K if K is a finite extension of Fq(t). We set

K∞ =
∏
v|∞

Kv. (55)

Note that this is a finite product, since a global field has only finitely many infinite places 
(this is a consequence of e.g. [39, Theorem 4.31]). If S is a set of finite places of K, we 
define KS to be the following restricted product ([39, p. 180]):

KS =
∏Ov

v∈S

Kv =
{

(xv)v ∈
∏
v∈S

Kv : xv ∈ Ov for all but finitely many v ∈ S

}
. (56)

Finally, we define the S-adeles associated to K to be the locally compact ring

AK,S = K∞ ×KS . (57)

In particular, the adeles associated to K is AK = AK,Σ with Σ being the set of all places 
on K. Note also that AK,∅ = K∞.

Proposition 6.2. Let F be a global field, and let E be a finite extension of F , with degree 
d = [E : F ]. Then we have that

AK,S
∼= Ad

F,S

as topological groups.

In the case where S is the set of all places, a proof of the above is given in [39, Lemma 
5.10], and this works verbatim also for general S. The above proposition shows that 
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additively speaking, we do not get anything more by considering powers of the adeles of 
a finite extension of Q or Fp(t) rather than just the fields Q and Fp(t) themselves. We 
will therefore focus on these two cases.

We also set

RK,S =
⋂
v/∈S

Ov = {x ∈ K : |x|v ≤ 1 for all v /∈ S.} (58)

Note that RK,Σ = K and RK,∅ = O.

Proposition 6.3. The map RK,S → AK,S given by x 
→ (x)v∈S is an injective ring homo-
morphism with discrete range in AK,S. Moreover, identifying RK,S as a discrete subgroup 
of AK,S with this map, we have that

AK,S/RK,S .

is compact. In particular, RK,S embeds as a lattice in AK,S.

Proof. This proof is very similar, more or less verbatim, to [39, Lemma 5.11], just con-
sider any nonempty set of places instead of all places. In both the number field and the 
function field case it is important that the infinite place is included. �
Remark. It is known that AK/RK

∼= R̂K , see e.g., [39, Proposition 7.15]. Moreover, a 
consequence of the classification result that we will prove in the next subsection is that 
for any number field K and set of places S, we have

AK,S/RK,S
∼= R̂K,S

For K = Q there is a direct proof of this in [34, Theorem 3.3].

We also consider higher dimensional variants of the S-adeles. Note that

An
K,S

∼= Kn
∞ ×

∏On
v

v∈S

Kn
v

for every n ∈ N. As a consequence of Proposition 6.3, we have that Rn
K,S embeds as a 

lattice in An
K,S for every n ∈ N. We typically write elements of An

K,S as (x∞, (xv)v∈S)
where x∞ ∈ Kn

∞ and xv ∈ Kn
v for each v ∈ S.

6.2. Classification of lattices in the S-adeles over the rationals

Suppose K = Q. Then by Proposition 6.1, there is exactly one infinite place on Q, 
and it is represented by the Euclidean absolute value. Consequently, K∞ = R. If v is a 
finite place, then it is represented by the p-adic absolute value for some prime number 
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p. It follows that Kv = Qp. Furthermore, Ov = Zp and O = Z. If S is a set of finite 
places, we think of S as a set of primes. In that case,

QS =
∏Zp

p∈S

Qp.

The ring of S-adeles associated to Q becomes

AQ,S = R×QS .

We also get

RQ,S = Z[ 1p : p ∈ S],

the ring extension of Z by all the rational numbers 1/p for p ∈ S.
In the following proposition, we determine the automorphism group of An

Q,S.

Proposition 6.4. Let S be a set of prime numbers. Then the map

GLn(R) ×
∏GLn(Zp)

p∈S

GLn(Qp) → Aut(An
Q,S)

given by sending A = (A∞, (Ap)p∈S) to the automorphism α of An
Q,S given by

α(x∞, (xp)p∈S) = (A∞x∞, (Apxp)p∈S)

is a topological isomorphism.

