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a b s t r a c t

A tournament is an orientation of a complete graph. It is well-known that any tourna-
ment has a vertex from which every other vertex can be reached by a path of length
at most 2. Such a vertex is called a king or a 2-king. It is also known that to find such
a vertex, Ω

(
n4/3

)
queries (to the adjacency matrix) are necessary and O

(
n3/2

)
probes

are sufficient. It is a long standing open problem to narrow this gap between the upper
and lower bound.

We first show that
– the adversary Ajtai et al. (2016) and Shen et al. (2003) used to prove the known

Ω
(
n4/3

)
lower bound cannot be used to prove a better lower bound, by giving an

algorithm that achieves the bound against the same adversary;
Clearly in any tournament there is a vertex from which every other vertex is

reachable by a path of length at most d for any d ≥ 2 and such a vertex is called a
d-king. The bounds for finding a 2-king have been generalized (Ajtai et al., 2016) to
obtain generalized upper and lower bounds to find a d-king. We show that

– our algorithm against the weak adversary works against such an adversary for
finding d-kings too. More generally, if we can find a 2-king in O

(
n4/3

)
time, then we

can find a d-king in asymptotically optimal time for any d ≥ 2. This was conjectured in
an earlier paper.

Then we address the complexity of finding a set of d-kings, i.e. a small subset of
vertices such that every vertex is reachable from one of them by a path of length at
most d. Such a set is called a d-cover.

– We generalize the lower bound for finding a d-king to give a lower bound for
finding k sized d-covers. We complement it with an algorithm matching this bound
for k ∈ Ω(lg n). For d = 1 for example, our results imply that we can find a
(lg n− lg lg n+ k)-sized dominating set in O

(
n2/k

)
time and that this bound is optimal.

Finally we develop a dynamic data structure so that whenever a new vertex is added
to the tournament, we can find a king of the new tournament in O(

√
n) time.

©2022 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY
license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction and motivation

A tournament is a directed graph in which there is exactly one directed edge between every pair of vertices. As they
odel many practical scenarios (game tournaments, voting strategies), tournaments are well-studied in structural and
lgorithmic graph theory. Various structural and algorithmic properties of tournaments are known and Moon’s [15] early
onograph on this subject lead to much subsequent work in the area.
It is well-known that every tournament has a ‘center’ or a king vertex, i.e. a vertex from which every other vertex can

be reached by a directed path of length at most 2 (a maximum outdegree vertex of the tournament is one such vertex).
A king is also called a 2-king.

There are two different papers written several years apart with almost identical upper bound and lower bound
strategies for finding a king [1,18]. Here basically one counts the number of probes (or edge-queries) to the adjacency
matrix of the tournament. Both these papers show an upper bound of O(n

√
n) time and a lower bound of Ω(n4/3) time to

ind a king in a tournament. Closing the gap between the upper and lower bound has been mentioned as an interesting
pen problem. We address this problem in the paper. While we do not quite close the gap, we make several advances.
Our first result is that to improve the lower bound, we need a different adversary than used in these papers. The

ower bound adversary essentially answers an edge query by favoring the vertex (i.e. increasing its outdegree) with lower
utdegree till that time. We give an O(n4/3) algorithm against this adversary. As the adversary can answer arbitrarily when
he outdegree between the two vertices are the same, we need to play against this adversary carefully to prove our upper
ound.
Ajtai et al. [1] generalized the notion of a king to a d-king (for any d ≥ 2). A d-king is a vertex from which every vertex

s reachable by a path of length at most d. Ajtai et al. showed that Ω(n1+1/(2d−1)) probes are necessary and O(n1+1/(3·2d−2−1))
re sufficient to find a d-king in an n vertex tournament. Our algorithm against the adversary for finding a 2-king also
orks to give an optimal algorithm against the same adversary for finding a d-king. More generally we show that if a
-king can be found in O(n4/3) time, then a d-king can be found in optimal O(n1+1/(2d−1)) time.
Then we address the complexity of finding not just one king, but a small subset of vertices such that every other vertex

is reachable by a path of length at most 2 from one of these vertices. More generally, a d-cover is a set of vertices S such
that every other vertex in the tournament can be reached from some vertex in S by a directed path of length at most d.
A 1-cover is simply a dominating set, and d-covers are referred to as distance-d dominating sets.

It is well-known that every tournament has a dominating set of size at most ⌈lg n⌉ and can be found in O(n2) time.
In fact, one can guarantee existence of a slightly smaller dominating set that can also be found in the same time. There
exists a dominating set of size g(n) = lg n − lg lg n + 2 in a tournament on n vertices [12] (see also Section 2.2). Thus,
the minimum dominating set can be found in nO(lg n) time and hence it is unlikely to be NP-complete. Papadimitriou
and Yannakakis [16] show that finding the smallest dominating set in a tournament is complete for a complexity class
LOGSNP . It is also known that there are tournaments where the minimum dominating set size (also called the domination
number) is Ω(lg n) [2,10] (see also [14]) using which it has been shown that finding a k-sized dominating set is complete
for the parameterized complexity class W [2] (where the parameter is the solution size) and hence, even an f (k)nO(1) time
algorithm is unlikely for any computable function f [9].

We consider the complexity of finding dominating sets of size more than lg n − lg lg n + 2 and more generally, the
complexity of finding d-covers. Using the lower bound adversary that favors the lower degree vertex, we can show a lower
bound for finding k-sized d-covers. We also provide a matching upper bound for finding such d-covers for k ∈ Ω(lg n).
More specifically, we show that lg n− lg lg n+ 2+ k sized d-covers can be found in O(k(n/k)1+1/(2

d
−1)) time for any d ≥ 1

and k ≥ 1. We also prove a matching adversary based lower bound to show that this bound is optimal for k > ϵ lg n for
any ϵ > 0. This, in particular, implies that a dominating set of size k > lg n can be found in optimal O(n2/k) time.

We also discuss the complexity of finding a special king vertex called a Banks vertex which has applications in
social choice theory [6]. A Banks vertex is a source of a transitive subtournament of vertices, who dominate the entire
tournament. I.e. let S be a subset of vertices of the tournament such that the induced tournament on S is acyclic, and S
is a dominating set of the tournament. Clearly the source vertex of the induced subtournament on S is a king, and that is
called a Banks vertex. We observe in this paper that the known O(n

√
n) algorithm to find a king, actually finds a Banks

ertex.
In social choice theory, the set of all kings in a tournament is referred to as an uncovered set. See [8] for a recent

esult that shows that finding the set of all kings or Banks points in a tournament requires Ω(n2) probes. A similar, but
slightly different kind of result has been known for finding a sorted sequence of kings. A sorted sequence of kings

s in a tournament on n vertices is a sequence of vertices v1, v2 . . . vn, such that vi dominates vi+1 and vi is a king in
ub-tournament Tvi = {vi, vi+1 . . . vvn}. It has been known [18] that to find a sorted sequence of kings, Θ(n

√
n) probes

re necessary and sufficient.
Finally we discuss the problem of finding a king or a Banks vertex in an incremental setting. I.e. given a tournament

e can maintain some invariants of the tournament so that when a new vertex is added to it, we can find a king or a
anks vertex in O(

√
n) time.

