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ABSTRACT
The ionization of molecular systems is important in many chemical processes, such as electron transfer and hot electron injection. Strong
coupling between molecules and quantized fields (e.g., inside optical cavities) represents a new promising way to modify molecular properties
in a non-invasive way. Recently, strong light–matter coupling has shown the potential to significantly improve the rates of hot electron driven
processes, for instance, in water splitting. In this paper, we demonstrate that inside an optical cavity, the residual interaction between an
outgoing free electron and the vacuum field is significant. We further show that since the quantized field is also interacting with the ionized
molecule, the free electron and the molecular system are correlated. We develop a theoretical framework to account for the field induced
correlation and show that the interaction between the free electron and the field, free electron–field interaction, has sizable effects on the
ionization potential of typical organic molecules.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091119

I. INTRODUCTION

Strong coupling between molecules and quantized fields has
proven to be a very effective way to engineer molecular properties.1–4

Possible applications range from the control of photochemical
processes5–7 to the modification of molecular reactivity.8–13 The easi-
est way to achieve strong coupling is through optical cavities, devices
composed of mirrors confining the electromagnetic radiation in a
reduced volume.14–17 Inside an optical cavity, the photonic vac-
uum couples to the molecular system creating mixed light–matter
states called polaritons.18–20 Since the properties of polaritonic states
can be tuned21,22 by changing the field inside the resonator, polari-
tonic chemistry promises to be a non-invasive methodology to
modify molecular properties on demand.23–26 The theoretical com-
prehension of phenomena in the strong coupling regime is still in
its infancy, and ab initio approaches to study strong light–matter
interaction have only been developed in recent years.27–33 Under
strong coupling conditions, the electromagnetic field is a crucial
part of the system. For this reason, the field must be treated on the
same footing as the electrons, that is, following quantum electro-
dynamics (QED) prescriptions.34 A widely used strategy to tackle

problems in the strong coupling regime is to take inspiration from
standard quantum chemistry theories. Indeed, many concepts can
be generalized in a relatively simple way to QED environments
(i.e., QED Hartree–Fock,27 QED coupled cluster,27,30,33,35 and QED
density functional theory28,29,36,37). However, instances where this
generalization procedure is nontrivial can also arise.

Ionization is a key process in chemistry as electron removal is
used to follow the advancement of chemical reactions or to char-
acterize molecular systems in spectroscopic techniques, such as the
x-ray photoelectron spectroscopy38 (XPS).39–42 Additionally, molec-
ular ionization can be used to initiate and promote new reactive
pathways.43,44 In some recent papers, DePrince,45 Liebenthal et al.,46

and Pavovsevic et al.33,35 demonstrated that ionization potentials
and electronic affinities change inside optical cavities. This is of par-
ticular relevance in the context of cavity QED since the pioneering
work by Shi et al.47 has shown that the production of hot electrons
under strong coupling conditions is a viable way to improve water
splitting processes. While detailed theoretical descriptions of ioniza-
tion processes outside optical cavities are available,48–53 much work
is still needed for QED environments as the free electron will still
interact with the electromagnetic field.
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In this work, we present a new definition of ionization poten-
tials for strongly coupled systems. In particular, we demonstrate
that a quantized field induces sizable interactions between the free
electron inside the cavity and the ionized molecular system. The
new definition implies that ionization properties can be profoundly
modified using quantum fields. Despite respecting a theoretical con-
sistency, the methods proposed in Refs. 33, 35, 45, and 46 do not
account for the cavity mediated interactions between all parts of
the system because the free electron is not considered explicitly.
Here, we develop new methodologies to include the free electron
contributions.

In standard electronic structure theory, ionization potentials
can be approximated using the Hartree–Fock orbital energies by
means of Koopmans’ theorem.54,55 A QED extension of the theorem
has not yet been developed since a consistent molecular orbital the-
ory for polaritonic systems was not available. Recently, we solved this
problem using a new ab initio method called strong coupling QED-
HF (SC-QED-HF),56 which allows us to formulate a QED version of
Koopmans’ theorem and test its accuracy.

This paper is organized as follows. In Secs. II and III, we present
a comprehensive theoretical framework for ionization processes in
optical cavities. In particular, we provide a detailed definition of the
ionization potential (IP) in the strong coupling regime, and we dis-
cuss different approximations to include interactions between the
ionized system and the free electron. In Sec. IV, our methodologies
are applied to several organic molecules to assess the relevance of the
different energy contributions. The results of this section have also
been compared to data from the literature. The final section contains
our concluding remarks and perspectives.

II. LONG-RANGE INTERACTIONS
IN QED ENVIRONMENTS

In optical cavities, the vacuum field mediates long-range
interactions between molecules, introducing non-size-extensive
effects.30,57 This means that under strong coupling conditions, two
molecules infinitely far apart are somehow still feeling each other.
The cavity induced non-size-extensivity is a consequence of the pho-
ton coherence, meaning that all the molecules interact with the
same electromagnetic field independently from their distance to
each other. In simple terms, since each molecule interacts with the
same cavity photons and partially changes the field shape, different
molecules are indirectly coupled through the field. Because of these
field-mediated long-range interactions, it is reasonable to expect that
the cavity photons might also introduce correlation between free
electrons and molecules. Such a situation appears, for example, after
ionization. In standard quantum chemical calculations, the interac-
tion between the free electrons and the ionized molecule does not
affect the IP; see Figs. 1(a) and 1(c).41,58 Moreover, since the ioniza-
tion potential is defined as the minimum work needed to release an
electron, the outgoing free electron has zero energy. The process can
therefore be described both as an excitation to a continuum orbital
with zero energy and, equivalently, as the annihilation of one elec-
tron. In this work, we refer to the continuum orbital with the index ν.
The equivalence between the two descriptions does not hold inside
optical cavities, Figs. 1(b) and 1(d), for different reasons. First, the
minimum free electron energy inside the cavity εν(λ), where λ is the
light–matter coupling strength, is larger than zero as shown in Fig. 2

