
Structure preserving neural networks based on ODEs

Davide Murari∗ Elena Celledoni ∗ Brynjulf Owren∗ Carola-Bibiane Schönlieb†

Ferdia Sherry†

Neural networks have gained popularity due to their ability to provide accurate solutions in various
applications. Generally, the problems in which they are effective can be phrased as approximation
tasks in high-dimensional spaces. This success is often based on experimental evidence, and
more theoretical insight is needed. Recently, many authors have considered the design of deep
learning architectures that satisfy certain mathematical properties such as stability, symplecticity,
volume preservation, or constraints on the Lipschitz constant, [17, 14, 9, 30, 8, 10, 32, 15, 34, 36].
The networks presented in these articles are often quite specific since they have been derived ad
hoc, typically ensuring only one particular property and without following a more general procedure.

There are multiple situations where one could be interested in networks with some prescribed
structure. Referring to F : X → Y as the function approximated by the network, we report here
three cases:

1. when F has some known property that is important for the application of interest,
2. when the geometry of X and Y prescribes a particular structure for F ,
3. when we can approximate F sufficiently accurately with functions in G, a family of func-

tions with a property that makes them well suited to design the network layers.

This manuscript describes a general and systematic way to impose desired mathematical structures
on neural networks. We remark that the interest in preserving the specific structure of a function
can be found in the field of geometric numerical integration, [13, 18, 24, 16]. For this reason,
the approach we introduce is based on defining the network layers as a (structure-preserving)
discretisation of the solutions of a specific differential equation. To illustrate the methodology, we
present the derivation of three structured neural networks. Each of them represents one of the three
situations reported above.

There have been multiple attempts to formulate unifying principles for designing neural net-
works. We mention in particular the continuous-in-time interpretation of residual neural networks
(see, e.g., [35, 22, 5, 29, 2]) on which our work builds upon. Residual neural networks (ResNets)
are compositions of parametric maps that are either linear or of the form

Rni ∋ x 7→ fθi(x) = x+ hΛ(θi, x) ∈ Rni+1 . (1)

A typical expression for Λ is Λ(θi, x) = Σ(Aix+bi) with Σ(z) = [σ(z1), ..., σ(zn)] and σ : R → R.
The continuous-in-time interpretation of ResNets arises noticing that if ni = ni+1, fθi coincides
with one h−step of the explicit Euler method applied to ẋ(t) = Λ(θ(t), x(t)). In this work, we
consider time-switching systems of the form

ẋ(t) = Λ(θ(t), x(t)) = fs(t)(x(t)), s : [0, T ] → {1, ..., N}, fi ∈ F , (2)

with s being piecewise constant (see, e.g., [28, 19]), and F a family of parametric vector fields. More
concretely, we consider vector fields with weight functions that are piecewise constant in time. We
introduce time-switching dynamical systems in more detail in Appendix A.

∗Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway (da-
vide.murari@ntnu.no,elena.celledoni@ntnu.no, brynjulf.owren@ntnu.no)

†Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road,
Cambridge CB3 0WA, UK. (cbs31@cam.ac.uk, fs436@cam.ac.uk)

DLDE Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS 2022).



This interpretation of ResNets gives the foundation of the approach we present. Indeed, we propose
to modify two steps in the continuous-in-time interpretation of ResNets. We focus on properties of
functions preserved under composition, such as being 1−Lipschitz or volume-preserving. Let us
call P the property of interest. Then our strategy to define a neural network satisfying P consists in

1. finding a family F of parametric vector fields having flow maps that satisfy P ,
2. replacing the explicit Euler method in (1) with suitable numerical methods that reproduce

P also at the discrete level.

Figure 1: ResNet with two dynamical blocks and three linear layers. L1,L2,L3 are linear maps.

As with classical ResNets, we also introduce linear layers in the network, see Figure 1. For this
reason, we introduce the name “dynamical blocks” to refer only to the groups of layers obtained
from an ODE. We remark that one can still get networks with the desired structure by constraining
the linear layers to preserve the desired property P .

