Bitcoin P2P Network Measurements: A testbed
study of the effect of peer selection on transaction
propagation and confirmation times

Befekadu G. Gebraselase, Bjarne E. Helvik, Yuming Jiang
Department of Information Security and Communication Technology
NTNU, Norwegian University of Science and Technology, Trondheim, Norway
{befekadu.gebraselase, bjarne, yuming.jiang } @ntnu.no

Abstract—Bitcoin is the first and the most extensive decen-
tralized electronic cryptocurrency system that uses blockchain
technology. It uses a peer-to-peer (P2P) network to operate
without a central authority and propagate system information
such as transactions or blockchain updates. The communication
between participating nodes is highly relying on the underlying
network infrastructure to facilitate a platform. Understanding
the impact of peer formation strategies, peer list, and delay
is vital in understanding node to node communication and the
system performance. Therefore, we performed an extensive study
on the transaction characteristic of Bitcoin through a testbed.
The analysis shows that peer selection strategies affect the
transactions propagation and confirmation times. In particular,
better performance, in terms of smaller transaction confirmation
time and lower number of temporary forks, may be achieved by
adjusting the default nearby-based peer selection strategy.

Index Terms—Bitcoin, P2P, Peer selection strategies, Transac-
tion characteristics

I. INTRODUCTION

Bitcoin is becoming the leading cryptocurrency system
today, with its value rising dramatically since its launch in
2009 [7, 30]. Satoshi Nakamoto, the pseudonym of Bitcoin’s
creator, stated that Bitcoin is an electronic payment system
based on cryptographic proof instead of trust [30]. Bitcoin
is the first well-known decentralized electronic peer-to-peer
(P2P) system that uses blockchain technology [7, 30]. It adapts
a cryptographic proof of work (PoW) mechanism that allows
anonymous peers to create and validate transactions through
the underlying P2P network [30]. The P2P network is vital
to the communications of the blockchain system [10][15].
The nodes send and receive messages via the underlying
network infrastructure while the P2P topology is formed at
the application layer [25]. The way nodes form an overlay
topology affects the overall performance, such as transactions
confirmation time [40], block and transaction propagation
delay [7][16], fork rate [7], and stability of the ledger. In
this regard, we prepared a testbed to analyze the impact of
P2P topology formation, end-to-end delay, and bandwidth
limitation on the performance of Bitcoin.

Bitcoin operates to distribute the ledger among all the par-
ticipants in a flooding P2P network [9]. When a node tries to

join the Bitcoin network, it uses a hardcoded seed to reach out
to the nodes nearby. Through getaddress and node discovery,
each node updates/creates eight peers by default (outgoing
connection), but it can have up to 124 inbound connections.
The logical connections between participating nodes create a
dense P2P overlay topology, a mesh network [10][11]. This
P2P topology is responsible for broadcasting new updates to
peers by which they learn and inform each other about trans-
actions and blocks [10]. The reachability of these messages
affects the ability of the system to process more transactions
and secure the interactions [10][15].

In Bitcoin, the average inter-block generation time is 10
minutes. This enables all the newly generated blocks to reach
the maximum number of nodes in the network. Shortening the
inter-block generation time brings higher block propagation
delay, which increases the temporary forks rate [37][39],
which wastes the miner’s resource and makes the transac-
tions wait longer. Alternatively, increasing the inter-transaction
generation also increases propagation delay, affecting the
confirmation waiting time of the transaction [7]. Likewise,
the peer formation strategies also impact the reachability of
the transactions and blocks [2][38]. The nodes forward new
updates to the peer nodes, in which the number of peer nodes
and the delay in between impact the amount of time needed to
forward a message. The network element’s delay, processing
delay, and peer formation strategies affect the block’s number
of minutes to reach the maximum number of nodes.

This paper investigates network-related parameters’ impact
on the technology’s overall performance. However, it is chal-
lenging to conduct such analysis because the nodes are inde-
pendent and anonymous, making it challenging to collect mea-
surement data from the unknown nodes. In addition, measuring
a network fragment will bring results not representative of
the overall performance. Several methods have been proposed
in the literature to examine network condition effects on the
performance. One is to use analytical models, which, however,
are built on much simplified assumptions or approximations
to allow tractable analysis, e.g., [28, 39], unable to reflect the
actual Bitcoin P2P network environments. Another is to use
simulation tools, e.g., [1, 2], which, however, have also made

much simplification and do not exactly implement / reflect the
set of mechanisms used by the Bitcoin P2P network. The third
is to develop an emulator that behaves like an actual Bitcoin
[20]. For this reason, we choose to develop an emulator.

A testbed emulator has been prepared to perform a
measurement-based study. As a highlight, the testbed includes
104 Raspberry Pis, six switches, and two-blade racks. Each
blade rack can hold up to 40 Raspberry Pis. Each raspberry
device has Bitcoin Core 0.21.0 [4] installation with additional
scripts to automate transactions and block generation events.
Through this testbed, a dataset has been gathered containing
primary information about the chain, i.e., the ledger, and
information that is not available from the ledger but measured
from the local mining pool (mempool). Based on the collected
dataset, an explorative study on the transaction characteristics
of Bitcoin has been conducted.

This paper investigates the effect of peer selection on
transaction propagation and confirmation times. In particular,
the aim is to provide valuable insights into the impact of
network conditions on transactions confirmation time. The
paper’s main contributions are the following:

o The paper presents a testbed development that can be
used to examine the transaction characteristics of Bitcoin,
including transaction propagation and confirmation times.

o The investigation shows that peer selection has substantial
impact on the performance. In particular, adding random
peer selection can improve the transaction propagation
and confirmation times.

o It is also found that some transactions, particularly when
the load is high, need to wait much longer than the ex-
pected 3600 seconds to get confirmed, and the occurrence
of temporary forks, in addition to load, also contributes
to this.

The rest of the paper is organized as follows. The current
state of the art is covered in Section II. Next, Section III
illustrates the testebd setup and what kind of parameters
considered. Then, Section IV illustrates the workflow of
transaction handling in Bitcoin. Following that, how P2P
topology formation and the strategies proposed are discussed
in Section VI. Next, Section IX and X reports results gained
from the analysis. Following that, Section XI presents the
impact of fork occurrence over the transaction confirmation
time. Section XII opens up a discussion on what has been
observed in the analysis. Finally, Section XIII concludes the

paper.
II. RELATED WORK

There are several works related to studying the impact of
bitcoin P2P on the security and performance of the technology.
Eisenbarth et al. [10] analyzed examining the resilience of
bitcoin networks from churn, detection of Sybil nodes, dy-
namicity, and popularity of peers. Based on one month of
observation, the study showed little churn in the network, no
Sybil attack, and recent updates on tackling these issues had
become effective. Wang et al. [42] developed an Ethereum
network analyzer, Ethna, to analyze the P2P network. The

analysis showed that the average degree of an Etherium node
is 47, and the P2P network of blockchain such as Bitcoin
degree of distribution follows a power-law. The network has
the characteristics of a scale-free network.

Fadhil et al. [15] proposed locality-based approaches to
improve the propagation delay on the P2P network. This study
considered clustering nodes in the exact geographical location,
where the distance between is used as key on choosing which
nodes to add as a peer. They showed that providing a less
distance threshold would improve the transaction propagation
delay with a high proportion. However, clustering with known
deterministic distance may reduce the security of the network.
Essaid et al. [11] proposed a Bitcoin P2P topology discovery
framework that tracks the information exchange to discover
network topologies. Based on 45 days’ observation, the node
distribution between the USA and China matches closely,
while other parts of the world have fewer active public nodes to
discover. Sudhan et al. [41] developed a model to simulate the
Bitcoin network and studied the impact of the outgoing con-
nection limit over the transaction propagation time. In addition,
the study considered two peer selection strategies proximity
and random. They showed that peer selection strategies impact
the transaction propagation delay.

