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Abstract
TheCasimir-Lifhitz force acts between neutralmaterial bodies and is due to thefluctuations (around
zero) of the electrical polarizations of the bodies. This force is amacroscopicmanifestation of the van
derWaals forces between atoms andmolecules. In addition to being of fundamental interest, the
Casimir-Lifshitz force plays an important role in surface physics, nanotechnology and biophysics.
There are two different approaches in the theory of this force. One is centered on the fluctuations
inside the bodies, as the source of thefluctuational electromagnetic fields and forces. The second
approach is based onfinding the eigenmodes of thefield, while thematerial bodies are assumed to be
passive and non-fluctuating. In spite of the fact that both approaches have a long history, there are still
somemisconceptions in the literature. In particular, there are claims that (hypothetical)materials
with a strictly real dielectric function ε(ω) can give rise tofluctuational Casimir-Lifshitz forces.We
review and compare the two approaches, using the simple example of the force in the absence of
retardation.Wepoint out that also in the second (the ‘field-oriented’) approach one cannot avoid
introducing an infinitesimal imaginary part into the dielectric function, i.e. introducing some
dissipation. Furthermore, we emphasize that the requirement of analyticity of ε(ω) in the upper half of
the complexω plane is not the only one for a viable dielectric function. There are other requirements
as well. In particular,models that use a strictly real ε(ω) (for all real positiveω) are inadmissible and
lead to various contradictions and inconsistencies. Specifically, we present a critical discussion of the
‘dissipation-less plasmamodel’. Our emphasis is not on themost recent developments in the field but
on some conceptual, not fully resolved issues.

1. Introduction

It is well known thatmaterial bodies in thermal equilibriumwith the environment at some temperatureT exert
long-range attractive forces on each other. The bodies are electrically neutral and do not possess a permanent
dipole (or any highermultipole)moment, so the forces are due solely to the fluctuating electromagnetic fields
which are always present (thermal equilibrium conditions assumed). Such forces are often called van derWaals
forces. Interchangeably, they are also known asCasimir-Lifshitz forces. Some general treatises on theCasimir
effect from various perspectives, can be found in [1–27]. In the present analysis wewill not consider theCasimir
effect in general, but focus on the following issue.

There are essentially two different ways to proceedwhen encountering theCasimir effect. The first one has
its root in quantum statisticalmechanics [11, 12], and consists in regarding the force to arise from the
fluctuations of the dipoles in themedia. Thefluctuation-dissipation theorem (FDT) plays here a central role and
the dielectric function ò(ω)must, of course, contain an imaginary part. The second approach, falling into line
with the original Casimir work [28], is to consider the problem as a quantum field theoretical problem, implying
that one starts from the electromagnetic field eigenmodes in the system. The totalfield energy is then obtained by
summing over all eigenvalues (to have real eigenvalues onemust assume a strictly real ò(ω)).Wewill refer to this
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approach as the quantumfield theory (QFT) approach. It was introduced in connectionwith theCasimir effect
in [16] and it has proved to be a valuablemethod in a variety of cases. There is yet another, ‘scattering approach’
[21, 22] to the problem. In the latter, unlike theQFT approach, the system ismade open and instead of the ‘cavity
eigenmodes’ ofQFTone introduces scattering states.We do not consider this useful approach in the present
paper.

The derivations of theCasimir-Lifshitz force presented in textbooks on theoretical physics [11, 13] or the
reviews [9, 12, 14] usually deal with themost general case and do not attempt to compare between the FDT and
QFT approaches. One of the aims of the present paper is to present a simple derivation of theCasimir-Lifhitz
force, using the FDT approach in the non-retarded limit, and to compare the result with that obtainedwithin the
QFT approach (section 2–4).We emphasize that, although the eigenmodes used in theQFT approach arewell
defined only if themedium is dissipation-less, one stillmust introduce an infinitesimal dissipation
( ( ) )Im 0w > when calculating theCasimir-Lifshitz force. This fact is not always appreciated in the literature.
Furthermore, in section 4we discuss somemodels ofmaterial bodies, employed in the theory of Casimir-Lifshitz
forces, and point out thatmodels with strictly real ò(ω) are inadmissible idealizations. Suchmodels violate some
basic physical requirements that anymaterialmust satisfy. In section 5we elaborate on the limit when both the
frequencyω and the dissipation ( ( ))Im w become very small. There have been claims that in this limit the
theory, based on the standardDrudemodel, breaks down and is in conflict with theNernst heat theorem.We
argue that in this limit the local dielectric function ò(ω) loses itsmeaning and the (non-local) spatial dispersion
effects become unavoidable. In section 6 theDrudemodel with spatial dispersion is briefly discussed and our
conclusions are summarized in section 7.

