
Resource-Aware Asynchronous Online Federated

Learning for Nonlinear Regression

Francois Gauthier⋆, Vinay Chakravarthi Gogineni⋆, Stefan Werner⋆, Yih-Fang Huang†, Anthony Kuh‡

⋆Dept. of Electronic Systems, Norwegian University of Science and Technology, Norway
†Dept. of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
‡Dept. of Electrical and Computer Engineering, University of Hawaii, Hawaii, USA

E-mails: {francois.gauthier, vinay.gogineni, stefan.werner}@ntnu.no, huang@nd.edu, kuh@hawaii.edu

Abstract—Many assumptions in the federated learning liter-
ature present a best-case scenario that can not be satisfied in
most real-world applications. An asynchronous setting reflects
the realistic environment in which federated learning methods
must be able to operate reliably. Besides varying amounts of
non-IID data at participants, the asynchronous setting models
heterogeneous client participation due to available computational
power and battery constraints and also accounts for delayed
communications between clients and the server. To reduce the
communication overhead associated with asynchronous online
federated learning (ASO-Fed), we use the principles of partial-
sharing-based communication. In this manner, we reduce the
communication load of the participants and, therefore, render
participation in the learning task more accessible. We prove the
convergence of the proposed ASO-Fed and provide simulations
to analyze its behavior further. The simulations reveal that, in
the asynchronous setting, it is possible to achieve the same con-
vergence as the federated stochastic gradient (Online-FedSGD)
while reducing the communication tenfold.

I. INTRODUCTION

A vast amount of data is available on distributed devices,

including edge devices. This motivates the development of

distributed learning methods operating on those devices, and

coping with edge devices. Federated learning (FL) is designed

with this task in mind, as it provides an adaptive large-scale

collaborative learning framework. In FL, a server aggregates

information received from devices called clients to train a

global model; the clients do not share any private data with

the server, only their local model parameters [1], [2]. Amongst

the features that make federated learning (FL) stand out from

typical distributed learning are the assumptions of uneven data

distribution and statistical heterogeneity [3].

There are, however, further complications when learning

on edge devices that are not considered in most FL imple-

mentations [2], [4]–[9]. In a realistic setting, clients can-

not be expected to have the same participation frequency,

e.g., because of battery constraints, channel availability, or

concurrent solicitations [10]–[12]. Furthermore, clients may

become unavailable for a certain period during the learning

process, i.e., some clients are temporarily out of order or

not reachable by the server [10], [11]. Physical constraints

may also introduce delays in the communication between

This work was supported by the Research Council of Norway.

clients and the server [11]–[13]. These constraints, frequently

occurring in practice, impair the efficiency of existing FL

methods and make the development of FL methods tailored

for an asynchronous environment challenging [10]–[15].

Besides, the energy toll taken by FL methods on clients can

sometimes be prohibitive, and methods are being developed

to address this issue [7], [13]. Notably, the communication

of model parameters to and from the server accounts for a

substantial portion of the power consumption in FL. Hence, it

is crucial to reduce this communication cost from the client’s

perspective [4], [7], [13], [14]. Furthermore, in asynchronous

settings, efficiency in communication is essential for reducing

energy and bandwidth thresholds at which devices choose to

participate, hence increasing participation rates, and thus max-

imizing the benefits of the FL framework. Therefore, clients

would benefit from an FL approach that ensures satisfactory

learning in an asynchronous environment while imposing a

minimal communication burden.

A considerable amount of research has been undertaken on

both communication-efficient FL [4], [6], [8], [9], [16]–[18]

and asynchronous FL [10]–[12], [15], [19], [20]; however,

there is little work combining the two aspects into one. The

works in [13], [17] reduced the communication overhead via

compressed updates on the client-side, but they did not address

communication needs on the server-side. Aside from the accu-

racy cost associated with this projection method, it also adds

an extra computational burden, which is not appealing for low-

battery clients. Moreover, the work in [17] did not consider

asynchronous settings. Although the work in [14] reduced the

communication load of the clients, it is specific to deep neural

networks and does not provide a mathematical analysis of

the presented results; in addition, the asynchronous setting

considered do not include communication delays. The classical

federated averaging [4] reduced the communication in FL by

selecting a subset of the clients to participate at each iteration.

