Markus Rekdal

Investigating the Performance
Scalability of the Vortex GPU

Masteroppgave i Datateknologi
Rettleiar: Magnus Jahre

Juni 2022

2
4
=
P

=
9]
2
(%]
—
9]
=
c
5
)
00
Q
o
T
X
%]
=
S
2
©
5
~
0
c
X
]
i)
(%]
)
)
_
[S]
=z

X X
X X
&
U €
= O
© 0
S e
£
T &
0_0._

oo
.;02
og

X
ee
< ©
[
7 ©
s
.g“g
£
“ 2
(o=
= n
£ c
==
'~9
—
(]
=
=}
X
(43
(NN

@ NTNU

Kunnskap for ei betre verd

Markus Rekdal

Investigating the Performance
Scalability of the Vortex GPU

Masteroppgave i Datateknologi
Rettleiar: Magnus Jahre
Juni 2022

Noregs teknisk-naturvitskaplege universitet

Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk

@ NTNU

Kunnskap for ei betre verd

Assignment Text

The objective of this master thesis is to work towards enabling an FPGA-accelerated
evaluation infrastructure for Graphics Processing Units (GPUs) at NTNU’s Com-
puter Architecture Lab (CAL). We will use the Vortex soft GPU which was presen-
ted at MICRO’21 as our starting point. The main task is to get a collection of
benchmarks to run on Vortex, evaluate their performance, and identify any per-
formance bottlenecks. The candidate should then analyze one or more bottlenecks
in depth and provide approaches for overcoming them. If time permits, the can-
didate should explore how Vortex can be extended to enable simulating systems
with different amounts of memory bandwidth than what is available on the FPGA
platform Vortex is run on.

iii

Abstract

Software simulated computer architecture evaluation is slow, especially for large
multi-core architectures. Using FPGA-accelerated evaluation one can bridge the
gap between simulation and creating a prototype, enabling significantly more ef-
ficient evaluation than the software simulated alternative. To be able to evaluate
multiple architectures well, one requires a good baseline, an example that per-
forms well. Vortex [1], a RISC-V based software GPU initially seemed like a good
candidate for a baseline for GPU evaluation.

In this thesis we will continue upon the work done in my project thesis [2]
and take a closer look at Vortex. We will perform a thorough analysis of Vortex’s
benchmarks to figure out how to squeeze the most power out of it. We will attempt
to reconfigure Vortex to give us better performance and take a closer look at why
some benchmarks seem to have problems with performance scaling.

We found that Vortex’s scheduler is at times unable to properly divide its work
among the separate cores. This issue seems to be at least partially caused by the
limitation of the compute kernel size to one. Adjusting the kernel size is shown to
give a substantial boost in performance for one of the benchmarks. This and other
issues that were discovered means that at the time of writing Vortex is perhaps
not the best candidate for a baseline GPU.

Samandrag

Programvaresimulert datamaskinarkitektur-evaluering er treigt, spesielt for store
fleir-kjerne arkitekturar. Ved & bruke FPGA-akselerert evaluering kan ein minske
avstanden mellom simulering og prototyping, slik at ein kan oppna mykje meir
effektiv evaluering enn med det programvaresimulerte alternativet. For a kunne
evaluere fleire arkitekturar pa ein god méte, trenger ein ein kjent referansearkitek-
tur, ein som ein veit korleis den kjem til & oppfore seg. Vortex [1], ein RISC-V basert
programvare GPU ség innleiingsvis ut som ein god referansearkitektur for vidare
GPU-evaluering.

I denne oppgéva skal vi fortsette pa arbeidet gjort i mi prosjektoppgave [2]
og ta ein neerare kikk pa Vortex [1]. Vi skal gjennomfere ei ngye evaluering av
Vortex sine referanseprogram for & finne ut korleis ein kan skvise ut betre yting
fra Vortex. Vi vil prove & rekonfigurere Vortex til & gi oss betre yting og ta ein
naerare kikk pa kvifor enkelte av referanseprogramma ser ut til & ha problem med
a skalere med arkitekturen.

Vi oppdaga at Vortex sin skedulerer av og til har problem med a dele arbeidet
sitt mellom dei ulike kjernene. Dette problemet ser ut til & vere i allefall delvis
forarsaka av at storleiken pa utrekningskjernane er satt til ein. Vi viser at & justere
storleiken pé desse utrekningskjernane gir ei klar auke i ytinga. Dette og andre
problem som blei oppdaga undervegs tydar pa at Vortex kanskje ikkje er den mest
eigna referanse-GPUen for vidare datamaskinarkitektur-evaluering.

vii

Contents

Assignment Text. e iii
Abstract e e \
Samandrag vii
ContentS ot e e e e e e e e e e e ix
Figures e xi
Tables e xiii
Acronyms e e XV
Glossary e xvii
1 Introduction e 1
1.1 MOtivation v v vt e e e e e e e e e e e e e e e e e e 1

1.2 Assignment Interpretationt 2

1.3 Contributions 2
1.4 ThesisOutline neinne.. 2

2 Background 5
2.1 GPUS . . .o 5
2.2 Soft GPUS ot e 5
2.3 Vortex RISCVGPGPU 6
2.3.1 Vortex Architecture 7

2.3.2 Vortex Software Stack 8

3 Experimental Setup 11
3.1 Vortex Configuration, 11

3.2 IDUNCIUStET v ot e 12
3.3 Performance MetriCsS v v v vt vt it e et e e et e e 13

4 Results. 15
4.1 Baseline Performance.t . 15
4.2 Configuring Vortexo v vt ittt 17
4.2.1 Adjusting Input Size 17

4.2.2 CluSteringo vttt e 21

4.2.3 Memory Configurations 22

4.3 FixingBenchmarks 22
4.3.1 AnAttemptatFixingNearn 22

4.3.2 FixingVecadd 24

5 Conclusion and FurtherWork 29
5.1 Conclusion e 29

ix

X M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

52 Future Work e 29
Bibliography 31

Figures

2.1 Asimple GPU architecture. 5
2.2 Vortex Architecture (Reproduced from [1]). 7
2.3 Vortex Binary generation stepst 9
2.4 Vortex Driver stack (Based on a figure from [1])............. 9
4.1 Baseline IPC for various benchmarks on current Vortex. 16
4.2 IPC for benchmarks on Vortex from MICRO’21 17
4.3 1IPC for various input sizes forvecadd 18
4.4 1PC for various input sizes for sgemm 19
4.5 1IPC for various input sizes forpsort, 19
4.6 1IPC for various input sizes for sfilter. 20
4.7 1IPC for various input sizes for saxpy 21
4.8 1IPC for various core StruCtureso v v ewun. .. 22
4.9 IPC for various memory configurations 23
4.10 Comparison between Vortex’s nearn and a fixed version 23
4.11 IPC for various input sizes in vecadd from MICRO21 25
4.12 Performance for vecadd for various core configurations 26

