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Abstract

With the adoption of autonomous systems in higher levels of autonomy, large-scale, complex and dynamic systems
are becoming commonplace. Ensuring safe operation of safety-critical autonomous systems is paramount, typically
approached through risk assessment. Two challenges associated with using traditional risk assessment methods for
complex systems are that these systems are dynamic (i.e., their state changes over time) and interactions between
subsystems and components may lead to unpredictable behaviors and impact on the surrounding environment and
other systems in the close vicinity. Dynamic probabilistic risk assessment (DPRA) methods are possible solutions to
these challenges, where the dynamic and uncertain nature of the systems is considered. The methods, however, usually
face combinatorial explosion related to hazards and scenarios, which make their practical application prohibitive; in
the DPRA literature, this problem is known as the state explosion problem. In this paper, we present a literature review
on methods for DPRA, with focus on the existing solutions to the state explosion problem. Specifically, we analyze
and compare these solutions in terms of computational time complexity, traceability and state-space coverage. Finally,
we discuss the comparisons and propose potential paths to improved solutions for the state explosion problem based
on the knowledge gained in the study.
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1. Introduction

Probabilistic Risk Assessment (PRA) can be used to identify possible accident scenarios for complex systems,
such as Nuclear Power Plants (NPP) and Maritime Autonomous Surface Ships (MASS), and allow for the quantifi-
cation of their probability of occurrence. Risk scenarios, in this context, are sequences of hazardous events (e.g.,
electrical motor failure in MASS) which under some circumstances may lead to system-level undesired consequences
(e.g., collision with another ship). When a risk scenario ends in an undesired consequence, it becomes an accident
scenario.

In the area of autonomous systems, such as autonomous vehicles for urban mobility [1] and MASS [2], the purpose
of risk assessment is to contribute to safe operation. Autonomous systems can be classified by their level of autonomy
[3, 4] from one to four, where the last two operate in semi and highly autonomous modes respectively. Semi and highly
autonomous systems are capable of reasoning and decision-making - the former can make simple and mission-specific
decisions, where a human supervisor is responsible for complex decision-making. Highly autonomous systems are
able to plan, re-plan and carry out decisions independently from human operators. In both cases, these systems
are dynamic, i.e., their state changes rapidly relative to the system’s operational time frame, and often operate in
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uncertain and uncontrolled environments. The traditional PRAs, such as those performed in the nuclear industry, treat
the dynamic aspects of the subject systems and risk scenarios in a highly simplified and often implicit way.

Other risk assessment challenges of complex systems are related to unexpected component interactions and cou-
plings. Typically it is hard to predict how failures between components will interact and how fast their effects propa-
gate to other parts of the system. These unforeseen interactions may lead to emergent behaviors which may result in
undesired consequences and accidents.

Dynamic PRA (DPRA) is a class of methods for risk assessment of dynamic systems where a system’s behavior
evolves in time according to dynamic models, with variations in operating conditions, process variables, operator
responses, among others [5]. DPRAs therefore aim to better capture the time-dependent interactions, interconnections,
and interdependencies between different constituent parts of a large-scale complex system. DPRA methods have been
proposed for the risk assessment in the nuclear power [6, 7, 8, 9], oil and gas [10], aerospace [11], and maritime [12]
domains. These methods can aid design, operation, and personnel training - thus, there is a significant research effort
in improving DPRA methods.

According to Aldemir [13] and Mosleh [5], we can classify DPRA methods by their time domains: Continuous
or discrete-time methods. Examples of continuous-time methods are Continuous Event Trees (CET) [14] and the
Continuous Cell-to-Cell Mapping Technique (CCCMT) [15]. Discrete-time methods are the more popular of the two,
with examples being methods based on Discrete Dynamic Event Trees (DDET) [6] and Monte Carlo Simulation [7].
One of the challenges in using continuous methods is to define a proper representation for the time evolution of the
dynamical system, e.g., with a mathematical model. However, there is a trade-off between the model’s accuracy and
complexity. If the model is too simplistic, it may not capture dynamic behaviors that lead to relevant risk scenarios.
If it is too complex, the number of behaviors explodes, and the model may become unsolvable in feasible time - i.e.,
finding all unique solutions would take a long computation time.

This challenge is also present in discrete methods, where the number of discrete state transitions to be computed
grows exponentially with the number of time steps and complexity of the analyzed system. To illustrate, consider a
simple system with three components, each with a binary state (i.e., ”working” or ”failed”). For this simple system,
we have to consider all combinations of component modes for each discrete time step to find all possible accident
scenarios - i.e., in a single time step, there are 23 possible combinations to be considered. Furthermore, failures are
stochastic in time, meaning there is a set of s discrete time steps for each component combination. Thus, for a given
discrete time t, there are mcst combinations to be considered, where c is the number of system components and m is
the number of operating states for each component. This exponential growth is known in the DPRA literature as the
state explosion problem, and it makes the use of DPRA methods in practical applications unfeasible.

Over the years, several solutions have been proposed to overcome the state explosion problem. Solutions for
discrete-time methods typically use biases to guide the generation of risk scenarios towards the most probable ones
[16, 17], to reason backward from top events [18, 19], or to limit the growth of the state-space being explored (i.e., to
prune the state-space) [8, 20]. While biasing [21, 22] and pruning [23, 24] are also used on continuous-time methods,
other solutions include using reduced-order models [25, 26]. Parhizkar et al. [27] use the term Supervised DPRA to
refer to DPRA methods with a solution to the state explosion problem. Supervised DPRA thus are methods which
address the state explosion problem, for example, through biasing, reduced-order models, and so on.

The computational performance of DPRA methods is typically measured in terms of execution time - i.e., how
fast a method generates all the relevant risk scenarios. A caveat to this measurement, however, is that it depends on
the computing capabilities of the platform where a DPRA method runs. Comparing the performance of two DPRA
methods with execution time is thus difficult, as the computers they run on must have the same capabilities and
execution environments for the comparison to hold. Computational complexity analysis yields a metric for measuring
an algorithm’s performance independent of the hardware used, and is thus useful here for comparing the performance
of DPRA methods. Furthermore, it allows us to evaluate if a method will remain computationally efficient when used
with large-scale systems with an increasing number of components and interconnections.

