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Abstract
Soil moisture is critical to agricultural business, ecosystem health, and certain hydrologically driven natural disasters. Moni-
toring data, though, is prone to instrumental noise, wide ranging extrema, and nonstationary response to rainfall where ground
conditions change. Furthermore, existing soil moisture models generally forecast poorly for time periods greater than a few
hours. To improve such forecasts, we introduce two data-driven models, the Naive Accumulative Representation (NAR) and
the Additive Exponential Accumulative Representation (AEAR). Both of these models are rooted in deterministic, physically
based hydrology, andwe study their capabilities in forecasting soil moisture over time periods longer than a few hours. Learned
model parameters represent the physically based unsaturated hydrological redistribution processes of gravity and suction.
We validate our models using soil moisture and rainfall time series data collected from a steep gradient, post-wildfire site in
southern California. Data analysis is complicated by rapid landscape change observed in steep, burned hillslopes in response
to even small to moderate rain events. The proposed NAR and AEAR models are, in forecasting experiments, shown to be
competitive with several established and state-of-the-art baselines. The AEAR model fits the data well for three distinct soil
textures at variable depths below the ground surface (5, 15, and 30 cm). Similar robust results are demonstrated in controlled,
laboratory-based experiments. Our AEAR model includes readily interpretable hydrologic parameters and provides more
accurate forecasts than existing models for time horizons of 10–24 h. Such extended periods of warning for natural disasters,
such as floods and landslides, provide actionable knowledge to reduce loss of life and property.

Keywords Soil moisture forecasting · Post-fire landslides · Data analysis · Model optimization and fitting · Monitoring ·
Interpretable machine learning
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1 Introduction

Soil moisture dynamics are essential to understanding agri-
culture, ecology, and natural disasters such as drought,
landslides, and floods [32,51,60]. Agricultural productiv-
ity, for instance, requires sufficient drainage to minimize
soil saturation and control salinity. Managing irrigation and
soil moisture directly influences crop yields. Improved soil
moisture forecasting in response to rainfall enables water
managers to optimize irrigation schedules, water uptake by
plants, and cost.

Soil moisture also moderates certain natural disasters.
Post-wildfire landscapes exhibit dry soils, decreased infil-
tration rates, and vegetation removal by fire reducing soil-
stabilizing cohesive reinforcement. These factors increase
erosion and debris-flow susceptibility during subsequent
rainfall [14]. Debris flows are fast-moving masses of earth
materials traveling gravitationally. Because of their speed
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and momentum, they can be deadly and destructive (Fig. 1).
Rainfall following the 2017 Thomas Fire resulted in devas-
tating flash floods and debris flows in Montecito, California
(Fig. 1) covering sections of California State Highway 101
with multiple feet of mud and debris [30]. As climate change
will likely create hotter and drier conditions, future fires
may result in elevated burn severities and subsequent storms
may exhibit greater rainfall. In the western USA, substan-
tial increases in post-fire risks due to extreme rainfall are
predicted by the mid-twenty-first century [72].

The National Oceanic and Atmospheric Administration
(NOAA) and the US Geological Survey (USGS) operate a
flash flood and debris flow early warning system for recently
burned areas in southern California.1 Leveraging the Flash
Flood Monitoring and Prediction protocols of the National
Weather Service (NWS), this early warning system appraises
precipitation estimates with empirical intensity–duration
thresholds from prior debris flow events. As evacuations
occur tominimize loss of life, refining thresholds ofwhen and
where advisories are issued is imperative for hazard delin-
eation and public safety [27].

To improve the understanding of soil moisture on earth,
the National Aeronautics and Space Administration (NASA)
launched a Soil Moisture Active Passive (SMAP) satel-
lite in 2015. SMAP’s radar and radiometer remotely sense
ground-surface soil moisture, creating comprehensive but
coarse-scale maps. The European Space Agency (ESA) runs
an Earth observation program, Copernicus, which also col-
lects soil moisture measurements. ESA has, as of year 2022,
accumulated and served over four decades of global soil
moisture measurements.2

Soil moisture may fluctuate rapidly over time with sub-
stantial vertical and lateral variation within a soil column.
Such variability can be measured by probes exploiting the
contrast between dielectric properties of liquid water and
dry soil to estimate volumetric water content (VWC). The
literature uses three different terms: “volumetric water con-
tent (VWC),” “volumetric soil moisture,” and “soil moisture”
to describe the same property. We simply adopt soil mois-
ture. Although time series of wetting and drying in response
to rainfall can be measured by dielectric probes, it remains
challenging to forecast such response to incoming rain.Using
observed soil moisture data from a site with changing ground
conditions following fire and rainfall, this work aims to
identify models capable of forecasting moisture response
under non-stationary conditions over timeframes applicable
to warning systems.

While theoretical models can quantify rainfall and runoff
(e.g., Richards’ equation [59]), site-specific field conditions
and soil moisture hysteresis with time preclude their simple

1 http://landslides.usgs.gov/hazards/warningsys.php.
2 https://scihub.copernicus.eu/.

use. Taking a more data-driven approach, attempts have been
made to forecast soil moisture or related parameters using
time-series (e.g., autoregressive integrated moving average
or ARIMA [2]) or deep machine learning models (e.g., Long
Short-Term Memory or LSTM [51]). Unfortunately, these
models do not inherently reflect hydrological processes in
an interpretable fashion [39,49,62]. The Antecedent Water
Index (AWI) model [16,74], though, fits soil moisture time-
series data to extend beyond the period of record while
providingmeaningful, transparent information onhydrologic
parameters. However, we establish that the existing AWI
model performs poorly over time horizons exceeding a few
hours. Inspired by the interpretability of hydrologic process
response and ease of applicability of AWI, we present two
novel AWI-based soil moisture models: the Naive Accumu-
lative Representation (NAR) and the Additive Exponential
AccumulativeRepresentation (AEAR). Themodels accumu-
late rainfall over time to forecast soil moisture.3 Using these
models, we apply estimation algorithms to fit diverse ranges
of wetting and drying curves to extract meaningful param-
eters and learn about process response. AEAR and NAR
model parameters are estimated fromdata, and themodels are
designed to resemble hydraulic redistribution of unsaturated
soil moisture. The AEAR and NAR models are examples
of domain-driven data mining and provide better hydrologic
interpretability [39,49,62] than traditional time series mod-
els (such as ARIMA and ARMAX) and high-dimensional
machine learning models (such as LSTM). Moreover, these
models can be used to recursively forecast soil moisture from
initial soil moisture values.

We validate our NAR and AEAR models on challeng-
ing post-fire soil moisture time-series datasets from southern
California [65,66], where rapid sediment erosion and depo-
sition were observed following wildfire (Fig. 2). Figure 3
depicts the raw soil moisture and rainfall measurements from
the monitoring array depicted in Fig. 2. The second soil
moisture peak, with the highest values recorded during the
monitoring period, coincides with the debris flow producing
event depicted in (Fig. 2). Such rapid increases in rainfall-
induced soil moisture likely reflect fast preferential water
flow processes. Aswater enters desiccation cracks of initially
dry soil, for example, it quickly delivers moisture to deeper
levels. We also evaluate model performance using soil mois-
ture data obtained from controlled laboratory experiments.

3 This article expands upon our prior conference publication [5] by
providing: (i) comprehensive discussions of related work including a
greater focus on explainability and interpretability; (ii) additional details
on forecasting models and methods; (iii) specifics on the data analysis
process in order to promote reproducibility; (iv) additional experimen-
tal results and discussion; (v) a broader experimental comparison with
other machine learning, time-series, and soil moisture forecasting mod-
els including the long short-termmemory (LSTM); and (vi) an expanded
conclusion and discussion of future research.
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Fig. 1 Left: Destructive post-Thomas Fire debris flow impacts of Jan-
uary 9, 2018 in Montecito, California. Right: U.S. Geological Survey
researcher responds to deadly January 9, 2018, debris flows in Mon-
tecito, California.Distributed rainfall runoff in the absence of vegetation

allows readily erodible material to transport downslope gaining mass
and velocity (momentum) through the channel network resulting in
damaging and deadly debris flows. Photographs by USGS

Fig. 2 Left: Photograph of a burned hillslope with rainfall, over-
land flow, and soil moisture monitoring instrumentation after the 2007
Canyon fire, but before rainfall, on the Pepperdine University Malibu,
California campus. Right: Photograph from December 19, 2007, of a

small post-fire debris flow and flood on the Pepperdine University cam-
pus following minor rainfall measured by USGS monitoring array to
left. Photographs by USGS

Overall, the most robust forecasts were obtained with the
novel AEAR model, which is both data driven and readily
interpreted by earth scientists.4

Our main contributions are as follows:

1. Derivation of two novel accumulative rainfall soil mois-
ture models NAR and AEAR.

2. Simulation of post-fire soil moisture response with a con-
trolled experiment.

3. Validation of the proposed soil moisture models in field
and controlled experimental datasets.

4 Source code of novel models available at: https://github.com/
olemengshoel/wetting-and-drying-of-soil.

4. Comparison with benchmark time series and machine
learning forecasting methods including autoregressive
models and LSTM.

This paper presents complete data solutions, from real-world
data collection to forecasting, that aid earth scientists in
socially relevant decision making. We address the socioe-
conomic challenges of forecasting extreme weather events
and natural disasters (e.g., Fig. 1), agricultural productivity,
and climate-influenced trends that arise from soil water con-
ditions. These problems often involve data analysis to derive
critical actionable insights in the context of decision mak-
ing [62], such as early warning for landslides (e.g., Fig. 2),
irrigation, and infrastructure management. The topic of fore-
casting soil moisture is well suited to domain-driven data
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Fig. 3 Rainfall intensity (blue line) and soil moisture measurements
at three depths below ground surface (black, green, and red lines at 5,
15, and 30 cm, respectively) from the Canyon Fire field monitoring site
depicted in Fig. 2

miningmethodologies [39,49,62] for determining actionable
knowledge for public safety and loss reduction.