Organization of the paper
In Section 2, we describe the necessary terminology and some basic results on tournaments that we use in the paper.

In Section 3, we describe our optimal algorithm against the known lower bound adversary. In Section 4, we look at
241
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d-covers and describe several upper and lower bounds for finding d-kings and d-covers in a tournament. Section 5
shows an adversarial strategy which forces Ω(n2) time to verify whether a vertex is a king. In Section 6, we give an
incremental (vertices can be added to the tournament, but not deleted) dynamic algorithm to find a king or a Banks point
in tournament. We conclude with pointers to some open problems in Section 7.

2. Preliminaries

2.1. Definitions and notation

Let T = (V , E) be a tournament (complete directed graph). A dominator in T is a vertex u ∈ V such that for any other
ertex v ∈ S, (u, v) ∈ E. A king in T is a vertex u ∈ V such that for any other vertex v ∈ V there is a directed path of

length at most 2 from u to v. We denote by V (T ) the vertex set of T , and by E(T ), the edge set of T . |T | denotes the order
of T , i.e. the size of V (T ), and for a subset S ⊆ V (T ), T [S] denotes the subtournament of T induced by S. A tournament
r a subtournament is transitive if it has no directed cycle; i.e. there is an ordering of the vertices such that every edge
s going from a smaller vertex to a larger vertex.

Let d ∈ N and S ⊆ V . S is called a d-cover of T if for every vertex v ∈ V \ S, there is vertex u ∈ S such that there is a
irected path of length at most d from u to v.
A 1-cover is also called a dominating set. A king by itself is a 2-cover. If a d-cover is of size 1, we call the unique

lement in the set a d-king. Let u ∈ V be a vertex. An out-neighbor of u is a vertex v ∈ V such that (u, v) ∈ E; u is said
to dominate v. Similarly, an in-neighbor of u is a vertex v ∈ V such that (v, u) ∈ E. For any v ∈ V (T ), N+(v) denotes
he set of out-neighbors of v, and N−(v) denotes the set of its in-neighbors. We also define deg+(v) = |N+(v)|, and
eg−(v) = |N−(v)|.
Given a subset S of vertices, performing a round robin tournament on S refers to the process of querying all possibles

dges between every pair of vertices in S to know their orientations. Using the same tournament analogy, we sometimes
efer to the out-neighbors of a vertex v as vertices that lose to v, and to its in-neighbors as vertices that win against it. In
ther words, if there is an edge from u to v, we say that u wins against v, and v loses to u.
We assume that the vertex set of the tournament is {1, 2, . . . , n} and is given in the form of an adjacency matrix where

he (i, j)th entry denotes the direction of the edge between i and j. By an edge query or an edge probe, we mean a probe
o the adjacency matrix.

To keep the notation simple, we sometimes omit ceilings and floors on fractions when we actually mean integers,
ypically on the sizes of the vertex subsets we handle. This does not affect the asymptotic analysis. When the term ‘‘degree"
s used in context of directed graphs we refer to the out-degree of a vertex.

.2. Some known results we use

In this section, we capture some elementary results about the nature and the complexity of finding kings, that are
sed later in the paper.

emma 1 ([13]). Any tournament has a king vertex (a vertex from which every other vertex is reachable by a path of length
t most 2). In particular, a maximum degree vertex of the tournament is a king.

emma 2 ([13]). Let T be a tournament and v ∈ V (T ). If a vertex u in N−(v) is a king in T [N−(v)], then u is a king in T .

roof. The vertex u reaches every vertex in N+(v) through v. Every other vertex in T is reachable from u by a directed
ath of length at most 2 as it is a king in T [N−(v)]. □

The above lemma can be used to give a simple algorithm to find a king.

simple algorithm. Pick any vertex v ∈ V and find all its out-neighbors in V . Remove v, as well as all its out-neighbors
n V from V . Repeat this process till V becomes empty, in which case the last picked vertex is a king. The algorithm takes
(n2) time.

emma 3. For a tournament of order n a king can be found in O(n2) time.

Shen et al. [18] (see also [1]) gave a better algorithm taking O(n
√
n) time which uses the following simple lemma. The

emma follows from the fact that in a tournament, the sum of the outdegrees is n(n− 1)/2.

emma 4 ([12]). In any tournament T of order n, there is a vertex with outdegree at least (n−1)/2 and a vertex with indegree
t least (n− 1)/2 and such vertices can be found in O(n2) time.

emma 5 ([1,18]). For a tournament of order n, a king can be found in O(n
√
n) time.
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Proof. The algorithm first picks an arbitrary set of vertices of size
√
n and performs a round-robin tournament on it. Then,

it picks a vertex (say v) of maximum outdegree (which is at least
√
n/2 by Lemma 4) in the set, and finds its out-neighbors

n the entire tournament. Next, it removes v and all its outneighbors from V , and repeats the process until V has less
han
√
n vertices in it. At this point, the algorithm uses the routine of Lemma 3 and finds a king in O(n) time. It is easy

o see that the king in the final set is a king for the entire tournament by Lemma 2 and that the algorithm takes O(n
√
n)

ime. □

anks point
A Banks point is a king vertex with some special properties and has been studied extensively in social choice theory,

here they are useful in determining winners in certain types of competition [6].

efinition 1 (Banks Point, Banks Set [6]). Let T = (V , E) be a tournament. A vertex v ∈ V is called a Banks point if there
s a sequence of vertices (v1, v2, . . . , vk = v) such that

1. vi dominates vj, for all 1 ≤ j < i ≤ k, and
2. {v1, . . . , vk} is a dominating set for G.

The Banks set for T is the set of all Banks points in T .

From the above definition, it is clear that S = {v1, . . . , vk} induces a transitive subtournament of T . Also, vk = v
ominates all other vertices in S. Since S is a dominating set, all vertices in V are reachable from vk by a directed path of

length at most 2. Thus, vk is a king. However, not every king is a Banks point [17].
Note that the algorithm for finding a king in Lemma 3 actually finds a Banks vertex as the last vertex dominates all

the vertices picked up in the previous iterations and together will all of them, it dominates the entire tournament. It
is also not hard to see that Lemma 5 also actually finds a Banks point as the sequence of vertices found in the phases
of elimination form a transitive subtournament. These vertices which form the transitive tournament are of size O(

√
n).

hen in the last subtournament (which is also of size O(
√
n)), where every vertex dominates the vertices picked earlier,

e apply Lemma 3 to find a king vertex, which actually finds a Banks vertex, which gives us the following lemma.

emma 6. For a tournament of order n, a Banks vertex can be found in O(n
√
n) time, and the number of vertices forming the

ransitive tournament is O(
√
n).