The key reason that motivates our approach is that it is often easier to impose a property on
a vector field than on its flow map. The additional advantage of this strategy is that the research
areas of dynamical systems and numerical analysis are well developed. One can thus exploit
this knowledge to design neural networks that reproduce the desired structure. Moreover, this
approach enables us to derive new structured networks systematically and collocate other existing
architectures into a more general setting, making their analysis easier (see [7]).

1 Volume-preserving neural networks

We start with the first case of interest. We focus, in particular, on volume-preserving functions.
For this reason, we do not allow for dimensionality changes throughout the network. In this case,
defining the approximating network based on switching systems and splitting methods can be a
flexible strategy. Consider the switching system defined by ż(t) = fs(t)(z(t)) ∈ Rn where for
every value s(t) = i, the vector field fi has a specific partitioning that makes it divergence-free. For
example, if we have n = 2m,

fs(t)(z) =

[
us(t)(z[m :])
vs(t)(z[: m])

]
, ui, vj : Rm → Rm

satisfies such a condition, and its flow map will be volume-preserving. We can numerically integrate
such a vector field while preserving this property. Indeed, we can compose the exact flow maps of
the two volume-preserving vector fields

f1
s(t)(z) =

[
us(t)(z[m :])

0

]
, f2

s(t)(z) =

[
0

vs(t)(z[: m])

]
, fs(t) = f1

s(t) + f2
s(t),

i.e. we can apply a splitting method to approximate the solutions (see [24]). This approach gives
architectures that are close to the ones of RevNets (see, e.g., [10]). A particular class of these blocks
can be obtained with second-order ODEs as ẍ(t) = fs(t)(x(t)) and, in particular, with second-order
conservative ODEs like ẍ(t) = ∇Vs(t)(x(t)). The vector fields we reported in this section are quite
general in order to illustrate the freedom one has in the design of the networks. However, we propose
a specific choice of vector field in Appendix B for a better understanding.

2 Mass-preserving neural networks

Some function approximation problems deal with data having a particular structure. As an
example, we now focus on problems where the target function F : Rn → Rm is known to satisfy

2



Tnx :=
∑n

i=1 xi = TmF (x) :=
∑m

i=1 F (x)i. We refer to functions of this type as mass preserving
functions (see [3]). The neural network approximating F should also be mass preserving to generate
interpretable outputs.

We interpret the network layers as discrete flow maps of specific vector fields. A vector field
X ∈ X(Rn) whose flow map preserves the sum of the components of the state vector is one
having a linear first integral g(x) = 1Tx =

∑n
i=1 xi, 1 = [1, ..., 1]T ∈ Rn. Any vector field X

having g as a conserved quantity can be written in the form X(x) = S(x)1 for a skew-symmetric
matrix-valued function S : Rn → Rn×n (see [25]). Thus, we can model the network as a suitable
time discretisation of an ODE of the form

ẏ(t) = (Â(y)− Â(y)T )1, Â : Rn → Rn×n. (3)

The matrix function Â is upper triangular, and to model it we reshape it into the parametric vector-
function A(x) = WTΣ(V x+ v) ∈ Rn(n−1)/2. Furthermore, as presented in [12, Chapter 4], every
Runge–Kutta method preserves linear first integrals. Thus, one can model mass preserving neural
networks by composing layers of the following types:

1. Lifting layers: L : Rk → Rk+s, L(x1, ..., xk) = (x1, ..., xk, 0, ..., 0),

2. Projection layers: P : Rk+s → Rk, P (x1, ..., xk, xk+1, ..., xk+s) = (x1 + o, ..., xk + o)
with o =

∑s
i=1 xk+i/s,

3. Dynamical blocks: one-step explicit Euler discretisations of (3).

A more explicit presentation of these dynamical blocks can be found in Appendix B. To test the
neural network architecture, we approximate the flow map of the ODE

ẏ =

 0 −y3y
2
1 y2y3

y3y
2
1 0 − sin y1

−y2y3 sin y1 0

1 = X(y). (4)

We approximate the time−∆t flow map of such a system, with ∆t = 1/40. The network is
trained in a recurrent manner (see, e.g., [8, 6]). As training data we use tuples of the form
{(xi = y0i , y

1
i , ..., y

M
i )}i=1,...,N , where yj+1

i = Ψ∆t(yji ) is an accurate approximation of the exact
time-∆t flow of X . Figure 2 compares the results obtained with an accurate approximation of the
true solution of (4) to those coming from the mass-preserving neural network.

