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Abstract— In this paper, Lyapunov theory for uniform practi-
cal asymptotic stability (UPAS) is presented and utilized to solve
the problem of position control of a planar underwater snake
robot (USR). First, a precise definition of UPAS is presented,
which imposes that, locally, all solutions converge to the origin
up to a steady-state error that can be arbitrarily reduced
by a convenient parameter tuning. Additionally, a sufficient
condition for UPAS of a time-varying nonlinear system and a
theorem for UPAS of cascaded systems are presented. These are
then utilized to design controllers that stabilize the position of
an USR when approaching from such a direction that the USR
moves against the current. Results from numerical simulations
are then investigated to validate the theoretical results.

I. INTRODUCTION

Our understanding of the oceans is crucial for meeting
challenges such as food sufficiency, bio-diversity, renewable
energy, transport, and access to minerals and other resources.
To fully access the vast oceans we need efficient, autonomous
marine robots. One promising approach is using underwater
snake robots (USRs), which are autonomous underwater
vehicles (AUVs) consisting of several slim segments con-
nected by joints, allowing them to access narrow spaces
while moving by mimicking an eel [1]. The advantage of
this design is that it can access narrow spaces and interact
with its environment in the same way as a traditional robotic
manipulator arm.

Power delivery remains a challenge for AUVs. Battery
constraints limit their operational time, while tethers would
limit their operational area and autonomy. Improving the
energy efficiency of these systems would be a significant step
forward in our attempts to design efficient AUVs. We want
to pursue the idea of achieving energy autonomy by utilizing
the energy in waves, currents and other hydrodynamic effects
such as wakes behind bluff bodies [2], [3]. To this end, we
aim to develop a controller that allows the USR to hold
a desired position with an undulatory motion, downstream
from a bluff body. As a first step to achieving this, we present
a controller that stabilizes the position of a planar-USR with
an undulatory motion when moving against a time-varying
current.

Various control strategies have been developed and studied
for undulatory motion of snake robots. The line-of-sight
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(LOS) guidance control law is implemented for terrestrial
snake robots [4]. However, this does not apply for USRs, due
to environmental disturbances. This issue was later addressed
in [5], where the integral line-of-sight (ILOS) guidance
control law was proposed for USRs and proven to provide
semi-global exponential stability, under the assumption that
the forward velocity is always greater than the current.
Stabilizing the position of the USR however, requires that
these velocities are equal. Directional following control of
the terrestrial snake robot is studied in [6], by using virtual
holonomic constraints (VHCs) to encode a sinusoidal gait
pattern for forward propulsion. This was done by utilizing
hierarchical control design [7]. A similar approach was later
used to design maneuvering controllers for both terrestrial
snake robots [8] and USRs [9]. Our goal is for the USR to
operate in the wake of a bluff body, where the environmental
forces are time-varying, which results in reference signals
and disturbances that are time dependent. The controllers
developed [8], [9] however, assume that the systems are time-
invariant. To address this issue, in this paper the control
approach and corresponding stability proofs are extended
to time-varying systems. Additionally, to achieve a desired
orientation that drives the USR towards a reference position,
a guidance law is proposed that generates a reference angular
velocity. The controllers presented in [8], [9] are, however,
designed for a desired heading angle. The controllers in this
paper are therefore adapted for angular velocity tracking.

The guidance law proposed in this paper is inspired
by the approaches taken in [10], [11] where a geometric
controller is developed and studied for position tracking of
quad-copters in three-dimensions. This was later adapted for
path-following of underactuated autonomous surface vessels
(ASVs) and planer AUVs [12]. For our purposes the guid-
ance law has been adapted for position tracking of planar
USRs, by including a reference velocity along the y-axis in
addition to the reference velocity along the x-axis used in
[12]. The reference velocities are then designed to stabilize
the position of the USR.

We cannot use hierarchical control design [7], which
the stability analysis in [6], [8], [9] is based on, as it re-
quires time-invariant systems. Instead, we consider cascaded
systems theory, which has proved to be an efficient tool
for analyzing the stability of nonlinear dynamical systems
[13], [14]. For time-varying nonlinear systems, cascaded
systems theory is well established for cascades of uniformly
asymptotically stable systems; uniformly globally asymptot-
ically stable (UGAS) systems [14], uniformly semi-globally
asymptotically stable (USAS) systems [15] and locally uni-



formly asymptotically stable (UAS) systems [16].
However, the presence of non-vanishing perturbations such