2. The FDTapproach

The quantum statisticalmechanical approach is a general and rigorous approach that has also a great intuitive
appeal. Allmaterial bodies possess fluctuating charges and currents whose spectral density (in equilibrium) is
determined by the FDT. It is these currents, and the corresponding fluctuating electromagnetic fields, that give
rise to theCasimir-Lifshitz forces. The FDT approach, originally due to Rytov, is often called ‘fluctuational
electrodynamics’ (see [13] for a nice presentation and [14] for a later review). In this sectionwe outline the
approach, using the standard setup of two dielectric half-spaces separated by a gap of width l (figure 1).

Since our aim is to focus on conceptual issues, we simplify the setup by assuming that the plates (half-spaces)
aremade of the same nonmagneticmaterial, with permittivity ε(ω). Furthermore, we consider the nonretarded
limit which formally amounts to setting the velocity of light to infinity. In this case it is sufficient to keep only the
Poisson equation for the electric fieldE(r, t)=−∇f(r, t), instead of the full set ofMaxwell’s equations. The
necessary condition for neglecting retardation is that thewidth l of the gap is smaller than the electromagnetic
wavelength at the relevant frequencies. The alternative way of stating this condition is that the time of light
propagation over the distance of the gapwidth lmust be smaller than the other relevant time, namely the period
of oscillations ∼ 1/ω.

The Fourier componentfω(r) of the potential satisfies

· [ ( ) ( )] ( ) ( )r r r, 4 , 1e w f pr - =w w

where ρω(r) is the Fourier component of thefluctuating charge density ρ(r, t). The function ε(r,ω) is equal to 1 in
the gap and is given by ε(ω) in the plates. The statistical properties of thefluctuating charges are determined by
the correlation function ( ) ( )t tr r, ,r rá ¢ ¢ ñ, or by its Fourier transformwith respect to time, which defines the
spectral density [14]

Figure 1.Definition sketch.
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where the angular brackets indicate a statistical average.3 The temperatureT is here given in energy units, as is
quite common in the literature [29]. Formally, it corresponds to setting the Boltzmann constant kB= 1. The
subscriptω in (2)means that the averaged quantity corresponds to a ‘spectral density’, i.e. represents fluctuations
resolved in frequency [30]. Equation (2) constitutes the FDT for the fluctuating charges. The spontaneous charge
fluctuations (the LHS in (2)) are related to dissipation in themedium (imaginary part of the permittivity).
Equations (1) and (2) enable one to compute the spectral density for the fluctuating potential, and similarly for
the electricfield components.

Define theGreen function

· [ ( ) ( )] ( ) ( )Gr r r r r, , . 3re w d-  ¢ = - ¢w

Then, using (2) and the identity
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From (5) one can find the spectral density ( ) ( )E Er rá ¢ ña b w for the electric field components, and then the average
Maxwell stress tensor (for the definition see e.g. [29] section 5).

For planar geometry it is easy to calculate theGreen function explicitly, to obtain from (5) the zz- component
of the stress tensor. The surface pressure becomes
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The integral overω is transformed to the complexω planewith the help of the ‘hairpin’ contour (figure 2), to
obtain

( )
( )f
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l

x dx
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x3

0 0

2

2òåp z
=

¢
-=

¥ ¥

where ζn= 2πnT/ÿ. The primemeans that themode n= 0 is takenwith half weight. Equation (7) gives the
Casimir-Lifshitz force in the nonretarded limit (it does not contain the light velocity c).

Figure 2.Hairpin integration contour. The fat dots are the poles of the coth-functions.

