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A B S T R A C T

Thermoacoustic instabilities in stationary gas turbines may cause high-amplitude limit cycles,
leading to damaged components and costly down-time. To better understand the physical
origin of such instabilities in a can-annular combustor configuration, we study the properties
of the spectrum of a reduced-order can-annular thermoacoustic system. Increased focus is
placed on representing the aeroacoustic interaction between the longitudinal eigenmodes of the
individual cans with physically relevant models. To represent the acoustic pressure dynamics
in the combustor, we combine an analytical, experimentally validated model for the can-to-can
impedance with a frequency-dependent model of the flame response in the cans to acoustic
perturbations. By using this approach, we perform a parametric study of the linear stability
of an atmospheric can-annular thermoacoustic system, and emphasize general features of the
structure and properties of the eigenvalues and the eigenvectors of can-annular combustors.
Lastly, we emphasize the differences in the can-to-can coupling that arise when considering
open-end boundary conditions – representative of atmospheric set-ups – or closed-end boundary
conditions – representative of real gas turbine combustors.

. Introduction

.1. Thermoacoustic instabilities in can-annular combustors

Thermoacoustic instabilities can arise from the constructive interaction of a flame with the sound field in an enclosed volume,
uch as the combustion chamber of a gas turbine. This classic physical phenomenon was first studied in modern terms by [1].
nsufficiently damped instabilities lead to high-amplitude pressure oscillations in the chamber. These oscillations in turn induce
igh-cycle fatigue in the metal parts surrounding the enclosure, for instance the turbine vanes, which causes down-time and incurs
ees and repair costs for the manufacturer. The modelling, prediction and suppression of thermoacoustic instabilities has come
o renewed importance in the last 40 years due to strict emission limits and the resulting increased demand for lean-premixed
ombustion. In modern combustors for power generation, most of the air flow passes through the burner to ensure a lean mixture.
he absence of dilution holes that are commonly found in aeroengines – and that are highly efficient sound absorbers – leads to
ombustion instability problems similar to those encountered in rocket engines, with the difference that the life span of stationary
as turbines is expected to be in the order of tens of thousands of hours [2].
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Nomenclature

Latin symbols

𝐴𝑟 Ratio between aperture (𝐴𝑔) and can (𝐴𝑐) surface area
𝑏 Bloch number
𝑐𝑖 Speed of sound
𝑓𝑖, 𝑔𝑖 Riemann invariants
𝐺 Flame front level set (𝐺=0)
𝐾𝑅 Rayleigh conductivity
𝐿𝑓 Flame length
𝑙𝑔 Aperture length
𝑀x Mach number
𝑁 Number of cans
𝑝 Pressure
𝑞 Heat release rate
𝑟can Can radius
𝑅𝑖 Reflection coefficient
𝑠 Laplace variable
𝑠𝐿 Flame speed
𝑇 Temperature
𝑢 Velocity
𝑢𝑐 Convective velocity in the flame
𝑈𝑐 Convective velocity in the aperture
𝑍𝑖 Impedance

Greek symbols

𝜔 Angular frequency
𝜌 Density
𝜎 Growth rate
𝜏 Time delay
𝜁 Can-to-can impedance

Other symbols

⋅̂ Laplace domain variable
⋅ Mean value
⋅̃ Non-dimensional impedance

(scaled with 𝜌𝑐)
FTF Flame Transfer Function

Much research has been devoted in the last decade to modelling and understanding thermoacoustics of single-can [3–5]
nd annular combustion chambers [6,7]. In contrast, modern high-efficiency H-class gas turbines exclusively feature can-annular
ombustor architectures. In this design, combustion takes place in a number (typically 12 or 16) of cans. The annular turbine
nlet, located downstream of the cans, is common to all cans and allows for acoustic cross-talk between neighbouring elements.
pstream coupling via a plenum is also possible, but it will not be considered in this study. The increasing interest in the subject of

hermoacoustic instabilities in can-annular combustor architectures is exemplified by numerical and experimental studies performed
n academia and in industry, including Siemens [8–11], General Electric [12–14], and Ansaldo Energia Switzerland [15,16].

In the present work, we describe a general reduced-order model for predicting thermoacoustic instabilities in can-annular
ombustors (Sections 2 and 3). This model is used to study a lab-scale can-annular combustor (Section 4), with the objective of
nderstanding the influence that various physical parameters – viz., the mean flow speed and the magnitude of the heat release
ate response – have on the frequency spectrum of the system. The physical counterpart of the modelled setup is located at NTNU,
orway [17]. This experimental setup is a modified version of the one described in [18], with the major difference that the annular
ombustion chamber has been replaced by a periodic set of weakly coupled ducts. This lab-scale combustor operates at atmospheric
onditions, and the cans are (acoustically) open at the downstream end. This is in contrast to the acoustic boundary condition in
eal gas turbines, in which the flow at the outlet of the cans, in other words, at the turbine inlet, is nearly choked. As discussed
2

n [19], the reflection of acoustic waves at a choked end can be approximated reasonably well by a closed-end boundary condition
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Fig. 1. (𝑎) Single-can schematic, highlighting the jump in the acoustics across the flame (in orange) due to temperature and/or area changes. At the downstream
end, an effective reflection coefficient 𝑅𝑏 is used to obtain a single-can model equivalent to a can-annular system, sketched in (𝑏). The cans communicate
downstream through apertures having axial extension 𝑙𝑔 . Acoustic waves at the downstream end of the cans are partly reflected back in the can by a downstream
impedance 𝑍ds (dashed red lines) and partly transmitted to neighbouring cans, via transverse acoustic velocity fluctuations in the apertures. This coupling
mechanism is driven by the dynamics of the shear layer that forms at the interface between the cans and the apertures (in green). The effective impedance 𝑍𝑏,
related to 𝑅𝑏 via Eq. (8), embeds the reflection of the acoustic waves due to 𝑍ds as well as their transmission through the apertures, as a function of the Bloch
wavenumber 𝑏. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

— provided that the Mach number upstream of the choked end is small. To address this key difference, in Section 5 we discuss the
effect of the downstream boundary condition on the can-to-can coupling and the thermoacoustic spectrum.