as modelling errors, unmodelled disturbances and measure-
ment noise, asymptotic stability may not be attainable. In
these cases the system may not converge to the origin
but rather to some neighborhood of the origin. When that
neighborhood can be diminished at will by the choice of
parameters, this is referred to as uniform global practical
asymptotic stability (UGPAS). In [15] it is shown that a
cascaded system consisting of two UGPAS systems with uni-
formly bounded (UB) solutions retains the UGPAS property.
Moreover, Lyapunov sufficient conditions for UGPAS are
proposed and proven. The global requirements of UGPAS
can be alleviated by considering uniform semi-global prac-
tical asymptotic stability (USPAS). This has been studied in
[17] where Lyapunov sufficient conditions and stability of
cascades of USPAS systems were proven. However, USPAS
requires that the region of attraction can be enlarged to any
desirable size by the choice of parameters. The guidance
laws and controllers in [10]–[12] give almost-GAS and put
constraints on the desired velocities of the vehicles, and
therefore achieving either global or semi-global stability is
not possible. The strongest stability property we may hope
to establish for the resulting closed-loop system is thus
local uniform practical asymptotic stability (UPAS). This
is a special case of USPAS where the region of attraction
is not required to be arbitrarily enlargeable. As Lyapunov
and cascades systems theory for UPAS systems could not be
found in literature, in this paper we establish both Lyapunov
sufficient conditions for UPAS of time-varying nonlinear
systems as well as for cascades of such systems. We then
apply these to prove UPAS of the closed-loop system,
proving that the proposed control law stabilizes the position
of the USR with an undulatory motion in the presence of
time-varying disturbances when moving against a constant
current along the x-axis.

The paper is organized as follows: In Section II the
notation used in this paper is presented. Then in Section
III we present the precise definition of UPAS as we use
it. Furthermore, a proposition for sufficient conditions for
UPAS of a time-varying dynamical system and a theorem for
UPAS of cascaded systems are presented. In Section IV the
control objectives and a control oriented model of an USR
are presented. The controllers and guidance law proposed in
this paper are then presented in Section V, with an analysis of
the resulting closed-loop system. Then the simulation setup
and results are presented in Section VI. Finally, in Section
VII conclusions are given.

II. NOTATION

A class K-function is a continuous function α : R≥0 →
R≥0 that is strictly increasing and satisfying α(0) = 0. If
additionally α(s) → ∞ when s → ∞ then α ∈ K∞. A
class L-function is a continuous function σ : R>0 that is
non-increasing and σ(s) → 0 when s → ∞. A function
β : R≥0×R≥0 → R≥0 is said to be of class KL if β(·, t) ∈
K for all t ∈ R≥0 and β(s, ·) ∈ L for all s ∈ R≥0. A

closed ball of radius δ centered at the origin is denoted by
Bδ := {x ∈ Rn : |x| ≤ δ} where | · | is the Euclidean norm.
We define |x|δ := infz∈Bδ |x−z|, and the subset H(δ,∆) :=
{x ∈ Rn | δ ≤ |x| ≤ ∆}. The definitions for UAS of a ball
used in this paper are the same as presented in [17].

III. UNIFORM PRACTICAL ASYMPTOTIC STABILITY

In this section we give a precise definition of UPAS, we
provide Lyapunov sufficient conditions for UPAS, and we
present results on the stability of cascaded systems consisting
of UPAS sub-systems.

A. UPAS definition

We consider parameterized time-varying dynamical sys-
tems on the following form:

ẋ = f(t, x, θ), (1)
where x ∈ Rn, t ∈ R≥0, θ ∈ Rm is a constant parameter,
typically a control gain that can be tuned and f : R≥0×Rn×
Rm → Rn is locally Lipschitz in x and piece-wise contin-
uous in t and θ. An estimate of the domain of attraction is
given by Df (a, b) := {θ ∈ Rm | Ba is UAS on Bb for (1)}.

Definition 1. (UPAS) Let Θ ⊂ Rm be a set of parameters.
The system (1) is said to be Uniformly Practically Asymp-
totically Stable (UPAS) on Θ if for some ∆ > 0, for any
positive δ < ∆ there exists θ∗(δ) ∈ Θ such that the ball Bδ
is UAS on B∆ for the system (1).

Note that this is a local adaptation of UGPAS and USPAS
as presented in [15] and [17]. Specifically the radius ∆ of
B∆ can be increased arbitrarily by the choice of parameters,
the definition extends to that of USPAS, and if ∆ → ∞
regardless of the parameters selected, then it becomes the
definition of UGPAS.