However, because some clients may participate sporadically

in the asynchronous setting, we do not intend to discard any

participation by sub-sampling the available clients. Another

option, explored until recently only in distributed learning, is

the partial-sharing of the model parameters [21]. The partial-

sharing-based online FL (PSO-Fed) [16] introduces partial-

sharing in FL, but only in an ideal setting.

This paper extends the work and analysis on partial-sharing-

based communication to the asynchronous online FL. The

developed method presents the advantages of being feasible in

a realistic environment and reducing the computational load

of participants. The proposed partial-sharing asynchronous

online federated learning (PAO-Fed) algorithm oversees the

collaborative estimation of a continuous nonlinear model

represented on a random Fourier feature (RFF) space [22],

[23], where only subsets of the RFF representation of the

model are exchanged between the server and the clients. We

prove that PAO-Fed converges even in a setting where client

participation is random, and communication links suffer from

delays. Lastly, we provide numerical results to compare PAO-

Fed with existing methods in various asynchronous settings.

II. PRELIMINARIES

A. Federated learning

We consider a global server linked to K geographically

distributed devices, referred to as clients. The set of clients

is denoted K. The data of the network is distributed over

those client, the local data of client k ∈ K is denoted

Xk. We consider that the entire data is not available at

the beginning of the learning process but instead becomes

available progressively. We denote the data available at client

k at global iteration n by xk,n and the corresponding desired

output by yk,n; their relation is described as

yk,n = f(xk,n) + ηk,n, (1)

where f(·) is a continuous nonlinear model that we want to

estimate, and ηk,n is the observation noise. Here, we aim to

estimate the global model w, which is a linear representation

of f(·) in the D-dimensional random Fourier feature (RFF)

space. The global model w can be estimated by minimizing

the following objective functions at the server and client k,

given, as in [22], [23], by:

J (w) =
1

K

∑

k∈K

Jk(w), (2)

Jk(w) = E[|yk,n − ŷk,n|
2],

with ŷk,n = wTzk,n, where zk,n is the mapping of xk,n into

the RFF space.

B. Online-Fed

At each global iteration n, the server selects a subset of

clients Kn ∈ K to participate in the learning. It shares the

global model wn with the clients in Kn for them to perform

the following local update step:

wk,n+1 = wn + µǫk,nzk,n, (3)

where µ is the learning rate and ǫk,n = yk,n −wT

nzk,n is the

a priori error. The clients proceed to share their new models

with the server who aggregates them as:

wn+1 =
1

|Kn|

∑

k∈Kn

wk,n+1. (4)

In the particular case where, at each global iteration, Kn =
K, that is, all the clients are always selected to participate, we

denote the algorithm Online-FedSGD.

C. Partial Sharing

In partial sharing-based communications, as defined in [21],

network clients only share a subset of the model parameters

instead of the entire model parameter vector. To this aim,

both the server and the clients will select a portion of their

model to share prior to communication. This operation is

computationally trivial and, therefore, does not induce a delay

in the communication, unlike projection-based methods as

used in [13], [17]. Further, the portion of the model shared

will change at each iteration.

In practice, the selection is performed by multiplying the

model parameter vector with a diagonal matrix with diagonal

values of either 0 or 1, where the latter locations specify the

parameters to share. The server will use matrix Mk,n to select

the model parameters to share with client k at iteration n;

similarly, client k will use matrix Sk,n to select which local

model parameters to share with the server at iteration n.

D. PSO-Fed

The PSO-Fed algorithm in [16] uses partial sharing-based

communication to reduce the communication overhead of the

Online-Fed algorithm without compromising the accuracy. In

contrast, projection-based models see, e.g., [13], [17], require

increased computations while suffering some loss in accuracy.

In addition, PSO-Fed allows clients not participating in the

current global aggregation step to perform local updates.

Specifically, if client k receives new data at an iteration n

when it is not assisting in the global update, it updates its

model as:

wk,n+1 = wk,n + µǫk,nzk,n, (5)

where ǫk,n = yk,n −wT

k,nzk,n.