4.13 Performance for vecadd with varying input sizes and kernel sizes . 26

Xi

Tables

3.1 Default Simulated Vortex Architecture . . .

3.2 Overview of benchmarks used in this thesis

xiii

Acronyms

AFU Accelerator Functional Unit. 9

AMD Advanced Micro Devices, Inc.. 6
CPU Central Processing Unit. 1, 5, 6

DDR Double Data Rate. 8, 22

DRAM Dynamic Random Access Memory. 8
FPGA Field Programmable Gate Array. v, vii, 1, 2, 6

GDDR Graphical Double Data Rate. 22
GPGPU General Purpose Graphics Processing Unit. 6, 11
GPR General Purpose Register. 8

GPU Graphics Processing Unit. v, vii, xi, 1-3, 5, 6, 29

IPC Instructions per Cycle. xi, 13, 15-25, 29

ISA Instruction Set Architecture. 6, 8

NoC Network on Chip. 11

NOP No Operation. 29

OpenCL Open Computing Language. 6-9, 11, 24, 25

OpenGL Open Graphics Library. 7
POCL Portable Computing Language. 8

RAM Random Access Memory. 2, 12, 22

RISC-V Reduced Instruction Set Computer, Five Stage. v, vii, 6, 11

XV

xvi M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

RTL Register-Transfer Level. 9

SIMD Single Instruction Multiple Data. 1, 5

SIMT Single Instruction Multiple Thread. 6, 11

VM Virtual Machine. 7

Glossary

nearn A Vortex benchmark that calculates the nearest neighbours in a Cartesian
coordinate system. xi, 12, 15-17, 21-25

psort A Vortex benchmark that sorts a list. xi, 12, 15, 16, 18-20

saxpy A Vortex benchmark that multiplies and adds a constant to each element
in a vector. xi, 12, 16, 21, 22, 24

sfilter A Vortex benchmark that applies a 3x3 kernel to a matrix. xi, 12, 15, 16,
20

sgemm A Vortex benchmark that multiplies two matrices. xi, 12, 15, 18-20

vecadd A Vortex benchmark that adds two vectors. xi, 12, 15-18, 22, 24-26

Xvii

Chapter 1

Introduction

1.1 Motivation

With the end of Dennard Scaling and the looming end of Moore’s law, increased
parallelism and higher core counts are now the most promising venues for achiev-
ing higher computing power. For this purpose we have accelerators, compute units
that specialise in one specific domain of computing. The most common type of ac-
celerators by far are GPUs. A GPU is a SIMD architecture that is designed to exploit
the data level parallelism that is typical in the graphical world. GPUs are also often
used for general purpose programming for large parallelised workloads.

GPUs achieve this by having drastically simpler compute units than CPUs such
that they are both smaller in physical size as well as cheaper to produce. This
allows for a core count potentially orders of magnitude larger than for a CPU
allowing a drastically increased computational bandwidth.

Given a particular computer system, one will of course want to evaluate how
efficient this system is and compare it to other similar systems. Simulating the
systems on the same simulation interface will allow one to efficiently compare
them against eachother. Simulation also allows for a large variety of abstraction
levels, from cycle-accurate to more abstract models such as the OneIPC model [3].

Prototyping is also an option when one has to evaluate large workloads, as sim-
ulation tends to be quite slow, particularly for highly parallel workloads. However,
creating a prototype is both far more time consuming and much more expensive.

FPGA-accelerated evaluation allows one to bridge the gap between a simula-
tion and a physical prototype. It will typically be cheaper than creating a phys-
ical prototype, but will still allow for far greater speed than a simulation of the
computer system in software. This means that evaluating a large heavily paral-
lelised many-core workload efficiently can be both attainable and cheap. With
cloud based FPGA-accelerated simulation interfaces such as Firesim [4], this can
be scaled up to systems that needs several thousand cores.

In the project thesis [2] that precedes this thesis we analysed which of several
software GPUs were the most suited for integration to a FPGA. We concluded that
the most likely candidates were MIAOW [5] and Vortex [1]. MIAOW turned out

2 M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

to have issues regarding the use of licensed software that we were not able to
attain. A move away from this to something open source, such as Verilator [6],
would have required a large rebuild of the entire GPU and was deemed to be out
of scope for this project. This left Vortex as the GPU that appeared most suitable
for further analysis.

Vortex was thus deemed to be the sole GPU of those analysed that was feas-
ible to integrate into a FPGA. The project then continued with a analysis of the
working benchmarks included in vortex. From this analysis we could categorise
the benchmarks by behaviour when changing the amount of cores and input sizes.
In this thesis we will first do a more thorough behaviour analysis of the available
benchmarks including what happens when the core structure is changed as well
as the type and speed of RAM.

1.2 Assignment Interpretation

In this thesis we will continue on the work done in my project thesis [2]. The goal
is to analyse what would make a GPU suitable for integration into a FPGA. We can
define the following tasks based on our interpretation of the problem description:

T1 Get a collection of benchmarks to run on Vortex and analyse their behaviour.

T2 Identify and attempt to overcome at least one performance bottleneck in
Vortex.

T3 Explore how Vortex can be extended to use different amounts of memory
bandwidth than what is available on the FPGA platform Vortex is run on.

It was however decided early on that actually getting Vortex to run on a FPGA
would be out of scope for this thesis, which meant that task T3 was no longer
relevant.

1.3 Contributions

In this thesis we have made the following contributions:

C1 An analysis of Vortex’s working benchmarks and their performance. We
found a large discrepancy in performance between the version of Vortex
used at MICRO’21 and the updated version released on GitHub.

C2 We identified the kernel size as a major performance bottleneck for some
of the applications and showed that a substantial performance increase can
be attained by adjusting it.

These two contributions directly correspond to tasks T1 and T2 respectively.

1.4 Thesis Outline

The outline for the rest of this thesis is as follows:

Chapter 1: Introduction 3

e Chapter 2 This chapter contains a short summary of other GPUs that could
have been chosen for this project instead of Vortex.

e Chapter 3 This chapter contains an explanation of how Vortex was set up to
allow the execution of the benchmarks.

e Chapter 4 This chapter contains a analysis of Vortex’s benchmarks and how
they perform, as well as a further analysis into some avenues for attaining
a performance gain.

e Chapter 5 This chapter contains a conclusion as well as some ideas for fur-
ther work that could have been included in this thesis if not for a lack of
time.

