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A B S T R A C T

Steady-state process models are common in virtual flow meter applications due to low computational
complexity, and low model development and maintenance cost. Nevertheless, the prediction performance of
steady-state models typically degrades with time due to the inherent nonstationarity of the underlying process
being modeled. Few studies have investigated how learning methods can be applied to sustain the prediction
accuracy of steady-state virtual flow meters. This paper explores passive learning, where the model is frequently
calibrated to new data, as a way to address nonstationarity and improve long-term performance. An advantage
with passive learning is that it is compatible with models used in the industry. Two passive learning methods,
periodic batch learning and online learning, are applied with varying calibration frequency to train virtual
flow meters. Six different model types, ranging from data-driven to first-principles, are trained on historical
production data from 10 petroleum wells. The results are two-fold: first, in the presence of frequently arriving
measurements, frequent model updating sustains an excellent prediction performance over time; second, in
the presence of intermittent and infrequently arriving measurements, frequent updating in addition to the
utilization of expert knowledge is essential to increase the performance accuracy. The investigation may be of
interest to experts developing soft-sensors for nonstationary processes, such as virtual flow meters.
1. Introduction

Many real-world, physical processes are nonstationary
(Sayed-Mouchaweh & Lughofer, 2012). To various degrees, process
conditions and properties change with time. Nevertheless, a common
assumption in process modeling is time independence, leading to
stationary, or steady-state, models (Granero-Belinchón et al., 2019).
Several arguments militate for the utilization of steady-state models.
Firstly, many processes are slowly time-varying making the stationary
assumption reasonable for short-term applications. Secondly, steady-
state models typically reduce the cost of model development and
maintenance (Solle et al., 2016). Thirdly, these models are often less
computationally heavy, which can increase the suitability in real-time
control and optimization applications (Gravdahl & Egeland, 2002). On
the other hand, the performance of steady-state models in nonstation-
ary conditions typically degrade with time and necessitates algorithms
that improve the handling of nonstationarity.

Virtual flow metering (VFM) is a soft-sensor technology that utilizes
process models for continuous prediction of the multiphase flow rate at
key locations in a petroleum asset (Toskey, 2012). In Fig. 1, a simplified
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illustration of the production system for one petroleum well is given
along with typically available sensor measurements for well-equipped
wells. A multiphase flow meter (MPFM) measures the phasic flow rates,
𝒒 = [𝑞gas, 𝑞oil, 𝑞water], through the production choke valve. Under well-
testing, the phasic flow rates can be measured using the test separator.
The total multiphase flow rate through the production system is 𝑄 =
𝑞gas + 𝑞oil + 𝑞water. A typical application of VFM is as a back-up to the
MPFM in case of failure (Varyan et al., 2015).

The underlying process of the VFM comprises the reservoir, wells,
pipelines, and processing facility. This process is nonstationary with
time-varying process conditions and properties (Guo et al., 2007). The
multiphase flow rate through the production system has a dynamic
nature with both fast and slow transients. Fast transients occur with
control changes, which induce pressure waves through the system, such
as the opening of the choke valve (Jansen, 2015). These are in the time
range of minutes to hours. Slow transients are caused by the reservoir
being depleted with time, which in turn results in a pressure declination
in the production system and a decreased production flow rate (Foss
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Fig. 1. A simplified illustration of the petroleum production system with typical sensor placements. A multiphase flow meter (MPFM) measures the phasic flow rates through the
choke valve. Measurements of the phasic flow rates can also be obtained when the well is tested, using, for instance, a test separator.
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et al., 2018). These occur in a time range of months to years, depen-
dent on the size of the reservoir. Furthermore, as the petroleum asset
ages, technologies such as artificial lift with gas or water are applied
to improve production. Other sporadic changes such as maintenance
tasks will also induce transient process behavior. Hence, the natural
approach to VFM is nonstationary models. Several commercial VFMs
such as Olga and LedaFlow are nonstationary (Amin, 2015), and other
examples exist in literature (Holmås & Løvli, 2011; Jordanou et al.,
2017). On the other hand, due to the slow dynamics of the reservoir,
steady-state reservoir conditions for a certain time interval can often
be assumed (Shippen, 2012). Furthermore, considering the inherent
complex multiphase flow characteristics, which make it challenging to
develop and solve nonstationary VFMs, steady-state VFMs are the most
common approach in literature (Bikmukhametov & Jäschke, 2019),
both for physics-based models (Shippen, 2012; Varyan et al., 2015) and
machine learning (ML) models (AL-Qutami et al., 2017, 2017a, 2017b,
2018; Bikmukhametov & Jäschke, 2020; Grimstad et al., 2021). Never-
theless, studies show that steady-state VFM models should be updated
or recalibrated in time to provide adequate long-term prediction accu-
racy (Hotvedt et al., 2022; Sandnes et al., 2021). Several model learning
methods exist that attempt to account for nonstationarity without
imposing temporal dependencies in the model. The learning methods
can be divided into an active or passive method (Ditzler et al., 2015).
In passive learning, the process is assumed to be continuously changing
and the model is routinely updated with access to new measurements.
In active learning, statistical tests are used to detect significant changes
in the process conditions, whereupon model updating is initiated.

For the VFM application, it is not uncommon that new observations
arrive infrequently, for example, twice a year or at the most once per
month under well-testing (Monteiro et al., 2020). In such an event,
active learning is redundant as the process conditions and properties
are likely to have changed significantly during the elapsed time, and
the model should be updated with each new measurement. For assets
with access to continuous flow rate measurements, such as MPFM mea-
surements, the VFM models would likely benefit from updating using
these measurements in between well-tests. Nevertheless, in industry,
even with frequent access to new measurements, model learning can
occur intermittently due to limited resources or manual, non-systematic
workflows (Koroteev & Tekic, 2021).

To the authors’ knowledge, no studies have investigated the influ-
ence of the update frequency on sustaining the prediction accuracy of
steady-state VFM models over time, hence, obtaining a high long-term
performance. This research contributes in this direction by examin-
ing two passive learning methods: periodic batch learning and online
learning. Six VFM models are developed for the petroleum produc-
tion choke valve in 10 petroleum wells on Edvard Grieg, an asset
2

on the Norwegian Continental Shelf (Lundin Energy Norway, 2020).
Real production data spanning five years are used in the development.
The long-term predictive performance is expected to increase with the
frequency of which the models are updated. The best performance is
expected from online learning, for which the models are updated with
every new measurement. For periodic batch learning, the performance
is expected to drop as the frequency is lowered. The rest of the article
is structured the following way: Section 2 presents relevant theory for
steady-state modeling of processes in nonstationary conditions. There-
after, Section 3 describes the available data and the VFM model types.
In Section 4, the numerical study examining the learning methods is
described and results visualized and discussed. Lastly, Section 5 gives
concluding remarks.

2. Steady-state modeling in nonstationary conditions

Consider a stream of observations 𝑆 = {(𝒙1, 𝑦1), (𝒙2, 𝑦2),… ,
𝒙𝑡, 𝑦𝑡),…}, where 𝒙𝑡 ∈ R𝑑 represents measured process conditions and
𝑡 ∈ R a (dependent) target variable at time 𝑡. In general, the set 𝑆 can
e thought of as a realization of a stochastic process  governed by a
enerative model (Oliveira et al., 2021)

𝑡(𝒙, 𝑦) = 𝑝𝑡(𝑦 ∣ 𝒙)𝑝𝑡(𝒙). (1)

n (1), 𝑝𝑡(𝒙) is the marginal distribution of the process conditions, and
𝑡(𝑦 ∣ 𝒙) is the conditional distribution of the target, both at time 𝑡.
he index 𝑡 indicates that the distributions may be time-variant, and
herefore  may be nonstationary.