The rest of the article is structured as follows: Sect. 2
presents notation, terminology, and requirements. The data
analysis process and data types are discussed in Sect. 3. Sec-
tion 4 introduces two novel soil moisture models, NAR and
AEAR. Section 5 presents both quantitative and qualitative
analysis results, including validation of model interpretabil-
ity by earth scientists. We discuss related work in earth
science, time series modeling and forecasting, and machine
learning in Sect. 6. We conclude and outline future research
opportunities in Sect. 7.

2 Goals and requirements

Our primary goal is to develop readily explainable physi-
cally based models that capture soil moisture response to
rainfall. These models should reflect the timing and magni-
tude of hydraulic redistribution from simplified gravitational
and matric suction processes. After introducing notation and
terminology, we discuss three model requirements.

2.1 Notation and terminology

We consider a time series or sequence of records, (r0, r1,
. . . , ri , . . .), where each record consists of a time stamp t
and a measurement value v: r = (t, v) or for simplicity vt .
For a particular dataset, we consider the following sequences:

– A sequence (or time series) of raw soil moisture data (or
measurements) D = (D0, . . . , Di , . . .).

– A sequence of processed (i.e., smoothed and sub-sampl-
ed) soilmoisturemeasurements:M=(M0, . . . , Mi , . . .).

– A sequence of soil moisture forecasts: M̂ = (M̂0, . . . ,

M̂i , . . .).
– A sequence of rainfall measurements: I = (I0, . . . ,

Ii , . . .).
– A sequence of rainfall forecasts: Î = ( Ît∗ , . . . ,

Ît∗+i , . . .).

Let t∗ ≥ 0 and τ > 0. For a point forecast for time t∗, amodel
should forecast soil moisture M̂t∗+τ , given a prediction hori-
zon τ . For a sequence forecast, we typically use an M-value
at a particular time t∗, Mt∗ , to forecast a subsequence of M̂
for a time horizon of length τ ; thus:

M̂t∗+1:t∗+τ =
(
M̂t∗+1, . . . , M̂t∗+τ

)
. (1)

We often say just forecast in our discussion since it is usually
clear from the context whether a point forecast M̂t∗+τ or a
sequence forecast M̂t∗+1:t∗+τ is intended. Further detail is
found in Sect. 4.4.

We assume that future rainfall data are available through
separate forecasts, such as issued by the NWS.5 We focus
on hillslope soil moisture response to rainfall, not on rainfall
forecasting, as several well-established rainfall forecasting
methods exist [61]. We incorporate no uncertainty estimates
of rainfall forecasts into our models.

2.2 Threemodel requirements

Models that forecast soil moisture should meet the following
three criteria:

– Interpretability: Models need to be easily interpreted by
earth scientists by having parameters based on physical
processes and soil or hydrological properties. Inter-
pretable and trustworthy models are gaining importance
in artificial intelligence. By learning interpretable mod-
els, one can support high-stakes decision making for
human health and safety [39,62] and potentially avoid sit-
uations that poorly generalize beyond the test-set. Thus,
we call for model-based interpretability [49,62] when
forecasting soil moisture from rainfall.

– Data-driven: Model parameters must be computed from
data collected by current sensor technology. Both regu-
lar and irregular measurements should be supported. A
model with parameters that cannot be easily estimated
from, and validated against, data is less useful.

– Accurate actionable forecasts: A model must provide
forecasts that are accurate in the medium timeframe τ ,
which we here define with a time horizon of 5 ≤ τ ≤
24 h, aligned with the timeframe of NWS weather fore-
casts. Humans can prophylactically act on the medium

5 https://www.wpc.ncep.noaa.gov/qpf/day1-7.shtml.
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time scale to prepare for future events. For example, if an
area is threatened by debris flows, evacuation warnings
can be heeded to maximize safety.

All of the above three requirements need to be met; it
is not sufficient to satisfy just two. Machine learning mod-
els, for example, are obviously data driven and may provide
accurate medium-term forecasts. However, some of them are
not based upon meaningful physics-based parameters inter-
pretable by scientists. Although it may be possible to train a
deep neural network from soil moisture data and apply it to
compute accurate medium-term forecasts, the resulting large
number of parameters precludes meaningful physical inter-
pretations. Another model type with limited utility is one that
is scientifically meaningful and data-driven, but only pro-
duces accurate short-term forecasts. The Antecedent Water
Index (AWI) has been applied to such shorter duration time
horizons, see details in Sects. 5 and 6.1.

Among the three requirements, there is no stipulation that
models must be of a certain mathematical form.Models need
not be linear, convex, or differentiable functions. Thus, we do
not restrict mathematical forms nor parameter optimization
methods (see Sects. 4 and 5).

3 Data analysis process

In a wide range of geomorphic, hydrologic, and ecosystem
contexts, a need exists for a clear data science process when
characterizing soil moisture response. Figure 4 illustrates the
steps of our data analysis process, from raw soil moisture
measurements, via soil moisture models, to model forecasts.

Soil moisture and rainfall measurements: These inputs are
enabled by recent technology improvements, which
increased the availability of affordable sensors and data
loggers that aid measurement and recording of raw soil
moisture data; a time series: D = (D0, . . . , Di , . . .).

Sub-sampling and smoothing moisture data: The prepro-
cessing step of taking D as input (i) reduces compu-
tational demands via sub-sampling and (ii) diminishes
temperature-induced and other variations from soil mois-
ture data while preserving local maxima, or “peaks,”
and local minima, or “valleys.” The result is a pre-
processed time series of soil moisture measurements:
M = (M0, . . . , Mi , . . .).

Training soil moisture model: This step learns or estimates,
from dataM , a hydrologic model. This model, for exam-
ple AEAR, expresses soil moisture as a function of
rainfall and time.

Model parameters explaining soil properties: Using the
hydrologic model, this step aims to validate whether

Fig. 4 Inputs, outputs, and steps of our soil moisture data analysis
process; see Sect. 3 for further explanations

model parameters provide physically interpretable infor-
mation.

Forecasting future soil conditions: Using the hydrologic
model with rainfall forecasts and current soil water con-
tent, this step aims to accurately forecast a soil moisture

sequence: M̂ =
(
M̂0, . . . , M̂i , . . .

)
.

In the remainder of Sect. 3, we discuss process inputs,
outputs, and steps as summarized above and in Fig. 4.

3.1 Raw soil moisture and rainfall measurements

We studied raw soil moisture (D) and rainfall measurements
(I ) at one post-fire field setting and one controlled experi-
mental setting. We did not evaluate the temporal variability,
non-stationary behavior, or entropy of rainfall at the fine scale
[13,44] in the context of post-fire erosion. Rainfall, though,
is a multi-scale event with non-stationary temporal behavior
that is outside the scope of this work. Similarly, we do not
incorporate the variability in spatial structure of rainfall over
a landscape [27].We now present these two settings and their
corresponding raw soil moisture datasets as summarized in
Table 1.

Table 1 Summary of the six soil moisture datasets used in our analyses;
see Sect. 3.1 for additional information

Location Depth (cm) Dataset Id

Field: Canyon Fire 5 Canyon-5

15 Canyon-15

30 Canyon-30

Controlled experiment: Bucket 10 Bucket-10

20 Bucket-20

28 Bucket-28
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3.1.1 Datasets from the field (2007 Canyon Fire data)

Thefieldmonitoring dataset is composed of raw soilmoisture
(D) and rainfall (I ) measurements from the Santa Monica
mountains near the town of Malibu and Pepperdine Uni-
versity in southern California [19,64].6 These datasets are
published as a USGS Data Release [66]. The study site was
within the 2007 Canyon Fire that burned over 4500 acres and
destroyed 22 structures. Prior to the fire, the area was cov-
ered by chaparral vegetation. However, the fire disturbance
removed almost all of the vegetation and changed soil infil-
tration properties. Hillslopes within the study site are steep
with gradients up to 0.9. The colluvial soils are generally
less than 0.5 m thick, overlying sedimentary rock. These
soils have much higher infiltration rates than the underly-
ing Miocene bedrock. These underlying sediments produced
a range of colluvial soil types with a grain size of 40–60%
sand, classified as loams to sandy loams. Due to the steep
landscape with high infiltration rates characteristic of sandy
soils, rapid soil moisture response is observed following rain
events. These factors promote rapid wettingwith slow drying
of soil from hydraulic redistribution following rain.

Post-fire hydrologic response is more complicated than
equivalent response of unburned settings, arising from fire-
induced changes to the soil and vegetation. Such complicated
soil moisture response to rainfall, though, ensures that the
resulting models developed are resilient and flexible for
application to a variety of field settings.

Soil moisture was field-measured using probes (from
Decagon Devices Inc.7) connected to data loggers. Probes
measured volumetric water content (VWC), a measure of
ratio ofwater volume to soil volume, by estimating the dielec-
tric constant of the media using capacitance and frequency
domain technology [35]. Probes were placed at three depths
below the ground surface (5, 15, and 30 cm), to represent
different soil horizons of varying texture. Soil moisture was
recorded every 2 min on nearby data loggers. Tipping bucket
rain gauges, also connected to data loggers, provided precip-
itation data on an irregular schedule recorded in response to
rainfall. Soil moisture and rainfall data from December 2007
to April 2008 are shown in Fig. 3 [66] illustrating several
major and minor precipitation events along with the corre-
sponding wetting and drying of soil.

6 Data from USGS soil moisture probes installed in Winter Canyon on
Pepperdine University, Malibu, CA. Location: CANVQSM-1 (UTM
NAD83 Zone 11S, Easting Northing: 342754 3768790).
7 http://www.decagon.com/products/soils/volumetric-water-content-
sensors/.

3.1.2 Datasets from controlled experiment (bucket data)

To study soil moisture dynamics in a more controlled set-
ting, experiments were performed at the Carnegie Mellon
University campus in the NASA Research Park, near Moun-
tain View, California. We filled a 5 gallon plastic bucket with
sand (grain size < 1 mm) and gravel (grain size ≈ 25–35
mm) in proportions to mimic the hillslope sediment present
at the 2007 Canyon Fire study site. To approximate the post-
fire scenario, we started this controlled experiment with very
dry material. Three VWC sensors placed at 10, 20, and 28
cm depths recorded raw soil moisture D . The VWC sen-
sors were identical to the Decagon probes used in the field
experiment, see Sect. 3.1.1. The experiment was conducted
outdoors exposed to normal weather conditions.