Chapter 2

Background

2.1 GPUs

GPUs differ from CPUs mainly in their highly parallel architecture that allows a
SIMD execution of large data sets. Their main commercial use is for graphical
processing, as the SIMD execution is well suited for image and video rendering.
However, GPUs are also useful for highly parallel workloads in general.

A simple GPU architecture is shown in Figure 2.1. A GPU differs from a CPU
by having a significantly larger amount of much simpler cores. This allows for
a highly parallel architecture enabling SIMD execution. GPUs trade latency for
throughput, meaning that while computing a single instruction may take longer
than on a CPU, computing a large batch of data will be faster on a GPU.

In this thesis we are mainly concerned with soft GPUs, that is GPUs that are
implemented in software. While typically slower and less efficient than hardware
implemented GPUs, soft GPUs are still useful as they are far easier to modify.

2.2 Soft GPUs

Here follows a short summary of some software GPUs that potentially could have
been used instead of Vortex [1] in this thesis. Most of these were evaluated on
whether they could be a candidate for this thesis in my project thesis [2]. For my

Network Last Level
- Chip -

Figure 2.1: A simple GPU architecture.

)

Core < L1 Cache |«

Y
A\ 4

L1 Cache |«

Y
Y

Core <

oo

~—

6 M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

project thesis the main factors to consider were whether they had available source
code, such that they could easier be modified to suit our needs, whether they were
fairly modern or not, and whether they used a custom software stack. When this
evaluation was performed, the only GPU known to fit all three criteria was Vortex.

MIAOW [5] is an open source implementation of the AMD Southern Islands
GPGPU ISA. It was made by the Vertical Research Group at the University of
Wisconsin-Madison. It is capable of running OpenCL-based applications, and would
thus be capable of using Rodinia [7] based benchmarks just like Vortex. Unfortu-
nately MIAOW was too dependent on a closed source dependency that required
licensing we were not able to get. For that reason it was deemed unsuitable for
my project thesis.

Flexigrip [8, 9] is a software GPU that implements the NVIDIA G80 archi-
tecture. At the time of writing my project thesis it had already been abandoned
for several years. It also used its own custom software stack, which would have
made running custom applications on it substantially more cumbersome. For that
reason it was deemed to be unsuitable for further use in my project thesis.

The Pixilica RISC-V GPU [10] is a GPU based on the vector extensions for the
RISC-V architecture. It attempts to stay fairly close to a traditional RISC-V CPU
and thus manages to maintain a fairly simple architecture. At the time of writing
my project thesis Pixilica was still very early in its development, and as such no
source code was publicly available.

Harmonica [11] is a configurable multithreaded SIMT processor core design.
During the writing of my project thesis I was of the belief that the source code for
Harmonica had been taken off the internet. However, the authors of Harmonica
had simply moved it to a new repository with the release of the next major version,
Harmonica2.

NyuziRaster [12] is a software GPU with rendering support. It is still being
actively maintained despite being quite old even at the time of writing my project
thesis. However, due to the fact that NyuziRaster had opted for using a custom
software stack it was deemed to be unsuitable for use in my project thesis.

Simty [13] implements a specialised RISC-V architecture which supports SIMT
execution. However, only the microarchitecture was implemented as a proof of
concept. It also does not support any software stack.

FGPU [14] is a GPU-like architecture intended for use on FPGAs. While it
originally used a custom software stack, it was updated to be able to run OpenCL
applications not long before I wrote my project thesis. Unfortunately this was not
known at the time, as it would have made FGPU a viable candidate for further
evaluation.

2.3 Vortex RISC-V GPGPU

Vortex [1] is a RISC-V based general purpose GPU made by a team at the Georgia
Institute of Technology. At the time of writing, Vortex was still in active develop-
ment having originally been published for the MICRO 2021 conference. It supports

Chapter 2: Background 7

tmc | split | wspawn | barrier

Fetch ":l Decode ° / Issue Execute S Commit

branch | join | warp-ctrl 0]t1 t31
P 0
'

; r1

Warp Table
tme RS mask

r31

f \
; h
1 h
I ' i
1 [!
1 b] i
1] i
1 p ' i
1
: o .]
' F b Writeback(f *
1 PoOM | | Warp b5 f0ache | iy Decoder |l 11 || GPRs :
' Stack Scheduler Sl . ; p b
{ h
: T H B :
\))
d |
] active warps ! ' wjinstrs | [\ | Scoreboard i
1 ! l
! pe [mask stalled warps i \ 1 ;
: ¥ . 1 !
' visible warps —]] : i
nstruction | i I
] barriers Cache |1 : 1 IBuffer !
\ \ \
A} =

' DMA Ctrl o
E Vortex E L3 :
Processor :Cachel
T Dewce Crl ene-
‘\I\ZPGA | CSRsCtl | Processor Cluster

Figure 2.2: Vortex Architecture (Reproduced from [1]).

Unit

‘ Host ' pcie
cPU

FPGA Interface

executing both OpenCL based applications and OpenGL based applications.

The setup used for Vortex is branched out from the upstream version of Vortex
published on GitHub' on the 10th of January 2022. This downstream version can
be found in the ntnu_main branch of the vortex-ntnu repository under the EECS-
NTNU organisation on GitHub?. At the time of writing, the most recent version of
Vortex released on GitHub was unable to build properly, which is why a slightly
older version was used instead.

In my project thesis [2], the version of Vortex used was the one released for
the Micro 2021 conference. This was a precompiled version packaged in a Vagrant
Box VM. This version was used for my project thesis as the most recently published
source code published at the time did not build correctly.

This version was not ideal as it was extremely unstable. Even the most minute
of changes would break the precompiled builds, rendering it useless for a deeper
analysis. For this reason a more recent build was used for this thesis, as a working
build was now available.

2.3.1 Vortex Architecture

A detailed view of the Vortex architecture is shown in Figure 2.2. The Vortex mi-
croarchitecture implements the standard five stage in-order pipeline for each core

'https://github.com/vortexgpgpu/vortex
Zhttps://github.com/EECS-NTNU/vortex-ntnu/t ree/ntnu_main

https://github.com/vortexgpgpu/vortex
https://github.com/EECS-NTNU/vortex-ntnu/tree/ntnu_main

8 M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

with some modifications. Each core has its own 16KB L1 data cache and 16KB
shared memory. Several cores can then be joined into a cluster, which may have
its own optional L2 cache. Finally, all clusters may share a common L3 cache, if
this is enabled.

When Vortex is being simulated it will use Ramulator [15], a cycle-accurate
DRAM simulator, to simulate its DRAM. This allows for a large amount of config-
urability in the DRAM setup. Ramulator allows the user to change the memory
type, capacity, speed, layout and more. By default, Vortex uses 2400MHz DDR4
with 8 lanes of 4Gb for a total of 4GB of memory. This DRAM is shared between
all cores in Vortex, independently of the how the cores are organised into clusters.

