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Summary

Enabling autonomous systems to safely operate without direct human supervision
requires that the systems have the situation awareness which, for a large part, is
presently provided by human operators. A crucial part of this situation awareness
is that it considers uncertainty and risk, thereby enabling the operator to make
risk-based decisions. The goal of this thesis is to develop new methods for giving
robotic systems better risk-awareness, thereby contributing towards enabling safer
and more efficient autonomous systems.

To contribute towards this goal two different case studies are considered. The first
considers an inspection drone operation, where the goal is to increase the drone’s
understanding of risks related to its own state and the state of the environment.
The second considers autonomous collision avoidance at sea, where the goal is to
improve the ability of autonomous ships to understand the intentions of meeting
traffic. This thesis presents six novel contributions towards this goal, three for each
case study. Four of these are based on articles submitted or published in peer-review
journals, and two are based on articles submitted or published in peer-reviewed
conference proceedings.

The first chapter on the drone case study contributes towards giving the drone a
better understanding of uncertainty related to the location and size of obstacles.
Here an occupancy grid map is used to model the uncertainty in the environment
caused by the drone using a wide-angle radar for obstacle detection. This map is
combined with the navigational uncertainty in the drone to evaluate the risk of
collision. A scenario-based model predictive control algorithm is used to choose the
optimal path offset while considering risk of collision.

The two next chapters consider giving the drone a holistic understanding of risk.
These chapters contribute towards enabling the drone to infer its internal health
state and the state of the external environment based on indirect measurements,
which is then used for automatic decision-making. The first of these chapter con-
sider discrete decision making where a drone tasked with contact-based ultrasound
thickness measurements must choose whether it should perform an inspection,
request maintenance, or move to a different task. The next chapter considers con-
tinuous decisions that have to be made throughout the mission. Here an online su-
pervisory risk controller modifies safety-critical parameters during flight to ensure
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Summary

an acceptable risk level. To ensure that a holistic risk understanding is achieved,
a risk analysis is performed to identify hazardous situations. The risk model used
by the controller is then made on the basis of this analysis.

The research on the second case study contributes towards enabling autonomous
ships to understand the intentions of meeting traffic. The intention model developed
in this thesis enables autonomous ships to identify situations prone to cause mis-
understanding and to infer the intentions of the other ships based on the observed
behavior from AIS and radar. The model is able to understand when ships act in
accordance with the maritime traffic rules (COLREGS) and distinguish between
different types of incompliant behavior. The model uses statistics on how ships
have historically acted for making inferences and predictions. These statistics can
be tailored for the current situation, thereby enabling the model to understand
that different types of ships act differently in different environments.

The intention model is tested on simulated scenarios, on historical AIS data,
and in controlled field experiments. In the field experiments, the intention model
is combined with a probabilistic scenario-based model predictive controller for
COLREGS-compliant collision avoidance. These experiments demonstrate how the
intention model enables the autonomous ship to fulfill its stand-on obligations when
other ships seem to act in accordance with the traffic rules and when and how to
break from these obligations to ensure safe collision avoidance.

Most of the works in this thesis use different versions of Bayesian belief networks,
such as dynamic Bayesian networks and dynamic decision networks. These networks
have enabled the inference capabilities needed to infer the state of states that
are not directly observable, and the ability to combine information from different
factors affecting the risk or behavior in a single model. This thesis demonstrates
how these networks can be used to increase risk awareness and artificial intelligence
for different case studies and types of inference and modeling problems.
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Sammendrag

Å gjøre autonome systemer i stand til å fungere trygt uten direkte menneskelig
overvåking krever at systemene får en situasjonsbevissthet som det i dag hoved-
sakelig er operatøren som står for. En avgjørende del av denne situasjonsbeviss-
theten er at den tar hensyn til usikkerhet og risiko, noe som gjør operatøren i stand
til å ta risikobeviste beslutninger. Målet med denne avhandlingen er å utvikle nye
metoder for å gi robotsystemer bedre risikobevissthet, og dermed bidra til å mulig-
gjøre sikrere og mer effektive autonome systemer.

Avhandlingen tar for seg to forskjellige eksempelstudier for å bidra mot dette målet.
Den første omhandler en inspeksjonsdrone hvor målet er å øke dronen forståelse av
risikoer relatert til den selv og miljøet rundt den. Den andre omhandler autonom
kollisjonsunngåesle til sjøs. Her er målet å forbedre autonome skips evne til å
forstå intensjonene til den møtende trafikken. Denne avhandlinga presenterer seks
forskjellige bidrag mot det overliggende målet. Tre for hvert eksempelstudium. Fire
av disse er basert på artikler sendt inn eller publisert i fagfellevurderte tidsskrifter
mens to er basert på artikler sendt inn eller publisert i fagfellevurderte konferanser.

Det første kapittelet på drone studiet bidrar mot å gi dronen en bedre forståelse
av usikkerhet i plasseringen og utstrekningen til hindringer. Her blir et occupancy
grid map brukt for å modellere usikkerheten i miljøet som skyldes at dronen bruker
en bredviklet radar for å oppdage hindringer. Dette kartet blir kombinert med
navigasjonsusikkerheten til dronen for å evaluere risikoen for kollisjon. En scenario-
basert modell prediktiv kontroll algoritme brukes for å velge et optimalt avvik fra
den planlagte ruta som tar høyde for risikoen for kollisjon.

De neste to kapitlene tar for seg hvordan man kan gi dronen en holistisk forståelse
av risiko. Disse arbeidene bidrar til å gjøre dronen i stand til å identifisere dens
interne helsetilstand og tilstanden til det eksterne miljøet basert på indirekte
målinger. Denne kunnskapen brukes så for automatisk beslutningstaging. Den
første av disse kapitlene tar for seg diskret beslutningstaging. Her skal en drone,
som brukes til å måle veggtykkelse med en kontaktbasert ultralydsprobe, vurdere
om den skal gjennomføre en inspeksjon, be om vedlikehold, eller bytte til et annet
inspeksjonspunkt.

Det neste kapittelet tar for seg beslutninger som må tas kontinuerlig gjennom et
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Sammendrag

oppdrag. Her brukes en overvåkende risikokontroller til å endre sikkerhets kristiske
parametre i samtid under opperasjonen for å sikre et akseptabelt risikonivå. For
å oppnå en holistisk risikomodell så brukes en risiko analyse for å identifiserer
faremomenter. Risikomodellen brukt i den overvåkende risikokontrolleren er laget
basert på denne analysen.

Forskningen på det andre eksempelstudiet bidrar med å gjøre autonome skip i stand
til å forstå intensjonene til møtende trafikk. Intensjonsmodellen som blir utviklet
i denne avhandling, gjør det mulig for autonome skip å identifisere situasjoner
som kan føre til missforståelser og å forstå intensjonene til andre skip basert på
den observerte oppførselen fra AIS eller rader. Modellen forstår når skip handler
i samsvar med de maritime trafikkreglene (COLREGS) og er i stand til å skille
mellom forskjellige måter reglene kan bli brutt på. Modellen bruker statistikk på
hvordan skip pleier å oppføre seg for å forstå intensjonene og forutse fremtidig
adferd. Modellen kan utnytte statstikker som er basert på spesifikke skipstyper
eller områder for å bedre forstå intensjonene til den møtende trafikken.

Intensjonsmodellen er testet på simulerte scenarier, på historisk AIS data, og på
kontrollerte felteksperimenter. I felteksperimentene blir intensjonsmodellen kom-
binert med en probabilistisk scenariobasert modellprediktiv kontroller for å oppnå
kollisjonsunngåelsesoppførsel som er i samsvar med sjøfartsreglene (COLREGS).
Disse eksperimentene demonstrerer hvordan intensjonsmodellen gjør det mulig for
autonome skipet å oppfylle sine forpliktelser til å holde kurs og fart, og å forstå
når den skal bryte disse forpliktelsene for å sikre en trygg kollisjonsunngåelse.

Mesteparten av bidragene presentert i denne avhandlingen bruker forskjellige ver-
sjoner av Bayesiske nettverk, slik som dynamiske Bayesiske nettverk og dynamiske
beslutnings nettverk. Disse nettverkene muliggjør evnen til å forstå underliggende
tilstander basert på indirekte målinger og å kombinere informasjon fra forskjellige
faktorer som påvirker risiko eller adferd i en holistisk modell. Denne avhandlin-
gen demonstrerer hvordan disse nettverkene kan brukes for å øke risikobevistheten
og den kunstige intelligensen til robotsystemer for forskjellige eksempelstudier og
forskjellige klasser av problemer.
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Chapter 1

Introduction

“No human is served with doing slave work.
It is not interesting, its tiring, and the
payment is low [. . . ] The work we can say is
not human worthy, it should be automated
away.”

— Jens Glad Balchen, interview in
Aftenposten 1966, translated from

Norwegian

1.1 Motivation

The quote opening this chapter is from Jens Glad Balchen, the founder of the
cybernetics department at NTNU, which summarizes one of the main goals of au-
tomation, namely freeing people from slave work. By doing so we can free people
from doing boring, dangerous, and repetitive tasks, such that they instead can use
their time on activities that bring joy and meaning to their lives and the lives of
others. Beyond the main objective of improving the lives of people, replacing man-
ual operations with autonomous robots have further advantages for reducing costs
[1], improving performance [2], increasing safety [3], and enabling new types of op-
erations [3], [4]. However, today’s robotic systems often rely on human operators
to monitor them and to manually intervene if necessary [2], [5]–[7]. Changing the
role of the operator from controlling to monitoring doesn’t only make the work of
the operator less enjoyable, but it can also jeopardize the operator’s ability to pay
sufficient attention needed for them to intervene if necessary. Not actively being
engaged in the control of the system can limit the operator’s situation awareness
of the system they are monitoring [7]–[9]. This can cause new types of accidents
as the reduced situation awareness of the operator can prevent them from under-
standing if something is wrong and what the problem is, and it can prevent the
operator from taking over on short notice if the autonomous system enters a state
outside of its operational envelope [7]–[9]. Requiring direct human supervision also
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1. Introduction

limits the type of missions that can be automated. This is the case for missions
where communication is limited thereby making it impossible to directly monitor
the system in real-time, such as for underwater [4] and space [10] operations. An-
other case is long-term [11] and multi-agent operations [2] that would otherwise be
economically infeasible to continuously and directly monitor.

