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a b s t r a c t

The proliferation of automated data collection schemes and the advances in sensorics are increasing the
amount of data we are able to monitor in real-time. However, given the high annotation costs and the
time required by quality inspections, data is often available in an unlabeled form. This is fostering the
use of active learning for the development of soft sensors and predictive models. In production, instead
of performing random inspections to obtain product information, labels are collected by evaluating the
information content of the unlabeled data. Several query strategy frameworks for regression have been
proposed in the literature but most of the focus has been dedicated to the static pool-based scenario. In
this work, we propose a new strategy for the stream-based scenario, where instances are sequentially
offered to the learner, which must instantaneously decide whether to perform the quality check to
obtain the label or discard the instance. The approach is inspired by the optimal experimental design
theory and the iterative aspect of the decision-making process is tackled by setting a threshold on the
informativeness of the unlabeled data points. The proposed approach is evaluated using numerical
simulations and the Tennessee Eastman Process simulator. The results confirm that selecting the
examples suggested by the proposed algorithm allows for a faster reduction in the prediction error.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The term big data seems to be ubiquitous in many fields of
pplication, and industrial production is no different. However, in
roduction, this can be somewhat misleading as it often refers to
rocess data that is obtained through automated data collection
chemes with minimal manual interference. Product-related data
s usually scarcer particularly in high-volume manufacturing due
o costs of inspection. This creates an imbalance in the amount of
vailable data that can at times be quite substantial. Yet in many
ases, predictive modeling relating process variables to product
haracteristics is sought after. Therefore, it will be beneficial
o guide the data collection schemes for product characteristics
hrough a real-time sampling methodology. In current production
nvironments, sampling of the product characteristics is often
erformed at regular time intervals or at random. However, this
pproach can be ineffective as the informativeness of the obser-
ations at the time of sampling is not taken into account. This
roblem is reinforcing the interest of researchers and practition-
rs in active learning. Active learning-based sampling schemes
se an instance selection criterion to strategically select data
oints that allow a faster reduction of the generalization error [1].
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Over the last decades, many active learning approaches have
been proposed, but most of the focus has been dedicated to
the pool-based scenario [2]. Pool-based active learning refers to
a circumstance in which a large amount of unlabeled data is
collected all at once and made available to the learner, which can
then select offline the data points to be labeled with a greedy
approach [3].

In real-time applications for high-volume production, where
samples are processed at a fast pace, evaluating all the available
instances before making a choice might not be realistic. In these
cases, the learner might only have a short time frame to make
the sampling decision. Indeed, if a sample is not selected for the
quality check, it might get lost in the downstream process and no
longer be traceable. This is particularly relevant in high-volume
production, where tracing individual parts is a challenge. Also, in
a chemical process, we might not be able to measure the level
of the variable of interest once a component undergoes a specific
treatment. In these contexts, a much more sensible scenario is
represented by stream-based active learning, which is sometimes
referred to as selective sampling [4]. Stream-based active learning
investigates a scenario where instances are processed one at a
time and the learner has to determine immediately whether to
keep the instance and query its label or discard it. The task is very
similar to the one described by a notorious statistical riddle, the
secretary problem [5], where an observer sequentially interviews
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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certain number of applicants and, after each interview, a deci-
ion must be made on whether the applicant is hired or not. An
xhaustive survey about stream-based active learning has been
roposed by Lughofer [6], who classified existing online active
earning methods by taking into account the data processing
unctionality, the model class (regression or classification), and
any other relevant properties. The survey reveals how stream-
ased active learning methods have been mostly developed in
he classification field. Regression models, on the other hand, are
xtremely useful in the development of soft sensors for hard-to-
easure process variables or in quality control problems where
product’s characteristic is measured on a continuous scale. That

s why active learning in conjunction with regression models is
apturing the interest of many researchers [7–10].
In this paper, we focus on the use of linear regression models.