FIG. 1. (a) and (c) Outside the cavity, exciting an electron from a molecule to the
continuum (free orbital) is equivalent to annihilating an electron. (b) and (d) This
equivalence is not respected inside optical cavities.

and demonstrated in Sec. III B. Therefore, a first approximation of
the ionization potential inside an optical cavity should be

IP = Eion(λ) + εν(λ) − Emol(λ), (1)

where the free electron energy εν(λ) has been added to the standard
definition of the ionization potential. In Eq. (1), Eion(λ) and Emol(λ)
are the energies of the ionized and the non-ionized molecule inside
the cavity, respectively. However, in Eq. (1), we are disregarding
the field coherence. This is represented in Fig. 3(b) where the free
electron and the ion are in two different cavities and therefore feel
two different electromagnetic fields. An accurate treatment of the
ionization problem instead requires the inclusion of field-mediated
correlation between the system components, Ecorr(λ); see Fig. 3(c).
In Sec. III, we therefore present the theoretical methodologies
developed to include the contributions discussed above.

FIG. 2. Pictorial representation of the cavity effect on the energy of the molecule
and free electron. If the interaction between the free electron and the cavity is
neglected, only the energy of the molecular system increases. The energy of the
free electron is instead unchanged. On the other hand, if the interaction between
the free electron and the cavity is considered, the energy of both the molecule and
the free electron increases.
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FIG. 3. Different approximations to calculate IPs in an optical cavity. (a) The inter-
action between the cavity and the free electron is neglected, (b) the free electron
is included but without interaction with the molecule, and (c) the free electron is
included, also taking into account the interaction with the molecule.

III. THEORY
We start this section by introducing the essential notation. The

interaction between photons and matter will be described using the
minimal coupling Hamiltonian,34,57

H =
1
2∑i
(pi −

λ
√

2ω
ϵ(beik⋅ri + b†e−ikri))

2

−∑
iα

Zα

∣ri − rα∣
+

1
2∑i≠j

1
∣ri − rj∣

+ ωb†b, (2)

where i and j label the electrons and α labels the nuclei with charge
Zα. The cavity parameters ω, ε, and k are the frequency, the polariza-
tion, and the wave vector, respectively. The bosonic operators b and
b† annihilate and create photons. In this work, we only consider a
single cavity mode. When the field wave length is large enough com-
pared to the molecular dimension, the dipole approximation eik⋅r

≈ 1
can be employed in Eq. (2) leading to59

H =
1
2∑i
(pi −

λ
√

2ω
ϵ(b + b†

))

2

−∑
iα

Zα

∣rα−ri∣
+

1
2∑i≠j

1
∣ri−rj∣

+ωb†b.

(3)

Using the Power–Zienau–Woolley transformation,60–62 the length
gauge form of the light–matter Hamiltonian is obtained,63–65

H = He − λ
√ω

2∑pq
(d ⋅ ϵ)pqEpq(b + b†

) + ωb†b

+
λ2

2 ∑pqr
(d ⋅ ϵ)pr(d ⋅ ϵ)rqEpq

+
λ2

2 ∑pqrs
(d ⋅ ϵ)pq(d ⋅ ϵ)rsepqrs, (4)

where d is the molecular dipole operator and we adopted the
second quantization formalism for the electrons. The electronic
Hamiltonian He is defined as

He = ∑
pq

hpqEpq +
1
2∑pqrs

gpqrsepqrs, (5)

where hpq and gpqrs are the one and two electron integrals, while

Epq = ∑
σ

a†
pσaqσ ,

epqrs = EpqErs − δrqEps,
(6)

with a†
pσ and apσ , respectively, creating and annihilating an elec-

tron in the orbital p with spin σ. The lowest energy eigenfunction
of the Hamiltonian in Eq. (4) can be approximated using one of the
ab initio methods mentioned above. In this work, we mainly focus
on two approaches: SC-QED-HF56 and QED-CC.27

A. The ionization potential in QED environments
In the absence of light–matter interaction, ionization of a

molecule can be described both as an annihilation of one elec-
tron or as an electronic excitation to the continuum [see Figs. 1(a)
and 1(c)].

These two approaches are equivalent. In fact, if the basis is
divided into a set of localized molecular orbitals p, q, r, s plus one
bath orbital ν describing the continuum, the Hamiltonian He takes
the form

He = ∑
pq

hpqEpq +
1
2∑pqrs

gpqrsepqrs + hννEνν +
1
2

gννννeνννν, (7)

where all the integrals coupling the ν orbital and the molecular
orbitals are equal to zero, while hνν and gνννν are set to zero along
the lines of Ref. 58. The Hamiltonian is therefore separable, and the
energy of the ionized system is the sum of the molecular energy
plus the energy of the free electron. Moreover, since the free elec-
tron is assumed to have zero energy, the excitation to the ν orbital is
identical to an electron annihilation.

