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Modelling Sub-daily Precipitation Extremes
with the Blended Generalised Extreme Value

Distribution
Silius M. Vandeskog , Sara Martino, Daniela Castro- Camilo, and

Håvard Rue

A new method is proposed for modelling the yearly maxima of sub-daily precipita-
tion, with the aim of producing spatial maps of return level estimates. Yearly precip-
itation maxima are modelled using a Bayesian hierarchical model with a latent Gaus-
sian field, with the blended generalised extreme value (bGEV) distribution used as a
substitute for the more standard generalised extreme value (GEV) distribution. Infer-
ence is made less wasteful with a novel two-step procedure that performs separate
modelling of the scale parameter of the bGEV distribution using peaks over thresh-
old data. Fast inference is performed using integrated nested Laplace approximations
(INLA) together with the stochastic partial differential equation approach, both imple-
mented in R-INLA. Heuristics for improving the numerical stability of R-INLA with
the GEV and bGEV distributions are also presented. The model is fitted to yearly
maxima of sub-daily precipitation from the south of Norway and is able to quickly
produce high-resolution return level maps with uncertainty. The proposed two-step
procedure provides an improved model fit over standard inference techniques when
modelling the yearly maxima of sub-daily precipitation with the bGEV distribution.

Supplementary materials accompanying this paper appear on-line.
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1. INTRODUCTION

Heavy rainfall over short periods of time can cause flash floods, large economic losses and
immense damage to infrastructure. The World Economic Forum states that climate action
failure and extreme weather events are perceived among the most likely and most impactful
global risks in 2021 (World Economic Forum 2021). Therefore, a better understanding
of heavy rainfall can be of utmost importance for many decision-makers, e.g. those that
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are planning the construction or maintenance of important infrastructure. In this paper,
we create spatial maps with estimates of large return levels for sub-daily precipitation in
Norway. Estimation of return levels is best described within the framework of extreme
value theory, where the most common methods are the block maxima and the peaks over
threshold (e.g. Davison et al. 2015; Coles 2001). Due to low data quality (see Sect. 2 for
more details) and the difficulty of selecting high-dimensional thresholds, we choose to use
the block maxima method for estimating the precipitation return levels. This method is
based on modelling the maximum of a large block of random variables with the generalised
extreme value (GEV) distribution, which is the only non-degenerate limit distribution for a
standardised block maximum (Fisher and Tippett 1928). When working with environmental
data, blocks are typically chosen to have a size of one year (Coles 2001). Inference with
the GEV distribution is difficult, partially because its support depends on its parameter
values. Castro-Camilo et al. (2021) propose to ease inference by substituting the GEV
distribution with the blended generalised extreme value (bGEV) distribution, which has the
right tail of a Fréchet distribution and the left tail of a Gumbel distribution, resulting in a
heavy-tailed distribution with a parameter-free support. Both Castro-Camilo et al. (2021)
and Vandeskog et al. (2021) demonstrate with simulation studies that the bGEV distribution
performswell as a substitute for theGEVdistributionwhen estimating properties of the right
tail. Additionally, in this paper we develop a simulation study that shows how the parameter-
dependent support of the GEV distribution can lead to numerical problems during inference,
while inference with the bGEVdistribution ismore robust. This can be of crucial importance
in complex and high-dimensional settings, and consequently we choose to model the yearly
maxima of sub-daily precipitation using the bGEV distribution.

Modelling of extreme daily precipitation has been given much attention in the literature,
and it is well established that precipitation is a heavy-tailed phenomenon (e.g. Wilson and
Toumi 2005; Katz et al. 2002; Papalexiou and Koutsoyiannis 2013), which makes the bGEV
distribution a possible model for yearly precipitation maxima. Spatial modelling of extreme
daily precipitation has also received a great amount of interest. Cooley et al. (2007) com-
bine Bayesian hierarchical modelling with a generalised Pareto likelihood for estimating
large return values for daily precipitation. Similar methods are also applied by Sang and
Gelfand (2009); Geirsson et al. (2015); Davison et al. (2012); Opitz et al. (2018), using either
the block maxima or the peaks over threshold approach. Using a multivariate peaks over
threshold approach, Castro-Camilo and Huser (2020) propose local likelihood inference for
a specific factor copula model to deal with complex non-stationary dependence structures of
precipitation over the contiguous US spatial modelling of extreme sub-daily precipitation is
more difficult, due to less available data sources. Consequently, this is often performed using
intensity-duration-frequency relationships where one pools together information from mul-
tiple aggregation times in order to estimate return levels (Koutsoyiannis et al. 1998; Ulrich
et al. 2020; Lehmann et al. 2016; Wang and So 2016). Spatial modelling of extreme hourly
precipitation in Norway has previously been performed by Dyrrdal et al. (2015). After their
work was published, the number of observational sites for hourly precipitation in Norway
has greatly increased. We aim to improve their return level estimates by including all the
new data that have emerged over the last years. We model sub-daily precipitation using a
spatial Bayesian hierarchical model with a bGEV likelihood and a latent Gaussian field. In
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order to keep our model simple, we do not pool together information frommultiple aggrega-
tion times, making our model purely spatial. The model assumes conditional independence
between observations, which makes it able to estimate the marginal distribution of extreme
sub-daily precipitation at any location, but unable to successfully estimate joint distributions
over multiple locations. In the case of hydrological processes such as precipitation, ignoring
dependencemight lead to an underestimation of the risk of flooding. However, Davison et al.
(2012) find that models where the response variables are independent given some latent pro-
cess can be a good choice when the aim is to estimate a spatial map of marginal return levels.

High-resolution spatial modelling can demand a lot of computational resources and
be highly time-consuming. The framework of integrated nested Laplace approximations
(INLA; Rue et al. 2009) allows for a considerable speed-up by using numerical approx-
imations instead of sampling-based inference methods like Markov chain Monte Carlo
(MCMC). Inference with a spatial Gaussian latent field can be even further speed-up with
the so-called stochastic partial differential equation (SPDE; Lindgren et al. 2011) approach
of representing a Gaussian random field using a Gaussian Markov random field that is the
approximate solution of a specific SPDE. Both INLA and the SPDE approach have been
implemented in the R-INLA library, which is used for performing inference with our model
(Bivand et al. 2015; Rue et al. 2017; Bakka et al. 2018).R-INLA requires a log-concave like-
lihood to ensure numerical stability during inference. However, neither the GEV likelihood
nor the bGEV likelihood are log-concave, which can cause inferential issues. We present
heuristics for mitigating the risk of numerical instability caused by a lack of log-concavity.