In real-time applications of machine learning, like data-driven vir-
ual flow metering, it is natural to develop models on historical data
nd test the model performance on future data. Collect in 𝑎∶𝑏 =
(𝒙𝑡, 𝑦𝑡)}𝑏𝑡=𝑎 the sequence of observations with 𝑡 ∈ [𝑎, 𝑏], and in 𝑎 =
(𝒙𝑡, 𝑦𝑡)}𝑡=𝑎 the single observation at 𝑡 = 𝑎. For a model to be developed
t time 𝑡 = 𝑇 , the training dataset is denoted by 𝑡𝑟 = 1∶𝑇 and the
est dataset by 𝑡𝑟 = 𝑇+1∶∞.

Many machine learning models and algorithms are based upon the
ssumption that the training and test dataset originate from the same
robability distribution; the data points in 𝑆 are independent and
dentically distributed (i.i.d.) (Hastie et al., 2009). When the stochastic
rocess  in (1) is nonstationary, the i.i.d. assumption is invalidated,
s a dataset shift can occur when moving from the training phase
o the test phase. In the following, different types of dataset shifts
re explored, and suitable learning methods to alleviate the effect of
onstationarity on predictive performance are discussed.
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Fig. 2. Dataset shifts illustrated with (a) virtual drift and (b) real drift.
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2.1. Dataset shifts

When  is nonstationary, the joint probability distribution can shift
in time resulting in 𝑝𝑡(𝒙, 𝑦) ≠ 𝑝𝑡+𝜏 (𝒙, 𝑦) for an arbitrary lapse 𝜏 > 0
in time. Using the model in (1) two types of dataset shifts, also called
concept drifts, can occur in time: virtual and real drift1 (Ditzler et al.,
015; Quiñonero-Candela et al., 2009). With virtual drift, the marginal
istribution shifts in time. That is, 𝑝𝑡(𝒙) ≠ 𝑝𝑡+𝜏 (𝒙) for 𝜏 > 0. With real

drift, the conditional distribution shifts in time, such that 𝑝𝑡(𝑦 ∣ 𝒙) ≠
𝑝𝑡+𝜏 (𝑦 ∣ 𝒙) for 𝜏 > 0. Real and virtual drift may happen separately or
imultaneously, in any case shifting the joint distribution with time.
otice, in (Quiñonero-Candela et al., 2009), several other specialized

orms of dataset shifts are discussed.
As an example, consider a process with a conditional distribution

𝑡 = 𝑎𝑡𝑥𝑡 + 𝑏𝑡, (2)

with parameters 𝜽𝑡 = {𝑎𝑡, 𝑏𝑡}. Two subsequent time instances 𝑡 = 1 and
𝑡 = 2 are examined. The input at 𝑡 = 1 is sampled from 𝑝1(𝑥) ∼  (0, 1).
At 𝑡 = 2, the mean changes such that 𝑝2(𝑥) ∼  (3, 1). If the model
parameters remain unchanged, this is virtual drift, and the response in 𝑦
changes only as a consequence of changes in the marginal distribution.
The scenario is illustrated in Fig. 2(a). In another scenario, consider
the input distribution to remain unchanged, but the 𝑏 parameter of the
model to change from 𝑏1 = 0 to 𝑏2 = 3. The parameter change causes
the conditional distribution in (2) to change, thereby causing real drift,
illustrated in Fig. 2(b). Notice, in the two scenarios, virtual and real
drift cannot be distinguished by analyzing 𝑦 only.

Virtual drift is commonly seen in the VFM application. For example,
in time with the reservoir being depleted the pressure through the
production system decreases. At the same time, in the early life of a
petroleum asset, the production engineers can often increase the choke
openings to maintain a constant production rate, also called plateau
production (Jansen, 2015). The VFM application can also experience
real drift. Substantial mechanical wear of the equipment in the well can
occur with time, for instance, due to sand production, and can result in
a change in the flow rate even for unchanged process conditions. It is
believed that virtual drift is the major cause of observed dataset shifts
in VFMs. However, as Fig. 2 illustrates, it can be difficult to separate
between the two types of drifts.

The next section discusses the impact that dataset shifts can have
on steady-state VFM models.

1 Other naming conventions for virtual drift are virtual concept drift,
ovariate shift, or input drift. Real drift is also known as real concept drift
r output drift.
3

2.2. Parameter estimation of steady-state models

A common approach to steady-state modeling is to use an inductive
method to learn an approximation of the conditional distribution 𝑝𝑡(𝑦 ∣
𝒙) in (1) from a fixed set of steady-state observations 1∶𝑇 . A typical
form of the approximation is

𝑦̂𝑡 = 𝑓𝜽(𝒙𝑡) + 𝜖𝑡, 𝜖𝑡 ∼  (0, 𝜎2𝜖 ), (3)

where 𝑓𝜽 is a parametric model of the mean, with parameters 𝜽, and 𝜖𝑡
is a homoscedastic noise term. The model in (3) is a steady-state model
since 𝑦̂𝑡 is conditioned on 𝒙𝑡, and the parameters 𝜽 and 𝜎𝜖 are time-
invariant. The i.i.d. assumption is thus used. Note that, the resulting
model is steady-state even though the data used to learn the model
originate from a nonstationary process.

Conditional models, like the steady-state model in (3), are com-
monly trained using maximum a posteriori (MAP) estimation. In MAP
estimation, the mode of the posterior distribution 𝑝(𝜽 ∣ ) ∝ 𝑝( ∣ 𝜽)𝑝(𝜽)
is maximized. Here, the likelihood 𝑝( ∣ 𝜽) is given by (3) and 𝑝(𝜽)
s a prior on the 𝜽 parameters. For a normal prior, 𝜃𝑖 ∼  (𝜇𝑖, 𝜎2𝑖 ),
= 1,… , 𝑁𝜃 , the optimization problem can be expressed as follows:

̂ = argmax
𝜽

log 𝑝( ∣ 𝜽) + log 𝑝(𝜽)

= argmin
𝜽

𝑁
∑

𝑖=1

1
𝜎2𝜖

(

𝑦𝑖 − 𝑦̂𝑖
)2 +

𝑁𝜃
∑

𝑖=1

1
𝜎2𝑖

(

𝜃𝑖 − 𝜇𝑖
)2 .

(4)

where 𝑁 is the number of data points in the training dataset. From
(4), it is seen that MAP estimation is a trade-off between minimizing
the squared errors and parameter deviation away from its respective
mean value 𝜇𝑖. By multiplying the objective function by 𝜎2𝜖 ∕𝑁 , the
equivalence of MAP estimation to the familiar minimization of mean
squared error with 𝓁2-regularization is obtained (Goodfellow et al.,
2016).

In the machine learning domain, (4) is commonly optimized by first-
order gradient descent methods (Bishop, 2006). These methods update
the parameters iteratively according to the following scheme:

𝜽̂(𝑘+1) = 𝜽̂(𝑘) − 𝛾 (𝑘)(, 𝜽̂(𝑘)), 𝑘 = 1,… , 𝐸 (5)

here 𝐸 is the number of iterations or steps taken towards the op-
imal value, 𝛾 is the learning rate or step-size, and  is the set of
quations calculating the step direction. The  is a set of observations

extracted from the training dataset and can be in the range of one to
all observations. Any parameter that is not included in 𝜽 is called a
hyperparameter, for instance, 𝛾, 𝐸, and ||.

The above approach to steady-state modeling is susceptible to
dataset shifts since the estimate (optimum) in (4) likely will change
with time, resulting in poor test performance. When applied to VFM,
for which the data is generated by a nonstationary process, both virtual
and real concept drift will negatively influence the long-term predictive

performance. A VFM performance that diminishes with time, has been
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𝑦

Fig. 3. One iteration of the periodic batch learning and online learning update procedure after obtaining the initial parameter estimate. tr are training datasets used in the
estimation problem and te are test datasets used to test the predictive capabilities of the model.
documented in several publications (Grimstad et al., 2021; Hotvedt
et al., 2022; Sandnes et al., 2021). In the following section, passive
learning methods are discussed. These methods can be used to account
for dataset shifts in steady-state modeling.