Figure 2: One test trajectory up to time T = 0.5. We report the sum of the components, which is also
preserved by the network. The components of the vector (y1, y2, y3) are the network predictions.

3 Lipschitz constrained neural networks

We now focus on the problem of classifying points of a set X ⊂ Rn into its C classes. This problem
consists hence in approximating the function ℓ : X → {1, ..., C} that assigns all the points of X to

3



their correct classes. Neural networks can provide accurate solutions to this problem, but they can
be very sensitive to suitable input perturbations called adversarial attacks (see [31, 23, 4, 11]). In
[33], the authors characterise this sensitivity problem mathematically. Calling N the approximating
network and MN (x) = N (x)T eℓ(x) − maxj ̸=ℓ(x) N (x)T ej its margin at x ∈ X , they show that
N classifies as x the points in Bε(x) = {y ∈ Rn : ∥y − x∥2 < ε} if MN (x) ≥

√
2εLip(N )3.

Motivated by this result, we present a strategy to constrain the Lipschitz constant of ResNets to the
value of 1. To show the flexibility of the proposed framework and obtain expressive networks, we
impose such property without relying only on 1−Lipschitz layers, differently from [5, 36, 26].

Consider the two families of vector fields

Fc = {−ATΣ(Ax+ b) ∈ Rn : ATA = In}, σ(s) = max{x, x/2}, and
F = {X ∈ X(Rn) : Lip(X) ≤ 1}.

Here we denote with In ∈ Rn×n the identity matrix. We remark that −ATΣ(Ax + b) =
−∇xV (x,A, b) for V (x,A, b) = 1TΓ(Ax + b) that is strongly-convex in the x variable. Here we
denote with 1 = [1, ..., 1] ∈ Rn, and Γ(z) = [γ(z1), ..., γ(zn)] with γ′ = σ. The strong-convexity
of V is fundamental in our derivation.

With suitable step restrictions, the composition of the Euler steps Ψh1
1 (x) = x − h1A

TΣ(Ax + b)

and Ψh2
2 (x) = x + h2X(x), X ∈ F , can be made 1-Lipschitz. Indeed, by direct computation, we

get

Lip(Ψh1
1 ◦Ψh2

2 ) ≤ Lip(Ψh1
1 ) · Lip(Ψh2

2 ) ≤
√

1− h1 + h2
1(1 + h2). (5)

Thus, the composition Ψh2
2 ◦ Ψh1

1 is 1−Lipschitz if the step sizes are properly chosen. The
derivation of (5) is presented in detail in Appendix C. Repeating a similar reasoning for
Ψ

h2/2
2 ◦ Ψ

h1/2
1 ◦ Ψ

h2/2
2 ◦ Ψ

h1/2
1 , one can obtain weaker restrictions on the step sizes. This is the

solution we adopt for the following experiment.

We now apply this reasoning to design a neural network with increased robustness to L2-
PGD adversarial attacks on the CIFAR-10 dataset. Instead of considering the generic F , we
work with the subfamily Fe = {Σ(Bx + c) : B ∈ Rn×n, ∥B∥2 ≤ 1, c ∈ Rn}. The step
sizes are constrained to satisfy the 1−Lipschitz constraint derived above. Weight orthogonality
comes from the regularisers proposed in [34]. The L2-PGD adversarial attacks are generated with
Foolbox [27]. We compare the results with a baseline ResNet characterised by updates of the form
x 7→ x + BΣ(Ax + b), and hence having approximately double the number of weights. Table
1 highlights that for Lipschitz constrained ResNets, the accuracy obtained for highly perturbed
images is considerably better than the one with the baseline ResNet. The lower accuracy for clean
images is due to the constraints we impose on the network and the reduced number of weights,
making it harder to train. On the other hand, other alternation strategies and constraining techniques
might lead to better results on this side.