B. Lyapunov sufficient conditions for UPAS

The following proposition is an adaptation of Theorem 10
in [17] and gives sufficient conditions for a system on the
form (1) to be UPAS.

Proposition 1. (Lyapunov sufficient conditions for UPAS)
Suppose that there exists a ∆ > 0 such that, for any positive
δ < ∆ there exist a parameter θ∗(δ) ∈ Θ, a continuously
differentiable function Vδ : R≥0 × Rn −→ R≥0, and class
K∞-functions αδ , αδ and αδ , such that for all x ∈ H(δ,∆),
and all t ∈ R≥0

αδ(|x|) ≤ Vδ(t, x) ≤ αδ(|x|), (2)
∂Vδ
∂t

(t, x) +
∂Vδ
∂x

(t, x)f(t, x, θ∗) ≤ −αδ(|x|), (3)

lim
δ→0

α−1
δ ◦ αδ(δ) = 0. (4)

then the system (1) is UPAS on the parameter set Θ.

Proof: The proof follows directly from the proof of
Theorem 10 in [17] by setting ∆1 to be constant.

It is worth stressing that the K∞ functions involved in (2)
- (3) typically depend on the the value of the parameter θ,
which is itself tuned to reach a given steady-state precision



δ. In other words, these K∞ functions typically depend on δ,
as witnessed by the subscript. This is what makes condition
(4) non-trivial.

C. UPAS of cascades

We consider the cascaded system
ẋ1 = f1(t, x1, θ1) + g(t, x, θ)x2, (5a)
ẋ2 = f2(t, x2, θ2), (5b)

where x := [xT1 , x
T
2 ]T ∈ Rn1 × Rn2 are the states, θ :=

[θT1 , θ
T
2 ]T ∈ Rm1 × Rm2 are the parameters, t ∈ R≥0, f1,

f2 and g are locally Lipschitz in the states and parameters,
and piece-wise continuous in time. To establish UPAS of
cascaded systems on the form given by (5), an adaptation of
Theorem 13 in [17] is made. The following assumptions are
made:

Assumption 1. (UPAS of the driving subsystem)
The driving system (5b) is UPAS on Θ2.

Assumption 2. (UPAS of the driven subsystem)
For some ∆1 > 0 and any δ1 such that ∆1 > δ1 > 0, there
exist a parameter θ∗1(δ1) ∈ Θ1, a continuously differentiable
function Vδ1 , and class K∞ functions αδ1 , αδ1 and αδ1
such that conditions (2). (3) and (4) are satisfied with these
functions, and a continuous positive non-decreasing function
cδ1 exists such that for all x1 ∈ H(δ1,∆1) and all t ∈ R≥0∣∣∣∣∂Vδ1∂x1

(t, x1)

∣∣∣∣ ≤ cδ1(|x1|). (6)

Assumption 3. (Boundedness of the interconnection term)
The function g is uniformly bounded both in time and
parameters, i.e there exists a non-decreasing function G :
R≥0 → R≥0 such that, for all x ∈ Rn1 × Rn2 , all θ ∈
Θ1 ×Θ2 and all t ∈ R≥0

|g(t, x, θ)| ≤ G(|x|). (7)

Assumption 4. (Boundedness of solutions)
There exists a positive constant ∆0 such that there exist
positive numbers ∆1 > max{δ1,∆0} and ∆2 > δ2, and
parameter θ∗1(δ1) as defined in Assumption 2, there exists a
parameter θ∗2 ∈ Df2(δ2,∆2)∩Θ2, and a continuous function
γ(a, b) : R≥0×R≥0 → R≥0 such that the trajectories of (5)
with θ = θ∗ satisfy

|x0| ≤ γ(∆1,∆2) =⇒ |x(t, t0, x0, θ
∗)| ≤ ∆1, ∀t ≥ t0 (8)

Theorem 1. Under Assumptions 1-4 the cascaded system
(5) is UPAS on Θ1 ×Θ2.

Proof: The proof follows directly from the proof of
Theorem 13 in [17] by setting ∆1 to be constant.

