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A B S T R A C T   

Current research of gene regulatory mechanisms is increasingly dependent on the availability of high-quality 
information from manually curated databases. Biocurators undertake the task of extracting knowledge claims 
from scholarly publications, organizing these claims in a meaningful format and making them computable. In 
doing so, they enhance the value of existing scientific knowledge by making it accessible to the users of their 
databases. 

In this capacity, biocurators are well positioned to identify and weed out information that is of insufficient 
quality. The criteria that define information quality are typically outlined in curation guidelines developed by 
biocurators. These guidelines have been prudently developed to reflect the needs of the user community the 
database caters to. The guidelines depict the standard evidence that this community recognizes as sufficient 
justification for trustworthy data. Additionally, these guidelines determine the process by which data should be 
organized and maintained to be valuable to users. Following these guidelines, biocurators assess the quality, 
reliability, and validity of the information they encounter. 

In this article we explore to what extent different use cases agree with the inclusion criteria that define positive 
and negative data, implemented by the database. What are the drawbacks to users who have queries that would 
be well served by results that fall just short of the criteria used by a database? Finally, how can databases (and 
biocurators) accommodate the needs of such more explorative use cases?   

1. Introduction 

According to Mary Douglas, the author of Purity and Danger [1], our 
ideas of purity and pollution are shaped by the normative values of the 
community to which we belong. Douglas suggests that these values 
provide us with the basic categories within which we classify our per
ceptions, and guide how we approach, process, and perceive new stimuli 
such as objects, behaviors, or practices. We use these categories as a 
scaffolding for the framework upon which all further perceptions will be 
assessed. They offer us a place to start from, an inoculum, to define what 
is normal, ordered, or pure within a context and consequently to identify 
what is abnormal, disordered, or impure. Stimuli that fit into an existing 
category are accepted as pure and those which do not are often rejected 
as polluted. 

In the context of scientific research data, the core normative values of 
the scientific community provide these basic categories. Broad, over
arching values such as trust, honesty, reliability, reproducibility, 
amongst others, offer members of this community a basic framework to 
distinguish between ‘good’ or pure science and ‘bad’ or polluted science. 
Practices that embody these values generate pure data, while those that 
do not result in polluted data. While the former increases the extent of 
knowledge uncovered by scientists, the latter misleads and corrupts 
further research efforts. For instance, knowledge that builds on data that 
is the outcome of false, fabricated, and biased research pollutes the vast 
pool of scientific knowledge. To safeguard purity, the scientific com
munity relies on the process of peer review to thoroughly check the 
authenticity and quality of new research data before it is added to the 
existing body of scientific knowledge. 
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Additionally, scientific sub-communities rely on manually curated 
databases as a second safety checkpoint to minimize the entry of such 
pollution. In the case of the life sciences community, such databases 
form the backbone of most, if not all, research endeavors. They have 
grown to be rich, verified, and trustworthy sources of high-quality 
knowledge that enable further good science. Biocurators read through 
scholarly publications and organize the authors’ claims into a comput
able form. They also check information for sufficient quality. Informa
tion that lacks descriptions sufficient to validate, organize and classify it, 
may be excluded. Similarly, data insufficiently supported by the evi
dence in the publication may be rejected. Biocurators thus play a crucial 
role in minimizing the impact of flawed data on further research. They 
not only transform knowledge into structured, organized, and well 
managed data, they also limit the spreading of polluted data. 

However, the broad life sciences community contains different sub
communities that each adapt the basic categories offered by science’s 
overarching values to their own specific needs. This results in frame
works for separating pure from polluted data that are to some extent 
local. Even though all databases share the quest for trustworthy infor
mation, each individual database also represents a distinct community 
with a distinct framework to assess data for purity. Biocurators judge 
what data fits their local framework and filter out the rest [2]. As a 
result, even if data is considered pure, based on general criteria, it may 
still be thrown out as polluted because of the local framework that de
termines its fate in that particular database. 

These frameworks are made-up by the curation guidelines that guide 
the biocurators of a database in their assessment of data. Across the life 
sciences, including the gene regulation domain, which is the focus of our 
study, these guidelines represent heterogeneous criteria for how indi
vidual databases value coverage, methods, evidence, and data repre
sentation. For instance, a set of data that is considered sufficiently 
complete for a database that prefers a broad and lean coverage, may be 
rejected as insufficient or incomplete by one that values focused and 
deep curation. Similarly, while one database may accept a variety of 
data production methods, for the next, only a subset of these methods 
may be accepted as generating pure data. Because of these differences, 
one database may consider an observation to be significantly justified, 
while the other perceives it as insignificant. Similarly, one database may 
consider data to be neatly visually organized, labeled and classified, 
whereas another may decide that the same data does not meet these 
criteria. That is, while each database works to weed out insufficiently 
supported, or negative data, what qualifies as such may differ from one 
database to the next [2]. 

In addition to the variation between biocuration practices across 
databases within a domain, variation also exists at the level of database 
use. Different use cases may reflect varying demands and needs, which 
can translate into different criteria for distinguishing pure from polluted 
information. Databases apply criteria to classify pure and impure data. 
But users may have a need that leads them to adopt a threshold that can 
be more, or less restrictive than that of the database. That is, what is pure 
according to the criteria of the database may be different from what is pure 
for the use cases. These users may be better served if additional infor
mation which further qualifies the ‘pure’ and also the ‘impure’ data, is 
made available as ‘metadata’ that can be used for custom filtering. 
Alternatively, they would need to invest their own resources into 
curating information that fits their specific use. 