By combining scheduling and partial-sharing, the PSO-Fed

algorithm can significantly reduce the amount of communi-

cation. Furthermore, it converges rapidly thanks to the local

update performed independently by the clients, allowing them

to refine their model prior to sharing it when selected to

participate. The aggregation step at the server is given by:

wn+1 = wn +
1

|Kn|

∑

k∈Kn

Sk,n(wk,n −wn). (6)

E. Limitations

The aforementioned algorithms offer a considerable cut in

communication overhead; however, they do not incorporate

knowledge of the network environment or client resources.

For example, when performing federated learning in real-

time, clients may be unavailable for various reasons, e.g.,

limited battery power and channel availability. In addition,

poor connection or sub-optimal communication channels may

delay exchanged messages. Delays can also arise from some

clients with limited computational resources that struggle to

perform the task in time (so-called straggler-clients). There-

fore, for a successful operation in a realistic environment, an

online federated learning method needs to handle time-varying

client participation and weigh the importance of delayed

measurements. To that end, in this work, we modify the PSO-

Fed algorithm to handle such an asynchronous setting. As we

will see in the following, many choices made for the PSO-

Fed algorithm in a perfect FL setting are not the best in the

asynchronous setting.

III. PROPOSED METHOD

A. Asynchronous setting

We consider an asynchronous setting where clients have

access to uneven amounts of non-IID data and have various

availability, meaning some will participate more often than

others in the learning. In addition, clients may become un-

available for several iterations during the learning process.

Furthermore, we expect communication from the clients to

the server to be subject to delays. The consequence of the

introduced delays is that not all updates from clients will arrive

at the server simultaneously. An update sent by a client at time

n− l and delayed for l iterations will be received by the server

at time n. We denote by Kn,l the set of all the clients who sent

an update at iteration n−l that reached the server at iteration n.

Further, we define the set Kn =
∑∞

l=0 Kn,l of all the clients

who sent an update that arrived at the server at iteration n.

When receiving a delayed update from a client, a decision

must be made whether to use it, as it may be outdated. To

improve the learning accuracy of the algorithm, we propose an

aggregation mechanism, where weights are given to received

local models according to how recent they are.

B. PAO-Fed

In this setting, we chose not to sub-sample the available

clients, some of whom might be rarely available. Instead,

we will rely on partial-sharing to reduce the communication

overhead in the asynchronous FL setting. At iteration n, the

server will share a subset of its model with all the available

clients. Further, the clients will share a subset of their models

to the server, but although this reply is sent at iteration n,

it may arrive to the server later. Clients receiving new data

perform the local update step (5) if they are not available,

allowing them to communicate a refined model later on.

Performing this local update is a trivial computation for most

devices and does not require communication with the server.

At global iteration n, the server shares a subset of its model,

wn, to all the available clients, the selection matrices Mk,n

dictates which subset goes to which client. Each available

client k receives Mk,nwn and updates its local model as

wk,n+1 = Mk,nwn + (I−Mk,n)wk,n + µek,nzk,n, (7)

where the error ek,n is given by

ek,n = yk,n − (Mk,nwn + (I−Mk,n)wk,n)
Tzk,n. (8)

Then, the available clients communicate a portion of their

updated local model, i.e., Sk,n+1wk,n+1, to the server; this

communication may be delayed. At the server, we consider

the set of clients Kn whose updates arrived at the server at

time n. We decompose this set according to the number of

iterations during which the updates were delayed and update

the server model as:

wn+1 = wn +

∞
∑

l=0

αl

|Kn,l|

∑

k∈Kn,l

Sk,n−l(wk,n−l −wn), (9)

while omitting any empty set Kn,l, where αl ∈ [0, 1] is the

weight given to the updates delayed by l iterations. We denote

by lmax the maximum delay after which αl = 0. The weight

α0 given to the updates that are not delayed is 1, we will see

in the simulation section the importance having αl < 1 for

l > 1. The resulting algorithm is presented in Algorithm 1.

We note that in the eventuality where several clients in Kn

update the same model parameter, only the most recent updates

are considered, the selection matrices of the remaining updates

are adjusted accordingly prior to computing (9).

Algorithm 1 PAO-Fed

1: Initialization: w0 and wk,0, k ∈ K set to 0

2: Procedure at Local client k

3: for global iteration n = 1, 2, . . . , N do

4: if Client k receives new data at time n then

5: if k is available then

6: Receive Mk,nwn from the server.