2.3. Passive learning for steady-state models

In passive learning, the process  is assumed to be continuously
changing with time, and model updating is routinely initiated regard-
less of whether or not dataset shifts occur. Two methods of passive
learning are examined: online learning (OL) and periodic batch learning
(PBL).

At time 𝑡 = 𝑇 , an initial parameter estimate is obtained from tr =
1∶𝑇 using the approach in Section 2.2. The estimated parameters are
referred to as 𝜽̂𝑇 , and the resulting steady-state model is given by

̂𝑡 = 𝑓𝜽̂𝑇 (𝒙𝑡) + 𝜖, 𝜖 ∼  (0, 𝜎2𝜖 ). (6)

From this point in time, the two learning methods can be applied. These
are visualized in Fig. 3 and are explained in the consecutive sections.

2.3.1. Periodic batch learning
In periodic batch learning, the model in (6) is used to make predic-

tions for 𝜏 > 0 time steps te
𝑇 ∶𝜏 before it is retrained at 𝑡 = 𝑇 + 𝜏.

In retraining, the new parameters 𝜽̂𝑇+𝜏 are estimated using all data
observed at that time as training data tr

1∶𝑇+𝜏 and the approach in
Section 2.2. The procedure is repeated with a period of 𝜏, where the
posterior parameter distribution can be described with

𝑝(𝜽 ∣ 1∶𝑇+𝜏 ) ∝ 𝑝(1∶𝑇+𝜏 ∣ 𝜽)𝑝(𝜽), (7)

An appropriate 𝜏 must be determined and can be accomplished
by applying a change or shift detection algorithm offline on historical
data. There exist much literature on shift detection algorithms, see for
example Raza et al. (2015) and references therein. In this research,
Hotelling’s T-squared test for two multivariate, independent samples
is used to investigate a null hypothesis stating that no virtual drift is
present in the dataset. The algorithm for determining 𝜏 is described in
Appendix A.

2.3.2. Online learning
In online learning, model updating occur for each new observation

that arrives. However, the posterior distribution at the next time step
is updated using only the current observation as the training data and
the posterior distribution at the previous time step as the prior. For
instance, at 𝑡 = 𝑇 + 1:

𝑝(𝜽 ∣  ) ∝ 𝑝( ∣ 𝜽)𝑝(𝜽 ∣  ). (8)
4

1∶𝑇+1 𝑇+1 1∶𝑇
Mathematically, (8) can be derived as follows. With the approach in
Section 2.2, the posterior parameter distribution at 𝑡 = 𝑇 + 1 is given
by

𝑝(𝜽 ∣ 1∶𝑇+1) =
𝑝(1∶𝑇+1 ∣ 𝜽)𝑝(𝜽)

𝑝(1∶𝑇+1)
, (9)

where 𝑝(1∶𝑇+1) is the proportionality constant in Bayes’ law. Applying
the i.i.d. assumption, the likelihood function of the model and the
evidence can be written as

𝑝(1∶𝑇+1 ∣ 𝜽) =
𝑇+1
∏

𝑡=1
𝑝(𝑡 ∣ 𝜽) = 𝑝(1∶𝑇 ∣ 𝜽)𝑝(𝑇+1 ∣ 𝜽)

𝑝(1∶𝑇+1) =
𝑇+1
∏

𝑡=1
𝑝(𝑡) = 𝑝(1∶𝑇 )𝑝(𝑇+1),

(10)

respectively. Note that, while the i.i.d. assumption is likely false for
a nonstationary process, it is already used in steady-state modeling.
Inserting (10) in (9), the posterior parameter distribution at 𝑡 = 𝑇 + 1
can be written as

𝑝(𝜽 ∣ 1∶𝑇+1) =
𝑝(𝑇+1 ∣ 𝜽)
𝑝(𝑇+1)

⋅
𝑝(1∶𝑇 ∣ 𝜽)𝑝(𝜽)

𝑝(1∶𝑇 )
=

𝑝(𝑇+1 ∣ 𝜽)
𝑝(𝑇+1)

⋅ 𝑝(𝜽 ∣ 1∶𝑇 )

(11)

and (8) is obtained.
An issue becomes apparent when deriving the MAP estimate for (8)

𝜽̂𝑇+1 = argmax
𝜽

[

log 𝑝(𝑇+1 ∣ 𝜽) + log 𝑝(𝜽 ∣ 1∶𝑇 )
]

. (12)

Ideally, the parameter estimation in the previous time step should have
provided both the mean and the variance of the updated posterior
parameter distribution 𝑝(𝜽 ∣ 1∶𝑇 ) ∼  (𝝁𝑇 ,𝜮𝑇 ). However, MAP
estimation gives point estimates of the mode only. When the likelihood
and prior is normal, an estimate of the mean 𝝁𝑇 = 𝜽̂𝑇 is obtained since
the mode and mean coincides, but 𝜮𝑇 remains unknown. Therefore,
the second term in (12) cannot be calculated if MAP estimation is
used in each time step. As discussed in Section 2.2, this term is
𝓁2-regularization of the parameters. According to (Goodfellow et al.,
2016), for some cases, the algorithm early stopping has a similar
effect as 𝓁2-regularization. For linear models, the solution obtained
with early stopping equals a solution with 𝓁2-regularization where the
regularization term is determined by the number of iterations and step-
size in early stopping (Santos, 1996). Therefore, for the OL algorithm
implemented in this research, the iterative optimization algorithm in
(5) uses the posterior parameter estimate from the previous time step
as a starting point but iterates only a few steps 𝑘 towards the optimal
value. In such a sense, the approach is similar to an early stopping
approach, and will to some degree include parameter regularization.
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Fig. 4. Visualization of the occurrence of observations for each well against time. Some wells have older historical observations than others. Both multiphase flow meter and
well-test measurements are available.
2.4. Comparison of periodic batch and online learning

There are advantages and disadvantages to both passive learning
methods. With OL, the model can quickly adapt to changes in process
conditions. Further, as only new observations are used, old data may
be discarded yielding low memory requirements. However, it has been
shown that some machine learning models such as neural networks are
prone to catastrophic forgetting when trained using OL (Goodfellow
et al., 2013; Kemker et al., 2018; Parisi et al., 2019). Catastrophic
forgetting is a situation where the model excessively overfits its pa-
rameters to new observations resulting in a decreased performance on
previously seen observations. This situation occurs due to the stability–
plasticity dilemma (Wickliffe & Robins, 2005). The neural network
requires adequate plasticity to adapt to new patterns, but too much can
cause the network to forget previously learned patterns. The reverse
is true for stability. The stability–plasticity of the models is connected
to the hyperparameters of the learning algorithms. With time, the
optimal hyperparameters can change. This is a problem for OL in real-
time applications as a hyperparameter search in each iteration can be
infeasible, dependent on the frequency of arrival of new observations.
Another potential issue for the OL is the required complex system
integration. The method will require fast processing capabilities of new
observations to account for erroneous sensor measurements, and model
performance monitoring applications are a necessity to analyze model
drift and catastrophic forgetting (Ditzler et al., 2015). Furthermore, the
learning method must be automated as manual, although systematic,
handling of model updating can be impractical in real-time due to
limited resources.

PBL addresses catastrophic forgetting as all available observations
are used in model updating. Yet, using this method for each new
observation can be impractical in real-time applications due to a larger
training time caused by larger datasets (Kemker et al., 2018). Therefore,
a longer period (𝜏 in (7)) between model retraining can be required
and sudden shifts in the data can be missed. On the other hand, if
the underlying process is slowly changing, a lower update frequency
can be sufficient to capture dominant changes in process conditions.
Correspondingly, a manual yet systematic handling of the learning
method including measurement preprocessing, conducting a hyperpa-
rameter search, and the actual model learning can be more achievable
in each iteration. For VFM applications, studies have indicated that the
inclusion of too old data may be redundant and not improve the model
performance significantly (AL-Qutami et al., 2018; Grimstad et al.,
2021). Thus, a windowing strategy can be applied to discard redundant
data (Ditzler et al., 2015).