3
Strictly speaking, in [14] onefinds the spectral density for currents, rather than charges, but the two are related by the continuity equation.
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Ageneral property of ε(ω) is that lim ε(ω)|ω→∞= 1. Let us introduce a characteristic frequencyω0, beyond
which ε(ω) rapidly approaches 1. [For ametal,ω0∼ ωp (plasma frequency). For a dielectricmaterial,ω0

corresponds to a frequency regionwhere strong absorption occurs, usually at optical frequencies; cf [11].]
One can identify two temperature regions:

(i) High temperature,T? ÿω0.
In this case ζn? ω0 for all n (except n= 0), so it is sufficient to keep only the n= 0 term,

( )
( )f

T

l

x dx

r e16 0 1
. 8

x3 0

2

2òp
=

-

¥

This is the classical limit (no ÿ).

(ii) Low temperature,T= ÿω0.
In this casemany terms in (7) contribute to the sum,which can be replaced by an integral, leading to

( )
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l
d
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r i e16 1
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2

2ò òp
z

z
=

-

¥ ¥

The last two equations correspond to equations (82.10) and (82.1) in [11].

3. TheQFT approach

In this approach themedium is considered as passive (i.e. nofluctuating currents in themedium) and the FDT
theorem is not used. In fact, ε(r,ω) is taken real and the aim is tofind themodes of the electromagnetic field for
the appropriate geometry. Each eigenfrequency is assigned the corresponding thermal energy and the total free
energy of thefield (per unit area), F(l), as a function of the gapwidth l, is calculated. TheCasimir-Lifshitz
pressure is given by f=−dF/dl.

TheQFT approach is an extension of the original calculation byCasimir [28]who considered the vacuum
electromagnetic field between two idealmetallic surfaces. For two plates infigure 1, with real ε(ω), theQFT
methodwas first employed by vanKampen et al [16] (see [10] for an early review). In the nonretarded limit,
considered in [16], one has tofind the eigenmodes of the Poisson equationwithout sources

· [ ( ) ( ) ( )r r, 0. 10e w f  =w

with the condition that the solution decays when |z|→∞ . This condition selects the surfacemodes which are
the only relevantmodes, due to their dependence on l. A standard treatment [10, 16] leads to the following
dispersion equation for the eigenfrequencies of the surfacemodes:
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0, . 11ql
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w

º - = = +-

The solutionsωα(kx, ky) are labeled by three indices: the components kx, ky of the transverse wave vector and the
discrete numberα that counts the solutions forfixed (kx, ky). In theT → 0 limit, the free energy (per unit area) is
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The sumoverα, forfixed (kx, ky), is performedwith the help of the argument principle which states that for a
meromorphic function g(ω), within some closed contourC in the complex-omega plane
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whereωα andωβ are, respectively, the zeros and the poles of the function g(ω)within the integration contour.
If we choose the contour shown infigure 3, then equation (13) (forR→∞) yields the desired sumof the

eigenvalues, i.e. the roots of equation (11). (Note that the sumover the polesωβ of g(ω) can be discarded because
ωβ are the solutions of r(ω)= 0 and, thus, cannot depend on l). Since forR→∞ the integral along the semicircle
does not contribute, we obtain
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which, after integration by parts and relabeling the variables, gives

( )
( )

( )F l qdq d
r i

e
8

ln 1
1

. 15ql
2 0 2

2ò òp
z

z
= - -

¥

-¥

¥
- ⎡

⎣⎢
⎤
⎦⎥

Finally, taking the derivative with respect to l, we obtain for the pressure
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Formally, (16) looks exactly the same as (9), andwe copy it only to stress that (16)was obtained under the initial
assumption that ò(ω), and thus the eigenvaluesωαmust be real- otherwise the expression for the free energy,
equation (12)wouldmake no sense.