IV. CONTROL ORIENTED MODEL

A detailed model of an USR where the full kinematics
and dynamics of a planar snake robot with revolute joints are
considered, is presented in [18]. The closed-loop form of this
model is validated through experiments, and the results are
used in a comparison between experiments and simulations
for path following in [1]. The complexity of this model
makes it less appropriate for the design of control systems

and motion planning. A simplified control-oriented model
was thus developed in [19], and later extended to USRs
in [20]. The model was developed further in [21], where
constant ocean currents were added. The control-oriented
model was later used to develop a controller for integral line-
of-sight guidance, and the controller was validated through
experiments in [22]. In this paper we modify the current
that is parallel to the y-axis to be time-varying. The control-
oriented model is then given by:

φ̇ = vφ, (9a)
η̇ = r, (9b)
ṗx = vt cos η − vn sin η + Vx, (9c)
ṗy = vt sin η + vn cos η + Vy(t), (9d)

v̇φ = −cn
m
vφ +

cp
m
vtAD

Tφ+
1

m
DDTu, (9e)

ṙ = −λ1r +
λ2

Nl − 1
vtē

Tφ, (9f)

v̇t = − ct
m
vt +

2cp
Nlm

ēTφvn −
cp
Nlm

φTAD̄vφ

+ r(Vx sin η − Vy(t) cos η)− V̇y(t) sin η,

(9g)

v̇n = −cn
m
vn +

2cp
Nlm

ēTφvt

+ r(Vx cos η + Vy(t) sin η)− V̇y(t) cos η.

(9h)

Here φ contains all the relative Nl− 1 joint angles φi while
η denotes the heading of the snake robot. The position of the
USR is given by [px, py]T . The angular velocity of the joints
is given by vφ, while the angular velocity of the heading
is given by r. The velocities relative to the ocean current
are given by vt and vn, respectively. Additionally, current
velocity is given by [Vx, Vy(t)]T , where Vy(t) is time-varying
and bounded. Additionally we define |Vα| as the bound
of Vy(t). Furthermore, λi are constants that characterize
the rotational dynamics. The ct, cn coefficients are the drag
coefficients in the tangential and normal directions, respec-
tively, while cp is the propulsion coefficient. The summation
vector is denoted as ē = [1, ..., 1]T ∈ RNl−1, and the
matrix D̄ = DT (DDT )−1. The A and D are given by

D =

[
1 −1

. . . . . .
1 −1

]
, A =

[
1 1

. . . . . .
1 1

]
.

V. CONTROL DESIGN

A. Control objectives and approach

The approach presented in this paper is inspired by [8],
[9], [12]. However, because the proposed controller is de-
signed to handle time-varying references and disturbances,
the hierarchical approach as used in these papers can not be
used in our control design and analysis. Instead a cascaded
system approach [14] based on the results of Section III will
be utilized.

The control objective is to achieve a desired position
downstream from a bluff body. The vortexes that are shed
from the bluff body result in a sinusoidal motion induced
through the USR. Therefore, to take advantage of this energy,
it is preferable that the USR moves in a similar sinusoidal



pattern. The controllers presented in [9] use such a sinusoidal
gait to achieve forward propulsion while also achieving a
desired velocity and orientation. Therefore, in this paper
we choose to use the same sinusoidal gate as presented in
previous work, where each of the joints is given by i,

φd,i = αγ1(i) sin (λ+ (i− 1)δ) + g2(φ0), (10)
where α is the amplitude, γ1(i) is a scaling function that
varies the amplitude along the snake body, and δ is the
phase shift between adjacent joints. The variables λ and
φ0 are the frequency and turning parameters. A saturation
function g2 is designed to be strictly increasing and twice
differentiable in the range [φ0,min, φ0,max]. The frequency
and turning parameters will be treated as virtual control
inputs and their references will be given by a guidance law,
designed such that tracking these time-varying references
leads to the desired position being acquired. Additionally we
assemble all the reference signals into a vector φd ∈ RNl−1.

B. Joint controller

To achieve the desired relative angles, the following feed-
back linearizing controller is proposed

u = m(DDT )−1[
cn
m
vφ −

cp
m
vtAD

Tφ+ ū]. (11)

We choose ū = φ̈d − Kφ,1
˙̃
φ − Kφ,2φ̃, where Kφ,1, Kφ,2

> 0, and φ̃ = φ− φd.

Proposition 2. Consider a USR described by (9), then
the controller (11) ensures that for the system (9) that φ̃
converges to zero exponentially fast.

Proof: Inserting (11) into (9e) yields
¨̃
φ+Kφ,1

˙̃
φ+Kφ,2φ̃ = 0, (12)

which is uniformly globally exponentially stable (UGES).