Proof. Denote the map in the proposition by Φ. Denote the domain of Φ by G. One 
easily checks that Φ is a well-defined injective homomorphism.

Next, we verify that Φ is surjective. Let α be a topological automorphism of An
Q,S. 

Precomposing with the injections Rn → An
Q,S , Qn

p → An
Q,S (p ∈ S) and postcomposing 

with the surjections An
Q,S → Rn, An

Q,S → Qn
p (p ∈ S), we obtain continuous homomor-

phisms of the form Rn → Qn
p , Qn

p → Rn and Qn
p → Qn

p′ for p, p′ ∈ S. Now the only 
continuous homomorphism Rn → Qn

p is the trivial one, since the identity component of 
Rn (namely Rn) must map into the identity component of Qn

p (namely {0}). Similarly, a 
continuous homomorphism Qn

p → Rn is also trivial, since all of the compact subgroups 
(p−kZp)n whose union is Qn

p must have compact image in Rn (hence {0}). Finally, we 
claim that if p �= p′ then the only continuous homomorphism Qn

p → Qn
p′ is the zero 

map: By passing to the components of such a map, it suffices to show that a continuous 
group homomorphism h : Qp → Qp′ must be trivial. Assume for a contradiction that 
h(1) �= 0. Then h(p′n) = h(1)p′n for all n ∈ Z. Moreover, since p and p′ are distinct 
primes we have that p′n ∈ Zp for all n ∈ Z, hence Z[1/p′] ⊆ Zp. Because of the inclusion 
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Z[1/p′]h(1) = h(Z[1/p′]) ⊆ h(Zp) and the density of Z[1/p′]h(1) in Qp′ we conclude 
that h(Zp) is dense in Qp′ . However, h(Zp) is also compact, a contradiction, and thus 
h(1) = 0.

We now have that α is of the form

α(x∞, (xp)p) = (A∞x∞, (Apxp)p)

for an automorphism A∞ of Rn and automorphisms Ap for each p ∈ S. In other words, 
A∞ ∈ GLn(R) while Ap ∈ GLn(Qp) for each p ∈ S.

Let ei be the i-th standard basis vector in Qn
p . We have that (Apxp)p ∈ Qn

S for all 
(xp)p ∈ Qn

S . In particular, setting xp = ei for all p ∈ S, we have (Apei)p ∈ Qn
S . Thus, for 

each i, 1 ≤ i ≤ n, we have that Apei ∈ Zn
p for all but finitely many p ∈ S. This implies 

that all the entries of the matrix Ap are in Zp for all but finitely many p ∈ S. The same 
argument applies to α−1 which is given by α−1(x∞, (xp)p) = (A−1

∞ x∞, (A−1
p xp)p), so all 

the entries of both Ap and A−1
p are in Zp for all but finitely many p ∈ S. This forces 

Ap ∈ GLn(Zp) for all but finitely many p ∈ S.
Finally, we show continuity of Φ. If K is a compact subset of An

Q,S and U is a neigh-
bourhood of the identity of An

Q,S, then we can find compact sets K∞ ⊆ Rn, Kp ⊆ Qn
p

(p ∈ S), and neighbourhoods of the identity U∞ ⊆ Rn, Up ⊆ Qn
p with Up = Zn

p for all 
but finitely many p, such that

U ′ := U∞ ×
∏
p∈S

Up ⊆ U

K ⊆ K∞ ×
∏
p∈S

Kp =: K ′.

Since the sets N (K, U) (K compact, U neighbourhood of identity) form a neighbourhood 
basis for Aut(An

Q,S), it suffices to show that Φ−1(N (K ′, U ′)) is open in G. Now

N (K ′, U ′) = N (K∞, U∞) ×
∏
p∈S

N (Kp, Up).