Dominating sets
The following result is immediate from Lemma 4. We simply find a vertex in the tournament that dominates at least

(n− 1)/2 other vertices, include it in the dominating set and recurse on the in-neighbors of the vertex.

Theorem 1 ([14]). For any tournament of order n, a dominating set of size at most ⌈lg n⌉ can be found in time O(n2).

There is also a tighter upper bound which is probably not well-known [12], we give the proof here for completeness.

Theorem 2. In any tournament T = (V , E) of order n, a dominating set of size at most lg n − lg lg n + 2 exists, and can be
ound in time O(n2).

roof. We proceed as in the case of Theorem 1, but bail out of the recursion after ⌈lg n− lg lg n⌉+ 1 steps. At this point,
he partial dominating set D found has at most ⌈lg n− lg lg n⌉ + 1 vertices, and the remaining subtournament R (whose
vertices are yet to be dominated) has at most n/2lg n−lg lg n+1 < (lg n)/2 vertices. By definition, R dominates all of D.

Now, by looking at the out-neighborhood of V (R) in V \ D we check (in O(n2) time) whether V (R) dominates all of
V \D. If so, we output V (R), whose size is at most (lg n)/2. Otherwise, there is a vertex x in V \ (D∪ V (R)) that dominates
he vertices of R. In this case, we output D ∪ {x} as the dominating set. Either way, the size of the dominating set output
s at most lg n− lg lg n+ 2. □

Central to the lower bound result in [1,18] for finding a king, is, the adversary that answers according to the pro-low
trategy defined below.

efinition 2 (Pro-Low Strategy). Let T be a tournament whose edge directions are determined by the following adversary
trategy for an algorithm that queries edges: when the edge uv is queried, it is assigned the direction u → v if
eg+(u) ≤ deg+(v), and u ← v otherwise. Here deg+(u) and deg+(v) denote the outdegree of u and v before the edge
uery is made.

The following lemma was used in the lower bound arguments.

emma 7 ([1,18]). Let T be a tournament and S ⊆ V (T ). Suppose an adversary answers edge queries involving vertices u, v ∈ S
sing the pro-low strategy, i.e., it compares out-degrees within T [S]. If a vertex v in S achieves deg+S (v) = t, then at least
(t + 1)/2 edge queries must have been made by the algorithm.
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3. Finding a king against a pro-low adversary

As mentioned in the introduction, it is known that O(n3/2) probes are sufficient and Ω(n4/3) probes are necessary to
ind a king in a tournament on n vertices. Narrowing this gap between upper and lower bound has been mentioned as an
pen problem in literature [1,18]. In this subsection, we take a look at the adversary strategy used in [1,18] and show that
here exists an algorithm which works specifically against their strategy and can find a king using O(n4/3) edge queries,
atching the lower bound given by their adversary.

heorem 3. If the adversary follows a pro-low strategy as described in Definition 2 then we can find a king in O(n4/3) time.

roof. Take a sample of 2n1/3 vertices from the input V and find a vertex v that dominates at least half of these vertices
such a vertex exists from Lemma 4) using a round-robin tournament on the sample. Remove v and all vertices that lose
o v (in that sample) from V , and add v to a set D. Repeat this process of sampling 2n1/3 elements and discarding elements,
nd adding elements to D, till there are at least 2n2/3

+ 1 and at most 3n2/3 elements remaining which we call R. The
umber of edge queries made up to this point is O(n4/3).
Notice that the vertices in D form a dominating set for all vertices in the input, except those in R. Let |D| = f and

R| = r . Clearly f < n2/3 < r/2. Arrange the vertices of D in non-decreasing order of their out-degrees. Let v1, v2, . . . , vf
e the vertices of D in that order. We shall probe edges between all vertices in D and all vertices in R in a certain order
hich shall be described below. This step also uses O(n4/3) queries, since D and R are both of size O(n2/3). The aim is to
emonstrate a vertex in R that wins against all vertices in D. Once we find such a vertex, we will be done as the following
emma shows.

emma 8. Let C be a non-empty set of vertices in R that dominate all vertices in D. Then a king of T [C], the induced
ubtournament on C, is a king for the entire tournament.

roof. Let x be a king of T [C]. Clearly x can reach all vertices of C in at most two steps. As x dominates every vertex of
, x can reach every vertex of V \ R in at most two steps. Now consider a vertex v in R \ C . As v /∈ C , v loses to some
ertex y of D. So x can reach v by a path of length 2 by passing through y. □

So the rest of the algorithm probes edges between R and D in such a way that the pro-low adversary is made to give
vertex in R that dominates all vertices in D.
Recall that v1, v2, v3 . . . vf is the set of vertices in D in non-decreasing order of their degrees. As we probe edges

etween vertices in D and those of R, some of the degrees of D will change, and if that happens, we rearrange the vertices
o that the vertices continue to be in non-decreasing order of their degrees.
We define a free win point in D as the maximum integer value p such that for all i ≤ p, deg(vi) ≥ i. By this definition,

e can deduce the following.

emma 9. If p is the free win point, then deg(vp+1) = p.

roof. As the vertices in D are in non-decreasing order of their degrees, deg(vp+1) ≥ deg(vp) ≥ p which implies that
eg(vp+1) ≥ p. But p+ 1 is not a free win point and so deg(vp+1) < p+ 1 from which it follows that deg(vp+1) = p. □

The following claim gives the importance of the notion of free win point.

emma 10. If p is the free win point, then any vertex v in R will, by default, win at least up to the vertex vp (if queried in
hat order) when played against a pro-low adversary.

roof. When i = 1, it is true, since all vertices in D have outdegree at least n1/3
≥ 1 and v has 0 wins before querying

ith v1. When edge (v, vi), i < p is probed v has exactly i− 1 wins since it has won all the i− 1 probes up to this point,
nd deg(vi) ≥ i. Hence, ∀i ≤ p, v will dominate vi. □

The following lemma is immediate from the lemma above.

emma 11. If the free win point p is |D|, then all vertices in R which have not queried their edges with any vertices in D will
in all vertices of D whenever the queries are made.

We probe every vertex of D with every vertex in R. After completing with one vertex of R, we simply choose another
ertex of R arbitrarily. However, we probe that vertex with vertices in D in a careful order. Now we explain the order in
in which edges are probed between a vertex v in R. We first probe v up to the free win point p, thus making v win

gainst all these vertices and obtain a degree of p. The queries after this point, depend on which of the following cases
appen.
244
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– There exists a vertex v′ in D such that degree(v′) > degree(vp+1) = p.
In this case, we play v with v′ to get degree p+ 1 (as degree of v is p and degree of v′ is more than p). Then v plays
with all vertices with degree p and v would lose to all of them while all of them including vp+1 will attain a degree
of p+ 1. Then v plays with all the remaining vertices in D.