Shahsavari et al. [39] proposed an analytical model to study
the network delay and traffic delay in Bitcoin. The study
considered the effect of the default number of connections
and the block size on the performance of the Bitcoin network.
Deshpande et al. [8] developed a fast and efficient framework
named BTCmap to discover and map the Bitcoin network
topology. The analysis indicates that the online peers’ list
remains valid (less than 1% of changes) at 56 minutes 40
seconds. Otsuki et al. [33] showed that a relay network
improves the propagation time of a block. In addition, the work
showed that relay network decrease in the orphan block rate
and the 50th percentile of block propagation time. However,
the relay network’s improvement of the orphan block rate
became smaller as the Internet speed increased. Regarding the
mining success rate, it was demonstrated that the relay network
did not significantly influence the differences between utilizing
and non-utilizing nodes were below 0.1 at any utilization rate.

The authors in [22] proposed KadRTT, an approach that
tries to reduce the lookup latency and hop count. The study
shows that proximity and uniform ID arrangement methods
enable the proposal to improve performance. This improves
P2P applications for efficient content lookup mechanisms.

Most of the research work outlined above analyzes the
discovery of Bitcoin P2P topology or develops a framework
to crawl the live Bitcoin network to discover the structure and
security bridges of the technology. However, little has been
investigated about the impact of peer selection, topology for-
mation, and end-to-end delay on the transaction characteristics
of Bitcoin. Therefore, we developed a testbed that mimics the
real Bitcoin network, enabling us to experiment with collected
data and make further analyses.

III. MEASUREMENT SETUP AND NODE CONFIGURATION

For the measurement study, a testbed has been implemented
to record information about Bitcoin transactions. The testbed
includes 104 Raspberry Pis, six switches, two-blade rack
(each holding 40 Raspberry Pis). Each Raspberry Pi has an
installation of a full Bitcoin core.

A. Node configuration

Every Raspberry Pi is used as a full node that participates in
addition, validation, and generating valid logs. These devices
boot from an SD card. The SD card has Ubuntu Server Version
20.10 for the ARM architecture. In addition, the SD cards
contain the scripts necessary to run the setup, for instance,
scripts to start Bitcoin daemon, adding topology and delay
and generating transactions and blocks.

1) Network configuration: Each node interface is config-
ured with an IP address 192.168.xx.1/24. Subnetting with /24
may not be necessary to have a single node, but we plan to
increase nodes per subnet for the future use case. Assigning
such an IP address also mimics an actual Bitcoin node with its
public address. Since each node becomes part of the network,
we used VPP (Version 21.6) to perform routing between
the nodes. It is an open-source software that provides high-
performance switching and routing features for commodity
hardware [43].

=
Blockchain overlay network
User

Kernel

Linux queueing discipline: 1 Expon(11ms, 11ms)

e Raspberry Pi act as Miner '

o NetEm linux foundation Queue (Outgoing delay)

eth0 i

t Outgoing rate = 10mbit

Figure 1. Bitcoin node configuration

The basic architecture of Linux queuing disciplines is shown
in Fig. 1. The queuing disciplines exist between the protocol
output and the network device, and the default queuing disci-
pline is a simple packet FIFO queue. A queuing discipline is
a simple object with two key interfaces. One queues packets
to be sent, and the other releases packets to the network
device. The queuing discipline makes the policy decision of
which packets to send based on the current settings. As shown
in Fig. 1, the packet leaving each node adds delay to each
packet which follows an exponential distribution. Since each
node has an N peer list, we can also see N queues. In
addition, the bandwidth is limited to 10 Mbps capacity. These
configurations mimic the real Bitcoin network’s peer list, and
delay arises from the node and network capacity limitations.
To simulate a network of the whole Bitcoin network, we
used NetEM. It provides Network Emulation functionality for

testing protocols by emulating the properties of wide-area
networks [19].

To emulate network traffic, the NetEm emulator provides
Normal and Pareto distributions [19, 21]. However, the litera-
ture study, e.g., [17], has revealed that the inter-packet delay in
Bitcoin follows more closely an exponential distribution. This
is another challenge since the NetEm does not provide this
distribution but allows users to add their distribution. There
are different ways to prepare a user-defined distribution. For
instance, extracting the RTT values from ping statistics gives
the mean and standard deviation, then using it in the NetEm
command when activating the distribution table produced. This
is easy to do between a few nodes. Our setup mimics the
actual Bitcoin network of 5670-7279 active full nodes [9][11].
The Bitcoin documentation states that a node chooses a peer
within shorter latency. We generated random variables by
inverse transform sampling of exponential distribution based
on this fact and then used iproute2 marketable to create an
exponential distribution. We set the delay (d) between 11 ms,
and it is a shorter end-to-end delay to add nodes. This 11 ms
is extracted from an independent full Bitcoin node [16], where
we calculated the delay between the eight peers from this node
and took the minimum delay between the node and its peer
which was 11 ms.

2) Node to node delay: In the previous subsection, we
discussed why NetEM is used to add delay and bandwidth
limitation to emulate the underlying wide area network (WAN)
of Bitcoin. This section shows how independent nodes com-
municate with each other through an open-source software
router Vector Packet Processing (VPP) [43]. Nodes add delay
d to each outgoing packet. The outgoing packet passes through
the router and reaches the destination. Fig. 2 illustrates node to
node communication delay between Node; and Node; while
the Dell computer is used as a router. The VPP open source
software router is configured in Dell OPTIPLEX 9020, with
a specification of Intel® 4th generation Core™ i7/i5 Quad
Core, Ubuntu 20.04, 32GB memory, Integrated Intel® 1217LM
Ethernet LAN 10/100/1000, and 256GB storage capacity.

NetTEM VPP (Router)
d, |
Node, Node,

192.168.xx.1/24 192.168.xy.1/24

Figure 2. Node adding delay

B. Time synchronization

The devices have to be time-synchronized to enable accurate
time stamping by each node in the network. For this reason,
we used a well-known time synchronization application called
Network Time Protocol (NTP). NTP is an application that
allows computers to coordinate their system time [26, 36].
The implementation is in userspace rather than in kernel
mode; however, its performance is much better than the other
network time protocols [36]. Usually, it is available for most

Linux distributions, which makes it easier to integrate with
applications. We have 104 nodes that generate events that
require accurate timing and synchronization. Therefore, we
used NTP in our setup, where, node 1 acts as an NTP server,
while the rest 103 nodes act as a client. The nodes synchronize
time means to set them to agree at a particular epoch with
respect to coordinated universal time (UTC) [26]. Fig. 3 shows
how NTP is added to the setup. As we can see from Fig. 3,
node 1 is the NTP server, while the rest 103 nodes are the
NTP clients.

12:00:00

Network
(VPP)
12:00:00

12:00:00

12:00:00

12:00:00

Figure 3. Time synchronization

C. Raspberry Pi specification

The Raspberry Pi devices are running the Bitcoin protocol
through Bitcoin Core 0.21.0. To identify them, each device is
given a unique number from 1 to 104. These devices act as
full nodes, and a single device will be referred to as node n
where n is the given number. As we see from Table I, in total,
the setup has 93 “Raspberry Pi 3”” devices and 11 “Raspberry
Pi 4”” devices. There are some differences between Raspberry
Pi 3 and Pi 4 that are relevant for the setup. Raspberry Pi
4 Plus has a CPU clock speed of 1.5 GHz, 0.1 GHz more
than Raspberry Pi 3, which has a clock speed of 1.4 GHz.
Additionally, while Raspberry Pi 3 has an Ethernet port with a
maximum throughput of 300 mbps, Raspberry Pi 4 has Gigabit
Ethernet.

Table I
RASPBERRY PI MODELS
Raspberry Pi 3 Model B+ | Raspberry Pi 4
Processor | 1.4 GHz 1.5 GHz, 64 bit CPU
Memory 1GB RAM 1-4GB RAM
WiFi 2.4GHz Wireless LAN 2.4Ghz and 5Ghz Wireless
Ethernet 300Mbps Gigabit Ethernet
SD card 8-16 GB 8-16 GB
nodes 93 11

IV. THE WORK FLOW OF BITCOIN

This section gives essential background on how Bitcoin han-
dles transactions, in addition to how the nodes communicate
and discover each other.