The same considerations are not valid in the presence of the
field, as schematized in Fig. 1. The minimal coupling Hamiltonian,
Eq. (3), is indeed equal to

H = ∑
pq
(hpq −

λ(p ⋅ ϵ)pq
√

2ω
(b + b†

) +
λ2δpq

4ω
(b + b†

)
2
)Epq

+ (hνν −
λ(p ⋅ ϵ)νν
√

2ω
(b + b†

) +
λ2

4ω
(b + b†

)
2
)Eνν

+
1
2∑pqrs

gpqrsepqrs +
1
2

gννννeνννν + ωb†b, (8)

where, again, all the integrals coupling the ν orbital and the molecu-
lar orbitals are set equal to zero. In Eq. (8), the field interacts with
both the free electron and the molecular system, preventing the
separability of the Hamiltonian.
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This result is even more evident in the length gauge form in
Eq. (4),

H = ∑
pq

hpqEpq − λ
√ω

2∑pq
(d ⋅ ϵ)pqEpq(b + b†

)

+ hννEνν − λ
√ω

2
(d ⋅ ϵ)ννEνν(b + b†

)

+
1
2∑pqrs
(gpqrs + λ2

(d ⋅ ϵ)pq(d ⋅ ϵ)rs)epqrs

+
1
2
(gνννν + λ2

(d ⋅ ϵ)νν(d ⋅ ϵ)νν)eνννν

+
λ2

2 ∑pqr
(d ⋅ ϵ)pr(d ⋅ ϵ)rqEpq +

λ2

2
(d ⋅ ϵ)νν(d ⋅ ϵ)ννEνν

+ λ2
∑
pq
(d ⋅ ϵ)νν(d ⋅ ϵ)pqeννpq + ωb†b, (9)

where in addition to the indirect interaction through the cavity field,
there is also a purely electronic interaction term between the free
electron and the ionized molecule arising from the dipole self-energy
(d ⋅ ϵ)2.59 This implies that for the QED environments, we have the
following:

● Annihilating an electron is not equivalent to promoting an
electron to a continuum orbital.

● The energy after the ionization will not be equal to the
energy of the free electron plus the energy of the ionized
molecule.

In the following sections, we will develop two different particle-
conserving approaches to calculate the ionization potential in the
strong coupling regime using SC-QED-HF and QED-CC. We start
by considering the analytic solution for one electron in the cavity
and then analyze the correlation effects.

B. A free electron in an optical cavity
We begin by solving the eigenvalue problem for a free elec-

tron confined in a cavity. This problem has also been investigated
by Rokaj et al.66 We start from the minimal coupling Hamiltonian
in the dipole approximation,

H =
1
2
(p −

λ
√

2ω
ϵ(b + b†

))

2

+ ωb†b. (10)

Since the momentum p is the only electronic operator in Eq. (10),
the electronic part of the eigenfunctions are plane waves,

∣ψ⟩q = ∑
n
∣ϕq, n⟩Cnq,

∣ϕq, n⟩ =
eiqr
√

V
(b†
)

n

√
n
∣0ph⟩,

(11)

with fixed momentum q. In Eq. (11), the cavity volume is denoted
by V . For a state with momentum q, the Hamiltonian Eq. (10) takes
the form

H =
q2

2
+

λ
√

2ω
(q ⋅ ϵ)(b + b†

) +
λ2

4ω
(b + b†

)
2
+ ωb†b, (12)

which only depends on photonic operators. Equation (12) can
be transformed into an harmonic oscillator form H̃ = Ωb†b
using a series of unitary rotations. We first apply a squeezed
transformation S,

S†bS = b cosh s − b† sinh s, (13)

where

cosh s =
(ω +

√
ω2 + λ2)

2
√

ω
√
ω2 + λ2

,

S = exp(
1
2

s(b2
− b†2

)).

(14)

This effectively eliminates the quadratic terms in the field. After-
ward, we use a coherent state transformation Ẑ,

Z†bẐ = b̂ − z, (15)

where

z =
(q ⋅ ϵ)λ

√

2
√

(ω2 + λ2)
3

,

Z = exp(z(b − b†
))

(16)

to reabsorb the interaction term between the molecule and the field.
The transformed Hamiltonian Ĥ becomes

Ĥ =
q2

2
+ ω̃ b†b −

(q ⋅ ε)2λ2

2ω̃ 2 +
1
2
(ω̃ − ω), (17)

where

ω̃ =
√
ω2 + λ2 (18)

has been introduced by the squeezed transformation. The eigenfunc-
tions of the Hamiltonian in Eq. (17) are the photonic occupation
number states. The eigenfunctions of the Hamiltonian in Eq. (10)
then become

∣ψ⟩q = SZ
eiq⋅r
√

V
∣nph⟩, (19)

with energy

Efree(q, n) =
q2

2
+ nω̃ −

(q ⋅ ϵ)2λ2

2ω̃ 2 +
1
2
(ω̃ − ω), (20)

where n is the number of photons in the cavity. We point out that
the free electron in Eq. (19) must respect the boundary conditions of
the cavity, meaning that

qz = m kz , (21)

where m = 1, 2, 3 . . ..
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C. Excitation to the cavity continuum orbital
When we consider ionization as an excitation to a diffuse

orbital ν inside the cavity, we must account for the interaction
between this continuum orbital and the cavity field. Most impor-
tantly, since the Hamiltonian is not separable (as discussed in
Sec. III A), the free electron and the molecule still interact indirectly
via the cavity field and directly via the dipole self-energy for the
length gauge Hamiltonian [see Eqs. (8) and (9)]. In this section, we
explain how we incorporate these effects. We start from the length
gauge Hamiltonian in Eq. (9), where all the free electron interac-
tions are mediated through the dipole operator, (d ⋅ ε)νν. Notice
that we do not determine an explicit expression for the continuum
orbital ν nor do we use the dressed wave function found in Eq. (19).
Instead, we fix the matrix element (d ⋅ ε)νν to a physically reasonable
value. Specifically, we require that (d ⋅ ε)νν respects the following
properties:

● The energy of the ν orbital should be equal to the minimal
energy of the free electron in the cavity. This is obtained
choosing q = k [m = 1 in Eq. (21)] and n = 0 in Eq. (20),

Efree(k, 0) =
k2

2
+

1
2
(ω̃ − ω). (22)

For consistency with the dipole approximation, we neglect
k2
= ω2
/c2, where c is the speed of light. In all the calcu-

lations presented, this contribution is significantly smaller
than 1 meV. We point out that Efree = 0 corresponds to the
case where an electron has been annihilated.