hese models are well suited for stream-based active learning as
hey can easily be trained on a small number of observations,
eing composed of a small number of parameters. This property
s also very useful if we want to efficiently retrain the model
ach time the design is augmented by including an additional
bservation [11]. Moreover, despite recent advances in terms of
nterpretability for deep learning models, linear regression mod-
ls are still amongst the most easily interpretable models. Indeed,
heir parameters offer a straightforward quantitative contribution
f each specific feature, and their input features are directly
erived from the empirical observations [12]. Besides the direct
nterpretation that comes from the signs and magnitudes of the
oefficients, linear models can also be used to construct confi-
ence intervals on the parameter estimates and variable selection
an also be easily incorporated into such models [13]. Recently,
dditional variable selection methods for linear regression models
ave been suggested by Zhang et al. [14]. Being able to offer a
obust feature importance analysis is particularly important in in-
ustrial problems, where practitioners and engineers might need
o timely intervene in specific parts or components of the process
o ensure safety and operational efficiency. The simplicity of these
odels and the low number of parameters that require tuning is
lso beneficial to foster their adoption and use in applications.
inally, linear regression models allow us to build on the optimal
xperimental design theory and leverage the criteria that are
ypically used to design highly efficient experiments. Despite the
ocus of this paper being dedicated to linear models, nonlinear
odels proved to be extremely useful in a wide variety of appli-
ations. In particular, deep learning models are very effective in
ealing with complex high-dimensional data to perform tasks like
mage recognition, shape extraction, and pose recovery [15–19].

In this work, we propose a novel strategy to perform stream-
ased active learning with linear models. Given the impossi-
ility to rank observations in real-time, we provide an algo-
ithm that only uses unlabeled data to set a threshold on the
nformativeness of data points. Unlabeled data is also exploited
n a semi-supervised manner to increase the predictive perfor-
ance [20]. We show how the proposed approach outperforms

andom sampling and state-of-the-art methods.
The remainder of this paper is organized as follows. In Sec-

ion 2, we define some basic concepts and discuss related works
ocusing on active learning for regression. Section 3 introduces
he proposed sampling strategy. In Section 4 we test our approach
sing numerical simulations; the Tennessee Eastman Process data
s also used to evaluate its performance on a typical industrial
rocess. Finally, Section 5 provides some conclusions.

. Preliminaries

The active learning problem is defined by an imbalance be-
ween the availability of process variables x ∈ Rp and the
2

corresponding labels y ∈ R. In many circumstances, industrial
rocesses are characterized by the presence of easy-to-measure
rocess variables, which are collected through automated collec-
ion schemes, and hard-to-measure variables, whose values are
ifficult to track during routine operations. Large plants, measure-
ent delays, and environments hostile to the survival of mea-
uring devices are all situations where hard-to-measure process
ariables are commonly encountered [21]. Similar situations can
e addressed by utilizing soft sensors based on predictive models
o forecast the true values of hard-to-measure variables. For mod-
ling purposes, we assume that the true underlying relationship
etween the process variables and the product information or
ard-to-measure variable can be expressed with a linear model
f the form

= Xβ+ ϵ (1)

where

y =

⎡⎢⎢⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎢⎣
x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
...

xn1 xn2 · · · xnp

⎤⎥⎥⎥⎥⎦ ,

β =

⎡⎢⎢⎢⎢⎣
β1

β2
...

βp

⎤⎥⎥⎥⎥⎦ , and ϵ =

⎡⎢⎢⎢⎢⎣
ϵ1

ϵ2
...

ϵn

⎤⎥⎥⎥⎥⎦
y is a n×1 vector of response variables, X is a n×p model matrix,
β is a p × 1 vector of regression coefficients, and ϵ is a n × 1
vector representing the noise, with covariance matrix σ 2I. Here n
epresents the total number of observations and p the number of
rocess variables (as well as the number of parameters in a model
ith main effects only and no intercept). If the predictors and
he response are not centered, an intercept term may be added
o the model. In that case, the size of the model matrix becomes
×(p+1), and β a (p+1)×1 vector. When k ≥ p observations are
vailable to the learner, we can obtain a least squares estimator
or β using

ˆ =
(
XTX

)−1 XTy (2)

uch that the fitted linear regression model will be given by ŷ =

β̂ and its residuals by e = y − ŷ. A key distinction between the
xperimental design approach and stream-based active learning
oncerns the assumption we make about the randomness of the
rocess variables. In design of experiments, the x vectors are
ssumed to be fixed while in this case we assume that X is
omposed by random vectors, as the individual observations are
ampled from a process subject to random variation and we are
ot able to set the precise location of the incoming data points.
owever, conditional on the observed X variables, (x1, . . . , xp),
q. (2) still applies. It should be noted that the coefficients β̂
etermined using Eq. (2) may not be stable if the data matrix X is
ffected by multicollinearity. To deal with this issue and achieve
obust results, a solution might be to use a ridge estimate for the
oefficients, β̂ridge =

(
XTX − λI

)−1 XTy. An alternative approach
o tackle multicollinearity is to perform a pre-whitening of X to
emove the dependencies between the components.