Enabling autonomous systems to solve these challenges requires automating the
situation awareness of the operator as well. To explore this topic we first need
an understanding of what this situation awareness consists of. A commonly used
model for situation awareness is the three-part model presented in [12]. The first
part consists of perceiving elements in the environment. The second of using the
perceived information to comprehend the current situation. And the last is to
project how the situation will develop in the future. Let’s consider an example of
an inspection drone operated by a skilled human operator to illustrate this model.
The operator may perceive a change in the sound coming from the drone, based
on experience and training the operator may comprehend that this may mean
that one of the motors on the drone is worn. From this, the operator may project
that flying with a worn motor can cause overheating thereby causing motor failure
during flight. An equally important aspect of projection is to understand how the
available decisions affect the future state. In the drone example, this consists of
understanding that continuing to fly with a worn motor can cause it to overheat,
while landing and maintaining the drone can solve the problem.

The situation awareness will in almost all cases be imperfect. There will always be
measurement uncertainties in the information we perceive, our knowledge will be
incomplete when we are attempting to comprehend the situation, and our model
is imperfect when we are projecting future states. The drone operator may have
misheard the change in sound made by the drone, the sound alone is not enough to
know if there is actually a problem with a motor, and even if a motor is worn the
operator can’t know with certainty that it will fail. But even though the situation
awareness is uncertain it is still considered rational to abort the mission and inspect
the motors in detail. This is due to the perceived increase in probability together
with the knowledge that the consequences can be quite high if a motor fails mid-
flight. This illustrates that considering risk in situation awareness, that is having
a risk awareness, is something humans do naturally.

Giving robotic systems risk awareness and using it for controlling the
robot is the topic of this thesis. To explore this topic, two different case
studies are considered.

The first case study, presented in Part I of the thesis, considers an industrial in-
spection drone. This case study was chosen as these drones are relatively simple
making it possible to consider the system as a whole thereby gaining a holistic
overview. These systems are also a safe place to start exploring higher levels of
autonomy as they often can operate separately from, or far away from, humans
making the danger of hurting humans minimal. This section first explores how to
consider the uncertainty in the drone’s motion and the position of obstacles when
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1.2. Previous research

avoiding collision. Thereafter two different chapters on giving the drone a holistic
risk awareness are presented. The first considers discrete decision making where the
system has to decide on what to do next after a task execution attempt fails. The
second considers decisions that have to be continuously made throughout the mis-
sion such as choosing adequate safety distance to obstacles and choosing adequate
speed and acceleration limits.

The second case study, presented in Part II of the thesis, considers autonomous
ships. In contrast to part one, this part focuses on a single source of uncertainty
in the systems situation awareness, namely how other agents plan to maneuver
in a collision encounter. An agent here refers to any entity that interprets and
acts upon the same environment as the robotic system, such as other ships. Even
though there are rules for how to act at sea [13], it is insufficient to blindly assume
that all other ships have interpreted the situation in the same way as us and that
they know or plan to follow the rules. Therefore one must pay attention to how the
other ship acts (perception), understand if they intend to follow the rules and if
they have interpreted the situation in a different manner (comprehension), and use
this information to understand how the ship may move in the future (projection).
Having a probabilistic understanding of how the other ships will act is a crucial
part of considering risk in the situation awareness of autonomous ships.

1.2 Previous research

This section presents a short overview of previous research on using risk or uncer-
tainty in the situation awareness of robotic systems. Each of the following chapters
will go further into detail on previous research related to that particular chapter.
The goal of this chapter is to give the necessary background for formulating the
research questions.

Many publications take risk or uncertainty into account in the situation awareness
used for control in one way or another. Some examples are: [14]–[17] which consider
a heuristic metric of risk based on a few measurable factors, such as the time
until and distance at the closest point of approach between the robotic system
and other agents, and/or relative speed between them, [18], [19] which consider
the uncertainty in the predicted future trajectories of the robotic system, [20]–[23]
which considers uncertainty in the future trajectory of the robotic system and other
agents, and [24] which considers uncertainty in the future trajectories of the robotic
system and uncertainty in the location of static obstacles.

However, few publications have considered the uncertainty stemming from the in-
tention of other agents. Nevertheless, some examples can be found for ships [25],
airplanes [26], cars [27], and pedestrians [28], [29].

Replacing the situation awareness of a human requires a holistic overview of rele-
vant factors affecting the risk. To achieve this, the risk metrics used in the previ-
ously presented literature must be combined with all other relevant factors. One
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way of aggregating risk when doing path planning is using a risk map [30]–[34].
These articles evaluate a separate risk map for each risk influencing factor. The
different risk maps can then be combined by for example taking a weighted sum.
Another approach, which can model the relationship between different risk influ-
encing factors, is to use a Bayesian belief network (

 

 

BBN) [35]–[43]. Of these pub-
lications only [36]–[40] uses the

 

 

BBN for on-line decision making. An alternative
to

 

 

BBNs is presented in [44], [45] where a risk graph is used to combine different
risk-related properties. A process for ensuring that the risk awareness includes all
relevant risk influencing factors is to perform a risk analysis as proposed in [35].

1.3 Research questions

The overarching research question motivating this PhD work is as follows:

How can the risk awareness of robotic systems operating in the
real world be improved such that they can safely operate without
direct human supervision?

The goal of this PhD work has been to develop new research that contributes
towards this overarching question. This thesis will therefore focus on presenting
novel research rather than giving a comprehensive review of the existing literature
related to this question. To guide us through the research developed in this PhD
work, 6 research questions are proposed. These questions are based on identified
holes in the literature related to the overarching research questions. The rest of this
section will outline the holes in the literature and present the proposed research
questions. Thereafter Section 1.4 will outline the thesis and summarize how each
chapter contributes towards the 6 proposed research questions.

Much of the surveyed literature considers uncertainty in the position and velocity of
other agents. Very few consider uncertainty in the location of static obstacles. Other
agents can often be modeled as point masses with a corresponding uncertainty in
position and speed. This approach cannot be transferred to static obstacles such
as walls, as their shape, location, and size are the relevant sources of uncertainty.
The work presented in [24] considers both mapping and position uncertainty, but
they do not incorporate the uncertainty stemming from the sensor when building
their map. Based on this, the following research question is proposed:

RQ 1 How can uncertainty in static obstacles be modeled when considering the
uncertainty in the sensor mapping the obstacle, and how can this be com-
bined with uncertainty in the navigation of the robotic system itself in a
risk-based collision avoidance algorithm?

Another single source of uncertainty that has received limited attention is the
intention of the other agents. The only other article that was found to consider
probabilistic intentions at sea [25] only considers whether the ship is acting in
accordance with the own-ship interpretation of the rules. It does not model how
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disagreements can arise nor does it differentiate between different ways the ship
can act in incompliant ways. Based on this, the following research questions are
proposed:

RQ 2 How can the intention of other agents at sea be modeled and inferred in
greater detail so that the future behavior of the agent can be predicted
with higher accuracy?

RQ 3 How can an improved situation awareness of the other ships’ intentions
improve the collision avoidance capabilities of autonomous ships?

Making a probabilistic model that combines multiple factors to give a holistic
risk awareness for operational decision-making has had limited attention in the
literature. Among the surveyed literature, only [38], [40] consider this topic for
robotic systems. [38] considers choosing a landing location for an unmanned aircraft
system by combining many different factors affecting the suitability of the location
in a

 

 

BBN. [40] considers using the dynamic counterpart of
 

 

BBNs, dynamic Bayesian
network (

 

 

DBN), for fault identification, prognosis, and recovery. None of these work
focus on risk awareness for operational decision-making under nominal conditions.
This opens up the following research questions:

RQ 4 How can a robotic system build and use risk awareness for operational
decision-making for considering which task or action to do next?

RQ 5 How can a robotic system build and use risk awareness for continuous
decisions that have to be made during a task execution?

To increase the likelihood that all relevant factors are included in the situation
awareness, a risk analysis can be performed as proposed in [35]. However, [35] does
not consider how the resulting risk model can be used for control. This opens up
the following research question:

RQ 6 How can a situation awareness model based on the results from a risk
analysis be used to ensure safer autonomy?

Note that during the development of this PhD my colleagues in the UNLOCK
and ORCAS projects have explored RQ 5 and RQ 6 as well for the underwater
and autonomous ship domains. At the time of writing, this has resulted in the
publications [36], [37]. How the different chapters distinguish themselves from these
publications is discussed in the corresponding chapters.

1.4 Contributions and outline

This thesis consists of 9 chapters where Chapters 3 to 8 each present the result of
one publication developed during this PhD. Each chapter starts with a statement
stating the contribution of each author.
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The thesis consists of two parts. Part I, consisting of Chapters 3 to 5, contains
research on enabling safer autonomy for an industrial inspection drone. Part II,
consisting of Chapters 6 to 8, contains research on an intention model used to for
collision avoidance at sea.

Background material relevant to multiple chapters is given in Chapter 2 and con-
cluding remarks are given in Chapter 9.

The rest of this chapter outlines the research and contribution of the chapters
presenting novel results towards the research questions presented in Section 1.3.

Chapter 3 - Risk-based obstacle avoidance

[46] S. V. Rothmund and T. A. Johansen, “Risk-Based Obstacle Avoidance
in Unknown Environments using Scenario-Based Predictive Control for an
Inspection Drone Equipped with Range Finding Sensors,” in 2019 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), IEEE, Jun. 2019,
pp. 221–230. doi: 10.1109/ICUAS.2019.8797803

This chapter develops an obstacle avoidance strategy for an inspection drone
equipped with wide-angle range-finding sensors, such as radar or sonar. The obsta-
cle avoidance strategy uses scenario-based model predictive control (

 

 

SB-MPC) [14]
to find an optimal path offset that ensures an acceptable probability of collision.
The probability of collision is evaluated considering both the position uncertainty
of the drone and the mapping uncertainty stemming from the measurement uncer-
tainty in mapping sensor. The mapping uncertainty is modeled with an occupancy
grid map. 2D simulations show that the drone is able to mitigate risk by changing
speed and taking detours to avoid flying in potentially dangerous areas.