1) Workflow: Fig.4 illustrates the workflow of transac-
tion arrival, block formation, propagation, and validation in
Blockchain. Briefly, after transactions are generated by the
users, they are sent to all full (validation) nodes. Upon the

: 39

B
The request is The new block

pushed to the
neighbor nodes

Backlog

Someone in P2P The miners validate
and verify the
validity of the
transactions. Then,

generate a block.

broadcasted into
nodes in P2P

network request
a transaction

Figure 4. Blockchain process flow

arrival of a transaction at a full node, the node stores the
transaction in its backlog (memory pool), waiting for confirma-
tion. Besides, the node may choose unconfirmed transactions
in the backlog to pack into a new transaction block. If the
puzzle finding is successful, this newly generated block is
added to the Blockchain. This information is sent to all the
nodes. At each node, the validity of the newly generated
block is checked. If the validity is confirmed with consensus,
the updated Blockchain is accepted, and the new block of
transactions are validated. Such validated transactions are
removed from the mempool at each full node that then repeats

the above process.

block/transaction > !

Validation

headers or jny

I block/transaction

Figure 5. Legacy relaying

2) Node to node interaction: Bitcoin nodes form a P2P
network, while each node by default can have eight peer list.
It is a logical link that allows peers to push/pull new updates
to the neighbors. Fig. 5 shows node to node message exchange
sequence. The new arrival block or transaction picked up by
Node A. Then, a block/transaction is validated (the grey bar)
by Node A, which then sends an inv message to Node B
requesting permission to send the block. Node B replies with
a request (getdata) for the block/transaction, and Node A sends
1t.

3) Network discovery: A Bitcoin node is allowed to main-
tain up to 132 connections (maxconnections) as default, of
which 8 are outgoing connections and the rest are incoming
connections. Peers listen on port 8333 for inbound connec-
tions. When a node wants to join the network, as it is a
public blockchain, the node uses DNS names (called DNS
seeds) hardcoded in the Bitcoin Core. From this point, the new
node updates its peer list by discovering nodes nearby. In this
way, new nodes select peers that are part of the network. This
peer formation is called nearby-based since it highly depends

on adding nearby nodes. The peers randomly choose logical
neighbors without knowledge about the underlying physical
topology.

The peer list used as a reference list to send an inventory
or receive messages from the neighbor nodes. After the node
joins the network, it can take part in propagation, consensus,
and block generation. These nodes act as a full node, which
means the users/owner can create a transaction and create a
block, and forward the new updates to the network. Each block
created by the nodes that are valid enough to be included in the
chain will contain the hash of previous records of the blocks.
Blocks that are created but ignored by the network become
orphan blocks. Mostly these blocks become fragments that
will never be used but waste all the computation cost and
resources.

4) Peer list: Nodes can have up to 132 connection lists.
This is the combination of incoming and outgoing peers.
When a node initiates the connection, it is called outgoing,
or if the connection initialization comes from other nodes, it
is incoming bound. The number of peers (P) represents the
number of outgoing peers of each node. The total connection
list is the sum of P outgoing peers plus incoming peers (Q). In
this work, the peer list length (p;) is set to be 2P, i.e. Q = P.

V. SETUP OF INPUT PARAMETERS

This section describes the input parameters such as inter-
transaction generation time, inter-block generation time, and
node to node delay added to the network.

The transaction and block generation events must also in-
clude similar characteristics to mimic the Bitcoin network. The
transaction inter-arrival time to a node follows an exponential
distribution, based on the literature investigation [17][40].
Similarly, the inter-block generation time also follows an
exponential distribution [17][18].

Algorithm 1 Generate transaction

1: procedure POISSON(A(t), Ty)
2 Initialisation: T} = timenow() + Ty
3 Condition: Ty < T}

4 while True do

5: wy ~ negExp(A(t))
6

7

8

if timenow() + wy < T} then
time.sleep(ws)
generateTransaction()

1) Transaction inter-generation time: Each node acts as
a full Bitcoin node that creates, validates, and propagates
transactions and blocks. Therefore, nodes have a script that
generates transactions and blocks following an exponential dis-
tribution. The script accepts duration and the inter-generation
interval in terms of seconds as an input parameter, as illus-
trated in algorithm 1. 1/\(¢) is the mean inter-generation time
(tgix1 - tgs) in seconds for each node. Furthermore, Ty is
the total duration of running time in seconds. The result of
the inter-generation time distribution follows an exponential
distribution.

2) Block inter-generation time: Bitcoin network generates
a block on average 10 minutes. This makes the recent block
propagate to the network before the next generation. Bitcoin
adjusts the difficulty after 2016 blocks are generated to control
the average inter-block generation time. Although this is true
for live Bitcoin nodes, the Bitcoin core regtest mode has
difficulty close to zero, which means there is no difficulty
generating a block. However, to mimic the real Bitcoin net-
work, we developed a script that produces a block on average
ten minutes. Overall, we have 104 nodes, which means a
block is generated in 103*600 second (61800), the remaining 1
node is measurement node. Similar to the previous transaction
generation case, here the Algorithm 2 takes the generation rate
and duration of the simulation in seconds as an input.

Algorithm 2 Generate Block

1: procedure POISSON(A(t), Ty)
2 Initialisation: Ty = timenow() + Tq
3 Condition: Ty < T;

4 while True do

5: wy ~ negExp(A(t))
6

7

8

if timenow() + w: < T¢ then
time.sleep(ws)
generateBlock()

3) Node-to-node delay: In the actual Bitcoin network,
nodes are distributed across the globe, which are geograph-
ically and domain-wise isolated from each other. Since the
underlying network infrastructure is providing the communica-
tion platform and the actual network traffic is unpredictable, it
is common to consider a distribution that captures the network
delay between two participating ends. To mimic the delay
that arises from the network element and distance between
the participating nodes we introduced a delay (d) that follows
an exponential distribution with the shorter mean of 11 ms.

VI. NETWORK TOPOLOGY

The Bitcoin research community states that peer formation
starts from looking at DNS seed nodes. Some of those DNS
seeds provide a static list of IP addresses of stable Bitcoin
listening nodes. Once a peer receives a full Bitcoin node IP
address list, the peer performs up to eight outgoing connection
attempts. These eight nodes that the peer attempts connection
with are called entry nodes. A node can request from its
neighbors the TP addresses of peers they are aware of using
the addr P2P network message and increasing the nodes’
awareness nearby. The distance between nodes, such as delay,
the number of peers, and how to select the peer affect the
overall performance. We consider three peer formation cases
to investigate this impact: nearby, random, and mixed. The
nearby-based approach is a method that adds neighbor nodes,
as stated in the Bitcoin documentation [5]. The other way is
randomly selecting peers, as expressed by other authors [7,
41]. Finally, to mix these two approaches to investigate the
effect, this method is a mixed approach. The following section
introduces these approaches.

(a) Nearby-based approach

(b) Mixed-based approach

Figure 6. Bitcoin overlay network example (P=3), while considering only outgoing links

A. Nearby-based peer selection

Nearby-based peer selection approach enables peers to form
close by neighbor peer creating P2P topology. A full Bitcoin
node can have eight peers by default, but it can have up to 132
connection link points. The nearby metric depends on adding
nodes close by.

Algorithm 3 Nearby-based

1: procedure NEARBY(P, k, (')
2: pi= {l—I= (k+i) mod C, i=l, ...,P}

Algorithm 3 illustrates the nearby-based peer selection
method. The procedure takes the number of peers to add (P),
the current node (k), and the total number of nodes (C'). The
algorithm adds peers that are closeby.

B. Random-based peer selection

Unlike the nearby-based approach, the random-based
method does not depend on the proximity of nodes, instead
on the random selection of the peer to add. Even-though
Bitcoin is a distributed P2P technology where each node
acts as an independent node, it has little knowledge on the
global distribution of the nodes. For the random-peer selection
method, we consider that nodes know the number of full active
nodes in the network they are participating in. Similar to the
nearby-based approach, Algorithm 4 illustrates the random
peer selection method. The procedure takes the number of
peers to add (P), the current node (k), and the total number
of nodes (C). The method adds randomly selected nodes as
its peer list.