– The vertex vp+1 is a maximum degree vertex in D. In this case, we simply query v′ with vp+1 and all other vertices
with the same degree. Note that as degree(v) would also be p when the first (and possibly even subsequent) queries
are made, the adversary may answer either way as the adversary answers arbitrarily in case of ties in the degrees.

Now we show the following about the sequence in D by which we probe vertices of R.

Lemma 12. Let x1, x2, . . . , xr be the vertices in R in the order in which they are probed against vertices in D. If the free win
point is p before xi has started probing with vertices in D, then by the time xi+1 has completed its round, the free win point
will be at least p+ 1 or we would have found a vertex that dominates all vertices of D.

Proof. The vertex xi will win with all vertices up to vp ∈ R by Lemma 10. If there is no vertex beyond vp, then xi is the
vertex that dominates all of D.

Otherwise, we argue based on various cases. If there is a vertex whose degree is more than deg(vp+1) = p, then the
algorithm probes with such a higher degree vertex, wins (due to the pro-low adversary) and then plays with all those
with degree p and loses to them (as it has a higher degree when it started playing with them). So all vertices with degree
p including vp+1 gains a degree and hence the free win point moves to at least p+ 1 as deg(vp+1) = p+ 1 ≥ p+ 1 now.

If vp+1 is the only maximum degree vertex, then one of two cases arises as the adversary can answer arbitrarily as
there is a tie in the degree of xi and vp+1. If xi wins, then it is a vertex that dominates all vertices of D, and otherwise
vp+1 gains an extra degree moving the free win point.

So the only case we are left to argue is that degree(vp+1) has the maximum degree but there is a set M of m > 1
vertices with the maximum degree. Here also the adversary can answer arbitrarily due to the tie between the degree
of xi and of the m vertices. If xi loses to all of them, then all vertices with degree p in D now have degree p + 1. Thus
degree(vp+1) changes to p + 1 and thus the free win point also changes to p + 1. Otherwise, observe that if xi wins any
one of the m vertices, then it gains a higher degree and hence will lose to subsequent vertices of M due to the pro-low
strategy. Hence xi can win at most one vertex of M and lose to rest of the vertices in M . After xi completes its round, one
of the m vertices of M will gain degree p+ 1 and all others remain with degree p. Now as there is a vertex with degree
more than p, due to the cases argued above, xi+1 from R will play with such a higher degree vertex before playing vertices
with degree p, and hence those with degree p including vp+1 will gain a degree and the free win point will advance to at
least p+ 1. □

The following claim follows from Lemmas 11 and 12 and the fact that |R| > 2|D| and every vertex in D starts off with
outdegree at least n1/3 and every vertex in R starts with outdegree 0.

Lemma 13. There exists a vertex in R that wins against all vertices of D.

Now the algorithm simply probes all edges between vertices in R and vertices in D, identifies the set of vertices that
dominate all of D (and the set is non-empty by Lemma 13) and returns a king among them. The fact that the returned
vertex is the king for the entire tournament follows from Lemma 8. The total number of edge queries made during the
entire course of the algorithm is clearly O(n4/3).

This concludes the proof of Theorem 3. □

4. Finding d-kings and d-covers

As described before a set S ⊆ V is called a d-cover of T if for every vertex v ∈ V \ S, there is vertex u ∈ S such that
there is a directed path of length at most d from u to v.

While we showed in the last section that the pro-low adversary is weak to provide an improved lower bound for
finding a king, here we show that it is still useful to find a lower bound for finding a set of vertices such that there is a
directed path of length at most 2 (or more generally d) to every other vertex from one of these vertices. We complement
the lower bound by providing an algorithm that achieves this bound for finding Ω(lg n) sized d-cover.

4.1. Lower bounds

Generalizing Lemma 7, Ajtai et al. [1] show that

Lemma 14 ([1]). When playing against a pro-low adversary, if an algorithm finds a vertex that reaches at least t vertices by
a path of length at most d for d ≥ 1, then at least Ω(t1+1/(2

d
−1)) edge queries must have been made.

Setting t = n gives the lower bound for finding a d-king. We generalize the above lemma to show
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Lemma 15. If an algorithm playing against the pro-low adversary finds a k-sized d-cover for some k, d ≥ 1, then it must have
ade at least k(n/k)1+1/(2

d
−1) edge queries.

roof. Suppose the algorithm returns a set of vertices C = {v1, v2, v3 . . . , vk} as the k sized d-cover of the entire
tournament. Perform a breadth-first search from the vertices of C with all vertices in C at level 0, those that have direct
edges from them at level 1 etc. The breadth-first search tree has d levels. Now, for each vertex in level i (from d to 1)
assign a unique vertex at level i− 1 from which there is a direct edge to it. This partitions the vertices into k sets, where
the ith set contains the vertex vi, and all vertices assigned to it from level 1, and all vertices assigned to those level 1
vertices from level 2 and so on. Thus we have k subtournaments T1, T2, . . .Tk induced on the partition, and let si be the
number of vertices in the sub-tournament Ti. Note that vi has an at most d-length path to every vertex in Ti and hence by
Lemma 14, the number of edge queries made in the tournament Ti is at least (si)1+1/(2

d
−1). Thus the total number of edge

queries done by all the vertices is at least
∑k

i=1[(si)
1+1/(2d−1)

]. As
∑k

i=1 si = n, we have that the number of edge queries
made is at least k(n/k)1+1/(2

d
−1) using Jensen’s inequalities [11] (as

∑k
i=1[(si)

1+1/(2d−1)
] attains its minimum when all the

si’s are the same as their average value which is n/k). □

For d = 1, we give a slightly different argument which maybe of independent interest.

Theorem 4. Let 1 ≤ k ≤ n. If an algorithm finds a dominating set of size at most k in a tournament of order n, then it makes
Ω(n2/k) edge queries to its input in the worst case.

Proof. We prove the result by an adversary argument. The adversary dynamically builds the input instance T = (V , E),
a tournament of order n. At all times, it maintains a partition V = S ∪ S ′ of the vertex set.

Initially S = V , S ′ = ∅ and deg+(v) = 0 for all v ∈ V . Consider the following invariant which the adversary maintains:

– For each v ∈ V , deg+S (v) < (n/3k)− 1.

Lemma 16. If |S| ≥ n/2 and D ⊆ V is a dominating set of T , then |D| > k.