Computational complexity refers to an algorithm’s performance in terms of the number of operations it must
perform given an increasing input - i.e., how the number of operations grows as a function of the input size [28]. To
illustrate computational complexity, consider a Tower of Hanoi puzzle [29]. An algorithm can be defined to solve
this puzzle generically, whose input is the number of disks N that must be sorted. This algorithm would take 2N − 1
moves to complete the puzzle, which equates to an exponential complexity - i.e., the number of operations grows
exponentially with the growth of N. Computational complexity analysis, therefore, yields the growth rate for the

2



number of operations an algorithm must perform given variable input size, not affected by differences in hardware and
computing power. The computational complexity for the generic algorithm above, for example, can then be compared
to other algorithms. If another algorithm can solve the puzzle in less than 2N − 1 moves, then this second algorithm
is less computationally complex than the first - i.e., it can solve puzzles with more disks in the same amount of time.
Computational complexity also indicates how scalable is a given algorithm - i.e., how well it performs as the input
size grows. An algorithm with linear complexity is more scalable than one with exponential complexity - i.e., the
second algorithm above is more scalable than the first, as it is able to complete more operations in the same time.

The state explosion problem poses a challenge to the feasibility of using DPRA methods to autonomous systems
with higher levels of autonomy. Initially, the main objective of the review was to define the state-of-the-art in DPRA
applied to such autonomous systems. However, there were few works found in this specific intersection - for example,
[12], [19] and [21]. The scope of the review was, therefore, widened to include other application domains. The
main objective of this study is thus to review the DPRA literature on current solutions to the state explosion problem
and analyze and compare their computational complexity relative to each other. The purpose is to determine which
current solutions are most feasible for future applications to semi and highly autonomous systems, and investigate
possible ways to solve the state explosion problem. Previously, reviews and surveys of the DPRA literature have been
performed, e.g., Aldemir [13] surveyed the DPRA literature and classified the methods by their time domains. There
is no study, however, analyzing or comparing the computational complexity of supervised DPRA methods to the best
of our knowledge.

In this paper, a systematic mapping of the DPRA literature has been performed to find the supervised DPRA
methods. The literature review was performed using the snowballing method [30], resulting in 131 papers after three
iterations. These papers were reviewed and classified as supervised DPRA (52 papers) and Classical DPRA (79
papers). Computational complexity analyses were performed for each supervised DPRA paper, to study the growth
rate in the number of operations of each method. The supervised DPRA methods have then been compared in terms of
computational time complexity, whether the risk scenarios generated are traceable (i.e., if consequences are reachable
from an initiating event), and whether the full state-space of risk scenarios is covered. Hence, the contributions of
this paper are a systematic review of the DPRA literature, a classification of DPRA methods as either classical or
supervised, and a comparison of the computational complexity of the supervised DPRA methods.

This paper is organized as follows: Section 2 presents the snowballing methodology used to review the literature
systematically. Section 3 presents and discusses the classical DPRA methods, while Section 4 presents the supervised
DPRA methods. The performance comparison of supervised DPRA is then shown in Section 5. Discussions on the
review and comparison, and possibilities for new solutions for the state explosion problem based on the knowledge
gained from the literature review, are presented in Section 6. Finally, conclusions are presented in Section 7.

2. Literature Review Methodology

A systematic literature review was performed following the snowballing procedure as proposed by Wohlin [30].
The procedure starts with the definition of research questions, from which keywords are obtained, and a search string
is constructed. In this case, the research question is: What solutions to DPRA’s state explosion currently exist in the
literature?

From the research question, keywords are obtained, and a search string is constructed. Using the search string
on several academic databases, an initial set of 10 papers was obtained, on which the iterative forward and backward
snowballing process was performed. After three iterations, 121 papers were included in the review - thus, 131 papers
in total were considered in the review. As the works are not typically identified as ”supervised,” data extraction was
performed for all papers, which were distinguished according to two categories:

• Classical DPRA: Works on the development or application of DPRA methods, but which are not explicitly
concerned with the state explosion;

• Supervised DPRA: Works on DPRA methods that directly address the state explosion problem.

The supervised DPRA works were then further studied to analyze the computational time complexity of their methods
and algorithms.
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Figure 1: Percentage distribution for classical DPRA approaches. Groups with percentages ≤ 5% (e.g., petri nets, CET) are inserted into the
”Others” category for clarity.

3. Classical Dynamic Probabilistic Risk Assessment

DPRA methodologies were primarily developed for providing a more realistic and complete representation of
complex systems’ responses to critical deviations in operation. Even systems of similar design could be unique, with
different operators, site-specific components, and changing environmental conditions in which they are deployed.
The case for using DPRA is thus to account for these uncertainties, in order to identify and prevent potential risk or
accident scenarios not previously considered.

Generally, DPRA methods consist of model-based simulations that generate system trajectories (i.e., risk sce-
narios) and their associated probabilities of occurrence [5]. In these methods, rules of deterministic and stochastic
behaviors for the complex system and its elements - e.g., hardware, software, human operators, process variables,
environmental conditions - are developed and implemented. DPRA methodologies have been proven particularly
powerful for systems with control loops and complex interactions between elements. They provide a natural proba-
bilistic environment to include physical models of system behavior and mechanistic models of materials or hardware
systems to predict failure and natural hazards.

In this work, a comprehensive review of DPRA methodologies is performed to find the supervised DPRA methods
and analyze and compare the methods’ computational complexities. Out of 131 studies reviewed, 79 of them were
identified as Classical DPRA, which are summarized in Table A.1 in Appendix A. The table is divided according
to the primary approach used for obtaining the risk scenarios (e.g., DDET, Monte Carlo simulation). Figure 1 shows
the percentage distribution of each approach. Brief descriptions of the approaches are presented here, alongside some
randomly chosen example works.