C. Velocity controller

To achieve a desired relative velocity, equation (9g) is
rewritten by using (10), giving

v̇t = − ct
m
vt +Xnvn −Xλλ̇−Xφφ̇0 − V̇y(t) sin η

+ r[Vx sin η − Vy(t) cos η]) + g1(t, φ̃,
˙̃
φ),

(13a)

where we define B̄ := AD̄ and

g1(t, φ̃,
˙̃
φ) := −cp((2φ̃+ φd)

T B̄
˙̃
φ+

˙̃
φT B̄φ̇d)

Nlm
, (14a)

Xφ :=
cp
Nlm

φTd B̄, (14b)

Xλ := Xφα[cos(λ) + ...+ cos(λ+ δ(Nl − 1))]. (14c)
Furthermore, we define the error variables z1 := vt−Vd and
z2 := λ̇ − ζ1, where Vd is the reference tangential relative
velocity and ζ1 is a virtual control input, which is used to
stabilize z1. To achieve the desired velocity, we propose a
backstepping controller. We define ψ1 such that:

ż1 =− ct
m
vt + ψ1(t, vn, vθ, η)−Xφφ̇0

−Xλ(ζ1 + z2) + g1(φ̃,
˙̃
φ),

(15)

and choose the virtual input as

ζ1 =
− ct
m
Vd −ψ1(t, vn, vθ, η)−Xφφ̇0 +Kλ,1z1

Xλ
, (16a)

ζ1 =
ζ∗1 −Xφφ̇0

Xλ
. (16b)

The derivative of the second error variable z2 is the found
as

ż2 = uλ −
ζ̇∗1
Xλ

+
Ẋλ(ζ∗1 +Xφφ̇0)

X2
λ

− Xφφ̈0 + Ẋφφ̇0

Xλ
. (17)

The control input is then selected as

uλ =
ζ̇∗1 + Ẋφφ̇0

Xλ
− Ẋλ(ζ∗1 +Xφφ̇0)

X2
λ

−Kλ,2z2 +Xλz1.

(18)
By inserting the virtual input (16) and the control input (18),
the closed-loop system is then given by

ż1 = −
( ct
m

+Kλ,1

)
z1 −Xλz2 + g1(t, φ̃,

˙̃
φ), (19a)

ż2 = −Kλ,2z2 +Xλz1 +
Xφ

Xλ
uφ. (19b)

We define the paramterset ϕ1 := [ϕ2,ϕ3]T , where ϕ2 :=
[Kφ,1,Kφ,2]T and ϕ3:=[Kλ,1,Kλ,2]T .The cascaded system
can then be written as

ẋ1 = f1(t,x1,x2,ϕ2) + gλ(t,x2)x2, (20a)
ẋ2 = f2(x2,ϕ3), (20b)

where we define x1 := [z1, z2]T and x2 := [φ̃,
˙̃
φ]T . The

dynamics and interconnection-term are given by (12), (19)
and (14a).

Proposition 3. The cascaded system (20), with the back-
stepping controller (18) is UPAS on ϕ1 and the solutions
are globally uniformly bounded (GUB).

Proof: Consider the Lyapunov function defined as
V1 := (1/2)z2

1 + (1/2)z2
2 . From Proposition 2 it is known

that x2 is bounded. Furthermore, the references φd and φ̇d
are bounded by design. This implies that g1, Xφ and Xλ are
bounded. We denote the bounds by g1,m, Xφ,m and Xλ,m.
The following is then derived:

V̇1 ≤ −
[( ct
m

+Kλ,1

)
|z1| − g1,m

]
|z1|

−
(
Kλ,2|z2| −

Xφ,m

Xλ,m
uφ,m

)
|z2|,

(21)

where uφ,m is the bound of the angular velocity control
input. The derivative (21) is negative definite for

|x1| >
g1,m

ct
m

+Kλ,1

+
Xφ,m

Xλ,mKλ,2
|uφ,m|. (22)

This means that x1 is GUB by Theorem 4.18 in [23]. The
nominal system can be shown to be UPAS from (21), and
the interconnection term is bounded.

Finally it is established in Proposition 2 that the driving
system is UGES. Then by Theorem 1 the system is UPAS
on the set of parameters.



D. Guidance law and attitude controller

The guidance law presented in this paper is inspired
by [10]–[12]. The planar geometric path following law is
modified to include a desired velocity uy along the y-axis
in addition to the velocity ux along the x-axis. The velocity
references will be designed to stabilize the position of the
USR. To drive the USR towards a reference position, a
desired orientation is defined as

Rd :=


ux − Vx√

N

uy√
N

− uy√
N

ux − Vx√
N

 , (23)

where N = (ux−Vx)2 + (uy)2. This is illustrated in Figure
1 below. To design an attitude controller that drives the USR
towards the desired orientation, an error function Ψ(R,Rd)
is defined as

Ψ(R,Rd) :=
1

2
tr[I −Rd

TR]. (24)

Furthermore, the derivative of Ψ with respect to R is defined
as DRΨ(R,Rd) := eR, where eR is given by[

0 −eR
eR 0

]
=

1

2
(Rd

TR−RTRd). (25)

Fig. 1: Geometric representation of guidance law.