Let v ∈ D. Then, by the invariant, v dominates at most n/3k vertices in S (as a vertex in S also dominates itself). Since
|S| ≥ n/2, we have

|D| ≥
n/2
n/3k

> 3k/2 > k.

his proves the claim.
The adversary uses the following strategy. When a new edge uv is queried, if u, v ∈ S, the adversary uses the pro-low

trategy and directs the edge from u to v if deg+S (u) ≤ deg+S (v), and from v to u otherwise. If u, v ∈ S ′, the adversary
rbitrarily directs the edge. If u ∈ S (resp. v ∈ S) and v ∈ S ′ (resp. u ∈ S ′), then the adversary directs the edge from v to
(respectively from u to v). This ensures that there are no edges directed from a vertex in set S to a vertex in set S ′.
After a query is answered, if a vertex v ∈ S satisfies deg+S (v) = ⌈n/3k⌉ − 1, v is moved with all its out-neighbors into

′. This ensures that the invariants always hold. It now suffices to show that to reach a stage where |S| < n/2, Ω(n2/k)
ueries must be made. Note that |S| shrinks in steps of ⌈n/3k⌉, i.e., its size only halves after O(3k) steps. At each step, a
ertex v with deg+S (v) = ⌈n/3k⌉ − 1 is moved into S ′. For a vertex in S to acquire a degree (in S) of ⌈n/3k⌉, Ω((n/3k)2)
ueries must be made (by Lemma 7 as we use pro-low strategy inside S). So the number of queries needed to halve the
ize of S is Ω(3k(n/3k)2) = Ω(n2/k).
Therefore in the worst case, any algorithm that finds dominating sets of size at most k makes Ω(n2/k) edge queries. □

orollary 1. If an algorithm finds dominating sets of size O(log n) in tournaments of order n, then it makes Ω(n2/ log n) edge
ueries to its input in the worst case.

heorem 5. Any algorithm that finds minimum dominating sets in tournaments makes Ω(n2/ log n) edge queries to its input
n the worst case.

roof. Since a minimum dominating set has the smallest size among all dominating sets, any algorithm that finds
inimum dominating sets in tournaments finds dominating sets of size at most log n, because of Theorem 1. By Corollary 1,

his implies that the algorithm makes Ω(n2/ log n) edge queries in the worst case.

.2. Upper bounds

In this subsection we provide algorithms to find d-covers that match the lower bounds proved in the last section, as
ong as the size of the d-covers is Ω(lg n).
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Finding a dominating set (1-cover) of size (k+ lg n− lg lg n+ 2)
We start with the following result for 1-cover (dominating set).

Theorem 6. A (k+ lg n− lg lg n+ 2) sized 1-cover in a tournament on n vertices can be found in O(n2/k) time.

roof. Let V be the input set of vertices. If k ≤ 2 apply Theorem 2. Otherwise, pick a subset of vertices of size 2(n/k)+ 1
nd find a vertex (say u) which dominates at least (n/k) vertices inside this subset using Lemma 4. This vertex can be found
sing O(n2/k2) time. Delete u’s out-neighbors add u to the dominating set. Now recurse on the remaining tournament as
ong as |V | ≥ 2n/k+ 1. Once |V | ≤ 2n/k, apply Theorem 2 and find a 1-cover of size lg n− lg lg n+ 2 for the remaining
ournament in O((n/k)2) time, and add these vertices to the output cover. The output cover is a 1-cover for the tournament,
f size at most k+ lg n− lg lg n+ 2. The total time taken is O((k− 2)(n/k)2 + (n/k)2) = O(n2/k). □

inding d-covers (d ≥ 2) of size (k+ lg n− lg lg n+ 2)
For d ≥ 2, the lower bound on the size of the d-cover is 1. We first make the following simple generalization of the

(n1+1/(3∗2d−2−1)) algorithm [1] to find a d-king to show the following.

heorem 7. In any tournament of order n, a d-cover of size k can be found in O(k(n/k)1+1/3(2
d−2
−1)) time.

roof. Partition the vertex set into k parts to get k sub-tournaments on roughly n/k vertices each. Now use the d-king
inding algorithm in [1] in each sub-tournament to find a d-king. The set of all these d-kings together form a k-sized
-cover. Time taken to find a d-king in n/k size tournament is O((n/k)1+1/(3∗2

d−2
−1)), thus the time taken to find a d-cover

f size k is O(k(n/k)1+1/(3∗2
d−2
−1)). □

In what follows, we give an improved algorithm for finding d-covers of size more than ⌈lg n⌉. We start with a lemma
imilar to Lemma 4 for 2-covers.

emma 17. In any tournament of order n, a vertex that reaches at least (n− 1)/2 other vertices via directed paths of length
t most 2 can be found in time O(n4/3).

roof. Let V be the vertex set of the tournament. Pick a subset of vertices of size 2n1/3
+ 1 and find a vertex (say u)

hich dominates at least n1/3 of those vertices. Take exactly n1/3 of u’s losers and remove them from V . Also add u to a
et of vertices called C . Repeat this process on the resulting V as long as |V | ≥ 2n1/3

+ 1. Once |V | < 2n1/3
+ 1, perform

round-robin tournament on all the vertices in C and find a vertex k that dominates at least (|C | − 1)/2 vertices using
emma 4. The size of C is at least n2/3

− n1/3
− 1.

Thus vertex k can reach at least n1/3(n2/3
−n1/3

−1)/2 = n/2− (n2/3
−n1/3)/2 vertices with path of length exactly two,

nd can reach (n2/3
− n1/3

− 1)/2 vertices with path of length 1. Thus the vertex k is king of at least (n− 1)/2 vertices.
The total number of edge queries made is O(n4/3), since round robin on set C costs O(n4/3) edge queries, as well as the

ime taken to create the set C is O(n2/3(n1/3)2) = O(n4/3). □

It is interesting to note that Yao [19] conjectured that finding a partial order Smk (an element which has k elements less
han itself and m elements greater than itself) in a total order of size n cannot be done faster even if extra elements are
iven. Lemma 17 shows that finding a king of n elements becomes substantially easier if 2n elements are given. As we
o not see any connection at the problem level, we are not sure whether our algorithm provides any insight to address
ao’s conjecture.

orollary 2. A (lg n− lg lg n+ 2) sized 2-cover in a tournament on n vertices can be found in O(n4/3) time.

roof. Use Lemma 17 to find a vertex v ∈ V which has a path of length at most 2, to at least (n − 1)/2 vertices (say
o the set C). Remove v and the vertices in C from V after adding v to the 2-cover set S and adding C to S ′, and repeat
his process on the remaining vertices, till the number of vertices in S is lg n − lg lg n + 1. At this point the number of
ertices remaining in V is at most (lg n)/2. Find the relation of all vertices with these (lg n)/2 with the vertices in S ′ using
(n lg n) queries. One of the two cases happen. Either some vertex v′ in S ′ dominates all vertices in V , in which case we
dd v′ to S and output it as the 2-cover, or no vertex can dominate all vertices in V , in which case V forms a dominating
et of size (lg n)/2 and we output as 2-cover, since any 1-cover is a valid 2-cover. This would give a lg n− lg lg n+2 sized
-cover. □

heorem 8. A (k+ lg n− lg lg n+ 2) sized 2-cover in a tournament on n vertices can be found in O(k(n/k)4/3) time.