This chapter contributes towards RQ 1 by developing a risk-based framework for
local obstacle avoidance in unknown environments that incorporates both uncer-
tainties in the environment due to sensor uncertainty and uncertainty in the ve-
hicle’s position due to navigation uncertainty. The algorithm developed in [14] for
collision avoidance between ships is adapted to the drone case and modified to use
uncertainties in the drone state and the environment to calculate the probability
of collision.

Chapter 4 - Risk-based decision making

[47] S. V. Rothmund, C. A. Thieme, I. B. Utne, and T. A. Johansen, “A
Bayesian Approach to Risk-Based Autonomy for a Robotic System Execut-
ing a Sequence of Independent Tasks,” Submitted to Journal of Intelligent &
Robotic Systems, 2022. doi: 10.36227/techrxiv.14054141.v3
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This chapter develops a risk-based decision-making system for a robotic system
executing a series of independent tasks. A dynamic decision network (

 

 

DDN) [48]
is used to decide if and how a task should be executed, and whether the system
should be maintained. If a task execution is attempted then information on how
the execution went is given to the

 

 

DDN. By considering the results of different
execution attempts together with the choices made by the system the

 

 

DDN is
able to identify the state of underlying causal factors that can prevent a safe and
successful task execution. Information on the causal factors is used to evaluate the
risk and gain of executing different actions. A simulation case study of an industrial
inspection drone performing contact-based inspection is used to demonstrate the
capabilities of the resulting system.

The risk-based decision-making system developed in this chapter contributes to-
wards RQ 4 by increasing the robotic system’s risk awareness beyond what is
directly observable and by enabling it to reason about risk when making decisions.
The case study demonstrates that the resulting system is able to infer the presence
of faults with the drone and adverse environmental conditions. This information
enables the drone to act cautiously in potentially dangerous situations, request
maintenance when needed, and identify and handle past mistakes.

Chapter 5 - Supervisory risk control

[49] S. V. Rothmund, C. A. Thieme, I. B. Utne, and T. A. Johansen, “Su-
pervisory Risk Control with Application to Industrial Drone Inspection,”
Submitted to Autonomous Robots, 2022. doi: 10.36227/techrxiv.21287334

This chapter develops and experimentally tests a supervisory risk controller used to
increase the safety of drone operations. Its task is to monitor the state of the drone
and environment and to use this information to automatically change safety-critical
parameters in real-time during operation. A case study of a tethered industrial
inspection drone is considered. A system-theoretic process analysis (

 

 

STPA) [50]
is performed to identify how the system can fail. A

 

 

DDN, used as an online risk
model, is built based on the results of the

 

 

STPA. An optimization approach is
used to choose an optimal parameter configuration that ensures that the risk level
evaluated with the

 

 

DDN is acceptable. A mission abort recommendation is sent to
the human operator if no parameter configuration can ensure an acceptable risk.
The supervisory risk controller’s situation awareness is continuously forwarded to
the human operator to increase their ability to understand and handle potentially
dangerous situations.

This chapter contributes towards RQ 5 and RQ 6 by developing a supervisory risk
controller based on a risk analysis that continuously monitors a drone operation
and modifies safety-critical parameters. The chapter further develops the method
proposed in [35] by explicitly modeling measurements, by modeling how states de-
velop over time, and by modeling the effect of decisions. This development enables
the system to identify the state of causal factors that cannot be directly observed
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by combining information from different measurements over time. The chapter ex-
perimentally validates the supervisory risk controller on an inspection drone case
study.

Chapter 6 - Development of intention model

[51] S. V. Rothmund, T. Tengesdal, E. F. Brekke, and T. A. Johansen, “Inten-
tion modeling and inference for autonomous collision avoidance at sea,” Ocean
Engineering, vol. 266, p. 113 080, Dec. 2022. doi: 10.1016/j.oceaneng.
2022.113080

This chapter develops a probabilistic model of the intentions of other ships in col-
lision encounters. The underlying intentions that define the other ships’ behavior
are inferred by combining real-time measurements in a

 

 

DBN. The evaluated inten-
tions can either be directly used in a collision avoidance algorithm or the

 

 

DBN can
be used to evaluate the probability of meeting traffic following different candidate
trajectories. The model considers multiple different intention states to describe the
different ways a ship can interpret and conflict with the behavioral rules outlined
in the International Regulations for Preventing Collisions at Sea (

 

 

COLREGs)[13].
The prior probability distributions of the intention states can be adapted to the
current situation based on observable characteristics such as location and relative
ship size. The resulting model is able to identify situations that are prone to cause
misunderstandings and infer the state of multiple intention variables that describe
how the ship is likely to behave. Different collision avoidance algorithms can use
the resulting intention information to better know if, when, and how to act.

This chapter contributes towards RQ 2 by developing a modeling framework that
considers how underlying causes affect a ship’s maneuvering behavior. The frame-
work can infer the state of multiple different intention variables based on measured
properties. This enables the model to describe the future maneuvering behavior of
other ships with higher fidelity than simply being

 

 

COLREGs compliant or not.

Chapter 7 - Application of intention model in sea trials

[52] T. Tengesdal, S. V. Rothmund, E. A. Basso, T. A. Johansen, and H.
Schmidt-Didlaukies, “Obstacle Intention Awareness in Automatic Collision
Avoidance: Full Scale Experiments in Confined Waters,” Submitted to Field
Robotics, 2022

In this chapter, the intention model introduced in Chapter 6 is combined with the
probabilistic scenario-based model predictive control (

 

 

PSB-MPC) developed in [20],
[53] to create an intention aware collision avoidance algorithm. The resulting system
is experimentally tested in the Trondheim harbor with the Milliampere ferry. The
experiments emphasize on hazardous situations where intention information is both
useful and necessary to avoid high collision risk.

10



1.4. Contributions and outline

This chapter contributes towards RQ 3 by incorporating the intention model in a
collision avoidance system thereby increasing its situation awareness. Furthermore,
the chapter experimentally validates the model through the sea trials and demon-
strates how the resulting collision avoidance system adheres to

 

 

COLREGs rules
7-8 and 13-17 in a diverse set of situations.

Chapter 8 - Validation using historical AIS data

[54] S. V. Rothmund, H. E. Haugen, G. D. Veglo, E. F. Brekke, and T. A.
Johansen, “Validation of ship intention model for maritime collision avoidance
control using historical AIS data,” Submitted to ECC, 2023

In this chapter, the intention model introduced in Chapter 6 is validated on his-
torical data from ships along the Norwegian coast. A series of

 

 

COLREGs relevant
encounters from historical data available from the automatic identification system
(

 

 

AIS) [55] is considered. Some of the example distributions used in Chapter 6 are
replaced with empirical distributions extracted from the AIS data. The intention
model applied to all ships in the encounter, feeding it measurements as if the en-
counters were happening in real time. How the belief regarding the ship’s underlying
intentions develop throughout the encounters are analyzed.

This chapter contributes towards RQ 2 by validating that the intention model
works with empirical distributions and works on historical ship encounters. This
chapter demonstrates the capabilities of the model and highlights the weaknesses
that should be studied further.

11





Chapter 2

Background theory

2.1 Bayesian belief networks

This section will give an introduction to
 

 

BBNs, sometimes also called Bayesian
networks (

 

 

BNs), which are heavily used throughout this thesis. First, a motivating
example of the type of inference capabilities Bayesian networks possess is given
in Section 2.1.1. Thereafter, in Section 2.1.2, the underlying equations enabling
this inference capability are given. Lastly, Section 2.1.3 outlines some common
extentions to

 

 

BBNs.

2.1.1 Overview with motivating example

Let’s start with the simple example shown in Figure 2.1 which attempts to model
whether a coworker is late for work. The figure consists of nodes (circles), which
represent the states we are interested in, and arcs (pointed arrows), which describe
dependencies. One of the nodes representing whether the coworker is late and the
two other possible reasons for the coworker being late. In this example, these are
the coworker oversleeping and the bus being late. The directed arcs, or arrows, in
the graph indicate that both oversleeping and the bus being late influence whether
the coworker is late for work.

The topology (layout of nodes and arrows) tells us how different nodes depend
on each other, but to be able to calculate the probability that the coworker is
late we need to supply numbers to the model. The numbers we need are the prior
belief that the coworker will oversleep, here chosen to be 5%, and the prior belief
that the bus is late, here chosen to be 20%. These types of probabilities are called
priors and represent our beliefs before any information is gathered. The second
type of information we need to provide is how the nodes relate to each other, in
this case, how begin late depends on oversleeping and the bus being late. Here we
apply a simple model where there is a 100% chance of being late if the coworker
either oversleeps or the bus is late, and a 5% chance of the coworker being late
even when she does not oversleep and all the busses are on time. This information
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Late for
work

Overslept Buss late

Figure 2.1: Topology of a
 

 

BBN modelling a coworker being late for work.

Late for work

Overslept True False

Buss late True False True False

Insu�cient 1 1 1 0.05

Su�cient 0 0 0 0.95

Overslept

True 0.05

False 0.95

Buss late

True 0.2

False 0.8

(a) A representation of the late for work
 

 

BBN
showing all

 

 

CPTs.
(b) The probability of being “late for work”
evaluated with the

 

 

BBN.

Figure 2.2

is summarized in the tables shown in Figure 2.2(a), which are called conditional
probability tables (

 

 

CPTs).

The first thing we can use a bayesian network for is to evaluate, given our prior
probabilities, what the likelihood is that the coworker will be late. The result of
this evaluation is shown in Figure 2.2(b).

The next thing we can do is to use the
 

 

BBN to understand the causes of an
observation. If we on a particular day observe that the coworker is late, then we
can give this information to the Bayesian network as evidence. Evidence is the
information that a particular node is in a particular state, in this case, that "late
for work" is "true". Now if with this new information, we can update our beliefs
regarding whether the coworker did oversleep today and whether the bus was late
today. From Figure 2.3(a) we can see that given our proior beliefs, we think it’s
much more likely that the coworker being late was caused by the buss being late
rather than the coworker oversleeping.
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(a)
 

 

BBN evaluated after inserting evidence that
"late for work" is in the state "true".

(b)
 

 

BBN evaluated after inserting evidence that
"late for work" is in the state "true" and "buss
late" in the state "false".