3.1. Dynamic Event Trees

The discrete dynamic event tree approach is the most commonly used DPRA method, as seen in Figure 1, as it is
possible to use them in combination with conventional PRA. Most DDET-based methods work with simulation. As
seen in Figure 2, a dynamic event tree is generated by simulating the dynamic system’s states from an initial condition
in discrete time steps while considering possible deviations such as component failures and external disturbances,
for example, as well as operator responses. These deviations are predefined to happen at discrete time-steps, and
the responses come from the rules and procedures the operators must carry out when the deviations are detected. The
deviations and responses have associated probabilities (e.g., component failure probability or probability of successful
intervention). The simulation then splits into branches, each with the different outcomes of these probabilities, leading
to the tree-like nature of the DDET. The simulation continues in a branch until an undesirable consequence is reached,
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e.g., a core damage in NPPs or collision in MASS, resulting in a tree of event sequences where each sequence leads
from an initial condition to an undesirable consequence.

Figure 2: Example of a DDET, where a dynamic system is simulated in discrete time steps (dT) from an initial condition (blue circle). The
simulation branches into different paths at branching points (white squares), and each branch is explored until an undesirable consequence (red
circles) is reached.

The generated dynamic event tree is closer to a conventional event tree diagram, as the branches occur at predefined
discrete times. Therefore, integrating DDETs into conventional PRA methodologies is more straightforward than
CETs. Some examples of DDET-based DPRA are [31] and [32]. The first work describes a tool for DDET-based
DPRA based on the Dynamic Logical Analytical Methodology (DYLAM), called DYLAM-3. The tool works by
simulating the physical system’s evolution with a mathematical model, where the system components are modeled in
terms of states (e.g., nominal, failed on, failed off, stuck, and so on). DYLAM-3’s main program drives the simulation
according to a timeline and the logical state transition of the components, and the tool is applied to the PRA of a
Boeing 747 executing an approach-to-landing procedure. The second work includes human factors influencing the
behavior of the physical system, in this case, an NPP, based on the Dynamic Event Tree Analysis Method (DETAM)
[33, 32]. DETAM treats stochastic variations in crew and hardware states, respectively, while plant process variables
are treated as deterministic. The deterministic evolution of plant variables and stochastic variations generates the
DDET, whose branches are quantified in terms of probability of occurrence.

Continuous Event Trees (CETs) are implicit representations of a dynamic system’s state trajectories in time, where
the system is subject to stochastic changes due to component failures, for example [34]. More specifically, a set
of partial differential equations which describe the system’s behavior is augmented with the states of the system’s
components. A probability density function can be defined for the probability that a component change will cause the
system to assume a different behavior - a component’s state change causes a transition to another partial differential
equation. Stochastic changes in the components’ states cause transitions between the possible trajectories, resulting
in a continuous event tree.

The problem of DPRA with CETs consists in solving for the probability densities, typically done with grid meth-
ods such as the Continuous Cell-to-Cell Mapping Technique (CCCMT), described and exemplified by Tombuyses and
Aldemir in [15]. The technique defines regions of the system’s state-space evolution, called ”cells,” and then maps the
probability that the system will transition between cells with the system equations and a given time interval. These
cell-to-cell transitions constitute the transition matrix of a Markov chain, which allows us to find the probability that
the system will be within a cell at a given time [15]. The authors in [15] employ CCCMT and its discrete counterpart
to a van der Pol oscillator’s case study and compare the execution times for both methods.

3.2. Markov Chain Models

Markov models are comprehensive representations of possible chains of events in a complex system, correspond-
ing to sequences of failures and repairs. Markov models evaluate the probability of being in a state at a given time,
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the amount of time the system is expected to spend in a given state, and the expected number of transitions between
states.

Aldemir [35] presented a methodology for developing Markov chain models for process control systems - systems
with control loops and dynamic variables. The system’s feedback equations, describing the interactions between
dynamic variables, and the control units’ failure and repair rates are used to build a Markov chain model of the
system’s probabilistic behavior. The methodology is applied and demonstrated in a simple level-control system.

More recently, Cicotti and Coronato developed a DPRA model for ”ambient intelligence healthcare systems”
[36]. The ”ambient intelligence” is a software-based system capable of supporting medical activities and procedures
in a highly-regulated and complex healthcare environment. The risk model is based on a Markov decision process
(MDP) that considers context-awareness and personalization. The application of the proposed model to a department
of nuclear medicine is presented, and results are discussed.

3.3. Monte Carlo Simulation

Monte Carlo Simulation (MCS) methods deal with uncertainty by simulating the system’s trajectories while inject-
ing random variations in its states and operating parameters. Uncertainties in a dynamic system may lead to deviations
resulting in accident scenarios, and thus the application of MCS to perform DPRA is intuitive. For example, a back-
ward MCS approach has been used to solve the integral equation of a CET and obtain its probability density function
[37]. Whereas the simulation starts at an initial condition in forward MCS, backward MCS defines a transition kernel
that leads from an end condition to the initial condition. The authors justify this approach by arguing that the domain
of possible consequences is smaller than the domain of initial conditions and possible failures. Thus, a backward
search is more efficient.

Furthermore, MCS has been compared to DET-based approaches. In [38], the authors look at NASA’s Cassini
mission PRA. This PRA was performed using a combination of Monte Carlo and event tree approaches, whose results
are validated with a DDET-based method. More specifically, a version of the Accident Dynamic Simulator (ADS),
called ADS-III, was used. The authors concluded that Monte Carlo and DDET-based approaches led to similar results
and were feasible for the PRA of industrial systems, as Cassini’s Titan IV was comparable to industrial systems at the
time.