● If the molecule is displaced by a vector a, the dipole matrix
element should change according to

(d ⋅ ϵ)νν → (d ⋅ ϵ)νν +
Qtot

Ne
(a ⋅ ϵ), (23)

where Ne is the number of electrons and Qtot is the total
charge of the system. This ensures the origin invariance of
the IPs as shown in the supplementary material.

From Eqs. (22) and (23), the free electron dipole matrix element
is defined as

(d ⋅ ϵ)νν =
√

2Efree

λ
−
∑αZαrα
∑αZα

+
∑αZαrα

Ne
. (24)

A more detailed discussion on why Eq. (24) is a reasonable
choice for the bath orbital dipole matrix element is given in the
supplementary material. Now that the full Hamiltonian in Eq. (9)
has been defined, we can use one of the QED methods discussed
below to calculate ionization potentials in the presence of the field.
Although the free electron contributions are approximated, the
framework presented here will still capture the cavity induced effects
on the ionization process. The two main approximations are the
following:

● The free electron is only modeled through the dipole
operator, disregarding the wave function shape.

● For convenience, the dipole approximation is adopted in
Sec. III B for the free electron. A full minimal coupling treat-
ment of the problem [i.e., starting from Eq. (2)] is needed for
more accurate results as the free electron is not confined in a
small region of space.

All the approximations discussed above have the effect of
underestimating the correlation effects between the components:
free electron, cavity field, and molecule. Despite these approxima-
tions, the interaction between the free electron and the molecule is
still a sizable contribution to the energy and will be significant for
the IP.

D. SC-QED-HF
The SC-QED-HF wave function is defined as

∣ψ⟩ = exp
⎛

⎝
−
λ(b − b†

)
√

2ω

⎡
⎢
⎢
⎢
⎢
⎣

∑
p
ηpẼpp + ηνEνν

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
∣HF⟩ ⊗ ∣0⟩, (25)

where Ẽpp refers to the orbitals that diagonalize the (d ⋅ ε) opera-
tor, ∣HF⟩ is the electronic Slater determinant, and ∣0⟩ is the photonic
vacuum.56 The ηp parameters are orbital specific coherent state
coefficients that are optimized in the ground state calculation. To
fulfill the requirements presented in Sec. III C, the coherent state
coefficient for the ν orbital must be equal to

ην = −
∑αZαrα
∑αZα

+
∑αZαrα

Ne
. (26)

The SC-QED-HF wave function incorporates electron–photon cor-
relation explicitly and provides origin invariant molecular orbitals.56

This enables us to define a consistent Koopmans’ theorem for QED
environments. At the same time, using the definition in Eq. (24), a
part of the correlation between the photons and the free electron can
be included in the ionization treatment. In particular, we notice that
if the free electron contribution is neglected [Efree = 0 in Eq. (24)],
the ionization potential from orbital i is equal to

IP = ⟨0∣ ⊗ ⟨HF∣a†
iσaνσH̄a†

νσaiσ ∣HF⟩ ⊗ ∣0⟩ − ESC−QED−HF

= ⟨0∣ ⊗ ⟨HF∣a†
iσH̄aiσ ∣HF⟩ ⊗ ∣0⟩ − ESC−QED−HF

= −εi, (27)

where H̄ is defined as

H̄ = e
λ
√

2ω∑p ηpẼ pp(b−b†)
He
− λ
√

2ω∑p ηpẼ pp(b−b†)
(28)

and εi is the energy of the occupied orbital i. Equation (27) shows
that using SC-QED-HF, the ionization potential is equal to minus
the orbital energy in line with standard Koopmans’ theorem for HF.
A similar argument can be also applied to electron affinities,

EA = −εa, (29)

where εa is the energy of the unoccupied orbital a. Considering the
similarities, we refer to Eqs. (27) and (29) as the QED Koopmans’
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theorem. The recovery of Koopmans’ theorem for strongly coupled
systems confirms that the orbitals provided by SC-QED-HF have
the same key properties as the HF orbitals. The QED version over-
estimates the real ionization potential since neither the electronic
nor the photonic parts of the wave function are re-optimized after
the electron is removed from the molecule. However, we point out
that the quantities in Eqs. (27) and (29) are correct to first order in
the fluctuation potential. They provide a first approximation to the
ionization potentials and electron affinities reported by DePrince45

using equation of motion QED-CC (EOM-QED-CC).
When the free electron contribution is included, the ionization

potential becomes

IP = ⟨a†
iσaνσH̄a†

νσaiσ⟩ − ESC−QED−HF

= Efree − εi − λ2
((d ⋅ ϵ)νν − ην)∑

p
Uip((d ⋅ ϵ)pp − ηp)U†

pi, (30)

where U is the unitary transformation between the dipole and
canonical bases. We notice that since

(d ⋅ ϵ)νν − ην =
√

2Efree

λ
, (31)

Eq. (30) gives Eq. (27) when Efree = 0. Since the free electron energy
is included in the calculation of the ionization potential, we refer
to the level of approximation in Eq. (30) as free SC-QED-HF (F-
SC-QED-HF). We point out that the first order contribution from
the fluctuation potential54 in Eq. (30) is not equal to zero as the
free electron contribution is included. This suggests that additional
correlation is needed to properly describe the ionized state. There-
fore, the ionization potentials obtained using F-SC-QED-HF might
be less accurate than those obtained by Koopmans’ theorem for
the purely electronic case. Since the ionized state is treated as an
excited state, a time dependent SC-QED-HF treatment would be
more reliable. These aspects will be investigated in the future.