Algorithm 4 Random-based
1: procedure RANDOM(P, k, C)
2: Initialisation: p; = {},pc = {1,...,C}\ {k}
3: for i = 1 step 1 until P do
4 pr<—p1 U (RANDOM(p. \ p1))

C. Nearby + Random (Mixed)-based peer selection

The third case is to combine nearby-based and random-
based approaches. In these combinations, the nearby-based

method adds n — 1 peers and the random-based approach
adds the last node by choosing randomly. This is to introduce
a random link to the nearby-based peer list. Similar to the
previous two approaches, Algorithm 5 illustrates the mixed
peer selection method. The procedure takes the number of
peers to add (P), the current node (k), the total number
of nodes (C'). As discussed in the previous subsections, the
method adds the n — 1 nodes based on the nearby-based
approach. The random-based approach adds the last node.

Algorithm 5 Mixed-approach
procedure RANDOM(P, k, C)
pm={lll=(k+i)modC,i=1,...,P—1}

1:

2

3: pC:{137C}\{k}\pl
4 p1 < ptlURANDOM(p.)

From this point on forwarding, we use random to represent
the random-based approach, normal for the nearby-based de-
fault approach, and mixed for the approach that mixes the two
approaches.

VII. SETUP VALIDATION

This section relates the timings in the testbed with those in
the live Bitcoin network.

A. Node to node delay

In our previous work [16], an independent Bitcoin full node
was deployed to collect transactions and block related feature
sets. We used observations from this node to validate some of
the input parameters and results. For instance, our nodes have
132 connected nodes. Eight of these nodes are peer nodes,
while the rest are incoming bound nodes. The average ping
delay between these nodes from the Bitcoin application is
156.20 ms with a standard deviation of 152.23 ms. This ping
is handled in a queue with other commands in the application
layer to include the processing backlog. However, we also
conducted further analysis to ping these nodes from outside of
the Bitcoin core, which resulted in an average of 80 ms second
in deference. This 80 ms accounts for processing backlog.

As previously mentioned, the eight peers are more important
than the others. These peer nodes synchronize more often

Measurement node
XXX.Xxx.200.33

Node 3
XXX.Xxx.240.6:8333 Xxx.xxx.210.204:8333

(a) Bitcoin live full node

Measurement node
(node 1) 192.168.1.2/24

192.168.3.2:8333

192.168.4.2:8333

(b) Testbed

Figure 7. Transaction propagation delay between active full nodes, where
A = 3 transactions per second per network, eight outgoing peers per node

than the other 124 incoming bound nodes. For this purpose,
we conducted an independent investigation to see the delay
between our node to eight peer nodes. Our analysis shows
that the minimum delay between our node and the other nodes
is 11ms with a standard deviation of 7ms. This 11 ms delay
is used in our setup as a minimum delay guarantee between
nodes.

B. Information propagation

This subsection discusses how fast a transaction propagates
in the Bitcoin network and how the number of nodes impacts
this. We considered four publicly available nodes to collect
mempool state and compare it with our node. Fig. 7(a) shows
the delay between our measurement node in [16] with four
peer nodes that provide their state of the mempool in the
Bitcoin network. The figure shows only four out of eight nodes
because the remaining four nodes were unreachable. This is
because some of them are hidden behind firewall and NAT. As
we can see from the figure, transaction propagation between
nodes can be up to about 20 seconds [14]. This is mainly
because the P2P communication protocol makes processing
check the validation of each transaction before forwarding an
Inv message to its peers. At the same time, nodes that received
the Inv message have to check if the transaction is at the
mempool or seen before inside a block. The node sends a
getdata message and gets the new transaction when the check
is completed. Even though the delay between nodes may be
less than 100 ms, processing a transaction takes longer.

We tested out the testbed based on the live Bitcoin full
node observation to see if similar transaction characteristics
occurred. As we can see from Fig. 7(b), the transaction prop-
agation delay between the measurement node, Node 1, and its

four peers also varies in the same order. This demonstrates
that the timings in the testbed are similar to those in the real
Bitcoin network.

A closer check at the mempool status of the four nodes
on the Bitcoin network shows that the number of transactions
waiting in their mempool varies between peers in an instant of
time. A similar observation is found in our emulated network.
For instance, each node shown in Fig. 7(b) respectively has
1566, 3976, 3000, 2244, and 2300 transactions waiting at the
mempool at one checking time instant

C. Inter-block generation and inter-transaction arrival time

The average inter-block generation time is close to 10
minutes in the actual Bitcoin network. After 2016 blocks are
generated, the difficulty of solving the puzzles increases to
make sure nodes generate on an average of 10 minutes so
that the new block reaches the maximum number of nodes in
the network. Similarly, the transaction inter-arrival time to the
mempool also follows exponential distribution [16][17]. These
parameters are considered in our setup as input parameters.

VIII. MEASUREMENT DATA COLLECTION

‘ Measurement node 1 I

i

Transaction log file

Mempool data
Transaction id (txid) «———>] Transaction id (txid)

Transaction mempool time (t,)

Transaction generation time (t;)
Transaction fee (t,,)

Transaction size (t,,,)

Block height (B, g,,) ~

—

Global data

Block log file
Block hash (hash) e« 5| Block hash (hash)
Block generation time (b,) Block main chain timestamp (b_)
Block size (B,,)

Block height (B,)

Block tree data
Block hash (hash)
Branchlen (b))

Status (B,)

Block height (B,
Figure 8. Data collection

A dataset consisting of four parts has been collected by
the testbed, as show in Fig. 8. One part of the dataset
records each node transaction and block generation events.
When a node k, where k € [2,104], generates transactions,
it records a log about the transaction generation time (t,)
and transactions id (tx¢d). Similarly, when a node generates a
block, it records the block generation time(b,) and block hash
(hash). The second part of the data contains information about
each transaction’s arrival time at mempool (¢,), transaction
size (tsize), transaction fee (tfc.), transaction id (tzid), and
block height (Bjcignt). The block height (Bjeigne) in which
the transaction belongs can be empty or a number depending
on if the transaction is added to the block or just a new arrival.
The third part collects information about the blocks from the
main chain, such as block hash (hash), block size (bg;.e),

block time (b;), and block height (Bjeignt). The fourth part of
the data collection contains extracted details about the block
tree of the chain, such as Block hash (hash), Block height
(Bheight), Branchlen (B3;), and Status (5;). The Branchlen is
the length of the branch in the block tree. It holds O for the
main chain or a number, indicating the length of the soft fork
in terms of the number of blocks in the side chain. The Status
(Bs) indicates the Status of the block, whether it is active, part
of the main chain, or valid-fork meaning a block is a fork or
invalid-block meaning the block is not valid enough to be a
candidate.

The second, third and fourth parts of the data are collected
from a single node. This node is considered as a measurement
node, and in our case, Node 1 is the measurement node. Node
1 is part of the network invalidation and processing transaction
at the mempool, but it does not generate transactions or blocks.
On the contrary, it collects information about the transactions
from its mempool (Mempool data). When the emulation times
are over, it also extract information about valid blocks from
the main chain (Global data, Block tree data).

Fig. 8 demonstrates the collected feature set from the nodes.
As we can see from the figure, measurement Node 1 collects
information about the state of the mempool and keeps track
of the status of the main chain. It also illustrates the primary
key used to link the data set from each device with Node 1.
By using the datasets, we performed analysis on transaction
propagation (¢, — t,) time and confirmation time (by(;1¢)
- tg(x)), where transaction x goes into block ¢ and ¢ + 6,
representing when the transaction is six-block deep into the
main chain.

In addition to the above-collected information, we also
extracted the state of the block tree. This information includes
which block is fork (hash), at which height this event hap-
pened (Bpeight), and the number of blocks within the same
branch (Bpranchien). We used these extracted feature sets to
count the number of forks that happened while considering
different peer formation strategies and how they impact the
confirmation time of transactions inside a fork block. These
datasets are downloaded and post-processed after the emula-
tion period is completed.

IX. TRANSACTION PROPAGATION TIME

The transaction arrival intensity affects the number of trans-
actions waiting at mempool and the number of transactions to
be validated and pushed to the network. This section reports
results and observations from examining the impact of arrival
intensity variation while illustrating the effect of peer list per
node.