There exist differences in criteria, although usually subtle, for 
separating polluted from pure data, both between databases and be
tween ways that a database can be used (its use cases). In this paper we 
focus on the relation user-database, and ask: what are the drawbacks for 
users of use cases when their purity criteria differ from the local criteria 
applied by a database? What role can databases and biocurators play in 
alleviating these drawbacks? 

In section one we introduce social anthropologist Mary Douglas, who 
has proposed that what is considered ‘dirt [pollution] lies in the eye of 
the beholder’ (p11, [1]). In other words: pollution is a socially 

constructed category. In section two we apply her theory to data purity 
and pollution in the life sciences and to manually curating data quality. 
In section three we draw attention to the differences in conceptions of 
pollution at different levels of a community. We first discuss how 
Douglas’ theory has been previously applied to the different assessments 
of data by two databases in the gene regulation domain. We then extend 
this analysis to explore how pollution gets defined, in two different use 
cases of the same database: the cautious use case and the greedy use case. 
These use cases are different in the way they deal with false positives and 
false negatives. We present two examples where such differences occur 
and discuss the drawbacks to the users of greedy use cases. In section 
four we offer suggestions about how biocurators and databases could 
help users of greedy use cases with a relatively minor modification of 
their current practices. 

2. Approach 

This article presents findings generated within the COST Action 
15,205: Gene Regulation Ensemble Effort for the Knowledge Commons 
(GREEKC, www.greekc.org). Within the gene regulation domain, efforts 
to standardize the diverse data management practices have been un
dertaken by the Gene Regulation Consortium (GRECO, www.thegreco. 
org). GRECO obtained funding from COST to bring its European mem
bers together in the GREEKC initiative so they could collectively align 
their respective data management practices. GREEKC has focused on 
developing the Gene Regulation Knowledge Commons (GRKC) (Kuiper 
et al., this issue), which is built on a standard framework for knowledge 
management. 

While the term ‘data’ has various connotations, here, we use it to 
refer to what biocurators curate from scientific literature. The authors of 
Understanding the Knowledge Commons [3] distinguish between data, 
information and knowledge as “..data being raw bits of information, 
information being organized data in context, and knowledge being the 
assimilation of the information and understanding of how to use it.” (p6) 
Yet the terms ‘data’, ‘information’ and ‘knowledge’ have often been used 
interchangeably within the GREEKC community. So, for purposes of 
brevity, we adhere to the term ‘data’ instead of ‘information’ or 
‘knowledge’. Additionally, although biocurators also annotate large sets 
of functional genomics data, this has not been a part of our analysis and 
we have exclusively focused on data that biocurators derive from 
traditional scholarly publications. 

The efforts of GREEKC have themselves been the subject of study by 
an interdisciplinary collaboration between researchers from biology and 
humanities in Crossover Research 2.0 - Well constructed Knowledge 
Commons (CR2). CR2 focused on the integration of a Responsible 
Research and Innovation (RRI) approach towards the development of 
the knowledge commons for the life sciences (of which the GRKC is a 
part). RRI focuses on increasing the societal relevance and value of 
innovation processes [4]. The aim is to engage the diverse stakeholders 
involved in research and innovation efforts in a dialogue to anticipate, 
reflect and deliberate upon the potential roadblocks they may encounter 
during such collaborative endeavors. Members of CR2 have used semi- 
structured interviews as well as ethnography through participant 
observation to engage with those involved in GREEKC to explore how 
RRI can be integrated into collaborative research endeavors with diverse 
stakeholders [5,6]. 

The primary research method within this study has been the use of 
semi-structured interviews [7–9]. This technique draws from two other 
methods of qualitative research - surveys and focus groups. Surveys 
involve a set of close-ended questions that are used to cover a large 
number of respondents. Focus groups, on the other hand, involve a small 
group of respondents in a detailed discussion around a set of open-ended 
questions with common themes. Like surveys, semi-structured in
terviews are based on one-on-one interactions with respondents. Yet, 
similar to focus groups, these interactions are conversations that are set 
around open-ended questions. Here, an interview guide presents an 
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outline of the topics that are to be discussed. This flexible approach al
lows for a malleable interaction that takes into consideration the back
ground, experience, and expertise of the respondent. Additionally, this 
technique offers respondents from a small community the confidenti
ality that is absent in focus groups, allowing them to freely express 
themselves on sensitive and delicate topics within a small community. 

With this methodology, AC interacted with biocurators from the 
gene regulation community. This offered the respondents an environ
ment to freely discuss and comment upon what, according to them, were 
polluting practices adopted by other members of the community. The 
sample selected for these interviews included 16 biocurators within the 
Gene Regulation domain (for reasons of anonymity, the names of these 
respondents are not disclosed). The interview guide (attached) was 
customized and adapted around five main themes to conduct more 
efficient interactions with each respondent keeping in mind the database 
they were affiliated with. The interviews were recorded, and the re
cordings were transcribed following the completion of all interviews. 
The transcripts were then coded and categorized. A thematic analysis of 
the narrative accounts was conducted to identify the common, as well as 
distinct themes that were revealed through the conversations. Following 
the analysis, the transcripts were anonymized and submitted with 
restricted access, details of which are available (Supplementary infor
mation) from the Norwegian Centre for Research Data (NSD). 