E. EOM-QED-CC
Accurate ionization potentials can be computed using the

QED-CC approach.27 The wave function is parameterized as

∣ψ⟩ = eT
∣HF⟩ ⊗ ∣0⟩, (32)

where T is an electron–photon excitation operator,

T = ∑
ai

ta
i Eai +

1
2∑abij

tab
ij EaiEbj + ⋅ ⋅ ⋅ +∑

ai
sa

i Eaib†
+

1
2∑aibj

sab
ij EaiEbjb

† . . .

+ γb†
+ ⋅ ⋅ ⋅ . (33)

The parameters ta
i , tab

ij as well as sa
i , sab

ij and γ are called amplitudes,
where the indices i, j and a, b label occupied and virtual orbitals,
respectively. In the limit where all excitations are included in the

T operator, the parametrization in Eq. (32) is exact and gives the
same result as QED full configuration interaction.27,30 The ground
state wave function in Eq. (32) is obtained by solving the projection
equations,54

Ωμ,n = ⟨μ, n∣e−TH̃eT
∣HF, 0⟩ = 0, (34)

where μ and n are the electronic and photonic excitations, respec-
tively. The ground state energy equals

E = ⟨HF, 0∣e−TH̃eT
∣HF, 0⟩, (35)

where we adopted the notation

∣μ⟩ ⊗ ∣n⟩ = ∣μ, n⟩. (36)

The H̃ operator in Eq. (34) is the Hamiltonian in Eq. (9) after a
coherent state rotation,

H̃ = e−z(b−b†)Hez(b−b†), (37)

where

z = −
λ
√

2ω
⟨HF∣d ⋅ ϵ∣HF⟩. (38)

The excitation energies are obtained as the eigenvalues of the
Jacobian matrix A, defined as

Aμn,ρm = ⟨μ, n∣e−T
[H, τρ(b†

)
m
]eT
∣HF, 0⟩, (39)

where τρ is the electronic excitation operator. Ionization potentials
are readily obtained using a particle-conserving equation of motion
coupled cluster (EOM-CC) approach.51,53 In this case, the Jaco-
bian matrix also includes excitations that create an electron in the
continuum orbital ν.41,58 Consistently to what has been performed
for SC-QED-HF, if the free electron energy is included in (d ⋅ ε)νν
[Efree ≠ 0 in Eq. (24)], we refer to the method as Free EOM-QED-CC
(F-EOM-QED-CC).

IV. RESULTS
In this section, we use the methods presented above to compute

IPs for several organic molecules (see Fig. S1 in the supplementary
material). Here, we only discuss the results for aniline as similar con-
clusions can be drawn from the other molecules. The data for all
molecules in are reported in the supplementary material. The calcu-
lations have been performed with a development version of the eT
program67 using a cc-pVDZ basis set.68–72 The molecular geometries
have been optimized using a DFT-B3LYP/def2-SVP73 basis set with
the ORCA software package.74

In Fig. 4(a), we show the dispersion of the aniline ionization
potential as a function of the light–matter coupling for a fixed cavity
frequency ωc = 2.0 eV, where
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FIG. 4. Dispersion of the aniline ionization potential with respect to (a) the coupling λ and (b) the cavity frequency ωc . Calculations have been performed with different
methodologies including or neglecting the free electron contribution. The cavity polarization is perpendicular to the aromatic ring.

ΔIP(λ) = IP(λ = 0.0) − IP(λ). (40)

The dispersion with respect to the cavity frequency at λ = 0.05 a.u. is
shown in Fig. 4(b), where

ΔIP(ωc) = IP(ωc = 13.6 eV) − IP(ωc). (41)

We compare the results obtained using different levels of theory
(QED-HF, SC-QED-HF, and EOM-QED-CC), denoting the
inclusion of the free electron contribution by an F in front of the
acronym (F-SC-QED-HF and F-EOM-QED-CC). The main differ-
ences among the various QED-HF based methods are summarized
in Table I. The data reported in Fig. 4 expose the crucial role played
by the free electron in the ionization process. In particular, the
comparison between the two coupled cluster based calculations
(EOM-QED-CC and F-EOM-QED-CC) reveals that inclusion of
the free electron leads to a major trend change in the dispersion of
the ionization potential. This behavior can be explained in terms of
the qualitative concepts discussed in Sec. II. Specifically, referring
to Fig. 2, our results suggest that the energy of the continuum
orbital ν increases more than the energy of the molecular orbitals
when either the coupling increases or the frequency decreases.
Moreover, since both F-SC-QED-HF and F-EOM-QED-CC
include the effect of the free electron, their differences are mainly
due to electron–electron and electron–photon correlation, Ecorr in
Fig. 3. As noted in Sec. III D, the first order contribution from the

fluctuation potential for F-SC-QED-HF is not equal to zero; there-
fore, correlation contributions are quite large. The SC-QED-HF
(QED Koopmans’ theorem) is always closer to EOM-QED-CC
than standard QED-HF. In particular, while the QED Koopmans’
theorem is always in qualitative agreement with EOM-QED-CC,
the QED-HF method incorrectly predicts a dispersionless behavior
with respect to the frequency [see Fig. 4(b)].