We conclude that Φ−1(N (K ′, U ′)) is open in G from the fact that each of the maps 
GLn(R) → Aut(Rn) and GLn(Qp) → Aut(Qn

p ), p ∈ S, are continuous.
Since An

Q,S is separable, it follows from [38, Corollary 1.11] that An
Q,S is a separable, 

completely metrizable group. By an open mapping theorem for topological groups [6, 
Lemma 1] and the remark afterwards, it follows that Φ must be open. Hence Φ is a 
topological isomorphism, which finishes the proof. �
Remark. Let ZS denote the compact subgroup 

∏
p∈S Zp of QS . There is another way to 

look at QS , namely as a completion of RQ,S. Indeed, denote by 〈S〉 the multiplicative 
subgroup of Q× generated by S and let m

n Z be an open set in RQ,S for every pair 
m, n ∈ 〈S〉. Then QS is the Hausdorff completion of RQ,S with respect to this topology, 
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i.e., its topology is generated by m
n ZS for m, n ∈ 〈S〉, and ZS is the closure of Z, see 

[34] for more details.

Lemma 6.5. Let Λ be a lattice in Rn×Qn
S, and let f1 and f2 denote the projections from 

Rn×Qn
S onto the first and second coordinate, respectively. Then f1 is injective on Λ and 

f2(Λ) is dense in Qn
S.

Proof. We start by showing that the restriction of f1 to Λ is injective. Suppose that an 
element of Λ is mapped to the identity of Rn by f1, i.e., there exists some y ∈ Qn

S such 
that (0, y) ∈ Λ. For m ∈ N big enough, y′ = my ∈ Zn

S . It follows that V = {(0, ky′) :
k ∈ Z}, and hence its closure V , is contained in Λ ∩ ({0} × Zn

S). Moreover, since Λ is 
discrete and {0} ×Zn

S is compact, then V is finite. But then {ky′ : k ∈ Z} is a finite set, 
and so the only possibility is that y′ = 0, i.e., y = 0. This shows that the restriction of 
f1 to Δ is injective.

For the second part, set H = f2(Λ) in Qn
S . The map f2 induces a surjection

(Rn ×Qn
S)/Λ → Qn

S/H, (x, y) + Λ 
→ y + H.

Since the former is compact, the latter is also compact, meaning that H = Qn
S . Indeed, 

if L is a cocompact subgroup of Qn
S, then the dual of Qn

S/L, which is isomorphic to L⊥, 
is discrete. But then L⊥ is a discrete subgroup of Q̂n

S
∼= Qn

S , so L⊥ is trivial by a similar 
argument as above. Hence L = Qn

S . It follows that f2(Λ) is dense in Qn
S . �

Lemma 6.6. Suppose Λ is a lattice in An
Q,S such that Λ ∩(Rn×Zn

S) = Zn. Then Λ = Rn
Q,S.

Proof. First, suppose that (x, y) ∈ Λ. Since y ∈ Qn
S , we can find a number r expressible 

as a product of primes from S such that ry ∈ Zn
S . But then (rx, ry) ∈ Λ ∩ (Rn ×Zn

S), so 
rx = ry = l ∈ Zn. Thus (x, y) = (l/r, l/r) ∈ Rn

Q,S , which shows that Λ ⊆ Rn
Q,S .

We now prove the other inclusion. Denote by f2 the projection of An
Q,S = Rn ×Qn

S

onto Qn
S , and set D = f2(Λ). Since Λ ∩ (Rn × Zn

S) = Zn, we have that D ∩ Zn
S = Zn. 

Moreover, D is dense in Qn
S by Lemma 6.5.

We claim that D = Rn
Q,S . To see that Rn

Q,S ⊆ D, let y ∈ Rn
Q,S . Since D is dense 

and Zn
S is open, there must be some x ∈ Zn

S such that y + x ∈ D. Let m ∈ N be 
such that my ∈ Zn. Then my + mx belongs to both of the groups D and Zn