3. The theory of pollution 

In this section we explore Mary Douglas’ proposal that purity and 
dirt are socially constructed concepts [1]. She establishes that both 
concepts are relative to each other, as well as to the context within 
which they are being assessed. The context, she explains, is informed by 
the social and cultural values of the community to which one belongs. 
These values offer community members a set of basic, foundational 
categories to classify what they perceive. These categories provide a 
common normative framework that allows members of a community to 
determine what belongs within a context and what does not, but also 
whether a stimulus (object, practice, or behavior) is pure or polluting. As 
she explains, it is not an object itself that is pure or polluted. That de
pends on the normative framework that an observer applies. 

“Dirt is matter out of place,” (p37) writes Mary Douglas in her 
analysis of the different conceptions of pollution: “Shoes are not dirty in 
themselves, but it is dirty to place them on the dining-table; food is not 
dirty in itself, but it is dirty to leave cooking utensils in the bedroom, or 
food bespattered on clothing; similarly, bathroom equipment in the 
drawing room; clothing lying on chairs; out-door things in-doors; up
stairs things downstairs; under-clothing appearing where over-clothing 
should be, and so on.” (p38). Whether these objects - shoes, food, 
bathroom equipment, clothes, out-door, or upstairs things, etc., are seen 
as dirty depends on the normative order of the settings within which 
they are observed. An object that appears as an oddity or a misfit in its 
surroundings, is seen as defiling and polluting those surroundings. One 
that fits in, is believed to retain the purity thereof. 

Judging something pure or polluted is according to Douglas inher
ently linked to the culture of the assessor. “Dirt is disorder..there is no 
such thing as absolute dirt; no single item is dirty apart from a particular 
system of classification in which it does not fit.” (p xvii, preface). This 
system of classification or schema is molded by one’s community and its 
values. “Culture, in the sense of the public standardized values of a 
community, mediates the experience of individuals. It provides in 
advance some basic categories, a positive pattern in which ideas and 
values are tidily ordered.” (p40). The foundational structure of one’s 
schema reflects the core values of the particular community to which 
one belongs. Members of the same community share common criteria to 
distinguish between normal and abnormal, between pure and dirty. 
Perception is always selective. Some stimuli are highlighted, others 
ignored. And people tend to highlight what is relevant within their 
categorical framework. “In perceiving we are building, taking some cues 

and rejecting others. The most acceptable cues are those which fit most 
easily into the pattern that is being built up. Ambiguous ones tend to be 
treated as if they harmonized with the rest of the pattern. Discordant 
ones tend to be rejected.” (p45). This means that members of different 
cultural communities learn to see and assess the world differently. They 
also tend to have different perceptions of purity and pollution. If a new 
stimulus squarely fits one of the categories of the schema of A, A accepts 
it as ‘normal’; even though the same stimulus may not fit into the schema 
of B, who will therefore reject it as creating disorder. 

This plurality in ideas of dirt and pollution have since been explored 
in a variety of contexts. Douglas analyzed how the dietary taboos of 
traditional Hebrews depend on a culturally specific distinction between 
normal and anomalous – therefore dirty, polluted - animals. The role of 
cultural classifications of dirt has also been examined in decisions 
driving urban architecture and infrastructure [10]. The theory has 
subsequently been used to help identify the contexts in which sound is 
experienced as sound, or where it becomes noise [11]. Researcher have 
investigated how consumers distinguish between pure and polluted 
food, as well as how these distinctions vary across time and cultures 
[12]. Another study describes how different perceptions of ‘dirt’ in a 
material science laboratory shape different laboratory practices [13]. 
These studies explore the different contexts where cultures, commu
nities and groups agree on their conceptions of pollution but only up to a 
point, from where they begin to diverge. In the following section we 
explore to what extent Douglas’ theory can also be applied to the field of 
biocuration. 

4. Data pollution in the scientific community 

For the scientific community, polluting behaviors are those that 
undermine its core values of quality, reproducibility, replicability, and 
trustworthiness. Data that upholds these values is instrumental in 
further research endeavors. But when data that does not uphold these 
values is reused, it can pollute the outcome of future research. One 
example of data pollution is muddying the scientific literature with 
findings from poorly conducted research in which experimental 
methods and designs are not properly implemented; instruments are 
incorrectly calibrated; software is inappropriately used for analyses; or 
low-quality materials, reagents, or chemicals are used. Another example 
of pollution is when research results are fabricated or falsified to suggest 
findings that cater to goals other than improving the state of scientific 
knowledge. Such behaviors result in the addition of dubious, erroneous, 
incorrect, and misleading data to the common pool of research data 
generated by and for the scientific community. 