A downside of the block maxima method is that inference can be somewhat wasteful
compared to the peaks over threshold method. Additionally, most of the available weather
stations in Norway that measure hourly precipitation are young and contain quite short time
series. This data sparsity makes it challenging to place complex models on the parameters
of the bGEV distribution in the hierarchical model. A promising method of accounting for
data-sparsity is the recently developed sliding block estimator, which allows for better data
utilisation by not requiring that the block maxima used for inference come from disjoint
blocks (Bücher and Segers 2018; Zou et al. 2019). However, to the best of our knowledge, no
theory has yet been developed for using the disjoint block estimator on non-stationary time
series, or for performing Bayesian inference with the disjoint block estimator. Vandeskog
et al. (2021) propose a new two-step procedure that allows for less wasteful and more stable
inference with the block maxima method by separately modelling the scale parameter of the
bGEV distribution using peaks over threshold data. Having modelled the scale parameter,
one can standardise the blockmaxima so the scale parameter can be considered as a constant,
and then estimate the remaining bGEV parameters. Bücher and Zhou (2021) suggests that,
when modelling stationary time series, the peaks over threshold technique is preferable over
blockmaxima if the interest lies in estimating large quantiles of the stationary distribution of
the times series. The opposite holds if the interest lies in estimating return levels, i.e. quantiles
of the distribution of the block maxima. Thus, both methods have different strengths, and by
using this two-step procedure, one can take advantage of the merits and improve the pitfalls
of both methods.We apply the two-step procedure for modelling sub-daily precipitation and
compare the performance with that of a standard block maxima model where all the bGEV
parameters are estimated jointly.



Modelling Sub- daily Precipitation Extremes 601

The remainder of the paper is organised as follows. Section 2 introduces the hourly pre-
cipitation data and all explanatory variables used formodelling. Section 3 presents the bGEV
distribution and describes the Bayesian hierarchical model along with the two-step mod-
elling procedure. Additionally, heuristics for improving the numerical stability of R-INLA
are proposed, and a score function for evaluatingmodel performance is presented. In Sect. 4,
we perform modelling of the yearly precipitation maxima in Norway. A cross-validation
study is performed for evaluating the model fit, and a map of return levels is estimated.
Conclusions are presented in Sect. 5.

2. DATA

2.1. HOURLY PRECIPITATION DATA

Observations of hourly aggregated precipitation from a total of 380 weather stations in
the south of Norway are downloaded from an open archive of historical weather data from
MET Norway (https://frost.met.no). The oldest weather stations contain observations from
1967, but approximately 90 percent of the available weather stations are established after
2000. Each observation comes with a quality code, but almost all observations from before
2005 are of unknown quality. An inspection of the time series with unknown quality detects
unrealistic precipitation observation ranging from −300 to 400 mm/h. Other unrealistic
patterns, like 50 mm/hprecipitation for more than three hours in a row, or no precipitation
duringmore than half a year, are also detected. The data set contains large amounts ofmissing
data, but these are often recorded as 0 mm/h, instead of being recorded as missing. Thus,
there is no way of knowing which of the zeros represent missing data and which represent an
hour without precipitation. Having detected all of this, we decide to remove all observations
with unknown or bad quality flags, which accounts for approximately 14% of the total
number of observations. Additionally, we clean the data by removing all observations from
years with more than 30% missing data and from years where more than 2 months contain
less than 20% of the possible observations. This data cleaning is performed to increase the
probability that our observed yearly maxima are close or equal to the true yearly maxima.
Having cleaned the data, we are left with 72% of the original observations, distributed over
341 weather stations and spanning the years 2000 to 2020. The total number of usable
yearly maxima is approximately 1900. Figure 1 displays the distribution of the number of
usable yearly precipitation maxima per weather station. Themajority of the weather stations
contain five or less usable yearly maxima, and approximately 50 stations have more than
10 usable maxima. Figure 1 also displays the location of all the weather stations. A large
amount of the stations are located close to each other, in the southeast of Norway. Such
spatial clustering can be an indicator for preferential sampling. However, we do not believe
that preferential sampling is an issue for our data. The weather stations are mostly placed in
locations with high population densities, and to the best of our knowledge there is no strong
dependency between population density and extreme precipitation in Norway, as there are
large cities located both in dry and wet areas of the country. Even though most stations are
located in areas with high population densities, there is still a good spatial coverage of the
entire area of interest, also for areas with low population densities.

https://frost.met.no
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a b

Figure 1. (a)Ahistogram displaying the number of usable yearly precipitationmaxima for all the weather stations
used in this paper. (b) The location of the 341 weather stations. The number of usable yearly precipitation maxima
from each station is displayed using different colours. Note that some points overlap in areas with high station
densities.

The yearly maxima of precipitation accumulated over 1, 2, . . . , 24 h are computed for
all locations and available years. A rolling window approach with a step size of 1 h is used
for locating the precipitation maxima. As noted by Robinson and Tawn (2000), a sampling
frequency of 1 h is not enough to observe the exact yearly maximum of hourly precipitation.
With this sampling frequency, one only observes the precipitation during the periods 00:00–
01:00, 01:00–SS02:00, etc., whereas the maximum precipitation might occur e.g. during the
period 14:23–15:23. Approximately half of the available weather stations have a sampling
frequency of 1 min, while the other half only contain hourly observations. We therefore use
a sampling frequency of 1 h for all weather stations, as this allows us to use all the 341
weather stations without having to account for varying degrees of sampling frequency bias
in our model.

Dyrrdal et al. (2015) used the same data source for estimating return levels of hourly
precipitation. They fitted their models to hourly precipitation maxima using only 69 weather
stations from all overNorway.However, they received a cleaned data set from theNorwegian
Meteorological Institute, resulting in time series with lengths up to 45 years. Our data
cleaning approach is more strict than that of Dyrrdal et al. (2015) in the sense that it results
in shorter time series by removing all data of uncertain quality. On the other hand, we include
more locations and get a considerably better spatial coverage, by keeping all time series with
at least one good year of observations.

The main focus of this paper is the novel methodology for fast and accurate estimation
of return levels, and we believe that we have prepared the data well enough to give a good
demonstration of our proposed model and to achieve reliable return level estimates for sub-



Modelling Sub- daily Precipitation Extremes 603

Table 1. Explanatory variables used for modelling sub-daily precipitation extremes

Explanatory variable Description Unit xμ xσ

Mean annual precipitation Mean annual precipitation for the years 1981-2010 mm �
Easting Eastern coordinate (UTM 32) km � �
Northing Northern coordinate (UTM 32) km � �
Altitude Height above sea level m �
Distance to the open sea Shortest distance to the open sea km � �

The two rightmost columns show which explanatory variables are used for modelling which parameters of the
bGEV distribution for yearly precipitation (see Sect. 3.2)

daily precipitation. It is trivial to add more, or differently cleaned data, to improve the return
level estimates at a later time.