We assume a small, labeled training set is initially avail-
ble and can be used to fit the first regression model, as is
ommon practice in active learning applications [22–24]. The
umber of observations provided to the learner usually corre-
ponds to a modest fraction (e.g., 5%) of the total number of
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nstances available [25,26]. After the first model has been built,
he learner is granted a certain operational budget b to augment
he design matrix by including additional observations. Some
pproaches focus on this problem in a pool-based context, in
hich the total number of observations n is represented by a
losed and static set U and the label of a specific data point can al-
ays be queried. Among these approaches, query-by-committee
QBC) [22] suggests building an ensemble of regression models
rained on bootstrap replica of the original training set. Once
he ensemble, or committee, has been built, the variance of the
redictions made by the committee members is computed for
ach unlabeled observation x ∈ U . This metric, also referred
o as ambiguity, is used to rank the instances belonging to the
nlabeled set U by prioritizing the data points with the highest
ariance. Expected model change maximization (EMCM) [26] is
nother noteworthy study that focuses on the observations that
mpact the most the current model’s parameters. The model
hange is defined as the difference between the current model
arameters and the parameters obtained after fitting the model
n the augmented design, including the unlabeled observation
∈ U that is currently under evaluation. Because the learner

oes not have access to the true label for that data point, it
stimates it using the mean prediction of a bootstrap ensemble, as
he one employed by QBC. Another offline approach, inspired by
tatistical process control, combines the Hotelling T 2 statistic and
he squared prediction error of a principal component regression
PCR) model to obtain a sampling evaluation index [23].

Besides the fact that all these methods focus on the pool-based
cenario, it should be noted that the approaches that use ensem-
les may not be well suited for the online scenario, given the
igher computational cost associated with training and updating
he models.

Optimal experimental theory is another field of research that
s intrinsically related to active learning [27,28]. Optimal designs
im to reduce the cost of experimentation by proposing design
atrices that allow a robust parameter estimation with the min-

mum number of runs. The most commonly employed optimality
riteria are D-optimality [29] and A-optimality. Important prop-
rties of a design can be derived from the moment matrix, or
nformation matrix, which is defined as

=
XTX
N

(3)

where N represents the total number of runs. The moment matrix
specifies the distribution of points in space and can be used to
describe the design geometry. In a 2k factorial design, where
variables are expressed in coded units (−1, +1), the moment
matrix is equal to the identity matrix Ik, as the columns of the
design are orthogonal. In an orthogonal design, all the parameters
can be estimated independently of one another [30]. D-optimal
designs try to pursue such property by focusing on good model
parameter estimation. Inverting the moment matrix we obtain
the scaled dispersion matrix given by

M−1
= N

(
XTX

)−1
(4)

This matrix contains the variances and covariances of the esti-
mated coefficients of the regression model, scaled by N/σ 2 [28].
Indeed, if the k observations used to estimate β̂ are i.i.d. and
ϵ ∼ N(0, σ 2I), we have

β̂k|X ∼ N

(
β,

(
XTX

)−1
Σ2

)
(5)

It can be demonstrated how by increasing the determinant of
M, the variances and covariances of the model coefficients are

reduced, leading to a better estimation of β. A D-optimal design is

3

attained by maximizing the determinant of the moment matrix.
Formally, we are seeking the design D∗ that satisfies

max
D

|M (D) | = |M
(
D*)

| (6)

A-optimality is another important optimality criterion that
tries to achieve good parameter estimation by minimizing the
sum of the individual variances of the coefficients. This is achieved
by the design D∗ that satisfies

min
D

tr [M (D)]−1
= tr

[
M

(
D*)]−1

(7)

as the variances of the coefficients can be found on the diagonal
of the scaled dispersion matrix multiplied by σ 2/N . It should
be noted that A-optimality does not consider the covariances
between coefficients.