3. Data and models

In this research, six different VFM model types are considered. The
data used to develop the VFMs and examine the effect of the learning
5

methods on the long-term prediction performance are real production
data from 10 wells, W1-W10, on the Edvard Grieg asset (Lundin Energy
Norway, 2020). The available data and the VFM model types are
described in the below sections.

3.1. Available data

The available process data consists of observations from the 𝑀 = 10
wells indexed by 𝑗 ∈ {1,… ,𝑀}. The dataset of well 𝑗 is {(𝒙𝑡,𝑗 , 𝑦𝑡,𝑗 )}

𝑁𝑗
𝑡=1,

where 𝑁𝑗 is the number of observations, explanatory variables are
𝒙𝑡,𝑗 = (𝑢, 𝑝1, 𝑝2, 𝑇1, 𝜂oil, 𝜂gas)𝑡,𝑗 ∈ R6, and target variables are 𝑦𝑡,𝑗 =
𝑄𝑡,𝑗 ∈ R. The 𝜂oil and 𝜂gas are the fractions of oil and gas in the
fluid mixture. Ideally, the fractions should be estimated using a dif-
ferent model, for instance, a wellbore model as in Kittilsen et al.
(2014). For simplification, the fractions are approximated using the
measured phasic volumetric flows. Measurements of the target variable,
the mixture volumetric flow rate, are from both well-tests conducted
with a test separator, and from the multiphase flow meter in each
well. Commonly, well-test measurements have higher accuracy than
MPFM measurements as MPFM are prone to failure and drift over
time (Falcone et al., 2013). The data from all wells is denoted by
. Each of the datasets is generated using the processing technology
in Grimstad et al. (2016). This technology compresses the data by
removing fast transients. However, slow transients can still be present.
Further, the datasets are passed through a set of filters that remove
undesired, illogical measurements, for instance, negative pressures or
negative flow rate measurements. The wells have an unequal number
of observations spanning a different time range, see Fig. 4. Some
wells have historical observations back to 2016 while others have
their first observations in late 2018. Further, there are periods where
observations are lacking for some of the wells represented by white
holes in the data in Fig. 4. Here, the well in question can have been
shut down, or the sensors failed. In total, there are 26743 observations
from the 10 wells, spanning more than five years of production history.
On average, there is less than one day between each measurement. The
time between well-tests for a well is varying, with more than one year
at the longest, and less than a day at the shortest.

3.2. Virtual flow meter models

The six different VFM models considered range from machine learn-
ing, or data-driven, to physics-based, or mechanistic, models:

1. A linear regression model (LR)
2. A fully connected feed-forward neural network (NN)
3. A multi-task learning model (MTL)
4. A hybrid, gray-box error model (HEM)
5. A hybrid, gray-box area function model (HAM)
6. A mechanistic model (MM)
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There are advantages and disadvantages with all model types
(Hotvedt et al., 2022; Solle et al., 2016). Mechanistic models are
built from physical laws and require little process data in develop-
ment. Yet, simplifications and assumptions are often necessary to make
mechanistic models computationally feasible in real-time applications.
Hence, model bias or process-model mismatch is typically encountered.
Machine learning models are built from available data only and require
no prior knowledge about the physics of the process. The capacity of
machine learning models vary, where the NN is a typical model with
high capacity and the LR a model with low capacity. High capacity
models enable adaptation to arbitrarily complex physical relationships
as long as these are reflected in the data, commonly reducing model
bias. However, due to the inherent bias–variance trade-off of high
capacity models, minimizing the bias results in higher variance (Hastie
et al., 2009). Therefore, high capacity models are often influenced by
poor quality data or data located in the small data regime, a situa-
tion not uncommon for the VFM application (Grimstad et al., 2021).
Furthermore, higher variance typically decreases the generalization
abilities to previously unobserved data, and such models can struggle
if used in nonstationary environments where the process experiences
dataset shifts. The hybrid models attempt to utilize knowledge from
both the mechanistic and the data-driven modeling domain to preserve
the advantages but diminish the disadvantages of both methods.

The MTL models are somewhat different from the other model
types. This model type enables learning from a plurality of wells,
where each well presents a learning task. Instead of separately train-
ing a model for each well, which can be considered as single-task
learning, the models are simultaneously trained. The advantage of
using multi-task learning is two-fold. First, it allows for parameter
sharing among models which can drastically improve data efficiency
and predictive performance in the small-data regime. This is analogous
to an MM whose equations are shared among wells. Second, compared
to single-task learning, simultaneous training can lessen the effort and
computational cost of developing models when the number of wells
becomes large.

In the following sections, a mathematical description of the six VFM
models is introduced. In addition to these, a benchmark model used to
compare the performance of the models is described.

3.2.1. Benchmark model
A simple benchmark model predicts the flow rate to be the same as

the last observed flow rate. Consider chronologically ordered observa-
tions {𝑦1,𝑗 ,… , 𝑦𝑁𝑗 ,𝑗} for well 𝑗 so that 𝑦𝑡,𝑗 is observed after 𝑦𝑡−1,𝑗 . The
prediction from the benchmark model is

𝑦̂𝑡,𝑗 = 𝑦𝑡−1,𝑗 , 𝑡 = 1,… , 𝑁𝑗 , 𝑗 = 1,… ,𝑀. (13)

Note that with this model the prediction is independent of the explana-
tory variables 𝒙𝑡,𝑗 . Further, if the petroleum production is on plateau,
resulting in each new observation deviating little from the previous, the
benchmark model has the potential of high accuracy.

3.2.2. Linear regression model
The linear regression model fits a multidimensional line to the

observed data. The functional form is given by 𝑓 (LR)
𝜽 ∶ R𝑑 → R and

is evaluated for a given 𝒙 as

𝑦̂ = 𝒘𝑇 𝒙 + 𝑏. (14)

The model parameters consist of a weight vector 𝒘 ∈ R𝑑 and a bias
∈ R, 𝜽 = {(𝒘, 𝑏)}.

.2.3. Feed-forward neural network model
In general, the feed-forward neural network is a set of nonlinear

egression lines. It has a functional form 𝑓 (NN)
𝜽 ∶ R𝑑 → R. For a neural

etwork with 𝐿 hidden layers and one output layer, the parameters
re 𝜽 = {(𝑊 (𝑙), 𝒃(𝑙))}𝐿+1, where 𝑊 (𝑙) and 𝒃(𝑙) are the weights and biases
6

𝑙=1
f layer 𝑙, respectively. The dimensions of 𝑊 (𝑙) and 𝒃(𝑙) determine the
idth of layer 𝑙.

In this work, the rectified linear unit (ReLU) activation function is
sed as the nonlinearity in the hidden layers (Glorot et al., 2011). The
eLU function is denoted by 𝑎 ∶ R𝑑 → R𝑑 , 𝑎(𝒛)𝑖 ∶= max(0, 𝒛𝑖), where

he max operator is applied element-wise for 𝑖 = 1,… , 𝑑. This makes the
eural network a set of piecewise linear regression lines. The evaluation
f model 𝑓 (NN)

𝜽 (𝒙) for a given 𝒙 is

𝒛(1) = 𝒙
(𝑙+1) = 𝑎(𝑊 (𝑙)𝒛(𝑙) + 𝒃(𝑙)), 𝑙 = 1,… , 𝐿

𝑦̂ = 𝑊 (𝐿+1)𝒛(𝐿+1) + 𝒃(𝐿+1).

(15)

.2.4. Multi-task learning model
A MTL formulation introduces a new semantics of the model param-

ters compared to the NN in Section 3.2.3. Let 𝜶 denote parameters that
re shared among tasks (here wells), and let 𝜷𝑗 ∈ R𝑃 be 𝑃 task-specific
arameters for wells 𝑗 = 1,… ,𝑀 . The parameters of the MTL model
or 𝑀 wells are collected in 𝜽 = {𝜶, 𝜷1,… , 𝜷𝑀}.