Bitcoin uses a gossip-like protocol to broadcast updates
throughout the network [11]. When a node receives new
transactions, it validates and verifies the validity of the trans-
actions, then sends an Inv message to peer nodes to notify
them if the peer nodes want these new transactions, before
pushing the transaction to the peers. Due to this continuous
process, a delay in transaction propagation occurs. The delay
combines validation time and the time it takes to disseminate

6 block deep
T Ta By / By
O T "
pro Ta dad Tx_add_B TConf Tx_at_conf

Transaction propagation

| |

Transaction confirmation

Figure 9. Transaction propagation and confirmation time sequence

the transaction. Fig. 9 shows a time sequence of the life cycle
of a transaction. In this section, we focus on the transaction’s
propagation, and this is the typical time when the transaction
is generated (ty) until it reaches the memppol of a node.
Specifically, in our case, the time difference between ¢, and
t, is the propagation time, where ¢, is the time transaction
arrived at the memppol of the measurement node Node 1, and
t4 is the time of the transaction generated by one of the nodes
(2-104). As illustrated in Fig. 9, the blue line indicates the
time length of transaction propagation time. The transaction
propagation delay is less than 8 seconds for the default and
low-intensity eight peer node case, (see Fig. 7(a)).

1) Average transaction propagation time: Fig. 10 shows
the average transaction propagation time in seconds while
considering different peer formation strategies. The x-axis
represents peer selection strategies, the y-axis represents the
propagation delay in seconds, and the legend shows the arrival
intensity.

400

@
&
3

I Low arrival rate
350 I High arrival rate

I Low arrival rate
I High arrival rate’

@
8
]

£ 300
o

N
X
3

g 250

N
S
]

& 200

@
3

150

=]
]

S 100

o
3

50

Transaction propagation time in seconds

o

Mixed Normal Random Mixed Normal Random
Peer selection strategies Peer selection strategies
(a) P=8 by P=4
Figure 10. Average transaction propagation times for the various peer

formation strategies, number of peers P and low (3 t/min) and high (6 t/min)
intensity generation rate \. Error bars indicate 95% confidence intervals from
10 independent runs

Fig. 10(a) and 10(b) illustrate that when the arrival rate
is high, which means each node generates on average six
transactions per second, in respective of the number of peers
per node, the transaction propagation increases. However, with
a low arrival rate, three transactions per minute per node, the
transaction propagation is less than 170 seconds. In addition,
when the number of peers is higher, the normal approach tends
to perform worse overall, while random-based peer selection
better than the other two.

2) Distribution of transaction propagation time: Fig. 11
and 12 illustrate the distribution of transaction propagation
time under a low and a high arrival rate respectively, while
the number of peers is fixed to eight. The x-axis represents
the propagation time in seconds. The y-axis is the log result of

the distribution P(t, —t, > t), while the three peer formation
strategies are used.

Log
1k
0.100
— Normal
0.010
— Random
0.001 ~ .
Mixed
104
10°%
500 1000 1500 2000 Second
Figure 11. Transaction propagation delay, where A = 3 transactions per

minute per each node (low intensity)

Fig. 11 shows that, in most cases (80%), transaction prop-
agation in random peer selection has less than 300 seconds
propagation time, whereas it has 400 seconds during the
mixed approach, while for normal peer selection transactions
observe close to 500 seconds propagation time. In all three
peer selection approaches, the transaction propagation time
can grow more than 1000 seconds in 1% of the cases.
Relatively, 90% of the transactions observe propagation time
less than 500 seconds for mixed and normal approaches, while
random-based peer formation brings less than 450 seconds of
propagation time.

Log
1
0.100
—— Normal
0.010
Mixed
0.001
10-4 — Random

500 1000 1500 2000 2500 3000 Seconds

Figure 12. Transaction propagation delay, where A = 6 transactions per
minute per each node (high intensity)

Fig. 12 also illustrates the transaction propagation delay
distribution where the three peer selection approaches are con-
sidered. In most cases (80%), the figure reports that transaction
propagation in random peer selection has less than 400 seconds
propagation time, whereas it has 500 seconds with the mixed
and normal peer selection approaches. In all three approaches,
the transaction propagation time can grow more than 1500
seconds in 1% of the cases. Relatively, 90% of the transactions
see propagation time less than 700 seconds for mixed and
normal approaches, while random-based peer formation brings
less than 600 seconds of propagation time.

In summary, when the arrival intensity is low, the random-
based peer selection strategy performs better, but when the
intensity is high, all three strategies produce a comparable
propagation delay. This shows arrival intensity has more
significant impact on the propagation delay than the type of
strategies used or the number of peers.

X. TRANSACTION CONFIRMATION TIME

In Bitcoin, the transaction is considered confirmed six
blocks deep in the main chain. This tries to ensure no double-

spending while maintaining security: By linking the previous
block with the other six blocks, it requires more computational
effort to modify the confirmed transactions. Thus, to improve
security, Bitcoin reduces its performance. This section exam-
ines how the arrival intensity, peer list, and end-to-end delay
affect performance. In the ’regtest’ setup, the transaction is
considered valid when it is 101 blocks deep. However, our
analysis used six blocks deep for confirmation to obtain results
representative of the live Bitcoin blockchain.

Fig. 9 also demonstrates the time sequence of transaction
confirmation time. The transaction confirmation time is the
difference of the ?; and the fcons. The fcons is the amount
of time for the Bitcoin network to generate six valid blocks.
Similar to the previous case, t, is the time a transaction is
generated by one of the nodes, and t ¢ is the time between
the blocks from the main chain extracted at node 1. As shown
in Fig. 9 the red line indicates the time sequence of the
transaction confirmation time. A transaction has to wait until
it is six blocks deep. Since a new block is generated every 10
minutes or 60 seconds, this means that the expected transaction
confirmation time is 3600 seconds.

Fig. 13 shows the average transaction confirmation time for
different peer formation strategies and number of peers. The
figure shows that peer formation strategy impacts the overall
confirmation time. The x-axis represents the peer selection
strategies while the y-axis indicates the confirmation time in
seconds. Specifically, Fig. 13(a) and 13(b) show that in respect
of the number of peers per node, the arrival rate has a higher
impact on the confirmation time. It is worth highlighting that
peer formation strategies bring less effect when the arrival rate
is lower.

P
]
8

I Low arrival rate
I High arrival rate:

8
8

I Low arrival rate
I High arrival rate

g
¥ 8 g &
g8 8 8 8

3
8
S
8

@
8

o oo @
R
8
o
8

3
8
2 &
8

Transaction confirmation time in seconds

Transaction confirmation time in seconds

a
8
o 8
o
3
o 8

Mixed Normal
Peer selection strategies

(a) P=8

Random Mixed

Normal
Peer selection strategies

(b) P=4

Random

Figure 13. Average transaction confirmation times for the various peer
formation strategies, number of peers P and low (3 t/min) and high (6 t/min)
intensity generation rate A. Error bars indicate 95% confidence intervals from
10 independent runs

1) Distribution of the confirmation time: Fig. 14 and 15
show the distribution of the transaction confirmation times for
low and high arrival rates while the number of peers is fixed to
eight. The x-axis represents the confirmation time in seconds.
The y-axis is the log of the distribution P(t, — byit6 > t),
when the three peer formation strategies are used.

Specifically, Fig. 14 illustrates the transaction confirmation
time in seconds under a low transaction intensity. The three
peer selection strategies are compared. In almost 80% of the
cases, random and mixed peer formation strategies produce

Log

1
0.100

Mixed
0.010
0001 — Random
104 — Normal
10°°
1000 2000 3000 4000 5000 Seconds
Figure 14. Transaction confirmation time, where A = 3 transactions per

minute per each node (low intensity)

transaction confirmation time less than 1654 seconds, while
the normal approach introduces twice the confirmation time.
1% of the time, mixed and random strategies give confirmation
time greater than 2000 seconds, while the normal approach
doubles this amount.