2.2. EXPLANATORY VARIABLES

Weuse one climate-based and four orographic explanatory variables. These are displayed
in Table 1. Altitude is extracted from a digital elevationmodel of resolution 50×50m2, from
the Norwegian Mapping Authority (https://hoydedata.no). The distance to the open sea is
computed using the digital elevationmodel. Precipitation climatologies for the period 1981–
2010 are modelled by Crespi et al. (2018). The climatologies do not cover the years 2011–
2020, from which most of the observations come. We assume that the precipitation patterns
have not changed overly much and that they are still representative for the years 2011–
2020. Hanssen-Bauer and Førland (1998) find that, in most southern regions of Norway,
the only season with a significant increase in precipitation is Autumn. This strengthens our
assumption that the change in precipitation patterns is slow enough to not be problematic
for us.

Dyrrdal et al. (2015) include additional explanatory variables in their model, such as
temperature, summer precipitation and the yearly number of wet days. They find mean
summer precipitation to be one of the most important explanatory variables. We compute
these explanatory variables at all station locations using the gridded seNorge2 data product
(Lussana et al. 2018a,b). Our examination finds that yearly precipitation, summer precipita-
tion and the yearly number of wet days are close to 90% correlated with each other. There is
also a negative correlation between temperature and altitude of around−85%.Consequently,
we choose to not use any more explanatory variables for modelling, as highly correlated
variables might lead to identifiability issues during parameter estimation.

3. METHODS

3.1. THE BGEV DISTRIBUTION

Extreme value theory concerns the statistical behaviour of extreme events, possibly larger
than anything ever observed. It provides a framework where probabilities associated with
these events can be estimated by extrapolating into the tail of the distribution. This can be

https://hoydedata.no
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used for e.g. estimating large quantiles,which is the aimof thiswork (e.g.Davison et al. 2015;
Coles 2001). A common approach in extreme value theory is the block maxima method.
Assume that the limiting distribution of the standardised block maximum (Yk − bk)/ak
is non-degenerate, where Yk = max{X1, X2, . . . , Xk} is the maximum over k random
variables from a stationary stochastic process, and {bk} and {ak > 0} are some appropriate
sequences of standardising constants. Then, for large enough block sizes k, the distribution
of the block maximum Yk is approximately equal to the GEV distribution with (Fisher and
Tippett 1928; Coles 2001)

P(Yk ≤ y) ≈
⎧
⎨

⎩

exp
{
− [1 + ξ(y − μk)/σk]

−1/ξ
+

}
, ξ �= 0,

exp {− exp [−(y − μk)/σk]} , ξ = 0,
, (1)

where (a)+ = max{a, 0}, σk > 0 and μk, ξ ∈ R. In most settings, k is fixed, so we denote
σ = σk andμ = μk . A challenge with the GEV distribution is that its support depends on its
parameters. This complicates inference procedures such as maximum likelihood estimation
(e.g. Bücher and Segers 2017; Smith and [Richard L.], 1985) and can be particularly prob-
lematic in a covariate-dependent setting with spatially varying parameters, as it might also
introduce artificial boundary restrictions such as an unnaturally large lower bound for yearly
maximum precipitation. Castro-Camilo et al. (2021) propose the bGEV distribution as an
alternative to the GEV distribution in settings where the tail parameter ξ is non-negative.
The support of the bGEV distribution is parameter-free and infinite. This allows for more
numerically stable inference, while also avoiding the possibility of estimated lower bounds
that are larger than future observations. The bGEV distribution function is

H(y;μ, σ, ξ, a, b) = F(y;μ, σ, ξ)v(y;a,b)G (y; μ̃, σ̃ )1−v(y;a,b), (2)

where F is a GEV distribution with ξ ≥ 0 and G is a Gumbel distribution. The weight
function is equal to

v(y; a, b) = Fβ

(
y − a

b − a
; c1, c2

)

,

where Fβ(·; c1, c2) is the distribution function of a beta distribution with parameters c1 =
c2 = 5, which leads to a symmetric and computationally efficient weight function. The
weight v(y; a, b) is zero for y ≤ a and one for y ≥ b, meaning that the left tail of the
bGEV distribution is equal to the left tail in G, while the right tail is equal to the right tail
in F . The choice of the weight v(y; a, b) should not considerably affect inference if we let
the difference between a and b be small. The parameters μ̃ and σ̃ are injective functions
of (μ, σ, ξ) such that the bGEV distribution function is continuous and F(y;μ, σ, ξ) =
G(y; μ̃, σ̃ ) for y ∈ {a, b}. Setting a = F−1(pa) and b = F−1(pb) with small probabilities
pa = 0.1, pb = 0.2 makes it possible to model the right tail of the GEV distribution
without any of the problems caused by a finite left tail. See Castro-Camilo et al. (2021) for
guidelines on how to choose c1, c2, pa and pb.

In the supplementary material we present a simulation study where both the GEV distri-
bution and the bGEV distribution are fitted to univariate samples from a GEV distribution.
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We demonstrate how a small change in initial values can cause large numerical problems
for inference with the GEV distribution, and no noticeable difference for inference with the
bGEV distribution. The fact that considerable numerical problems can arise for the GEV
distribution in a univariate setting with large sample sizes and perfectly GEV-distributed
data strongly indicates that the GEV distribution is not robust enough to be used reliably
in complex, high-dimensional problems with noisy data. The bGEV distribution is more
robust than the GEV distribution, and we therefore prefer it over the GEV distribution for
modelling precipitation maxima in Norway.

Although the bGEV distribution is more robust than the GEV distribution, it might still
seem unnatural to model block maxima using the bGEV distribution, when it is known that
the correct limiting distribution is the GEV distribution. However, we argue that the bGEV
would be a good choice for modelling heavy tailed block maxima even if it had not been
more robust than the GEV distribution. In multivariate extreme value theory it is common
to assume that the tail parameter ξ of the GEV distribution is constant in time and/or space
(e.g. Opitz et al. 2018; Koutsoyiannis et al. 1998; Castro-Camilo et al. 2019; Sang and
Gelfand 2010). This assumption is often made, not because one truly believes that it should
be constant, but because estimation of ξ is difficult, and models with a constant ξ often
are “good enough”. The tail parameter is incredibly important for the shape of the GEV
distribution, and small changes in ξ can lead to large changes in return levels, and even affects
the existence of distributional moments. A model where ξ varies in space can therefore e.g.
providemodel fits with a finitemean in one location and an infinitemean in the neighbouring
location. Such a model can also give scenarios where a new observation at one location can
change the existence of moments in other, possibly far away, locations. Thus, even though
it might seem unnatural to use a constant tail parameter, these models often provide more
natural fits to data than the models that allow ξ to vary in space. We claim that the bGEV
distribution fulfils a similar role as a model with constant ξ , but for the model support
instead of the moments. When ξ is positive, the support of the GEV distribution varies with
its parameter values. In regression settings with covariates and finite amounts of data, one
can therefore experience unnatural lower bounds that are known to be wrong. Furthermore,
if only one new observation is smaller than the estimated lower limit, the entire model fit
will be invalidated. We therefore prefer the bGEV, which completely removes the lower
bound while still having the right tail of the GEV distribution, thus yielding a model that is
“good enough” for estimating return levels, but without the unwanted model properties in
the left tail of the GEV distribution.