3.4. Dynamic Flowgraph Methodology

The Dynamic flowgraph methodology (DFM) presents a system’s logic regarding the causal relationships between
physical variables of the control systems. The dynamic behavior of complex systems is represented in DFM as a series
of discrete state transitions.

DFM has been used for example in PRA of mission-critical software-intensive systems [39], with software mod-
eled with typical PRA methods, integrated with DFM. The methodology was also applied to a mini spacecraft, called
the Mini AERCam system, designed and developed by the NASA Johnson Space Center.

3.5. Dynamic Fault Trees

Dynamic fault tree (DFT) utilizes dynamic gates and traditional fault tree gates to model the dynamic behavior
and inter-dependency of components of a complex system.

Galileo is a DFT modeling and analysis tool [40, 41]. It uses the Dynamic Innovative Fault Tree (DIFtree)
methodology, combining static and dynamic fault trees. More specifically, a dynamic fault tree is decomposed into
sub-trees which can be static or dynamic, depending on the temporal relationships between basic events. Static sub-
trees are solved with binary decision diagrams, while dynamic trees are solved with Markov methods. The sub-trees
are then combined for an exact solution to the initial dynamic fault tree.

Another example is by Dugan et al. in 2013, where a patent for DPRA methodology was presented [42]. The
methodology presented, called DEFT, allows DFT nodes to be considered as pivot nodes in event tree models. The
proposed mathematical method supports all typical functions of PRA and includes modularization, phased mission
analysis, sequence dependencies, and imperfect coverage abilities.
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Figure 3: Percentage distribution for supervised DPRA approaches.

4. Supervised Dynamic Probabilistic Risk Assessment

As discussed in Section 1, the state explosion problem prohibits the application of classical DPRA methods to
large-scale complex systems. Methods and approaches that address this problem are classified as supervised DPRA,
corresponding to 52 of the 131 works reviewed here. The supervised DPRA works are presented in Table A.2 in
Appendix A, and the percentile distribution of methods is presented in Figure 3. For brevity, the tables also present
the computational complexities of all supervised DPRA methods reviewed and their properties, namely:

• Traceability: If the sequences of events or system trajectories can be fully traced from an initial condition to
end-states (i.e., accident events, undesirable consequences).

• Full state-space coverage: If the solutions to the state explosion problem fully explore the state-space of
possibilities in their given application.

The computational complexities are discussed in Section 5. In this Section, we briefly describe the supervised
DPRA approaches and provide examples - however, we focus on the solutions to the state explosion problem instead
of the full DPRA methods. The underlying DPRA methods are mostly the same as the classical case, namely DDET-
based methods and Monte Carlo simulation.

4.1. Guided Exploration, Biasing and Importance Sampling
Guided exploration is an umbrella term used here to group several similar approaches applied to DDET generation,

including rule-based guidance, biasing, and heuristic search - i.e., a DDET will branch according to a set of rules,
biases, or heuristic functions. The objective is to explore the most relevant risk scenarios first (i.e., the ones with
the highest probability or severity). The simulation can then stop earlier, thus alleviating the high execution time
brought by the state explosion. An example of this is the ADS framework [6], where branching rules define which
scenarios should be explored first. Newer versions of the ADS have included other mechanisms for alleviating the
state explosion, such as probability truncation thresholds and simulation time limits - methods of state-space pruning
which will be discussed further on.

In Monte Carlo simulation, biasing and importance sampling are used to guide the random walks, which generate
the random system trajectories of MCS. The biasing approach consists of nudging the simulation towards a set of
desired scenarios - i.e., influencing the random walk of MCS to simulate the most severe or probable scenarios first.
Importance sampling is a particular case of biasing. In MCS-based DPRA, importance sampling forces the most
critical scenarios to be simulated first by heavily biasing the conditions that lead to these scenarios. These biases
are then accounted for when quantifying the scenarios’ probabilities of occurrence. An example of biasing and
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importance sampling in MCS is in [43], where MCS is used to solve a continuous event tree numerically - i.e., to find
the probability densities as discussed in 3.1. The authors’ objective is to save computational time while finding rare-
event accident scenarios - this is achieved by modifying the probabilistic laws of the simulation to ensure that ”very
rare events” occur. Then, ”statistical weights” are used to compensate for the effects of the modified probabilities,
ensuring that ”unbiased” rare event trajectories are obtained - the definition of importance sampling discussed above.

4.2. State-space Pruning

State-space pruning consists of reducing the size of the state-space to be searched - for example, pruning is often
used in graph search, where edges of the graph are removed according to some criteria [44]. In DPRA, state-space
pruning typically consists mainly of truncation using probability thresholds or biases to limit the extent of branch
exploration in DDETs [45, 46, 47, 24], or using predefined knowledge of the state-space to avoid re-evaluating similar
scenarios [21]. In the case of probability pruning, for example, events whose probabilities of occurring are lower than
a certain threshold are not explored further, thus reducing the size of the explored state-space.

The branch-and-bound optimization method is another common approach for state-space pruning. This algorithm
relies on the bounding principle: A lower and an upper bound on an optimal value is computed over a given state-space
region. DPRA models could use this method to perform supervised branching and generate scenarios, as the branch-
and-bound method carries out branching adaptively. Nielsen and Hakobyan [8, 20] apply the branch-and-bound
approach to DPRA, where a DDET for a station blackout transient is generated as in ADS. The branch-and-bound
method defines which branches of the DDET are explored and pruned according to the upper and lower bounds and
an objective function. The bounds are defined by a novel metric called LENDIT1.

4.3. Reduced-Order Models

In simulation-based approaches to DPRA (e.g., ADS, MCS), an intuitive way of mitigating the state explosion
problem is to adjust the level of detail of the physical models being simulated - a less detailed physical model yields
faster simulation times, albeit at the cost of accuracy.

These simplified or Reduced-Order Models (ROM) are prevalent in MCS-based DPRA [48], and can be obtained
analytically or through linear and non-linear approximators such as Artificial Neural Networks (ANN) [25, 26, 49].
For example, an ANN is trained in [25] with the solutions to a system of differential equations for a holdup tank,
similar to a regression or curve fitting approach.