The consequences of such practices are costly. They add to the large 
volume of scholarly publications that scientists need to go through 
before they can identify what they need [14–19]. They may also place 
their trust in and build their own research on research that cannot be 
reproduced, thus risking pursuing futile research avenues [20,21]. 
Additionally, low quality or downright fraudulent research is costly to 
governments, funding bodies, and the society at large, as such research 
is often funded by taxpayer’s money [22]. Finally, the real-world ap
plications of such polluted research may mislead health professionals 
and bring physical, as well as mental harm to their patients’ health 
[23–26]. 

5. Biocuration and pollution 

While the peer review process aims to weed out polluted data, bio
curation acts as an additional checkpoint. Several studies have estab
lished that the peer review process is not airtight [27–30]. This problem 
is further exacerbated by the rise of predatory journals that masquerade 
as legitimate sources of published research [31,32]. Thus, biocurators 
work towards filtering out data that does not reflect the normative 
values of the scientific community. As the International Society for 
Biocuration [33] states, “[Biocurators]..strive to distil the current ‘best 
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view’ from conflicting sources” (p2). This distillation involves the 
identification of data that is worthy of being reused. Biocurators gather 
and read publications falling within the scope of their respective data
bases, extracting key results, observations, evidence, and knowledge 
claims. Importantly, they weed out knowledge claims lacking sufficient 
supporting evidence. Through these efforts they keep their databases 
pure and safe from polluted data. 

5.1. Common criteria to identify pollution 

It is clear how important and complex the task of a biocurator is. We 
now analyze in more detail the different levels at which biocurators 
apply quality control and the decisions they make to select valid data for 
their database. 

From the interviews we learned that biocurators’ decisions are 
guided both by general standards, and by curation guidelines specif
ically developed for their database. These standards and guidelines 
provide the biocurators with rules and criteria for assessing data for 
their database. One such criterion is how complete the supporting evi
dence is. Data can be rejected because it lacks the details necessary to 
complete an annotation entry in the database. This information can be 
the species within which the research was conducted: “I mean that’s 
probably the biggest frustration. You can see it’s a good paper but it’s 
not clear what the species is.” (BC01) Data lacking information on the 
construct and its origin can also be rejected: “First thing you sort of look 
for is species, origins, where they bought the constructs, and if that’s not 
there or not obvious […] you have to ditch it.” (BC05) Publications 
where the supplementary data are missing are also often rejected: “Often 
relevant data was in the supplementary material, but the journals didn’t 
keep it because the paper is 10 years out and they just deleted the 
supplementary material.” (BC01) And: “So we do lose information 
because a lot of papers we could curate, but we don’t because infor
mation is missing from them.” (BC05). 

Another criterion for rejection of data is obsolete terminology. For 
instance, identifiers allow for easy and unambiguous distinctions be
tween entities. Yet, when the identifiers of the newly curated data set do 
not match those used by the database, biocurators have to manually 
translate or map the data to incorporate it into the database. Such 
mapping may result in the loss of data or in pollution of the database. “I 
recently mapped a data set into ours and lost about 15-20% of that data 
because they had used obsolete gene IDs. So, it’s data that gets painfully 
lost and if it’s used it’s probably misused and that to some extent is 
pollution.” (BC06) According to this respondent, obsolete identifiers 
would have contributed to erroneous results, and thus to pollution. 

A third criterion for data rejection is if it appears noisy or faulty. 
“Anything that gives us erroneous results or misleading results is 
pollution. This could be background noise that messes up the results; 
poor implementation of well-understood techniques; trying to use 
techniques too early on in their life cycle; the wrong interpretation of 
data; manufacturers cutting corners like the quality of antibodies or 
biologically inactive enzymes..” Additionally, knowledge claims not 
based on experimental evidence, i.e., not shown in figures or tables, is 
rejected. “We don’t curate data that is not shown directly in the publi
cation. So there needs to be a figure or a table.” (BC06). Unsupported 
data could contribute to faulty results and is thus considered pollution. 

The overarching criterion for biocurators is that the data agrees with 
the quality threshold of their database. “If we think a paper just gener
ally doesn’t look good, ..., we’re under no obligation to put it in the 
database. ” (BC09) And: “If [a peer reviewed publication] is really un
reliable, we just don’t write it because it could create more confusion.” 
(BC01) This filtration can result in the exclusion of entire data sets of 
data or of just the parts that are considered to be polluted. “We have to 
run checks and balances to see that it agrees with our philosophy and 
threshold level of quality…things in the data set that aren’t meeting our 
threshold criteria we normally throw away. We take the good stuff and 
throw out the bad stuff. ” (BC10). 

Biocurators thus make crucial decisions in assessing whether a piece 
of data is true or false, enriching or polluting their database. Biocurators 
may contact the authors in order to fill in the blanks and provide crucial 
missing information. They strip the data of what their database schema 
identifies as noisy, unnecessary, or irrelevant information. Furthermore, 
they try to incorporate the most updated terminologies, nomenclature, 
and protocols to upgrade older data sets. With these efforts they protect 
their users from pollution. 

Biocurators help users overcome the typical hurdles encountered 
when reusing data [34,35]. They ensure “accuracy, comprehensiveness, 
integration, accessibility, and reuse.” (p1) [33] of data. The value they 
add has made curated databases the gold standard against which 
computationally generated, or text mined data sets are compared 
[5,36–40]. Such databases now constitute the backbone of research in 
the life sciences domain. 