When processing a data point 𝒙𝑡,𝑗 of well 𝑗, the model must select
he corresponding task-specific parameters, 𝜷𝑗 . The selection can be
ade by introducing an encoding of tasks. Let 𝒆𝑗 be an indicator vector

f dimension 𝑀 , with all zeros, except for a one in position 𝑗. By
tacking the task-specific parameters in a matrix 𝐵 with columns 𝐵∗,𝑗 =
𝑗 , a selection can be made by performing the multiplication 𝜷𝑗 = 𝐵𝒆𝑗 .

A simple MTL model is obtained by utilizing the selection mech-
nism described above. First, 𝜷𝑗 is selected using the encoding 𝒆𝑗 .
ext, 𝒙𝑡,𝑗 and 𝜷𝑗 are fed through a residual neural network with

hared parameters 𝜶. In this work, a residual neural network with pre-
ctivation is used to allow for an identity mapping of the task-specific
arameters (He et al., 2016). The resulting model is a simplified version
f the MTL choke model introduced in (Sandnes et al., 2021).

The functional form of the MTL model is 𝑓 (MTL)
𝜽 ∶ R𝑑 ×{0, 1}𝑀 → R,

here the second argument is the task encoding vector. The evaluation
f 𝑓 (MTL)

𝜽 (𝒙, 𝒆𝑗 ) for a data point 𝒙 of well 𝑗, is performed as follows:

𝑗 = 𝐵𝒆𝑗 ,

𝑦̂ = 𝑔𝛼(𝒙, 𝜷𝑗 ),
(16)

here 𝑔𝛼 is a residual neural network with 𝐿 residual blocks given by

𝒛(1) = 𝑊 (0,1)𝒙 +𝑊 (0,2)𝜷𝑗 + 𝒃(0),

𝒓(𝑙) = 𝑊 (𝑙,2)𝑎(𝑊 (𝑙,1)𝑎(𝒛(𝑙)) + 𝒃(𝑙,1)) + 𝒃(𝑙,2), 𝑙 = 1,… , 𝐿,
(𝑙+1) = 𝒓(𝑙) + 𝒛(𝑙), 𝑙 = 1,… , 𝐿,

𝑦̂ = 𝑊 (𝐿+1)𝒛(𝐿+1) + 𝒃(𝐿+1).

(17)

he weights and biases in (17) are collected in 𝜶 and are shared among
he 𝑀 wells. These parameters can be learned from all the data in .

.2.5. Mechanistic model
The mechanistic choke model is taken from Sachdeva et al. (1986).

he equations are developed from the steady-state mass and momen-
um balance equations for one-dimensional flow along a streamline. In
hort notation, the mechanistic model is given by 𝑓 (MM)

𝜽 ∶ R𝑑 → R
ith parameters 𝜽 = {𝜌oil, 𝜌wat, 𝜅,𝑀gas, 𝑝𝑐𝑟, 𝐶𝐷}, and the equation for

he volumetric flow rate through the choke is given by:

𝑦̂ = 𝑄 = 𝑚̇
𝜌𝑆𝐶

=
𝐶𝐷𝐴2(𝑢)
𝜌𝑆𝐶

×

√

√

√

√2𝜌22𝑝1

(

𝜅
𝜅 − 1

𝜂gas

(

1
𝜌gas,1

−
𝑝𝑟

𝜌gas,2

)

+
(

𝜂oil
𝜌oil

+
𝜂wat
𝜌wat

)

(1 − 𝑝𝑟)

)

,

(18)
Details regarding the model are found in Hotvedt et al. (2022).
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3.2.6. Hybrid error model
This model uses the mechanistic model in Section 3.2.5 as a baseline

but inserts a neural network as introduced in Section 3.2.3 to capture
the error between the mechanistic model output and measurements,
or the process-model mismatch. The functional form of the model is
given by 𝑓 (HEM)

𝜽 ∶ R𝑑 → R with parameters 𝜽 = {𝜽MM,𝜽NN}, where
the physical model parameters are the same as given in Section 3.2.5:
𝜽MM = {𝜌oil, 𝜌wat, 𝜅,𝑀gas, 𝑝𝑐𝑟, 𝐶𝐷}, and the neural network parameters
are the weights and biases on each layer of the network as described
in Section 3.2.3: 𝜽NN = {(𝑊 (𝑙), 𝒃(𝑙))}𝐿+1𝑙=1 . The evaluation of HEM for a
data point 𝒙 is described by

𝑦̂ = 𝑓 (HEM)
𝜽 (𝒙) = 𝑓 (MM)

𝜽MM
(𝒙) + 𝑓 (NN)

𝜽NN
(𝒙) (19)

3.2.7. Hybrid area function model
This model also uses the mechanistic model in Section 3.2.5 as

a baseline. However, the mechanistic relation for the area function
𝐴2(𝑢)(MM) is manipulated by multiplying with a neural network. This
may be interpreted as replacing the discharge coefficient 𝐶𝐷 from the
MM with a neural network. Accordingly, 𝑓 (HAM)

𝜽 ∶ R𝑑 → R with
parameters 𝜽 = {𝜽MM,𝜽NN}, where 𝜽MM = {𝜌oil, 𝜌wat, 𝜅,𝑀gas, 𝑝𝑐𝑟} and
𝜽NN = {(𝑊 (𝑙), 𝒃(𝑙))}𝐿+1𝑙=1 . The evaluation of 𝑓 (HAM)

𝜽 for data point 𝒙 is as
follows:

𝐴2 = 𝐴2(𝑢)(MM) × 𝑓 (NN)
𝜽NN

(𝒙)

𝑦̂ = 𝑓 (HAM)
𝜽 (𝒙) = 𝑓 (MM)

𝜽MM
(𝒙, 𝐴2)

(20)

Note, the complete vector of explanatory variables is used as input to
the area function network and not just the choke opening 𝑢. This is due
to the expectation of the effective flow area being dependent on the
characteristics of the fluid flowing through the choke, which cannot be
captured with just 𝑢.

3.3. Prior parameter distribution

All the VFM models except the benchmark model need specification
of the prior parameter distributions 𝜃𝑖 ∼  (𝜇𝑖, 𝜎2𝑖 ). For the data-
driven model parameters 𝜽NN, He-initialization is utilized, which is
recommended for neural networks with ReLU as activation function (He
et al., 2015). For the mechanistic model parameters 𝜽MM, typical values
for the mean 𝜇𝑖 is commonly known. For instance, a typical value for
the density of freshwater is 1000 kg/m3. The variance may be estimated
using the known bounds of the parameter in question. Details on prior
parameter specification in gray-box models may be found in Hotvedt
et al. (2022).

4. Numerical study

Online learning and periodic batch learning as described in Sec-
tion 2.3, are used to train the six models in Section 3.2, for the 10
wells, using the data described in Section 3.1. All VFM models except
the LR are implemented using the Python framework PyTorch (Paszke
et al., 2019). The LR is implemented with the Python framework scikit-
learn (Pedregosa et al., 2011) using the stochastic gradient descent
linear regressor to allow for training the model with online learning.
As mentioned in Section 2.3.2, the 𝓁2-regularization term cannot be
calculated for the online learning method. However, for the hybrid
and mechanistic models, an important factor is that the model param-
eters with a physical interpretation 𝜽MM stay within feasible bounds.
Therefore, 𝓁2-regularization with the initial priors is applied for these
parameters.

The numerical study considers two cases. In Case 1, all available
data, both MPFM and well-test measurements are utilized in training.
The initial parameter estimate is obtained with historical data before
the 1st of January 2019, while the data after this point in time is used
to test the learning methods, see Fig. 4. This split of data is referred
to as the initial split. In Case 2, the models are trained using well-test
7

measurements only. To ensure a sufficient amount of training data, the
initial split is applied on the 1st of January 2020, see Fig. 4.

Two analyses are conducted before the learning methods can be
applied: (1) estimation of the PBL update frequency and (2) a search
for optimal hyperparameters in the learning methods. These analyses
are given in Sections 4.1 and 4.2, respectively, and are applied on the
initial training data. From the outcome of the analyses, the models are
trained with the learning methods, and the result for the two cases is
given in 4.3 and 4.4, respectively.