7: Compute wk,n+1 as in (7) .

8: Share Sk,n+1wk,n+1 to the server.

9: else

10: Update wk as in (5).

11: end if

12: end if

13: end for

14: Procedure at Central Server

15: for global iteration n = 1, 2, . . . , N do

16: Receive client updates from subset Kn ⊂ K.

17: Share Mk,nwn with the available clients.

18: Compute wn+1 as in (9).

19: end for

IV. CONVERGENCE ANALYSIS

First, we present the global update expression of the algo-

rithm in matrix form. Similar to [24], before proceeding to the

analysis, we define the extended model vector we,n, Ae,n and

Ze,n as

we,n = col{wn,w1,n, . . . ,wK,n,w1,n . . . ,wK,n,w1,n−1,

. . . ,wK,n−1, . . . ,w1,n−lmax
, . . . ,wK,n−lmax

},

Ae,n = blockdiag{An, IDK , . . . , IDK},

Ze,n = blockdiag{Zn,0DK×K , . . . ,0DK×K}, (10)

with

An =















I 0D×1 · · · 0D×1

a1,nM1,n I− a1,nM1,n

...
... 0D×1

. . . 0D×1

aK,nMK,n

... I− aK,nMK,n















,

Zn = blockdiag{0D×1, z1,n, . . . , zK,n}, (11)

where ak,n = 1 if k ∈ Kn and 0 otherwise, col{·}
and blockdiag{·} represent column-wise stacking opera-

tor and block diagonalization operator, respectively. We

can now, assuming that the representation in the RFF

space is optimal, express the extended observation vector

col{0, y1,n, y2,n, . . . , yK,n,0K×1, . . . ,0K×1} as

ye,n = ZT

e,nw
∗
e + ηe,n, (12)

where w∗
e = 1(K+1)lmax+1 ⊗w∗ and ηe,n = col{0, η1,n, η2,n,

. . . , ηK,n,0K×1, . . . ,0K×1}. Further, we can express the ex-

tended estimation error vector as

ee,n = ye,n − ZT

e,nAe,nwe,n. (13)

We can then express the global recursion for we,n+1 as

we,n+1 = Be,n(Ae,nwe,n + µZe,nee,n), (14)

Be,n =























Bn B0,n 0D×DK B1,n · · · Blmax,n

0D×1 IDK 0DK · · · · · · 0DK

... IDK 0DK · · · · · · 0DK

... 0DK IDK 0DK · · · 0DK

...
...

. . .
. . .

. . . 0DK

0D×1 0DK · · · 0DK IDK 0DK























Bn = I−

lmax
∑

l=0

αl

∑

k∈Kn,l

ak,n,l

|Kn,l|
Sk,n+1−l

Bl,n = [
αla1,n,l

|Kn,l|
S1,n+1−l, · · · ,

αlaK,n,1

|Kn,l|
SK,n+1−l].

where 0DK = 0DK×DK , and ak,n,l = 1 if k ∈ Kn,l and 0
otherwise. We will now prove the mean convergence of the

PAO-Fed algorithm under the following assumptions:

Assumption 1: The mapping of the data vectors zk,n, k ∈ K
are drawn at each time step from a WSS multivariate random

sequence with correlation matrix Rk = E[zk,nz
T

k,n].
Assumption 2: The observation noise ηk,n is assumed to be

white, and independent of all input and output data.

Assumption 3: At each client, the model parameter vector is

assumed to be independent of the input data.

Note: All of those assumptions are commonly used in FL

literature and are required to prove the following.

Theorem I: Under Assumptions 1–3, E[w̃e,n], with w̃e,n =
w∗

e −we,n, converges to zero if and only if

0 < µ <
2

max
∀k,i

λi(Rk)
. (15)

Proof. First, we note that by construction we have w∗
e =

Be,nAe,nw
∗
e (as all rows in Be,n and Ae,n sum to 1). Then,

using (14), we can recursively express w̃e,n:

w̃e,n+1 = w∗
e −we,n+1 (16)

= w∗
e −Be,nAe,nwe,n −Be,nµZe,nee,n

= Be,nAe,nw̃e,n −Be,nµZe,nηe,n

−Be,nµZe,nZ
T

e,n(w
∗
e −Ae,nwe,n)

= Be,n(I− µZe,nZ
T

e,n)Ae,nw̃e,n

− µBe,nZe,nηe,n.