S , and thus 
it is in Zn. It follows that x ∈ Zn and therefore y ∈ D − x = D. We conclude that 
Rn
Q,S ⊆ D. For the converse, assume that y ∈ D. There is a natural number m such 

that my ∈ Zn
S . As above, we can choose this number so that 1/m ∈ Rn

Q,S . Since my also 
belongs to D, we have that my ∈ Zn, and therefore y ∈ Rn

Q,S . Thus D ⊆ Rn
Q,S . Thus, if 

(r, r) ∈ Rn
Q,S ⊆ An

Q,S , then identifying Rn
Q,S with its image in An

Q,S , we have r ∈ D. But 
then there exists x ∈ Rn such that (x, r) ∈ Λ. But as we have already seen, Λ ⊆ Rn

Q,S , 
so we must have x = r and thus (r, r) ∈ Λ. This shows that Rn

Q,S ⊆ Λ, which finishes 
the proof. �
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Proposition 6.7. All lattices Λ in the group An
Q,S are of the form

Λ = ARn
Q,S = {(A∞q, (Apq)p∈S) : q ∈ Rn

Q,S}

for an automorphism A = (A∞, (Ap)p∈S) of AQ,S given as in Proposition 6.4.

Proof. Let n ≥ 1 and suppose that Λ is a lattice in Rn × Qn
S . Remark that Λ is a 

discrete second countable space, so Λ is countable. Set Λ′ = Λ ∩ (Rn × Zn
S). Our first 

goal is to show that Λ′ is isomorphic to Zn. Consider again the projections f1 and f2
from Lemma 6.5 and f ′

1 given by

f ′
1 : Rn × Zn

S → Rn, (x, y) 
→ x.

Since Λ′ ⊆ Λ, Lemma 6.5 implies that the restriction of f ′
1 to Λ′ is injective.

Using the second isomorphism theorem, we get isomorphisms

(Rn × Zn
S)/Λ′ ∼= ((Rn × Zn

S) + Λ)/Λ = (Rn ×Qn
S)/Λ,

where the latter group is compact by assumption. Indeed, to see that f2(Λ) +Zn
S = Qn

S , 
recall that f2(Λ) is dense in Qn

S by Lemma 6.5, so for each x ∈ Qn
S we can choose 

y ∈ f2(Λ) arbitrarily close to x, in particular such that x − y ∈ Zn
S .

Furthermore, we note that Λ′ is discrete in Rn × Zn
S , and thus a lattice. Since f ′

1 is 
a coordinate projection, it is open. Moreover, its kernel Zn

S is compact. It follows from 
Lemma 2.1 (ii) that f ′

1(Λ′) is a lattice in Rn, and therefore it is isomorphic to Zn. By 
injectivity, Λ′ is also isomorphic to Zn.

We now wish to define automorphisms A∞ of Rn and Ap for p ∈ S such that the 
product automorphism A on An

Q,S takes Λ′ to Zn.
Clearly, we find A∞ such that A∞(f1(Λ′)) = Zn ⊆ Rn and thus

Λ ∩ (Rn × Zn
S) = {(A−1

∞ k, ϕ(k)) : k ∈ Zn}.

Recall that f1 is injective, so such a function ϕ exists and is clearly a homomorphism. Let 
p ∈ S and let hp be the projection of Zn

S onto Zn
p . Since f2(Λ) is dense in Qn

S and Zn
S is 

open in Qn
S , we must have that ϕ(Zn) = f2(Λ) ∩Zn

S is dense in Zn
S . Since hp is continuous, 

hp(ϕ(Zn)) is dense in Zn
p . Set vi := hp(ϕ(ei)), where ei denotes (0, . . . , 0, 1, 0, . . . , 0). It 

follows that {
∑n

i=1 civi : ci ∈ Z[ 1p ]} is dense in Qn
p , and hence the span of {vi}ni=1 over 

Qp coincides with Qn
p .

Therefore, {vi}ni=1 is linearly independent in Qn
p , and there exists an automorphism 

Ap of Qn
p such that Ap(vi) = ei.

We finally apply Lemma 6.6 to the automorphism A = (A∞, (Ap)p∈S) of AQ,S . �
As a consequence of Proposition 6.7, we obtain the following description of the quotient 

AK,S/RK,S in the case when K is a number field.
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Proposition 6.8. Let K be a number field and S a set of places. Then

AK,S/RK,S
∼= R̂K,S .