4.1. Update frequency estimation for periodic batch learning

To estimate a suitable update frequency, Algorithm 1 in Appendix A
with significance level 𝛼 = 0.05 is used on the initial training data from
Case 1. This data is split into two new datasets at time 01.07.2018. The
six months of observations leading up to 01.01.2019 are used as the test
dataset. From Fig. 4, it is seen that W3 does not have observations in the
time range suggested. Therefore, the well is excluded from the analysis.
In Fig. 5, the 𝐻𝑇 2 statistic for each observation in the test dataset
is illustrated for four of the wells. The coloring indicates whether or
not a shift is detected for the observation. W1 and W2 are the two
wells of the nine examined with the longest period before a shift is
detected, approximately after five months. W8 and W9 are the wells
with the shortest period before a shift is detected, approximately after
two weeks. Accordingly, different wells can have different optimal
update frequencies, and it is likely to change during the lifetime of the
petroleum asset. To simplify model learning, all wells are trained using
the same update frequency. Therefore, the PBL is tested with a two
weeks update frequency. The results are compared to a PBL with an
update frequency of 6 months to examine the potential benefit of more
frequent updating.

4.2. Hyperparameter search

For the periodic batch learning approach, a hyperparameter grid
search for the learning rate is conducted testing 𝛾 ∈ {10−1, 10−2, 10−3,
10−4, 10−5}. Early stopping is applied to determine the appropriate
number of iterations 𝐸. For all VFM models except the LR, the opti-
mizer Adam is applied. This optimizer have shown results in previous
research on VFM modeling (Grimstad et al., 2021; Hotvedt et al., 2020,
2021, 2022). For the LR, Adam is not an option and the model is trained
with SGD, yet, with the learning rate scheduler

𝛾 (𝑘) =
𝛾 (0)

𝑘𝑎
(21)

where 𝛾 (0) is the initial learning rate, 𝑘 is the iteration number, and 𝑎
is a constant, see (5).

For the online learning approach, the hyperparameter grid search is
extended to

𝛾 ∈ {5 × 10−1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−10}. Notice,
𝛾 = 10−10 means close to negligible updating. As online learning
processes only one sample at a time, early stopping cannot be applied.
Therefore, the hyperparameter search includes experimentation with
the number of iterations 𝐸 ∈ {1, 10, 20}. For all models except the LR,
the optimizers SGD and Adam are examined. For the LR, the learning
rate scheduler (21) along with a constant learning rate is investigated.

The best combination of hyperparameters is chosen as the set that
minimized the mean absolute percentage error (MAPE) across the wells
for each model type. The resulting hyperparameters for Case 1 and Case

2 can be seen in Tables B.1 and B.2, respectively.
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Fig. 5. The Hotelling’s T-squared statistic with 𝛼 = 0.05 for each of the observation in the test dataset. The coloring indicates if the test observation is detected as a shift (SD:
hift detection).
Fig. 6. The distribution of average error for each well, grouped for the models and learning methods. The models are trained with all available measurements. Compared to the
performance of the benchmark model. The boxes show the 𝑃25, 𝑃50 (median), and 𝑃75 percentiles. The whiskers show the 𝑃10 and 𝑃90 percentiles.
4.3. Results of case 1

In this case, both MPFM and well-test measurements are utilized in
training. The box plot in Fig. 6 shows the distribution of performances
for the wells in terms of the MAPE grouped on the model type and
learning method. The reported MAPE for one well is calculated using
the predictions on all observations in the initial test set. The models
are compared to the benchmark model. Table 1 gives an overview of
the average MAPE across the wells for each model, and the last column
presents the average MAPE of the learning methods across all wells and
models. For the interested reader, Table C.1 gives a detailed overview
of the MAPEs for each well and model. There are several interesting
observations.

Firstly, as expected, the results clearly show that the model error
decreases with an increased update frequency. On average, all models
achieve a lower prediction error with PBL every second week compared
to PBL every six months. With the OL, the average error decreases
further with all models achieving an average error of less than 7%.
The overall best average performance across wells is achieved with OL
on the HAM. The low MAPEs indicate that with access to frequently
arriving measurements such as MPFM measurements, and allowed to
learn continuously from them, the learning problem is relatively simple
8

Table 1
Average mean absolute percentage error across the wells for the models and learning
methods trained on both MPFM and well-test measurements. The last column is the
average MAPE across all wells and models.

Learning method LR NN MTL HEM HAM M All

PBL 6 months 16.8 12.4 8.3 14.2 12.4 18.1 13.7
PBL 2 weeks 14.2 10.5 5.0 10.9 8.7 15.7 10.8
OL 6.2 3.2 2.9 3.4 2.1 4.2 3.7

and a complex model is not necessary to achieve high VFM accuracy.
This is supported by the good performance of the Benchmark which
outperforms nearly all models trained with PBL. On the other hand,
a disadvantage with the Benchmark is that it cannot be used for
sensitivity analyses or in production optimization.

Secondly, from Table C.1 it is observed that there are large differ-
ences in the error reduction for each well when the update frequency
is increased. For instance, for W9 and most models, the error is greatly
reduced going from the PBL 6 months to the OL. On the other hand, for
W1 the reduction is not as prominent. This is likely related to whether
or not the data generating distribution shifts with time. In Fig. 7, the

Hotelling’s T-squared statistic is plotted for W1 and W9 using Algorithm
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Fig. 7. The Hotelling’s T-squared statistic for W1 and W9 comparing each observation from 01.01.2019 and forward with time to the training data containing the historical data
before 01.01.2019. As seen, for W1 most observations are not detected as shifts. Whereas for W9, all observations towards to end are marked as a shift.
Fig. 8. The rolling absolute mean error across the wells against time for the models and learning methods. The window size used to calculate the error is 14 days. The shaded
region illustrates the 25 and 75 percentiles of the errors across the wells. The vertical lines illustrate where the models are updated for the PBL 6 months and PBL 2 weeks.
1 on the initial training and test data. Fig. 7 indicates that it is unlikely
that W1 experiences dataset shifts. On the other hand, for W9 it can
be observed that the data likely shifts with time. Therefore, the results
in Table C.1 indicate that OL is better at tracking the local optimum of
the learning problem when it changes with time.

Another figure that illustrates the benefit of updating the model
more often is Fig. 8, where the prediction error is visualized against
time. The error is calculated as a rolling absolute mean error with a
window size of 14 days. The shaded regions visualize the 25 and 75
percentiles of the errors across the wells. Notice that the PBL seems
to yield a cyclic high and low accuracy. The average error increases
with time up until model updating where the average error is reduced,
naturally after some delay due to the rolling window. This is best
observed for the PBL 6 months, but also to some extent for the PBL
2 weeks.
9

Table 2
The average mean absolute percentage error across the wells for the models and
learning methods trained on well-test measurements. The last column is the average
MAPE across all wells and models.