Naturally, the bGEVdistribution can only be applied formodelling exponential- or heavy-
tailed phenomena (ξ ≥ 0). However, it is well established that extreme precipitation should
be modelled with a non-negative tail parameter. Cooley et al. (2007) perform Bayesian
spatial modelling of extreme daily precipitation in Colorado and find that the tail parameter
is positive and less than 0.15. Papalexiou and Koutsoyiannis (2013) examine more than
15000 records of daily precipitation worldwide and conclude that the Fréchet distribution
performs the best. They propose that even when the data suggest a negative tail parameter,
it is more reasonable to use a Gumbel or Fréchet distribution. Less information is available
concerning the distribution of extreme sub-daily precipitation.However,Koutsoyiannis et al.
(1998) argue that the distribution of precipitation should not have an upper bound for any
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aggregation period, so ξ must be non-negative. Van deVyver (2012) estimate the distribution
of yearly precipitationmaxima inBelgium for aggregation times down to 1min, and find that
the estimates of ξ increase as the aggregation times decreases,meaning that the tail parameter
for sub-daily precipitation should be larger than for daily precipitation. Dyrrdal et al. (2016)
estimate ξ for daily precipitation in Norway from the seNorge1 data product (Tveito and
[Ole Einar], Bjørdal I, Skjelvåag AO, Aune B, 2005; Mohr 2009) and conclude that the
tail parameter estimates are non-constant in space and often negative. However, the authors
do not provide confidence intervals or p-values and do not state whether the estimates are
significantly different from zero. Based on our own exploratory analysis (results not shown)
and the overwhelming evidence in the literature, we assume that sub-daily precipitation is
a heavy-tailed phenomenon.

Following Castro-Camilo et al. (2021), we reparametrise the bGEV distribution from
(μ, σ, ξ) to (μα, σβ, ξ), where the location parameter μα is equal to the α quantile of the
bGEV distribution if α ≥ pb. The scale parameter σβ , hereby denoted the spread parameter,
is equal to the difference between the 1 − β/2 quantile and the β/2 quantile of the bGEV
distribution if β/2 ≥ pb. There is a one to one relationship between the new and the
old parameters. The new parametrisation is advantageous as it is considerably easier to
interpret than the old parametrisation. The parameters μα and σβ are directly connected to
the quantiles of the bGEV distribution, whereas μ and σ have no simple connections with
any kind of moments or quantiles. Consequently, it is much easier to choose informative
priors for μα and σβ . Based on preliminary experiments, we find that α = 0.5 and β = 0.8
are good choices that makes it easy to select informative priors. This is because the empirical
quantiles close to the median have less variance. We have also experienced that R-INLA is
more numerically stable when the spread is small, i.e. β is large.

3.2. MODELS

Let yt (s) denote the maximum precipitation at location s ∈ S during year t ∈ T , where
S is the study area and T is the time period in focus. We assume a bGEV distribution for
the yearly precipitation maxima,

[
yt (s)|μα(s), σβ(s), ξ(s)

] ∼ bGEV(μα(s), σβ(s), ξ(s)),

where all observations are assumed to be conditionally independent given the parameters
μα(s), σβ(s) and ξ(s). Correct estimation of the tail parameter is a difficult problem which
highly affects estimates of large quantiles. The tail parameter is assumed to be constant,
i.e. ξ(s) = ξ . As discussed in Sect. 3.1, this is a common procedure, as inference for ξ is
difficult with little data. The tail parameter is further restricted such that ξ < 0.5, resulting
in a finite mean and variance for the yearly maxima. This restriction makes inference easier
and more numerically stable. Exploratory analysis of our data supports the hypothesis of a
spatially constant ξ < 0.5 and spatially varying μα(s) and σβ(s) (results not shown). Two
competing models are constructed for describing the spatial structure of μα(s) and σβ(s).
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3.2.1. The Joint Model

In the first model, denoted the joint model, both parameters are modelled using linear
combinations of explanatory variables. Additionally, to draw strength from neighbouring
stations, a spatial Gaussian random field is added to the location parameter. This gives the
model

[
yt (s)|μα(s), σβ(s), ξ

] ∼ bGEV(μα(s), σβ(s), ξ),

μα(s) = xμ(s)Tβμ + uμ(s),

log
(
σβ(s)

) = xσ (s)Tβσ ,

(3)

where xμ(s) and xσ (s) are vectors containing an intercept plus the explanatory variables
described in Table 1, and βμ and βσ are vectors of regression coefficients. The term uμ(s)
is a zero-mean Gaussian field with Matérn correlation function, i.e.

Corr(uμ(si ), uμ(s j )) = 1

2ν−1�(ν)

(√
8ν

d(si , s j )

ρ

)ν

Kν

(√
8ν

d(si , s j )

ρ

)

.

Here, d(si , s j ) is the Euclidean distance between si and s j , ρ > 0 is the range parameter and
ν > 0 is the smoothness parameter. The function Kν is the modified Bessel function of the
second kind and order ν. The Matérn family is a widely used class of covariance functions
in spatial statistics due to its flexible local behaviour and attractive theoretical properties
(Stein 1999;Matern 1986; Guttorp andGneiting 2006). Its form also naturally appears as the
covariance function of some models for the spatial structure of point rain rates (Sun et al.
2015). Efficient inference for high-dimensional Gaussian random fields can be achieved
using the SPDE approach of Lindgren et al. (2011), which is implemented in R-INLA. It
is common to fix the smoothness parameter ν instead of estimating it, as the parameter is
difficult to identify from data. The SPDE approximation in R-INLA allows for 0 < ν ≤ 1.
We choose ν = 1 as this reflects our beliefs about the smoothness of the underlying physical
process. Additionally, Whittle (1954) argues that ν = 1 is a more natural choice for spatial
models than the less smooth exponential correlation function (ν = 1/2), and ν = 1 is also
the most extensively tested value when using R-INLA with the SPDE approach (Lindgren
and Rue 2015).

The joint model is similar to the models of Geirsson et al. (2015); Dyrrdal et al. (2015);
Davison et al. (2012). However, they all place a Gaussian random field in the linear predictor
for the log-scale and for the tail parameter. Within the R-INLA framework, it is not possible
tomodel the spread or the tail usingGaussian randomfields.Basedon the amount of available
data and the difficulty of estimating the spread and tail parameters, we also believe that the
addition of a spatial Gaussian field in either parameter would simply complicate parameter
estimation without any considerable contributions to model performance. Consequently, we
do not include any Gaussian random field in the spread or tail of the bGEV distribution.