Its expectation E[·] can be simplified as:

E[w̃e,n+1] = E[Be,n]E[I− µZe,nZ
T

e,n]E[Ae,n]E[w̃e,n]

E[w̃e,n+1] = E[Be,n](I− µRe)E[Ae,n]E[w̃e,n],

where Re = blockdiag{0D,R1,R1, · · · ,RK ,0DKlmax
}.

Further, we consider the restriction of the following vectors

and matrices between the index D + 1 and D(K + 1). We

denote the restriction of x by x|sel. The block w̃e,n|sel is

defined as a linear sequence of order 1 in a normed algebra:

E[w̃e,n+1|sel] = (I−µRe|sel)Ae,n|selE[w̃e,n|sel]. To prove the

convergence of E[w̃e,n|sel] to zero, we use the infinity norm.

From the definition of An, We have ||An|sel||∞ = 1. Then

the convergence condition reduces to ||I − µRe|sel||∞ < 1,

equivalently, |1− µλi(Rk)| < 1, ∀k, i, where λi(·) is the ith

eigenvalue of the argument matrix. This leads to the conver-

gence condition given by (15) as, if E[w̃e,n|sel] converges to

zero, then, by construction, E[w̃e,n] converges to zero.

V. NUMERICAL SIMULATIONS

A. Simulation Settings

We model the uneven client participation by giving each

client k ∈ K a probability pk,n to participate in the learning

at global iteration n, note that a client can only participate if it

received new data at that iteration. The probabilistic nature of

the selection enables us to model both the varied availability

and potential downtime of the clients. The Bernouilli trial on

pk,n dictates if a client is available or not at a given iteration.

Further, each communication to the server has a probability

δl, l ∈ N of being delayed by l global iterations or more; this

probability is assumed to be the same for all the clients.

The number of model parameters shared at each step, m,

corresponds to the number of nonzero elements in the selection

matrices Mk,n and Sk,n. If ∀k, n, Mk,n = Sk,n, the local

updates (5) are not being used. In contrast, we make use of

the local updates if we set ∀k, n, Sk,n = circshift(Mk,n,m),
that is, the subset of model parameters shared is the one that

has been through the most local updates since last updation.

The operator circshift denotes a circular shift. In addition,

we call coordinated partial-sharing the specific case where

∀n, k 6= k′, Mk,n = Mk′,n,Sk,n = Sk′,n; otherwise the

partial-sharing is called uncoordinated. In the simulations,

we implement uncoordinated partial-sharing with Mk,n =
circshift(M1,n,mk) and M1,n = circshift(M1,0,mn). It is

shown in [16] that coordinated outperforms uncoordinated in

a perfect FL setting.

We consider an RFF space of dimension D = 200 and

K = 256 clients separated into 4 data groups for which

the progressively available training set is of size 500, 1000,

1500, and 2000, respectively. The clients of each data group

are further separated into 4 availability groups, dictating their

probability to participate at each iteration. We consider 2
different asynchronous settings. In Setting I, the participation

probabilities for the availability groups are 0.25, 0.1, 0.025,

and 0.005; and each communication to the server will be

delayed by more than l global iterations with probability

δl, 0 < l < lmax, with δ = 0.2 and lmax = 10. Setting II

models a harsher environment, availability groups are given

the probabilities 0.025, 0.01, 0.0025, and 0.0005; and com-

munications to the server have a probability δ = 0.4 to be

delayed. Further, delays last for more than l global iterations,

l taking the values 10i, 0 6 i 6 6, with probability δ
l
10 ; lmax

is set to 60. This notably implies that, in Setting II, delayed

updates have a greater probability to arrive after a non-delayed

update coming from the same client.

Unless specified otherwise, every PAO-Fed-based algorithm

is set to m = 4, and, therefore, reduce the communication load

of the algorithm by 98%. We consider seven different versions

of the PAO-Fed algorithm. In particular, methods whose names

start with PAO-Fed-C use coordinated partial-sharing, while

those with PAO-Fed-U use uncoordinated partial-sharing. Sim-

ilarly, the methods whose names end with 0 do not use the

local update steps, and those whose names end with 1 make

full use of those. All the aforementioned methods are set up

with αl = 1, 0 6 l 6 lmax, the method titled PAO-Fed-C2 is

identical to PAO-Fed-C1 except for the fact that it is set up

with αl = 0.2l, 0 6 l 6 lmax.