The Vortex microarchitecture also implements what they call a hardware wave-
front scheduler. The team behind Vortex has not entirely decided whether it should
name its schedulable units a wavefront or a warp. The Vortex team has mainly
used the term wavefront in their papers [1] and the term warp in Vortex’s docu-
mentation. For consistency we will use the term warp in this thesis.

The warp scheduler contains the program counter, thread mask register and
an immediate post-dominator (IPDOM) stack. The purpose of the warp scheduler
is to decide what should be fetched from the instruction cache. It has a set of warp
masks to choose the next warp as well as a warp table that has information about
the warps. The scheduler uses four thread masks to gain information about the
warps. The active and stalled warp masks indicates whether a wavefront is active
or stalled respectively. The barrier mask shows if the warp is waiting at a barrier
instruction and the visible mask is used to implement a hierarchical scheduling
policy.

The barrier instructions are used to synchronise warps. This is done by main-
taining a count of how many warps still need to execute the barrier and keeping
a mask of the warps that are currently stalled at the barrier in a barrier table.

The Vortex microarchitecture also makes use of banked GPRs to contain all of
the GPRs for all threads in a warp. These can be found in the issue stage of the
pipeline.

2.3.2 Vortex Software Stack

All of the benchmarks used for the analysis in this thesis contain a OpenCL kernel.
Vortex uses the POCL [16] open-source framework to implement the compiler and
runtime software for OpenCL. The POCL compiler that Vortex depends on has
been modified to be able to generate kernel programs that target the Vortex ISA.
The steps taken to generate a Vortex binary are shown in Figure 2.3.

All of the Vortex benchmarks mentioned in this thesis are based on OpenCL
benchmarks from the benchmark suite Rodinia [7]. This means that getting Vor-
tex to run on a larger set of benchmarks should in theory be quite achievable.
However, given how many of Vortex’s own benchmarks simply does not work,
this might be more cumbersome in practise.

Vortex allows for the selection between several different simulation environ-

Chapter 2: Background 9

]
£ b: — ™
ol S @
OpenCL § g EE g g E E :)"E'l GPU
= SEFP IElp B 2 —>»
Kernel = ; .g.g e E = = Q'E Binary
s = $E £2| [2e Z3
[&] & 30 (L]
[

POCL Compiler

Figure 2.3: Vortex Binary generation steps for OpenCL applications (Reproduced
from [1]).

Host CPU FPGA

External OPAE Internal Local
OpenCL Vonjtex OPAE Host Bus P T Bus Vortex Processor Bus. Local
Runtime Driver Interface Interface Memory
Vortex AFU

Figure 2.4: Vortex Driver stack (Based on a figure from [1]).

ments. The available simulation environments are the OPAE driver, which makes
use of Intel’s AFU Simulation Environment; VLSIM, which uses Verilator [6] to
simulate the RTL design and implements the AFU interface and memory simula-
tion in software; RTLSIM, which also uses Verilator for the RTL design, but does
not make use of the AFU; and SIMX, which implements a cycle-level simulator for
Vortex.

A simplified diagram of the Vortex driver stack when using the VLSIM simula-
tion environment is shown in Figure 2.4.

Chapter 3

Experimental Setup

3.1 Vortex Configuration

The Vortex RISC-V GPGPU [1] was evaluated using its builtin blackbox benchmark
setup script. This benchmark setup script allows the user to set several different
parameters for the benchmark, such as the number of cores and threads, enabling
level 2 or level 3 cache and more. It also allows for the selection of the simulation
environment.

We chose to use the VLSIM simulation environment for this thesis as it would
give a better simulation of the memory system, without necessitating the use of
any proprietary software.

Sadly, a large amount of the OpenCL benchmarks made for Vortex does not
work with the blackbox script. Getting the other benchmarks to work was not
deemed to be a suitable use of time for this thesis as the main objective is to
perform a performance analysis. For that reason, the working benchmarks were
deemed to be enough.

Furthermore, a significant amount of the benchmarks have very small input
sizes by default. The benchmark for Gaussian elimination for example, uses a 4

Table 3.1: Default Simulated Vortex Architecture

Vortex Configuration
No. cores 1,2, 4,8, 16, 32 or 64 cores
250 MHz, 16 SIMT width, 16KB shared memory
Max. 1024 threads (4 warps/core, 4 threads/warp)

Core resources

Scheduler 1 warp scheduler per core
L1 data cache 16KB per core, 8 cycle delay
L2 and L3 cache Optional, here disabled
NoC Hierarchical tree structure
DRAM setup 4GB, 4 channels, 1 rank

DRAM bandwidth | 2400MHz DDR4, 19.2 GB/s

11

12 M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

Table 3.2: Overview of benchmarks used in this thesis.

Benchmark Name | Default Input | Adjusted Input
Vector Addition vecadd | 64 64

General Matrix Multiply sgemm | 32 32

Nearest Neighbour search | nearn 42764 42764

Matrix Filter (3x3 kernel) | sfilter 16 256

Sorting psort 16 1024

A Times X Plus Y saxpy 1024 1024

by 4 matrix. While most of the benchmarks have easily configurable input sizes,
the benchmark for Gaussian elimination did not. For this reason, this benchmark
was not used.

This means that for many of the applications no scaling will be shown at all
with the default input sizes, as most of the execution time will be spent on set-
ting up the applications. An overview of the configuration used for Vortex when
running is shown in Table 3.1.

The applications vecadd, sgemm, nearn, psort, saxpy and sfilter were ran
using 1, 2, 4, 8, 16 and 32 cores. Additionally, vecadd and sfilter were ran with
64 cores. An overview of the benchmarks ran is shown in Table 3.2. In the third
column of the table the default input size is shown. This is the input size the
benchmarks are ran with by default. For some of the benchmarks this input size is
too small to show behaviour representative of the benchmark. For these, the input
size has been adjusted. This is shown in the last column. The only applications
that had their input size adjusted were sfilter and psort, as they were both heavily
limited by their default input size of 16.

An attempt was made to run the benchmarks with 64 cores. At this point,
the runtime becomes significantly longer and the memory usage of the simulation
increases substantially. More importantly however, not all of the benchmarks com-
pute correctly when using 64 cores. Vecadd and sfilter are the only ones that are
able to return the results they are supposed to, the other benchmarks all return
incorrect results when using 64 cores. For this reason, the results of running the
benchmarks with 64 cores have been omitted where most of the benchmarks are
unable to make use of them.