Type ε = 0.0 ε = 0.06 ε = 0.14 ε = 0.3 ε = 0.5 ε = 1.0

Lipschitz, Margin = 0.07 0.808 0.790 0.775 0.739 0.678 0.516
Lipschitz, Margin = 0.15 0.796 0.782 0.761 0.718 0.657 0.505
Baseline, Margin = 0.07 0.896 0.870 0.816 0.670 0.461 0.114
Baseline, Margin = 0.15 0.903 0.856 0.790 0.642 0.424 0.073

Table 1: We denote with ε the magnitude of the adversarial perturbations. With ‘Lipschitz’ we refer
to Lipschitz constrained networks. All the networks have been trained with hinge loss function [1]
for different margin values.

3Here we denote with ∥ · ∥2 the Euclidean norm of Rn, with ei = [0, ..., 0, 1, 0, ..., 0] ∈ Rn the i − th
canonical basis vector and Lip(N ) is the Lipschitz constant of N .

4



4 Conclusion

In this work, we have introduced a framework to combine the design of ODE models with the choice
of proper numerical methods to obtain neural networks with prescribed properties. We illustrate the
procedure deriving three families of structured networks. Some numerical experiments also support
their practicality.

References
[1] Hinge Loss Pytorch. https://pytorch.org/docs/stable/generated/torch.nn.

MultiMarginLoss.html.

[2] A. AGRACHEV AND A. SARYCHEV, Control on the manifolds of mappings with a view to the
deep learning, Journal of Dynamical and Control Systems, (2021), pp. 1–20.

[3] S. BLANES, A. ISERLES, AND S. MACNAMARA, Positivity-preserving methods for popula-
tion models, arXiv preprint arXiv:2102.08242, (2021).

[4] N. CARLINI AND D. WAGNER, Towards evaluating the robustness of neural networks, in 2017
IEEE Symposium on Security and Privacy, IEEE, 2017, pp. 39–57.

[5] E. CELLEDONI, M. J. EHRHARDT, C. ETMANN, R. I. MCLACHLAN, B. OWREN, C.-B.
SCHÖNLIEB, AND F. SHERRY, Structure-preserving deep learning, European Journal of Ap-
plied Mathematics, 32 (2021), pp. 888–936.

[6] E. CELLEDONI, A. LEONE, D. MURARI, AND B. OWREN, Learning Hamiltonians of con-
strained mechanical systems, Journal of Computational and Applied Mathematics, 417 (2023),
p. 114608.

[7] E. CELLEDONI, D. MURARI, B. OWREN, C.-B. SCHÖNLIEB, AND F. SHERRY, Dynamical
systems’ based neural networks, arXiv preprint arXiv:2210.02373, (2022).

[8] Z. CHEN, J. ZHANG, M. ARJOVSKY, AND L. BOTTOU, Symplectic Recurrent Neural Net-
works, in International Conference on Learning Representations, 2020.

[9] C. L. GALIMBERTI, L. FURIERI, L. XU, AND G. FERRARI-TRECATE, Hamiltonian
deep neural networks guaranteeing non-vanishing gradients by design, arXiv preprint
arXiv:2105.13205, (2021).

[10] A. N. GOMEZ, M. REN, R. URTASUN, AND R. B. GROSSE, The reversible residual network:
Backpropagation without storing activations, Advances in Neural Information Processing Sys-
tems, 30 (2017).

[11] I. J. GOODFELLOW, J. SHLENS, AND C. SZEGEDY, Explaining and harnessing adversar-
ial examples, in 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,
eds., 2015.

[12] E. HAIER, C. LUBICH, AND G. WANNER, Geometric Numerical integration: structure-
preserving algorithms for ordinary differential equations, Springer, 2006.