3.2.2. The Two-Step Model

The second model is specifically tailored for sparse data with large block sizes. In such
data-sparse situations, a large observation at a single location can be explained by a large
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tail parameter or a large spread parameter. In practice this might cause identifiability issues
between σβ(s) and ξ , even though the parameters are identifiable in theory. In order to put a
flexible model on the spread while avoiding such issues, Vandeskog et al. (2021) propose a
model which borrows strength from the peaks over threshold method for separate modelling
of σβ(s).

For some large enough threshold xthr (s), the distribution of sub-daily precipitation X (s)
larger than xthr (s) is assumed to follow a generalised Pareto distribution (Davison et al.
1990)

P(X (s) > xthr (s) + x |X (s) > xthr (s)) =
(

1 + ξ x

ζ(s)

)−1/ξ

,

with tail parameter ξ and scale parameter ζ(s) = σ(s)+ ξ(xthr (s)−μ(s)), where μ(s) and
σ(s) are the original GEV parameters from (1). Since ξ is assumed to be constant in space,
all spatial variations in the bGEV distribution must stem from μ(s) or σ(s). We therefore
assume that the difference xthr (s) − μ(s) between the threshold and the location parameter
is proportional to the scale parameter σ(s). This assumption leads to the spread σβ(s) being
proportional to the standard deviation of all observations larger than the threshold xthr (s).
Based on this assumption, it is possible tomodel the spatial structure of the spread parameter
independently of the location and tail parameter. Denote

σβ(s) = σ ∗
β · σ ∗(s),

with σ ∗
β a standardising constant and σ ∗(s) the standard deviation of all observations larger

than xthr (s) at location s. Conditional on σ ∗(s), the block maxima can be standardised as

y∗
t (s) = yt (s)/σ ∗(s).

The standardised blockmaxima have a bGEV distribution with a constant spread parameter,

[
y∗
t (s)|μ∗

α(s), σ ∗
β , ξ

]
∼ bGEV(μ∗

α(s), σ ∗
β , ξ),

where μ∗
α(s) = μα(s)/σ ∗(s). Consequently, the second model is divided into two steps.

First, we model the standard deviation of large observations at all locations. Second, we
standardise the block maxima observations and model the remaining parameters of the
bGEV distribution. We denote this as the two-step model. The two-step model shares some
similarities with regional frequency analysis (Dalrymple 1960; Hosking and Wallis 1997;
Naveau et al. 2014; Carreau et al. 2016), which is a multi-step procedure where the data are
standardised and pooled together inside homogeneous regions. However, we standardise the
data differently and do not pool together data from different locations. Instead, we borrow
strength from nearby locations by adding a spatial Gaussian random fields to our model and
by keeping ξ constant for all locations.

The locationparameterμ∗
α(s) ismodelled as a linear combinationof explanatoryvariables

xμ(s) and a Gaussian random field uμ(s), just asμα(s) in the joint model (3). For estimation
of σ ∗(s), the threshold xthr (s) is chosen as the 99% quantile of all observed precipitation at
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location s. The precipitation observations larger than xthr (s) are declustered to account for
temporal dependence, and only the cluster maximumof an exceedance is used for estimating
σ ∗(s). This might sound counter-intuitive, as the aim of the two-step model is to use more
data to simplify inference. However, even when only using the cluster maxima, inference
is less wasteful than for the joint model. By using all threshold exceedances for estimating
σ ∗(s), we would need to account for the dependence within exceedance clusters, which
would add another layer of complexity to the modelling procedure. Consequently, we have
chosen to not model the temporal dependence and only use the cluster-maxima for inference
in this paper. To avoid high uncertainty from locations with few observations, σ ∗(s) is only
computed at stations with more than 3 years of data. In order to estimate σ ∗(s) at locations
with little or no observations, a linear regression model is used, where the logarithm of
σ ∗(s) is assumed to have a Gaussian distribution,

[
log

(
σ ∗(s)

) |η(s), τ
] ∼ N (η(s), τ−1),

with precision τ and mean η(s) = xσ (s)Tβσ . The estimated posterior mean from the
regression model is then used as an estimator for σ ∗(s) at all locations. Consequently, the
complete two-step model is given as

[
log

(
σ ∗(s)

) |η(s), τ
] ∼ N (η(s), τ−1),

η(s) = xσ (s)Tβσ ,
[
y∗
t (s)|μ∗

α(s), σ ∗
β , ξ

]
∼ bGEV(μ∗

α(s), σ ∗
β , ξ),

y∗
t (s) = yt (s)/σ ∗(s),

μ∗
α(s) = xμ(s)Tβμ + uμ(s).

(4)

Notice that the formulation of the two-step model makes it trivial to add more complex
components for modelling the spread. One can, therefore, easily add a spatial Gaussian
random field to the linear predictor of log(σ ∗(s)) while still using the R-INLA framework
for inference, which is not possible with the joint model. In Sect. 4 we perform modelling
both with and without a Gaussian random field in the spread to test how it affects model
performance.

The uncertainty in the estimator for σ ∗(s) is not propagated into the bGEVmodel for the
standardised response, meaning that the estimated uncertainties from the two-step model
are likely to be too small. This can be corrected with a bootstrapping procedure, where we
draw B samples from the posterior of log(σ ∗(s)) and estimate (μ∗

α(s), σ ∗
β , ξ) for each of

the B samples. Vandeskog et al. (2021) show that the two-step model with 100 bootstrap
samples is able to outperform the joint model in a simple setting.

It might seem contradictory to employ a model based on exceedances in our setting,
since we claim that the data quality is too bad to use the peaks over threshold model for
estimating return levels. However, merely estimating the standard deviation of all threshold
exceedances is a much simpler task than to estimate spatially varying parameters of the
generalised Pareto distribution, including the tail parameter ξ . Thus, while we claim that the
available data is not of good enough quality to estimate return levels in a similar fashion to
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Opitz et al. (2018), we also claim that it is of good enough quality to perform the simple task
of estimating the trends in the spread parameter. The estimation of all remaining parameters,
including ξ , is performed using block maxima data, which we believe to be of better quality.

3.3. INLA

By placing a Gaussian prior on βμ, both the joint and the two-step models fall into
the class of latent Gaussian models. This is advantageous as it allows for inference using
INLA with the R-INLA library (Rue et al. 2009, 2017; Bivand et al. 2015). The extreme
value framework is quite new to the R-INLA package. Still, in recent years, some papers
have started to appear where it is used for modelling extremes with INLA (e.g. Opitz
et al. 2018; Castro-Camilo et al. 2019). R-INLA includes an implementation of the SPDE
approximation for Gaussian random fields with aMatérn correlation function, which is used
on the random field uμ(s) for a considerable improvement in inference speed.