We evaluate the performance of the algorithms on a test

dataset with the mean squared error given at iteration n by:

Testing MSE =
1

T
||ytest − ZT

testwn||
2
2, (17)

where wn is the server’s model parameter of the considered

method and T is the size of the test dataset.

B. Simulation Analysis

Fig. 1 shows the impact of the choice of the selection

matrices on the convergence of the algorithm. We observe

that taking advantage of the local updates (5) greatly improve

the convergence properties of the algorithm. Moreover, we

see that it is best to use uncoordinated partial-sharing in the

presence of delays. This contradicts the behavior of partial-

sharing FL in the absence of delays, where coordinated partial-

sharing outperforms uncoordinated [16]. The reason is that, in

coordinated partial-sharing, all agents share the same subset

of model parameters at a given global iteration. While in

the absence of delays, this ensures that the aggregation (6)

represents an average over a good number of clients, in the

presence of delays, the latest updates overwrite the previous

ones (9).

0 500 1000 1500 2000
-12

-10

-8

-6

-4

-2

0

PAO-Fed-C0

PAO-Fed-U0

PAO-Fed-C1

PAO-Fed-U1

Fig. 1: PAO-Fed performance on Setting I.

0 500 1000 1500 2000
-12

-10

-8

-6

-4

-2

0

FedSGD

FedAVG

PAO-Fed-U1-1

PAO-Fed-U1-4

PAO-Fed-U1-32

PAO-Fed-C2

Fig. 2: Choice of m and αl on Setting I.

Fig. 2 shows the learning curves for Online-FedSGD,

Online-Fed, PAO-Fed-U1 for different values of m, and PAO-

Fed-C2 that decreases the weight of delayed updates. First,

we see that using local updates (5) allows the PAO-Fed algo-

rithm to achieve higher accuracy than Online-FedSGD while

using 98% less communication overhead. Second, Online-

Fed achieves poor accuracy in this setting; in fact, selecting

a subset of clients in the already reduced pool of available

participants is not a viable solution to reduce communication

overhead in the asynchronous setting. Third, by comparing the

PAO-Fed methods using m = 1, 4, and 32, we can see that, in

the presence of delays, sharing more model parameters at each

update does not necessarily increase accuracy as it does in a

normal setting [16]. In fact, because it increases the potential

negative impact of one single delayed update, it decreases

accuracy. Sharing a small number of model parameters ensures

better fitting of the server’s model parameters to the overall

average. Last, we observe that decreasing the weight of the

0 500 1000 1500 2000
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

FedSGD

PAO-Fed-C1

PAO-Fed-U1

PAO-Fed-C2

Fig. 3: Performance on Setting II.

received updates that have been delayed increases the accuracy

of the algorithm. This is due to the fact that we prevent

information coming from a small set of clients to overwrite

the server’s model parameters learned from a larger number of

clients. Instead, we chose to consider the innovation coming

from these delayed messages with reduced weight to take into

account the lower relevance of these model parameters.

Fig. 3 shows the performance of the algorithms on Setting

II, less favorable to learning. We observe that, in this setting,

reducing the weight given to the delayed updates gains im-

portance as the accuracy difference between PAO-Fed-C2 and

PAO-Fed-U1 increases. This more significant difference is due

to the fact that, in addition to overwriting the server’s model

with parameters from a smaller subset of clients, the delayed

update provides some potentially outdated information.

VI. CONCLUSIONS

We designed an energy-efficient FL algorithm adapted to

a realistic environment. The proposed federated learning al-

gorithm operates with significantly reduced communication

requirements and can cope with an unevenly distributed system

with poor client availability, channel blockage, and delays.

Furthermore, the proposed partial-sharing mechanism reduces

the communication overhead and diminishes the negative

impact of delayed updates on accuracy. We further propose

a weight-decreasing system for delayed updates that improve

the performance of the algorithm, especially in an environment

with poor participation and long delays.