6. Plural constructions of pollution 

In this section, we discuss how, in addition to adding a second layer 
of quality control to peer reviewed data, biocurators also assess if data 
belongs in their particular database or should be discarded as an 
anomaly. 

How does Douglas’ analysis of the social construction of dirt and 
pollution apply to how the life sciences community identifies and pre
vents pollution? We have seen in the previous section that biocurators 
abide by certain commonly shared values of the life sciences commu
nity, when assessing data for quality. These common values are reflected 
in the database curation guidelines. But the respective frameworks of 
different databases also represent local values. Frameworks become 
more defined and selective at different granularities of a community. 
The life sciences domain is split into a range of smaller communities 
across different model organisms, entities or processes being studied. 
Such communities can have different databases, each incorporating 
locally shaped norms that answer to the specific needs of the 
subcommunity. 

This local framework shapes the biocurators’ decisions about which 
data is sufficiently ‘pure’ to get included in their database. 

7. Pollution pluralism across databases in the Gene Regulation 
domain 

The definition of ‘quality data’ may vary across databases [2]. 
Different databases may apply different curation guidelines that reflect 
the different values of their respective communities. Data that fits neatly 
into one database may present an anomaly to another database. So, 
while the data itself may not be of poor quality, whether it is rejected or 
accepted also depends on what is locally perceived to be pure data. 

In other words, where two databases draw the line between positives 
and negatives, varies. One database may prefer to use Entrez identifiers, 
whereas another database may prefer to use Ensembl identifiers. One 
database prefers deep coverage and requests more experimental details, 
whereas another database allows shallower curation and settles for less 
details for each data set. For instance, databases that place value on the 
cell type, specific constructs or vectors will classify data lacking these 
details as impure, yet for a database agnostic to such details, this data 
qualifies as pure. Two databases covering the same biological pathways 
may accept different levels of evidence as sufficient as proof for an 
observation. For instance, while one requires proof of a specific molec
ular activity within the pathway, the other database considers evidence 
implicating the gene product in a specific molecular pathway without 
this information still sufficient for annotation. 

Additionally, databases also differ in the type of methods they 
approve and in how they represent curated data. For instance, while one 
database curating molecular interactions accepts computationally pre
dicted results as pure, another rejects this as polluted. Similarly, while 
one database simplifies the data so that its users can easily grasp it, 
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another’s norm dictates capturing the data as it is presented by the au
thors. Consequently, despite a significant overlap in the data they cap
ture, their schemas do represent different values and hence different 
perceptions of data purity. 

8. Pollution pluralism affecting different use cases of a database 

In the previous section, we explained how the common framework of 
the life sciences community has differentiated to meet the needs of 
various subcommunities. We specifically discussed this differentiation in 
the domain of gene regulation. In this section, we extend this argument 
to different use cases. As biological databases are used for a variety of 
use cases, these use cases may place different demands on a database. 
The result returned from that database may meet the needs of users to 
different degrees, depending on where that database draws the line 
between positives and negatives (which will affect the false positives 
that they include and the false negative that they discard) and on the 
user’s aims: to deal only with the most reliable data, or expect abundant 
results, including potential false positives, but with the benefit of also 
having access to false negatives. The additional work that a user needs to 
perform to deal with false positives and false negatives, we argue, is 
more extensive for users who set a lower threshold for the results. 

Biological databases typically cater to diverse users. According to 
Fuchs et al. [41], this diversity reflects their specific use cases: “...some 
researchers are interested in general genome organization and would 
readily merge overlapping sequence database entries to remove 
‘redundancy’, ignoring minor tissue- or strain-specific sequence differ
ences that, for their purposes, are unimportant. Others are particularly 
interested in the small differences eliminated by such merging.” (p4) In 
addition to this, Douglas et al. [42] studied the diversity across three 
genomics databases - DiscoverySpace, InnateDB, and WormBase - and 
found that the diversity in user communities result from a combination 
of technical and socio-cultural factors. These factors include the amount 
of trust in a database, its accessibility, how user-friendly its interface is, 
and the different tastes within the bioinformatics subcommunities. 
Furthermore, Costabile et al. [43,44] add that user diversity is also a 
function of the different expertise of users based on their specific “.. user 
skill, culture, knowledge...specific abilities (physical/cognitive), tasks, 
and context” (p3) [43]. 

So, the distinction that a database draws between positives and 
negatives, between pure and polluted, can be too restrictive or too lax 
for a particular use case. We saw that the schema of a database that 
determines whether data are seen as pure, is adapted to the specific 
needs of a database’s community. This community further splits into 
diverse sub-communities who adapt the database schema to what they 
value. As a result, their distinctions between pure and polluted also 
differ from the normative distinction of the database. In the words of 
Fuchs et al., “...current databases restrict their users to a specific ‘view of 
the database’, but with increased complexity of research, the same view 
can no longer serve all needs.” (p4) [41]. This also includes the tension 
between how biocurators perceive data purity and how the views of 
certain users may differ from this local norm. 