Two types of data records make up the “rainfall” sequence
I . First, we manually added measured amounts of water in
intervals bringing soil to near-saturated conditions. Theman-
ual process was executed to simulate the rainfall observed
in Fig. 3. Second, some natural rainfall events during the
time of the experiment also added water to the bucket. We
quantified natural rainfall intensities and cumulative totals
from Weather Underground8 historical data. For the con-
trolled experiment, there was no vegetation in the soil and the
rainfall events weremoderate. Overall, soil moisture changes
were less abrupt compared to the Canyon Fire dataset, likely
resulting from the presence of an impervious container with
hydrologic redistribution limited to evaporation from top of
the bucket and no plant water uptake.

3.2 Preprocessing of soil moisture datasets

The purpose of preprocessing raw dataD to processedM is
twofold:

– to smooth out diurnal variations, sensor noise, and sensor
failure while preserving peaks and valleys; and

– to achieve computational efficiency, supporting rapid and
interactive data analysis.

To achieve these goals, two preprocessing steps, namely sub-
sampling and smoothing, are implemented as follows.

First, sub-sampling to 20-min intervals reduces the analyt-
ical computational cost. The 2min sampling rate exceeds our
analytical needs. We determined that the 20 min subsampled
rate was sufficient for fast completion of all computational
analysis without losing significant signal. We estimated the
maximum sub-sampling rate using the Nyquist–Shannon
sampling theorem [50]. Figure 5 shows the amplitude spec-
trum of the 5 cm soil moisture data, collected from Canyon
Fire field monitoring. Diurnal soil moisture variations are

8 https://www.wunderground.com/history/.

123

http://www.decagon.com/products/soils/volumetric-water-content-sensors/
http://www.decagon.com/products/soils/volumetric-water-content-sensors/
https://www.wunderground.com/history/


International Journal of Data Science and Analytics (2023) 15:9–32 15

Fig. 5 Single-sided amplitude spectrumof 5 cm soilmoisture data from
the Canyon Fire study area

highest near the ground surface due to direct exposure to
sunlight and wind-driven evaporation. Therefore, the probe
closest to the ground surface imposes the strongest constraint
for subsampling with minimal loss of information. Most
of the power of the moisture signal was limited to 0.6e−4
Hz (time period = 4.6 h). Hence, according to the Nyquist
criterion, proper reconstruction of the signal requires one
sample every 9.2 hour. In our experiments, the sub-sampling
amounted to conservatively retaining 1 record per 20 min,
sufficient for fast completion of all analytical steps.

Second, smoothing reduces the diurnal and other varia-
tions while retaining important signals, i.e., the peaks (local
maxima) and valleys (local minima). Raw, environmental
monitoring data, such as near-surface VWC measurements
in shallow soils determined with dielectric sensors, are prone
to temperature-induced fluctuations. These diurnal variations
add complexity in estimating moisture response functions.
Reduction in temperature-induced noise frommeasurements
using traditional smoothing methods alters the moisture
response peaks which convey critical limiting conditions of
soil [4]. For predicting landslides and runoff-driven erosion,
peak values provide critical information. On the other hand,
smoothed data make model fitting easier since the high-
frequency diurnal variations as well as other sensor noise
are suppressed. We experimented with various traditional
smoothing techniques such as moving averages, spline, and
LOESS smoothing. When applied to our challenging soil
moisture datasets, we found that all gave similar results:
diminished peaks and lost details [4]. Thus, we extended
STL, seasonal decomposition using local regression [9],
to deconstruct a soil moisture dataset. Building on STL,
we developed the HyperSTL extrema-preserving smoothing
technique [4,36] to smooth soil moisture time series with-

ALGORITHM 1: Training accumulative models with
regular or irregular measurements
Input : Time series MT and IT

Output: Trained soil moisture model
Subsample input time series with period l, generate
M sub

T = (M0, Ml . . . , Mi mod l ) and
I sub

T = (I0, Il . . . , Ii mod l )

ST ← Smooth(M sub
T )

Train model minimizing Sl(τ+1) − Ŝl(τ+1), where Ŝl is the model
prediction (NAR: Eq. 4, AEAR: Eq. 6) using Ŝ0, Ŝl , · · · , Ŝlτ as
per Eq. 11 for regular, or Eq. 12 for irregular measurements.
Return parameters of trained model.

out significantly distorting or diminishing the extreme values
(peaks and valleys) in the soil moisture time series.

3.3 Training soil moisture model

Using the sub-sampled smooth data, we train hydrologic
models on moisture data irrespective of soil horizon depth.
A detailed description of the NAR and AEARmodels is pro-
vided in Sect. 4. Formodel fitting, we split a sub-sampled and
smoothed soil moisture sequenceM into a training sequence
MT and a prediction (or test) sequence MP as follows:
MT = (M0, . . . , Mi ) and MP = (Mi+1, . . . , Mk). The
wetting and drying of soil are driven by rainfall events. We
therefore split the data intoMT andMP as per major rain-
fall events.We keep the first two wetting and drying cycles in
MT , and the rest in MP . We assume that accurate rainfall
data I are available throughout.

We train a model by optimizing its parameters and then
forecasting. The Differential Evolution (DE) optimization
method was selected after benchmarking several methods in
pilot experiments (see Sect. 5.2) to solve problems involved
with model fitting. For example, to estimate parameters of
the AEAR model (6), AEAR optimization (10) based on the
training sequences MT and IT is performed first.

It is important to note that we need two different proce-
dures to train the accumulative rainfall models from regular
and irregular training data, respectively.We show the distinc-
tion in the pseudocode presented in Algorithm 1 and discuss
further in Sect. 4.4.When regular data are available, the accu-
mulative model can use the true observation history to make
a future prediction. However, in case of irregular data, the
model needs to reuse the predicted values of the recent past
to estimate a future soil moisture value.

3.4 Forecasting soil moisture conditions

Depending on the local soil characteristics and infiltration
rates, a range of soil moisture conditions can initiate highly
mobile, fast moving debris flows (see Figs. 1, 2). Hence,
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forecasting soil moisture is crucial to estimating the timing
of such landslides.

Using a trained soil moisturemodel (e.g.,NARorAEAR),
forecasts M̂P for the sequenceMP are computed and eval-
uated. The nature of the evaluations varies and ranges from
visual comparisons to evaluating forecasting errors (standard
error and maximum absolute error). Our empirical results in
Sect. 5 show multiple forecasting results under both the reg-
ular and irregular settings.

3.5 Interpreting soil moisture model parameters

As one of our requirements is for interpretability, both the
NAR and AEAR models incorporate parameters representa-
tive of unsaturated soil hydrologic processes. Consequently,
the trainedmodel parameters explain processes ofwater infil-
tration and moisture redistribution in soil. Such processes
control increases and decreases in soil moisture by gradi-
ents in suction and gravity. Section 5.8 discusses connections
between model parameters and soil moisture.

4 Soil moisture models

The NAR and AEAR models were developed by a multi-
disciplinary team consisting of earth and data scientists. The
goals of these models are to be interpretable (physics-based),
be data driven, and produce accurate predictions (see require-
ments in Sect. 2). The model parameters, discussed below,
are estimated from data as reported in Sect. 5. Although
intended to reflect physical hydrologic process response, the
models do not explicitly account for soil preferential flow
paths, macropores, nor other features driving instabilities in
hydrological response. Rather they accumulate rainfall over
a time interval with drainage coefficients.

Before embarking on a presentation of the NAR and
AEAR models in Sects. 4.2 and 4.3, respectively, we dis-
cuss SEM and its optimization in Sect. 4.1.

4.1 Optimizing the simple exponential model (SEM)

It is important to understand the pros and cons of the simple
exponential model (SEM), as it forms the foundation for the
NAR and AEAR models. Wilson and Wieczorek [74] devel-
oped SEM, or an antecedent water index (AWI), based on an
analogy of water flow through a leaky bucket:

MS
t = MS

t−1e
−kd�t + It

kd
(1 − e−kd�t ), (2)

where the superscript S indicates SEM.Themodel is a simple
sum of two exponentials where the first term in (2) rep-
resents recession of AWI after rain ceases and the second

term represents increase in AWI due to additional rainfall.
An instantaneous rainfall measurement at time t is denoted
by It . The drainage coefficient, kd , is a single exponential
parameter present in both terms of Eq. (2).

We fit the SEMmodel in (2) to the training data by solving
a mean squared error minimization problem:

k̂d = min
kd

T∑
t=1

(Mt − MS
t (kd; Mt−1, It ))

2. (3)

Here, the M- and I -values are in the data (M ,I ), and we
optimize to find k̂d corresponding to kd in (2). We solve this
optimization problem via stochastic methods, see Sect. 5.2.

The SEM model has certain limitations. While it predicts
near-surface soil moisture with reasonable accuracy, it often
fails to explain complex behavior of soil moisture in deeper
layers. The SEM model (2) has just one parameter related to
soil moisture response, kd . In other words, the SEM model
has the same drainage coefficient kd for both increase and
decrease in soilmoisture. This significant assumption regard-
ing kd is inconsistentwith hydrological theory, aswell aswith
field and laboratory observations.

Specifically, when fitting models to soil moisture data,
the SEMmodel (2) forecasts near-surface soil moisture with
reasonable accuracy but fails to forecast responses in longer
hourly to daily timeframes, nor does it represent in an inter-
pretable manner the more complex behavior of soil moisture
in deeper layers. Typically, the soil moisture variations in
deeper soil (≥ 15 cm) do not resemble an exponential curve
as used in (2). Experimental results providing further details
are in Sect. 5, for example, in Sect. 5.5. To address these
limitations, we now introduce our models in Sects. 4.2 and
4.3.

4.2 Novel model: Naive Accumulative
Representation (NAR)

We expand upon the established SEM model by introducing
a temporal forecast horizon and a wetting rate to accompany
the drainage coefficient. Rainfall measured by commonly
used tipping bucket gauges generates time series measure-
ments separated by null values. These null values represent
rainfall hiatuses during otherwise continuous events. Thus,
instantaneous rainfall values in (2) create artificial “bumps”
in soil moisture response. To address this issue, we accumu-
late rainfall over a temporal forecast horizon τ .