1.2. Modelling of the aeroacoustic can-to-can coupling

In this work, special focus is placed on the effect that the can-to-can impedance has on the acoustic pressure dynamics in the
chamber. The can-to-can impedance describes the aeroacoustic response at the apertures connecting the ducts. It depends on the
interaction between the acoustic pressure fields in neighbouring cans and the aerodynamic modes of the turbulent wake in the
apertures connecting them. This acoustic–aerodynamic interaction plays an important role in self-sustained cavity oscillations, a
classic physical phenomenon first described by [20]. The model we use is based on impedance measurements of a side-branch
aperture presented in Fig. 6(a) of [21], which show a non-trivial behaviour around a frequency corresponding to the least stable
aerodynamic mode of the shear layer. For small enough acoustic pressure amplitudes, it was found that the aeroacoustic response
of the aperture can be amplifying, which manifests itself in a reflection coefficient magnitude |𝑅| exceeding 1. As the amplitude is
increased, the response saturates, an effect that was recently studied numerically using large-eddy simulations (LES) by [22]. These
measurements were used in [23] to calibrate an explicit, analytical model able to quantitatively predict the effect of the mean flow
speed and the acoustic pressure amplitude on the acoustic impedance over the relevant frequency range.

2. Reduced-order thermoacoustic model

Analogous to [15,24,25], we consider an array of 𝑁 cans that communicate acoustically at the downstream end via small
apertures. The generic configuration that highlights the can-to-can communication is shown in Fig. 1. In this section we present
the components of the proposed reduced-order approach, which can be used to model a general can-annular combustor system.
The reduced-order model will be applied to an atmospheric can-annular setup, whose details are outlined in [17], to study its
thermoacoustic response and the sensitivity of its spectrum.

2.1. Single-can acoustic network model

For the range of frequencies that will be considered in this study, transverse acoustic modes in a can are cut-off. It is thus
appropriate to assume planar wave propagation in the axial direction for the acoustics. This is consistent with the results of [15], in
which it was shown that non-axial acoustic propagation is relevant only in the vicinity of the connection apertures. To account for
these near field effects, the acoustic transmission at the apertures will be modelled by means of an experimentally fitted impedance,
presented in Section 3.

The one-dimensional acoustic field is described in terms of its Riemann invariants [26]. By denoting the Riemann invariants
travelling downstream and upstream with 𝑓 and 𝑔, respectively, and by considering of the flame (and burner) as a scattering element
(see Fig. 1a), the equations for the conservation of mass, momentum and energy yield [27,28]

[

�̂�1
]

=
[

𝑆11 𝑆12
] [

𝑓1
]

+
[

𝐻1
]

𝑞. (1)
3

𝑓2 𝑆21 𝑆22 �̂�2 𝐻2
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The subscripts 1 and 2 denote the region upstream and downstream the flame, respectively, 𝑞 is the unsteady heat release rate
response, 𝑆𝑖𝑗 the elements of the scattering matrix, and 𝐻𝑗 constant factors scaling the heat release response to acoustic fluctuations.
The specific expressions for 𝑆𝑖𝑗 and 𝐻𝑗 are configuration dependent – e.g., they vary if a mean flow and/or an area change
are considered. Their expressions for analytically tractable cases, as the one that will be considered in Section 4, can be found,
e.g., in [27,29]. If the response of a burner is included, the scattering matrix cannot be determined analytically, but can be
measured experimentally and its elements are generally frequency-dependent expressions [30]. Closure for the acoustics is provided
by expressions for the reflection coefficients at the upstream (𝑅1) and downstream (𝑅2) boundaries

𝑓1 = 𝑅1𝑒
−𝑠𝜏1 �̂�1, �̂�2 = 𝑅2𝑒

−𝑠𝜏2𝑓2, (2)

with 𝜏𝑗 ≡ 2𝑙𝑗𝑐𝑗∕(𝑐2𝑗 − 𝑢
2
𝑗 ) and 𝑠 ≡ 𝜎 + i𝜔. By substituting these expressions in the conservation laws (1) one obtains

(

 −
[

𝑆11𝑅1𝑒−𝑠𝜏1 𝑆12𝑅2𝑒−𝑠𝜏2
𝑆21𝑅1𝑒−𝑠𝜏1 𝑆22𝑅2𝑒−𝑠𝜏2

])

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ac

[

�̂�1
𝑓2

]

=
[

𝐻1
𝐻2

]

𝑞, (3)

here  is the identity matrix. In the absence of an unsteady heat release input, 𝑞 = 0, the eigenvalues 𝑠 of the matrix ac yield
the acoustic eigenvalues.