9. Cautious and greedy use cases 

Depending on what a user expects from a database query, we can 
distinguish cautious use cases and greedy use cases (Fig. 1). In a cautious 
use case a user wants to have only reliable results that do not need 
further checking. This may in practice mean that the use case demands 
more restrictive criteria concerning true positives than the criteria un
derlying the database. Such users would require additional evidence in 
support of a database claim, even though it has passed the scrutiny of a 
curator. They will have to do additional checking to eliminate results 
that for their use case would be considered false positives, even if this 
costs them in terms of data coverage. What the database accepts as pure 
could be polluted for such cautious users. On the other hand, a greedy 

use case satisfies users with broader, more inclusive criteria for 
accepting positive data. Such users opt for working with a larger volume 
of data even if it comes at the cost of having to deal with potential false 
positives. In their case, data that has been rejected from the database 
may still be supported by sufficient evidence to be considered a false 
negative. Consequently, what the database rejects as polluted could be 
pure for such greedy users. 

10. Examples of these use cases with different resources 

10.1. Example 1. Searches for DNA binding transcription factors 

A key item of knowledge for understanding gene regulatory mech
anisms is the relationship of a DNA binding transcription factor (dbTF) 
with a target gene (TG). According to a recent estimate (Lovering et al., 
DbTF compendium, this BBA issue) there are 1457 human dbTFs that 
interact with regulatory sequences of their target genes and regulate the 
activity of RNA polymerase II-driven gene transcription. Knowing which 
dbTF is involved in the regulation of which target gene is a first step 
towards building a regulatory model of a gene regulatory process. 
Knowing the complete repertoire of dbTFs defines the search space that 
researchers must consider when analyzing how transcription factors 
determine expression profiles. As the dbTF compendium paper de
scribes, the curators of this set developed a set of curation guidelines 
(Gaudet et al., this issue, Guidelines paper) which they subsequently 
followed to annotate a list of proteins with the highest possible likeli
hood of qualifying as a dbTF. The authors also acknowledge that some 
additional proteins may qualify to become members of this class if more 
data would become available. This approach serves the cautious use 
case. To serve the greedy use case, the user may check a supplementary 
file with all the human transcription regulators that were considered for 
inclusion, or they may check other resources (e.g., the TFcheckpoint 
database [48]). In doing so, they may take into account whatever in
formation would be available for these proteins of interest, e.g. in the 
form of GO annotation terms and their evidence code, which may 

Fig. 1. Depiction of the different classifications of pure and polluted data be
tween use cases ranging from very cautious to very greedy. The whole frame (A 
and B) depicts all published data within a biological domain; Part A represents 
data that is published but not yet curated; Part B indicates data that has gone 
through a curation process; Within part B, the white part depicts data that was 
rejected; the light grey segment C indicates data that is considered ‘pure’ by 
users of a Greedy Use case but was deemed ‘polluted’ and not incorporated by 
database D; D (dark grey) represents data that is pure for the database and pure 
for users of a greedy use case, but it may still contain some data that is 
considered ‘polluted’ by users of a cautious use case; and E (black) depicts data 
that is pure for all 3 groups. An example of such data, which has undergone 
additional selection to comply with a cautious use case, is described by 
Velthuijs et al., this issue of BBA [45] when mining the IntAct [46] and BioGRID 
[47] databases. 
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indicate evidence obtained from computational predictions. 

10.2. Example 2. Gene expression regulated by DNA binding transcription 
factors 

Much effort is being put in the assembly of curated resources 
describing the relationship between a dbTF and its target gene(s). 
Curated dbTF-TG relationships are for example available from databases 
such as TRRUST [49], TFactS [50], HTRIdb [51], SIGNOR [52], as well 
as IntAct [46]. Such resources offer high confidence descriptions of 
dbTF-TG interactions that better fit cautious use cases, where users are 
only interested in what has been approved by biocurators as adequately 
documented dbTF-TG interactions. 

While these databases serve as integral resources in research on 
dbTF-TG interactions, for the greedy use case, the contents of these 
databases may be limited. This is because although manual curation 
certainly provides the highest quality of data, the pace at which it pro
ceeds leaves a gap in the coverage of literature on gene regulation. 
Although TRRUST currently contains a total of 7421 dbTF-TGs, far more 
dbTF-TG interactions have been published in the literature. Indeed, 
automated text mining is capable of surveying the entire MedLine 
resource for abstracts containing mentions of potential dbTF - TG in
teractions, and the ExTRI corpus (Vazquez et al., this issue) provides 
more than 10,000 new candidate dbTF-TG relationships for further 
analysis. Although a user needs to invest additional curation time to 
check the validity of these interactions, these data likely contain many 
instances of what may turn out to be useful information. 

11. Drawbacks to greedy use cases for having few false positives 
or few false negatives 

The above examples depict that a greedy use case incurs certain 
drawbacks that could be alleviated if information on the decisions un
derlying rejected data would be provided by databases. While there are 
several studies that have explored the intricacies of the curation process, 
what happens to data that is rejected in this process is still unclear 
[53,54]. According to BC02, data that has been screened but failed to 
meet the criteria is not tagged or labeled as such - “No.. we don’t do that, 
where you can say I looked at this paper but don’t bother”. As a result, 
whereas in a cautious use case a user can rely largely on the strict 
curation criteria implemented by many databases, in a greedy use case 
the information about data that is rejected but which might still be 
interesting to pursue is not visible to users of the database. Such users 
then need to duplicate the biocurator’s effort to find essentially the same 
information by themselves. In example 2, for instance, while the cura
tion guidelines of the database explain the general reasons for the 
dismissal of data, the specifics of what data has been rejected have been 
internalized and are not accessible by users. It then takes an additional 
effort (such as ExTRI text mining) for users to identify the gap between 
dbTF-TG interactions that have been published and those that have been 
curated. Incidentally, the difference between both cohorts also includes 
interactions that have been identified and checked by biocurators, yet 
the value of this effort does not reach users of a greedy use case. It would 
be very useful if this user could easily identify what has been scrutinized 
by the biocurator and rejected. 