Atfirst, there seems to be a logical contradiction: The FDT approach requires ( )Im 0e w > (otherwise the
force is identically zero)while theQFT approach assumes ε(ω)= 0. A closer look, however, reveals that also in
theQFT approach onemust introduce, at least implicitly, an infinitesimal ( )Im 0.e w > In the above derivation
this was donewhen the decaying (rather than growing) solutions were chosen for the surfacemodes. This is of
course consistent with the general knowledge that a completely transparentmedium,with no absorption at all, is
afiction and inmany situations one needs to add an infinitesimal (positive) Imε tomake things well defined.
This infinitesimal correction can be set to zero at the end, after the thermodynamic limit is taken (see e.g. section
77 of [11]where electromagnetic fluctuations in an infinitemedium are considered). The same point is clearly
stated in [31]where the authors, when using theQFT approach, select theGreen’s functionwhich satisfies the
boundary condition of an outgoingwave at infinity. This choicemakes the integral over the realω-axis, which
initially appears in the calculation of [31], well defined and,moreover, it enables one to transform the integration
to the imaginary semi-axis in the complexω-plane. The latter transformation is necessary when the theory is
extended tofiniteT.

4. Comparison between the two approaches

Asmentioned above, the two results (9) and (16) look identical, although they have been derived under
completely different, in fact opposite, conditions. In equation (9), ε(ω)was required to have afinite imaginary
part (as appropriate for realisticmaterial bodies), while in the derivation of equation (16) ε(ω)was taken as real
(and only a closer inspection revealed that an infinitesimal ( )Im 0e w > was needed to select the physical

Figure 3.The fat line gives theQFT integration contour. The dots are the eigenfrequencies of the surfacemodes, g(ω) = 0.
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solutions for the eigenmodes). This second derivation (unlike thefirst one) is called in the review [10] ‘a
prescription’ rather than ‘a theory’ and the prescription implies that, while integrating over the contour in
figure 3, one should disregard possible singularities in the function g(ω) (orD(ω) in the notations of [10]).

Although equation (16)was derived under the very restrictive assumption of a transparentmedium, it is
tempting to use it also for absorbingmedia. Sometimes a plausible argument is being put forward [18]: Since
integration in (16) is along the imaginaryω-axis and since it is known that on this axis ε(ω) is real also for
absorbingmedia, it is natural to extrapolate equation (16) to suchmedia as well.We know, of course, (by just
looking at equation (9)) that such an extrapolation is indeed correct. However,much effort has been done in
order to demonstrate this rigorously, staying solely within theQFT approach, with itsmode counting procedure.
Such rigorous considerations require an explicit introduction of a thermal bath, in equilibriumwith the system
consisting of thematerial bodies plus electromagnetic radiation (see [32] and references therein). It is not our
purpose to argue about advantages and disadvantages of the two approaches or to dwell on the details of either of
them (e.g. we don’t even present the extension of theQFT approach to arbitrary temperatures, which is rather
straightforward). Let us instead emphasize again the dichotomy between the two approaches: The FDT
approachmakes it clear from the start that fluctuating electromagnetic fields originate in dissipativematerial
bodies and that using amodel with strictly real ε(ω) (for realω)wouldmake no sense, since therewould not be
anyfluctuations. On the other hand, the starting point of theQFT approach is the electromagnetic field at
thermal equilibrium, while the surroundingmaterial bodies are ‘passive’ (non-fluctuating)with strictly real
ε(ω). (Note that such non-dissipating bodies cannot establish thermal equilibriumwith radiation!)Ourmain
point here is that, although one can substitute a strictly real (for realω) ε(ω) into equations (9) and (16) (or their
generalization to an arbitrary temperature, equation (7)) and obtainmeaningful results, one should keep in
mind that the very derivation of those equations required presence of some finite (positive) Im ε(ω). Postulating
amodel with a strictly real ε(ω) for all realω, can lead to contradictions and inconsistencies.