To account for the effect of the flame on the thermoacoustic stability, the heat release rate term is modelled by means of a Flame
Transfer Function (FTF)

𝑞 = 𝑄
𝑢1

FTF(𝑠)�̂�1 =
𝑄

𝜌1𝑐1𝑢1
FTF(𝑠)

(

𝑓1 − �̂�1
)

=

[

𝑄
𝜌1𝑐1𝑢1

FTF(𝑠)
(

𝑅1𝑒
−𝑠𝜏1 − 1

)

, 0

]

[

�̂�1
𝑓2

]

. (4)

By defining the matrix

hr ≡
[

𝐻1
𝐻2

]

[

𝑄
𝜌1𝑐1𝑢1

FTF(𝑠)
(

𝑅1𝑒
−𝑠𝜏1 − 1

)

, 0

]

(5)

the thermoacoustic eigenvalue problem reads
(

ac(𝑠) −hr (𝑠)

)

[

�̂�1
𝑓2

]

=
[

0
0

]

. (6)

2.2. Bloch boundary conditions

Expressions for the boundary conditions are required to close the thermoacoustic equations. In particular, at the downstream
boundary we wish to model the can-to-can acoustic interaction. To understand the effect that can-to-can communication has on
the (thermo)acoustic response, it is convenient to make use of Bloch-wave theory [31]. Bloch-wave theory exploits the discrete
rotational symmetry of the configuration to reduce the analysis to a sector, in this context referred to as a unit cell, that repeats
periodically in space. For a can-annular configuration, this allows to reduce the number of degrees of freedom by a factor 𝑁 , the
number of cans, by representing the acoustic pressure – and analogously all other variables of interest – in terms of Bloch-waves.
The Bloch-waves have the form [32]

𝑝𝑏(𝜃) = 𝑒i𝑏𝜃𝜓𝑏(𝜃), (7)

where 𝜓𝑏 is a periodic function with period 2𝜋∕𝑁 , and 𝑏 is an integer, known as the Bloch wavenumber, that takes values in the
range 𝑏 ∈ {0,… , 𝑁 − 1}.

By assuming that all cans are identical, an effective expression for a Bloch-wavenumber-dependent impedance, 𝑍𝑏, can be
derived, allowing to reduce the analysis of the full can-annular system to the analysis of an equivalent single-can system. By referring
to Fig. 1b, this effective impedance relates pressure and velocity downstream of a single can, but upstream of its apertures. From
the results of [25], this effective can-to-can reflection coefficient 𝑅𝑏 can be expressed as

𝑅𝑏 =
𝑍𝑏 − 𝜌𝑐
𝑍𝑏 + 𝜌𝑐

= 1 − 2
4𝐴𝑟𝜁 sin2

(

𝜋𝑏
𝑁

)

1 + 4𝐴𝑟𝜁 sin2
(

𝜋𝑏
𝑁

) , (8)

where 𝜌𝑐 is the characteristic specific acoustic impedance, 𝑁 the number of cans, 𝑏 the Bloch wavenumber, 𝐴𝑟 the ratio between
he cross section of the can-to-can aperture and the cross section of the can1, and 𝜁 the (non-dimensional) impedance that links the
coustic pressure difference between two adjacent cans and the acoustic velocity:

𝜁 ≡ 𝜁
𝜌𝑐

= 1
𝜌𝑐

�̂�𝑗 − �̂�𝑗+1
�̂�𝑗,𝑗+1

. (9)

1 These are the areas of the green and red surfaces in Fig. 6, respectively.
4
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Fig. 2. Geometry of the axisymmetric V-flame dynamics modelled with the 𝐺-equation. The steady flame (red dashed line) forms an angle 𝛼 with the can wall,
determined by the flame speed 𝑠𝐿 and the axial mean flow velocity 𝑢1. An axially travelling perturbation, 𝑢′𝑥, induces oscillations in the flame front (thick red
line), which in turn cause heat release rate fluctuations, quantified by the FTF (14). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

In [25] a simple purely reactive can-to-can impedance model was used. In this study we shall instead adopt a more realistic empirical
model, containing both a reactive term and a resistive term, fitted to experimental data, as discussed in Section 3.

Eq. (8) has, however, been derived with some restrictions, specifically that (i) the Helmholtz number defined by He ≡ (𝑠𝑙𝑔)∕𝑐,
where 𝑙𝑔 is the axial extension of the aperture, is negligible; (ii) the cans are acoustically closed after the apertures, thus having
𝑍ds = ∞; (iii) the mean flow effects due to a non-zero Mach number grazing flow along the aperture are negligible. Although
assumption (i) holds in most practical cases, the same is not true for the others. It was in fact shown in [33] that the effect of
the mean flow is non-negligible already for moderate Mach numbers. Moreover, a downstream closed boundary condition does not
represent the correct physics for atmospheric test-rigs, which normally have open ends. Assumptions (ii) and (iii) can be relaxed,
and a more general expression for the effective reflection coefficient can be derived, which retains the Mach number effects and an
arbitrary downstream impedance. It reads [34]

𝑅𝑏 = 1 − 2

(

1 − M2
𝑥
)

+ 4𝐴𝑟∕𝜁 (M𝑥 + �̃�ds) sin
2
(

𝜋𝑏
𝑁

)

(

�̃�ds + 1
) (

1 −M2
𝑥
)

+ 4𝐴𝑟∕𝜁 (M𝑥 + �̃�ds) sin
2
(

𝜋𝑏
𝑁

) , (10)

where we have introduced the (axial) Mach number M𝑥 = 𝑢2∕𝑐2. It can be verified that, in the zero Mach number and infinite
downstream impedance case, Eq. (8) is retrieved.

At the downstream end of our reduced-order can model we shall therefore set 𝑅2 = 𝑅𝑏, which makes the thermoacoustic
problem (6) Bloch-number dependent.