Mixed
— Random

— Normal

1000 2000 3000 4000 5000 6000 7000 Seconds

Figure 15. Transaction confirmation time, where A = 6 transactions per
minute per each node (high intensity)

Fig. 15 reports the transaction confirmation time in seconds
under a high transaction intensity. In almost 80% of the
cases, random and mixed peer formation strategies produce
transaction confirmation time less than 4000 seconds, while the
normal approach introduces 1000 seconds less confirmation
time. 1% of the time, all the strategies give confirmation time
greater than 5000 seconds.

Overall, for low transaction intensity, random peer selection
performs better than the other two approaches. However, when
we doubled the intensity, it was seen that all strategies yielded
more similar distributions. Doubling the arrival intensity also
affected the confirmation time. More transactions observe
higher confirmation time. This reflects how the P2P protocol
fails to propagate the transactions faster but spends significant
time validating and processing transactions. It also means the
P2P protocol is not good enough to handle high traffic, which
has caused a doubt if Bitcoin will be able to catch up with the
increasing user demand [24].

XI. TEMPORARY FORKING

A temporary fork occurs when two miners independently
find and publish a new block referencing the same previous
block. In such events, one block becomes an orphan block,
where all the transactions not part of the accepted block (valid
block) are pulled back to mempool for pickup again, and
the miner who generated this block earns nothing for the

effort. This affects the performance. The main cause of forking
is propagation delay: Without such delay, the notification
of a new block would be instantaneously received by all
nodes avoiding them to continue working on generating new
blocks. Since propagation delay depends also on the network
topology that synchronizes between nodes as investigated in
the previous sections, the present section is devoted to studying
how peer selection strategies may affect the fork generation
rate and how forking affects the transaction confirmation time.

A. Introduction to temporary fork

B, Block validation
Node, Node
B -®
t4 pro tf

Figure 16. Block propagation time sequence

Fig. 16 illustrates the time sequence of block propagation.
Two blocks are generated at time ¢; and to then pushed
to the neighbor nodes with some B, delay. When Nodey
receives these two blocks simultaneously, it validates both
of them. Suppose both blocks point to the same previous
hash of the block. Then the node compares the number
of confirmations and an earlier timestamp. It selects one
block based on these criteria, increases the confirmation, and
forwards it to the neighbor nodes. Similarly, Node; will
do the same operations, and this will increase the number of
confirmation numbers of the valid block that will lead the
orphan (fork) block to become less important with time. Once
all the NV nodes see these two blocks, the network ignores
the orphan block while the valid block is added to the main
chain [32]. In this way, the Bitcoin network maintains the
ledger’s consistency and security. However, this temporary
fork impacts the overall performance of the technology. The
validated transactions in the orphan block which are not part
of the valid block are sent back to mempool to wait for pick-up
again, increasing the average confirmation time. In addition,
miners who created the ignored block (orphan block) wasted
considerable resources for little gain.

1) Example: Based on our full independent Bitcoin live
node [16], we were able to see four valid forks in the main
chain from 578141 to 678853 block height. These four blocks
hold from 1200 to 2400 transactions within. The average
generation time between two blocks forming a fork is 12.5
seconds, which is much less than the 10-minute average
block generation interval. Fig. 17(a) reports the inter-block
generation time between fork and valid block in the Bitcoin
network. The x-axis represents the blocks where the fork
happened, and the y-axis indicates the inter-block generation
time in seconds between fork and valid block. As we can
see from the figure, the maximum inter-block generation time
between valid and fork block is 35 seconds, which happened
in the 675407 block height.

Fig. 17(b) shows the block inter-generation time between
valid and fork blocks observed in our testbed, under the normal

»
]

o
&

N
a S
PRI
S & o

=N
a o
N
o

o

3
3

578141 675392

Block inter-generation time in second
N
S

o

Block inter-generation time in second

=)
N
@
IS
-]

1 2 3 4 5 6
Blocks

Blocks

(a) P=38

(b) P=28

Figure 17. Fork vs. valid block example from live bitcoin full node

peer selection approach, high arrival rate, and 8 peers. The
figure illustrates that block inter-generated time greater than
40 seconds might increases the high probability of creating
a fork event. This plot is to demonstrate what we see from
Fig. 17(a), which is from live Bitcoin node, is also seen from
our setup.

B. Impact of peer selection strategy on the fork rate

The peer selection strategy impacts the performance of the
system, particularly in terms of transaction propagation and
confirmation time as discussed in the previous sections, in
this subsection, we demonstrate its impact on the occurrence
of forks.

o

o

Number of fork blocks
N w b
g 8 2
8 8 8

3
8

2
8

Transaction confirmation time in seconds

o
o

Normal Mixed Random
Peer selection strategies

(a) Number of forks

Normal Mixed Random
Peer selection strategies

(b) Confirmation time

Figure 18. Number of forks and their impact on transaction confirmation
time

Fig. 18(a) reports the number of fork block happenings
under different peer selection strategies, high arrival intensity,
and the number of peers per node is 8. As we can see from
the figure, the normal peer selection strategy brings a higher
number of temporary forks. The mixed and random-based peer
selection strategies produce lower numbers of fork blocks.

C. Impact of forking on transaction confirmation time

In the event of forking, transactions inside a fork block
return to the mempool for being picked up again. This makes
these transactions wait a longer time before confirmation.
Fig. 18(b) reports the average transaction confirmation time
seen by transactions inside the fork block. When the network
ignores the fork block, all the transactions that are not part
of the valid block are returned back to the mempool for
pickup. The main issue with this is that the fork block may
wait for more than one block to be ignored by the network,

depending on the length of the pruned branch, which leads to
the transaction frozen and waiting for a longer time. Fig. 18(b)
also demonstrates this phenomenon. As we can see from the
figure, the normal peer selection strategy produces a high
number of fork blocks, which leads to transactions waiting
longer than 6000 seconds.

Similarly, the mixed peer selection strategy produces a
closer number of fork blocks to the normal peer selection
approach, and the impact on the transaction confirmation time
is more than 5500 seconds. However, the random peer selec-
tion strategy performs better than the other two approaches
regarding the number of forks and confirmation time, with a
transaction confirmation time of fewer than 3670 seconds.

D. Valid vs fork block overlap

When two blocks arrive within a shorter time difference
window having the same hash pointing to the previous block,
we call it a temporary fork. When this event happens, one of
the blocks will become part of the chain, and the other will
become an orphan block. Since the comparison is based on the
previous block’s hash, we further analyze the extent to which
valid and fork blocks share the same transactions. Table II
shows the overlap in percentage between the valid and fork
blocks while considering different peer selection strategies.

Table IT
OVERLAP BETWEEN VALID AND FORK BLOCK

Peer selection strategies | Overlap valid vs fork block ((u, o))
Normal (88%, 6%)
Mixed (90%, 5%)
Random (90%, 3%)

The mixed and normal peer selection strategies produce four
to six fork blocks, where 90% of the transactions are the same,
but the rest 10% are unique transactions which will be forced
to return to the backlog for more waiting time. Similarly, for
the random-based strategy, the valid and fork blocks share
90% of the transactions, but the remaining wait more time to
be added to the chain.

Overall, the peer selection strategy impacts the number of
fork occurrences, mainly due to that different strategies give
different propagation delays. This section has also showed that
fork occurrence can affect the performance significantly. For
instance, some of the transactions have had to wait more than
6600 seconds, which is 3000 more seconds of waiting time.
This means some transactions have had to wait, on average,
11 valid block generation times.

XII. DISCUSSION

1) Proposed approaches: The P2P formation strategies are
essential in propagating information between participating
nodes. In this work, we showed that peer selection strategies
affect the overall performance of Bitcoin. There have been
some research works proposing schemes and methods to
reduce the propagation delay in Bitcoin. These proposals focus
on either introducing a compact block [23][27] or having some
relay nodes [33][34] in the middle to provide a pipeline to push

Seconds

350

250

Py No random peers

0 2 4 6
(a) Propagation time
Seconds
3600
3400
3200
3000
° Py " Py s No random peers

(b) Confirmation time

Figure 19. Average transaction propagation and confirmation times : number
of peers is eight with high (6 t/min) intensity generation rate A.

more updates to the other nodes. The compact block may intro-
duce better performance in propagating the information based
on the available bandwidth between participating nodes [27].
However, this method focuses on how to propagate blocks in
the network than how to propagate transactions. Based on our
observation, nodes may have a different number of arrivals at
the backlog waiting. The compact block method has to push
more than half of the block content in such cases.