Figure 2.3

Furthermore, we can use
 

 

BBNs to combine multiple pieces of evidence. Let’s say
that we meet another college that took the same bus and could testify that the
bus was on time today. If we insert this information into the

 

 

BBN and update our
beliefs we get the evaluation given in Figure 2.3(b). From this figure, we can see
that it’s more likely that the coworker has overslept when we also know that the
bus is not late. We are still not 100% sure that the coworker has overslept as there
was a chance of the coworker being late even if she did not oversleep and the bus
was on time. This probability can be interpreted as other reasons for the coworker
to be late, not considered by our model.

Even though we now are 51% certain that the coworker is late today, this does not
mean that we expect the coworker to be late around every second day. This would
be unreasonable to propose after only one observation. Instead, this probability
represents the strength of our belief that she has overslept today. This way of
thinking about probability is often called the Bayesian interpretation of probability
[56].

Now if we are interested in estimating the underlying frequency of our college
over-sleeping we can redefine our network as shown in Figure 2.4(a). We have
here split the oversleeping node into two, one representing the average frequency
of the coworker oversleeping and the other whether the coworker oversleeps on
this particular day. Now instead of specifying our belief that the coworker will
oversleep today, we instead insert our belief regarding the different frequencies of
the coworker oversleeping. This belief is represented by the probability distribution
shown on the "frequency of oversleeping" node in Figure 2.4(a).

With the new network, if we observe on a particular day that the coworker is late,
as seen in Figure 2.4(b), the probability that she has overslept today changes a
lot, while our belief regarding the frequency of her oversleeping does not change as
much, as we would expect based on only one day of observation.

Using only a single observation is not sufficient to get a high belief in our coworker
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(a) A
 

 

BBN considering the underlying fre-
quency of oversleeping. "lt_1_in_90" reads as
"frequency of occurance i less than 1 in 90".

(b) A
 

 

BBN considering the underlying fre-
quency of oversleeping where evidence is in-
serted (marked in bold).

oversleeping with any particular frequency. To consider multiple days we need to
expand the

 

 

BBN to a
 

 

DBN. A
 

 

DBN works in exactly the same manner as a
 

 

BBN,
but we have repeated the network for each day we are gathering data, as shown
in Figure 2.5. In addition, we need to specify the transition probabilities, that is
how our belief regarding the coworker’s oversleeping frequency should develop over
time. In this example, the transition probability may represent that the coworker
can change their behavior, by for example improving their day-night cycle, which
will make oversleeping less likely.

We will return to the concept of having probability distribtuion over frequencies in
Chapter 4, where we want to infer with what frequency different underlying faults
can cause a task to fail, and in Chapter 5, where we want to model with what
frequency different scenarios will occur.

2.1.2 Underlying calculations

To presenting the underlying calculations, lets instead consider the more abstract
case shown in Figure 2.6, where the

 

 

CPTs are formulated as in Figure 2.7.

All of the different uses of
 

 

BBNs presented in the previous section are the exact
same mathematical problem. That is, what is the probability that a node, A, is in
a state a, when we have evidence E .

16



2.1. Bayesian belief networks

Figure 2.5: Example of a
 

 

DBN considering multiple days of observations.

A B

C D

Figure 2.6: Example of a
 

 

BBN consisting of 4 nodes.

State of Node C c1 ... cm

State Of Node D d1 ... dm ... d1 ... dn

b1 P(b1|c1, d1) P(b1|c1, dm) P(b1|cm, d1) P(b1|cm, dn)

bl P(bl|c1, d1) P(bl|c1, dm) P(bl|cm, d1) P(bl|cm, dn)

State of node B

Figure 2.7: Example of a
 

 

CPT for node B in figure 2.6 when node B take on the discrete
set of state {b1...bl}, C the states {c1...cm}, and D the states {d1...dn}.
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P (A = a|E) (2.1)

As previously stated, evidence is the knowledge that a particular node is in a
particular state. If our evidence for example consists of B being in state b, and D
in state d, then we can write:

P (A = a|E) = P (A = a|B = b,D = d) (2.2)

Using the chain rule in reverse, this can be rewritten as:

P (A = a|E) = P (A = a,B = b,D = d)

P (B = b,D = d)
(2.3)

As the denominator is a constant value it can be replaced with a scalar η. This
scalar can be found after calculating the probability that A is in any of it states
a1, a2, ..., aj , by ensuring that

∑
ai
P (A = ai|E) = 1. This results in the following

equation:

P (A = a|E) = ηP (A = a,B = b,D = d) (2.4)

The next step is to include all nodes that are so for not considered in the equa-
tion. For this example, it is node C. This can be achieved using the law of total
probability.

P (A = a|E) = η
∑
ci

P (A = a,B = b, C = ci, D = d) (2.5)

The term P (A = a,B = b, C = ci, D = d) is the probability that the network is in
a particular state. This term can be calculated using the chain rule while adhering
to the dependencies specified by the arcs in the

 

 

BBN:

P (A = a,B = b, C = ci, D = d) =P (A = a|B = b, C = ci, D = d)

P (B = b|C = ci, D = d)

P (C = ci|D = d)P (D = d) (2.6)
=P (A = a|C = ci)P (B = b|C = ci, D = d)

P (C = ci|D = d)P (D = d) (2.7)

The last step utilizes the fact that A is conditionally independent on both B and
D given C, which can be seen from the arcs in Figure 2.6. All the resulting terms,
P (A = a|C = ci), P (B = b|C = ci, D = d), P (C = ci|D = d), and P (D = d) are
given by the

 

 

CPTs.
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State of NodeB B1 B2 ...

yes 60% 80% ...

no 40% 20% ...

State of virtual node

Figure 2.8: Example of a
 

 

CPT for a virtual node giving uncertain evidence on node B.

Performing exact inference in
 

 

BBNs is in the worst case an NP-hard problem
[57], but different established solvers exist for quickly finding the exact solution
in medium-sized networks [58] as well as solvers for finding approximate solutions
[59]. Different software tools such as [60], [61] have implemented different general
solvers. As these solvers do all of the necessary computations the rest of the thesis
will not focus on how the inference is done.

2.1.3 Extentions

 

 

BBN can also handle uncertain evidence, called virtual evidence. Instead of stating
that, for example, node B is in state b1 with 100% certainty, virtual evidence will
instead state that a measurement was made which has, for example, 60% chance of
occurring if node B is in state b1 and 80% if node B is in state b2. Virtual evidence
can be implemented by temporarily inserting a new node with the CPT given in
Figure 2.8. Normal evidence can then be inserted on the virtual node stating that
it is in the “yes” state. A thorough explanation of virtual evidence can be found in
[62]. The use of virtual evidence is supported in [60].

As previously stated,
 

 

BBNs can be made into
 

 

DBN by repeating the network for
each time step and connecting the nodes based on how they depend on each other
across time. There is no difference in evaluating a

 

 

BBN and a
 

 

DBN.

Another extension that can be made is to consider decisions as well as dynamics.
This would create a

 

 

DDN. This is achieved by letting some of the nodes represent
decision variables and including the decision in the list of evidence. As there is no
difference between a node representing a decision and all other nodes,

 

 

DDNs can
be evaluated in the same manner as

 

 

BBNs and
 

 

DBNs.

More information on
 

 

BBNs and
 

 

DDNs can be found in [48], [63].
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2.2 Risk

As this thesis considers the topic of risk awareness a short introduction to topics
related to risk is needed. To start this discussion, let’s consider the concept of
a hazard or hazardous event. A hazard is a source of risk [64], which can more
precisely be defined as “a system state or set of conditions that, together with a
particular set of worst-case environmental conditions, will lead to a loss” [50]. Loss
is here defined as losing something of value to a stakeholder [50].

When analyzing a hazard the concept of the bowtie diagram, shown in Figure 2.9,
can be useful. This diagram demonstrates that there are multiple causal factors
that can cause a hazardous event to occur and that a hazardous event can cause
a myriad of different losses. In analysis, the focus is often placed on the hazards
rather than the loss directly. This is due to the hazard being a part of the system
that we can control, while the occurrence of a loss will depend on environmental
conditions that are outside our control [50]. The term consequence will be used as
a collective term for the different types of losses and how severe the losses are.

Causal factor

Causal factor

Causal factor

Causal factor

Loss

Loss

Loss

Loss

Hazardous 

event

Figure 2.9: Bowtie diagram that shows that there are multiple causal factors related to
a hazardous event and multiple possible losses caused by the event.

Analyzing risk, compared to a hazard analysis, requires some manner of quantifi-
cation. According to [64], risk is the combined answer to the following questions:
What can go wrong? How likely is it? And what are the consequences? More pre-
cisely they give a definition of risk as

R = {(si, Pi, ci)} (2.8)

That is, risk is the set of scenarios si, the probability of the scenario occurring, Pi,
and the corresponding consequences, ci, where the index i enumerates all scenarios.
Furthermore, they expand this definition of risk to also include our uncertainty.
Instead of giving a probability of a scenario occurring they instead consider our
belief of the scenario occurring with different frequencies. In the same manner, as
for the coworker being late example discussed in section section 2.1, a probability
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distribution is given over the frequencies of the scenario occurring. This leads to
the following definition of risk where ϕ represents frequency:

R = {(si, pi(ϕ), ci)} (2.9)

Note that the probability term used in Equation (2.8) can be found by taking the
expected value of the frequency formulation, that is:

Pi =

∫
ϕ pi(ϕ) dϕ (2.10)

This equation reveals that it’s more correct to think of the term Pi in Equa-
tion (2.8) as the expected frequency rather than a probability. For discrete events
such as whether or not a rocket will explode on take-off, both interpretations of Pi

work. We can talk about the expected frequency of rockets exploding on take-off
(given that we regularly send up rockets), and talk about the probability of this
particular rocket exploding on take-off. But for phenomenas that cannot be seen
as discrete events the probability formulation has some problems. If we are for ex-
ample considering the collision risk of a ship, the question “what is the probability
of collision” does not make sense unless we specify the time span we are consider-
ing. This can be achieved by for example changing the question to the probability
of colliding within 10 years or considering a discrete event such as one voyage.
With the frequency formulation, we naturally talk about the expected frequency
of collision being for example once per 100 years.