In general, analogously to the standard Koopmans’ theorem,
SC-QED-HF seems to consistently overestimate the ionization
potential compared to the corresponding coupled cluster value.
The overestimation becomes even more pronounced when the
free electron contribution is included because additional correla-
tion is needed to accurately describe the ionized state. Nonetheless,
F-SC-QED-HF captures the general behavior predicted by F-EOM-
QED-CC. Similar results can be observed for the other systems in
Fig. S1. The main characteristics of the cavity induced effects can be
summarized as follows:

● The QED Koopmans’ theorem is a good approximation to
the ionization potential obtained using EOM-QED-CC and
reproduces, at least qualitatively, the coupling and frequency
dispersions.

● The inclusion of the free electron is needed to achieve qual-
itative and quantitative accuracy in the ionization potential
for QED environments.

We now compare our methods with the ΔQED-CC method
introduced by DePrince for sodium halide.45 In Table II, the

TABLE I. Summary of the three different QED-HF based methods.

Method name QED-HF SC-QED-HF F-SC-QED-HF

Wave function e−
λ⟨d⋅ϵ⟩
√

2ω
( b−b†

∣HF⟩ ⊗ ∣0⟩ e−
λ(b−b†)
√

2ω
[∑pηpẼpp+ηνEνν]∣HF⟩ ⊗ ∣0⟩ e−

λ(b−b†)
√

2ω
[∑pηpẼpp+ηνEνν]∣HF⟩ ⊗ ∣0⟩

Free electron energy 0 0 1/2(ω̃ − ω)
Ionization potential − εi −εi Efree − εi − λ2

((d ⋅ ϵ)νν − ην)∑pUip((d ⋅ ϵ)pp − ηp)U†
pi
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TABLE II. Cavity induced variations of the ionization potential ΔIP = IP(0.0) − IP(λ) for sodium halide calculated at different λ values and with different methods, including or
neglecting the free electron. The variations are in eV, and the cavity frequency is 2.0 eV.

λ QED-HF SC-QED-HF EOM-QED-CC ΔQED-CC45 F-SC-QED-HF F-EOM-QED-CC

NaF

0.00 0.0 0.0 0.0 0.0 0.0 0.0
0.01 −0.003 −0.002 0.002 0.00 −0.023 0.001
0.02 −0.011 −0.008 0.007 0.01 −0.093 0.002
0.03 −0.025 −0.016 0.015 0.01 −0.203 −0.007
0.04 −0.045 −0.027 0.026 0.03 −0.351 −0.033
0.05 −0.070 −0.043 0.039 0.04 −0.536 −0.084

NaCl

0.00 0.0 0.0 0.00 0.0 0.0 0.0
0.01 0.001 0.006 0.003 0.00 0.051 0.002
0.02 0.003 0.013 0.010 0.01 0.013 0.006
0.03 0.007 0.020 0.023 0.02 −0.067 0.006
0.04 0.011 0.028 0.040 0.04 −0.177 −0.006
0.05 0.015 0.037 0.061 0.06 −0.317 −0.035

NaBr

0.00 0.0 0.0 0.00 0.0 0.0 0.0
0.01 0.004 0.004 0.003 0.00 −0.000 0.003
0.02 0.016 0.016 0.012 0.01 −0.014 0.010
0.03 0.036 0.030 0.027 0.02 −0.056 0.018
0.04 0.063 0.053 0.048 0.04 −0.122 0.022
0.05 0.095 0.079 0.074 0.06 −0.205 0.019

cavity frequency ωc is equal to 2.0 eV, and the field polarization
is along the bond axis. As expected, we observe a good agreement
between EOM-QED-CC and ΔQED-CC results. On the other hand,
some differences can be observed if we compare SC-QED-HF with
the results in Ref. 45. Specifically, for NaF, the QED Koopmans’
theorem (SC-QED-HF) predicts opposite QED effects than ΔQED-
CC. This is the only example we have observed where SC-QED-HF
does not capture the correct dispersion behavior of the ionization
potential and indicates some care should be exercised using the
QED Koopmans’ theorem. Nonetheless, we notice that SC-QED-HF
still outperforms the results obtained using QED-HF. As observed
before, qualitative differences appear if the free electron contribu-
tions are included. In particular, the F-EOM-QED-CC data show the
same trend change as the aniline results shown in Fig. 4(a). These
differences are to be expected as the free electron is not explicitly
treated in Ref. 45.