Recently, the concept of A-optimality has been extended to
stream-based active learning [31,32]. That is, the approach has
been extended outside the design of experiments framework,
assuming X is composed of random vectors and the observations
are sequentially drawn. Riquelme et al. [32] show how to set a
threshold to perform online active learning for linear regression
models by minimizing the sum of the individual variances of β̂.
They state that, in order to achieve A-optimality and minimize
the trace of the inversed scaled dispersion matrix, the eigenvalues
of the moment matrix should be as balanced as possible. This
is because the eigenvalues of XTX represent the trace of XTX,
which is also given by the sum of the norm of the observations.
For this reason, they propose a norm-thresholding algorithm that
pursues A-optimality by selecting observations with large, scaled
norm. The scaling step can be ignored when whitening is used to
remove dependencies. Finally, the design is augmented with the
observations x whose norm exceeds a threshold Γ given by

PD (∥x∥ ≥ Γ ) = α (8)

where α is the ratio of observations we are willing to label out
of the incoming data stream. This value is strongly dependent on
the budget b and the sampling rate used to collect the data.

Another noteworthy approach focusing on stream-based ac-
tive learning for regression tasks has been suggested by Lughofer
and Pratama [33]. In this paper, the authors propose a single-
pass selection criterion that takes into account ignorance about
the input space, uncertainty in predictive model outputs, and
uncertainty in model parameters. The main difference with our
approach is that Lughofer and Pratama focus on the use of Takagi–
Sugeno (TS) fuzzy models [34], combining adaptive error bars
for the model output and A-optimality for the variances of the
estimated parameters. Conversely, our method relies on statistical
linear regression and tries to combine the exploration of lesser-
known input space regions with accurate parameter estimates by
employing the idea of D-optimality.

3. Proposed approach

In this work, we try to improve the approach proposed by
Riquelme et al. [32] by moving from A-optimality to D-optimality.
We believe that taking into account the covariance between the
estimates of the model coefficients might be particularly advan-
tageous with large datasets and models, where many factors
might be active and influence the response. To adapt the D-
optimality criterion to stream-based active learning, we start
from the connection between D-optimality and prediction vari-
ance (PV) highlighted by Myers et al. [28]. The PV at a point
x(m) is the variance of the predictor ŷ(x(m)), which corresponds
to Var(x(m)Tβ̂), and is given by

2 (m)T ( T )−1 (m)
PV (x) = σ x X X x (9)
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here x(m) represents the data point where the variance is being
estimated, expanded to the model form. We can also express the
variance in a scale-free form using the scaled prediction variance
(SPV), which is computed as

SPV (x) = Nx(m)T (
XTX

)−1 x(m) (10)

It should be noted that the SPV is a quadratic form of the
inverse moment matrix M−1, as it can also be written as x(m)TM−1

x(m). Since SPV considers the total number of runs N , it can be
used to assess the quality of a design on a per observation basis.
In the online scenario, we are not interested in comparing designs
of different sizes but rather we investigate the individual con-
tributions of incoming data points to the current design. In this
circumstance, we can discard N and use the unscaled prediction
variance (UPV), which is calculated as

UPV (x) = x(m)T (
XTX

)−1 x(m) (11)

As anticipated in Section 2, we are already given an initial
random design that contains some labeled examples, which is
being used to fit an initial model. Then, we are interested in
augmenting our design by iteratively selecting observations from
a continuous stream. Pursuing D-optimality, we aim at collecting
observations that allow us to maximize the determinant of the
moment matrix M. If we consider that the current design is
composed by k observations, we can decompose the numerator
of the moment matrix (Eq. (3)) before the design is augmented
by including the (k + 1)th observation as

XT
kXk = XT

k+1Xk+1 − xk+1xTk+1 (12)

we can then express the determinant of XT
kXk as the product

of the determinant of the numerator of the augmented moment
matrix and a second term as in

|XT
kXk| = |XT

k+1Xk+1 − xk+1xTk+1|

= |XT
k+1Xk+1||1 − xTk+1

(
XT

k+1Xk+1
)−1 xk+1| (13)

It should be noted that the second term of the above equation
is a scalar, irrespective of the number of variables p and the
number of observations k. From there, we can observe that

|XT
k+1Xk+1|

|XT
kXk|

=
1

1 − xTk+1

(
XT

k+1Xk+1
)−1 xk+1

(14)

From the properties of the hat matrix, which is generally
defined as H = X

(
XTX

)−1 XT, we know that 0 ≤ hjj ≤ 1 is true for
each element hjj of H [35]. It follows that xTk+1

(
XT

k+1Xk+1
)−1 xk+1

≤ 1. Hence, we can conclude that the determinant of the new,
enlarged, training set is maximized by seeking observations x
that maximize xTk+1

(
XT

k+1Xk+1
)−1 xk+1. That is, we will only select

points that maximize the UPV. This may be explained by the
fact that a data point for which we have a large prediction
variance represents a less known region of the input space, and
the regression model will highly benefit from its inclusion in the
design. From Myers et al. [28] we have that maximizing xTk+1(
XT

k+1Xk+1
)−1 xk+1 is equivalent to maximizing xTk+1

(
XT

kXk
)−1

xk+1, which is the UPV using the fitted model before the new
point has been added to the training set.