2.3. Flame transfer function

The unsteady heat release rate response is chosen to be that of an axisymmetric, laminar V-flame. The flame dynamics is modelled
via the kinematic 𝐺-equation, which tracks the flame front – assumed to be infinitely thin – as the level set 𝐺 = 0, and reads

𝜕𝐺
𝜕𝑡

+ 𝒖 ⋅ ∇𝐺 = 𝑠𝐿|∇𝐺|. (11)

Although simplistic, this model captures the general characteristics of a flame transfer function well, as discussed in Section 4.
The underlying velocity field is modelled as a uniform axial mean flow and an unsteady travelling wave moving along the axial

direction at velocity 𝑢𝑐 [35,36]

𝒖 =
(

𝑢1 + 𝜖 sin
[

𝜔
(

𝑡 − 𝑥∕𝑢𝑐
)])

𝒙. (12)

or small fluctuations amplitudes 𝜖, the flame front can be considered a single-valued function of the radial coordinate, see Fig. 2.
ithin this limit, the 𝐺-equation can be linearized and solved, and the instantaneous heat release rate can be quantified by

𝑄 = 2𝜋𝜌𝑠𝐿ℎ𝑟∬𝑉
|∇𝐺|𝛿(𝐺)𝑟 d𝑟 d𝑥. (13)

Following steps analogous to those of [37,38], it can be shown that the FTF for the V-flame configuration outlined in Fig. 2
eads

FTF = 2
𝑒−𝜂St2

(

𝛾 + 𝜂St2
)

− 𝜂𝑒−St2
(

𝛾 + St2
)

+ 𝛾(𝜂 − 1)
2

. (14)
5

𝜂St2(2 − 𝛾)(1 − 𝜂)
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Fig. 3. Gain and phase of the V-flame FTF that will be used in this study. The non-dimensional parameters used are 𝛽 = 0.955, 𝛾 = 0.690, 𝜂 = 0.645. They are
scaled by the cold mean flow velocity 𝑢1 = 10 m∕s and the radial distance of the tip of the flame from the axis of symmetry, 𝑅𝑤 = 21 mm.

In the latter, we have introduced the following non-dimensional variables:

𝛽 ≡
𝐿𝑓
𝑅𝑤

, 𝛾 ≡
𝑅𝑤 − 𝑅𝑖
𝑅𝑤

, sin 𝛼 =
𝑠𝐿
𝑢1

=
𝑅𝑤 − 𝑅𝑖

√

𝐿2
𝑓 +

(

𝑅𝑤 − 𝑅𝑖
)2

=
𝛾

√

𝛽2 + 𝛾2
, St2 ≡

𝑠𝐿𝑓
𝑢1 cos2 𝛼

, 𝜂 ≡
𝑢1
𝑢𝑐

cos2 𝛼. (15)

This FTF is a generalization of that presented in Equation (28) of [37], in that the flame we consider is not (necessarily) anchored
on the symmetry axis. The results of [37] are retrieved when setting 𝛾 = 1. The FTF that will be used in the rest of this study is
shown in Fig. 3.

We note that the FTF (14) depends on two time scales, 𝜏𝑓,1 ≡ St2∕𝑠 and 𝜏𝑓,2 ≡ 𝜂St2∕𝑠. The first is the characteristic time
that perturbations take to travel along the unperturbed flame extension, 𝐿𝑓∕ cos 𝛼, when carried by the component of the mean
velocity parallel to the unperturbed flame, 𝑢1 cos 𝛼. This time scale was recognized as a characteristic time scale in both conical
and V-flames in [39,40]. The second time scale is the characteristic time taken by velocity disturbances to travel along the axial
extension of the flame 𝐿𝑓 at the convective velocity 𝑢𝑐 . As discussed in [37], it is the constructive (destructive) interference between
the waves propagating with these characteristic times that causes the presence of maxima (minima) in the amplitude of the FTF.
This is shown in Fig. 3, where the distance between two zeros in the FTF response has been calculated analytically from knowledge
on the characteristic time scales.

3. Effective can reflection coefficient with experimental can-to-can impedance model

The work of [23] has identified semi-empirical models that characterize the impedance of a side-branch aperture. These models
were fitted against the experimental data of [21] by using a standard least-square method. For the purpose of this manuscript, we
shall adopt an impedance model based on the Rayleigh conductivity of an aperture with bias flow [41]

𝐾𝑟(𝛺) = 𝑤
⎡

⎢

⎢

⎣

𝜋
2𝐹 (𝛺) + log 8𝑤

𝑒𝑙𝑔

+ 𝛾1
⎤

⎥

⎥

⎦

. (16)

The non-dimensional function 𝐹 is defined by2

𝐹 (𝛺) =
−𝐽0𝐾 − (𝐽0 + 2𝐾)(𝐽0 + i𝛺(𝐽0 − i𝐽1))
𝛺(𝐽0𝐽1 +𝛺(𝐽 2

1 + (𝐽0 + 2i𝐽1)2))
, (17)

where 𝑤 is the transverse dimension of the aperture, 𝐾 ≡ i𝛺(𝐽0 + i𝐽1), and 𝐽𝑖 = 𝐽𝑖(𝛺) are Bessel functions. The non-dimensional
complex frequency used to evaluate the Rayleigh conductivity is 𝛺 ≡ −i𝑠𝑙𝑔∕(2𝑈𝑐 ), where 𝑈𝑐 ≡ 𝜅𝑈 is the characteristic convective
velocity in the shear layer. From the definition of the Rayleigh conductivity, the impedance model for the aperture (9) is

𝜁 =
𝑠𝐴𝑔

𝐾𝑟(𝛺)𝑐
+ 𝛾2. (18)

The non-dimensional coefficients 𝛾1 and 𝛾2 in Eqs. (16) and (18) are introduced to account for radiation losses and three dimensional
effects. Together with 𝜅, they are fitted against the experimental results of [21]. Fig. 4 compares the measured and fitted resistance,
ℜ[𝜁 ], and reactance, ℑ[𝜁 ], of the impedance at the connection cavities. Notably, there exists a frequency range within which the
resistance becomes negative, which implies the generation of acoustic energy at that component [23]. This is a necessary but not
sufficient condition for inducing an acoustic instability of the can-annular system that is driven by the aeroacoustics of the shear
layers at the interfaces between the cans.