The second drawback is the effort to identify why a specific data set 
has been rejected. While information regarding what data has been 
rejected is valuable to users of a greedy use case, knowing why this data 
has been rejected could further facilitate their task. Curators invest 
considerable time in assessing each data set prior to deciding its fate in 
the database. “So we internally try to make sure that it’s trustworthy for 
the outside world who don’t really know anything about these proced
ures. We might completely ignore data coming from an experiment, 
saying this just doesn’t look sufficiently trustworthy. We don’t capture 
it. And then we just leave it out, not necessarily flag this for to the user, 
because that would be just too much.” (BC03) As a result, a significant 

part of the reasoning behind curatorial decisions does not meet the 
user’s eye. However, in these steps information is considered that could 
be valuable for greedy use cases, for instance: what was missing to 
convince the curator about the validity of a claim such as showing 
valuable clues for users such as the identity of a paper and/or entities 
and relationships that users might check themselves; or alternatively, 
omit from analysis when they embark on de novo retrieval of informa
tion from published literature. Consequently, such users have to redo the 
work of the biocurators to identify why data has been assessed but 
excluded. 

This is illustrated by example 1. Here, the GO dbTF catalogue offers 
detailed information on the dbTFs that have passed the scrutiny of the 
latest curation guidelines. It also presents information on candidates 
that have been excluded from the list of dbTFs, i.e., data that has been 
assessed by the curator and rejected. Yet, information on why a specific 
candidate has been rejected and placed into the rejected class is not 
provided in much detail. What the GO dbTFs compendium (Lovering 
et al., this issue of BBA) does indicate, however, is that if a candidate 
protein entry meets none of the seven applied inclusion criteria exam
ined that would have led to inclusion on the dbTF list, it is rejected from 
the compendium. Hence, while it is relatively easy to identify what 
specific data has been rejected, the specific reason why a protein is 
rejected may thus be internalized and be the consequence of not meeting 
even one of the main criteria, namely (i) convincing published evidence 
for cis-regulatory region-mediated sequence-specific gene transcription 
modulation (ii) the presence of a characterized dbTF DNA binding 
domain instance (iii) the determination of DNA binding specificity by 
heterologously produced proteins, or (iv) being phylogenetically 
paralogous to established dbTFs. While this assessment guarantees the 
assembly of a dbTF compendium with the highest possible quality, 
recording more specific information about what information is not 
convincing could be instrumental to users of a greedy use case. Absence 
of evidence is not necessarily evidence of absence, and as a result, such 
users then need to reassess the rejected list based on their local criteria 
and reproduce the effort performed of the biocurators following their 
own inclusion/exclusion criteria. 

12. How can databases help mitigate the drawbacks associated 
with greedy use cases? 

We suggest that by making the process of how rejected data is 
handled visible to users, manually curated databases could serve a wider 
set of use cases without jeopardizing their local quality standards. 

12.1. Proposal 

Biocuration provides an indispensable resource for research in the 
life sciences. Whereas today’s efforts in biocuration are primarily 
focused towards producing database entries (‘positives’) with as little 
contamination as possible (false positives), the efforts that are spent at 
sifting through vast volumes of scientific literature could produce even 
more useful results if information about declaring ‘negatives’, gathered 
in this process, is also archived, and made available to users. 

We propose that the two examples could inspire biocurators to 
develop their own techniques to accommodate for a plurality of purity 
criteria. By adjusting how they handle data they reject and shifting their 
pollution control procedures to the front end, databases could offer their 
users information on what is filtered out in this process. First, a database 
could list all the papers that have been subjected to their curation pro
cess. This could be done, for instance, by tagging all publications in a 
triaged corpus with their status (curatable/non-curatable). Alterna
tively, biocurators could identify what evidence needed to satisfy their 
criteria is missing from the data by highlighting the specific parts of 
publications that have been excluded for not being sufficiently pure for 
the database. This would be valuable information in greedy use cases to 
allow users to decide to accept these less strong claims. Taking it a step 
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further, biocurators could attach the type of evidence that is needed for 
such knowledge claims to be accepted into the database (Gaudet et al., 
this issue; Lovering et al., this issue). This might even inspire users to 
follow up on this by producing additional experimental evidence. 

An additional advantage of providing such information is that it 
sheds light on existing research niches where more knowledge is needed. 
As we have discussed above, curators thoroughly analyze a data set 
before they decide whether to reject it. Yet, by making a hard distinction 
between pure and polluted data, that which is almost pure is also often 
rejected. By explicitly labeling data that is insufficiently pure for the 
database, biocurators could indicate the research areas where evidence 
is lacking. Bringing forward this information would then be instru
mental in motivating data producers to generate additional evidence for 
annotating this data. 