Using relay nodes to reduce propagation delay is another
method proposed by researchers. This method relies on the
relay nodes having a higher number of peer nodes from the
network, enabling pushing more updates in the network. The
main challenge in this approach is that the relay nodes become
a security bridge or vulnerability point. Attacking these nodes
or taking control gives extra incentive to earn more or disrupt
the overall activity in the network.

The best strategy to improve the propagation time is perhaps
to improve the communication protocol. The protocol spends
significant time validating and updating the same transaction.
Furthermore, reducing the peer to peer network diameter by
having peers other than the nearest may improve. The random
strategies investigated in this paper are simple examples. For
instance, Fig. 19 shows a specific use case, where the impact
of adding more random peers on the performance is provided.
The x-axis shows the number of random peers selected,
and the y-axis indicates the propagation and confirmation
times. Specifically, Fig. 19(a) and Fig. 19(b) show that adding
random peers generally improves transaction propagation and
confirmation times. In particular, Fig. 19(a) shows that adding
one random peer significantly improves the propagation delay
with a steep decline. However, this is not comparably visible in
confirmation time (see Fig. 19(b)). One reason, as also implied
by Fig. 19(a) and Fig. 19(b), is that the Bitcoin P2P protocol
spends significant time in validating transactions, e.g.requiring
six-block deep in the blockchain to confirm the transactions
in the block, dominating the confirmation time.

2) Transaction propagation and confirmation times: The
transaction propagation and confirmation times show some
values higher than expected. This is because of the impact of
the P2P formation strategies and P2P legacy relaying protocol.
Some of the transactions have to return to mempool because of
fork occurrence. For instance, the normal approach produces
more forks than the other two approaches. In such cases, the
transactions inside the fork block return to the backlog for
pickup, of which some will be added to the new recent block,
but others may wait for future block generation events. In
addition to this, the processing capacity of the Raspberry Pi
devices may contribute to some extent. Although we analyzed
to observe the total usage, the Bitcoin, on average, in each
device uses 114% CPU and 16% RAM. It is worth highlighting
that the Raspberry Pi used has 64 bit quad-core Cortex-AS53
and Cortex-A72, which is good enough to handle the traffic
generated from Bitcoin and background processing.

3) Impact of temporary fork: The number of fork event
occurrences has been reduced recently with the new Bitcoin
core release [32]. However, the Bitcoin network is still not
tested if it can handle high loads. Based on the current state
where 3.3 to 7.2 transactions are processed per second, having
arrivals at the mempool from 1700-2600 transactions waiting
for pickup [3, 6, 12, 13]. The P2P network may handle
processing and propagating updates with some acceptable
performance index. However, when we pushed the load to
5500 to 6000 transactions at the backlog, the performance
reduced significantly from propagating transactions in 10 sec-
onds into 250-350 seconds. It also impacted the number of fork
block occurrences in the network, making some transactions
wait more than the expected confirmation time. For instance,
for the normal peer formation strategy, the number of prude
branches is higher because each node validates new arrivals
before propagating to the neighbor nodes. In such cases, more
delays happen in the network than having a few random
peer links. This shows that the P2P network protocol requires
improvement and research to improve its capacity.

XIII. CONCLUSION

In this paper, we analyzed the impact of peer formation
strategies, arrival rate, and the number of peers on the overall
performance of the technology. Specifically, we developed a
testbed to mimic the Bitcoin P2P network, which enabled
us to conduct a comprehensive investigation and gain deep
insight into the impact of the underlying P2P network on
the performance. The analysis shows that the transaction
validation and propagation can take longer than expected,
even with a low arrival rate and a high number of connected
nodes. In addition, while the peer formation strategy currently
adopted by the Bitcoin community is highly reliable in finding
peers with low latency response, it does not give the best
system performance in terms of propagation and confirmation
times and fork rate. Considering a few random nodes in peer
selection can improve the performance. These results indicate
that the normal peer formation strategy alone may not bring
optimal solutions. In addition, these results also imply that

improving the P2P communication protocol, including peer
selection and the P2P network topology, has a great potential in
improving the performance, including transaction confirmation
time.

REFERENCES

[1] Lina Alsahan, Noureddine Lasla, and Mohamed Abdallah. “Lo-
cal Bitcoin Network Simulator for Performance Evaluation using
Lightweight Virtualization”. In: 2020 IEEE International Confer-
ence on Informatics, 1oT, and Enabling Technologies (ICIloT). 2020,
pp. 355-360.

[2] Ryohei Banno and Kazuyuki Shudo. “Simulating a Blockchain Net-
work with SimBlock”. In: 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). 2019, pp. 3-4.

[3] Bitaps. Today bitcoin blocks. URL: https : // bitaps . com / blocks.
(accessed: 01.07.2020).

[4] Bitcoin. Bitcoin Core release 0.21.0. URL: https://bitcoincore.org/en/
releases/0.21.0/. (accessed: 01.07.2020).

[5] Bitcoin. Bitcoin developer-guide. URL: https://btcinformation.org/en/
developer-guidet#tpeer-discovery. (accessed: 01.07.2020).

[6] Blockstream.info. Recent Transactions and blocks. URL: https://
blockstream.info/tx/recent. (accessed: 01.07.2020).

[7] Christian Decker and Roger Wattenhofer. “Information propagation in
the Bitcoin network”. In: IEEE P2P 2013 Proceedings. 2013, pp. 1-
10.

[8] Varun Deshpande, Hakim Badis, and Laurent George. “BTCmap:
Mapping Bitcoin Peer-to-Peer Network Topology”. In: 2018
IFIP/IEEE International Conference on Performance Evaluation and
Modeling in Wired and Wireless Networks (PEMWN). 2018, pp. 1-6.

[9] Joan Antoni Donet Donet, Cristina Pérez-Sola, and Jordi Herrera-
Joancomarti. “The Bitcoin P2P Network™. In: Financial Cryptography
and Data Security. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 87-102.

[10] Jean-Philippe Eisenbarth, Thibault Cholez, and Olivier Perrin. “A
Comprehensive Study of the Bitcoin P2P Network™. In: 2021 3rd
Conference on Blockchain Research Applications for Innovative Net-
works and Services (BRAINS). 2021, pp. 105-112.

[11] Meryam Essaid, Sejin Park, and Hongteak Ju. “Visualising Bitcoin’s
Dynamic P2P Network Topoogy and Performance”. In: 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC).
2019, pp. 141-145.

[12] Explorer. Blockchain Explorer. URL: https://www.blockchain.com/
explorer. (accessed: 01.07.2020).

[13] Btc Block Explorere. Block Explorer. URL: https : // btc . com/.
(accessed: 01.07.2020).

[14] Muntadher Fadhil, Gareth Owen, and Mo Adda. “Bitcoin Network
Measurements for Simulation Validation and Parameterisation”. In:
May 2016.

[15] Muntadher Fadhil, Gareth Owenson, and Mo Adda. “Locality based
approach to improve propagation delay on the Bitcoin peer-to-peer
network™. In: 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM). 2017, pp. 556-559.

[16] Befekadu G. Gebraselase, Bjarne E. Helvik, and Yuming Jiang.
“An Analysis of Transaction Handling in Bitcoin”. In: 2021 IEEE
International Conference on Smart Data Services (SMDS). 2021,
pp. 162-172.

[17] Befekadu G. Gebraselase, Bjarne E. Helvik, and Yuming Jiang.
“Transaction Characteristics of Bitcoin”. In: 2021 IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM). 2021,
pp. 544-550.

[18] Johannes Gobel et al. “Bitcoin Blockchain Dynamics: The Selfish-
Mine Strategy in the Presence of Propagation Delay”. In: Performance
Evaluation 104 (May 2015).

[19] Stephen Hemminger et al. “Network emulation with NetEm”. In:
Linux conf au. Vol. 5. Citeseer. 2005, p. 2005.