Moreover, every lattice in AK,S is of the form ϕ(RK,S) for some ϕ ∈ Aut(AK,S).

Proof. Every nontrivial character γ ∈ R⊥
K,S induces an isomorphism

γ̂ : AK,S
∼= ÂK,S

given by γ̂(x)(y) = γ(xy), see [39, Proposition 7.1]. Clearly, γ̂ takes RK,S to a subgroup 
of R⊥

K,S . Let Fγ be the inverse image of R⊥
K,S under γ̂. Then [Fγ : R⊥

K,S ] < ∞. Indeed, 
the quotient group

Fγ/RK,S

is compact since it is a closed subgroup of AK,S/RK,S which is compact by Proposi-
tion 6.3. Moreover, R⊥

K,S is isomorphic to the dual group of AK,S/RK,S , so it is discrete, 
and thus Fγ is discrete. Therefore, the quotient is both compact and discrete, hence it 
must be finite.

By Lemma 2.1 (iii) it follows that Fγ is a lattice in AK,S . Since AK,S is isomorphic 
to An

Q,S for some natural number n by Proposition 6.2, we can use Proposition 6.7 to 
find an automorphism of AK,S that takes RK,S to Fγ . Hence,

AK,S/RK,S
∼= AK,S/Fγ

∼= ÂK,S/R
⊥
K,S

∼= R̂K,S .

The last statement follows by invoking Proposition 6.4. �
6.3. Gabor frames on the adeles of a number field

We begin with an existence result for Gabor frames over certain lattices in An
Q,S. We 

will need the following lemma:

Lemma 6.9. Let G be a locally compact abelian group containing a compact open subgroup 
K, with Haar measure μ normalized so that μ(K) = 1. Then 1K is an element of S0(G), 
and for x ∈ G, ω ∈ Ĝ we have that

〈1K , π(x, ω)1K〉 =
{

1, if x ∈ K and ω ∈ K⊥

0, otherwise.

Proof. We have that

〈1K , π(x, ω)1K〉 =
∫
1K(t)ω(t)1K(t− x) dt
K
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=
∫

K∩(K+x)

ω(t) dt. (59)

If x /∈ K, then K ∩ (K + x) = ∅, so (59) becomes zero. Suppose therefore that x ∈ K. 
Then K ∩ (K + x) = K, so that (59) becomes

〈1K , π(x, ω)1K〉 =
∫
K

ω(t) dt. (60)

This is equal to 1 if and only if ω ∈ K⊥ and zero otherwise.
Finally,

∫
Ĝ

∫
G

|〈1K , π(x, ω)1K〉|dx dω =

⎛⎝∫
G

1K(x) dx

⎞⎠
⎛⎜⎝∫

Ĝ

1K⊥(ω) dω

⎞⎟⎠ = μ(K)μ̂(K⊥) = 1

(61)
which shows that 1K ∈ S0(G). �
Theorem 6.10. Let S be a set of prime numbers. Let g, h ∈ S0(Rn), and let A∞ ∈
GL2n(R). Set Ap = I for every p ∈ S, and let A = (A∞, (Ap)p∈S) be the automorphism 
of An

Q,S as in Proposition 6.4. Set g̃ = g ⊗p∈S 1Zn
p

and h̃ = h ⊗p∈S 1Zn
p
. Then g̃, ̃h ∈

S0(An
Q,S), and the following are equivalent:

(i) The Gabor systems G(g, A∞Z2n) and G(h, A∞Z2n) form dual frames for L2(Rn).
(ii) The Gabor systems G(g̃, AR2n

Q,S) and G(h̃, AR2n
Q,S) form dual frames for L2(An

Q,S).

Proof. First of all, K :=
∏

p∈S Zn
p is a compact open subgroup of Qn

S, so ⊗p∈S1Zn
p

= 1K
is in S0(Qn

S) by Lemma 6.9. It follows that g̃ = g ⊗ 1K ∈ S0(An
Q,S) since g ∈ S0(Rn)

and 1K ∈ S0(Qn
S), and similarly for h̃.