2 Eq. (17) is the complex conjugate of the expression reported in Eq. (3.3) of [41]. The complex conjugation is needed to compensate the different conventions
used in the definition of the Laplace variable.
6
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Fig. 4. Fit of the impedance model (18) against the frequency response of the shear layer reported in [21,23]. The fitted coefficient values are 𝜅 = 0.412,
𝛾1 = −0.196 + 0.162i and 𝛾2 = 0.154 + 0.079i.

Fig. 5. Effective reflection coefficient magnitude for a system with 𝑁 = 8 cans, as a function of the mean flow and the frequency. The dashed lines indicate
the upper limit of the data of [21] to which the aperture impedance model (18) has been fitted. Above this line (shaded regions), the higher the frequency the
less reliable the fitted model.

To demonstrate how Eq. (10) can be used to understand the effect that the can-to-can coupling has on the effective reflection
coefficient, we set up a generic system with 𝑁 = 8 cans, and use the can-to-can impedance model (18) to represent the interaction
of the cans. The can impedance downstream of the aperture is chosen to be representative of the experimental configuration that
will be considered in the following sections. It reads

�̃�ds ≡
𝑍ds

𝜌𝑐
= 𝑒𝑠𝜏end − 1
𝑒𝑠𝜏end + 1

, with 𝜏end =
2𝑙end𝑐

𝑐2 − 𝑈
2
, (19)

hich is the impedance of a tube of length 𝑙end with mean flow and an open-end — when neglecting radiation and effective length
orrections. Fig. 5 shows the magnitude of the effective reflection coefficients for all positive values of the Bloch number 𝑏 as a
unction of the mean flow and frequency. For 𝑏 = 0, the can-to-can connection has no influence on the reflection coefficient. The
small) deviations from 𝑅 = 1 are due to variations in the grazing flow Mach number. For 𝑏 > 0, the effective reflection coefficient
s strongly influenced by the flow properties and the forcing frequency. For any value of the convective mean flow 𝑢𝑐 , we can
dentify a frequency at which the magnitude of the effective reflection coefficient for a specific Bloch number is minimized, and a
requency at which it is maximized. Notably, the magnitude of the effective reflection coefficient can exceed 1, due to the fact that,
t its resonance frequency, the aerodynamic shear layer acts as an amplifier and enhances small impinging perturbations, since the
esistance takes negative values in this frequency range — see Fig. 4.

. Thermoacoustic analysis of an atmospheric can-annular setup

The geometry we consider is an atmospheric can-annular setup, discussed in detail in [17]. It consists of 8 identical cans. Its
eometrical details are reported in Fig. 6. In the experiment, the cans are mounted on a large plenum upstream, which could couple
he acoustics also on that side. To avoid this coupling, a reflective sintered plate is mounted at the connection between the plenum
nd the tubes. This plate was characterized experimentally by means of the multi-microphone method in [18]. From the scattering
atrix coefficients shown in Fig. A2 of the latter study, one can infer that for frequencies below 1.5 kHz, the reflection coefficient

f the plate is about 0.8 (it coincides with the 𝑆11 element of their scattering matrix). We therefore set 𝑅1 = 0.8 in Eq. (6).
The downstream boundary condition of the modelled portion of the can is the Bloch-number dependent reflection coefficient

ownstream of the aperture, Eq. (10). This requires a model for the response of the shear layer at the apertures and the downstream
7
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Fig. 6. Left: rendering of the combustor considered in this study, with the Bloch-cell forming the highlighted can. Right: Sketch of the modelled can. The
upstream boundary condition of the injectors (blue) is a reflective plate. A bluff-body stabilized flame is located at the intersection between the injector and the
can. Close to the downstream end of the can, a small aperture (green) allows for the aeroacoustic communication with the adjacent cans. The downstream end
of the can (red) is open. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Clusters of eigenvalues in the can-annular configuration considered. The markers differentiate the modes by their azimuthal phase pattern. The modes
in clusters (a) and (b) are associated to eigenvalues of thermoacoustic origin. The clusters (c)–(f), instead, originate from the aeroacoustic coupling with the
response of the shear layer in the apertures between two cans. Notably, these clusters lack the 𝑏 = 0 mode since no dynamics in the apertures can occur if the
cans oscillate in phase. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

boundary condition just after the aperture in the scenario in which the apertures are closed. The former is given by Eq. (18), the
latter by the impedance of an open-end tube of length 𝑙end = 37 mm, Eq. (19). All geometrical, flow and thermal parameters, listed in
Fig. 6, are chosen to be representative of the experiments described in [17]. The FTF is the only data that is not available from the
experiments. It is therefore modelled by Eq. (14), using the geometrical/flow parameters of the experiment to determine the steady
flame shape. The specific choice of the flame response is, however, not particularly important for the purpose of this study, which
instead aims at providing a general modelling strategy for can-annular systems as lumped components. Furthermore, although the
chosen 𝐺-equation based model may look simplistic, it captures all the general features of the linear response of premixed, laminar
or turbulent V-flames, namely an amplifying frequency bend, a low-pass filtering characteristic, and an almost linear dependence
of the phase on the frequency — see Fig. 3.