[13] E. HAIRER, M. HOCHBRUCK, A. ISERLES, AND C. LUBICH, Geometric numerical integra-
tion, Oberwolfach Reports, 3 (2006), pp. 805–882.

[14] J. HERTRICH, S. NEUMAYER, AND G. STEIDL, Convolutional proximal neural networks and
plug-and-play algorithms, Linear Algebra and its Applications, 631 (2021), pp. 203–234.

[15] P. JIN, Z. ZHANG, A. ZHU, Y. TANG, AND G. E. KARNIADAKIS, SympNets: Intrinsic
structure-preserving symplectic networks for identifying Hamiltonian systems, Neural Net-
works, 132 (2020), pp. 166–179.

[16] F. KANG AND S. ZAI-JIU, Volume-preserving algorithms for source-free dynamical systems,
Numerische Mathematik, 71 (1995), pp. 451–463.

5

https://pytorch.org/docs/stable/generated/torch.nn.MultiMarginLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.MultiMarginLoss.html


[17] Y. LECUN, B. BOSER, J. S. DENKER, D. HENDERSON, R. E. HOWARD, W. HUBBARD,
AND L. D. JACKEL, Backpropagation applied to handwritten zip code recognition, Neural
computation, 1 (1989), pp. 541–551.

[18] B. LEIMKUHLER AND S. REICH, Simulating Hamiltonian dynamics, no. 14, Cambridge Uni-
versity Press, 2004.

[19] D. LIBERZON, Switching in systems and control, vol. 190, Springer, 2003.

[20] , Switched systems, in Handbook of networked and embedded control systems, Springer,
2005, pp. 559–574.

[21] D. LIBERZON AND A. S. MORSE, Basic problems in stability and design of switched systems,
IEEE Control Systems Magazine, 19 (1999), pp. 59–70.

[22] Y. LU, A. ZHONG, Q. LI, AND B. DONG, Beyond finite layer neural networks: Bridging deep
architectures and numerical differential equations, in International Conference on Machine
Learning, PMLR, 2018, pp. 3276–3285.

[23] A. MADRY, A. MAKELOV, L. SCHMIDT, D. TSIPRAS, AND A. VLADU, Towards Deep
Learning Models Resistant to Adversarial Attacks, in International Conference on Learning
Representations, 2018.

[24] R. I. MCLACHLAN AND G. R. W. QUISPEL, Splitting methods, Acta Numerica, 11 (2002),
pp. 341–434.

[25] R. I. MCLACHLAN, G. R. W. QUISPEL, AND N. ROBIDOUX, Geometric integration us-
ing discrete gradients, Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 357 (1999), pp. 1021–1045.

[26] L. MEUNIER, B. DELATTRE, A. ARAUJO, AND A. ALLAUZEN, Scalable Lipschitz Residual
Networks with Convex Potential Flows, arXiv preprint arXiv:2110.12690, (2021).

[27] J. RAUBER, W. BRENDEL, AND M. BETHGE, Foolbox: A Python toolbox to benchmark the
robustness of machine learning models, arXiv preprint arXiv:1707.04131, (2017).

[28] D. RUIZ-BALET AND E. ZUAZUA, Neural ODE control for classification, approximation and
transport, arXiv preprint arXiv:2104.05278, (2021).

[29] L. RUTHOTTO AND E. HABER, Deep neural networks motivated by partial differential equa-
tions, Journal of Mathematical Imaging and Vision, 62 (2020), pp. 352–364.

[30] B. SMETS, J. PORTEGIES, E. J. BEKKERS, AND R. DUITS, PDE-based group equivariant
convolutional neural networks, Journal of Mathematical Imaging and Vision, (2022), pp. 1–31.

[31] C. SZEGEDY, W. ZAREMBA, I. SUTSKEVER, J. BRUNA, D. ERHAN, I. J. GOODFELLOW,
AND R. FERGUS, Intriguing properties of neural networks, CoRR, abs/1312.6199 (2014).

[32] A. TROCKMAN AND J. Z. KOLTER, Orthogonalizing Convolutional Layers with the Cayley
Transform, in International Conference on Learning Representations, 2021.