A requirement for using INLA is that themodel likelihood is log-concave. Unfortunately,
neither the GEV distribution nor the bGEV distribution have log-concave likelihoods when
ξ > 0. This can cause severe problems for model inference. However, we find that these
problems are mitigated by choosing slightly informative priors for the model parameters,
which is possible because of the reparametrisation described in Sect. 3.1. Additionally, we
find that R-INLA is more stable when given a response that is standardised such that the
difference between its 95% quantile and its 5% quantile is equal to 1. Based on the authors’
experience, similar standardisation of the response is also a common procedure when using
INLA for estimating theWeibull distribution parameters within the field of survival analysis.
We believe that the combination of slightly informative priors and standardisation of the
response is enough to fix the problems of non-concavity and ensure that R-INLA is working
well with the bGEV distribution.

3.4. EVALUATION

Model performance can be evaluated using the continuous ranked probability score
(CRPS; Matheson and Winkler 1976; Gneiting and Raftery 2007; Friederichs and Tho-
rarinsdottir 2012),

CRPS(F, y) =
∫ ∞

−∞
(F(t) − I (t ≥ y))2dt = 2

∫ 1

0
�p

(
y − F−1(p)

)
dp, (5)

where F is the forecast distribution, y is an observation, �p(x) = x(p − I (x < 0)) is the
quantile loss function and I (·) is an indicator function. The CRPS is a strictly proper scoring
rule, meaning that the expected value of CRPS(F, y) is minimised for G = F if and only
if y ∼ G. The importance of proper scoring rules when forecasting extremes is discussed
by Lerch et al. (2017). From (5), one can see that the CRPS is equal to the integral over the
quantile loss function for all possible quantiles.However,we are only interested in predicting
large quantiles, and the model performance for small quantiles is of little importance to us.
The threshold weighted CRPS (twCRPS; Gneiting and Ranjan 2011) is a modification of
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the CRPS that allows for emphasis on specific areas of the forecast distribution,

twCRPS(F, y) = 2
∫ 1

0
�p

(
y − F−1(p)

)
w(p)dp, (6)

where w(p) is a non-negative weight function. A possible choice of w(p) for focusing on
the right tail is the indicator functionw(p) = I (p > p0). As described by Bolin andWallin
(2019), the mean twCRPS is not robust to outliers and it gives more weight to forecast
distributions with large variances, i.e. at locations far away from any weather station. A
scaled version of the twCRPS, denoted the StwCRPS, is created using Theorem 5 of Bolin
and Wallin (2019):

Sscaled(F, y) = S(F, y)

|S(F, F)| + log (|S(F, F)|) , (7)

where S(F, y) is the twCRPS and S(F, F) is its expected value with respect to the forecast
distribution,

S(F, F) =
∫

S(F, y)dF(y).

Themean StwCRPS is more robust to outliers and varying degrees of uncertainty in forecast
distributions, while still being a proper scoring rule (Bolin and Wallin 2019).

Using R-INLAwe are able to sample from the posterior distribution of the bGEV param-
eters at any location s. The forecast distribution at location s is therefore given as

F̂s(·) = 1

m

m∑

i=1

F
(
·;μ(i)

α (s), σ (i)
β (s), ξ (i)

)
, (8)

where F is the distribution function of the bGEV distribution and
(
μ

(i)
α (s), σ (i)

β (s), ξ (i)
)
are

drawn from the posterior distribution of the bGEV parameters for i = 1, . . . ,m, wherem is
a multiple of the number B of bootstrap samples. A closed-form expression is not available
for the twCRPS when using the forecast distribution from (8). Consequently, we evaluate
the twCRPS and StwCRPS using numerical integration.

4. MODELLING SUB-DAILY PRECIPITATION EXTREMES IN
NORWAY

The models from Sect. 3 are applied for estimating return levels in the south of Norway.
Table 1 shows which explanatory variables are used for modelling the location and spread
parameters in both models. All explanatory variables are standardised to have zero mean
and a standard deviation of 1, before being applied for modelling. Inference for the two-
step model is performed both with and without propagation of the uncertainty in σ ∗(s). The
uncertainty propagation is achieved using 100 bootstrap samples, as described in Sect. 3.2.2.
Additionally, we modify the two-step model and add a random Gaussian field uσ (s) to the
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linear predictor of the log-spread, to test if this can yield any considerable improvement in
model performance. Just as uμ(s), uσ (s) has zero mean and a Matérn covariance function.

4.1. PRIOR SELECTION

Priors must be specified before we can model the precipitation extremes. From construc-
tion, the location parameter μα is equal to the α quantile of the bGEV distribution. This
allows us to place a slightly informative prior on βμ, using quantile regression on y∗(s)
(Koenker 2005, 2020). We choose a Gaussian prior for βμ, centred at the α quantile regres-
sion estimates and with a precision of 10. There is no unit on the precision in βμ because the
block maxima have been standardised, as described in Sect. 3.3. The regression coefficients
βσ differ between the two-step and joint models. In the joint model, all the coefficients in
βσ , minus the intercept coefficient, are given Gaussian priors with zero mean and a pre-
cision of 10−3. The intercept coefficient, here denoted β0,σ , is given a log-gamma prior
with parameters such that exp(β0,σ ) has a gamma prior with mean equal to the empirical
difference between the 1 − β/2 quantile and the β/2 quantile of the standardised block
maxima. The precision of the gamma prior is 10. In the two-step model, all coefficients of
βσ are given Gaussian priors with zero mean and a precision of 10−3, while the logarithm
of σ ∗

β is given the same log-gamma prior as the intercept coefficient in the joint model.
The parameters of the Gaussian random fields uμ and uσ are given penalised complexity

(PC) priors. The PC prior is a weakly informative prior distribution, designed to punish
model complexity by placing an exponential prior on the distance from some base model
(Simpson et al. 2017). Fuglstad et al. (2019) develop a joint PC prior for the range ρ > 0
and standard deviation ζ > 0 of a Gaussian random field, where the base model is defined to
have infinite range and zero variance. The prior contains two penalty parameters, which can
be decided by specifying the four parameters ρ0, α1, ζ0 and α2 such that P(ρ < ρ0) = α1

and P(ζ > ζ0) = α2. We choose α1 = α2 = 0.05. ρ0 is given a value of 75 km for both
the random fields, meaning that we place a 95% probability on the range being larger than
75 km. To put this range into context, the study area has a dimension of approximately
730×460 km2, and the mean distance from one station to its closest neighbour is 10 km. ζ0
is given a value of 0.5 mm for uσ , meaning that we place a 95% probability on the standard
deviation being smaller than 0.5 mm. This seems to be a reasonable value because the
estimated logarithm of σ ∗(s) lies in the range between 0.1 mm and 3.5 mm for all available
weather stations and all examined aggregation times. For uμ we set ζ0 = 0.5, which is a
reasonable value because of the standardisation of the response described in Sect. 3.3.