Finally, following the norm-thresholding approach, we can set
an upper control limit on new observations as

PD

(
xTk+1

(
XT

kXk
)−1 xk+1 ≥ Γ

)
= α (15)

In practice, as suggested by Riquelme et al. [32], when we
start to observe the data points coming from the process, we
allocate a first initial set of points to estimate the distribution
 p

4

of xTk+1

(
XT

kXk
)−1 xk+1. In this work, we used kernel density es-

timation (KDE) with a Gaussian kernel. The initial set is also
used to estimate the sample covariance matrix Σ. By performing
an eigenvalue decomposition we can then express Σ as UΛUT,
here U is an orthogonal matrix, whose ith column corresponds

to the ith eigenvector of Σ, and Λ is a diagonal matrix with the
eigenvalues of Σ on the diagonal. The incoming observations x
can then be whitened using

z = Λ−1/2UTx (16)

Before the whitening step, data can be centered and scaled
using the sample mean and variances obtained from the initial
set. In industrial contexts, when a lot of unlabeled process data is
available in the form of a historical database, this step can also be
performed offline. In this case, by fitting a principal component
analysis (PCA) model to the large unlabeled dataset and using it
to transform the incoming observations, we could improve the
predictive performance using a semi-supervised PCR as suggested
by Frumosu and Kulahci [20]. The use of semi-supervised classifi-
cation models has also received some attention in active-learning
problems [36–38]. Indeed, semi-supervised learning and active
learning are both techniques that deal with scarcity of labels.
However, they do so in two different ways. With semi-supervised
learning, we try to get the most out of the currently available
unlabeled data, whereas with active learning we try to acquire
new data in the most effective way.

Algorithm 1 describes the complete stream-based active learn-
ing procedure with the proposed approach, which might also be
referred to as conditional D-optimality (CDO).

An alternative representation of the CDO active learning rou-
tine is reported in the flowcharts in Figs. 1 and 2. The first
flowchart depicts the warm-up phase, which is represented by
the steps from 1 to 10 of Algorithm 1. The warm-up set is
very important for the algorithm and serves two main purposes.
First, it allows to estimate the covariance matrix of the data,
which is later used for whitening the incoming observations.
Secondly, it provides a set of unlabeled observations that can be
leveraged to estimate the distribution of the UPV. The primary
purpose of the whitening step is to address the multicollinearity
issue in linear regression modeling, which can be aggravated
when dealing with real-world data. The whitening step also en-
sures comparability with the norm-thresholding approach. In-
deed, the norm-thresholding method without whitening would
require computing a weighted norm to deal with dependencies
between the components.

The second flowchart represents the instance selection phase,
the core of the active learning strategy. At this stage, we compute
the UPV for the new observation sampled from the stream and
we compare it to a pre-defined threshold. If the UPV computed
at this point exceeds Γ , we query its label and include the labeled
example in the training set. After the inclusion of the new point,
a new threshold is estimated. The threshold is found by applying
Eq. (15) to the whitened warm-up set V. That is, Xk is substituted
y Z, the currently labeled training set after whitening, and xk+1

is given by each unlabeled data point belonging to V. By doing so,
we obtain a one-dimensional array that has the same cardinality
as the number of observations in V. These statistics are then
used to approximate the distribution of the UPV using KDE and
determine the α-upper percentile.