[20] Muhammad Imran, Abas Md Said, and Halabi Hasbullah. “A survey
of simulators, emulators and testbeds for wireless sensor networks”.
In: 2010 International Symposium on Information Technology. Vol. 2.
2010, pp. 897-902.

[21] Audrius Jurgelionis et al. “An Empirical Study of NetEm Network
Emulation Functionalities”. In: 2011 Proceedings of 20th Interna-
tional Conference on Computer Communications and Networks (IC-
CCN). 2011, pp. 1-6.

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

[36]

[37]

(38]

(391

[40]

[41]

(42]

(43]

Hidehiro Kanemitsu and Hidenori Nakazato. “KadRTT: Routing with
network proximity and uniform ID arrangement in Kademlia”. In:
2021 IFIP Networking Conference (IFIP Networking). 2021, pp. 1-6.
Aeri Kim et al. “Analysis of Compact Block Propagation Delay in
Bitcoin Network”. In: 2021 22nd Asia-Pacific Network Operations
and Management Symposium (APNOMS). 2021, pp. 313-318.
Quan-Lin Li, Jing-Yu Ma, and Yan-Xia Chang. “Blockchain Queue
Theory”. In: Computational Data and Social Networks. Ed. by
Xuemin Chen et al. Cham: Springer International Publishing, 2018,
pp. 25-40.

Andrew K. Miller et al. “Discovering Bitcoin > s Public Topology and
Influential Nodes”. In: 2015.

D.L. Mills. “Internet time synchronization: the network time pro-
tocol”. In: IEEE Transactions on Communications 39.10 (1991),
pp. 1482-1493.

Jelena Misi¢, Vojislav Misic, and Xiaolin Chang. “On the Benefits of
Compact Blocks in Bitcoin”. In: Feb. 2020.

Jelena Misi¢ et al. “Modeling of Bitcoin’s Blockchain Delivery Net-
work™. In: IEEE Transactions on Network Science and Engineering
7.3 (2020), pp. 1368-1381. poI: 10.1109/TNSE.2019.2928716.
Saeideh G. Motlagh, Jelena Misi¢, and Vojislav B. Misi¢. “Impact
of Node Churn in the Bitcoin Network™. In: IEEE Transactions on
Network Science and Engineering 7.3 (2020), pp. 2104-2113.
Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”.
In: Decentralized Business Review (2008), p. 21260.

Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein. “Timing
Analysis for Inferring the Topology of the Bitcoin Peer-to-Peer
Network™. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence
Computing, Advanced and Trusted Computing, Scalable Computing
and Communications, Cloud and Big Data Computing, Internet of
People, and Smart World Congress. 2016, pp. 358-367.

Till Neudecker and Hannes Hartenstein. “Short Paper: An Empirical
Analysis of Blockchain Forks in Bitcoin”. In: Sept. 2019, pp. 84-92.
Kai Otsuki, Ryohei Banno, and Kazuyuki Shudo. “Quantitatively
Analyzing Relay Networks in Bitcoin”. In: 2020 IEEE International
Conference on Blockchain (Blockchain). 2020, pp. 214-220.

Kai Otsuki et al. “Effects of a Simple Relay Network on the Bitcoin
Network”. In: Aug. 2019, pp. 41-46.

N D Patel, B M Mehtre, and Rajeev Wankar. “Simulators, Emulators,
and Test-beds for Internet of Things: A Comparison”. In: 2019 Third
International conference on I-SMAC (10T in Social, Mobile, Analytics
and Cloud) (I-SMAC). 2019, pp. 139-145.

Carsten Rieck. “An Approach to Primary NTP by Using the LINUX
Kernel”. In: 2007 IEEE International Frequency Control Symposium
Joint with the 21st European Frequency and Time Forum. 2007,
pp. 873-876.

Hirotsugu Seike, Yasukazu Aoki, and Noboru Koshizuka. “Fork Rate-
Based Analysis of the Longest Chain Growth Time Interval of a PoW
Blockchain”. In: 2019 IEEE International Conference on Blockchain
(Blockchain). 2019, pp. 253-260.

Yahya Shahsavari, Kaiwen Zhang, and Chamseddine Talhi. “Perfor-
mance Modeling and Analysis of the Bitcoin Inventory Protocol”. In:
Apr. 2019. por: 10.1109/DAPPCON.2019.00019.

Yahya Shahsavari, Kaiwen Zhang, and Chamseddine Talhi. “A The-
oretical Model for Block Propagation Analysis in Bitcoin Network™.
In: IEEE Transactions on Engineering Management (2020), pp. 1-18.
Jun.Kawahara Shoji.Kasahara. “Effect of Bitcoin fee on transaction-
confirmation process”. In: Journal of Industrial and Management
Optimization 15.1547 (2019), p. 365.

Amool Sudhan and Manisha J Nene. “Peer Selection Techniques for
Enhanced Transaction Propagation in Bitcoin Peer-to-Peer Network™.
In: 2018 Second International Conference on Intelligent Computing
and Control Systems (ICICCS). 2018, pp. 679-684.

Taotao Wang et al. “Ethna: Analyzing the Underlying Peer-to-Peer
Network of Ethereum Blockchain”. In: IEEE Transactions on Network
Science and Engineering 8.3 (2021), pp. 2131-2146.

What is VPP? https://wiki.fd.io/view/VPP/What_is_VPP?. Accessed:
2021-06-10.

Befekadu Gezaheng Gebraselase received a B.Sc.
degree in computer science from Addis Ababa Uni-
versity, Ethiopia, in 2012, an M.Sc. degree in com-
puter science from the University of Milan, Italy, in
2018, and currently pursuing a Ph.D. degree in com-
puter science and technology from the Norwegian
University of Science and Technology, Trondheim,
Norway, since 2018. From 2012 to 2016, he worked
with Abyssinia bank, Ethiopia, as a Senior network
engineer. He has published seven scientific con-
ferences and journal papers. His research interests
include Blockchains, vehicular network, IoT, fog computing, UAV network,
10T, and 5G/6G wireless network, and machine learning.

Bjarne Emil Helvik was born in 1952. He received
the Siv.ing. degree (M.Sc. in technology) and the
Dr.Techn. degree from the Norwegian Institute of
Technology (NTH), Trondheim, Norway, in 1975
and 1982, respectively. Since 1997, he has been
a Professor with the Department of Information
Security and Communication Technology, Norwe-
gian University of Science and Technology (NTNU).
From 2009 to 2017, he was the Vice Dean with
responsibility for research with the Faculty of In-
formation Technology and Electrical Engineering,
NTNU, where he was a Principal Investigator with the Norwegian Centre of
Excellence Q2S, Centre for Quantifiable Quality of Service in Communication
Systems from 2003 to 2012. He has previously held various positions with
ELAB and SINTEF Telecom and Informatics. From 1988 to 1997, he was
appointed as an Adjunct Professor with the Department of Computer Engineer-
ing and Telematics, NTH. His field of interests includes QoS, dependability
modeling, measurements, analysis and simulation, fault-tolerant computing
systems and survivable networks, as well as related system architectural issues.
His current research focus is on ensuring dependability in services provided
by multidomain, virtualized ICT systems.

Yuming Jiang (Senior Member, IEEE) received the
B.Sc. degree from Peking University and the Ph.D.
degree from the National University of Singapore.
From 1996 to 1997, he was with Motorola, Beijing,
China, and the Institute for Infocomm Research
(I2R), Singapore, from 2001 to 2003. He has been
a Professor with the Norwegian University of Sci-
ence and Technology, Trondheim, Norway, since
2005. He has authored the book entitled Stochastic
Network Calculus. His research interests are the
provision, analysis, and management of quality of
service guarantees. He was the Co-Chair of IEEE Globecom 2005—Gen-
eral Conference Symposium, the TPC Co-Chair of 67th IEEE Vehicular
Technology Conference (VTC) 2008, the General Chair of IFIP Networking
2014 Conference, the Chair of the 2018 International Workshop on Network
Calculus and Applications, and the TPC Co-Chair of the 32nd International
Teletraffic Congress (ITC32) in 2020.

& 4