4.4. Hybrid Approaches

As the name suggests, hybrid approaches mix parts of two or more methods to create a new method. In DPRA,
the objectives of hybrid approaches are typically to overcome the limitations of single approaches and achieve better
performance.

For example, the Monte Carlo Simulation with the Discrete Dynamic Event Tree (MCDET) is a probabilistic
simulation method proposed in [7]. MCDET integrates Monte Carlo simulation and DDET generation, where DDET
treats discrete variables and continuous variables are treated by MCS. For each set of continuous values treated by the
Monte Carlo simulation, MCDET generates a new DDET. In other words, MCDET uses Monte Carlo simulation to
account for stochastic uncertainties and continuous variables and DDET for deterministic uncertainties and discrete
variables.

5. Computational Complexity of Supervised DPRA Methods

Works addressing the state explosion problem typically evaluate performance, compared to their classical DPRA
counterparts, in terms of execution time (also referred to as CPU time). While this metric is helpful as empirical data,
it depends significantly on the hardware used, the programming language used to implement the studied method, the
operating system, and many other factors. Asymptotic computational complexity analysis [28] is an analytical way of
quantifying computational performance without these dependencies. It works by analyzing the underlying algorithm

1Length, Energy, Number, Distribution, Information and Time
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for a given program and defining functions of the growth rate of the number of computer operations with increasing
input sizes. There are three possible approaches when analyzing an algorithm [28]: The best-case, average-case,
and worst-case approaches, each defining a different performance bound for the algorithm. The worst-case approach
analyzes the algorithm while imagining a use-case where the algorithm would have the worst possible performance.
For example, the worst-case analysis for an algorithm searching an array would be if the element to be found was in
the last possible position of the array. This approach is the most common one used, as it defines an upper bound limit
on algorithmic performance. That is, in the real world, the algorithm will always perform better than its worst-case
complexity may indicate.

Asymptotic computational complexity analyses as described above were performed here for the reviewed super-
vised DPRA methods, considering the worst-case approach, as shown in Table A.2. The objective is to compare the
supervised DPRA methods to each other and to the baseline computational complexity of DPRA, which is exponential
[50]. Furthermore, we compare the methods in traceability (i.e., if the undesirable consequences are reachable from
the initial conditions) and if they cover the full state-space of possibilities (i.e., a complete search of the state-space).

5.1. Exponential Complexity

As seen in Table A.2, the computational complexity for most supervised DPRA methods is exponential in worst-
case analysis. The reason is that most solutions to the state explosion problem are not useful for reducing the number
of operations when considering the worst-case performance for these algorithms. For example, consider DDET’s
guided exploration solution, which uses sets of rules and biases to guide the simulation towards the most relevant
risk scenarios. The worst possible performance for these algorithms happens when the relevant accident events are in
the last possible branches in the DDET, meaning an exponentially large number of branches must be explored before
reaching the relevant ones.

A more specific example is [16], where simulation (and therefore a DDET) is guided through hierarchical planning
in the SimPRA framework [51]. The level of detail of the physical models is also adjusted when ”level control nodes”
are reached in the DDET to help reduce the computational time - i.e., the level control nodes adaptively adjust the
level of detail in the simulation. The paper describes SimPRA’s algorithms for generating the DDET, a combination
of the simulator, scheduler, and planner modules. The worst-case performance conditions for this approach are:

1. The end-states are at the last possible level of the DDET, at depth d;
2. The level of detail is as high as possible;
3. Level control nodes are never reached.

We assume the simulator has a constant computational time, meaning it will always take the same amount of time
to reach a branching point. According to [16], SimPRA performs a depth-first search in a simulation tree, first looking
at the most relevant scenarios as defined by a biasing function (i.e., heuristic) - however, all possible branches of the
tree will be reached eventually. As the branches are generated iteratively by the scheduler module and, according
to the worst-case condition 1, this algorithm can be classified as an Iterative deepening depth-first search (IDDFS)
algorithm2. The worst-case time complexity for IDDFS is exponential: O(bd), where b is the branching factor of the
DDET. The space complexity3 for IDDFS is, however, linear: O(d).

In the average-case performance for [16], end-states will likely be found in levels before the maximum tree depth,
biasing will lead to the most relevant scenarios first, and the level of detail will be adjusted from level control nodes,
reducing the simulation’s computing time. Thus, the average-case time complexity here is likely linear: T (n×m× d),
where n is the number of simulation rounds and m is the number of simulation runs in each round. However, the
simulation tree generated may not be complete in the average case. If level control nodes adaptively reduce the level
of detail, some branches may not be reached due to the lower accuracy of simpler models. Thus, the state-space is
fully explored in the worst case, but not in the average case. The algorithm is traceable in both cases, as it records the
branches in a simulation tree.

2https://en.wikipedia.org/wiki/Iterative deepening depth-first search
3Typically performed alongside time complexity analysis, space complexity defines the growth rate for an algorithm in terms of memory

requirements (e.g., RAM usage) [28].
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In state-space pruning, the worst-case performance happens when the truncation parameters or optimal bounds are
inefficient - i.e., when the probability thresholds are close to zero or when the lower and upper bounds of the branch-
and-bound approach are close to infinity. For example, [45] uses a backtracking algorithm for DDET generation,
which equates to a depth-first search approach with probability threshold pruning. The worst-case performance for
this algorithm is when the probability threshold is close to zero. The algorithm then has the worst-case exponential
time complexity of the depth-first search approach.