Definition 1 TheNaiveAccumulativeRepresentation (NAR)
model is:

MN
t = MN

t−τ e
−kdτ +

τ∑
j=0

[
It− j

η
(1 − e−kw j )e−kd j

]
, (4)
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where kd is the drying rate and kw the wetting rate. Thus,
we have two constants kd and kw in contrast to just one con-
stant in the original SEM model (2). Rainfall is measured in
inches per hour, and soil moisture is a unitless quantity rep-
resenting the volume of water within a volume of soil. Since
rainfall and soil moisture respond at different time scales, we
introduce η as an unknown proportionality constant in (4).
Although all rainfall measurements in the prediction horizon
τ contribute to an increase in soil moisture, simultaneous
evapotranspiration and hydraulic redistribution mechanisms
in soil moderate the effect of recent rainfall. Thus, we add a
drying factor e−kd j in the second term of Eq. 4.

To fit the novel NAR model to data according to (12), we
use the following optimization formulation.

(k̂d , k̂w, η̂) = min
kd ,kw,η

T∑
t=1

(Mt

− MN
t (kd , kw, η; MN

t−τ , It , · · · , It−τ ))
2. (5)

Again, the M- and I -values are in the data, and we optimize
to learn parameters k̂d , k̂w, and η̂. The objective function
in (5) is non-convex, and therefore, we employ stochastic
optimization methods to solve the optimization problem (see
Sect. 5.2).

While reasonable, the NAR model has some limitations
(see empirical results in Sect. 5). Specifically, while the
model can fit moisture variations in a shallow soil layer (5 cm
depth), it performs poorly for the deeper layers (15 and 30
cm depths), which are shielded from evaporation and have
generally finer grained soil textures. The NAR model is a
stepping stone for the AEAR model, discussed next.

4.3 Novel model: Additive Exponential
Accumulative Representation (AEAR)

We now introduce a sum of exponential functions model,
AEAR, to forecast a wider range of soil moisture conditions
compared to the SEM andNARmodels. To obtain the AEAR
model in (6), we substitute the single exponential in the first
term of the NAR model in (5) by a weighted sum of two
exponentials. Experiments with more than two exponentials
in the weighted sum showed that there is no significant per-
formance gain with the added complexity.

Definition 2 The Additive Exponential Accumulative Rain-
fall (AEAR) model is:

MA
t = MA

t−τ

[
αe−ksτ + (1 − α)e−kgτ

]

+
τ∑
j=0

[
It− j

η
(1 − e−kw j )e−ks j

]
. (6)

The first exponential in (6), with drainage coefficient ks , rep-
resents the steep redistribution decay from the combination
of strong suction gradients between wet and dry soil and
gravitationally driven moisture redistribution. The second
exponential in (6), with kg , accounts for the gradual (slower)
redistribution decay from low suction gradients, with unsatu-
rated moisture movement dominated by gravity. The relative
weighting of these two terms is controlled by a time-varying
weight α defined by:

α =
τ∑
j=0

[
It− j

η
(1 − e−kw j )e−kg j

]
. (7)

With the introduction of rainfall derived water following dry
periods, suction gradients from capillary potential are strong
at wetting fronts as newly added water moves towards drier
soil [59]. High rates of change in soil moisture accompany
such wetting fronts. During long absences of rain, such suc-
tion gradients, though, weaken as moisture is redistributed.
Thus, α needs to be proportional to the cumulative rainfall
amount. To make the variation in α smoother over time, we
use the accumulative rainfall term (

∑τ
j=0 It− j f ( j), where

f ( j) captures the remaining multiplier) in (7) instead of
instantaneous rainfall values.

There is, in fact, a resemblance between the ARMAX
model and theAEARmodel (6).A standard formofARMAX
model is the following:

Mt = εt +
p∑

i=1

ϕi Mt−i +
q∑

i=1

θiεt−i +
b∑

i=1

ηi It−i . (8)

An interesting relationship exists between the AEAR and
ARMAX models, illustrated by the following results.

Theorem 1 The AEAR model (Eq. 6) reduces to an ARMAX
model if α is time invariant.

Proof Equation 6 can be written as

MA
t =

τ∑
i=1

φi M
A
t−i +

τ∑
j=0

γ j It− j , (9)

where φ1 = φ2 = · · · = φt−τ+1 = 0 and φt−τ =
[αe−ksτ + (1− α)e−kgτ ] are the parameters of the ARMAX
autoregressive terms. Here rainfall corresponds to the exoge-
nous input, and the parameters are γ j = (1−e−kw j )e−ks j/η.
If α is time invariant, φt−τ reduces to an unknown constant.
In this case, Eq. 9 is identical to the ARMAX model. ��

Unfortunately, the reformulation of the AEAR model to
an ARMAX model results in the absorption of the AEAR
parameters ks and kg into one time-invariant ARMAX term
φt−τ . Once these parameters are aggregated, the model will
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lose resemblance to the hydrological processes, where ks and
kg have clear physical meanings as discussed above. Adher-
ing to our interpretability requirement (see Sect. 2.2), we thus
favor the AEAR model over ARMAX.

The AEAR model was fit to the data by using mean
squared error minimization:

(k̂s, k̂g, k̂w, η̂) = min
kd ,kw,η

T∑
t=1

(Mt

− MA
t (ks, kg, kw, η; MN

t−τ , It , · · · , It−τ ))
2,

subject to ks > kg. (10)

The M- and I -values are in the data as before, and we
estimate the parameters k̂s , k̂g , k̂w, and η̂. We impose the
constraint ks > kg to reflect the hydrological phenomenon
that a suction gradient ks is stronger than the gradual, gravity
dominated redistribution kg . With no convexity guarantees,
we use stochastic optimization methods (see Sect. 5.2) to
solve the minimization problem in (10).

4.4 Forecasting approaches

For a forecast taking place at time t∗, given a prediction hori-
zon τ , a model should forecast soil moisture M̂t∗+τ . In our
case, τ is on the order of hours. Forecasts can be performed
using at least two approaches, and it is desired that both are
supported. There is at time t∗ either (i) an actual soil moisture
measurement Mt∗ or (ii) a predicted soil moisture value M̂t∗ .
In addition, there are rainfall measurements inI or forecasts
in Î up to time t∗ + τ . The following two formal definitions
reflect (i) and (ii), respectively.

Definition 3 If regular (or frequent) raw soil moisture mea-
surements are available, observations D can be processed to
predict M̂t∗+τ using Mt∗ via a model f :

M̂t∗+τ = f (Mt∗ , It∗ , Ît∗+1, . . . , Ît∗+τ ), ∀t∗ > 0. (11)

If measurements are sampled regularly or “continuously”
stored in a data logger or telemetered, (11) can be used.

In the case of irregular measurements, the measurement
Mt∗ of (11) is missing (else we have the regular case). Thus,
we estimate Mt∗ using M̂t∗ in the prediction model.

Definition 4 In the case of irregular (or intermittent) obser-
vations [13], D is processed to predict a soil moisture value
M̂t∗+τ via a model g:

M̂t∗+τ = g(M̂t∗, It∗ , Ît∗+1, . . . , Ît∗+τ ), ∀t∗ > 0, (12)

where M̂t∗ has been compute recursively from previous data,
previous estimates, and initial observation to M0.

The irregular situation in (12) arises, for example, when
measurements can only be performed during occasional field
visits or by over-passing satellites or aircraft.

The regular and irregular approaches are illustrated in
Fig. 6. With model inputs highlighted in circles (blue) and
output in squares (green for regular and red for irregular), we
show examples of forecasts given for regular and irregular
measurements. In both cases, values at t∗+τ , namely M̂t∗+τ ,
are determined using one soil moisture input and τ rainfall
observations or forecasts.

The key difference between the regular and irregular cases
in Fig. 6 is the following. The true raw soil moisture obser-
vation,Dt∗ , is the input for the regular case, but the predicted
value, M̂t∗ , serves as the model input for the irregular case.
The initial conditions, the same in both cases, are for sim-
plicity not included in Fig. 6.

5 Model analyses and forecast results

In our analysis, parameters of the mathematical models dis-
cussed in Sect. 4 were estimated using the process and data
discussed in Sect. 3. Unless otherwise noted, our results
reported in this section are for Canyon Fire field data.

Eachmodel framework was initially applied to eachmois-
ture probe data at a given soil horizon without additional
tailoring of the model parameters. That is, we sought models
that could generally forecast soil moisture response irrespec-
tive of soil horizon. However, pilot experiments showed that
a model, estimated for forecasting soil moisture at shallow
depth, performs poorly in a deeper, more advanced soil hori-
zon. Thus, model parameters were estimated for specific soil
horizons, at different depths below the ground surface, in
order to capture subtleties in timing and magnitude of soil
moisture redistribution. Details about model analyses and
forecasting results are found in the rest of this section.

5.1 Metrics andmeasurements

To evaluate the quality of soil moisture forecasts, wemeasure
three primary metrics in experiments: mean absolute percent
error (MAPE), standard error, andmaximum (absolute) error.
MAPE reports the forecasting error in easy to understand
percent scale:

MAPE = 100%

n

n∑
t=1

|M̂t − Mt |
Mt

. (13)

Standard error provides us with a good measure of the
goodness of fit by directly measuring the distance of data
points from the regression line. Maximum error is particu-
larly important in the context of soil moisture forecasting as
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Fig. 6 Two different forecasts at t∗ + τ , namely Mt∗+τ = M97, illus-
trating the difference between the regular and irregular approaches. For
clarity, we are showing regular observed measurements (model inputs,
blue circles) for both cases, even though they are only present for fore-

casting purposes in the regular case. Left: Forecast for M97 (model
output, green rectangle) using regularmeasurementMt∗ =M94 ≈ 0.213.
Right: Forecast for M97 (model output, red rectangle) using an irregular
“pseudo-measurement” M̂t∗ = M̂94 ≈ 0.185

the soil moisture peaks and valleys are critical in real-world
applications (such as landslide warning system, or extreme
dry soil indicator):

Max Error = max
t=1,··· ,n |M̂t − Mt |. (14)

Equations (13) and (14) define metrics over n observed and
predicted soil moisture values.Methodswith high errors near
the peaks and valleys show high maximum error in absolute
scale. These errormetrics are oftenused in similar forecasting
problems, such as in temperature profile prediction [56].