. Experiments

In the experiments, we compare the proposed method to the
orm-thresholding approach and random sampling. The methods
re tested using numerical simulations and data from a chemical
rocess simulator. All the approaches start from the same labeled
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training set and then they iteratively augment the design until
the budget constraint b is met. The performance of the models
s expressed, in predictive terms, by the root mean squared error
RMSE) of the predictions on a separate test set of n observations

MSE =

√ n∑
i=1

(
ŷi − yi

)2
n

(17)

.1. Numerical simulations

To analyze the validity of the proposed method in the stream-
ased scenario, multiple datasets were created, each with a dif-
erent dimensionality in terms of the number of process variables
. Within each dataset, incoming observations x are distributed
ccording to a joint multivariate normal distribution Np (0, Σ0),

where Σ0 is given by σ 2I, with σ 2
= 1. We ran 50 simulations

for each number of p and, for each simulation run, the true
coefficients are generated as β ∼ U (−5, 5). It should be noted
that β has the same dimensionality as x. This means that, using a
first order model, a coefficient for each process variable needs to
be estimated. The noise is given by ϵ ∼ N(0, 1). For each scenario,
an initial random design X is assumed available to the learner.
We selected p + 2 number of observations for the initial design,
as k ≥ p observations are needed to uniquely estimate β̂.

The learning curves reported in Figs. 3 and 4 show the dif-
ference between the RMSE obtained with the two active learn-
ing strategies, using random sampling as the baseline. For each
learning step, the percentage RMSE difference reported in the
plots is obtained by computing (RMSEActive Learning −RMSERandom)/
RMSERandom*100. This allows us to display a scale-free perfor-
mance metric while comparing the different scenarios. The plots
reporting the learning curves with the absolute RMSE values are
included in the appendix.

The methods are tested using b = 50 and with different
levels for the α shown in Eq. (8), and 15. In the case of random
sampling, α represents the probability of selecting an incoming
observation. That is, each time a new sample arrives, a number
s ∼ U(0, 1) is generated and the data point is only selected if
5

s ≥ 1 − α. The warm-up length w was set to 500 observations
and it is being used by all the methods to estimate the covariance
matrix, which is used for whitening the observations in a semi-
supervised fashion. Moreover, it ensures comparability between
the three strategies by setting the same starting points for the
data streams. The models have been fitted without the intercept
term as both process variables and outcome are centered.

Fig. 3 shows the performance when using an α equal to 10%.
The x-axis reports the learning steps, which correspond to the
inclusion of an additional observation to the training set. Indeed,
when the design is augmented, the model is updated and new
predictions are obtained for the same separate test set. It should
be noted that the RMSE obtained in the first learning step is the
same for the three methods, as all the models start from the same
random design. It can be seen how the performance of the two
active learning methods converges to the one obtained through
random sampling as the number of labeled examples in the train-
ing set increases. Instead, when the number of labeled examples
is lower, active learning proves to be particularly convenient.
However, the proposed approach dominates the other strategies
in all the scenarios. Furthermore, it should be noted how the
norm-thresholding algorithm seems to worsen when more and
more parameters need to be estimated. Instead, CDO consistently
provides enhanced predictive performances. We believe this may
be due to the fact that, by imposing a threshold on the norm,
A-optimality seeks only points that are far from the design’s
center, without ensuring a distance between the data points that
have already been collected. CDO, on the other hand, emphasizes
points that correspond to a poor prediction, which is more likely
associated with a design area that the learner has not thoroughly
explored. As a result, we are less prone to acquire the labels
of data points in locations where we have already collected a
significant number of observations.

It should be noted that in real-time applications the improve-
ment offered by active learning is not as large as the one that can
be obtained in offline scenarios, where we can deterministically
maximize the desired optimality criterion over a closed set of
observations. Moreover, by setting α = 10% we are not being too
demanding in terms of selecting observations with large norms
for the A-optimality or high prediction variances for CDO. In Fig. 4,
we try to widen the gap with the random strategy by lowering α,
in this case up to 0.01. By raising the threshold, we can be more
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Fig. 1. Flowchart of the warm-up phase of the stream-based active learning procedure.
.

emanding in terms of the desirability of the selected instances.
he only drawback is that the algorithms will need to span
ore observations to achieve the desired size for the augmented
esign and meet the budget constraint. We believe this may not
epresent an issue since data is nowadays collected at very high
ampling rates. However, in the final decision concerning the
evel of α, practitioners will need to make a trade-off between the
desired prediction improvement and the time required to select
the new labeled examples.