It is common knowledge that, although a strictly real ε(ω) can be an acceptable approximation in some range
of frequencies andmaterial parameters, no realisticmaterial can have a real ε(ω) at all frequencies. Indeed, as
clearly stated in the textbook [29], p.280 ‘...the imaginary part of ε is positive for positive real omega i.e. on the
right-hand half of the real axis.’Amore complete and general discussion, in terms of the susceptibilityα(ω
(which differs from ε(ω) just by a constant value 1) is given in [30], p. 379, where it is emphasized ‘we reach the
important conclusion that, for all positive values of the variableω, the function Imα(ω) is positive and not zero’.
Thus, amaterial with strictly real ε(ω), at all frequencies, is inadmissible. Indeed, such amaterial would violate
theKramers-Kronig relations, as well as some rigorous sum-rules (see equation (82.12) in [29]:

( ) ( )m

e
d N

2
Im , 17

2 2 0
òp

w e w w =
¥

whereN is the electron concentration and e andm are their charge andmass. It would also violate the rigorous
relation between ε(ω) on the real and imaginaryω axes (see (82.15) in [29];

( ) ( ) ( )i
x x

x
dx1

2 Im
. 18

0 2 2òe w
p

e
w

- =
+

¥

Furthermore, as explained in [29], an admissible ε(ω), in addition to being analytic in the upper halfω plane
(causality), should have no zeroes in that half-plane (if ε(ω) is admissible, then so is 1/ε(ω)). As for theω= 0
point, ε(ω) at this point can be either regular (dielectrics) or have afirst order pole (metals) [29].

All these considerations notwithstanding, one can stillfind in the literature onCasimir-Lifshitz forces a
model with strictly real ε(ω). This is the dissipation-less plasmamodel (DPM)[33], with

( ) ( )1 , 19p
p
2

2
e w

w

w
= -

where ( )e n m4p
2

0
1 2w p= is the plasma frequency (n0 is the electron concentration). Thismodel is often

considered on parwith theDrudemodel

( ) ( )
[ ( )]

( )
i T

, 20D L
p
2

e w e w
w

w w g
= -

+

which does allow for dissipation via the relaxation frequency γ(T)which can depend on temperatureT. The term
εL(ω) accounts for the polarization of the lattice. In the low frequency limit,ω= γ, one arrives to the often used
expression

( ) ( ) ( ) ( )i
T

0
4

, 21Le w e
ps
w

= +

where εL(0) is the static limit of the lattice dielectric constant and ( ) ( )T Tp
2s w g= is the dc conductivity of the

mobile carriers.Wewill return to this expression in section 6.
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In addition to being dissipation-less, the plasmamodel in equation (19) has the strange feature of exhibiting
a second order pole atω= 0, in contradictionwith the abovementioned possibilities stated in [29] . This pole
results in a puzzling discrepancy between theDPMand theDrudemodel, even if in the latter γ is taken arbitrary
small [33]. In this context theDPMhas been already criticized in the literature (see e.g. [34]). Herewe argue that
the second order pole cannot exist in any realistic plasma (even as ameaningful approximation). Indeed, while
equation (19) can be a good approximation for a collision-less plasma at high frequencies (andwith Landau
damping being neglected), it becomes completelymeaningless nearω= 0. As extensively discussed, for instance,
in the textbook [35], at low frequencies spatial dispersion becomes unavoidable so that equation (19) fails
completely andmust be replaced by a (tensor) function εαβ(ω, k) depending on both frequencyω andwave
vector (k).Wewill return to this point in the next section.

We close this general discussion by brieflymentioning the ‘generalized Kramers-Kronig relations’ for the
DPM, proposed in [36]. It is obvious that theDPM, as anymodel with strictly real ε(ω), violates the standard
Kramers-Kronig relation. It suffices to consider one of the two relations, see e.g equation (82.6) in [29]:

( ) ( ) ( )P
x

x
dxRe 1

1 Im
. 22òe w

p
e
w

= +
--¥

¥

Since (22) is clearly incompatible with (19), the authors of [36] propose a ‘generalizedKramers-Kronig relation’
by simply subtracting a term ( )p

2w w from the RHS of (22). Such a subtraction yields a trivial identity for
Re ε(ω), which lacks any physical content.4 Furthermore, this sort of ‘generalization’ could be proposed for any
hypothetical substancewith arbitrary Re ε(ω) and Im ε(ω)= 0 (for all real positiveω). Such a substance
obviously violates theKremers-Kronig relation (22). One could try to ‘fix’ this contradiction by adding a term
[Re ε(ω)− 1] to the RHS of (22). This would lead to a trivial identity for the specific Re ε(ω) of the hypothetical
substance, which does notmake any sense. All suchmodels with strictly real ε(ω) are inadmissible.