Learning method LR NN MTL HEM HAM M All

PBL 6 months 43.2 40.7 12.1 17.9 18.3 21.8 25.7
PBL 2 weeks 37.1 31.1 9.6 24.5 16.7 20.5 23.3
OL 44.3 31.4 10.5 18.7 11.6 17.7 22.4

4.4. Results of case 2

In this case, the models are trained on well-test measurements only,
see the observations colored orange in Fig. 4. Fig. 9 illustrates the
distribution of MAPEs for the wells. Table 2 gives an overview of the
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Fig. 9. The distribution of mean absolute percentage error (MAPE) for each well, grouped for the models and learning methods. Here the models are trained using well-test
measurements only. Compared to the performance of the benchmark model. The boxes show the 𝑃25, 𝑃50 (median), and 𝑃75 percentiles. The whiskers show the 𝑃10 and 𝑃90
percentiles.
Fig. 10. The elapsed time between new well-tests for each well present in the dataset. Keep in mind that the bins in the histogram have different sizes, from one day to three
onths of elapsed time. Observe that many of the wells have measurements occurring more than two weeks apart.
verage MAPE across the wells. Table C.2 reports the MAPE for each
ell, model, and method. First of all, notice the significantly different

esults obtained for this case compared to Case 1. In Case 1, a trend of
ecreased error for increased update frequency is observed. Here, the
ifference in performance is negligible for many models and for other
odels the error increases going from PBL to OL. The observed results

re likely related to the elapsed time between each new well-test,
llustrated in Fig. 10 by a stacked histogram. Notice that many of the
ells have several tests that are more than a month apart. Furthermore,
ight of ten wells have the majority of tests occurring with a frequency
ower than 14 days, see Table C.3. In such situations, the frequency
f model updating is equal for PBL 2 weeks and OL, and the only
ifference between the two is how the updating is executed. The low
requency of well-tests is also likely the cause of the decreased Bench-
ark performance compared to Case 1. With a lower frequency, the
rocess conditions can have changed significantly in-between well-tests
nd two chronological flow rate measurements are likely uncorrelated.
he intermittent time between well-tests also makes it challenging to
10

btain good hyperparameters. If well-tests occur frequently, the model
will likely require small parameter updates, and opposite for infre-
quently arriving well-tests. Non-optimal hyperparameters can explain
the overall poorer average performance for all models and methods
than for Case 1.

The large MAPEs in Table 2 show that in the presence of infrequent
and intermittent measurements, the learning problem is not trivial and
a more complex model than, for instance, the Benchmark, is required
to obtain an adequate performance. Nevertheless, the comparable per-
formance of the LR and NN indicate that choosing a data-driven model
with higher complexity is not the solution to increased performance in
this case. Likely, the amount of data available is too small for high-
capacity data-driven models to exploit their capacity. An observation
that supports this is that the NN obtained a significant improved
performance in Case 1 where the amount of data is higher. On the other
hand, having physical considerations in the model structure does seem
to be advantageous for VFM when the amount of data is small. From
Fig. 9, the MTL, HEM, HAM, and M, all achieve a median MAPE below
20% whereas the NN and LR are well above 20%. Another interesting
observation is that learning from several wells as for the MTL seems to

yield a more robust approach as the spread in performances is low.
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Table B.1
The training algorithm settings as a result of the hyperparameter search for training
on both MPFM and well-test measurements. For the batch learning approaches, only
the value of the learning rate 𝛾 is experimented with. The number of iterations 𝐸 for
PBL is found with early stopping (E.S.). The (s.) and (c.) for the LR refers to using the
learning rate scheduler in (21) and constant learning rate, respectively.

Model PBL 6 months PBL 2 weeks OL

𝛾 𝐸 𝑂 𝛾 𝐸 𝑂 𝛾 𝐸 𝑂

LR (s.) 10−2 E.S. SGD (s.) 10−1 E.S. SGD (c.) 0.5 20 SGD
NN 10−4 E.S. Adam 10−3 E.S. Adam 10−5 20 Adam
MTL 10−4 E.S. Adam 10−3 E.S. Adam 10−6 20 Adam
HEM 10−3 E.S. Adam 10−3 E.S. Adam 10−2 20 SGD
HAM 10−3 E.S. Adam 10−3 E.S. Adam 10−5 20 SGD
M 10−3 E.S. Adam 10−3 E.S. Adam 10−2 10 Adam

Table B.2
The training algorithm settings as a result of the hyperparameter search for training
on only well-test measurements. For the batch learning approaches, only the learning
rate 𝛾 is experimented with. The number of iterations 𝐸 for PBL is found with early
stopping (E.S.). The (s.) and (c.) for the LR refers to using the learning rate scheduler
in (21) or constant learning rate, respectively.

Model PBL 6 months PBL 2 weeks OL

𝛾 𝐸 𝑂 𝛾 𝐸 𝑂 𝛾 𝐸 𝑂

LR (s.) 10−4 E.S. SGD (s.) 0.5 E.S. SGD (s.) 10−3 1 SGD
NN 10−4 E.S. Adam 10−3 E.S. Adam 10−4 20 SGD
MTL 10−5 E.S. Adam 10−5 E.S. Adam 10−5 20 Adam
HEM 10−3 E.S. Adam 10−4 E.S. Adam 10−10 20 SGD
HAM 10−5 E.S. Adam 10−5 E.S. Adam 10−5 20 Adam
M 10−3 E.S. Adam 10−3 E.S. Adam 10−2 10 Adam

5. Concluding remarks

The key takeaways from this study are two-fold. Firstly, a high
update frequency of steady-state VFM models is essential to sustain
high performance over time under nonstationary conditions. The results
from Case 1 in Fig. 6 clearly document the benefit of frequent model
updating when the frequency of measurement arrival is high. Of the
two passive learning methods analyzed, online learning achieves the
best average performance with an error of 3.7% across all wells and
model types. Periodic batch learning with an update frequency of
six months obtained the worst average performance of 13.7%. The
benefit of frequent updating is less evident for Case 2 in Fig. 9 where
the measurements arrive intermittently and infrequently. Yet, Table 2
illustrates an increasing VFM average performance when the update
frequency increases. The online learning approach yields a 13% error
reduction compared to the periodic batch learning every six months.
The decrease in average performance for all models and methods for
Case 2 is likely due to the smaller amount of available data to learn
from.

Secondly, in the presence of intermittently and infrequently arriving
measurements, as for Case 2, Fig. 9 distinctly illustrates that knowl-
edge regarding the process physics is fundamental to obtaining a high
performance of the steady-state VFM. The best performing is the multi-
task learning model with periodic batch learning every second week
with an error of 9.6% on average. The best data-driven model was the
neural network with periodic batch learning every second week with an
average error of 31.1%. Keep in mind, the learning methods are only
investigated for ten offshore wells on the Norwegian continental shelf.
Therefore, the results can change for production wells with contrasting
multiphase flow characteristics.

The overall conclusion of this study is that steady-state VFMs op-
erating in nonstationary conditions can benefit greatly from passive
learning with frequent model updating. As discussed in Section 1, many
industrial VFMs are based on steady-state models, and these models
are typically calibrated manually and infrequently. Considering this,
the results demonstrate a large potential for improved performance
11

of existing VFMs by implementing passive learning for automating
the model calibration procedure. Automation of new or existing VFMs
would require an infrastructure for data collection and processing,
model training, model deployment, and model performance monitoring
to ensure a frequent and robust model updating process. To the authors’
knowledge, few, if any, industrial VFM solutions have achieved this
level of automation. Therefore, the results and considerations in this
study can be of interest to experts developing new or existing VFMs, or
other applications of soft sensors in nonstationary environments.

Case-specific considerations must be made when choosing a pas-
sive learning method. Online learning offers the highest frequency
of model calibration, and correspondingly demands the most of the
infrastructure in terms of fast processing capabilities. An alternative is
to use periodic batch learning with an updating period matching the
expected frequency of significant process change. In this study, model
calibration every second week was found to give good performance.
Finally, this study found the tuning of hyperparameters of the periodic
batch learning method more straightforward than the online learning
method. Hence, practicians are recommended to implement periodic
batch learning before attempting to automate model calibration with
online learning.
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Table C.1
Mean absolute percentage errors for all wells and models. The triple of numbers reported is the error for periodic batch
learning every 6 months, periodic batch learning every 2 weeks, and online learning, respectively.
Well LR NN MTL HEM HAM M