roof. Take a subset of input vertices of size 2n/k from V . Using Lemma 17 find a 2-king u of at least half of these vertices
sing O((n/k)4/3) edge queries. Remove u from V and add it to the output set C , and remove all vertices in V that can

e reached by a path of length at most 2 from u. Recurse on the remaining tournament as long as |V | ≥ 2n/k. When
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|V | < 2n/k, find a lg n− lg lg n+2 sized 2-cover, by using O((n/k)4/3) edge queries using Corollary 2, and add this 2-cover
o the set C . The set C is a 2-cover for all the vertices in the tournament of size at most k + lg n − lg lg n + 2. The total
ime spent is O(k(n/k)4/3 + (n/k)4/3) = O(k(n/k)4/3). □

Now we generalize the above theorem for d ≥ 2.

emma 18. Let d ≥ 2 and k ≥ 1 be an integer. If a k-sized 2-cover can be found in O(k(n/k)4/3) time, then a k-sized d-cover
an be found in O(k(n/k)1+1/(2

d
−1)) time.

roof. We prove this by induction on d. For d = 2, there is nothing to prove. Let d ≥ 3. Assume that the lemma is true
or all integers from 2 to d− 1.

Let V be the set of vertices and s = (n/k)1/(2
d
−1). As d ≥ 3, n/s = n1−1/(2d−1)k1/(2

d
−1) > 3 + lg n (for large enough n),

nd so using Theorem 6 find a (n/s)-sized 1-cover of V using O(n2/(n/s)) = O(ns) time. Now find a k-sized (d− 1)-cover
or these n/s vertices using O(k(n/ks)1+1/(2

d−1
−1)) = O(ns) time using induction hypothesis. The resulting set is a k-sized

-cover of entire input, which is found in O(ns) = O(k(n/k)1+1/(2
d
−1)) time. □

Thus we have from Theorem 8, Lemma 18 and Theorem 6,

heorem 9. A (k+ lg n− lg lg n+ 2)-sized d-cover in a tournament on n vertices can be found in O(k(n/k)1+1/(2
d
−1)) time

or any k ≥ 1 and d ≥ 1.

By setting k = 1 in Lemma 18, we have

orollary 3. If a 2-king can be found in O(n4/3) time, then we can find a d-king in O(n1+1/(2d−1)) time.

The above corollary was mentioned as a likely possibility (without proof) in the conclusion of [1].
The following corollary follows from Lemma 18 and Theorem 3.

orollary 4. If the adversary follows a pro-low strategy as described in Definition 2 then we can find a d-king in O(n1+1/(2d−1))
ime.

The above lemma implies that we need a completely different adversary strategy to improve the lower bounds for
inding d-kings.

. Verification of kings

In this section, we deal with problem of verifying whether a given vertex is a king or not. One can easily verify in
(n2) time whether a given vertex is a king by running a standard breadth-first-search starting at the vertex and checking
hether every vertex is reachable by a path of length at most 2. We give an Ω(n2) lower bound for this problem. It is

nteresting to note that it is NP-complete [5] to verify whether a given vertex is a Banks point.

emma 19. Let T be a tournament of order n. Given a vertex v ∈ V (T ), it takes Ω(n2) edge queries to decide whether v is a
ing in T .

roof. Consider the following adversary strategy. The adversary arbitrarily fixes subsets A, B ⊆ V (T ) \ {v} such that
A| = ⌊(n− 1)/2⌋ and |B| = ⌈(n− 1)/2⌉, and then assigns edge directions such that N+(v) = B and N−(v) = A. The
emaining edge directions are assigned dynamically.

Suppose u ∈ A, w ∈ B, and the edge uw is queried. The following cases arise.

– There are other non-queried u–B edges: the adversary assigns the direction u→ w.
– All other u–B edges have been queried: the adversary assigns the direction w→ u.

For edges uw where u ∈ A and w ∈ A or u ∈ B and w ∈ B, the adversary answers arbitrarily. Note that v directly
eaches each vertex in N+(v) by a directed edge, and it can only reach vertices in N−(v) through vertices in N+(v). For
ny vertex u ∈ A, an algorithm cannot decide whether v can reach u until it queries all u–B edges, since the status of v

epends on how the adversary answers when the last u–B edge query is made. By the same token, the algorithm cannot
ecide whether v can reach all vertices of A unless it asks all edges between A and B.
Thus for every u ∈ A, ⌈(n− 1)/2⌉ queries must be made, i.e. a total of Ω(n2) queries must be made to determine

hether v is a king. □
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6. Finding kings in the incremental dynamic setting

In the incremental dynamic setting, we start with a tournament, and the adversary provides a vertex at a time, and
he task is to find a king of this new tournament after a new vertex is added to it without starting from scratch. We give
n O(
√
n) algorithm to determine a king under vertex additions. We assume that no vertex is deleted.

The algorithm maintains the following invariants/data:

1. A transitive subtournament on a subset D = {v1, v2, . . . , vk} of vertices. For all j > i, vj dominates vi. Let V ′ be the
set consisting of D and all vertices dominated by D. Then vertex vk is a Banks point of T [V ′].

2. Let R = V \ V ′, and by definition of V ′, every vertex in R dominates all vertices of D.
3. |R| ≤ 2|D| + 1.
4. The outdegree of every vertex in R in the subtournament T [R].

When a new vertex v is added, it is probed with vertices in D, and if any vertex in D dominates v, then v is added to V ′
and we return the king declared earlier as the king for this new tournament too. Otherwise, v is added to R after probing
its edges with every vertex in R and updating the degree of every vertex in R including that of v. If R is non-empty, then
we output a maximum degree vertex in R as a king, otherwise, we return vk as the king. The correctness is obvious as a
maximum degree vertex x in R reaches all vertices in R by a path of length at most two by Lemma 1. The vertex x also
dominates all vertices of D and as D is a dominating set of V ′, x reaches all vertices in V ′ by a path of length at most two,
and hence x is a king of the entire tournament. If R is empty, then as D is a dominating set and as vk is the source of D,
clearly vk is a king. Since every vertex in R dominates every vertex in D, we maintain the transitive order when x is added
as the last vertex in D.