V. CONCLUSION
In this paper, we investigate cavity induced effects on molecu-

lar ionization processes. In particular, we provide the first consistent
definition of ionization potentials and electron affinities in QED
environments. In this regard, we have highlighted the crucial role
played by the cavity mediated interaction between the molecule and
the free electron. Different approximations to the ionization prob-
lem have been presented using coupled cluster based methods as the
reference. These approaches provide a quantification of the differ-
ent effects participating in the ionization process. They also provide
a benchmark methodology for ionization potentials and electron
affinities. Using the recently developed SC-QED-HF theory, we

formulated a QED version of Koopmans’ theorem. Our work
extends the investigations recently presented in Refs. 33, 35, 45,
and 46 on ionization processes. The methodologies presented in
this work have the same scaling as standard coupled cluster meth-
ods54 and can be applied to large number of molecules interacting
with many free electrons. Studies on large systems are needed in
order to investigate the relevance of collective effects on the ion-
ization potential. Inclusion of the complete interaction between the
free electron and the molecule as well as a beyond dipole approx-
imation treatment of the ionization process will be the subject of
a future publication. This will pave the way toward providing a
reference method to compute ionization potentials in the strong
coupling regime without adopting a model for the free electron. Such
a method is, at the moment, not available. Moreover, it will also
allow us to investigate the particular configuration where the cav-
ity is in resonance with the ionization. In that case, we expect that
a Rabi splitting should be observed. However, the presented models
cannot reproduce this effect because the transition dipole between
the ground and excited state is set to zero. We have applied our
methodologies to a set of organic and inorganic molecules and com-
pared our results to previous calculations from the literature.45,46

Based on our results, we expect this framework to be particularly
relevant to model hot electron processes. In this case, electronic
excitations in nanoparticles produce free electrons that travel inside
the optical cavity before being reabsorbed by a charge acceptor.47

We believe the present study will provide the necessary motivation
to develop experimental devices capable of measuring photoelec-
tron spectroscopy in optical cavities. In this way, it will be possible
to experimentally observe the field induced variations of ionization
potentials in QED environments.
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SUPPLEMENTARY MATERIAL

In the supplementary material, we discuss the importance of
Eq. (24), showing that it ensures the origin invariance of the ion-
ization potential. Moreover, we report the ionization data for all the
molecules in our test set.
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32Y. Ashida, A. İmamoğlu, and E. Demler, Phys. Rev. Lett. 126, 153603 (2021).
33F. Pavosevic, S. Hammes-Schiffer, A. Rubio, and J. Flick, J. Am. Chem. Soc. 144,
4995 (2022).
34R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford,
2000).
35F. Pavosevic and J. Flick, J. Phys. Chem. Lett. 12, 9100 (2021).
36J. Flick, C. Schäfer, M. Ruggenthaler, H. Appel, and A. Rubio, ACS Photonics 5,
992 (2018).
37C. Schäfer, F. Buchholz, M. Penz, M. Ruggenthaler, and A. Rubio, Proc. Natl.
Acad. Sci. U. S. A. 118 (2021).
38T. Ghodselahi, M. A. Vesaghi, A. Shafiekhani, A. Baghizadeh, and M. Lameii,
Appl. Surf. Sci. 255, 2730 (2008).
39B. K. Agarwal, X-Ray Spectroscopy: An Introduction (Springer, 2013), Vol. 15.
40A. Gulino, Anal. Bioanal. Chem. 405, 1479 (2013).
41T. Moitra, A. C. Paul, P. Decleva, H. Koch, and S. Coriani, Phys. Chem. Chem.
Phys. 24, 8329 (2022).
42T. Lewis, B. Winter, A. C. Stern, M. D. Baer, C. J. Mundy, D. J. Tobias, and J. C.
Hemminger, J. Phys. Chem. B 115, 9445 (2011).
43C. E. Liekhus-Schmaltz, I. Tenney, T. Osipov, A. Sanchez-Gonzalez, N. Berrah,
R. Boll, C. Bomme, C. Bostedt, J. D. Bozek, S. Carron et al., Nat. Commun. 6, 8199
(2015).
44T. Kim and F. Zaera, J. Phys. Chem. C 116, 8594 (2012).
45A. E. DePrince III, J. Chem. Phys. 154, 094112 (2021).
46M. Liebenthal, N. H. Vu, and E. DePrince, J. Chem. Phys. 156, 054105 (2022).
47X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, Nat.
Nanotechnol. 13, 953 (2018).
48M. Saitow, A. K. Dutta, and F. Neese, B. Chem. Soc. Jpn. 92, 170 (2019).
49C. Melania Oana and A. I. Krylov, J. Chem. Phys. 127, 234106 (2007).
50A. Landau, K. Khistyaev, S. Dolgikh, and A. I. Krylov, J. Chem. Phys. 132,
014109 (2010).