5.DPM, drude and the collision-less plasmamodel

TheDPMand theDrudemodel have been extensively studied in connectionwith theCasimir-Lifshitz forces.
Themost significant difference between the two is that for theDrudemodel

( )∣ ( )lim 0, 232
0w e w =w

while for theDPM this limit isfinite, due to the second order pole atω= 0. This discrepancy leads towidely
different results for theCasimir-Lifshitz force in the twomodels. Belowwe examine closer the case when bothω
and γ become small.

When γ= 0, i.e. all scatteringmechanisms for the electrons (phonons, impurities or other electrons) are
neglected, one arrives at the limit of what is called ‘collision-less plasma’. However, generally (and for smallω in
particular) the dielectric function of such plasma does not at all follow equation (19). As explained in [29, 35], in
any conductingmedium the relation between the current density and the electricfield is in general nonlocal, i.e.
the current density at some point depends on the electric field in some vicinity of that point. The extent of this
‘vicinity’ (the correlation radius rcor) is determined by one of the two followingmechanisms: (i) the scattering
mean free path ¯l vmfp g~ , where v̄ is the average electron velocity, or (ii) the length ¯l v w~w , which is the
length over which an electron is displaced (in the absence of collisions)during one period offield oscillation. The
correlation radius rcor is determined by the smallest of the two lengths. Since for the collision-less plasma
lmfp→∞ , we have ¯r vcor w~ . Only for krcor= 1, i.e. ¯ kvw , the local relation between current density and
electric field is justified and the notion of ε(ω) becomesmeaningful. In the opposite case, ¯kvw < , spatial
dispersion becomes essential and the dielectric tensor εαβ(ω, k)must be used. Let us stress that even in a
collision-less plasma (γ= 0), ε(ω, k) contains an imaginary part, due to the Landau damping.

Microscopic treatment of spatial dispersion is based on a kinetic equation and the expressions for εαβ(ω, k) ,
for the collision-less plasma as well as for plasmawith collisions, can be found in [35]. Similar expressions, for
somewhat differentmicroscopicmodels, have been employed in [37, 38] for calculating theCasimir-Lifshitz
forces. Some phenomenological expressions for εαβ(ω, k) have beenwritten down in [33], equation (61), but
those do not seem to have anymicroscopic justification.

We do notwrite down specific expressions for εαβ(ω, k) for a collision-less plasma. Those can be found in
[35], and depend on the temperature and electron concentrationwhich in turn determine whether the plasma is
degenerate (metal) or not (semiconductor). Let us only note that spatial dispersion removes not only the second
order pole in equation (19) but also thefirst order pole atω= 0which is characteristic of any conducting
medium in the absence of spatial dispersion.

4
In [36] another term,A(ω), is added to theDPMof equation (19). That additional termdescribes ‘core electrons’, which have nothing to do

with the proposed ‘generalization of theKramers-Kronig relation’. That generalizationwas needed to ‘fix’ the obvious contradiction between
theDPMand the standardKramers-Kronig relation.
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6.Drudemodel with spatial dispersion

The importance of spatial dispersion has been recognized already in the early work onfluctuational
electrodynamics [14, 39]. Let us illustrate this by a simple example. In the nonretarded limit (see section 2) the
electrodynamic part of the problem amounts to the Poisson equation (1) but this timewemust treat the
dielectric function as a tensor εαβ(ω, k). Assuming a homogeneousmedium, transforming (1) to the k-space and
introducing

( ) ( ) ( )
k

k kk k,
1

, , 24
2

,
åe w e w=
a b

a b ab

we obtain, for a homogeneousmedium

( ) ( ) ( ) ( )k k k k, 4 , 252e w f pr=w w

where ρω(k) designates the spontaneousfluctuation sources in the (ω, k) representation. The dielectric function
ε(ω, k) is called the longitudinal dielectric function and is usually designated by a subscript l. Since, however, this
is the only dielectric function relevant in our treatment, we omit this subscript. It follows from equation (2)
(generalized to the case of spatial dispersion) that the spectral density

( ) ( ) ( ) ( ) ( ) ( )*
k

T
k k k k k

8
2 , coth

2
. 26

2

2
3r r

p
p e w

w
dá ¢ ñ = - ¢w

 ⎛
⎝

⎞
⎠

equations (25) and (26) enable one to study electric field fluctuations in amediumwith any specified εαβ(ω, k)
[14, 39, 40].