By the Wexler–Raz relations from Proposition 3.4 (ii), we have that G(g̃, A(R2n
Q,S))

and G(h̃, A(R2n
Q,S)) form dual frames for L2(An

Q,S) if and only if

〈g̃, π(z)h̃〉L2(An
Q,S) = vol(AR2n

Q,S)δz,0 (62)

for all z ∈ (AR2n
Q,S)◦. As in (32) we can write (AR2n

Q,S)◦ = A◦R2n
Q,S , where A◦

∞ =
J(At

∞)−1J t for J the standard symplectic 2n × 2n matrix and A◦
p = I for all p ∈ S, cf. 

also [16, p. 2014]. Using the tensor product form of g̃ and h̃, the inner product in (62)
translates into

〈g̃, π(A◦q)h̃〉L2(An
Q,S) = 〈g, π(A◦

∞q)h〉L2(Rn)〈1K , π(q)1K〉L2(Qn
S)
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for all q ∈ R2n
Q,S . By Lemma 6.9, the last inner product above is equal to 1 if and only 

if q ∈ Z2n
p for each p ∈ S and 0 otherwise. Since Z2n

p ∩ R2n
Q,S = Z2n for each p ∈ S, we 

have that

〈g̃, π(A◦q)h̃〉L2(An
Q,S) =

{
〈g, π(A◦

∞q)h〉L2(Rn), if q ∈ Z2n

0, otherwise.
(63)

From the Wexler–Raz condition for the Gabor systems G(g, A∞Z2n) and G(h, A◦
∞Z2n), 

we have that they form dual frames if and only if

〈g, π(A◦
∞q)h〉L2(Rn) = vol(A∞Z2n)δq,0, q ∈ Z2n.

Observing that vol(AR2n
Q,S) = | det(A∞)| = vol(A∞Z2n), we see from (63) and (62) that 

the Wexler–Raz conditions for the two pairs of Gabor systems to be dual frames are 
equivalent. This finishes the proof. �

There are many known examples of Gabor frames for L2(Rn). Using Theorem 6.10, 
one can obtain examples of Gabor frames for L2(An

Q,S) for any set of primes S. Setting 
n = 1 and setting S in Theorem 6.10 to be either the set of all primes or the set containing 
a single prime p, one obtains [14, Theorem 4.2].

Let K be any number field, let S be a set of finite places of K and let n ∈ N. 
Then K is by definition a finite extension of either Q. By Proposition 6.2, we have that 
An

K,S
∼= Adn

Q,S , where d = [K : Q]. Consequently, we can apply Theorem 6.10 with dn in 
place of n to get the existence of a Gabor frame for An

K,S .
Our perturbation result for Gabor frames over LCA groups (Theorem 4.6) applies to 

the setting of the n-dimensional S-adeles over the rationals. We state the results for this 
group below, where we use the description of the automorphism group of Aut(An

Q,S) as 
in Proposition 6.4.

Theorem 6.11. Let S be a set of primes, and let n ∈ N. The set

{
(g,A∞, (Ap)p∈S) ∈ S0(An

Q,S) × Aut(An
Q,S) : G(g,ARn

Q,S) is a Gabor frame

for L2(An
Q,S)}

}
is open in S0(An

Q,S) × Aut(An
Q,S).

For the case of the S-adeles over a number field, we obtain the following Balian–Low 
theorem as a consequence of Theorem 5.1.

Theorem 6.12. Let K be a number field, and let G = An
K,S. If Δ is a lattice in G × Ĝ

with vol(Δ) = 1 and g ∈ S0(G), then G(g, Δ) cannot be a frame for L2(G).
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Proof. By Proposition 6.2, G is isomorphic to

Adn
Q,S

∼= Rdn ×
∏Zdn

p

p∈S

Qdn
p

as a topological group, where d = [K : Q]. The identity component of G is

G0 = Rdn × {0}

which is noncompact. The theorem then follows from Theorem 5.1. �
6.4. Gabor frames on the adeles of a function field

In this subsection, we investigate the setting where K = Fq(t). The completion of 
Fq(t) with respect to the infinite place from Proposition 6.1 is isomorphic to Fq((1/t)), 
the ring of formal Laurent series in the indeterminate 1/t [39, p. 298 ex. 3(b)]. The ring 
of integers of K is Fq[t], the ring of polynomials in the indeterminate t.