A PC prior is also placed on the tail parameter ξ . Opitz et al. (2018) develop a PC
prior for the tail parameter of the generalised Pareto distribution, which is the default prior
for ξ in R-INLA when modelling with the bGEV distribution. However, to the best of
our knowledge, expressions for the PC priors for ξ in the GEV or bGEV distributions
are not previously available in the literature. In the supplementary material, we develop
expressions for the PC prior of ξ ∈ [0, 1) with base model ξ = 0 for the GEV distribution
and the bGEV distribution. Closed-form expressions do not exist, but the priors can be
approximated numerically. Having computed the PC priors for the GEV distribution and
the bGEV distribution, we find that they are similar to the PC prior of the generalised Pareto
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distribution, which has a closed-form expression and is already implemented in R-INLA.
Consequently, we choose to model the tail parameter of the bGEV distribution with the PC
prior for the generalised Pareto distribution (Opitz et al. 2018):

π(ξ) = λ√
2
exp

(

− λ√
2

ξ

(1 − ξ)1/2

)(
1 − ξ/2

(1 − ξ)3/2

)

,

with 0 ≤ ξ < 1 and penalty parameter λ. Even though the prior is defined for values of ξ

up to 1, a reparametrisation is performed within R-INLA such that 0 ≤ ξ < 0.5. Since the
base model has ξ = 0, the prior places more weight on small values of ξ when λ increases.
Based on the plots in Figure S2.1 in the supplementary material, we find a value of λ = 7
to give a good description of our prior beliefs, as we expect ξ to be positive but small.

4.2. CROSS-VALIDATION

Model performance is evaluated using fivefold cross-validation with the StwCRPS. The
StwCRPS weight function is chosen as w(p) = I (p > 0.9). Both in-sample and out-of-
sample performance are evaluated. The mean StwCRPS over all five folds are displayed in
Table 2. The two-step model outperforms the joint model for all aggregation times. This
implies that information about threshold exceedances can provide valuable information
when modelling block maxima. When performing in-sample estimation, the variant of the
two-step model with a Gaussian field and without bootstrapping always outperforms the
other contestants. However, during out-of-sample estimation, the model performs worse
than its competitors. This indicates a tendency to overfit when not using bootstrapping to
propagate uncertainty in σ ∗(s) into the estimation of (μ∗

α(s), σ ∗
β , ξ). The two variants of the

two-step model that use bootstrapping perform best during out-of-sample estimation. While
their model fits yield similar scores, their difference in complexity is quite considerable,
as one model contains two spatial random fields, and the other only contains one. This
shows that there is little need for placing an overly complex model on the spread parameter.
Consequently, for estimation of the bGEV parameters and return levels, we choose to use
the two-step model with bootstrapping and without a spatial Gaussian random field in the
spread.

4.3. PARAMETER ESTIMATES

The parameters of the two-step model are estimated for different aggregation times
between 1 and 24 h. Uncertainty is propagated using B = 100 bootstrap samples. Estimation
of the posterior of (μ∗

α(s), σ ∗
β , ξ) given some value of σ ∗(s) takes less than 2 min on a 2.4

gHz laptop with 16 GB RAM, and the 100 bootstraps can be computed in parallel. On a
moderately sized computational server, inference can thus be performed in well under 10
min.

The estimated values of the regression coefficients βμ and βσ , the spread σ ∗
β and the

standard deviation of the Gaussian field uμ(s) for the standardised precipitationmaxima, are
displayed in Table 3 for some selected temporal aggregations. These estimates are computed
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Table 2. Mean StwCRPS with weight functionw(p) = I (p > 0.9) for fivefold cross-validation performed using
out-of-sample estimation and in-sample estimation

Model uσ (s) Boot- 1 h 3 h 6 h 12 h 24 h
strap

Out-of- Joint −0.872 −0.597 −0.412 −0.149 0.0500
sample Two-step � � −0.905 −0.603 −0.427 −0.207 0.0425

Two-step � −0.893 −0.585 −0.414 −0.197 0.0635
Two-step � −0.876 −0.594 −0.429 −0.211 0.0456
Two-step −0.872 −0.584 −0.417 −0.196 0.0674

In- Joint −0.876 −0.608 −0.445 −0.230 0.0206
sample Two-step � � −1.004 −0.713 −0.564 −0.328 −0.1066

Two-step � −1.012 −0.721 −0.577 −0.333 −0.1161
Two-step � −0.889 −0.607 −0.453 −0.247 −0.0244
Two-step −0.886 −0.607 −0.454 −0.243 −0.0182

The two-step method is tested with and without a Gaussian field in the spread and bootstrapping for propagation
of uncertainty. Cross-validation is performed for precipitation aggregated over periods of 1 h, 3 h, 6 h, 12 hand 24
h. The best scores are written in bold

by drawing 20 samples from each of the 100 posterior distributions. The empirical mean,
standard deviation and quantiles of these 2000 samples are then reported.

There is strong evidence that all the explanatory variables inxσ (s) are affecting the spread,
with the northing being the most important explanatory variable. There is considerably less
evidence that all our chosen explanatory variables have an effect on the location parameter.
However, as the posterior distribution ofβμ is estimated using 100 different samples from the
posterior of σ ∗(s), it might be that the different regression coefficients are more significant
for some of the standardisations, and less significant for others. The explanatory variable that
has the greatest effect on the location parameter seems to be the mean annual precipitation.
Thus, at locations with large amounts of precipitation, we expect the extreme precipitation to
be heavier than at locationswith little precipitation. From the estimates forβσ , we also expect
more variance in the distribution of extremeprecipitation in the south. The standard deviation
of uμ(s) is of approximately the same magnitude as most of the regression coefficients in
βμ.

Table 4 displays the posterior range of the uμ(s). For the available data, the median
number of neighbours within a radius of 50 km is 17, and the median number of neighbours
within a radius of 100 km is 36. Based on these numbers, one can see that the Gaussian field
is able to introduce spatial correlation between a large number of different stations. The
range of the Gaussian field is considerably reduced as the temporal aggregation increases. It
seems that, for 1 h precipitation, the regression coefficients are unable to explain some kind
of large-scale phenomenon that considerably affects the location parameterμα(s). To correct
this, the range of uμ(s) has to be large. For longer aggregation periods, this phenomenon
is not as important anymore, and the regression coefficients are able to explain most of the
large-scale trends. Consequently, the range of uμ(s) is decreased. The posterior means of
uμ(s) for three different temporal aggregations are displayed over a 1×1 km2 gridded map
in Fig. 2. It is known that extreme precipitation dominates in the southeast of Norway for
short aggregation times because of its large amount of convective precipitation (see e.g.
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Table 3. Estimated regression coefficients βμ, βσ and estimated standard deviation SD(uμ) of the Gaussian field
uμ(s) in the two-step model for yearly maximum precipitation at different temporal aggregations

Temporal Parameter Explanatory Mean SD 2.5% 50% 97.5%
aggregation variable quantile quantile quantile