The spectrum of the semi-empirical can-annular combustor model described above (duct acoustics + FTF + Bloch boundary
conditions + empirical can-to-can impedance) is shown in Fig. 7. The eigenvalues are obtained by using the integral method
described in [42] to solve the nonlinear eigenvalue problem (6) for each value of the Bloch wavenumber 𝑏. The circular contour is
centred at 500 Hz and has radius 490 Hz. Only the eigenvalues with frequencies below 800 Hz are discussed: above this frequency,
the range of validity of the empirical can-to-can impedance is exceeded, and spurious modes may be found. The spectrum shown
in Fig. 7 clearly exhibits the existence of clusters of eigenvalues. In particular, the clusters (a) and (b) can be related to frequencies
which are close to the classic thermoacoustic frequencies of a single can. As will be further discussed in Section 4.1, cluster (a) is of
acoustic origin whereas cluster (b) is of intrinsic origin [43,44]. Each of these clusters (a and b) comprises a total of 8 eigenvalues
(counting multiplicity). In fact, due to the mirror symmetry of the Bloch cell, all eigenvalues found for Bloch numbers 𝑏 in the
range 0 < 𝑏 < 𝑁∕2 are also eigenvalues of the system with Bloch number −𝑏 [45]. For the 𝑏 = 0 eigenvalues the effective reflection
coefficient (10) reduces to the reflection coefficient of an open duct with mean flow. These eigenvalues are identical to those that
8
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Fig. 8. Top: Acoustic velocity modeshapes �̂�𝑏 for Bloch number 𝑏 = 1. Bottom: Acoustic pressure modeshapes �̂�𝑏 for Bloch number 𝑏 = 2. With reference to
Fig. 7, modeshapes (a) and (b) belong to clusters of thermoacoustic origin, whereas modeshapes (c) to (f) belong to clusters of aeroacoustic origin, in ascending
frequency order. On the right end, a top view of the full annular combustor shows the phase oscillation patterns.

one would find if the connection orifices would be closed, and the dynamics in each can would be independent of that in the others.
The clusters of eigenvalues (c) to (f) in Fig. 7, instead, are not originating from the can thermoacoustic response, but rather from the
shear layer response in the apertures, and its interaction with the can acoustics. In fact, the lowest frequency (cluster (c), approx.
180 Hz) can be linked to the reciprocal of the time that a perturbation takes to travel along the aperture at the convective velocity
𝑢𝑐 ; higher frequencies are multiples of this fundamental frequency. Notably, these clusters lack the 𝑏 = 0 mode. This is correct
because for 𝑏 = 0, the cans oscillate in phase, and there is, hence, no dynamics in the apertures connecting the cans. These clusters
therefore comprise only 7 eigenvalues (counting multiplicity; 3 semi-simple degenerate pairs for 𝑏 = {1, 2, 3} and a simple one for
𝑏 = 4).

To gain further insight into the characteristics of the eigenvalues in the two types of clusters, Fig. 8 shows the acoustic velocity
of the 𝑏 = 1 eigenvalues and pressure modeshapes of the 𝑏 = 2 eigenvalues. The acoustic field in the section of the can downstream
of the aperture is reconstructed using planar propagation of acoustic waves in a duct with a mean flow. All modeshapes satisfy
the upstream boundary condition (close to be a velocity node) and the open-end boundary condition at the downstream end of the
can (pressure node). The pressure modes in the cluster of acoustic origin, (a), have the typical quarter-wave shape; the acoustic
velocity has a discontinuity at the combustor inlet due the area change. The modeshapes of the modes in the cluster of intrinsic
origin, (b), has a strong response in the injectors, with a maximum at the flame, consistently with the typical modeshapes of intrinsic
origin [46]. Lastly, the modeshapes of the eigenvalues associated with the aperture dynamics, (c) to (f), have less canonical shapes.
In particular, all the acoustic velocity modeshapes have a low intensity in the whole section upstream of the aperture, followed by
a strong gradient across the aperture and a maximum in the can’s downstream ends.

4.1. Eigenvalue cluster sensitivity

The identified eigenvalue clusters can be related to three fundamentally different physical mechanisms: acoustic, intrinsic and
shear layer dynamics. It is therefore reasonable to expect that their sensitivity to variations in the system parameters will be different,
and depend on the influence that a specific parameter has on the dynamics of the underlying physical mechanisms. In this section,
we will systematically vary (i) the flame heat release response magnitude and (ii) the shear layer convective velocity, to investigate
how these two parameters influence the evolution of the eigenvalue clusters.
9
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Fig. 9. Eigenvalue trajectories when the flame gain is decreased. The markers indicate the eigenvalues (by their Bloch-number) in the passive flame case, i.e., in
the limit |FTF𝜉 | → 0. The colour-scheme corresponds to that used in Fig. 7 to emphasize the existence of clusters of eigenvalues. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Evolution of the eigenvalues of cluster (d) when 𝜉 is varied in Eq. (20).

4.1.1. Sensitivity to FTF magnitude
To study the influence of the flame response strength on the eigenvalue clusters, we introduce a scaling parameter 𝜉 in the

efinition of the FTF

FTF𝜉 (𝑠) = 𝜉FTF(𝑠) (20)

nd we use this scaled Flame Transfer Function FTF𝜉 in the definition of the heat release matrix response (5). When 𝜉 = 1, the
original FTF definition is unaffected, and the spectrum of the can-annular thermoacoustic system corresponds to that shown in
Fig. 7. When 𝜉 = 0, instead, the flame response vanishes – i.e., hr = 𝟎 in Eq. (5) – and only the aeroacoustic can-annular response
in the absence of an active heat source is identified.

Fig. 9 shows the evolution of the eigenvalues in all clusters when 𝜉 is varied in the range [0,1]. The colours identify the clusters,
in accordance to Fig. 7, and the markers indicate the Bloch-number associated with each eigenvalue and are located in the 𝜉 → 0
limit. The cluster of acoustic origin (a) moves into the stable half-plane (𝜎 < 0) when the flame is switched off; indeed, in the
bsence of an active flame source, no thermoacoustic instability can occur. The cluster of intrinsic origin (b) is pushed towards
rowth rates tending to −∞ as 𝜉 → 0. It was shown in [44,47] that, in the vanishing flame limit, all the Bloch modes of this cluster
end towards the same frequency value, which can be predicted theoretically from the coefficients of the scattering matrix at the
lame (see Appendix of [44]).