In this definition, the risk is not a single number. It is simultaneously a description
of what can go wrong, together with a quantification of losses, frequencies, and
uncertainties. In [64] it is cautioned against reducing risk to a single number as
this process leads to loss of information, such as a very likely scenario with very
low consequences receiving the same risk value as a very unlikely but high conse-
quence scenario. But to use risk in automatic decision making it must be possible
to compare the risk of different actions. This will, in most applications, require
mapping the risk to a single value, even though this will necessarily lead to a loss
of information. One way of doing this mapping is to evaluate the expected risk

E[R] =
∑
i

∫
ϕL(ci)pi(ϕ)dϕ (2.11)

=
∑
i

L(ci)Pi (2.12)

That is to sum over the expected frequency multiplied with the consequences for
all scenarios, i, where L(ci) quantifies consequence as a single number.

Note that in this formulation a scenario is a specific chain of events that causes
exactly one outcome. This means that there are infinite scenarios with marginal
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differences. If we instead want to consider broader scenario categories we need
to consider the probability of observing different consequences. The most general
formulation given in [64] considers the probability of observing a consequence, c,
with a particular frequency:

R = {(si, pi(ϕ, c))} (2.13)

The expected risk is then

E[R] =
∑
i

∫
L(c)

∫
ϕ pi(ϕ, c) dϕ dc (2.14)

(2.15)

A less general formulation given in [64] considers the probability of observing the
scenario with different frequencies, pi(ϕ), and the probability of observing different
consequences if the scenario occurs, ζi(c).

R = {(si, pi(ϕ), ζi(c)} (2.16)

In this case, the expected risk can be formulated as follows where Ei[L(c)] is the
expected consequence of scenario i.

E[R] =
∑
i

∫
ϕ pi(ϕ) dϕ

∫
L(c) ζi(c) dc (2.17)

=
∑
i

PiEi[L(c)] (2.18)

[64] argues that risk can never be considered in isolation, but must be considered
together with the costs and benefits of the different possible actions. Furthermore,
they argue that the risk of not acting must be considered on equal basis as the risk
of different actions. The best action, a, to choose when considering expected risk
is, therefore:

a = argmin
a

∑
i

∫
ϕpi(ϕ, a)dϕ

∫
L(c, a)ζi(c, a)dc+ C(a) (2.19)

Where the action a can affect the probability of the scenario occurring, the proba-
bility of a loss occurring, and how bad the loss is (L(c, a)). C(a) is the direct cost
of performing action a. Benefits are here considered as positive consequences and
are included in L(c, a) as negative values.

Compared to the definitions given above, the definition of risk that is most com-
monly used in the fields of cybernetics, control theory, or artificial intelligence is
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very limited. Here it’s common to state that a controller considers risk if it consid-
ers the probability and (sometimes) consequence of an unwanted event. In these
fields, it is very uncommon to have the holistic perspective used in risk sciences,
which is that we want to quantify all potential hazards, causal factors influencing
the hazard, and losses caused by a hazardous event. Instead, when speaking of
for example the risk of collision, it is common to implicitly consider only a single
scenario of for example navigational uncertainty causing a collision.

In, Chapters 4 and 5, this thesis attempt to expand the definition of risk considered
in automatic control to closer match the one presented in [64]. Chapter 4 uses
the probability of occurrence as in Equation (2.8), while Chapter 5 uses the full
probability distribution over frequencies definition as in Equation (2.9).
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2.3 Decision making under uncertainty

This section is only needed by the curious reader who is interested in understanding
the more general problem laying behind the problems solved in this thesis. This
section is not needed to understand the rest of the thesis. The goal of this section
is to give insight into how the problems tackled in this thesis relate to each other
and give a motivation for why the heuristic approaches presented in this thesis are
used instead of working with the general formulation.

First, a general formulation of decision-making under uncertainty is presented, this
formulation is based on [48]. Thereafter some simplifications relevant to this thesis
are presented followed by a comparison of the formulations given in this section and
in Section 2.2. Lastly, a discussion on how the formulations given in the different
chapters relate to the general solution is given.

2.3.1 General solution
The task of a robot is at a time step t to find an action at. To guide the robot in
making a decision it has available all previous observations O0:t = o0, o1, ..., ot and
all previous actions that it has performed A0:t−1 = a0, a1, ..., at−1. In addition, to
be able to interpret this information at all, it needs some prior information on how
the world works, I. Let ρ denote the action policy that decides how the robot acts:

at = ρ(O0:t, A0:t−1, I) (2.20)

It is common to use our prior knowledge to construct a dynamic model of how
the world works. In particular, there are two models that are often used. The first
is a model of how observations are made. As our knowledge about the world, I,
is incomplete we are unable to model the observations with certainty. Instead, we
employ a probabilistic model that states the probability of making an observation ot
when the world at time step t is in state Mi,t. Here subscript i denotes a particular
state the world can be in. The observation model can be written as:

P (ot|Mi,t) (2.21)

Furthermore, we need a model of how the world reacts to our actions. Again a
probabilistic model is needed. If the world is in state Mj:t−1 and we execute action
at−1 then what is the probability that the world will end up in state Mi:t? This
transition model can be written as:

P (Mi:t|Mj:t−1, at−1) (2.22)

Ideally Mi:t should be a complete state of the universe at a particular time t. As
this is impossible, we need to use our prior knowledge I to find a more compact
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representation of the state of the world. The representation of the world should
be detailed enough to let us specify Equation (2.21) and Equation (2.22) with
sufficient accuracy to meet our performance criteria. The formulation used in this
section treats the world state as a discrete state that at any time is in one of a
discrete set of possible world states, each identified with a unique index i. The
formulation can be expanded to consider continuous state spaces by considering an
uncountable set of world-states with infinitesimal differences between each discrete
state.

With these models, we can use Bayes theorem to evaluate our belief that the world
is in a particular state, Mi,t, given all past observations and actions.

P (Mi,t|O0:t, A0:t−1) = ηP (ot|Mi,t, Oi:t−1, A0:t−1)P (Mi,t|O0:t−1, A0:t−1) (2.23)

The same principle as in Equation (2.5) is used here with a normalization constant
η to avoid all constant terms. If Mi,t is a sufficient representation of the world then
we do not need to consider past observations and past actions when modeling the
current observation, this is often called the sensor Markov assumption [48]. The
first term can therefore be simplified to P (ot|Mi,t) which is our observation model,
Equation (2.21). The second term can be evaluated using our transition model,
Equation (2.22), by introducing the previous world state Mj,t−1.

P (Mi,t|O0:t, A0:t−1) = ηP (ot|Mi,t)
∑
j

P (Mi,t|Mj:t−1, at−1)P (Mj:t−1|O0:t−1, A0:t−2)

(2.24)

We have here utilized that if Mj,t−t is a sufficient representation of the previous
state then we do not need to consider any earlier world states when evaluating
the transition probability, this is often called a first-order Markov process [48].
Furthermore, we use the principle of causality which dictates that a state cannot
be affected by actions performed at a future point in time.

With this, we have the formulas needed to recursively estimate the state of the
world. The last piece we need to evaluate the current state is our prior belief
regarding the world state before any observations or actions are made, that is
P (Mj,0, I).

Let the belief state, Bt represent the current belief that the world is in any of its
possible states, Bt = {P (Mi,t)}. The task of the robot is then to find what action
to do given its current belief state:

at = ρ(Bt) (2.25)
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In many applications it is not enough to react based on our beliefs regarding the
current state of the world, we also need to consider how we believe that the world
will develop in the future. Equation (2.22) gives us the equation for how we believe
the world will develop. As our knowledge of the world is incomplete, the uncertainty
in the state of the world will typically increase as we predict forward in time.
Directly using the transition model step by step into the future is overly pessimistic
as it does not consider that we will make observations in the future that will reduce
the uncertainty. The problem is that we do not know what these observations will
be. Because of this uncertainty, we know that we will have a belief state in the
future, but we are uncertain about what the belief state is. We, therefore, have to
consider the probability of being in a belief state, P (Bk,t+1). The possible belief
states are enumerated, each Bk,t+1 represents a particular belief state (probability
of the world being in each possible state). As the probability of a particular world
state, P (Mi,t), is a continuous variable, the belief state space must be represented
as a continuous state space. Using the same principles as above, the probability of
entering a belief state Bk,t+1 when we are in belief state Bl,t and execute action
atcan be written as

P (Bk,t+1|Bl,t, at) =
∑
ot+1

P (Bk,t+1|ot+1, Bl,t, at)P (ot+1|Bl,t, at) (2.26)

The first term either takes on the probability 1 or 0 as we deterministically know
which belief state we will end up in if we know the prior belief state, prior action,
and current observation. It evaluates to 1 if performing action at in belief state Bl,t

and then observing ot+1 places the robot in belief state Bk,t+1, and evaluates to 0
otherwise. The second term gives the probability of observing ot+1 when performing
action at in belief state Bl,t. This term can be expanded to the following

P (ot+1|Bl,t, at) =
∑
i

P (ot+1|Mi,t, at)P (Mi,t|Bl,t) (2.27)

=
∑
j

∑
i

P (ot+1|Mj,t+1)P (Mj,t+1|at,Mi,t)P (Mi,t|Bl,t) (2.28)

A common way of defining what action to execute in a belief state Bk is to define a
reward, R, for being in state Mi,t, performing action at, and ending in state Mj,t+1.

R(Mi,t, at,Mj,t+1) (2.29)

As the true state is uncertain, we instead need to consider the expected reward for
performing action at in belief state Bk,t.

R(Bk,t, at) =
∑
i

∑
j

R(Mi,t, at,Mj,t+1)P (Mj,t+1|Mi,t, at)P (Mi,t|Bk,t) (2.30)

To avoid making short-sighted decisions, the robot should not only consider the
current reward but potential future rewards as well. To evaluate this we need to
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2.3. Decision making under uncertainty

know how the robot will act in the future, however, as we do not know which
observation that will be made, we cannot deterministically know which action that
will be made in the future. A general solution to this problem is to define a policy
ahead of time on how the robot should act in any possible belief state. The goal is
then to choose the policy, ρ, that defines an action to perform in all possible belief
state Bk, such that the utility, U , is minimized. The utility considers the direct
expected reward and the indirect reward of continuing to follow this policy in the
future.

There are multiple ways this utility can be defined, but a common way is to assume
that it does not matter when the robot is in a particular belief state (it will always
have the same optimal action in a particular belief state), and that rewards in the
far future are less important than the current reward. The utility of each belief
state can then be formulated as follows where γ is a discount factor discounting
future rewards.