J. Chem. Phys. 156, 234103 (2022); doi: 10.1063/5.0091119 156, 234103-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0091119
https://www.scitation.org/doi/suppl/10.1063/5.0091119
https://doi.org/10.1098/rspa.2020.0278
https://doi.org/10.1103/physrevb.65.235311
https://doi.org/10.1103/physrevlett.119.223601
https://doi.org/10.1103/physrevlett.119.223601
https://doi.org/10.1103/physrevb.99.235156
https://doi.org/10.1073/pnas.1702160114
https://doi.org/10.1002/anie.201107033
https://doi.org/10.1002/anie.201107033
https://doi.org/10.1021/acs.jpclett.9b01599
https://doi.org/10.1039/c6fd00095a
https://doi.org/10.1103/physrevx.9.021057
https://doi.org/10.1038/ncomms6981
https://doi.org/10.1002/ange.201605504
https://doi.org/10.1002/ange.201905407
https://doi.org/10.1126/science.aau7742
https://doi.org/10.1109/2944.902193
https://doi.org/10.1016/j.chempr.2019.02.009
https://doi.org/10.1109/jproc.2016.2584860
https://doi.org/10.1109/jproc.2016.2584860
https://doi.org/10.1038/nature17974
https://doi.org/10.1063/5.0036283
https://doi.org/10.1038/s41570-018-0118
https://doi.org/10.1038/s41570-018-0118
https://doi.org/10.1063/1.5136320
https://doi.org/10.1103/physrevlett.116.238301
https://doi.org/10.1021/acs.accounts.6b00295
https://doi.org/10.1073/pnas.1900795116
https://doi.org/10.1021/acs.nanolett.9b00183
https://doi.org/10.1038/s41467-018-06971-y
https://doi.org/10.1039/c8sc01043a
https://doi.org/10.1103/physrevx.10.041043
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1103/physreva.90.012508
https://doi.org/10.1063/5.0039256
https://doi.org/10.1021/acs.jpclett.0c02399
https://doi.org/10.1103/physrevlett.126.153603
https://doi.org/10.1021/jacs.1c13201
https://doi.org/10.1021/acs.jpclett.1c02659
https://doi.org/10.1021/acsphotonics.7b01279
https://doi.org/10.1073/pnas.2110464118
https://doi.org/10.1073/pnas.2110464118
https://doi.org/10.1016/j.apsusc.2008.08.110
https://doi.org/10.1007/s00216-012-6394-8
https://doi.org/10.1039/d1cp04695k
https://doi.org/10.1039/d1cp04695k
https://doi.org/10.1021/jp205510q
https://doi.org/10.1038/ncomms9199
https://doi.org/10.1021/jp2123339
https://doi.org/10.1063/5.0038748
https://doi.org/10.1063/5.0078795
https://doi.org/10.1038/s41565-018-0208-x
https://doi.org/10.1038/s41565-018-0208-x
https://doi.org/10.1246/bcsj.20180254
https://doi.org/10.1063/1.2805393
https://doi.org/10.1063/1.3276630


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

51S. Coriani and H. Koch, J. Chem. Phys. 143, 181103 (2015).
52E. Ronca, Z. Li, C. A. Jimenez-Hoyos, and G. K.-L. Chan, J. Chem. Theory
Comput. 13, 5560 (2017).
53A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).
54T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic-Structure Theory
(John Wiley & Sons, 2014).
55R. Manne and T. Åberg, Chem. Phys. Lett. 7, 282 (1970).
56R. R. Riso, T. S. Haugland, E. Ronca, and H. Koch, Nat. Commun. 13, 1368
(2022).
57C. Schäfer, M. Ruggenthaler, H. Appel, and A. Rubio, Proc. Natl. Acad. Sci. U.
S. A. 116, 4883 (2019).
58J. F. Stanton and J. Gauss, J. Chem. Phys. 111, 8785 (1999).
59V. Rokaj, D. M. Welakuh, M. Ruggenthaler, and A. Rubio, J. Phys. B: At., Mol.
Opt. Phys. 51, 034005 (2018).
60R. G. Woolley, Phys. Rev. Res. 2, 013206 (2020).
61M. Babiker and R. Loudon, Proc. R. Soc. London, Ser. A 385, 439 (1983).
62D. L. Andrews, G. A. Jones, A. Salam, and R. G. Woolley, J. Chem. Phys. 148,
040901 (2018).
63A. Vukics, T. Grießer, and P. Domokos, Phys. Rev. Lett. 112, 073601 (2014).

64M. Babiker, E. A. Power, and T. Thirunamachandran, Proc. R. Soc. A 338, 235
(1974).
65O. Di Stefano, A. Settineri, V. Macrì, L. Garziano, R. Stassi, S. Savasta, and
F. Nori, Nat. Phys. 15, 803 (2019).
66V. Rokaj, M. Ruggenthaler, F. G. Eich, and A. Rubio, Phys. Rev. Res. 4, 013012
(2022).
67S. D. Folkestad, E. F. Kjønstad, R. H. Myhre, J. H. Andersen, A. Balbi, S. Coriani,
T. Giovannini, L. Goletto, T. S. Haugland, A. Hutcheson et al., J. Chem. Phys. 152,
184103 (2020).
68T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
69D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993).
70B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus, J. Chem.
Inf. Model. 59, 4814 (2019).
71D. Feller, J. Comput. Chem. 17, 1571 (1996).
72K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase,
J. Li, and T. L. Windus, J. Chem. Inf. Model. 47, 1045 (2007).
73F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs, Chem. Phys. Lett. 294, 143
(1998).
74F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012).

J. Chem. Phys. 156, 234103 (2022); doi: 10.1063/5.0091119 156, 234103-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.4935712
https://doi.org/10.1021/acs.jctc.7b00682
https://doi.org/10.1021/acs.jctc.7b00682
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1016/0009-2614(70)80309-8
https://doi.org/10.1038/s41467-022-29003-2
https://doi.org/10.1073/pnas.1814178116
https://doi.org/10.1073/pnas.1814178116
https://doi.org/10.1063/1.479673
https://doi.org/10.1088/1361-6455/aa9c99
https://doi.org/10.1088/1361-6455/aa9c99
https://doi.org/10.1103/physrevresearch.2.013206
https://doi.org/10.1098/rspa.1983.0022
https://doi.org/10.1063/1.5018399
https://doi.org/10.1103/physrevlett.112.073601
https://doi.org/10.1038/s41567-019-0534-4
https://doi.org/10.1103/physrevresearch.4.013012
https://doi.org/10.1063/5.0004713
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.464303
https://doi.org/10.1021/acs.jcim.9b00725
https://doi.org/10.1021/acs.jcim.9b00725
https://doi.org/10.1002/(sici)1096-987x(199610)17:13&tnqx3c;1571::aid-jcc9&tnqx3e;3.0.co;2-p
https://doi.org/10.1021/ci600510j
https://doi.org/10.1016/s0009-2614(98)00862-8
https://doi.org/10.1002/wcms.81