The desired angular velocity is found to be [12][
0 −rd
rd 0

]
= Rd

T Ṙd. (26)

By defining y1 := r− rd and the choice of rd given by (26)
the following can be found

dΨ(R,Rd)

dt
= eRy1, (27a)

ėr = Cy1, (27b)
where |C| ≤ 1. The error function Ψ(R,Rd) ∈ [0, 2], where
Ψ(R,Rd) = 0 implies that the heading of the USR is
aligned with the desired orientation, while Ψ(R,Rd) = 2
implies that the USR is pointed in the opposite direction
of the desired orientation. From (25) we see that eR = 0
when R = Rd and R = −Rd, implying that there are two
equilibrium points in the dynamics of the orientation.

Motivated by [11], [12] we define the subset level L2 :=
{R ∈ SO(2)|Ψ(R,Rd) < 2}. The attitude controller is
designed to ensure that given some initial conditions, R
always lies in L2. The error dynamics are defined as y2 :=
g2(φ0) − χ1, y3 := φ̇0 − χ2, where χ1 and χ2 are virtual
inputs.

We define the interconnection term and sinusoidal gate

g3(t, φ̃, z1) :=
λ2

Nl − 1
((z1 + Vd)ē

T φ̃+ z1ē
Tφd), (28a)

α1(λ) := α[sin(λ), ..., sin(λ+ δ(Nl − 1))]T . (28b)
The virtual inputs and real input are then selected as

χ1 =
λ1rd − λ2Vdα(λ)− ṙd −K1z1 −KReR

λ2Vd
, (29a)

χ2 =
1

∂g(φ0)/∂φ0
[χ̇1 − λ2Vdy1 −K2y2] , (29b)

uφ = χ̇2 −
∂g(φ0)

∂φ0
y2 −K3y3. (29c)

This gives the following closed loop dynamics
ẏ1 = −(λ1 +K1)y1 + λ2Vdy2

−KReR + g3(t, φ̃, z1),
(30a)

ẏ2 =
∂g2(φ0)

∂φ0
y3 − λ2Vdy1 −K2y2, (30b)

ẏ3 = −∂g2(φ0)

∂φ0
y2 −K3y3. (30c)

We define x3 := [eR, y1, y2, y3]T , x4 := [x1,x2]T , ϕ4 =
[K1,K2,K3,KR]T , ϕ5 = [ϕ4,ϕ1]T and the initial states
yi0. We then have the following cascaded system

ẋ3 = f3(t,x3,ϕ4) + g3(t,x4), (31a)
ẋ4 = f4(t,x4,ϕ1), (31b)

where f3, g3 and f4 are given by (30), (27) and (20). The
following proposition can then be made:

Proposition 4. Consider a system with dynamics (9) and
controller (29), and suppose that the initial conditions satisfy

Ψ(R(0),Rd(0)) < 2, (32a)

y2
10 + y2

20 + y2
30 < 2KR(2−Ψ(R(0),Rd(0))). (32b)

Then, for sufficiently small values of φ̃ and z1, and by
selecting K1 such that

g3,m

(λ1 +K1)
<< 2KR (33)

it can be shown that Ψ(R(0),Rd(0)) ∈ L2 ∀t.

Proof: We define V2:=
1

2
y2

1+
1

2
y2

2+
1

2
y2

3+KRΨ(R,Rd).
To ensure that Ψ(R(t),Rd(t)) < 2 the derivative of V3 has
to be negative definite when approaching the ball βr where
r = 2KR. From Proposition 3 it is shown that z1 is bounded.
Furthermore Vd is bounded by design. We define g3,m and
Vm as the bound of the interconnection term and desired
relative tangential velocity, respectively. Then the following
bound is found for the derivative of the Lyapunov function

V̇2 ≤− (λ1 +K1)|y1|2 −K2|y2|2 −K3|y3|2

+ g3,m|y1|.
(34)

By selecting the gains as in (33), the Lyapunov function is
negative definite when approaching a circle with radius 2KR,
implying that if the initial values satisfy (32) the states are
bounded away from βr ∀t.

We define λm and λM as the smallest and largest eigen-
values, respectively.