3.2 IDUN Cluster

For the project thesis all the benchmarks were ran locally on my personal com-
puter. While this is sufficient for small and simple benchmarks it quickly becomes
untenable. In my experience, one will need roughly 0.5GB of RAM per core used
in Vortex. This means that running benchmarks using more than 16 cores is more
or less impossible when ran locally on my personal computer. Additionally, I was
only able to run one benchmark at a time.

Chapter 3: Experimental Setup 13

For this reason, we made use of the IDUN cluster [17]. IDUN allowed me to
greatly expand my pool of resources as well as allowed the parallel execution of
multiple benchmarks. To be more specific, Vortex benchmarks can be ran in paral-
lel on the same installation of Vortex as long as they all use the same configuration
for the architecture, that is, they all use the same amount of cores, they have the
same amount of cache and so on.

Another requirement for this to be possible is that the benchmarks can not
require compilation of any part of Vortex. For this reason, it is advisable to first
complete a single benchmark for any given configuration of Vortex, before running
all the others with the same configuration.

In order to run Vortex on the IDUN cluster one will need to modify the install
script for the Vortex dependencies such that it does not attempt to install the
dependencies into a restricted part of the system. This means that the user will also
have to modify the paths to these dependencies in Makefiles throughout Vortex’s
source code.

3.3 Performance Metrics

The main performance metric used in this thesis is IPC. IPC is a measure of how
many instructions are executed per cycle. This gives a simple view of how well
the architecture perform for a given workload. In Vortex the IPC is calculated as
the aggregated sum of the instructions executed by all cores divided by largest
amount of cycles used by a single core. As we are mostly interested in how the
performance changes when we modify parts of Vortex, the IPC is normalised to
the base case in most instances.

The main reason for using IPC in this thesis is that IPC is the main performance
metric used by Vortex itself. While IPC is a good indicator of performance, partic-
ularly for single core applications, it is not perfect. For multi core applications, it
can in some circumstances be misleading or simply wrong [18].

The main criteria we will use to determine whether IPC is a good perform-
ance metric is that the amount of instructions needed to complete the benchmark
is relatively unchanged. If the change in configuration changes the amount of in-
structions needed, then IPC will quickly become misleading. If one, for example, is
able to achieve the same result in half the amount of instructions but the amount
of cycles needed remains more or less the same, then using IPC will make it seem
like the performance has halved even though this is probably a better result.

For this reason we will use a different performance metric in the cases where
the amount of instructions will change substantially. This is only really the case for
the experiments relating to the change in kernel size. Here we will use a perform-
ance metric which is calculated by % where CC is the amount of cycles needed
to complete the benchmark. This will typically be a very small number, so the
measure is normalised to the base case.

This is only a good metric if the workload is more or less constant. If one for
example doubles the input size, this metric will show that the benchmark needed

14 M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

more time in order to deal with more work. While this is not wrong, it is not useful
information.

Chapter 4

Results

4.1 Baseline Performance

The resulting normalised IPC of running the benchmark with a selection of ap-
plications with varying number of cores is shown in Figure 4.1. Note that the
results for 64 cores is only available for vecadd and sfilter, as those are the only
benchmarks that work with 64 cores. As can be seen from the figure, the different
applications have a substantially different performance with a higher amount of
cores.

The only benchmark that scales even remotely well is sgemm. Sgemm has
a normalised IPC that scales almost linearly with the number of cores used. It
only starts to lose ground at 32 cores. This shows that Sgemm is mostly compute
bound.

When using the default input size on vecadd, Vortex is actually not able to
fully utilise more than 4 cores. It instead gives all of the workload to four of the
cores, leaving the remaining cores more or less idle. This makes sense given the
fact that the default input size for vecadd is 64. With 4 cores and 16 threads per
core, each thread ends up doing the vector addition for one element only.

For this reason, using more than four cores should not really effect the per-
formance. What we actually observe though is a substantial decrease in IPC. This
seems to be caused by a substantial increase in the time used to configure and start
additional cores, meaning that this overhead starts to dominate much earlier than
it should for any given input size. For vecadd in particular, having a rather light
workload, this causes a large negative impact on the performance. Sfilter and
psort show the same pattern when using their default input sizes, although they
are only able to fully utilise a single core.

For the nearn application, the IPC does not seem to change at all with in-
creased core count. This is actually for the same reason as for sfilter and psort
with all of them only being able to utilise a single core. However, here the situ-
ation is somewhat different as nearn has a substantially larger default input size
than the other benchmarks.

By default nearn tries to find the five nearest neighbours amongst 42700 data

15

16 M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

1 core I 4 cores I 16 cores Hl 64 cores
2 cores Il 8 cores N 32 cores
10 A
8 -
O
o
9
n 6
©
£
—_
o
=2 4
2 | L
; aom
vecadd sgemm nearn sfilter psort saxpy
Application

Figure 4.1: Baseline IPC for various benchmarks on current Vortex.

points. To do this nearn takes nearly 6 million cycles to complete. Most of the
other applications that can only make use of one core will only need a couple of
thousand cycles. This means that the setup and configuration of the superfluous
threads will make up a far smaller part of nearns instructions than for the other
applications.

Changing the setup of the cores, warps and threads can show that nearn is
able to fully utilise 12 threads with the default input size. More specifically, with
4 cores that have two warps and two threads, cores one, two and three all have
a utilisation of about 99.8% whereas core 4 has a utilisation of only 0.05% being
only active for 3000 out of 5.7 million cycles.

Saxpy initially seems to behave somewhat similarly to vecadd. It initially
scales somewhat worse than vecadd, but keeps scaling somewhat well with more
than four cores. This is however extremely misleading. Saxpy will only make use
of one core. The pattern that saxpy shows is actually similar to nearn. The increase
in IPC that is shown for saxpy is due to it having a substantially lower input size
and complexity, meaning that the IPC from the idle cores setting up and tearing
down can influence the aggregated IPC.

A comparison with the equivalent results from my project thesis [2] where
the same tests were ran on the version of Vortex used at MICRO’21 is interesting.
These results are shown in Figure 4.2. Note that psort and sfilter were not ran
with the default input size in my project thesis, instead using the adjusted input
size shown in Figure 3.2.

Chapter 4: Results 17

1 core 2 cores mm 4 cores HEm 8 cores 16 cores

20.04
17.5 1
15.0
(@
& 12.5 A
=
N
= 10.0 A
m
£
S 7.5
s 7
5.0 1
2.5 1
sgemm psort sfilter nearn saxpy vecadd
Applications

Figure 4.2: IPC for various benchmarks on Vortex from MICRO’21 (Repurposed
from [2]).