The remaining clusters, (c) to (f), are of shear layer dynamics origin. Their physical nature is not closely connected to the heat
elease dynamics, and it is reasonable to expect them to be almost independent of the flame response. This is true for clusters (c),
e) and (f), but not for cluster (d). The sensitivity of cluster (d) to the flame dynamics can be attributed to the fact that, when
he flame dynamics is turned off (𝜉 = 0), its eigenvalues have both frequencies and growth rates close to those of cluster (a). This
uggests that close-by in parameter space the eigenvalues coalesce, becoming degenerate. As discussed in [48], eigenvalues that are
lose to being degenerate exhibit a phenomenon known as mode veering. To avoid crossing, the eigenvalues steer away from each
ther. This can be observed in Fig. 9, which shows that the trajectories of the (a) and (d) clusters move in opposite directions for
mall values of 𝜉 – close to the markers. To emphasize this further, Fig. 10 shows the dependence of the eigenvalues in cluster (d)
n the parameter 𝜉. The sensitivity of the eigenvalues (slope of the curves) is non-uniform and high for small values of 𝜉, but tends
o flatten as 𝜉 becomes larger. When the eigenvalues of clusters (d) are sufficiently far from those of cluster (a), the sensitivity of
10

he eigenvalues of cluster (d) to the intensity of the flame becomes very small, similar to those of clusters (c), (e) and (f).
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Fig. 11. Eigenvalue trajectories when the convective speed in the aperture between cans is varied. Thick and thin markers indicate, respectively, the eigenvalues
(by their Bloch-number) for the maximum (thick markers, 𝜅 = 0.62) and minimum (thin markers, 𝜅 = 0.2) convective speed considered. The colour-scheme
orresponds to that used in Fig. 7 to emphasize the existence of clusters of eigenvalues. Right panels: magnification of the regions highlighted. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)

.1.2. Sensitivity to aeroacoustic coupling
We shall now focus on the sensitivity that the shear layer response has on the can-annular system’s spectrum. In particular,

e will investigate the effect of the convective speed in the shear layer, 𝑈𝑐 ≡ 𝜅𝑈 , by varying the non-dimensional value 𝜅 in the
ange [0.2,0.62]. The mean flow velocities in the cold/hot regions of the can-annular system are unchanged. The trajectories of the
igenvalue clusters obtained while varying 𝜅 are shown in Fig. 11. The thin (thick) markers identify the eigenvalues obtained for
he minimum (maximum) values of 𝜅 considered.

First, we note that the 𝑏 = 0 eigenvalues are not affected by 𝜅. This is because only the can-to-can impedance (18) is affected
by this parameter. For 𝑏 = 0 the cans oscillate in phase, so that the pressure drop between neighbouring cans vanishes, and the
can-to-can impedance does not play any role. The eigenvalues of the cluster of acoustic origin (a) are almost unaffected by this
parameter, as emphasized in the bottom-right inset of Fig. 11. Its eigenvalues with 𝑏 ≠ 0 exhibit loop patterns. This cyclic behaviour
is a manifestation of the phase induced by the convective time scale in the shear layer, which scales with 𝑙𝑔∕𝑈𝑐 . It is analogous
to the eigenvalue behaviour described in [49] when varying the time delay of the heat release response. Cluster (b), of intrinsic
origin, has a non-trivial response to variations in the convective velocity. For small values of 𝜅, its frequency is particularly sensitive
to variations in the shear layer convective speed. For larger values of 𝜅, a cyclic behaviour is again observed, emphasized in the
top-right inset of Fig. 11.

Clusters (c) to (f) are the most sensitive to a variations of 𝜅, since they are directly related to the shear layer dynamics. Since
the shear layer convection speed enters in the definition of the non-dimensional frequency 𝛺 in the Rayleigh conductivity (16),
increasing (decreasing) 𝜅 shifts the peak of the response of the can-to-can impedance (Fig. 4) towards higher (lower) frequencies. The
convection speed also has a significant effect on the growth rates of the eigenvalues of these clusters. For almost all the eigenvalues
in these clusters, the larger the convection speed, the more stable are the eigenvalues. Additionally, for smaller values of 𝜅 the
eigenvalue clusters are more dense, in the sense that a cluster is confined in a smaller portion of the complex frequency space.

5. Acoustically closed downstream end

A major difference between the experimental setup of [17] modelled in Section 4 and can-annular combustors in gas turbines
is that in the former the cans are acoustically open at the downstream end, whereas in the latter the flow is nearly choked at the
connection between the cans and the turbine inlet. Since the apertures that connect the cans are close to the downstream ends,
they are located close to an acoustic pressure node when the cans are acoustically open. In this scenario, the coupling between the
aerodynamics of the shear layer in the apertures and the thermoacoustics of the can is generally weaker, since it depends on the
pressure difference between the cans [25,34], which remains small close to a pressure node. This was already visible in Fig. 9, in
which almost all eigenvalues of aeroacoustic origin had very negative growth rates, corresponding to the (stable) dynamics of the
decoupled aeroacoustic modes. On the contrary, for an acoustically closed boundary condition, which is a reasonable approximation
for a choked end [19], the apertures are located in the vicinity of a pressure antinode. In this scenario, the pressure differences
between neighbouring cans can be significantly higher, enhancing the can-to-can communication effects. In this last section, we will
discuss how the spectrum and mode shapes of the can-annular system vary when the downstream boundary condition is acoustically
closed.