Fig. 4 reports the learning curves obtained using a smaller
. As expected, the enhancement obtained using the proposed
trategy is increased with respect to the passive random sam-
ling. However, it is worth noting that the improvement is more
vident when the number of parameters is smaller, as the gain
btained in the high-dimensional cases was already significant
ith α = 10%.
Finally, we analyze the computational time required by the

wo active learning strategies. To this extent, we introduce a
easure called average decision time, which quantifies the time

equired to decide whether to query the label of an unlabeled
bservation or discard it. The results obtained on the numer-
cal simulations, for different number of process variables, are
6

Table 1
Average decision times (ms) for the two active learning methods (50 variables)
Strategy 10 variables 20 variables 50 variables 100 variables

CDO 0.00494 0.00527 0.00568 0.00690
Norm-thresholding 0.00635 0.00642 0.00673 0.00716

reported in Table 1. Both active learning strategies are highly
efficient and do not require a high computational time. According
to the CDO strategy, at each iteration we are simply computing
the UPV for the new data point, as in step 15 of Algorithm
1, which requires less time than computing the norm of the
new observation. It should be noted that the average decision
time is lower because the inverse of the whitened moment ma-
trix,

(
ZTZ

)−1
, does not need to be computed at each iteration.

However, it must be updated when the design is augmented by
including an additional labeled observation. Updating and invert-
ing the whitened moment matrix takes, on average, 0.31375 ms
(ms).

From an operational point of view, the average decision time

is a highly relevant metric and it is closely related to the specific
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Fig. 2. Flowchart of the instance selection phase of the stream-based active learning procedure.
Fig. 3. Percentage difference in RMSE between random sampling and the active learning methods, using α = 10% (50 simulations).
ampling frequency of the process. Indeed, to allow for a timely
nstance selection, the decision time should be strictly lower than
he expiry date of the unlabeled data point, which is given by the
ime window where it is possible to query its label.
7

4.2. Tennessee Eastman Process

The Tennessee Eastman Process (TEP) is a commonly used
benchmark in industrial and chemical engineering research and
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Fig. 4. Percentage difference in RMSE between random sampling and the active learning methods, using α = 1% (50 simulations).
Fig. 5. The TEP piping and instrumentation diagram [39].
t has been thoroughly investigated in terms of process dynamics
nd control [40–44]. Recently, it has been also used to validate
ctive learning or soft sensor modeling approaches [45–49]. It
as initially published in 1993 [50] but since then it has been

urther developed and improved. For this study, we used a re-
ently released MATLAB simulator to generate the data [39,51].
e generated 50 datasets with the process running in normal
8

operating conditions, using a sampling rate of approximately
1 min. Fig. 5 depicts the TEP flowchart, which shows how the
process is primarily composed of a reactor, a product condenser
and separator, a stripper, and a compressor.

The TEP, like many other industrial processes, includes some
easy-to-measure process variables whose real value can eas-
ily be monitored online, and some hard-to-measure variables,
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Table 2
Variables of the TEP used as predictors in the regression models.
Number Process variable Code Number Process variable Code

1 A feed XMEAS1 9 Product separator temperature XMEAS11
2 D feed XMEAS2 10 Product separator pressure XMEAS13
3 E feed XMEAS3 11 Product separator underflow XMEAS14
4 A and C feed XMEAS4 12 Stripper pressure XMEAS16
5 Recycle flow XMEAS5 13 Stripper temperature XMEAS18
6 Reactor feed rate XMEAS6 14 Separator steam flow XMEAS19
7 Reactor temperature XMEAS9 15 Reactor cooling water outlet temperature XMEAS21
8 Purge rate XMEAS10 16 Separator cooling water outlet temperature XMEAS22
Fig. 6. Percentage difference in RMSE between random sampling and the active learning methods, using α = 10% (50 simulations).
hich are difficult to track during routine operations. Data-driven
oft sensors are often developed to predict the latter in real-
ime. However, training regression models frequently necessi-
ates a large number of labeled examples, and conducting quality
nspections on chemical products may be costly and time-
onsuming. For this reason, optimizing the sampling strategy
sing active learning is highly desirable.
The 16 process variables shown in Table 2 are often used

s predictors for the hard-to-measure process variables when
esting active learning or soft sensor modeling approaches on the
EP. In most cases, the response variable is one of the composition
easurements, such as the purge or product streams [45,47,48].

n this work, we selected two purge streams (Stream 9 A and
tream 9E) and two product streams (Stream 11D and Stream
1E) as the response to be predicted using the easy-to-measure
ariables.
As in the case of the numerical simulations, 50 datasets have

een generated, and the average RMSE results are presented in
he learning curve plots in Figs. 6 and 7. Most of the experimental
arameters correspond to the ones used in the numerical study.

he number of observations allocated to the first training set is

9

equal to p+2, which in this case corresponds to 18. The warm-up
length w is equal to 500 and the budget b is set to 50. The main
difference from the models used in Section 4.1 is that, in this case,
all the models include the intercept term.