For all analyses and compute time measurements, except
when noted otherwise, we used a 64 bit Linux computer with
an Intel Xeon CPU 3.2 GHz processor.

5.2 Optimization study

In general, there are no convexity guarantees in nonlinear
regression. Hence, we use stochastic optimization algorithms
to fit the models in (2), (4), and (6) to the training data. We
experimentally study three general stochastic optimization
algorithms:RealCodedGeneticAlgorithm (RGA) [17], Sim-
ulated Annealing (SA) [7], and Differential Evolution (DE)
[69]. We also experimentally study a statistical parameter
tuning method IRACE [43]. We use R implementations of
the algorithms discussed above, present in the R packages
GA9 [67] (RGA), GenSA10 [76] (Generalized SA), DEOp-
tim11 [48] (DE), and irace12 [43] (IRACE), respectively.

9 https://cran.r-project.org/web/packages/RGA/index.html.
10 https://cran.r-project.org/web/packages/GenSA/index.html.
11 https://cran.r-project.org/web/packages/DEoptim/index.html.
12 https://cran.r-project.org/web/packages/irace/index.html.

Fig. 7 Input hyperparameters of STL’s R implementation as used in
experiments, see Sect. 5.2

We use an R implementation of STL for preprocessing
in our experiments [4].13 Figure 7 shows the R function
definition of the STL implementation. Here, x is the input
time series; values on the right-hand side of the hyperpa-
rameter arguments are default values. For our soil moisture
datasets, we found that three free hyperparameters had major
impact on the decomposition result. Highlighted in Fig. 7,
these are seasonal window (s.window), trend cycle window
(t.window), and the span of the loess window (l.window). To
perform smoothing, we used HyperSTL14 to optimize STL
hyperparameters by defining an objective (or fitness) func-
tion over the decomposed components [4].

With random initialization and parameters shown in
Table 2, we ran each of the four optimization algorithms
30 times independently to find the AEAR and NAR param-
eters for the Canyon Fire 30 cm soil moisture dataset. The
30 cm soil moisture time-series poses significant challenges
for forecasting and serves as a benchmark problem for our

13 https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html.
14 https://github.com/olemengshoel/hyperstl.
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Table 2 Hyperparameter settings for stochastic optimization and sta-
tistical parameter tuning algorithms

Parameter Algorithm
RGA GenSA DE IRACE

Population size (nP ) 50 1 50 1

Num. generations (nG ) 100 5000 100 5000

Crossover prob. (pCR) 0.8 N/A 0.5 N/A

Mutation prob. (pM ) 0.1 N/A 0.8 N/A

optimization study. The hyperparameter settings reported in
Table 2 are a result of tuning experiments designed for effi-
cient optimization. We set the prediction horizon to τ = 24 h
for (3), (5), and (10).We recorded the prediction errors of the
trained models on the test data along with the training time.

Figure 8 shows comparative results, in the form of mean
and standard deviation, for three performance metrics: stan-
dard error, maximum absolute error, and training time.
Models trained by DE express minimum prediction errors.
Also, the training time is consistently low for DE runs. Sim-
ilar to previous results [4], we conclude that DE performs
comparatively better than other optimization algorithms for
this problem. Hence, we use DE to optimize the NAR and
AEAR models in later experiments.

5.3 Forecasting study

We compared the forecasting performance of the proposed
models to several well-established and state-of-the-art base-
lines, including machine learning, time series, and soil
moisture models. We provide a parallel comparison of the
NAR and AEAR models to these baselines under the same
evaluationmetrics: Polynomial Regression (linear regression
with polynomial features), Random Forest [8,22], Support
VectorMachine (SVM) [11], Auto-RegressiveMovingAver-
age Exogenous (ARMAX) [18], Long Short-Term Memory
(LSTM) [23], and SEM [74]. We use the sklearn [57] imple-
mentation of Polynomial Regression, Random Forest, and
SVM to forecast soil moisture with features being historical
soil moisture and rainfall values similar to Eqs. 11 and 12.
For ARMAXmodels, we use the tsa R package [12] and our
LSTM models are implemented in PyTorch [55].

In this experiment, Canyon Fire soil moisture data at 30
cm depth are used for comparisons because it displays the
most consistent, predictable behavior. Parameters p and q,
in ARMAX(p, q), refer to the orders of autoregressive and
moving average polynomials (see Sects. 5.5.1 and 6.2). In
LSTM(h), the parameter h refers to the number of hidden
units in the network.We use default parameters of the sklearn
implementations of Polynomial Regression, Random Forest,
and SVM.

Fig. 8 Results from 30 cm soil moisture data for AEAR and NAR
models trained by four different optimization algorithms. Comparisons
are of forecast error (a, b) and runtime of training (c). The mean and
variance of all performance metrics are computed over 30 independent
runs

Table 3 compares results for the baselines versus our NAR
and AEARmodels for two performance metrics: MAPE and
maximum error. We report the mean and standard devia-
tion of these two metrics over 30 independent runs. The
trained LSTM(2), LSTM(4), NAR, and AEAR models have
the smallest MAPE. The NAR and AEAR models are the
only two models where MAPE is less than 10%. In addi-
tion, these models have an interpretability benefit, which we
discuss in Sect. 5.8.

The Polynomial Regression, Random Forest, and SVM
methods perform poorly in terms of both metrics and are
not studied further. The remaining ARMAX, LSTM(8), LS-
TM(16), and SEM models do not appear as robust as NAR,
AEAR, LSTM(2), and LSTM(4), but generally have lower
errors than Polynomial Regression, Random Forest, and
SVM. In terms of MAPE, LSTM(2) and LSTM(4) perform
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better than other LSTM models; LSTM(2) has the lowest
standard deviation in Table 3 if we exclude Random Forest
and SVM. However, the LSTM(2) model has a tendency for
instability during steep rising and falling limbs of observed
data. For example, Fig. 14 depicts pronounced mismatches
between model forecasts and observed data during times of
steep wetting and drying curves. Orland et al. [51] note sim-
ilar problems during periods of heavy rainfall. As these are
times of great importance for estimating landslide suscepti-
bility, such model irregularities are problematic.

The runtime comparison of training the above mentioned
models reveals interesting properties for their practical use.
These experiments were performed on a notebook connected
to a CPU instance with an Intel Xeon Processor E5-2680
v4 and 50 GB RAM. Due to the high memory require-
ment of the Polynomial Regression method, we used for it
a CPU instance with 200 GB RAM. Both Random Forest
and SVM regression methods take 8–15 s for each training
run. ARMAX models take 1–5 min. LSTM models take 3–
17 min, the SEM model takes 20–60 s, and our NAR and
AEAR models take 4–6 min. The training time of LSTM
models increases with the number of hidden units. On the
other hand, our NAR and AEAR models’ runtime is primar-
ily determined by the optimization algorithm. Separate from
all, the Polynomial Regression takes over 30 min and a large
amount of memory. Polynomial Regression is prohibitively
slow to train and is therefore of less practical value as com-
pared to other methods. While Random Forest, SVM, and
the SEM models take little training time, the errors in pre-
dicted soil moisture values are higher than for other models.
The LSTM, NAR, and AEARmodels take moderate training
times and produce accurate forecasts.

As a result of the comparative study above, we focus our
analysis in the rest of this section on improving the under-
standing of the performance of ARMAX, LSTM, and SEM
versus our AEAR and NAR models.

5.4 Irregular or intermittent measurements: NAR
and AEAR

The NAR model was fit separately to the 5 and 15 cm data.
Although NAR fits the shallow moisture data (5 cm) quite
well, it generates substantial forecast misfits for the deeper
levels of 15 and 30 cm (not shown as figure). Apparently,
soil moisture variations at deeper levels do not resemble a
simple exponential curve. As such, the approach is incon-
sistent with soil moisture response at deeper levels, which
likely reflects additional water transported through the soil
column as rapid macro-pore flow, topographically focused
water from the above contributing drainage area, or possibly
as return flow from underlying bedrock.

When estimating the AEAR parameters from (10), the
constraint ks > kg was implemented by introducing a ratio

Fig. 9 Soil moisture forecasts for 5 and 15 cm depths using the AEAR
model, based on a one-point measurement of soil moisture at t = 0.
The points to the left of each of the blue dashed vertical lines are in the
training set MT , and the points to the right are in the test set MP

kg/ks and setting kg/ks < 1, ks > 0 during optimization.
Predicted values for the 5 and 15 cm levels using trained
AEARmodels are shown in Fig. 9. The AEARmodel fits the
5 cm data equally well as the NAR model, but gives much
better forecasts for the 15 cm case. The NAR model tends
to underpredict soil moisture at deeper depths. Hence, the
AEAR model appears to perform better in soils prone to fast
water transmission arising from preferential flow paths. The
AEAR forecast for the deepest level, 30 cm, is presented in
Fig. 10.

5.5 Regular and irregular measurements: forecast
results

We compare the SEM, NAR, and AEAR models for both
regular (11) and irregular (12) measurements, as well as with
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Table 3 Comparison of novel
soil moisture models (NAR and
AEAR) with classic machine
learning models, state-of-the-art
time series models, and soil
moisture models with respect to
Mean Absolute Percent Error
(MAPE) and Maximum Error in
forecasting soil moisture at 30
cm depth and with a 24 h time
horizon

Forecasting model MAPE Maximum error (mm3mm−3)

Polynomial Regression 23.15% (± 13.26%) 0.2341 (± 0.1921)

Random Forest 19.70% (± 0.49%) 0.1901 (± 0.0017)

SVM 18.36% (± 0.07%) 0.1660 (± 0.0003)

ARMAX(1,10) 17.83% (± 9.53%) 0.0701 (± 0.1706)

ARMAX(5,10) 18.71% (± 10.51%) 0.0782 (± 0.1102)

ARMAX(10,10) 18.13% (± 10.79%) 0.0744 (± 0.0984)

LSTM(2) 9.8% (± 4.95%) 0.2046 (± 0.1520)

LSTM(4) 6.3% (± 12.04%) 0.1440 (± 0.0210)

LSTM(8) 13.95% (± 7.38%) 0.1511 (± 0.1022)

LSTM(16) 17.37% (± 10.80%) 0.1453 (± 0.1030)

SEM 19.25% (± 14.16%) 0.1384 (± 0.1720)

NAR 7.83% (± 11.73%) 0.0802 (± 0.1494)

AEAR 7.16% (± 1.87%) 0.0597 (± 0.0305)

Mean and standard deviation of 30 independent runs are reported in each cell

Fig. 10 Moisture forecasts for 30 cm depth using AEARmodel. Points
to left of blue dashed vertical line are in the training set MT and on
the right in forecasting test set MP

classical time series forecasting methods. We use an autore-
gressive model as a baseline time series forecasting method
[2]. In particular, we use an autoregressive moving average
modelwith exogenous inputs (ARMAX), accounting for pre-
cipitation as exogenous input terms.We study threeARMAX
models of increasing complexity.