Finally, the same phenomenon as in DDET’s guided exploration applies in Monte Carlo simulation: The ap-
proaches for solving the state-explosion problem in MCS-based DPRA are obsoleted in the worst-case performance
scenario. MCS generates a random sequence of events with or without time parametrization. The discrete event se-
quence generation in Monte Carlo approaches can be biased towards the most risk-significant scenarios. For example,
in [52], importance sampling was used to bias the generation of event sequences towards a defined goal, evaluated
from the sequences’ feasibility. In [53], a heuristic function is used to bias the simulation towards the most signifi-
cant scenario in terms of risk. The goal, in this case, is to find ”low probability-high risk scenarios.” The worst-case
performance scenario for these methods is when the biases and heuristics do not lead to a desired event or feature.
The exponential complexity comes from the number of scenarios that must be simulated before the desired ones are
found. The average-case scenario expects the heuristic or search function to converge in a reasonable time, and linear
or polynomial computational complexity is achievable.

Generating discrete event sequences over a discrete state-space is another approach for MCS-based supervised
DPRA. It discretizes and divides the state-space into bounded cells, aggregating similar regions. This discretization
makes the state-space countable and finite. Therefore, it should be possible to search it exhaustively in polynomial
or linear time. Examples of this approach with MCS for scenario generation is shown in [54, 55, 56]. Memorizing
interesting parts of the event sequence and then using them in the generation of interesting scenarios via MCS is the
approach shown in [23, 22]. The worst-case performance scenario is when the discretized state-space is uncountable
and infinite - i.e., when the discretized cells are infinitesimal. Although the most accurate results are achieved with
the full state-space, the computational complexity to search it exhaustively is exponential.

5.2. Polynomial Complexity

Polynomial complexity is defined by growth functions such as T (n) = n2, being two complexity classes below
exponential. Although most supervised DPRA works have exponential worst-case complexity, there are ten instances
of polynomial worst-case complexity.

Polynomial computational complexities are primarily achieved using ROMs, discussed in Section 4.3, as math-
ematical models or data-based approximators (e.g., ANNs). The downside of using ROMs is that full state-space
coverage is not achievable, as some accuracy is lost due to the simplified nature of the ROMs. For example, [57]
proposes an interpolation method that combines a reduced-order model, a clustering algorithm called dynamic time
warping, and a DPRA framework called Risk Analysis Visualization Environment (RAVEN). This approach allows
for an approximate estimation of the ”response surface” for a system, which relates operation time and response time
to the probability of failure. The authors pose that the computational cost to interpolate the reduced-order model over
the whole response surface is polynomial: O(N1N2[(N + 2)3 + (N + 2)]), where N is the size of the sample data used
to regress the ROM, and N1 and N2 are the sizes of interpolations along the y and x-axis of the response surface - in
this case, operating time and response time. There is some accuracy loss in the interpolation compared to the original
nonlinear model, which means the full state-space of possibilities is not covered for the response surface - although,
according to the paper, the interpolation achieves reasonable accuracy.

Besides using ROMs, novel approaches with polynomial complexities have been proposed to address the state ex-
plosion problem. These include, for example, the Repetitive Simulation Trials After Reaching Thresholds (RESTART)
method [21]. RESTART guides Monte Carlo simulations using a heuristic function and a precomputed initial repre-
sentation of the critical scenarios to be explored (e.g., precomputed DDETs). Adaptive sampling approaches also
achieve polynomial complexity. An example of adaptive sampling is implemented in RAVEN [58], where a ”sam-
pler” module is used to probe the state-space for the most relevant simulation scenarios, based on some input data.
Then, only the probed scenarios are simulated.

Finally, event-driven exploration is a novel methodology for supervised DPRA with polynomial complexity, pro-
posed in [59]. It combines Monte Carlo simulation and dynamic fault trees: MCS is sped up by using an event-driven
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scheduler and simulator based on DFTs, such that trajectories without relevant events are not simulated. The event-
driven approach does not fully explore the state-space, as only the relevant trajectories are simulated.

6. Discussions

This section presents general discussions on the reviewed works, insights from the complexity analyses, and
proposals for novel supervised DPRA methods.

6.1. The State Explosion Problem

Since the 1990s, the state explosion problem has been known and discussed in the DPRA literature. For example,
Marseguerra and Zio conclude their classical DPRA work [60] by remarking that the complex nature of real-world,
large-scale systems may lead to high computation times and that efforts should be made to mitigate this problem. Over
the years, these efforts came forth as proposals for solving the state explosion problem. However, as seen in Section
5, these solutions must sacrifice accuracy, traceability, or state-space coverage in order to reduce the computational
burden. Traceability is vital to explainable AI. A clear sequence of events or fully described trajectory must be
present, from an initial condition to accident events. Accuracy and state-space coverage are also important as some
severe accident sequences might be neglected if there is a lack of accuracy or if the full state-space is not covered.

Thus, a balance must be met when using DPRA in practice. Different methods may be more attractive depending
on the user’s specific needs and the conditions of the system under study. For an autonomous drone, for example,
a faster execution time with less accuracy is preferred, while a more accurate but slower model can be used for an
autonomous ship. Nevertheless, the exponential time complexity of most supervised DPRA methods makes their
application prohibitive to real-world, large-scale dynamic systems, as the execution times grow exponentially with
the number of components in a dynamic system. A supervised DPRA solution with a lower time complexity may be
desirable as it is more scalable, i.e., it is able to compute a larger number of risk scenarios in a given amount of time.

6.2. Worst-case vs. Average-case Performance

This work aims to find a DPRA method with a computational complexity lower than exponential. Therefore, the
computational complexity analyses were performed for the supervised DPRA methods. The methods were evaluated
in terms of time complexity, traceability and whether they explore the whole state-space of risk scenarios.

In computer science, an algorithm’s complexity is typically analyzed asymptotically for an increasing input size
assuming the worst-case performance scenario. This analysis is useful because it defines an upper bound on the
algorithm’s execution time, meaning it will theoretically not perform worse than its complexity indicates. However,
practical applications of the algorithms will likely not face the worst-case scenario. Considering the average-case
performance scenario when performing the complexity analyses could yield more information about the methods’
real-world performance, as the supervised DPRA’s solutions to state explosion are likely to improve the average-case
complexity. A caveat is that an average-case input size for each supervised DPRA method must be defined, which
may not be trivial.