Vecadd in particular seems to behave quite differently. The downward trend
in IPC for higher core counts was simply not observed while using this version of
Vortex. It does however remain unclear what exactly has been changed to cause
this difference in behaviour.

4.2 Configuring Vortex

4.2.1 Adjusting Input Size

As shown in the previous section, several of the benchmarks are severely hampered
by their extremely limited default input sizes. Thus, in order to properly demon-
strate their complete behaviour we will explore what changes when their input
size is increased.

Adjusting nearn’s input size requires generating an entirely new data set for it
to use. Doing this is not impossible but setting this up was not considered to be a
valuable use of time, as the default data set containing over 40.000 records is in
all likelihood sufficiently large enough to demonstrate how nearn will perform.

Vecadd

The results for changing vecadd’s input size is shown in Figure 4.3. Vecadd main-
tains the same pattern as for the default input size throughout all the sizes tested
here. The core count at which the IPC peaks does increase somewhat, going from

18 M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

1 core I 4 cores I 16 cores Hl 64 cores
2 cores I 8 cores HEl 32 cores
5 -
4 -
O
=S
? 31
o]
©
£
22
1 -
0 -
64 (Default) 128 1024 2048 4096 8192
Input Size

Figure 4.3: IPC for various input sizes for vecadd

4 cores at an input size of 64 to 32 cores at an input size of 4096. For an unknown
reason, using input sizes larger than 512 with 64 cores causes an incorrect result
to be calculated. For this reason, these results have been discarded.

Sgemm

The results for changing sgemm’s input size is shown in Figure 4.4. Note that we
were unable to complete sgemm with an input size of 256 with 32 cores. Sgemm
scales better with an input size of 64 than it does for the default input size of 32.
On the other hand, for higher input sizes than 64 it starts to scale worse with high
core counts, having a substantial decrease for 32 cores and an input size of 128.
This is presumably due to the matrix now filling up the cache, causing memory
stalls that are detrimental to the performance.

Increasing the input size beyond 256 starts to be prohibitively resource and
time intensive. This is due to the fact that the matrix multiplication algorithm used
in sgemm is the naive O(n®) algorithm, which means that the simulation will also
be O(n®).

Psort

The results for changing psort’s input size is shown in Figure 4.5. For small input
sizes, psort seems to behave similar to vecadd as shown in Figure 4.3. That is, the
IPC increases up to a point, and then starts decreasing. However, this changes with

Chap

Normalised IPC

Normalised IPC

ter 4: Results

1 core 2 cores M 4 cores I 8 cores HEE 16 cores HEM 32 cores

20.0 A

17.5 A

15.0 A
12.5 A
10.0 A
7.5 4
5.0 A
2.5 4
0.0

32 (Default)
Input Size

Figure 4.4: IPC for various input sizes for sgemm

1 core 2 cores MM 4 cores HEM 8 cores Il 16 cores HEM 32 cores

30 A
25 A
20 A
15 A
10 A

5

oLom_m A I

16 (Default) 32 512 1024 2048 4096

Input Slze

Figure 4.5: IPC for various input sizes for psort

19

20 M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

1 core 2 cores MM 4 cores Il 8 cores HEE 16 cores HEM 32 cores
14 A
12 A
g 10 A
gl
Q
2 8
©
£
S 61
4 1
o 1l .
16 (Default) 32 64 128 256 512 1024
Input Size

Figure 4.6: IPC for various input sizes for sfilter

an input size of 512, where the IPC keeps scaling linearly even for 32 cores. This is
where psort goes from being synchronisation bound to being compute bound. This
behaviour shows that psort is a compute bound application, like sgemm. Sadly,
the psort benchmark does not work properly with 64 cores, so we are unable to
test whether this pattern continues.

We can also see that the behaviour observed here is the same as the behaviour
observed in my project thesis shown in Figure 4.2.

Sfilter

The results for changing sfilter’s input size is shown in Figure 4.6. Note that we
were unable to complete sfilter with an input size of 1024 with 32 cores. For small
input sizes sfilter just is not able to make use of its resources well as can be seen
for the input sizes up to 64. With a larger input size it initially scales well, before
the performance diminishes greatly with an input size of 512 and 1024. This is
presumably due to hitting some memory threshold as the matrix of size 512x512
will take roughly 512 % 512 % 4B = 1M B of memory.

We can also see that the behaviour observed here is the same as the behaviour
observed in my project thesis shown in Figure 4.2.

Chapter 4: Results 21

1 core I 4 cores I 16 cores Hl 64 cores
2 cores Il 8 cores N 32 cores
3.5
3.0 1
g 2.5
gl
Q
2 2.0 A
©
£
S 1.5
1.0 A
0.5 1
0.0
1024 (Default) 2048 4096 8192 16384
Input Size
Figure 4.7: IPC for various input sizes for saxpy
Saxpy

The results for changing saxpy’s input size is shown in Figure 4.7. Saxpy does not
really scale all that well, it has a behaviour that actually is quite similar to nearn.
It does not appear like that here though as saxpy terminates much earlier. This
means that the cores that end up with no work, that only have a couple hundred
instructions has a higher contribution to the aggregated IPC. As the program takes
longer with a higher input size this effect diminishes, and thus we get the pattern
shown in Figure 4.7. With a sufficiently large input size we would achieve the
same pattern as shown for nearn in Figure 4.1.

4.2.2 Clustering

Vortex allows for a large variety of configuration in its core structure. A potential
alley for performance increases is to enable the organisation of cores into clusters.
Here we tested what change in performance we could achieve by having 1, 2 or 4
clusters when we are limited to a total of 16 cores. The resulting performance is
shown in Figure 4.8. Rather disappointingly, the clustering of cores does not seem
to affect the performance all that much.

Clusters in Vortex can optionally have a level 2 cache each, as well as a shared
level 3 cache. An attempt was made to enable these to evaluate how they could
affect performance. Unfortunately enabling the extra levels of cache does not seem
to work correctly.

22 M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

1 cluster I 2 clusters N 4 clusters
1.0 A
0.8
O
o
D 0.6 1
0
©
£
2 0.4
0.2
0.0
vecadd sgemm nearn sfilter psort saxpy

Cluster count

Figure 4.8: IPC for various core structures

4.2.3 Memory Configurations

Another potential avenue for performance increases is to modify the RAM config-
uration. Vortex uses Ramulator [15] to simulate its RAM. This allows us to very
easily modify its parameters to simulate other setups By default Vortex is set up to
have eight chips of 4Gb 2400MHz DDR4 RAM. By modifying this we can further
evaluate what impact the RAM configuration has on Vortex’s performance.