U(Bk|ρ) = R(a = ρ(Bk), Bk) + γ
∑
l

U(Bl,t|ρ)P (Bl|ρ(Bk), Bk) (2.31)

The optimal policy in a particular belief state is then one that gives the largest
utility.

The formulation presented in this section on making decisions with uncertain mea-
surements and transitions is called a partially observable Markov decision process
(

 

 

POMDP). For more information on this topic see [48], [65].

2.3.2 Simplifications

Even though this formulation describes the problem of acting in an uncertain world
in an elegant manner, it will in practice be impossible to use in its general form
for any but very small problems. The world state is often described using multi-
ple properties that can be in different states. The total number of world states,
therefore, grows exponentially with the number of properties and possible states
they can be in. Furthermore, the number of belief states grows even quicker as it
considers all possible combinations of beliefs we can have regarding the state of
the world. Furthermore, even if the number of possible world-states that need to
be considered can be radically reduced, it can still be prohibitively expensive to
evaluate the optimal policy for all possible belief states ahead of time. The task of
designing decision-making algorithms, therefore, consists of finding simplifications
that makes it possible to solve the problem with limited computation and mem-
ory usage. This section will outline some common simplifications for representing
the world and for designing policies that are relevant to the works presented in
this thesis. As this is a very broad topic, only a very limited scope and depth are
presented.
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World representation

An approach for reducing the state-space explosion is to model the properties
that make up the world-state using a

 

 

DDN, or a
 

 

DBN if we are only consider-
ing estimation. These models enable us to consider the probability distributions of
the different properties separately from each other, as the network defines depen-
dencies. This formulation does not lose any information compared to the original
formulation, but has the trade-off that we can no longer only consider the state
of different properties at the previous time step when evaluating their state at the
current time step. This is caused by the dependencies between properties being a
part of the model rather than being saved in the state. This means that we need to
evaluate the entire history of actions and observations at each time step to get the
current optimal estimate. This fact is hinted at in Section 2.1.3 where we had to
repeat a

 

 

BBN for each time-step to make a
 

 

DDN or
 

 

DBN. A common simplification
is to consider a sliding window approach [56]. This approach considers a fixed set
of time steps that are modeled in the

 

 

DDN or
 

 

DBN. The prior probabilities used
on the first time step in the network are then gradually updated to be equal to the
priors of the time steps no longer inside the window. This approach looses condi-
tional information on states outside the window, but this can in many applications
be an acceptable trade-off.

A common simplification used in control theory is to consider the expected world-
state and its corresponding variance instead. This reduces the number of values
that must be kept in mind to a vector of the expected value for the different prop-
erties of the world-state, and the covariance matrix between the properties. This
formulation is famously used in the Kalman filter [66]. This only works under the
assumption that all uncertainty can be modeled as additive Gaussian white noise
and that the measurement and transition models are linear. Another alternative is
to use the Monte Carlo sampling principle of particle filtering. Here multiple “par-
ticles” (world states) are considered and the ensemble of the particles represents
the uncertainty in what the true world-state is [67].

Policy evaluation

In practice, it will for most problems be impossible to evaluate what to do in all
possible belief states, even if the belief state is represented in a more compact
form. This is typically handled by instead of finding the optimal solution ahead of
time, the robot is tasked with finding an approximation of the best policy online.
Online the robot knows which belief state it is in, and can therefore have a better
idea of which future belief states are more likely to be relevant. It can therefore
find an approximate solution that is pretty accurate around the current state by
evaluating much fewer possible belief states. As this solution is accurate only around
the current belief state it must be updated at regular intervals as the belief state
changes. A survey of online planning algorithms for solving

 

 

POMDPs is given in
[68].

In control theory, model predictive control (
 

 

MPC) [69] is commonly used to find
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the current action. Instead of finding the optimal policy,
 

 

MPC commonly considers
finding a finite set of future actions, an action sequence, {at+1, at+2, ..., at+M}.
This formulation makes it significantly simpler to predict future world-states as
we do not need to consider which observations that are made to know how our
robot will act in the future. The most commonly used version of

 

 

MPC does not
explicitly consider uncertainty at all. This approach is feasible when the uncertainty
in the current state and transition uncertainties is manageable through feedback
and integral action. In this case, it can be sufficient to handle the uncertainty
through feedback, that is, to see what happens and then correct for the errors
caused by the uncertainty.

When the uncertainties are significant, then a stochastic
 

 

MPC [69] can be employed.
Stochastic

 

 

MPC in its simplest form uses the same mean-variance formulation for
the world state as in the Kalman filter. When working with an action sequence,
the uncertainty regarding the future state will grow unrealistically fast. This is
due to the prediction not considering that observations will be made in the future
which gives us a better estimate that we will use to plan a new action sequence
that compensates for any errors. Different approaches to alleviate this problem
is presented in [70]. One of these methods is to apply a reactive controller that
counteracts errors when predicting the future. This will not affect the expected
future state but will limit how fast the variance grows. This controller must then
be tuned to produce an approximation of how the variance would have grown if
future observations were considered. In [70] different cost functions and constraints
that are used to find the optimal action sequence are outlined. Note that constraints
have not been mentioned in the general formulation as a constraint can always be
represented by an infinitely negative reward for breaking the constraint.

An alternative to stochastic
 

 

MPC is robust
 

 

MPC [69]. Instead of modeling un-
certainties as additive white noise, robust

 

 

MPC assumes bounds on how large the
uncertainties can be and then guarantee that constraints will be fulfilled even in
worst-case conditions. One type of robust

 

 

MPC strategy is the tube
 

 

MPC [69]. Here
bounded white noise is used to model the uncertainties in the transition model.
With the bounded noise, a bounded set of possible future states can be evaluated.
The world state is in the tube

 

 

MPC represented by the outer limits of this set. Ro-
bust

 

 

MPC has the same problem of the uncertainty growing unrealistically quickly
as in the stochastic

 

 

MPC case. Different possible solutions are presented in [69,
ch.4].

A special case of the
 

 

MPC formulation is the
 

 

SB-MPC [14]. The idea behind the
 

 

SB-MPC is to use a reactive lower-level controller that ensures that the robot
achieves its goal quite well without any input from the

 

 

SB-MPC. The
 

 

SB-MPC
will then modify the behavior of the lower-level controller by for example adding
an offset to its proposed action or reference input. As the lower level controller
takes care of most of the short-term considerations, the

 

 

SB-MPC can consider a
very short action sequence consisting of even only a single action. This action will
then be applied for all future predicted time steps. The

 

 

SB-MPC and the lower
level controller often focus on different parts of the decision-making. The lower

29



2. Background theory

level controller can for example be tasked with correcting errors in how the robots
pose develops over time relative to some reference, while the

 

 

SB-MPC can focus
on tasks such as avoiding collision. For avoiding collision the

 

 

SB-MPC only needs
to consider the environment, which in many cases is less affected by the choice of
action than the state of the robot itself. This makes the problem of uncertainty in
the future state growing unrealistically quick less of a problem than for stochastic
or robust

 

 

MPC. Furthermore, instead of considering a continuum of possible ac-
tion the

 

 

SB-MPC considers a finite set of possible action sequences. Considering
a relatively small finite set of possible action sequences makes it computationally
feasible to evaluate all action sequences which makes it possible to consider much
more complicated cost functions and constraints than what is possible in ordi-
nary

 

 

MPC. This property makes it, among other things, possible to consider more
complicated probabilistic models [71].

2.3.3 Decision-making under risk
Decision-making under uncertainty is inherently about risk as we have uncertainty
in the consequence of actions. But there is a stark difference of the formulation
given in Section 2.3 compared to Section 2.2.

First of Equation (2.19) considered only a single decision while Section 2.3.1 con-
sidered sequential decision making. This difference is due to the risk sciences often
considering choosing between different system designs or safety precautions. The
chosen design or precaution will often be held constant for a long time making
it unnecessary to consider sequential decisions. This difference is not as large as
it may first seem as the action a chosen in the design phase can be to choose a
particular policy ρ the robot should use.

The second difference is how the problem is formulated. To compare the formula-
tions, the expected risk formulation from Equation (2.12) considering a continuum
of scenarios, and the online version of finding the optimal

 

 

POMDP policy, are used.
Changing the notation to match each other, the two formulations can conceptually
be written as follows

ρrisk = argmin
ρ

∑
s

(L(s|ρ)P (s|ρ)) + C(ρ) (2.32)

ρPOMDP = argmin
ρ

∑
t

(L(Mt|ρ)P (Mt|ρ,Mt−1)) + C(ρ) (2.33)

Here s is a particular scenario with a loss L(s) and expected frequency of occurrence
P (s). The variable t represents time, and L(Mt) evaluates the loss of being in
the world-state Mt. C(ρ) represents the cost of employing policy ρ. Rewards are
considered to be negative losses.

From this, we can see that the risk formulation considers summing over scenarios
while the

 

 

POMDP formulation given in Section 2.3 considers summing over time.
The risk formulation considers the expected loss of a scenario occuring together
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with the expected frequency, while the
 

 

POMDP formulation considers the loss
related to a world state and probability of being in that world state.

Using a dynamic model can be difficult in many accident analyses as the model
has to be excessively complex to capture all the small nuances that affect whether
an accident will occur. In these cases, it can be more useful to gather statistics on
for example expected failure rates and aggregate this information to evaluate the
frequency of a scenario occurring. A common way to aggregate information related
to accident scenarios is by using a

 

 

BBN, see for example [35]–[43].

2.3.4 Models used in this thesis

Chapter 3

This chapter considers the uncertainty in the location of obstacles and the robot
itself. The world state is in this chapter described using two models, one for the
location of obstacles and one for the location, pose, and velocity of the robot.
The robot model uses the expected value and covariance formulation used in the
Kalman filter. For the obstacles, the world is divided into cells that can be empty or
occupied. The cells are then assumed independent to avoid the state-space explo-
sion. This produces an occupancy grid map [72] where each cell has a probability
of being occupied.