[33] Y. TSUZUKU, I. SATO, AND M. SUGIYAMA, Lipschitz-margin training: Scalable certification
of perturbation invariance for deep neural network, Advances in Neural Information Process-
ing Systems, 31 (2018).

[34] J. WANG, Y. CHEN, R. CHAKRABORTY, AND S. X. YU, Orthogonal convolutional neu-
ral networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 11505–11515.

[35] E. WEINAN, A proposal on machine learning via dynamical systems, Communications in
Mathematics and Statistics, 1 (2017), pp. 1–11.

[36] M. ZAKWAN, L. XU, AND G. FERRARI-TRECATE, On Robust Classification using Contrac-
tive Hamiltonian Neural ODEs, arXiv preprint arXiv:2203.11805, (2022).

[37] M. ZELIKIN, A. A. AGRACHEV, Y. SACHKOV, AND Y. L. SACHKOV, Control theory from
the geometric viewpoint, vol. 2, Springer Science & Business Media, 2004.

6



A Time-switching systems

In this appendix, we briefly introduce the notion of time-switching systems that has an essential
structural role in the framework we present. A switching system is a dynamical system that belongs
to the class of hybrid systems, i.e. systems having both a discrete-time behaviour and a continuous
one. There is a broad literature about them, see e.g. [19],[21], but not all the theory is necessary
for our discussion. More precisely, we work with time-switching systems. Their dynamics can be
characterised by ODEs of the form

ż(t) = fs(t)(z(t)) ∈ Rn,

where s : R+ → {1, ..., N} is a piecewise constant time-switching signal. This means that for each
value s(t̄) the dynamics is ruled by the vector field fi ∈ X(Rn), where i = s(t̄). This switching
signal defines how the dynamics switches from one vector field to another. Usually, the vector
fields among which the switching occurs have similar expressions, which is also the case of how we
employ them to define neural networks. In the language typical to geometric control theory ([37]),
these systems are called affine control systems, and they are expressed as

ż(t) =

N∑
i=1

χi(t)fi(z(t)),

with

χi(t) :=

{
1, s(t) = i,

0, s(t) ̸= i.

When we consider the dynamics in the time interval [0, T ], supposing that the time instants at which
s(t) has a discontinuity are t1 < t2 < ... < tM−1, we denote with ΦT (x) = Φ∆tM

fM
◦ ... ◦ Φ∆t1

f1
(x)

the final position of the point x. Here, with Φ∆ti
fi

(x) we denote the ∆ti-solution of the Cauchy
problem {

ż(t) = fi(z(t)),

z(0) = x0.
(6)

Standard existence and uniqueness results of solutions to ODEs are based on the continuity in time
and Lipschitz regularity in the spatial variable. However, continuity in time is a requirement that
becomes too restrictive in the setting of switching systems. Thus, we need to allow for less regular
solutions to extend existence and uniqueness results to these problems as reported in theorem A.1

Theorem A.1 (Carathéodory existence and uniqueness [20]). Consider the non-autonomous ODE{
ẏ(t) = f(t, y(t)),

y(t0) = t0,

and let t ∈ I ⊂ [t0,+∞). Assume f satisfies

• f(t, y) is Lipschitz-continuous in y for all fixed t ∈ I ,

• f(t, y) is piecewise-continuous in time.

Then, the ODE is satisfied almost everywhere by one and only one function t 7→ y(t), which is
absolutely continuous.

In other terms, if the regularity assumptions on f hold, there is only one solution to the integral
equation

y(t) = y0 +

∫ t

t0

f(s, y(s))ds,

which is differentiable almost everywhere.

The time-switching systems we consider, as a consequence, admit a unique solution if the
ODE in (6) has a unique solution for any subsystem fi. This is not a problem in the setting we
consider, since we define neural networks starting from Lipschitz-continuous vector fields.

7



B Some explicit constructions of dynamical blocks

The three examples presented in the manuscript rely on constructing dynamical blocks that satisfy
some desired properties. The presentation is meant to be quite general, without specifying precisely
the expressions of the dynamical blocks one could use. To increase the understanding of the strategy,
we illustrate briefly three explicitly written dynamical blocks, one for each of the examples.