The impact of changing the memory configuration to GDDRS5 is shown in Fig-
ure 4.9. Interestingly, doing this increases the IPC for all benchmarks except for
nearn. However the extent of the performance increase varies wildly. Vecadd for
instance has a 53% increase in IPC whereas saxpy only shows a 4.2% increase in
IPC. This shows us that vecadd is far more limited by the speed of the memory
than the other benchmarks.

4.3 Fixing Benchmarks

4.3.1 An Attempt at Fixing Nearn

As shown in Figure 4.1, nearn does not scale at all. It is entirely unable to utilise
multiple cores. In the paper that introduces Vortex [1] this is explained by nearn
having a square root in its core loop. While this square root does exist, there is no
reason for it by itself to completely prevent any form of parallelism.

For this reason, we took a closer look at nearn’s source code and found a minor

Chapter 4: Results

Normalised IPC

Normalised IPC

ddrd HEEN gddr5
1.6
1.4 4
1.2 A
1.0 A
0.8 1
0.6 -
0.4
0.2 A1
0.0
vecadd sgemm nearn sfilter psort saxpy
Application
Figure 4.9: IPC for various memory configurations
1 core 2 cores I 4 cores Il 8 cores Il 16 cores

16 A
14 A
12 A
10 A

3 -

6 -

4

2

oL [I

Vortex nearn Fixed nearn
Nearn Instance

Figure 4.10: Comparison between Vortex’s nearn and a fixed version

23

24 M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

discrepancy in the way the OpenCL kernel was set up. In nearn’s source code, the
parameter local_work_size in the call to clEnqueueNDRangeKernel was set to null
whereas in the other benchmarks it is set to one. This means that the size of the
work group is left undetermined.

After aligning the OpenCL setup more towards how it is implemented in the
other benchmarks, we found that nearn was indeed able to split up its workload
to multiple cores.

However, at this point another discrepancy was discovered. For some indis-
cernible reason the reported order of the nearest neighbours were not the same
for the two instances of nearn. Furthermore, the distances reported to the nearest
neighbours were not calculated correctly for either instance of nearn. Somehow,
the calculated distance is usually a bit wrong. The error is not very large though,
so the five neighbours that the benchmark concludes are the closest are in all like-
lihood among the closest neighbours, but there is no guarantee that this is the
case.

One of the reasons this was not discovered earlier is that while the other bench-
marks all have some form of validation to ensure that the benchmark is correct,
this is not the case for nearn. Nearn does appear to have some form of valida-
tion when running the benchmark, so the user has no real reason to suspect that
something is amiss. However, when more closely inspecting the source code for
nearn one will discover that the benchmark will always report that the results
were correct and that the benchmark passed no matter what.

A comparison between the performance of Vortex’s version of nearn and my
fix is shown in Figure 4.10. While Vortex’s version does not scale at all, the patched
version scales more or less perfectly linearly with the number of cores.

A similar fix could also have been made for saxpy as it exhibits a similar beha-
viour. Taking a closer look at saxpy’s source code reveals that it contains a similar
error to the one found in nearn’s source code. This was not done due to a lack of
time.

4.3.2 Fixing Vecadd

The IPC scaling that is shown in vecadd is interesting. It does not really make
sense for the IPC to decrease in the manner it does. This seems to be caused by
the inclusion of extra cycles needed to set up and start all the extra cores. And
as most of these cores are not able to be utilised fully, their individual IPC is very
low. In total this will cause a decrease in the aggregated IPC. However, the fact
that it causes such a large decrease means that for the higher core counts, the
initialisation of the additional cores starts to dominate the total execution time.
There is no reason for this to take that much time.

It is made even more interesting by the fact that this behaviour was not ap-
parent in the version of Vortex used at MICRO 2021. If one compares the results
shown in Figure 4.3 to the results shown in Figure 4.11 it becomes clear that some-
thing substantial has to have changed between the two versions. It is however still

Chapter 4: Results 25

1 core 2 cores Il 4 cores I 8 cores Il 16 cores
5 -
4 -
O
=S
gl
23
©
£
o
=2 2 4
1 -
0
64 (Default) 128 256 512 1024
Input Size

Figure 4.11: IPC for various input sizes in vecadd from MICRO’21

unclear exactly what this change is.

One potential issue that could cause such behaviour would be the fact that
all the OpenCL benchmarks in Vortex are set up to use a kernel size of one. This
means that the host only sends a single data point at a time. Adjusting this could
then hopefully cause a significant speedup. A too large kernel size on the other
hand, could cause some load balancing issues, resulting in an overall slowdown.
As vecadd is the benchmark where these issues are the most apparent, this is
where we will focus our efforts.

In both Figure 4.12 and Figure 4.13 the performance measure is cl_c where CC
is the amount of cycles the benchmark used before it completed. In Figure 4.13
Vortex was ran with 8 cores.

Interestingly, adjusting the kernel size does not increase the IPC but rather
decreases it. While initially this might seem like a performance decrease has oc-
curred, this is not the case. The reduction in IPC stems from a reduction in the
number of instructions required to complete the benchmark. This shows that IPC
is not always a great metric for performance [18]. In most cases, there is also a
smaller reduction in the number of cycles needed to complete the benchmark as
well. However, this is not universal.

This reduction in the amount of instructions needed seems to come from a
reduced amount of overhead caused by the increased kernel size. The benchmark
still computes the correct result, as unlike nearn it actually has proper testing.
This means that the observed reduction in IPC is actually a performance increase.

26

M. Rekdal: Investigating the Performance Scalability of the Vortex GPU
1 Core i 2 Coresmmm 4 Cores lEm 8 Cores HEE 16 Cores HEE 32 Cores
4
(0]
(9]
.
£
(]
h=
(O]
(=1
el
%27
©
£
]
=
1 -
0 -
Small Input (64) Medium Input (512) Large Input (4096)
Core Count
Figure 4.12: Performance for vecadd for various core configurations
KS 1 . KS 2 . KS 4 kS8 E KS 16
1.6
1.4
3 1.2
C
£
5 1.0
‘t
&
S 0.8-
(]
“
© i
£ 0.6
[e]
< 0.4
0.2 A1
0.0 -

512 1024 2048 4096 8192
Input Size

Figure 4.13: Performance for vecadd with varying input sizes and kernel sizes

Chapter 4: Results 27

As shown in Figure 4.13 adjusting the kernel size can give a substantial in-
crease in performance even when disregarding the change in the amount of in-
structions. Interestingly, from an input size of 128 up to an input size of 2048 the
ideal kernel size scales along with the input size, going from 2 to 16.

Chapter 5

Conclusion and Further Work

5.1 Conclusion

We performed an analysis of the available benchmarks for Vortex and found that
most of them are not able to fully utilise the available resources. In some instances
one can observe a decrease in IPC when increasing the core count. This comprises
task T1 which corresponds to contribution C1.