Finally, reporting the literature that was considered for curation 
even when it was not included, and publishing curation guidelines and 
criteria, also increases the visibility of the intricacies of the curatorial 
process. While this does increase the annotation burden, it would do 
justice to the vast amount of work of the biocurator that today remains 
invisible to users [38,55,56]. As BC05 states, “They [users] are often not 
that aware of the level of detail and involvement that data curation 
requires. They are not aware of all the quality controls that we need to 
put in.” This work also includes the time and effort that is spent in 
finding, ordering, and structuring data before a biocurator can take a 
decision whether to accept or reject it. To do so, they typically make 
notes, consider the available evidence, determine what evidence seems 
to be missing, pursue authors to fill in the blanks, follow up with journals 
to trace lost supplementary material - amongst other tasks. Yet, while 
these efforts and the resulting body of knowledge is valuable, users 
cannot access such information. For data that is assessed but rejected, 
the knowledge generated from the careful and scrupulous efforts of the 
curator remains underexploited. Bringing these aspects to the fore
ground also enables utilizing the outcome of an often-elaborate assess
ment of data that is subsequently excluded from the database. 

Nevertheless, while this proposal is aimed at addressing the draw
backs faced by users of a greedy use case, we realize that there are also 
foreseeable disadvantages to our proposal. One such disadvantage is 
that making the reasons for rejection visible to users could compromise 
on the richness and honesty of biocurators’ opinions. When such infor
mation is confined to the back end of the database, biocurators are 
allowed a certain level of anonymity. Yet, when accessible, decisions 
which result in the exclusion of an article from a database may be 
misconstrued as an assessment of poor quality of the article and, by 
extension, the authors, their university or even their country or conti
nent. This proposal could contribute to potential tensions between 
biocurators and producers of data. Such collateral effects would need to 
be addressed by reiterating that pollution is a social and cultural and 
pragmatic construction which is relative to how a community perceives 
purity and order. In this case, this implies that a biocurator’s decision to 
reject data depends on how well it fits the local schema of the database. 
As this schema differs across databases, as well as use cases, data 
considered polluted by a database could fit well into the schema of a use 
case. 

13. Conclusion 

So far, we have discussed Douglas’ analysis of different conceptions 
of pollution as she presents it in Purity and Danger: an analysis of the 
concepts of pollution and taboo. We explored her arguments on the role 
played by the values and needs of communities in distinguishing purity 
and order from pollution and disorder. This distinction is constructed 
and context dependent. 

We then explored the phenomenon of pollution in scientific research 
data. We began by briefly discussing the research practices that are 
known to pollute scientific research results and the possible effects of 
such pollution on new research. We then described the role of 

biocurators in tackling such forms of pollution. They carefully and often 
painstakingly reassess published data following the curation guidelines 
specific to their databases. We then discussed some general, overarching 
criteria that constitute guidelines used in all databases, to identify and 
curate only pure data or true positives, and to filter out polluted data or 
false positives. 

Having identified these commonalities, we then turned to the dif
ferences. We explained that what is pure for one database may be 
impure for the next, as both databases adhere to different definitions of 
pollution. We extended this argument to explore the hypothesis that 
database users of two use cases - cautious and greedy - may also assess 
pollution differently than the database. When claiming that a piece of 
information is truly positive or truly negative, curation protocols use 
decision tree-like protocols that result either in a yes or a no, leaving no 
room for a ‘maybe’. This ‘maybe’ class, we suggest, can be valuable as it 
may contain false negatives: a class of value that, based on current 
available data (from experiments or bioinformatics analysis), cannot be 
classified as positive. How this class is currently handled by databases 
presents certain drawbacks to greedy use cases. 

We then asked how databases and biocurators could help users of the 
greedy use case in alleviating these drawbacks. We suggest that the key 
lies in databases disclosing the data they reject and the reasons for doing 
so. In this manner, databases could cater to a variety of conceptions of 
pollution without compromising its own local definition. Providing this 
information can also point users towards areas where knowledge is 
lacking. Users can then work on filling these knowledge gaps. Finally, 
implementing our proposal would also reveal the efforts of the curator to 
scrutinize data before deeming it to be polluted for the database. 

In conclusion we return to the research questions. We first asked - 
what are the drawbacks for users of use cases where the purity criteria differ 
from the local criteria of a database? Users of a greedy use case face a gap 
in the data that has been curated into the database and data that their 
use case needs because the conceptions of pollution vary between the 
database and that of the use case. We identified that the effort to bridge 
this gap demands a duplication of the biocurator’s efforts by users of a 
greedy use case. Our second question was: what role can databases and 
biocurators play in alleviating these drawbacks? We propose that databases 
assist such users by offering them access to the details of the data that 
has been considered but rejected from the databases, and why. For the 
primary literature this is represented by part B on Fig. 1. While such 
information is available with the database, it is typically internalized 
and not accessible to users. While we acknowledge that this proposal 
would increase the burden of the already underfunded biocuration 
community, we propose that this could help mitigate the additional 
effort users of a greedy use case would have to invest in undertaking an 
ad-hoc information search and curation task. 
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