B.1 Volume-preserving dynamical blocks

We now specialise the reasoning of section 1. We propose a particular choice of partitioned vector
field as a fundamental element of these dynamical blocks. Consider y = [x, v] ∈ R2m, then we can
define the two vector fields

f1
θ1(y) =

[
Σ(Av + a)

0

]
, f2

θ2(z) =

[
0

Σ(Bx+ b)

]
,

with θ1 = (A, a) and θ2 = (B, b). These two vector fields are divergence-free; hence, their flow
maps are volume-preserving. We can therefore build volume-preserving dynamical blocks compos-
ing flow maps of the form

Ψh
θ1(x, v) = [x+ hΣ(Av + a), v],

Ψh
θ2(x

′, v′) = [x′, v′ + hΣ(Bx′ + b)].

This corresponds to alternating explicit-Euler steps of the vector fields f1
θ1

and f2
θ2

. Indeed, these
steps coincide with the exact flow maps of the two vector fields and are hence volume-preserving.
More explicitly, the volume-preserving dynamical blocks can be built by composing maps of the
form

y =

[
x
v

]
7→ T(θ1,θ2)(y) = ynew =

[
xnew
vnew

]
=

[
x+ hΣ(Av + a)

v + hΣ(Bxnew + b)

]
.

We remark that along the network, the weights θ1 and θ2 can be changed to improve the network
expressivity.

B.2 Mass-preserving dynamical blocks

In section 2, we have already presented how we model the skew-symmetric matrix-valued functions
defining the dynamics. For clarity, we repeat it here and show explicitly how the mass-preserving
dynamical blocks can be defined. We recall that a differential equation ẏ(t) = f(y(t)) on Rn is said
to have a first integral g : Rn → R if ∇g(y) · f(y) ≡ 0. Thus mass-preserving ODEs admit the
linear first integral g(y) = 1T y if and only if they can be rewritten as

ẏ(t) = (Â(y)− Â(y)T )1

with Â : Rn → Rn×n that is an upper triangular matrix. To model Â, we flatten it into a vector
A(y) ∈ Rn(n−1)/2 and we choose to model A with a feedforward neural network as

Aθ(y) = WTΣ(V y + v)

for some weights θ = (W,V, v). To highlight the dependency on these parameters, we add a θ to
the notation also in Âθ. To obtain the mass-preserving dynamical blocks, it only remains to find a
numerical method that preserves the linear first integral g also at a discrete level. All Runge–Kutta
methods do that, and we can prove it for explicit-Euler in a single line. Indeed, if for a vector field
f ∈ X(Rn) we have 0 = bT f(y) with b ∈ Rn, then g(y) = bT y is a first integral of f and doing
one Euler step for f we get

g(yn+1) = bT yn+1 = bT (yn + hf(yn)) = bT yn + hbT f(yn) = bT yn = g(yn).

Therefore, we see that g is conserved by the explicit Euler method. We conclude that a way to define
mass-preserving dynamical blocks is by composing maps of the form

y 7→ ynew = Tθ(y) = y + h(Âθ(y)− Âθ(y)
T )1,

where θ is possibly changed along the network.

8



B.3 1-Lipschitz dynamical blocks

We have already reported a specific choice for the layers in 1-Lipschitz networks in section 3. We
hence just briefly summarise the reasoning here. Let us first introduce the vector fields that we work
with

f c
θ1(y) = −ATΣ(Ay + a), fe

θ2(y) = Σ(By + b), θ1 = (A, a), θ2 = (B, b).

We also constrain the weights as ATA = I and ∥B∥2 ≤ 1. The strategy we implement and propose
in order to construct 1-Lipschitz dynamical blocks, is to compose explicit-Euler steps defined as

Ψh1

θ1
(y) = y − h1A

TΣ(AT y + a)

Ψh2

θ2
(y) = y +Σ(By + b).