REFERENCES

[1] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, Oct. 2016.

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[3] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” Artificial intel. statis., pp. 1273–1282, Apr. 2017.

[5] E. Ozfatura, K. Ozfatura, and D. Gündüz, “FedADC: accelerated feder-
ated learning with drift control,” in Proc. IEEE Int. Symp. Inf. Theory,
Jul. 2021, pp. 467–472.

[6] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[7] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949, Nov.
2020.

[8] Z. Lian, W. Wang, and C. Su, “COFEL: Communication-efficient and
optimized federated learning with local differential privacy,” in Proc.

IEEE Int. Conf. Commun., Jun. 2021, pp. 1–6.

[9] Y. Lu, Z. Liu, and Y. Huang, “Parameters compressed mechanism in
federated learning for edge computing,” in Proc. IEEE Int. Conf. Cyber

Secur. Cloud Comput., Jun. 2021, pp. 161–166.

[10] Y. Chen, Z. Chai, Y. Cheng, and H. Rangwala, “Asynchronous fed-
erated learning for sensor data with concept drift,” arXiv preprint

arXiv:2109.00151, Sep. 2021.

[11] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, Mar. 2019.

[12] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-iid data,” in Proc. IEEE

Int. Conf. Big Data, Dec. 2020, pp. 15–24.

[13] Z. Chai, Y. Chen, L. Zhao, Y. Cheng, and H. Rangwala, “Fedat: a
communication-efficient federated learning method with asynchronous
tiers under non-iid data,” arXiv preprint arXiv:2010.05958, Oct. 2020.

[14] Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep
learning with layerwise asynchronous model update and temporally
weighted aggregation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31,
no. 10, pp. 4229–4238, Dec. 2019.

[15] Z. Wang, Z. Zhang, and J. Wang, “Asynchronous federated learning over
wireless communication networks,” in Proc. IEEE Int. Conf. Commun.,
Jun. 2021, pp. 1–7.

[16] V. C. Gogineni, S. Werner, Y.-F. Huang, and A. Kuh, “Communication-
efficient online federated learning framework for nonlinear regression,”
IEEE Int. Conf. Acoust., Speech and Signal Process., May 2022.

[17] “Robust and communication-efficient federated learning from non-i.i.d.
data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–
3413, Sep. 2020.

[18] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, Oct. 2016.

[19] Z. Chai, A. Ali, S. Zawad, S. Truex, A. Anwar, N. Baracaldo, Y. Zhou,
H. Ludwig, F. Yan, and Y. Cheng, “Tifl: A tier-based federated learning
system,” Jun. 2020, pp. 125–136.

[20] X. Zhang, Y. Liu, J. Liu, A. Argyriou, and Y. Han, “D2D-Assisted
Federated Learning in Mobile Edge Computing Networks,” Mar. 2021,
pp. 1–7.

[21] R. Arablouei, K. Doğançay, S. Werner, and Y.-F. Huang, “Adaptive
distributed estimation based on recursive least-squares and partial diffu-
sion,” IEEE Trans. Signal Process., vol. 62, no. 14, pp. 3510–3522, Jul.
2014.

[22] P. Bouboulis, S. Pougkakiotis, and S. Theodoridis, “Efficient KLMS and
KRLS algorithms: a random Fourier feature perspective,” in Proc. IEEE

Stat. Signal Process. Workshop, Jun. 2016, pp. 1–5.

[23] A. Rahimi, B. Recht et al., “Random features for large-scale kernel
machines.” in Proc. Conf. on Neural Inf. Proc. Syst., vol. 3, no. 4, Dec.
2007, pp. 1–5.

[24] V. C. Gogineni, S. P. Talebi, and S. Werner, “Performance of clustered
multitask diffusion lms suffering from inter-node communication de-
lays,” IEEE Trans. on Circuits and Syst. II: Express Briefs, vol. 68,
no. 7, pp. 2695–2699, 2021.

	Introduction
	Preliminaries
	Federated learning
	Online-Fed
	Partial Sharing
	PSO-Fed
	Limitations

	Proposed method
	Asynchronous setting
	PAO-Fed

	Convergence analysis
	Numerical Simulations
	Simulation Settings
	Simulation Analysis

	Conclusions
	References