An acoustically closed end of the cans, downstream of the aperture, can be modelled by setting the downstream impedance to
𝑍ds = ∞ in place of Eq. (19). In this limit, the effective downstream reflection coefficient (10) simplifies to

𝑅𝑏 = 1 − 2
4𝐴𝑟∕𝜁 sin

2
(

𝜋𝑏
𝑁

)

(

1 −M2
𝑥
)

+ 4𝐴𝑟∕𝜁 sin
2
(

𝜋𝑏
𝑁

) . (21)

xcept for the downstream boundary condition, all the other parameters are kept to those presented in Section 4.
11



Journal of Sound and Vibration 526 (2022) 116808A. Orchini et al.
Fig. 12. Clusters of eigenvalues in the can-annular configuration considered with a closed end. The markers differentiate the modes by their azimuthal phase
pattern. The modes in clusters (a) and (b) are associated with eigenvalues of thermoacoustic origin. The clusters (c)–(f), that lack the 𝑏 = 0 mode, originate from
the aeroacoustic coupling with the response of the shear layer in the apertures between two cans. Notably, it is a cluster of aeroacoustic origin that becomes
unstable.

Fig. 12 shows the spectrum of the can-annular system with a closed boundary condition. The existence of eigenvalue clusters has
been emphasized, and the eigenvalues are distinguished by their Bloch-number, following the same colour and marker conventions
of Fig. 7. Clusters (a) and (b) are clusters of classic thermoacoustic origin. We note how the frequencies and growth rates of cluster
(a), which is of acoustic origin, have significantly changed compared to those of the open-end configuration, since acoustic modes
are strongly affected by the boundary conditions. On the other hand, the frequencies of cluster (b) are very similar to those found
for an open end. This is consistent with the fact that this cluster was found to be associated with an intrinsic mode, and it is mostly
ruled by the flame dynamics – unchanged with respect to the results shown in Fig. 7 – and not by the acoustics. Clusters (c) to (f)
of Fig. 12 are associated with modes of aeroacoustic origin, as can be seen by the fact that they lack the 𝑏 = 0 eigenvalues. The
stronger coupling between the aeroacoustics of the apertures and the thermoacoustics of the cans in comparison to the open-end
case can be seen by the fact that the growth rates of these eigenvalues are significantly different, and tend to have larger values. In
particular, some of the eigenvalues of cluster (c) now have positive growth rates, implying that an instability in this configuration
will mostly be driven by the aeroacoustics in the apertures.

The mode shapes associated with some of the eigenvalues of Fig. 12 are shown in Fig. 13. In comparison to Fig. 8, the downstream
open tube is missing since it has been replaced by a sound-hard end. Thus, the mode shapes exhibit qualitative differences as the
acoustic pressure needs to now exhibit a pressure antinode at the downstream end rather than a node, and vice versa for the acoustic
velocity. An exception to this observation occurs for cluster (b), the cluster associated with an intrinsic mode, which is therefore
relatively insensitive to variations in the boundary conditions [44]. For this reason, both the pressure and acoustic mode shapes of
cluster (b) are similar for open (Fig. 8) or closed (Fig. 13) boundary conditions. It is interesting to note how in clusters (c) to (f) the
magnitude of the acoustic pressure field remains not very high close to the downstream end, despite having a local maximum close
to the apertures, and has instead large pressure amplitudes upstream of the flame. By looking at the mode shapes only, it would
therefore be difficult to determine the origin of these modes.

6. Conclusions

In this study, we have presented a general reduced-order model for investigating the thermoacoustic properties of can-annular
combustors. Particular focus was placed on appropriately modelling the can-to-can communication, which was accomplished by
embedding in the model semi-empirical impedance expressions fitted against experimental data. The modelling approach exploits
Bloch-wave theory and reduces the analysis to a single can, equipped with an effective boundary condition that contains the
aeroacoustic response of the apertures and the acoustic properties of the can downstream of the aperture.

The model was used to study the response of an existing atmospheric can-annular test-rig. Since the flame response data is not
available, the flame dynamics has been approximated by that of a V-flame, modelled with the kinematic 𝐺-equation. The spectrum
of the setup has been determined, highlighting the presence of clusters of eigenvalues. The origin of the clusters has been discussed,
emphasizing how some clusters originate from the aeroacoustic response of the aperture, and not the acoustic response of the can.
These clusters are peculiar in that they lack the presence of 𝑏 = 0 (in-phase oscillation) modes. They, therefore, cannot be predicted
if the can-to-can communication is ignored.

The properties of eigenvalues and eigenvectors having different physical origins – related to the acoustic, intrinsic and shear
layer dynamics, respectively – have been discussed. In particular, a parametric analysis has been performed to demonstrate that
the sensitivity of the eigenvalues with respect to specific parameters is strongly dependent on their physical origin. Lastly, the
effect of the downstream boundary conditions has been analysed and discussed, emphasizing the differences between the can-to-can
coupling in atmospheric experiments – whose downstream boundary condition can be approximated by an acoustically open end –
and real gas turbine combustors – whose downstream boundary condition can be approximated by an acoustically closed end. Our
discussion highlights how knowledge on the physical mechanisms that are responsible for the creation of a particular eigenvalue
12
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Fig. 13. Modeshapes for the 𝑍ds = ∞. Top: Acoustic velocity modeshapes �̂�𝑏 for Bloch number 𝑏 = 3. Bottom: Acoustic pressure modeshapes �̂�𝑏 for Bloch
number 𝑏 = 4. With reference to Fig. 7, modeshapes (a) and (b) belong to clusters of thermoacoustic origin, whereas modeshapes (c) to (f) belong to clusters of
aeroacoustic origin, in ascending frequency order. On the right end, a top view of the full annular combustor shows the phase oscillation patterns.

cluster is important for an assessment of the thermoacoustic spectrum, the eigenvalue sensitivities and their potential control. Future
research on this topic will include the modelling of the nonlinear response of the apertures’ dynamics, which, as recently shown
by [21], may be non-negligible.
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