Proposition 5. Consider a system with dynamics (9) and the
controller given by (29) and assume that the bounds given
by (33) are satisfied and that

K2 >
λ2Vm

2,
(35a)

λm(M3,φ) >
λ2Vm

2
. (35b)

Then (31a) is UAS and the cascaded system given by (31) is
UPAS on ϕ5.

Proof: To show stability for the attitude dynamics, the
following bounds are used

1

2
||eR||2 ≤ Ψ(R,Rd) ≤

1

2− ψφ
||eR||2, (36)

where Ψ(R,Rd) ≤ ψφ < 2, which is derived and proven
in [11]. A new Lyapunov function is defined as V3 :=

V2 +
1

2
βφeRy1, where βφ is a positive constant. By using

the bounds (36), it can be shown that the Lyapunov function
is bounded by

xT3Mφ,1x3 ≤ V3 ≤ xT3Mφ,2x3, (37)

where Mφ,1 = 1
2

[
KR −βφ 0 0
−βφ 1 0 0

0 0 1 0
0 0 0 1

]
, Mφ,2 = 1

2

 2KR
2−ψφ βφ 0 0

βφ 1 0 0
0 0 1 0
0 0 0 1

.

Selecting βφ <
√
KR, the eigenvalues of Mφ,1 and Mφ,2

are positive, and the following bounds can be used
λm(Mφ,1)||x3||2 ≤ V3 ≤ λM (Mφ,2)||x3||2, (38)

We consider the nominal dynamics of (30), and find the
following bound for V̇3

V̇3 ≤ −xT5

 βφKR −βφ(λ1 +K1)

2

−βφ(λ1 +K1)

2
((λ1 +K1)− βφ)

x5

−K2y
2
2 −K3y

2
3 + λ2Vdy2eR,

(39)
where x5 = [ |eR| |y1| ]T . By selecting

βφ < min
{

(λ1 −K1),
4KR(λ1 +K1)

4KR + (λ1 +K1)2
,
√
KR

}
, (40)

the matrix in (39), which we denote as Mφ,3, is positive
definite. Using Young’s inequality [24] the bound can be
rewritten as

V̇3 ≤ −λm(Mφ,3)|y1|2 − (K2 −
λ2Vd

2
)y2

2

−K3y
2
3 − (λm(Mφ,3)− λ2Vd

2
)|eR|2.

(41)

The bound is negative definite if (35) are satisfied. This
implies that x3 is UAS. Additionally all the conditions of
Theorem 1 are satisfied and the cascaded system is UPAS
on the set of parameters.

E. Position and sway velocity stabilization

Motivated by [5], the point which defines the position of
the robot is moved by a distance ε = −2(N − 1)cp/Nlmλ2.

The new coordinates are given by
˙̄ex = vt cos η − v̄n sin η + Vx, (42a)
˙̄ey = vt sin η + v̄n cos η + Vy(t), (42b)
˙̄vn = X(η)r − Y v̄n − V̇y(t) cos η, (42c)

where ēx and ēy are the position errors along the x and
y -axis. Furthermore, X(η) = ε(cn/m − λ1) + Vx cos η +
Vy(t) sin η, and Y = cn/m. We define ϕ6 = [Y,ϕ5]T .

Proposition 6. Consider the USR described by (9), with the
controllers (11), (18), (29) and the guidance law given in
Section V-D. Then the transformed sway velocity v̄n is GUB
and the cascaded system is UPAS on ϕ6.

Proof: We consider (42c) and rewrite the equation to
˙̄vn = X(η)rd − Y v̄n +X(η)y1 − V̇y(t) cos η. (43)

We define V4 := (1/2)v̄2
n, and the derivative is bounded by

V̇4 ≤ −Y v̄2
n + (|Vα|+ |XM |(|rd|+ |y1|))|v̄n|, (44)

where XM = (|X| + |Vx| + |Vα|). From Proposition 5 it
is shown that y1 is bounded. Furthermore rd is bounded by
design. We define the upper limit of y1 + rd as rM . By
inserting this we get

V̇4 ≤ −Y v̄2
n + (|Vα|+ 2|XM ||rM |)|v̄n|, (45)

which is negative definite for |v̄n| > (|Vα|+2|XM ||rM |)/Y
and therefore uniformly bounded by Theorem 4.18 in [23].
Additionally the nominal system is UPAS by Proposition 1.
The conditions of Theorem 1 are satisfied, and the cascaded
system is UPAS on ϕ6.