Clearly the first two invariants on D, V ′ and R are maintained but we need to maintain the (third) size constraint on R.
So when |R| = 2|D| + 1, we delete a maximum degree vertex x in R from R and add it to D, make it as vk+1 and moving
all vertices dominated by x from R to V ′. This step of moving vertices from R to D reduces the size of R by at least |D| and
increases the size of D by 1, thereby ensuring that the third invariant is always maintained.

Now to analyze the number of probes made, we argue that |D| is maintained as O(
√
n). As |R| ≤ 2|D| + 1 and as

he probes of the new vertex are made only with vertices in D and R, the claim that the number of probes made by the
lgorithm is O(

√
n) will follow.

Lemma 20. |D| ≤ 2
√
n+ 1.

roof. Let D = {v1, v2, . . . , vk} be the vertices ordered according to the order at which they are added to D. We first
claim that vk dominates at least k− 1 vertices (other than itself).

We prove this by induction on k. This is true for v1. Assume that k ≥ 2 and the claim is true for values up to k − 1.
Noticing the manner in which the algorithm proceeds, just before vk was added to D, |R| = 2(k−1)+1 and vk is a maximum
egree vertex in R and hence by Lemma 4, vk dominates at least (k−1) unique vertices (which are not dominated by any
ertex vj such that j < k as they were in the set R before being moved to set V ′) other than itself and the claim follows.
Thus (n − k) ≥ |V ′| ≥

∑k
i=1(i − 1) from which it follows that (n − k) ≥ (k − 1)k/2 from which it follows that

k ≤ 2
√
n+ 1. □

As a preprocessing step, we can simply find a Banks vertex using the algorithm of Lemma 6 and store the dominating
set D of V .

Now we count the time for other bookkeeping operations (beyond the number of edge probes). We notice that we
find a maximum outdegree vertex in R whenever R is non-empty. But as we maintain the outdegrees of every vertex in
R, this can be found in O(|R|) = O(

√
n) time.

When |R| = 2|D|+1, we delete a maximum outdegree vertex from R to D and delete from R all vertices dominated by
that vertex. Note that Ω(

√
n) vertices are deleted from R and due to that the outdegree of every other vertex in R may

need to be updated. This bookkeeping step could take O(n) time as every vertex in R now needs to recount its degree
n R. Notice that immediately after the step, |R| decreases by at least half its size while |D| increases by 1. Hence, this
xpensive step which takes O(n) time will not happen for another Ω(

√
n) steps. No new edges are queried in R when this

plit happens, and only the running time gets affected. Thus, the overall amortized time over a long sequence of insertions
or updating a king is O(

√
n). Thus we have

heorem 10. Given a tournament on n vertices, we can maintain a data structure in O(n
√
n) time so that when a new vertex

v is added to the tournament, we can output a king of the new tournament using O(
√
n) edge probes in the worst case and

(
√
n) other bookkeeping operations in the amortized case.

Note that the algorithm may not return a Banks vertex, as the maximum degree vertex of R (which is output as a king)
may not be a Banks point of R.

In what follows, we give a modification to the above algorithm where one can actually find a king in the new
tournament in O(

√
n) worst case time using some standard tricks. Basically when R is split, instead of moving the highest
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degree vertex to D immediately, we store that in a temporary set, and move it over roughly
√
n steps by which time, we

ill be able to update the outdegrees in the remaining vertices in R.
As before the algorithm maintains

1. A Banks vertex vk of a subtournament T [V ′] (V ′ ⊆ V ) of the given tournament, along with the vertices in the
transitive subtournament v1, v2, . . . , vk realizing the Banks vertex where vk is the source vertex, and the set
D = {v1, v2, . . . , vk} that dominates V ′.

2. We partition R = V \ V ′ into three disjoint sets R1, R2 and R3 and maintain the invariant that |R| ≤ 3|D| + 1 and
|R1| ≤ 2|D| + 1.

3. Whenever R2 ̸= ∅, |R2| ≥ |D| + 1 and it contains a vertex m that dominates all other vertices in R2. Whenever
R3 ̸= ∅, every vertex of R3, dominates m, the dominator vertex of R2.

4. We maintain the outdegree of every vertex in R with respect to the subtournament on vertices of R.
5. We maintain the outdegree of every vertex in R3 with respect to the subtournament on vertices of R3.

Initially R = R1 and R2 = R3 = ∅.
When a new vertex v is added to the existing tournament, it is probed as before with vertices in D, and if any vertex

n D dominates v, then v is added to V ′, in which case, the king of the tournament just prior to addition of v in the
ournament also is a king of the tournament after v is added and the algorithm terminates.

Otherwise, if v dominates all vertices in D, then v is probed with all vertices in R and the count of outdegrees of all
ertices in R (with respect to tournament on R) is updated.
If v is added to R it is added to exactly one of the sets R1, R2 or R3 using the following rules

– If R2 = ∅ and R1 < 2|D| + 1, then v is added to R1. The outdegree of vertices in R is updated.
– If R2 = ∅ and |R1| = 2|D| + 1, then we find the maximum degree vertex in R1 and label it as m. Move m and all

vertices dominated by m from R1 to R2, making R1 of size at most |D| (and thereby making R2 of size at least |D|+1).
If the new vertex v dominates m, v is added to R3, else it is added to R2. If R1 ̸= ∅, an arbitrary vertex is moved from
R1 to R3. The outdegree of vertices in R is updated. The outdegree of vertices in R3 (with respect to tournament on
R3) is maintained.

– If R2 ̸= ∅ and R1 ̸= ∅, then we probe v with m. If m dominates v, then we add v to R2, otherwise we add v to R3
after updating the outdegree of all vertices of R3 within the subtournament induced on R3. Regardless of whether
we add v to R2 or R3), we also remove an arbitrary vertex of R1 and move it to R3 and update the outdegrees of
vertices in R3(with respect to tournament on R3).

– If R2 ̸= ∅ and R1 = ∅, then we add m to D as v|D|+1, move all other vertices in R2 to V ′ and move all vertices in
R3 to R1. Now R contains only the vertices which were earlier in R3. The outdegrees of R3 were already maintained
anyway, and thus the outdegrees of every vertex in R is also maintained.