5.5.1 Regular measurements: various models

The time horizon τ is a critical parameter in time-series fore-
casts with regular measurements. We trained SEM, NAR,
and AEAR models and three ARMAX models with increas-
ing time horizons τ = 1, 5, 10, 15, 20, and 24 h.

Assuming equal availability of historic soil moisture and
rainfall data, we keep the orders of the autoregressive and

Fig. 11 Comparison of different model forecasts (SEM, NAR,
AEAR) at 30 cm depth. The standard error in these forecasts is
0.037, 0.022, and 0.020, respectively. The vertical blue dashed line
separates the training set MT (to the left) and forecasting set MP

(to the right)

exogenous input polynomials (16) the same, i.e., p = b.
We suppress the third parameter of ARMAX(p, q, p)model
and denote it as ARMAX(p, q). With the R implementation
of ARMAX methods within tsa package, we use standard
system identification methods [42] to learn the parameters p
and q from our training data.

We present the error on the test data of trained models for
different forecast horizons (τ ) in Fig. 12, which illustrates
a key message of this paper. Clearly, the standard error of
existing SEM model is smallest for τ = 1; however, for the
short time horizon, all the models perform quite well. The
more complicated task is forecasting for longer time horizons
τ , andSEM’s standard error increaseswith τ at amuch higher
rate than AEAR’s error. The ARMAX models show similar
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Fig. 12 Forecast errors as a function of prediction horizon (τ ), varying
on the x-axis, for regular measurements. Top: Standard error is on the
y-axis. Bottom: Maximum error is on the y-axis

error-growth as the SEM model. For greater time horizons,
τ ≥ 10, our AEAR model shows minimum standard error
among all models.

A clear divergence between the maximum errors (with
increasing τ ) of the existing SEM model and the accumula-
tive rainfallmodels (NARandAEAR) is observed to the right
in Fig. 12. The maximum error of the SEM model exceeds
0.12 at τ = 15. As the variations in soil moisture in our
dataset lies within 0.3 mm3mm−3, more than 0.1 mm3mm−3

off forecasts imply higher than 33% error. Moreover, a 0.3
mm3mm−3 difference in soil moisture suggests very differ-
ent soil conditions [15]. The AEAR maximum error curve,
in contrast, is much flatter and it remains within 0.06 mm3

mm−3 while forecasting soil moisture values a day ahead
(τ = 24). This indicates that the AEAR model is capable of
forecasting soil moisture to time horizons of τ = 5 to τ = 24
h, another major modeling improvement.

Although the ARMAX models perform better than the
SEM and NAR models in terms of maximum absolute error,
the error growth rates are higher than for AEAR. Hence,
the AEAR model, with parameters directly related to hydro-

logical processes, shows superiority over more complicated
ARMAX models with a higher number of parameters.

5.5.2 Irregular measurements: various models

Acomparison of trained SEM,NAR, andAEARmodelswith
30 cm soil moisture data is shown in Fig. 11. The irregular
setting is not appropriate for ARMAX models, due to high
computational complexity of model fitting. Therefore, we do
not compare with ARMAX here, unlike what was done for
the regular measurements.

Although the existing SEM model fits the training data
MT fairly well, it does not adequately represent the mois-
ture variation in the test dataMP . The NARmodel attempts
to find an average exponential model around the observed
variations. In contrast, the AEAR model neither overfits the
training set, nor deviates from the observedmoisture substan-
tially in the test data. The forecast error of the AEAR model
at the moisture peaks is bounded by 0.04 mm3mm−3, which
falls within the range of typical accuracy of various volumet-
ric water content sensors using a factory calibration [28,35].
The AEAR forecast closely follows the observed soil mois-
ture values. Other models, namely NAR and SEM, produce
greater mismatch for both the peaks and valleys. Since peak
soil moisture values have important practical applications,
e.g., predicting landslides, the AEAR model is best suited
to scenarios where errors in peak soil moisture should be
minimized.

5.6 Regular measurements: AEAR and LSTM

Due to the recent focus on neural network research, many
complex architectures have emerged for time series forecast-
ing. In this paper, we consider a typical LSTM sequence
network architecture as a benchmark model [23,37,51]. Our
goal is to experimentally study the merits and limitations of
a sequence model with many more parameters as compared
to the AEAR or NAR models.

We pass a rainfall sequence (of length τ + 1) and historic
soil moisture value as inputs to LSTM units. The LSTM out-
put is connected to a hidden layer with Rectified Linear Unit
(ReLU) activation. The number of hidden units is varied to
find the most suitable architecture for soil moisture forecast-
ing.

The LSTM architecture is implemented using PyTorch
[55]. The network is comprised of input LSTM units to
encode the sequence of soil moisture and rainfall values, and
fully connected dense layers to produce the final continuous
output. We feed the concatenated array of soil moisture and
rainfall values to the LSTM layer with h hidden units. The
output of LSTM is passed through a fully connected hidden
layer with 128 neurons. This layer maps the h-dimensional
LSTM output to 128 dimensions. Finally, we pass the output
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Fig. 13 Forecast error for a 30 cm probe as function of prediction hori-
zon (τ ), varying on the x-axis, for regular measurements. Top: MAPE
on the y-axis. Bottom: Maximum error on the y-axis

of the hidden layer through a fully connected output layer to
produce single continuous output. The output of LSTM and
hidden layers have ReLU activation. To study the effect of
model complexity in soil moisture forecasting, we vary h and
fit the network parameters using the Adam optimizer [34].

We use LSTM(h) models in the regular setting accord-
ing to Eq. 11. We keep the same train-test partition as in the
case of evaluating NAR or AEAR models. To find the best
architecture, we vary h and train different models for 30 cm
soil moisture forecasting. Figure 13 depicts the variation in
standard error (or mean squared error), maximum error, and
mean absolute percent error (MAPE) with increasing predic-
tion horizon τ . The same figure also shows the comparison
with AEARmodel. We see that LSTM(2) and LSTM(4) per-
formbetter than the other LSTMmodels. Therefore, we show
the soil moisture forecast of one top candidate, LSTM(2), in
Fig. 14, where the vertical blue line separates train and test
data. LSTM(4) produces very similar forecast.

Figure 14 shows the LSTM(2) model forecasting the dry-
ing regions accurately, leading to low standard error and
MAPE, which reflects total forecast error. However, near

Fig. 14 Soilmoisture forecasts at 30 cmdepth using anLSTM(2)model
in the regular setting. Points on the left of blue dashed vertical line are
in the training setMT and on the right in the forecasting test setMP

high rainfall storminess, there are forecast spikes, leading to
high maximum error. While the AEAR model yields accu-
rate forecasts for both wetting and drying responses of soil
moisture, the LSTMmodel performs particularly well for the
drying response. This is consistent with the LSTM(2) and
AEAR results in Table 3. Similarly, Orland et al. [51] note
howLSTMpoorly forecasts hydrologic response during con-
tinuously wet intervals. Therefore, a possible refinement is to
combine AEAR and LSTM to achieve more robust forecasts.

5.7 Controlled experiment bucket data: forecast
results

We now consider data resulting from the controlled exper-
iment and compare models using regular measurements.
Among the ARMAX models, we choose ARMAX(10, 10),
which performed best for the Canyon Fire dataset.

Similar to the previous section with regular measurements
(Sect. 5.5.1), we use the trained SEM, NAR, AEAR, and
ARMAX models to forecast the soil moisture at 15 cm
depth. Figure 15 shows the standard and maximum abso-
lute errors of all four models for the test dataset. The NAR
and AEAR models express standard errors lower than those
for the SEM and ARMAX models for the τ -values of great-
est interest. Although ARMAX shows low maximum error
for τ = 1 and τ = 5 h, for longer forecast horizons τ ≥ 10 h
either one or both of the NAR and AEAR models achieve
lower error. For shorter time horizons, 1–10 h, the NAR
model produces more accurate overall forecasts relative to
other methods in terms of standard error. The AEAR fore-
casts are most accurate for τ ≥ 15 hours, for both standard
and maximum errors.

The SEMmodel forecasts have a smaller increase in max-
imum error for longer forecast horizons (τ = 24 h), as
compared to Fig. 12. This reaffirms how field-based soil
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Fig. 15 Results for controlled experimental bucket data. Forecast errors
for different models are on the y-axis, as a function of varying τ (in
regular measurements) on the x-axis. Top: Standard error on the y-axis.
Bottom: Maximum error on the y-axis

moisture includes three-dimensional moisture flow that is
more complicated than in controlled experimental settings.

5.8 Validation of model interpretability by earth
scientists

Both the AEAR and NAR models are intended to be inter-
pretable by earth scientists, to represent hydrologic processes
in soil and fit the soil moisture data well (see interpretability
requirement in Sect. 2.2). The experimental results earlier in
Sect. 5 suggest that AEAR better models the data across mul-
tiple soil layers and also gives better forecasts compared to
NAR. Consequently, we recommend the AEAR model and
now explore estimatedAEARparameter variability with sea-
son and soil depth for Canyon Fire data. Parameter disparities
may reflect the spatial variability of soil wetting and drying

cycles, hysteresis of additive cycles, and changing ground
surface conditions from erosion and redeposition of mobile
sediment following storms.