This chapter applies the
 

 

SB-MPC formulation for deciding how the robot should
move. The lower level controller employed by the

 

 

SB-MPC is tasked with counter-
acting position errors caused by unmodelled disturbances affecting the robot and
errors in the robot model, while the

 

 

SB-MPC mainly focuses on avoiding collision.
Only the state of the robot is considered when predicting forward in time. As the

 

 

SB-MPC is not actively engaged in counteracting errors caused by uncertainty in
this prediction, the unrealistic variance growth experienced in stochastic and robust

 

 

MPC are avoided. The ability of
 

 

SB-MPC to handle arbitrary cost and constraint
functions enables us to consider the probability of collision at each time-step, con-
sidering both the navigational uncertainty of the robot and the uncertainty in the
occupancy grid map.

Chapter 4

This chapter considers the effect of underlying faults with the robot and adverse
environmental conditions that can prevent the robot from succeeding to execute
different tasks. This chapter applied both the

 

 

POMDP formulation and the risk
formulation outlined in Section 2.3.3. The risk formulation is used to evaluate
the outcome of a task execution attempt, while the

 

 

POMDP formulation is used
to model how the underlying faults develop over time and the effect of recovery
actions and failed execution attempts on the state of the robot. A

 

 

DDN is used
to model both formulations in a combined model. The

 

 

BBN at each time step of
the

 

 

DDN evaluates the outcome of task execution attempts, while the dynamics
are used to model how the state of the robot develops over time. Using a

 

 

DDN
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avoids the state space explosion as the world state is represented by different types
of faults and environmental conditions.

The chapter simplified the problem of finding the optimal policy by creating three
classes of heuristic policies consisting of one to three actions each. The action
policies are here pre-defined similar to the case of

 

 

MPC and are always re-planned
after one action is executed. The unrealistic growth in uncertainty is handled by
designing the cost function such that it considers the most relevant information,
e.g. whether a task execution attempt is successful, and by formulating the problem
in such a manner that a short enough time horizon can be considered making the
transition uncertainties less important for decision making.

Chapter 5

Similarly to Chapter 4 this chapter also considers the effect of underlying faults and
adverse environmental states. But instead of considering whether a task should be
executed, it continuously considers what the different risk-influencing parameters
shall be.

This chapter closely follows the risk formulation given in Section 2.2 for evaluating
risk given the current estimate, and the formulation in Equation (2.24) for estima-
tion. A

 

 

BBN is used to evaluate, for a given parameter configuration and estimate
of the state of causal factors, the frequency of different scenario categories occur-
ring and the expected loss if a scenario occurs. Additionally, to infer the presence
of different faults, the

 

 

BBN is extended to a
 

 

DDN. The choice of action is modeled
as not influencing the underlying faults. This makes it possible to only consider
the current state when evaluating the optimal action.

Chapter 6

This chapter considers the inference of the intentions of other ships at sea. As it
only considers inference, it only considers the estimation problem. To avoid the
state-space explosion a

 

 

DBN is used similarly to the previous two chapters.

Chapter 7

This chapter uses the intention model developed in Chapter 6 in a collision avoid-
ance algorithm. In addition to considering the uncertainties stemming from the
intentions, this chapter also considers the navigational uncertainties of the own
ship and target ships. Two models are used for the world-state. A

 

 

DBN to model
the intentions, and a mean-covariance formulation for the navigational uncertainty.

To find the optimal trajectories a
 

 

SB-MPC formulation is used. A finite set of
possible future own-ship and obstacle-ship trajectories are proposed. The intention
model is used to evaluate the probability of the obstacle ship following any particu-
lar trajectory, whereas the mean-covariance formulation is used to model variation
within a trajectory.
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2.4 The International Regulations for Preventing
Collisions at Sea (COLREGs)

This section is based on [52].

 

 

COLREGs [13] is divided into six parts (A to F) and has a total of 41 rules.
Four Annexes detailing technical requirements for things such as ship lights and
their shapes are also included. A simplified overview of the most relevant rules for
collision avoidance from Part B on steering and sailing considering power-driven
vessels is given below. See [13] for more information.

Part B - Steering and Sailing

Rule 7 Risk of collision: States that every vessel shall determine if there is
a risk of collision, using all appropriate means and information from
the current situation. It also states that a risk of collision exists if the
compass bearing to the other vessel does not change significantly.

Rule 8 Action to avoid collision: Actions taken to avoid collision shall be made
such that they are readily apparent for nearby vessels observing visu-
ally or by radar and be taken in ample time. This implies that large
speed or course changes are preferred. Course changes should here be
prioritized over speed changes for visibility when there is enough free
space available.

Rule 13 Overtaking: A vessel is classified as overtaking if coming up to another
vessel from a direction more than 22.5 degrees abaft its beam. If this
is the case, then the overtaking vessel shall keep clear of the overtaken
vessel.

Rule 14 Head-on: When two vessels meet on reciprocal or near reciprocal courses
such that there is a risk of collision, then each vessel shall change their
course to starboard such that they pass each other with the other vessel
on the port side.

Rule 15 Crossing: When two vessels are crossing such that there is a risk of
collision, then the vessel with the other on its starboard side shall keep
out of the way, and avoid crossing ahead of the other vessel if possible.

Rule 16 Action by give-way vessel: The vessel supposed to give-way shall if pos-
sible perform substantial actions early to keep well clear of the other
vessel.

Rule 17 Action by stand-on vessel: The vessel with a stand-on role shall nomi-
nally keep its course and speed, but should take action to avoid collision
if the give-way vessel does not take appropriate action. Furthermore, if
the situation considered is crossing, the stand-on vessel shall if pos-
sible not alter its course to port when the other vessel is on its port
side. Having a stand-on role does not relieve a vessel from its give-way
obligations.
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Chapter 3

Risk-based obstacle avoidance

This chapter is based on the following publication

[46] S. V. Rothmund and T. A. Johansen, “Risk-Based Obstacle Avoidance
in Unknown Environments using Scenario-Based Predictive Control for an
Inspection Drone Equipped with Range Finding Sensors,” in 2019 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), IEEE, Jun. 2019,
pp. 221–230. doi: 10.1109/ICUAS.2019.8797803

The method was developed by S. V. Rothmund with supervision from T. A. Jo-
hansen. Software development and simulations were done by S. V. Rothmund. The
first draft was written by S. V. Rothmund and revised by T. A. Johansen

3.1 Introduction

3.1.1 Background and motivation

When moving close to static obstacles, such as for industrial inspection, including
the uncertainties in the drone and obstacle positions are essential for safe and ef-
ficient operations. One approach to incorporate uncertainty in the position of the
drone is to assume bounded noise and then to ensure that all possible positions
where the drone can end up will not be in an obstacle. This is done for the linear
case with linear constraints in [73] and for a nonlinear case with a predefined set
of maneuvers in [74]. Another example of bounding is in [18] where the positional
variance at each time-step is calculated and a constraint is introduced that requires
that obstacles are k standard deviations away from the drone. Bounding the ac-
cepted uncertainty or accepted positional offsets makes sure that the probability
of the drone colliding is smaller than the probability that the bounds were wrong.
This method is conservative, which might be good when the goal is to get to the
goal position without colliding with obstacles along the way. But when the goal
is to fly close to objects for inspection, such conservative bounds can prevent the
drone from getting as close to the object as is desired. Another limitation is that it
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3. Risk-based obstacle avoidance

does not give an obvious answer on what should be done when no action is feasible.

A less conservative approach would be to calculate the probability of collision
and then put an upper bound on this probability. This probability could be set
based on maximizing the revenue taking into account the value of the mission
and the expected loss if a collision occurred. When no action fulfills the required
probability for success, then the action that minimizes the probability of collision
can be chosen. A method for model predictive control using an upper bound for the
collision probability with linearly constrained obstacles is developed in [19]. This
work assumes that the position and shape of the obstacles are known.

When the environment is not fully known, uncertainties in the environment must
be considered to give a reasonable probability estimate of collision. One approach
to describe obstacle uncertainty is to use occupancy grid maps. Each cell in these
maps contains information on how likely it is that the current cell contains an
obstacle. Mapping with range-finding sensors using occupancy grid maps was first
introduced in [72]. This work lacked a computationally feasible method for updating
the map for non-ideal sensor models. A linear time method that solved this problem
was developed in [75].

Different methods for utilizing uncertainty in obstacle information with potential
fields are shown in [76], [77]. [76] utilizes potential fields to push the vehicle further
away from objects that have a higher certainty of existence, while [77] pushes the
vehicle further away from objects where the positional uncertainty is larger. These
works incorporate different aspects of uncertain environment information but do
not incorporate the uncertainty in the position of the vehicle itself, and do not
consider risk in a probabilistic sense.

[24] presents a method that incorporates both uncertainties in the position of the
vehicle itself and mapping uncertainty. They use occupancy grid maps, but they
do not consider the measurement uncertainty when constructing the map.

For small rotary-wing drones minimizing the weight of the payload is of great im-
portance. With higher weight comes higher energy consumption which will reduce
the operational time of a drone before it has to land and recharge. Enabling a
drone to do collision avoidance with non-rotating body-fixed radar sensors instead
of lidars would save a lot of weight, and thereby increase the operational time of
the drone. Radars have the additional advantage of working in all weather and
lighting conditions. A large drawback with radars is the large sensor uncertainty.
This makes it essential to consider this uncertainty when building a probabilistic
map of the environment.

3.1.2 Contribution

The main contribution of this paper is to develop a risk-based framework for obsta-
cle avoidance in unknown environments that incorporates both uncertainty in the
environment and the vehicle’s position. The exact inverse sensor model proposed
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3.2. Overview

Figure 3.1: Control hierarchy. Pc,max is the maximal accepted probability of collision at
each time step. WP are the waypoints marking the planned path. α and θ are angle offsets
relative to the nominal direction of motion. v0 is the reference speed, vref the reference
velocity, τ are motor torques and forces, y are measurements, and x̂ is the estimated
state.

in [75] is adapted for the case of wide-angle range finding sensors, such as radar,
and is used to model the mapping uncertainty stemming from the measurement
uncertainty. The

 

 

SB-MPC developed in [14] for collision avoidance between ships is
adapted to the inspection drone case and modified to use probabilistic uncertainty
models that utilize uncertainties in the drone state and the environment to calcu-
late the probability of collision. The collision avoidance strategy is generalized to
3D. To achieve this a 3D line-of-sight guidance strategy is proposed.