It is easy to see that the invariants 1, 3, 4, 5 are maintained. Now we prove that the invariant 2 is also maintained.
Notice that whenever R2 = ∅, |R1| < 2|D| + 1 and R3 are empty. Thus |R| ≤ 3|D| + 1 and |R1| ≤ 2|D| + 1.
When |R1| = 2|D|+ 1 vertices, R1 gets split and atleast |D|+ 1 vertices move from R1 to R2, and a new vertex is added

o either R2 or R3. Suppose d ≤ |D| is size of R1 at this point. Thus, in this case also R ≤ 3|D| + 1 and |R1| ≤ 2|D| + 1.
When R1, R2 ̸= ∅, it means that R1 has been split, and everytime a new vertex is added to R, it is either added to R2/R3

nd exactly one vertex in R1 moves to R2/R3. Before R1 becomes empty, at most d vertices have moved from R1 to R3 and
new vertices are added to R. Thus, whenever R2 ̸= ∅ and R1 = ∅, the maximum size of R is d(number of new vertices
dded to R)+d (number of vertices moved from R1 to R2/R3)+(2|D|+1−d) (number of vertices in R2∪R3 when R1 was last
plit) = 2|D| + 1+ d. Since d ≤ |D|, the maximum size of R is 3|D| + 1. No vertices are added to R1 whenever R1, R2 ̸= ∅.
hus |R1| ≤ d ≤ |D|. When R2 ̸= ∅ and R1 = ∅, at least |D| + 1 vertices are moved from R to V ′, which ensures that
R| < 3|D| + 1.

When R2 ̸= ∅ and R1 = ∅, all vertices of R2 are moved to V ′, and then vertices in R3 are moved to R1. Thus at least
D| + 1 vertices are moved from R to V ′, thus R ≤ 2|D|, and then the sets R2, R3 become empty. So |R| ≤ 3|D| + 1, and
R1| ≤ 2|D| + 1.

This proves that invariant 2 is always maintained.
Now to output a king vertex of the updated tournament, the algorithm checks if R is empty or not. Whenever R is

mpty, the Banks vertex of V ′ is the Banks point of entire tournament and thus it is also a king. Whenever R is non-empty,
maximum degree vertex in R (which happens to be a king of R) is also a king of entire tournament, which is always
aintained by the invariant 4. This proves the correctness of the algorithm.
The running time (including the number of queries made) for incrementally maintaining a king is clearly O(|D|) =

(
√
n) in the worst case. Thus, we have

Theorem 11. Given a tournament on n vertices, we can build a data structure in O(n
√
n) time so that when a new vertex v

s added to the tournament, we can output a king of the new tournament in O(
√
n) time in the worst case.

The algorithms in Theorems 10 and 11 always return a king, but they do not necessarily return a Banks point at every
step. This is because the maximum outdegree vertex of R may not dominate all vertices in R. We could maintain a Banks
250



A. Biswas, V. Jayapaul, V. Raman et al. Discrete Applied Mathematics 322 (2022) 240–252

m
a

e
n
v
f
t

L
a

p

e

d
t

R

B
a
a

T

T
i

point within R and return such a Banks point whenever R is non-empty. And when the size invariant on R is violated, it
akes sense to move the Banks point along with the dominated vertices to D, but then we move too many vertices to D
nd this requires care.
First recall that a Banks point is simply the source vertex of a transitive subtournament whose vertices dominate the

ntire tournament. So if we simply maintain the transitive subtournament (which maybe of large size) and compare the
ewly added vertex to the vertices of the subtournament, we can find a Banks point. If the new vertex dominates all
ertices of the transitive subtournament, then it is a Banks point and otherwise the earlier Banks point is the Banks point
or the new tournament. But as the size of the transitive subtournament can be Θ(n) this results in a linear time algorithm
o report a new Banks point.

emma 21. Given a tournament on n vertices, we can build a data structure in O(n2) time so that when a new vertex v is
dded to the tournament, we can output a Banks point of the new tournament in O(n) time in the worst case.

We shall now use this lemma together with the strategy in Theorem 11 to improve the bound for finding a Banks
oint to O(

√
n). In particular, we continue to maintain the invariants 1, 2 and 3 of Theorem 11. The invariants 4 and 5

are changed to the following conditions.

– Maintain a Banks point over all vertices in R in addition to maintaining the relation between every pair of vertices
in R.

– Maintain a Banks point over vertices R3 with respect to the subtournament on vertices of R3.

First, we notice that the algorithm in Theorem 11 always returns a Banks point whenever the set R is empty. Whenever
R is non-empty it only contains vertices which dominate all vertices in D. Thus any Banks point of R is a Banks point of
ntire tournament.
Initially R = R1 and R2 = R3 = ∅.
When a new vertex v is added to the existing tournament, it is probed with vertices in D, and if any vertex in D

ominates v, then v is added to V ′, in which case, the Banks point of the tournament just prior to addition of v in the
ournament also is declared as a Banks point.

Otherwise, if v dominates all vertices in D, then v is probed with all vertices in R and a Banks point of all vertices in
(with respect to tournament on R) is updated in O(|R|) = O(

√
n) time using Lemma 21.

If v is added to R it is added to exactly one of the sets R1, R2 or R3 using the exact same rules as used in Theorem 11.
ut there is one more step, which is performed in addition to the procedure followed in Theorem 11 while a vertex is
dded to R. Whenever R and R3 are not empty, a Banks point with respect to R and a Banks point with respect to R3 are
lso maintained. This takes an additional O(|R| + |R3|) = O(

√
n) time/edge queries by the use of Lemma 21.

The arguments for maintaining invariants, correctness and query complexity are similar to the one showed in
heorem 11, which gives us the following theorem.

heorem 12. Given a tournament on n vertices, we can build a data structure in O(n
√
n) time so that when a new vertex v

s added to the tournament, we can output a Banks point of the new tournament in O(
√
n) time in the worst case.

7. Conclusions and open problems

We have investigated the complexity of finding Kings, Banks points and d-dominating sets in tournaments. While
our algorithms are not very involved, they are strengthened by the fact that the algorithms to find above Ω(lg n) sized
d-dominating sets are provably optimal. We have also provided some additional insights into the complexity of finding a
d-king which may help narrow the gap between upper and lower bound for the complexity of the problem. We believe
that our work will spur further work on improving the bounds for finding a king in tournament. We end with some
specific problems from the work on tournaments.

– There is still a gap in the complexity of finding a d-king for d ≥ 2. We have shown in Corollary 3 that to improve
the upper bound, it is sufficient to improve the upper bound for finding 2-kings. Is the converse true? I.e. can we
improve the upper bound for finding d-kings (d > 2) even if a 2-king cannot be found in o(n

√
n) time?

– Are the bounds in Theorem 9 optimal for k < ϵ lg n, for d ≥ 2? For d = 1, we know that finding a k-sized dominating
set is W [2]-complete.

– For vertices u and v, let b(u, v) denote the number of vertices through which u can reach v by a directed path of
length 2. Then, a king z is strong [7] if the following condition is satisfied: b(z, v) > b(v, z) whenever v dominates
z. I.e. if v dominates z, the number of ways to reach v from z is more than the number of ways to reach x from
v through a directed path of length at most 2. It can be shown that a maximum degree vertex in a tournament is
a strong king. Can a strong king be found in o(n2) time? It is also known [3] that we need Ω(n2) time to find a
maximum degree vertex in a tournament.

– Can we show that the lower bound for finding a Banks point is Ω(n
√
n)?
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