6.3. Complexity Class of DDET-based DPRA

Defining the complexity class for the DPRA problem gives insight into the motivations behind the current super-
vised DPRA methods and the challenges to solving the state explosion problem. Complexity classes are more generic
than the asymptotic complexities seen before, defined for sets of problems relative to the properties of any algorithm
that can solve those problems [28]. A problem’s complexity class, in terms of computational time, can be defined by
proving that the time complexity for any algorithm that solves that problem lies between the upper (i.e., worst-case)
and lower (i.e., best-case) bounds.

Consider a generalization of the DPRA problem based on discrete dynamic event trees. A complete DDET is
generated by considering all of the possible component failure modes for each possible time step: From Section
1, mcs. This function defines the branching factor of the DDET, i.e., the horizontal dimension of the DDET. At
each simulation branching point, the number of states generated in the next branching point depends on the number
of components, component modes and number of time steps to be simulated. The branching factor is unbounded,
assuming model uncertainties and the stochastic nature of component failures, as an uncountable amount of time
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Figure 4: Generic DDET for the complexity class analysis. The simulation tree grows downwards in time until a given discrete time t, and
horizontally at each discrete simulation time until all combinations of components and stochastic failure time steps (mcs) are considered.

steps must be simulated to find all possible events. The vertical dimension of the DDET (i.e., the DDET depth) is
given by the simulation time, or t in the mcst function from Section 1. This generic dynamic event tree is shown in
Figure 4.

The best-case performance for a DDET generation algorithm is if the accident events are present in the first level
of the event tree - i.e., if there is only one transition between the initial condition and the undesirable consequences.
In Figure 4, this would mean only the first level (at ”T1”) of the DDET is generated. However, the algorithm would
take an exponential amount of time to generate the first level of the tree due to the exponential branching factor,
which depends on the unbounded number of time steps. Therefore, the best-case performance for DDET generation
is exponential in the generic case described above. As seen in Section 5, the worst-case complexity for DDET-based
DPRA is also exponential, and thus DDET generation belongs to the NP complexity class: Solvable in exponential
time but verifiable in polynomial time or less [28]. As DDET generation is NP-complex, any algorithm that can solve
the generic DDET in Figure 4 must have exponential complexity.

This complexity class implies that most likely there is no solution for DDET-based DPRA that can explore a full
state space of possibilities - i.e., generate a full DDET as in Figure 4 - in less than exponential time. However, it
is possible to reduce the DDET-based DPRA problem to sub-problems with a P complexity class, as seen in Table
A.2. In order to achieve polynomial time, the supervised DPRA methods search a subset of the full DDET, sacrificing
accuracy or traceability. This reduction of DDET-based DPRA problems to polynomial time means DDET-based
DPRA is NP-hard [28]: It belongs to the NP complexity class, but can be reduced to sub-problems with lower
complexities.

6.4. Possible Paths to Improved Supervised DPRA

As discussed in Section 6.1, a supervised DPRA method with low computational complexity and which retains
accuracy and traceability is desirable. Methods from automated planning are good candidates, as the algorithms used
are generally well optimized. More specifically, the problem of K-Shortest-Paths (KSP) is interesting, defined as the
problem of finding the K best paths (e.g., the ten best paths) between two nodes in a graph ranked by some metric.

However, two requirements of KSP are a predefined number of paths K and a predefined representation of the
state-space to be explored (e.g., a graph). In other words, we must know the state-space and how many accident
scenarios exist beforehand, which is not possible in DPRA. However, the K* (i.e., K-Star) algorithm [61] can solve
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the KSP problem without a predefined state-space or number of paths and therefore could theoretically be applied
to DPRA. Furthermore, K* has a log-linear worst-case time complexity, making it a good candidate for supervised
DPRA.

Another idea for supervised DPRA is to use Temporal Neural Networks (TNN) for pattern identification in DDET
generation or system trajectories in MCS, similarly to [62]. TNNs differ from conventional networks as they consider
time series data in the prediction - i.e., they consider that past data affects the current prediction [63]. Considering
that the risk of a given accident scenario for a dynamic system changes over time due to its dynamic nature, it makes
sense to use TNNs to predict the future level of risk, based on the information from the initial condition up to some
point in the present.

Another possible solution for supervised DPRA is the Divide-et-Impera (DeI) approach [64, 65], which allows
for a generic solution to DPRA independent of underlying models and systems. The ideal solution, i.e., with low
computational complexity and complete coverage, depends on the size and properties of the modeled system - e.g.,
an NPP with a limited event set and strict transition constraints or a MASS with a large event set and weak transition
constraints. Similar to the Galileo tool for DFTs [40], the DeI approach divides the complete search problem into
multiple smaller and more specialized problems, solved by specialized search agents. Each smaller problem focuses
on specific features or goals based on examined system properties. These agents can be implemented with one of
the presented methods (e.g., K*), each looking for risk scenarios with different parameters - for example, high-
consequence, low-probability scenarios, and vice-versa.

6.5. Limitations

There are three main limitations of this work. The first is related to the subjectivity in the computational complexity
analysis performed in Section 5. Typically, an algorithm’s asymptotic complexity is defined objectively as a function
of its input size. For the supervised DPRA methods, this objective analysis was not possible in most cases, as most
papers lacked algorithms and implementations to be evaluated. Therefore, the algorithms and inner workings for most
methods presented in Table A.2 had to be interpreted from the papers, which makes the complexity analysis presented
here intrinsically subjective.

The second limitation is related to the average-case performance, as discussed in Section 6. Most solutions to
the state explosion problem are not relevant when considering the worst-case performance. An average-case analysis
could yield more information in comparing the supervised DPRA methods. However, defining an average-case per-
formance scenario for the papers is problematic since, once again, most papers do not provide implementation details
or algorithms.