1 h βμ Intercept 0.669 0.066 0.518 0.675 0.794
Mean annual precipitation 0.071 0.012 0.044 0.072 0.091
Altitude −0.006 0.011 −0.026 −0.006 0.013
Easting −0.044 0.035 −0.118 −0.042 0.017
Northing 0.036 0.038 −0.036 0.036 0.111
Distance to the open sea −0.001 0.033 −0.072 0.002 0.055

SD(uμ) 0.084 0.023 0.047 0.085 0.127
σ∗
β 0.118 0.002 0.113 0.118 0.123

βσ Intercept 2.836 0.007 2.822 2.831 2.835
Easting 0.088 0.015 0.058 0.078 0.087
Northing −0.150 0.015 −0.177 −0.160 −0.151
Distance to the open sea −0.050 0.017 −0.080 −0.062 −0.051

3 h βμ Intercept 0.847 0.025 0.800 0.846 0.895
Mean annual precipitation 0.120 0.012 0.096 0.122 0.139
Altitude −0.009 0.009 −0.027 −0.010 0.007
Easting 0.016 0.021 −0.025 0.017 0.057
Northing 0.022 0.018 −0.015 0.024 0.054
Distance to the open sea 0.017 0.018 −0.021 0.017 0.052

SD(uμ) 0.062 0.013 0.045 0.060 0.085
σ∗
β 0.123 0.003 0.117 0.123 0.129

βσ Intercept 3.207 0.017 3.177 3.190 3.208
Easting 0.031 0.014 0.003 0.021 0.030
Northing −0.138 0.014 −0.163 −0.147 −0.138
Distance to the open sea −0.057 0.016 −0.083 −0.068 −0.058

6 h βμ Intercept 0.911 0.024 0.868 0.911 0.962
Mean annual precipitation 0.148 0.013 0.123 0.150 0.168
Altitude −0.012 0.009 −0.029 −0.011 0.005
Easting 0.040 0.021 −0.001 0.040 0.080
Northing 0.008 0.019 −0.029 0.009 0.042
Distance to the open sea 0.030 0.020 −0.011 0.031 0.067

SD(uμ) 0.067 0.011 0.051 0.065 0.090
σ∗
β 0.125 0.004 0.118 0.125 0.133

βσ Intercept 3.470 0.020 3.435 3.456 3.469
Easting −0.032 0.015 −0.062 −0.042 −0.033
Northing −0.095 0.014 −0.122 −0.105 −0.096
Distance to the open sea −0.065 0.016 −0.093 −0.077 −0.066

Dyrrdal et al. (2015)). Based on Fig. 2, it becomes evident that our explanatory variables are
unable to describe this regional difference when modelling hourly precipitation, and uμ(s)
has to do the job of separating between the east and the west. As the temporal aggregations
increase from 1 h to 3 and 6 h, the difference between east and west diminishes, and it
seems that the explanatory variables do a better job of explaining the trends in the location
parameter μα(s).

The posterior distribution of ξ is also described in Table 4. The tail parameter seems
to decrease quickly as the aggregation time increases, and it is practically constant for
precipitation over longer periods than 12 h. This makes sense given the observation of
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Table 4. Estimated posterior mean and quantiles for the range ρ of the Gaussian field uμ(s) and the tail parameter
ξ in the two-step model for yearly maximum precipitation at different temporal aggregations

Parameter Temporal Mean 2.5% 50% 97.5%
aggregation quantile quantile quantile

ρ 1 h 235 34 255 478
3 h 78 39 75 147
6 h 60 32 57 104
12 h 84 31 83 145
24 h 55 32 50 105

ξ 1 h 0.178 0.136 0.179 0.211
3 h 0.090 0.057 0.089 0.120
6 h 0.047 0.028 0.046 0.072
12 h 0.032 0.010 0.031 0.048
24 h 0.029 0.006 0.029 0.051

Figure 2. Estimated posterior mean (PM) of the Gaussian field uμ(s) for three different temporal aggregations
of precipitation, with unit mm..

Barbero et al. (2019) that most 24 h annual maximum precipitation comes from rainstorms
with lengths of less than 15 h. Thus, the tail parameter for 24 h precipitation should be close
to the tail parameter for 12 h precipitation. For 12 h and up, the tail parameter is so small
that one may wonder if a Gumbel distribution would not have given a better fit to the data.
However, this is not the case for the shorter aggregation times, where the tail parameter is
considerably larger.

4.4. RETURN LEVELS

We use the two-step model for estimating large return levels for the yearly precipitation
maxima. Posterior distributions of the 20 year return levels are estimated on a grid with
resolution 1× 1 km2. The posterior means and the widths of the 95% credible intervals are
displayed in Fig. 3. For a period of 1 h the most extreme precipitation is located southeast
in Norway, while for longer periods, the extreme precipitation is moving over to the west
coast. These results are expected since we know that the convective precipitation of the
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Figure 3. Estimated posterior mean (PM) and width of the 95% credible intervals (WCI) for the 20 year return
levels of sub-daily precipitation. Different aggregation times are displayed in different columns. All numbers are
given with unit mm.

southeast dominates for short aggregation periods. At the same time, the southwest of Nor-
way generally has more precipitation, making it the dominant region for longer aggregation
times. The spatial structure and magnitude of the 20 year return levels for hourly precip-
itation are similar to the estimates of Dyrrdal et al. (2015), but with considerably thinner
credible intervals. This makes sense as more data are available, and the two-step model is
able to perform less wasteful inference. In addition, our model is much more simple, as they
include a random Gaussian field in all three parameters, while we only include a random
Gaussian field in the location parameter. This can also lead to less uncertainty in the return
level estimates.

5. CONCLUSION

The blended generalised extreme value (bGEV) distribution is applied as a substitute for
the generalised extreme value (GEV) distribution for estimation of the return levels of sub-
daily precipitation in the south of Norway. The bGEV distribution simplifies inference by
introducing a parameter-free support, but can only be applied for modelling of heavy-tailed
phenomena. Sub-daily precipitation maxima are modelled using a spatial Bayesian hierar-
chical model with a latent Gaussian field. This is implemented using both integrated nested
Laplace approximations (INLA) and the stochastic partial differential equation (SPDE)
approach, for fast inference. Inference is also made more stable and less wasteful by our
novel two-step modelling procedure that borrows strength from the peaks over threshold
method when modelling block maxima. Like the GEV distribution, the bGEV distribution
suffers from a lack of log-concavity, which can cause problems when using INLA. We are
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able to mitigate any problems caused by a lack of log-concavity by choosing slightly infor-
mative priors and standardising the data. We find that the bGEV distribution performs well
as a model for extreme precipitation. The two-step model successfully utilises the additional
information provided by the peaks over threshold data and is able to outperformmodels that
only use block maxima data for inference.
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