If we choose S = ∅, then AK,∅ = K∞ = Fq((1/t)) and RK,∅ = O = Fq[t]. We can 
write any formal Laurent series f(t) in the indeterminate 1/t as

f(t) = · · · + a−2

t2
+ a−1

t
+ a0 + a1t + a2t

2 + · · · + amtm

for some natural number m and coefficients aj ∈ Fq. From this we see that additively 
speaking, the locally compact group Fq((1/t)) is isomorphic to

Fq((1/t)) ∼=
( −1∏

k=−∞
Fq

)
×
( ∞⊕

k=0

Fq

)
.

Here, the term 
∏−1

k=−∞ Fq corresponds to the coefficients of f(t) with negative index, 
and the term ⊕∞

k=0Fq corresponds to the coefficients with nonnegative index. Let D =
⊕∞

k=0Fq. Then D is a direct sum of discrete groups, hence a discrete group. Its dual 
group is the compact group

D̂ ∼=
∞∏
k=0

F̂q
∼=

∞∏
k=0

Fq,

which shows that Fq((1/t)) ∼= D × D̂ as a topological group.
The following proposition shows that contrary to the case of the adeles over a number 

field, one does not obtain a Balian–Low theorem for the adeles of a function field.

Proposition 6.13. Let K be a global function field, let S be a set of finite places and let 
n ∈ N. Then the higher dimensional S-adeles An

K,S has compact identity component. 
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Hence, for any lattice Λ in An
K,S, there exists g ∈ S0(An

K,S) such that G(g, Λ × Λ⊥) is 
an orthonormal basis for L2(An

K,S).

Proof. Since K is a global function field, it has positive characteristic, say p. Any com-
pletion Kv of K with respect to a place v will also have characteristic p. By [39, Theorem 
4.12], a locally compact field of characteristic p is isomorphic to the field of Laurent series 
in one indeterminate over a finite field, say Kv

∼= Fqv((1/t)) with qv = prv for some f . 
As we saw above, the subgroup of Laurent series 

∑
k akt

k with ak = 0 for k ≥ 0 sits as 
a compact open subgroup Hv inside Fqv ((1/t)).

Let v1, . . . , vk be the infinite places on K. It follows that H∞ := Hv1 × · · · ×Hvk is 
a compact open subgroup of K∞ = Kv1 × · · · ×Kvk . Furthermore, HS :=

∏
v∈S Ov is a 

compact open subgroup of KS =
∏Ov

v∈S
Kv. Thus Hn

∞ ×Hn
S is a compact open sub-

group of An
K,S. By Theorem 2.10, it follows that An

K,S has compact identity component. 
By Theorem 5.6, the conclusion of the proposition follows. �

For e.g. G = Fq(t) and S = ∅, we can be more specific than in Proposition 6.13. As 
already explained, in this case G = D × D̂ where D = ⊕∞

k=1Fq, so G is already globally 
a product of a discrete and a compact group. Therefore, we can appeal to Lemma 5.3 to 
get a specific orthonormal basis over the lattice Λ × Λ⊥ where Λ = D × {0} in G. The 
window g is given by g(d, c) = δd,0 for d ∈ D, c ∈ D̂, i.e.

g((ak)k∈N , (bk)k∈N) =
{

1, if ak = 0 for all k ∈ N,
0, otherwise,

for (ak)k ∈ ⊕kFq and (bk)k ∈
∏

k Fq. Applying Theorem 6.10, we can now construct 
Gabor frames over An

Fq(t),S for sets S of finite places of Fq(t).
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