This seems to be at least partially due to the way that the scheduler hands out
work to the cores. By default it is done one work item at a time. Adjusting this
parameter gave a substantial decrease in IPC as the amount of NOPs decreased.
This comprises task T2 which corresponds to contribution C2.

While Vortex does have some issues, it is still in active development. Hopefully,
most of the issues that have been encountered during this thesis can be resolved.
Regardless, it remains a flexible and performant software GPU that is sure to aid
many future research projects.

5.2 Future Work

We found that adjusting the kernel size can give a substantial boost to perform-
ance. However, in our experiments, the kernel size was always hard coded. One
idea for future work could therefore be to calculate a good kernel size based on
the specific Vortex configuration used, that is the number of cores, the numbers
of threads and warps per core and so on, as well as the application itself.

All of the benchmarks used in this thesis were Vortex’s own with some minor
modifications. Said benchmarks are also all quite small. While they are all based
on benchmarks from Rodinia [7], they are not representative of a typical complete
GPU application. Thus, another idea for future work would be to get Vortex to run
on a larger sample of more complete benchmarks from a well known benchmark
suite, such as Rodinia.

29

Bibliography

[1] B. Tine, K. P Yalamarthy, E Elsabbagh and K. Hyesoon, ‘Vortex: Extend-
ing the RISC-V ISA for GPGPU and 3D-Graphics,” MICRO-54: 54th Annual
IEEE /ACM International Symposium on Microarchitecture, 2021.

[2] M. Rekdal, ‘Toward FPGA-Accelerated GPU Evaluation,” Norwegian Univer-
sity of Science and Technology, Tech. Rep., Dec. 2021.

[3] T E. Carlson, W. Heirman and L. Eeckhout, ‘Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,” in
SC ’11: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 1-12.

[4] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pember-
ton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R.
Katz, J. Bachrach and K. Asanovi¢, ‘FireSim: FPGA-accelerated Cycle-exact
Scale-out System Simulation in the Public Cloud,’ in Proceedings of the 45th
Annual International Symposium on Computer Architecture, ser. ISCA 18,
Los Angeles, California: IEEE Press, 2018, pp. 29-42.

[5] V. Gangadhar, R. Balasubramanian, M. Drumond, Z. Guo, J. Menon, C.
Joseph, R. Prakash, S. Prasad, P Vallathol and K. Sankaralingam, ‘MIAOW:
An open source GPGPU,’ in 2015 IEEE Hot Chips 27 Symposium (HCS), Los
Alamitos, CA, USA: IEEE Computer Society, Aug. 2015, pp. 1-43.

[6] E.Schkufza, M. Wei and C. J. Rossbach, ‘Just-In-Time Compilation for Veri-
log: A New Technique for Improving the FPGA Programming Experience,’ in
Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS
’19, Providence, RI, USA: Association for Computing Machinery, 2019, pp. 271-
286.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee and K. Skad-
ron, ‘Rodinia: A Benchmark Suite for Heterogeneous Computing,” in Pro-
ceedings of the 2009 IEEE International Symposium on Workload Character-
ization (IISWC), ser. ISWC’09, USA: IEEE Computer Society, 2009, pp. 44—
54.

31

32

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Rekdal: Investigating the Performance Scalability of the Vortex GPU

K. Andryc, M. Merchant and R. Tessier, ‘FlexGrip: A soft GPGPU for FPGAs,’
in 2013 International Conference on Field-Programmable Technology (FPT),
2013, pp- 230-237.

J. E. R. Condia, B. Du, M. Sonza Reorda and L. Sterpone, ‘FlexGripPlus:
An improved GPGPU model to support reliability analysis,” Microelectronics
Reliability, vol. 109, p. 113 660, 2020.

Pixilica. ‘Pixilica RISC-V GPU.’ (2021), [Online]. Available: https://www.
pixilica.com/graphics (visited on 05/03/2022).

C. D. Kersey, H. Kim and S. Yalamanchili, ‘Lightweight SIMT Core Designs
for Intelligent 3D Stacked DRAM,’ in Proceedings of the International Sym-
posium on Memory Systems, ser. MEMSYS ’17, Alexandria, Virginia: Associ-
ation for Computing Machinery, 2017, pp. 49-59.

J. Bush, M. A. Khasawneh, K. Z. Mahmoud and T. N. Miller, ‘NyuziRaster:
Optimizing Rasterizer Performance and Energy in the Nyuzi Open Source
GPU,’ in 2016 IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), 2016, pp. 204-213.

C. Collange, ‘Simty: Generalized SIMT Execution on RISC-V,” in CARRV
2017: First Workshop on Computer Architecture Research with RISC-V, vol. 6,
Boston, United States, Oct. 2017, p. 6.

M. Al Kadi, B. Janssen and M. Huebner, ‘FGPU: An SIMT-Architecture for
FPGASs,’ in Proceedings of the 2016 ACM /SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’16, Monterey, California, USA:
Association for Computing Machinery, 2016, pp. 254-263.

Y. Kim, W. Yang and O. Mutlu, ‘Ramulator: A Fast and Extensible DRAM
Simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1, pp. 45-49,
2016.

P Jaaskeldinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala and
H. Berg, ‘POCL: A Performance-Portable OpenCL Implementation,’ Interna-
tional Journal of Parallel Programming, vol. 43, no. 5, pp. 752-785, Aug.
2014.

M. Sjdlander, M. Jahre, G. Tufte and N. Reissmann, EPIC: An Energy-Efficient,
High-Performance GPGPU Computing Research Infrastructure, 2019.

A. Alameldeen and D. Wood, ‘IPC Considered Harmful for Multiprocessor
Workloads,” IEEE Micro, vol. 26, no. 4, pp. 8-17, 2006.

https://www.pixilica.com/graphics
https://www.pixilica.com/graphics

@ NTNU

Kunnskap for ei betre verd

	Assignment Text
	Abstract
	Samandrag
	Contents
	Figures
	Tables
	Acronyms
	Glossary
	Introduction
	Motivation
	Assignment Interpretation
	Contributions
	Thesis Outline

	Background
	GPUs
	Soft GPUs
	Vortex RISC-V GPGPU
	Vortex Architecture
	Vortex Software Stack

	Experimental Setup
	Vortex Configuration
	IDUN Cluster
	Performance Metrics

	Results
	Baseline Performance
	Configuring Vortex
	Adjusting Input Size
	Clustering
	Memory Configurations

	Fixing Benchmarks
	An Attempt at Fixing Nearn
	Fixing Vecadd

	Conclusion and Further Work
	Conclusion
	Future Work

	Bibliography