We can see in Fig. 6 how the results obtained in Section 4.1
are still valid with data coming from a realistic industrial pro-
cess simulator. Indeed, both the random and norm-thresholding
approaches are outperformed by the proposed strategy. With
regards to the level of α, the behavior observed in the numerical
study does not seem to be altered and, as the threshold is raised,
the performance gap between random sampling and active learn-
ing strategies widens. The plots of the learning curves with the
absolute RMSE values are included in the appendix.

The plots in Fig. 8 show the residuals related to the first
composition measurements analyzed, stream A of the purge. For
illustrative purposes, the residuals refer to a smaller test set, com-
posed of 100 observations. The first plot (a) shows the residuals
obtained with the first random design, which is common to all
the compared approaches. The remaining plots (b–d) illustrate
the residuals obtained after five learning steps with each strategy.

In general, we can see how the predictive performance improves
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Fig. 7. Percentage difference in RMSE between random sampling and the active learning methods, using α = 1% (50 simulations).

Fig. 8. Residuals of the Stream 9 A predictions: with the initial training set (a) and after augmenting the design with 5 additional labeled examples with the different
methods (b–d) (one simulation with α = 1%).

10
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Fig. 9. Residuals of the Stream 11D predictions: with the initial training set (a) and after augmenting the design with 10 additional labeled examples with the
ifferent methods (b–d) (one simulation with α = 1%).
hen more observations are included in the design. However, the
redictions obtained with the proposed strategy are significantly
etter than the ones obtained with random sampling and norm-
hresholding. Indeed, it should be noted how the RMSE obtained
ith the fifth model using CDO is 55 percent lower than the
MSE obtained with random sampling, and 23 percent lower than
he RMSE obtained with the alternative active learning scheme.
inally, the improvement of CDO from the initial RMSE is higher
han 65 percent.

It should be noted how a simple linear regression model fitted
n a small training set can achieve compelling prediction results
hen the labeled examples are appropriately selected. This is true
ven when testing our approach on data from the TEP, which is
haracterized by highly nonlinear relationships.
Fig. 9 shows the predictions obtained for stream D of the

roduct. In this case, to offer an additional view, we compared
he models obtained after 10 learning steps. It can be seen how
he behavior of the different schemes follows the same trend
bserved in Fig. 8. Indeed, after 10 iterations, the RMSE obtained
ith CDO is 18 percent lower than the one obtained by norm-
hresholding and 30 percent lower than the one obtained with
andom sampling. From the initial design, the RMSE is reduced
y more than 60 percent with CDO.

. Conclusion

In many industrial processes and real-life applications, data is
ften abundant only in an unlabeled form. Moreover, the pro-
ibitive cost required by quality inspections and the time re-
uired by manual annotation makes it unfeasible to label each
ata point with its quality characteristic. In these cases, active
earning can significantly improve the predictive performance of
egression models by smartly selecting the instances to include
11
in the training set. In situations where many observations are
sequentially processed, it is necessary to provide a real-time
sampling strategy for selecting the most informative instances.
In this paper, we propose an optimal strategy for performing
stream-based active learning with linear regression models. Two
case studies, one using numerical simulations and the other one
using the TEP, show that the proposed approach offers improved
predictive performance and reduces the prediction error faster.
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Appendix

The plots in Figs. 10–13 report the learning curves showing
the RMSE values, without using random sampling as baseline.
The plots begin from the third learning step to better show the
differences between the curves. As all the models start from the
same random design, the RMSE obtained in the first learning step
is the same for the three methods as it is shown in Figs. 3, 4 and
6, 7.
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Fig. 10. Learning curves of different methods on numerical simulations with α = 10% (50 simulations).

Fig. 11. Learning curves of different methods on numerical simulations with α = 1% (50 simulations).

12



D. Cacciarelli, M. Kulahci and J.S. Tyssedal Knowledge-Based Systems 254 (2022) 109664

Fig. 12. Learning curves of different methods on TEP data with α = 10% (50 simulations).

Fig. 13. Learning curves of different methods on TEP data with α = 1% (50 simulations).
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