1 9.4, 9.3, 12.5 4.4 4.9, 1.6 3.1, 2.1, 1.7 4.6, 3.6, 2.0 4.4, 3.2, 1.3 4.3, 4.4, 1.7
2 26.0, 21.1, 5.4 16.4, 18.5, 5.8 10.5, 8.7, 5.3 19.4, 20.7, 8.9 18.8, 17.6, 4.5 35.8, 41.2, 10.3
3 12.6, 9.8, 4.0 10.0, 11.7, 7.0 9.8, 4.9, 3.9 10.9, 8.8, 5.0 14.7, 10.2, 2.7 30.1, 11.7, 5.9
4 12.8, 12.0, 8.1 10.4, 9.8, 1.8 7.2, 5.0, 1.8 10.5, 9.2, 2.4 8.1, 7.3, 1.3 5.7, 5.5, 2.3
5 18.6, 16.0, 6.7 8.9, 8.5, 3.2 7.5, 3.3, 2.1 12.6, 9.2, 1.6 10.6, 7.6, 1.4 13.5, 11.5, 1.6
6 17.8, 14.8, 5.3 13.7, 11.1, 2.4 8.6, 5.4, 3.6 19.0, 16.0, 2.3 17.1, 10.3, 1.7 27.4, 23.5, 4.1
7 26.4, 23.8, 5.7 20.5, 12.4, 4.4 11.7, 5.1, 3.1 23.3, 11.9, 2.9 17.3, 9.1, 3.3 20.4, 16.5, 4.3
8 14.7, 12.6, 4.1 11.2, 10.8, 1.9 6.8, 5.5, 2.5 9.6, 7.9, 2.7 7.9, 6.7, 1.7 11.2, 12.8, 5.0
9 10.6, 9.2, 5.3 8.5, 7.7, 2.2 8.3, 5.3, 2.1 10.3, 8.1, 1.7 8.9, 7.4, 1.9 9.7, 12.0, 2.6
10 18.8, 13.7, 4.5 19.9, 9.4, 2.2 9.2, 4.5, 2.7 21.7, 14.1, 3.6 16.4, 7.3, 1.9 23.0, 17.8, 4.5
Table C.2
Mean absolute percentage errors for all wells and models trained on only test separator measurements. The triple of numbers
reported is the error for periodic batch learning every 6 months, periodic batch learning every 2 weeks, and online learning,
respectively.
Well LR NN MTL HEM HAM M

1 26.5, 19.9, 28.9 10.6, 9.3, 10.8 1.9, 2.3, 3.2 4.2, 5.2, 7.9 4.6, 4.0, 1.7 4.3, 6.5, 1.9
2 91.2, 78.8, 64.5 62.0, 66.0, 30.3 27.2, 16.0, 17.7 58.7, 85.6, 49.4 57.7, 49.2, 37.7 78.7, 75.7, 47.7
3 22.2, 20.0, 46.9 79.1, 25.4, 63.6 11.1, 10.7, 14.7 21.6, 46.8, 17.6 14.1, 14.7, 16.5 28.9, 23.8, 51.1
4 32.9, 24.4, 34.8 16.6, 14.7, 18.5 11.0, 10.1, 8.4 12.8, 10.6, 5.3 10.8, 9.9, 7.0 9.9, 10.5, 5.8
5 28.3, 25.4, 26.9 15.1, 9.2, 11.7 4.7, 3.8, 5.3 4.5, 4.9, 3.9 7.2, 10.2, 4.3 7.9, 5.2, 4.9
6 82.0, 60.7, 48.1 72.7, 47.0, 43.7 14.6, 13.8, 11.4 8.6, 11.8, 13.3 11.6, 13.9, 5.4 14.5, 13.1, 8.8
7 43.5, 50.8, 79.5 68.9, 50.4, 51.5 9.3, 6.4, 11.2 11.7, 18.2, 13.7 19.1, 16.0, 18.2 10.8, 14.2, 11.6
8 16.9, 19.0, 30.6 15.8, 21.3, 20.8 6.3, 5.4, 8.3 6.4, 12.2, 10.4 4.7, 5.1, 6.2 12.8, 9.5, 11.1
9 27.7, 22.9, 36.7 27.1, 27.0, 25.7 8.1, 7.2, 8.5 12.3, 9.0, 4.9 17.6, 14.0, 3.3 12.5, 9.9, 4.0
10 60.7, 49.8, 46.1 38.9, 40.5, 37.8 26.3, 20.6, 16.4 38.1, 40.7, 60.7 35.7, 30.3, 15.6 37.8, 36.4, 30.1
Table C.3
The percentage of well-tests for a well where the number of days between two
chronological tests resides in the given bins. d=day, w=week, m=month, y=year.

Well < 2w 2w-1 m 1 m-2 m 2 m-3 m 3 m-6 m 6 m-9 m 9 m-1y

1 60.9% 10.1% 18.8% 1.5% 7.2% 1.5% 0%
2 46.2% 17.9% 28.2% 0% 5.1% 0% 2.6%
3 36.4% 22.7% 22.7% 13.6% 4.5% 0% 0%
4 64.8% 12.1% 14.3% 5.5% 2.2% 0% 1.1%
5 48.3% 23.3% 16.7% 6.7% 5.0% 0% 0%
6 52.1% 21.9% 19.2% 4.1% 1.4% 1.4% 0%
7 41.7% 25.0% 8.3% 8.3% 8.3% 8.3% 0%
8 45.7% 22.9% 20.0% 2.9% 5.7% 0% 2.9%
9 44.8% 20.7% 27.6% 3.4% 3.4% 0% 0%
10 40.5% 16.2% 32.4% 5.4% 0% 5.4% 0%

Appendix A. Estimation of the update frequency in periodic batch
learning

Consider the null hypothesis 0 to state that there is no virtual
drift present in the data such that input distribution 𝑝(𝒙) does not shift

ith time. This 0 is also called the stationary hypothesis. The 1
ypothesis is the alternative hypothesis that there is a shift in the data.
athematically:

0 ∶ 𝑝𝑡(𝒙) = 𝑝𝑡+𝜏 (𝒙) for all 𝜏 > 0

1 ∶ 𝑝𝑡(𝒙) ≠ 𝑝𝑡+𝜏 (𝒙) for any 𝜏 > 0.
(A.1)

Consider two disjoint datasets 1 and 2 with size 𝑁1 and 𝑁2 and
nputs observations 𝑿1 ∈ R𝑑×𝑁1 and 𝑿2 ∈ R𝑑×𝑁2 , respectively. The

Hotelling’s T-squared statistic calculates the probability of equal means
of the two multivariate input distributions at a significance level 𝛼. The
statistic is calculated as

𝐻𝑇 2 = (𝝁1 − 𝝁2)
(

𝜮1
𝑁1

+
𝜮2
𝑁2

)−1
(𝝁1 − 𝝁2)⊤, (A.2)

where 𝝁 ∈ R𝑑 is the sample mean vector and the 𝜮 ∈ R𝑑×𝑑 is
the sample covariance matrix of the input. The Hotelling’s T-squared
12

statistic follows the F-distribution 𝐹 (𝑑,𝑁1+𝑁2−𝑑−1) (Härdle & Simar,
2012). To estimate an appropriate update frequency in PBL, the two-
sample Hotelling’s T-squared test can be used on available training data
using Algorithm 1

Algorithm 1 Estimation of the update frequency 𝜏 in periodic batch
learning
Require: data 1 ∶ 𝑇 = {(𝒙𝑡, 𝑦𝑡)}𝑇𝑡=1, significance level 𝛼
1: Set 1 = 1 ∶ 𝑇1 where 1 < 𝑇1 < 𝑇 .
2: for 𝑘 = 1, ..., 𝑇 − 𝑇1 do
3: 2, 𝑘 = 𝑇1 + 𝑘
4: Calculate 𝐻𝑇 2 using (A.2) with 1 and 2, 𝑘
5: Calculate F-statistic 𝐹𝑘 for 𝐻𝑇 2

6: Calculate the critical value 𝐹crit at significance level 𝛼
7: if 𝐹𝑘 < 𝐹crit then
8: Reject 0, shift detected
9: return 𝜏 = 𝑇1 + 𝑘

10: end if
11: end for

The algorithm is subject to false shift detections, or type II error, for
instance, if the observation is faulty or noisy. A workaround is to test
additional observations following with time. If shifts are detected on
several subsequent observations, virtual drift has likely occurred. If the
following observations are not detected as shifts, likely, the detection
is falsely reported.

Appendix B. Hyperparameter search

See Tables B.1 and B.2.

Appendix C. Additional results from the numerical study

See Tables C.1 and C.2.
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