Orland et al. [51] present a forecasting approach for land-
slide prone hillslopes. They use soil moisture, rainfall, and
pore-water pressure to train an LSTM model that forecasts
suction (pore-water pressure) over 36 hr time intervals. Their
approach is similar to ours, but with a few crucial differences:
(i) although they use soil moisture in model training their
published forecasts are for suction only, not soil moisture;
(ii) their LSTM approach does not result in physically based
parameters necessary to understand the hydrologic process;
(iii) their LSTMmodel has poor robustness, with occasional
high LSTM errors that appear to be due to forecasts span-
ning a wide range relative to the measurements around major
rainfall events (see the “vertical stripes” of red dots in Fig. 14
in our results, starting right after the blue dashed line around
time index 2000); and (iv) theOregon landscape they use data
from is quite different from our Canyon Fire setting. Below
we provide further details regarding Point (i) and Point (ii),
emphasizing how our results provide a deeper insight into
the soil moisture wetting and drying process.

5.8.1 Variation in soil properties over time

Immediately following theCanyonFire, the soilwas extremely
dry from the passage of fire. After two rain events in Decem-
ber 2007, the soil properties of initial moisture content prior
to rainfall and infiltration rate changed significantly. Thus,
the moisture response for the first two rainfall events, which
eroded the surface and transported ash and char downs-
lope, is hypothesized to be too different to be captured by
one average model. Although the storm of 18–19 December
2007 triggered multiple small but long-traveled debris flows
(Fig. 2), none of the following storms of similar rain inten-
sity and duration relations, as depicted in Fig. 3, triggered any
observable debris flows. There was, however, notable ground
surface change resulting from surface erosion and sediment
transport in response to each successive rain storm. To iso-
late the non-stationary behavior of ground surface conditions
over time [13], we partitioned the data into four time peri-
ods, see Fig. 16, bracketing rainfall from storms and related
increases and subsequent decreases in soil moisture. Each
period covers about one month. However, Period 3 (“Febru-
ary”) ends early, in order not to interfere with a storm event
near February 23.

To study the variation in model parameters over time, we
trained separate AEAR models for each time period, see
Figs. 16 and 17. A large variation in the model’s wetting
rate kw is observed in the four periods following the wildfire
(Fig. 17a). At the beginning of Period 1, extremely dry soil
absorbs rain almost instantaneously, leading to a very high
wetting rate kw > 100.As soil pores fillwithwater and illuvi-
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Fig. 16 Partition of Canyon Fire soil moisture data from 30 cm deep
probe measurements and forecasts of trained AEAR models for each
period. To compare the model parameters for different periods, we
partitioned the almost four months of the winter 2007–2008 season
(December–March) into Period 1 (“December”), Period 2 (“January”),
Period 3 (“February”), and Period 4 (“March”)

ated fine-grained sediment, the wetting rate kw decreases and
eventually goes to kw < 1 in Period 3. Later in the season,
kw increases in Period 4 (late-February to mid-March) as the
soil starts drying, atmospheric temperatures rose, and post-
fire vegetation regrowth decreased soil moisture by increased
evapotranspiration.

5.8.2 Soil moisture variation with soil depth

The timing and magnitude of soil drying at different depths
vary due to environmental factors such as solar radiation pen-
etration, air temperature, wind speed, and water absorption
by vegetation. The trained AEAR parameters ks and kg for
models from three different soil depths can potentially cap-
ture these effects. Figure 17b shows the empirical variation
in ks and kg with soil depth. Here we trained three differ-
ent models for the three soil depths using training data from
December 2007 to March 2008. We observe the drying rates
of the shallowest soil horizon (5 cm) are much higher com-
pared to the deeper,more pedogenicallymature soil horizons.
Younger, coarser textured soils near the ground surface are
directly exposed to higher solar radiation, and atmospheric
effects, such as wind, increasing relative evaporation. More-
over, ks and kg differ by at least two orders of magnitude
consistently over all soil depths. This suggests that our intro-
duction of distinct drying terms in the AEAR model (Eq. 6)
is well-justified.

6 Related work

We now examine models that seek to meet our goals and
requirements discussed in Sect. 2. Here we consider methods

Fig. 17 Variation in wetting and drying properties of soil in AEAR
model parameters. We depict the variations over a winter season’s data,
shown in Fig. 16, in both time—different wetting rates over “months,”
as shown in (a) and space—drying rates at three different depths, as
shown in (b). To observe the spatial variation, the model parameters for
various soil depths below ground surface are shown in (b)

from different disciplines–machine learning, earth science,
and statistical modeling.

6.1 Simple exponential model (SEM)

The Antecedent Water Index (AWI) presented in equation
(2) is considered to be proportional to soil moisture and is
widely used to model soil moisture response [16,74]. The
AWI model is inspired by a water balance equation (15):

�MS
t = It − Et − Rt − Gt , (15)

where �MS
t is the change in soil water content at time t ;

It is the mean precipitation; Et is the mean evapotranspira-
tion; Rt is the net streamflow divergence; and Gt is the net
groundwater loss.

Essentially, (15) balances precipitation, evapotranspira-
tion, and water loss to the rate of change of soil moisture.
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It has been shown that an approximation of (15) leads to an
exponential decaymodel (under no precipitation) [25],which
is very similar to the AWI model (2).

NOAA forecasts of soil moisture use surface hydrology
as defined by (15) [73]. Hence, the AWI model is closely
related to a state-of-the-art hydrology-inspired soil moisture
model. The AWI model was also used to forecast shallow
landslides from rainfall in Seattle, Washington [16].

6.2 Statistical models for time series forecasts

We now consider traditional time series models from statis-
tics, namely ARIMA, ARMA, and ARMAX. Aljoumani et
al. [2] investigate the impact of irrigation on soil water con-
tent in a silty loam soil using an autoregressive integrated
moving average (ARIMA) model. Under the normality
assumption, the ARIMA model could not properly explain
the effect of variable interval irrigation. To remedy this
problem with the ARIMAmodel, outlier detection and inter-
vention analysis were used. Unfortunately, their model is
hard to interpret from the perspective of physical soil pro-
cesses.

Khaertidova and Longobardi [33] analyze soil moisture
dynamics in inter-storm periods to deduce that moisture
reduction magnitudes are seasonally dependent with high-
est rates corresponding with plant water uptake. Given their
focus on inter-storm periods rather than seasons or years,
there is no analysis of soil moisture increases and a simple
exponential decay model is sufficient.

In hydrologic literature, various autoregressive models
exist for data-driven rainfall–runoff modeling [58]. When
soil properties and water transport do not behave as random
functions, but rather as structured processes, ARMA (autore-
gressive moving average) and ARIMA models can be used
to model soil moisture dynamics [2,10].

An ARMAX(p,q,b) model expresses the dependence of
past soilmoisture values {Mt−i } and rainfall {It−l} on present
soil moisture Mt according to the following equation:

Mt =
p∑

i=1

φi Mt−i +
q∑
j=1

θ jεt− j +
b∑

l=1

ηl It−l , (16)

where p, q, and b represent the time-delay in autoregressive,
moving average, and exogenous input terms, respectively.
And φi , θ j , and ηl are their corresponding weights. Here
εt− j represents white noise and is a moving average model
of order q.

In our experiments in Sect. 5, we typically keep the
orders of the autoregressive and exogenous input polyno-
mials (16) the same, i.e., p = b. We therefore can abbreviate
ARMAX(p,q,b) as ARMAX(p,q).

6.3 Decompositionmethods for time series

Time series decomposition methods perform analyses by
splitting up (or decomposing) the signal. One such method
is known as seasonal decomposition of time series by Loess
(STL). STL is a seasonal trend decomposition method that
uses local regression [9]. STL decomposes a time series into
trend, seasonal, and remainder components. STL has been
used in several areas of science and engineering, for exam-
ple, to analyze seasonal patterns in suicides [54] as well as
for earth science time series data analysis [4].

STL and other existingmethods, such asmoving averages,
may fail to smooth time series data while preserving peaks
and valleys [4]. Therefore, we developed a novel method,
HyperSTL, for extrema-preserving smoothing by optimizing
the parameters of STL [4]. HyperSTL successfully reduces
noise, including instrumental variations, while preserving
extrema and signal detail. We demonstrated our method on
post-fire soil moisture time-series data [4] and also apply the
method in Sect. 3.2.

6.4 Regional soil moisture models

The 3-layer Variable Infiltration Capacity model (VIC-3L)
is widely used to simulate global soil moisture [71]. The
VIC-3L model was developed as a generalization of the sin-
gle layer VIC hydrological model [40]. It incorporates many
parameters accounting for sub-grid variability in soil mois-
ture, land surface vegetation, precipitation, and topography.
The Palmer Drought Severity Index (PDSI) and Standard-
ized Precipitation Index (SPI) are also used to estimate soil
moisture over large spatial and long temporal scales [68].

VIC-3L, PDSI, and SPI and similar regional approaches
are applicable over broad areas, but not appropriate given our
requirements. These indicators are not appropriate for either
the spatial or temporal scales of local erosion and shallow
landslide processes. A primary limitation of the PDSI is that
it cannot be correlatedwith site-specificwater resources such
as soil moisture or runoff. Rather, it is a unitless generalized
index applicable at the spatial scales of states or counties.
Both the PDSI and the SPI rely on data at monthly intervals
for long-term (monthly to yearly) assessments of available
moisture, whereas we are interested in timescales of hours to
evaluate local runoff and heightened soil moisture and posi-
tive pore-water pressure generation in the context of shallow
landslide susceptibility.

6.5 Artificial intelligence andmachine learning
methods andmodels

Several studies review, benchmark, or compare statistical
and machine learning methods, sometimes leading to con-
troversial or surprising conclusions [20,21,37,45,53]. For
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example, Makridakis et al. experimentally compare statisti-
cal and machine learning forecasting methods to conclude
that on the time series they experiment with, the statisti-
cal methods have higher accuracy than the machine learning
methods [45]. Later, Papacharalampous et al. compare differ-
ent methods to forecast hydrological processes. In contrast
withMakridakis et al., they conclude that stochasticmethods,
including several statistical methods, and machine learning
methods produce equally useful forecasts [53]. Hewamalage
et al. reach similar conclusions [21]. These results have led
to continued focus on both statistical and machine learning
methods for time series forecasting. Such time series fore-
casting research includes, in the case of machine learning,
investigations of neural networks including deep learning
for time series forecasting [37]. Deep learning architecture
experiments with times series data indicate that Long Short-
TermMemory (LSTM)models can achieve themost accurate
forecasts [37,51].