Let us nowpresent the calculation of ò(ω, k) for a simplemodel based on a hydrodynamic equation for a
plasma (see e.g. [40–42]). The equation ofmotion is

( )m
t

e m
n

p
v

E v
1

, 27
0

g ¶
¶

= - -

where v(r, t) is the plasma velocity at point r at time t, n0 is the equilibrium concentration of carriers, n(r, t) is the
deviation from equilibrium, and p= [n0+ n(r, t)]T is the thermal pressure. Equation (27) is based on the
classical Boltzmann equationwithMaxwell statistics for the carriers, which provides a good description of a low
density plasma in semiconductors. It is already linearizedwith respect to v and n, and it should be supplemented
by a (linearized) continuity equation

· ( )n

t
n v 0. 280

¶
¶

+ =

Fourier transforming (27) and (28), both in time and space, one can relate the current density j(ω, k)=
en0v(ω, k) to the electric fieldE(ω, k), thus obtaining the conductivity tensor and, ultimately the dielectric
function

( ) ( )
( )

( )
i k R

k, , 29L
p

D p

2

2 2 2
e w e w

w

w w g w
= -

+ -

where at the last stage the lattice contribution εL(ω) has been added. ( )R T mD p
2 1 2w= in (29) is theDebye

screening radius. The importance of screening in the Lifshitz theory for conductors with low electron
concentration has been emphasized in [41, 43]. If spatial dispersion in (29) is neglected, the standardDrude
model, equation (20) is recovered. Note that spatial dispersion completely obliterates the pole atω= 0 in the
Drudemodel (as well as, of course, the second order pole in theDPM, equation (19)). In the low frequency limit
(29) reduces to

( ) ( ) ( )
( )

( )i T

i T k R
k, 0

4

4
, 30L

D
2 2

e w e
ps

w ps
= +

+

which should be compared to equation (21) in the absence of spatial dispersion. Note that (21) exhibits a peculiar
behavior in the limit of small frequency and low temperature. Since in a semiconductor (or, in fact, any dielectric
material)σ(T) rapidly approaches zerowhenT→ 0, we have atT= 0, ε(ω, k= 0)= εL(0) for anyfiniteω. On the
other hand, forT different from zero andω→ 0, equation (21) yields ε=∞ . Thus, in the absence of spatial
dispersion, the two limits ,T→ 0 andω→ 0, do not commute. This discontinuity leads to various problems in
the theory of Casimir-Lifshitz forces and, in particular, to the so called ‘Casimir conundrum’ [33], which
amounts to violation of theNernst heat theorem. It has been alreadymentioned in the literature [43, 44] that this
unphysical ‘conundrum’ is due to the inappropriate neglect of spatial dispersion. Indeed, spatial dispersion is
known to smear out various singularities. For instance, the singularity that exists in the correlation function for
thefluctuating thermal electric field in an infinitemedium [11], gets regularizedwhen spatial dispersion is
accounted for [39]. Similarly, the effect of the abovementioned discontinuity, leading to the ‘conundrum’, will
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disappear when the dielectric function (30) is used, with the subsequent integration over the transverse part of k.
Indeed, the infinite jump of ε, justmentioned above in connectionwith equation (21), disappears due to the
second term in the denominator of (30). Furthermore, if one takes the formal limitRD→∞whenT (and thus
n0,ωp andσ) approaches zero, onefinds that theω→ 0 limit does commutewith theT→ 0 limit so there is no
reason at all to suspect any ‘conundrum’. These qualitative arguments are, of course, not a substitute for a
rigorous calculation of the force, using the expression (30) for the dielectric function.