To stabilize the position of the USR, it is necessary that
the guidance law is well defined, that is

√
N 6= 0. The

control inputs for the position are selected as ux = −kex and
uy = −key . Additionally it is assumed that (−kex−Vx) > 0,
which implies that the USR always approaches the desired
position from such a direction that the current component
along the x-axis runs towards the USR. Additionally the
desired relative velocity is selected as Vd =

√
N .

Our goal is to design a controller that stabilizes the USR
at some desired position close to a bluff body. For efficient
movement and energy harvesting purposes this would be
downstream in the wake of an object. Therefore the assump-
tion that the USR moves against the current is reasonable.
We define η̃ := η − ηd and ϕ7 = [k,ϕ6]T .

Proposition 7. Consider an USR described by (9), with the
controllers (11), (18), (29) and the guidance law given in
Section V-D. Furthermore, assume that the USR is moving
against the current component along the x-axis, such that
(−kex − Vx) > 0. Additionally, assume the attitude error η̃
is small and bounded such that

(1− |η̃|
2

2
) > 0. (46)

Then the position errors |ex| and |ey| are GUB and the
cascaded system is UPAS on ϕ7.

Proof: Consider the dynamics of the position errors
(42). Furthermore assume that the attitude error η̃ is small
so that cos η̃ ≈ (1 − η̃2/2) and sin η̃ ≈ η̃. We define V5 :=



(1/2)ē2
x + (1/2)ē2

y and the following bound can be found

|V̇5| ≤ −k
(

1− η̃2

2

)
(|ēy|2 + |ēx|2)

+

(
|Vα|+ |ṽn|+ |z1|+ Vx(η̃ +

η̃2

2
)

)
(|ēy|+ |ēx|)

(47)

By Proposition 4 the error variable η̃ is bounded. For V̇5 to
be negative definite the bound of the error of the angle has to
satisfy (46). Assuming that this condition is satisfied, it can
be shown that the position errors are uniformly bounded and
that the nominal system is UPAS. The conditions of Theorem
1 are satisfied and the cascaded system is UPAS on ϕ7.

VI. SIMULATION STUDY

In this section we present simulation results, and discuss
the performance of the controller.

A. Simulation setup

The control oriented model (9) with the controllers pre-
sented in (11), (18) and (29), was implemented in MAT-
LAB2020B. The analytical expressions for the time deriva-
tives of the attitude reference signal are omitted due to
complicated calculations and long expressions. Instead a
third order low-pass filter is used to approximate these
signals. Incorporating these models into the the analysis is
a theoretical gap that might be addressed in future research.
The parameters used are given in Table I.

B. Simulation results.

Figure 2a and 2b show that the USR converges to a desired
position along the x-axis while oscillating about the desired
y-position. Note that the amplitude of the oscillations can be
reduced or increased by tuning the parameters in ϕ7. This is
shown in Figure 2a, where three cases have been plotted with
different values for k. It is observed that as k increases the
amplitude decreases, as expected from the UPAS properties.
The path of the USR is shown in Figure 2c. Furthermore,
from Figure 2d it can be seen that the norm of the input is
bounded. The plot also includes a close up of the input signal,
showing that it is continuous and oscillatory. The velocity is
seen in Figure 2e, with an excerpt showing that the velocity
reaches the reference after approximately 2s, and although
it is UPAS, there is no visible deviation from the desired
value. This might be due to either the gain being high or the
non-vanishing perturbation uφ being low, resulting in a very
small deviation from the desired value. The angular velocity,
as seen in Figure 2f, is slower and requires roughly 100s to
reach the desired value. This might be due to the attitude
error being dependent on both the velocity and relative joint
angle error. These errors are high in the first few time-steps,
which might result in the angular velocity deviating. Another
reason could be that a low-pass filter is used to approximate
the time-derivatives of the reference angular velocity, and it
takes time before the output from the low-pass filter becomes
a good approximation.

VII. CONCLUSIONS

Previous work has established sufficient conditions for
uniform global practical asymptotic stability (UGPAS) and
uniform semi-global practical asymptotic stability (USPAS)
for nonlinear time-varying dynamical systems and cascaded
systems. To the best of our knowledge, there are no results
for a local adaptation of these results. Therefore, uniform
practical asymptotic stability (UPAS) is defined in this paper
and Lyapunov sufficient conditions are provided. Further-
more, it is proven that the UPAS property is retained in
cascaded systems.

This is used to design a controller that allows an under-
water snake robot (USR) to achieve some desired position
in the presence of time-varying disturbances when moving
against a constant current along the x-axis. The system with
the designed controller is proven to be UPAS over the set of
parameters. Finally the theoretical results are verified through
a simulation study.
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