Finally, the last limitation relates to the snowballing literature review process. An exhaustive search of the litera-
ture was not performed here, as the snowballing process was interrupted after the third iteration. Therefore, relevant
works might have been missed, and therefore further exploration of the literature is recommended.

7. Conclusions

In this work, a systematic review of state-of-the-art literature has been performed using the snowballing method-
ology to find and evaluate solutions to the DPRA state explosion problem. Out of the 131 papers found with snow-
balling, 79 were classified as classical DPRA, and 52 were classified as supervised DPRA. Classical DPRA works
do not address the state explosion problem which leads to challenges with computation complexity and time. Super-
vised DPRA, however, attempts in different ways to reduce the computation complexity and solve the state explosion
problem. Computational complexity analyses were performed on the supervised DPRA methods, where their worst-
case time complexities were defined and compared to the baseline exponential complexity defined in [50]. More
specifically, the algorithms for each of the 52 supervised DPRA paper were analyzed in terms of the number of oper-
ations performed, yielding computational time complexities. The algorithms were analyzed directly when presented
in the papers. When no algorithms were presented, the papers were studied and their algorithms deduced, to then be
analyzed.

Ten instances of a lower computational complexity (i.e., polynomial) were found, while the other works retained
the baseline exponential complexity. In terms of traceability, almost all supervised DPRA works allow for the risk
scenarios to be traced, with four exceptions. These works use black-box methods such as ANNs to produce surrogate
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or reduced-order models which are faster to compute, thus trading traceability for computational efficiency. The same
happens with state space coverage; i.e., methods which avoid exploring the whole state space are more computation-
ally efficient. This trade-off points towards the DPRA problem being NP-hard: Methods which solve DPRA must
reduce the problem to achieve complexities lower than exponential.

As future works, the authors work on implementing and evaluating the proposed ideas for supervised DPRA
discussed in Section 6, in particular related to K*. The resulting supervised DPRA methods should be applied to
real-world case studies of autonomous systems with high levels of autonomy, such as maritime autonomous surface
ships.
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Appendix A.

DPRA method Citations Number of works

DDET-based

[32], [31], [14], [66], [67, 68], [69], [70]
[71], [72], [73], [74], [75], [76], [77], [78]
[79], [80], [38], [81, 82], [83], [84], [85]
[86], [87], [88], [89], [90], [91], [92]
[33], [93], [94], [95], [96]

36

Markov Chain Models (MCM) [35], [97], [98], [99], [100], [101], [102], [36] 8
Dynamic Flowgraph Methodology (DFM) [103], [104, 105], [106], [107], [108], [39], [109] 8

Monte Carlo Simulation (MCS) [110], [37], [111], [38], [60], [112], [113] 7
Dynamic Fault Trees (DFT) [114], [40], [41], [115], [116], [42] 6

Petri nets [117], [69], [118], [119] 4
Hybrid approaches [120], [121], [122] 3

Integrated Safety Assessment (ISA) [123, 77] 2
Continuous Event Trees (CET) [15], [14] 2

GO-FLOW [124] 1
Dynamic Bayesian Networks (DBN) [125] 1

State Transition Analysis [126] 1

Table A.1: Works related to Classical DPRA methods, grouped by the methodology used for achieving DPRA. Some works present comparisons
between different methodologies, and therefore appear in multiple groups in the table.
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DPRA method State explosion
solution Citation Worst-case computational

complexity Traceable? Full state-space
coverage?

DDET-based

Guided exploration

[127] Exponential Yes Yes
[16] Exponential Yes Yes
[17] Exponential Yes Yes
[51] Exponential Yes Yes

[128] Exponential Yes Yes
[129] Exponential Yes Yes
[130] Exponential Yes Yes

[6] Exponential Yes Yes
[131] Exponential Yes Yes
[132] Exponential Yes Yes
[133] Exponential Yes Yes
[134] Exponential Unknown Yes
[135] Exponential Yes Yes
[136] Exponential Yes Yes

[11] Exponential Yes Yes

State space pruning

[8] Exponential Yes Yes
[20] Exponential Yes Yes
[45] Exponential Yes Yes
[46] Exponential Yes Yes
[47] Exponential Unknown Yes

Reduced-order
models

[57] Polynomial Yes No
[137] Polynomial No No

[62] Polynomial No No

Hybrid approaches [19] Exponential Yes Yes
[18] Exponential Yes Yes

Genetic algorithms [138] Exponential Yes Yes

Monte Carlo
simulation

Biasing
and importance

sampling

[43] Exponential Yes No
[139] Exponential Yes Yes
[140] Exponential Yes Yes

[52] Exponential Yes Yes
[141] Exponential Yes No

[22] Exponential Yes No
[56] Exponential Yes Yes

[142] Exponential Yes No

Reduced-order
models

[25] Polynomial No Yes
[26] Polynomial No Yes
[49] Polynomial Yes No

Cell-to-boundary
method

[54] Exponential Yes Yes
[55] Exponential Yes Yes

Hybrid approaches [48] Exponential No Yes
[21] Polynomial Yes No

State space pruning [23] Polynomial Yes No
[24] Exponential Yes Yes

Adaptive simulation [53] Exponential Yes No

Others

Adaptive sampling [58] Exponential/
Polynomial Yes Yes

[143] Polynomial No No

Data clustering [144] Exponential Yes Yes
[145] Exponential Yes Yes

ESD guidance [146] Exponential Yes Yes
Event-driven exploration [59] Polynomial Yes No

Guided Markov model [147] Polynomial Yes No
State space pruning [7] Exponential Yes No

Table A.2: Supervised DPRA methods, their proposed solutions to the state explosion problem, and their properties. As with Table A.1, the works
are grouped by the DPRA method, as well as the approach chosen to solve the state explosion problem. The rows in bold represent the approaches
with the best computational complexity. When a property is ”Unknown”, it means there was not enough information in the paper for defining that
property.
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