7. Final remarks

Ourmain purpose was to juxtapose two approaches in the theory of theCasimir-Lifshitz forces, using the simple
example of the force in the non-retarded limit. In the FDT approach, with its emphasis on thefluctuating
currents in themedia as sources of the fields and forces, it is immediately obvious that dissipation in themedia is
indispensable. On the other hand, theQFT approach is based onfinding the electromagneticmodes, while the
surroundingmedium is considered as passive and dissipation-less. For instance, in themonograph [2], written
apparently by the devotees of theQFT approach, in their derivation of the Lifshitz formula the authors state
(p.287): ‘In the above derivation, the small imaginary parts of the photon eigenfrequencies were neglected’.
However, if indeed one could derive the Lifshitz formula for amediumwith strictly real ε(ω) (i.e. no dissipation
at all), it would lead to an immediate conflict with the FDT approachwhich yields an identically zero force in the
absence of any dissipation. This apparent discrepancy is resolved if one realizes that also in theQFT approach an
infinitesimal (positive) ( )Ime w must be introduced, perhaps implicitly.

The necessity of introducing an ( )Im 0e w > has not been enough emphasized in theQFT approach, which
prompted some authors to advocatemodels without any, even infinitesimal, ( )Ime w . Suchmodels violate some
requirements that any realisticmaterialmust fulfill, like theKramers-Kronig relations or some exact sum-rules.
In particular, we criticize the dissipation-less plasmamodel (DPM)with its nonphysical and completely artificial
second order pole in ε(ω) atω= 0. It appears, though, that in recent years the popularity of theDPM is
diminishing and that even its prime promoter, the author of the review [33], does not seem to strongly insist that
thismodel is realistic. But, nevertheless, a significant portion of that review is devoted toDPMand onefinds
claims that themodel is ‘quite reasonable from the theoretical point of view’ or that it has an advantage over the
Drudemodel formetals (20) because the latter violates theNernst heat theorem.More precisely, this violation
occurs only if it is assumed that γ(T) in (20) approaches zero faster than linearly withT, and it is known as
‘Casimir puzzle’ [33] (to be distinguished from the ‘Casimir conundrum’mentioned in the previous section). In
our opinion, neither the ‘success’ of theDPMnor the ‘failure’ of theDrudemodel havemuchmeaning. The
point is that neither theDPMnor theDrudemodel (with γ(T) rapidly approaching zerowhenT→ 0 ) are
applicable at lowT and smallω, when the spatial dispersionmust be taken into account.Moreover, in a real
metal the zero temperature limit of γ(T) is not zero but is some constant γiwhich accounts for the residual
scattering rate on static impurities. It was pointed out in [45–47] that for γi different from zero theDrudemodel
is entirely consistent with thermodynamics. Thus the ‘Casimir puzzle’ can be resolved either by taking into
account spatial dispersion (if it is assumed that γ(T) rapidly approaches zero at low temperatures) or by simply
recalling that in a realmetal there is always some concentration of static impurities. Generally, bothmechanisms
can contribute simultaneously.

In conclusion, one cannot have a reliable theory of theCasimir-Lifshitz forces for realmaterials unless one
solves the problem for a realisticmodel, spatial dispersion included. A reliable theorymust use reliablemodels!
We cannot agree with a statement like ‘The Lifshitz theory is experimentally consistent only if one ignores the
real physical phenomenon- small but quitemeasurable electric conductivity’ [33]. One cannotmake a theory
‘consistent’ by neglecting relevant physical phenomena.We concludewith an amusing historical note:

In the 1970ʼs, during a visit thatHendrik B. G. Casimirmade to the Institute of Theoretical Physics at the
Norwegian Institute of Technology in Trondheim, one of the authors (I.B.), then an assistant at the institute,
attended a lecture that our guest gave on a topic quite different fromwhat has later been known as theCasimir
effect. At that time the effect was actually not verywell known, but in someway I had gotten to know about the
effect. In the discussion session after the lecture, I asked: ‘Is the Casimir effect due to the quantummechanical
field fluctuations, or is it due to the van derWaals forces between themolecules in themedia?’Casimir’s answer
began as follows: ‘I have notmade upmymind’. This answermay be themost precise answer that can be given
even today. The dichotomy of the effect, as we have tried to elucidate above, is one of itsmost characteristic
properties.
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