Hence the Lipschitz dynamical blocks can be obtained composing maps of the form

T(θ1,θ2) = Ψh1

θ1
◦Ψh2

θ2

where we can also change the weights θ1 and θ2 along the layers. However, to have T(θ1,θ2) that
is 1−Lipschitz, we need to impose the step-size restriction reported in equation (5), and derived in
more detail in Appendix C. This restriction can be imposed in various ways. For example, in case of
trainable time-steps one can project the time steps after every optimisation step. It is also an option
to fix them so that they satisfy the constraint.

C Detailed derivation of Lipschitz bounds

In this appendix, we present a more detailed derivation of the bound on the Lipschitz constant of
a dynamical block reported in equation (5). This estimate aims to ensure that the composition of
possibly expansive flow maps and contractive ones gives a 1-Lipschitz map. The two flow maps we
consider are

Ψh1
1 (x) = x− h1A

TΣ(Ax+ b), σ(x) = max{x, x/2}, ATA = I,

Ψh2
2 (y) = y + h2X(y), Lip(X) ≤ 1.

We first evaluate the bounds on the individual Lipschitz constants. We start with Ψh1
1 , introducing

the notation
δ(A, b, x, y) = ATΣ(Ay + b)−ATΣ(Ax+ b)

to get

∥Ψh1
1 (y)−Ψh1

1 (x)∥2 = ⟨y − x− h1δ(A, b, x, y), y − x− h1δ(A, b, x, y)⟩
= ∥y − x∥2 − 2h1⟨y − x, δ(A, b, x, y)⟩+ h2

1∥δ(A, b, x, y)∥2

Analysing the single terms, we notice that

−h1⟨y − x, δ(A, b, x, y)⟩ = −h1⟨y − x,ATΣ(Ay + b)−ATΣ(Ax+ b)⟩

≤ −h1
λmin(A

TA)

2
∥y − x∥2

by the strong convexity of σ. Here we denote the smallest eigenvalue of B with λmin(B). Then it is
also true that

h2
1∥δ(A, b, x, y)∥2 = h2

1∥ATΣ(Ay + b)−ATΣ(Ax+ b)∥ ≤ h2
1∥A∥2∥y − x∥2 ≤ h2

1∥y − x∥2.

This derivation leads to the final estimate

∥Ψh1
1 (y)−Ψh1

1 (x)∥2 ≤ (1− h1λmin(A
TA) + h2

1)∥y − x∥2 = (1− h1 + h2
1)∥y − x∥2

if we suppose ATA = I . On the other hand, for the discrete flow map Ψh2
2 , we have

∥Ψh2
2 (y)−Ψh2

2 (x)∥ = ∥y + h2X(y)− x− h2X(x)∥ ≤ (1 + h2 Lip(X))∥y − x∥
≤ (1 + h2)∥y − x∥.

9



This allows us to conclude what we reported in equation (5), i.e. that

Lip(Ψh1
1 ◦Ψh2

2 ) ≤ Lip(Ψh1
1 ) · Lip(Ψh2

2 ) ≤
√
1− h1 + h2

1 · (1 + h2).

Thus, if

(h1, h2) ∈ R = {(h1, h2) ∈ [0, 1]2 : (1 + h2)
√

1− h1 + h2
1 ≤ 1}, (7)

the composition of the two functions is 1−Lipschitz. Furthermore, if a dynamical block is made by
the alternation of k pairs of flow maps with the same structure as Ψh1

1 and Ψh2
2 , the condition in (7)

on each pair is sufficient to get a 1−Lipschitz dynamical block.

We remark that such reasoning can be extended without major changes to other choices of
vector fields, other alternation strategies and other numerical methods.

10


	Volume-preserving neural networks
	Mass-preserving neural networks
	Lipschitz constrained neural networks
	Conclusion
	Time-switching systems
	Some explicit constructions of dynamical blocks
	Volume-preserving dynamical blocks
	Mass-preserving dynamical blocks
	1-Lipschitz dynamical blocks

	Detailed derivation of Lipschitz bounds