In many cases, time series data contain contextual infor-
mation that is long-range. Such long-range contextual infor-
mation may be very important when mapping between input
and output sequences. For many recurrent neural network
(RNN) architectures, the range of the context that can be han-
dled is very limited. Research on this problem has been going
on for decades; however, a gradient-based RNN approach
called Long Short-Term Memory (LSTM) developed by
Hochreiter and Schmidhuber [23]makes substantial progress
on solving the long-range contextual information problem.
The LSTM architecture efficiently models long-term depen-
dencies of time-series and does not suffer from the vanishing
gradient problem [63]. These properties of LSTMs make
them useful for time series forecasting in earth science, for
example, for sea surface temperature forecasting [41] and
forecasting of pore-water pressure in landslide-prone hill-
slopes [51]. Employing LSTMs, Orland et al. [51] forecast
the timing andmagnitude of pore-water pressure, as opposed
to soil moisture, at 36 hr intervals. Their LSTM approach
alone, though, does not result in a deeper comprehension of
the physical processes driving hydrologic response. Here we
apply LSTM as a benchmark time-series forecasting algo-
rithm and present comparisons with our proposed methods
in Sect. 5.6.

There is currently broad discussion and interest around
trustworthy, explainable, interpretable, comprehensible, fair,
transparent, and understandable models and algorithms in
artificial intelligence and machine learning [39,47,49,62].
Whereas there is general agreement on concept importance,
inconsistency and confusion remain in the precise meaning
of the terminology. In particular, the terms “explainable”
and “understandable” can be applied to models developed
here. “Explainable machine learning” has gradually become
most associated with explaining deep neural networks and
explaining similar black box models with millions or bil-

lions of parameters. Although important and interesting,
the topic of explaining black box models is not the focus
here. Consequently, we prefer the term “interpretable ML”
or “interpretable model,” consistent with Rudin’s usage in
the context of models aiding high-stakes decision mak-
ing [62]. Similarly, Murdoch et al. highlight “model-based
interpretability” in their review of definitions, methods, and
applications in interpretable machine learning [49] related to
human health and safety [39,62].

Related to the focus on interpretable models is the com-
bination of physics-based models with complex data driven
approaches including neural networks. A physics-based neu-
ral network, for example, was used tomodel lake temperature
evolution [29].

Evolutionary algorithms (EAs) and stochastic optimiza-
tion algorithms have been successfully employed in many
hard optimization problems, including machine learning
problems, without introducing strong assumptions such as
convexity. Examples of such EAs include Real Coded
Genetic Algorithm (RGA) [17], Simulated Annealing (SA)
[7], and Differential Evolution (DE) [69]. In DE, the dif-
ference vector-based mutation and the uniform crossover
schemes are favorable for exploring patterns in the search
space. DE is, for example, used for parameter estimation
of non-linear models [75]. SA is a probabilistic search
technique, and in contrast with DE and RGA it is not
population-based. To prevent getting stuck at local optima,
SA accepts random neighbors with a small probability. SA-
based optimizationmethods were used for several time series
forecasting problems including electricity load forecasting
and traffic flow estimation [24,38,52]. SA has also been suc-
cessfully used to solve many difficult data mining problems,
such as influence maximization in social networks [26].

In artificial intelligence, including machine learning, a
need often exists to optimize hyperparameters of complex
algorithms. IRACE performs iterated racing to automatically
tune parameter configurations of an algorithm. IRACE has
been successfully used for time-series analysis [1] and feature
selection [78]. HyperSTL augments STL [9] with a stochas-
tic optimization algorithm, a genetic algorithm, to tune the
hyperparameters of STL (see Sect. 6.3 and Fig. 7). HyperSTL
is controlled via an objective function with three terms that
formalize extrema-preservation: RMSE with a straight line
to smooth the trend line T ; range of remainder R from STL
to minimize high and low peaks; and variance of remainder
R to reduce seasonality detection. These three components
were combined into a weighted sum, which was then mini-
mized by HyperSTL. The HyperSTL technique enables the
identification of both short- and long-term seasonality in soil
moisture datasets while retaining peaks and valleys [4].
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6.6 Evaluation of requirements

We now evaluate the methods and models discussed above
in light of the problem of soil moisture forecasting and the
requirements set forth in Sect. 2.

Although soil moisture is of critical importance to many
disciplines, widespread in situ soil moisture monitoring at
high-frequency (period ofminutes) has only recently become
commonplace. Further, Kean et al. discuss the short time-
frame of responses for post-fire sediment-laden floods and
debris flows, necessitating the collection of relatively high
frequencydata [31]. The best correlation betweenfloodpeaks
and rainfall in SouthernCaliforniawas determined to be< 30
min, with the 5-min rainfall intensity being the most accu-
rate metric [31]. Consequently, the challenges of analyzing
and forecasting soil moisture present an ideal opportunity to
take advantage of recent advances in data science, machine
learning, and statistical time series analysis.

While doing so, it is important to keep in mind the three
requirements outlined in Sect. 2.2. The SEM discussed in
Sect. 6.1 has the potential to meet all these requirements. It
meets two of the requirements very well (being interpretable
and data-driven) but is not as accurate for medium-term fore-
casting (the third requirement) of importance to public safety
and agricultural needs. The other methods discussed above
do not appear as promising. Therefore, the decisionwasmade
to take the SEM as a starting point and develop it further as
discussed in Sects. 3 and 4 in order to improve medium-term
forecasting accuracy while not compromising significantly
along the two other dimensions of being data driven and
interpretable.

7 Conclusion and future work

7.1 Conclusion

Time-series data represent some of the most important forms
of information chronicling the health and trajectory of Earth
and her biological systems. In recognition of the importance
ofmonitoring environmental data in parallel with technology
advances for doing such monitoring, the quantity and vari-
ety of time-series data are rapidly expanding. These datasets
represent critical information for work in earth science. As
a major provider of widely ranging earth science time-series
data to the public, the USGS plays a critical role in not only
collecting such data but in providing cutting edge tools for
interpreting these complex data.

In order to better analyze often diverse and complex data,
the cross-disciplinary project reported here has introduced
machine learning approaches to existing earth science data
and analysis capabilities. The focus has been on forecast-

ing soil moisture with greater accuracy compared to existing
methods.

Wemodeled soilmoisture responsewith respect to rainfall
from natural storms and determined that the existing SEM
(AWI) approach has several strengths but does not adequately
forecast moisture response for time periods greater than 5–10
h, depending on the dataset. Moreover, it does not perform
well for deeper soil horizons in a post-fire setting, because
soil moisture variations in the deeper horizons do not follow
a simple exponential curve.

Building on the SEM framework, we developed two novel
soil moisture models, NAR and AEAR, that are rooted in
deterministic, physically based hydrology. The simpler NAR
model often generalizes well for shallow soil depths and
shorter forecast horizons (1 hour ≤ τ ≤ 10 h). Alter-
natively, the AEAR model works well for moisture data
from three different soil layers with distinct soil textures
and over longer time horizons. Our AEAR model can be
trained with both regular and irregular time series measure-
ments of soil moisture and provides good forecasts in both
cases. Moreover, AEAR inherently represents hydrological
soil processes, as validated by earth scientists, providing a
means to estimate rates of soil wetting during rain storms
and drying in-between storms for varying soil depths with
distinct pedogenic horizons. In the context of forecasting
wetting and drying rates, as well as the associated magni-
tudes of soil moisture response to NWS rainfall forecasts,
the AEARmodel can project out to time horizons of up to 24
h, perhaps longer, thus allowing for greater public awareness
of potential landslide hazards.

7.2 Future work

Although soil moisture is of critical importance across many
fields, including agriculture, climate studies, landslide hazard
assessments, landscape ecology, water resources, and wild-
firemanagement,widespread in situ soilmoisturemonitoring
is somewhat recent. The challenge of analyzing and forecast-
ing soil moisture presents an ongoing opportunity to apply
recent advances in time series analysis and domain-driven
data mining.

We plan to extend ourmethods to better incorporate lateral
and vertical soil moisture variations. The timing and magni-
tude of response at different soil depths need to be examined
over longer time periods incorporating multiple seasonal
cycles to better constrain the AEAR parameters ks and kg .
Models should be applied to longer observation period data
for investigation of large magnitude rainfall event response
as well as to unburned field settings. As simple, physically
based models cannot adequately represent the spectrum of
physical properties in natural field settings, we will attempt
to expand the model to forecast moisture over broader areas,
creating a moisture map incorporating spatial variability of
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soil thickness and topographic position for potential applica-
tion to agricultural water requirements, ecosystem response,
burn susceptibility, and erosion response. By incorporating
field and remotely sensed landscape data, as well as storm
intensity and duration forecasts, future model improvements
may aim to increase robustness of soil moisture and hence
rainfall-induced landslide forecasts. Study of other evolu-
tionary methods, including grammar-based methods, may
prove beneficial in creating interpretable time-series data
models [39].

Although our approach was designed for soil moisture
forecasting, such models may be applied to other complex
time-series applications in earth science and other areas. For
example, managing workload bursts for network and com-
puting resources are important to rebalancing and autoscaling
for cloud computing [20,70]. Workload bursts are a form of
flash events (note similar language to “flash floods”) during
major breaking news and sporting events of global interest,
such asWorld Cup soccer [3,6]. Web site traffic can fluctuate
dramatically due to social network user activity [46]. Fur-
ther, COVID-19 infection rates over time exhibit similarities
with soil moisture. Time series of new confirmed cases [77]
show comparable growth and decay functions as in Fig. 3.
The SEIR (Susceptible–Exposed–Infected–Removed) epi-
demiological model, predicting epidemic COVID-19 trends,
includes decay functions analogous to those of the NAR or
AEARmodels. Therefore,methods developed here including
preprocessing time series observations, using accumulative
models for forecasting, and interpreting physical processes
using model parameters can potentially be applied to study-
ing viral infections and aid in the design of appropriate
control measures.
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