3.2 Overview

The goal of this chapter is to make an obstacle avoidance strategy for the execution
of industrial drone inspections with an explicit awareness of the probability of
collision with obstacles. The task of the drone is to collect data while following the
straight lines between pre-planned waypoints. There might be unexpected obstacles
blocking the planned path of the drone which forces the drone to deviate from the
planned path to avoid collision. The drone is equipped with multiple wide-angle
range finding sensors that give limited information about the obstacles. Examples
of wide-angle range finding sensors are radar and sonar. The large field of view of
the sensor and the position uncertainty of the drone at the time of sensing gives
an uncertainty in the position and shape of detected obstacles.

The proposed control hierarchy is shown in Figure 3.1. The drone is controlled by a
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3. Risk-based obstacle avoidance

velocity controller that ensures that the drone moves in the designated direction at
the designated speed. The velocity reference vector needed by the velocity controller
is supplied by a line of sight (

 

 

LOS) guidance law. This guidance law uses the list of
waypoints to calculate the velocity reference that gently moves the drone toward
and along the planned path.

The obstacle avoidance algorithm uses the
 

 

SB-MPC formulation presented in [14]
with a probabilistic uncertainty model that calculates the probability of collision
over the prediction horizon. This method utilizes the

 

 

LOS guidance to parameter-
ize different paths using only one parameter in 2D and two parameters in 3D. This
method has a limited set of possible control actions making it less complete than
optimal control methods with full control over the drone’s behavior, such as in
[18]. The major advantage of the method is that the run-time is linear with respect
to the number of possible combinations of control actions, and is easily paralleliz-
able which makes it much faster than full optimal control solutions on multi-core
processors. This makes the method feasible for real-time applications on weaker
computational hardware, such as the ones present on drones. The method might
be slower than potential field methods, but it avoids some of the inherent prob-
lems with a potential field such as unstable motion and getting stuck in potential
minima close to narrowly spaced obstacles [78]. The proposed method also opens
up for working with the probability of collision, which potential fields do not.

This obstacle avoidance algorithm gives a constant offset angle and reference speed
to the

 

 

LOS-guidance algorithm. The offset angle makes the drone gradually move
away from the planned path specified by the waypoints. As the drone moves further
away, the

 

 

LOS guidance vector will point more directly toward the path, counter-
acting the offset. For offset angles under 90◦ the drone will converge toward a line
parallel to the planned path. This behavior makes it possible to give a constant
angle offset and still move in the along-path direction while executing an evasive
maneuver. When the angle offset is set back to zero the

 

 

LOS guidance law will
automatically make the drone move back to the planned path made by the way-
points.

A finite set of angle offsets and velocity offsets are defined. A model of the drone
system with

 

 

LOS guidance and a velocity controller is simulated over a prediction
horizon with all the different combinations of angle and velocity offsets. The control
action is applied at the initial time step and kept constant over the entire prediction
horizon. The probability of collision with the resulting behavior is checked against
the maximal accepted probability of collision at each time step. The control action
that maximizes the overall mission objective amongst the safe enough options is
then chosen.

The probability of collision with the resulting behavior is calculated by combining
a probability map over obstacle positions with a probability density function over
the position of the drone. The probability map over obstacles is made online based
on the range measurements from a radar or sonar. The drone’s position is not
exactly known at the current time step due to uncertainties in the sensors used
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for estimation. When predicting into the future, the position of the drone gets less
certain over time as some unknown disturbance might affect it. The drone will have
controllers that will counteract these errors, but these controllers have dynamics
that make them unable to instantly counteract disturbances.

3.3 Drone and control model

3.3.1 Open loop model
The drone is for simplicity assumed to be a fully actuated double integrator, driven
by an acceleration caused by the control input u, and affected by an additive
disturbance wc. The state is written on the form x = [x⊤

p , ẋ
⊤
p ], where xp is the

position of the drone decomposed in a north east down (
 

 

NED) coordinate frame.

ẋ = Acx+Bcu+wc (3.1)

Ac =

[
0 I
0 0

]
, Bc =

[
0
I

]
(3.2)

As this model is linear, an exact discretization for Ac and Bc can be found, these
are denoted as A and B. The discrete-time white noise process w is assumed to be
Gaussian with a covariance matrix denoted as Q. The notation x[k] = x(k dt) is
used, where dt is the discretization time step. To simplify notation the time-step
index is only included in the state update equations.

x[k + 1] = Ax[k] +Bu[k] +w[k] (3.3)

3.3.2 Velocity controller
The drone is equipped with a velocity controller.

u[k] = −K(
[
0 I

]
x̂[k]− vref [k]) (3.4)

x̂[k] = x[k] + v[k] (3.5)

Where K is a gain matrix and vref is the reference velocity vector. This controller
uses the estimated state, x̂, which is modeled as the true state, x, plus some
estimation error, v, that is assumed to be a discrete Gaussian white noise process
with zero mean and covariance matrix R.

The closed-loop dynamics is then given as follows

x[k + 1] = Aclx[k] +Bclvref [k]− Γclv[k] +w[k] (3.6)
Acl =A−BK

[
0 I

]
, Bcl = BK, Γcl = BK

[
0 I

]
(3.7)
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3. Risk-based obstacle avoidance

Figure 3.2: LOS guidance in 3D. Blue marks the nominal path while orange marks the
path followed by the drone. An offset α = 40◦ in direction θ = 160◦ is applied in the first
half of the simulation, then the offset is turned off and the drone returns to the nominal
path.

3.3.3 Line of Sight guidance
A 3D line-of-sight guidance strategy is needed. Four different options are compared
in [79]. These methods produce reference yaw and pitch angles. A method that
instead produces a reference velocity vector is presented here. This method avoids
trigonometric functions which simplifies the linearization of the resulting dynamics.

To formulate the
 

 

LOS guidance law in 3D an additional coordinate system, called
the

 

 

LOS coordinate system, is defined. This coordinate system is defined as having
the x-axis along the line connecting the previous and the next waypoint, denoted
as WP1 and WP2. The y- and z-axis can be arbitrarily chosen as long as the

 

 

LOS
coordinate system is a right-hand coordinate system. yLOS is chosen to be the
cross product between xLOS and the z-axis in the

 

 

NED frame.

xLOS =
WP2 −WP1

||WP2 −WP1||
(3.8)

yLOS =
xLOS ×

[
0 0 1

]⊤
||xLOS ×

[
0 0 1

]⊤ || (3.9)

zLOS = xLOS × yLOS (3.10)

The position of WP1 and WP2 as well as the vectors xLOS , yLOS , and zLOS are
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given in the NED frame.

For the special case where xLOS =
[
0 0 1

]⊤, where the cross product in Equa-
tion (3.9) is undefined, the alternative formulation is used.

zLOS =
xLOS ×

[
0 1 0

]⊤
||xLOS ×

[
0 1 0

]⊤ || (3.11)

yLOS = zLOS × xLOS (3.12)

This basis can be used to find the rotational matrix between
 

 

NED and
 

 

LOS.

RNED
LOS =

[
xLOS yLOS zLOS

]
(3.13)

The difference between the drone’s position and WP1 given in the
 

 

LOS frame gives
the drone’s distance along and offset from the path between the two waypoints.
The x coordinate is the distance along the path, while the y and z coordinates
give the offset across the path.

 

 

LOS guidance makes the drone at all times follow
the vector pointing from its current position to a point ∆ ahead on the planned
path. In the

 

 

LOS frame, this vector has coordinate ∆ in xLOS direction, and the
y and z components of the distance from the drone to WP1 in the yLOS and zLOS

direction. By normalizing this vector and multiplying it with the desired speed, v0,
the reference speed vector that the drone should follow is generated:

χNED
LOS = RNED

LOS

∆0
0

−
0 0 0
0 1 0
0 0 1

RLOS
NED(

[
I 0

]
x̂−WP1)

 (3.14)

vref = v0
χNED
LOS

||χNED
LOS ||

(3.15)

The estimated drone state, x̂, is given in the
 

 

NED frame. Note that the line of
sight guidance system makes decisions based on the current best estimate of the
state, x̂, not the actual state x.

The obstacle avoidance controller introduces an offset angle to the velocity vector.
In the 2D case developed in [14], an angle α is added to the

 

 

LOS angle. When seen
as a vector, this is the same as rotating the vector by α about the z-axis pointing
out of the plane. For the 3D case, two parameters are needed, α and θ. α is used
for rotating the vector around some axis orthogonal to the xLOS axis. The angle
θ tells us the orientation of this axis relative to the yLOS axis. This is done using
the rotation matrix shown in Equation (3.17).
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χNED
LOS,ca =

RNED
LOS Rca

∆0
0

−
0 0 0
0 1 0
0 0 1

RLOS
NED(

[
I 0

]
x̂−WP1)

 (3.16)

Rca = Rx=−θRy=αRx=θ (3.17)

vref,ca = v0
χNED
LOS,ca

||χNED
LOS,ca||

(3.18)

The resulting behavior with a constant offset angle is shown in Figure 3.2. This
figure also shows that the drone gently moves back to the path when α is set to zero.
How quickly the drone should move towards and away from the path is specified
by ∆.

Special 2D case

The vector-based 3D line of sight formulation can easily be used in 2D as well but
requires some special notation as the cross product and rotational matrices are not
defined for 2D.

xLOS =
WP2 −WP1

||WP2 −WP1||
(3.19)

yLOS =

[
0 −1
1 0

]
xLOS (3.20)

RNED
LOS =

[
xLOS yLOS

]
(3.21)

χNED
LOS,ca = RNED

LOS Rca

([
∆
0

]
−
[
0 0
0 1

]
RLOS

NED(
[
I 0

]
x̂−WP1)

)
(3.22)

Rca =

[
cos(α) − sinα
sin(α) cos(α)

]
(3.23)

Switching between waypoints

Two common ways of switching waypoints in line-of-sight guidance are presented in
[80]. One approach is to change waypoint when the vehicle is within a given radius
of the current waypoint (circle of acceptance). As the anti-collision control actions
might take us far away from the waypoints, this might lead to the waypoint being
missed. The other strategy is to change waypoint when the along-path distance
to the next waypoint is small enough. This strategy works well when the goal is
to follow the desired path closely but leads to unwanted behavior when there is
a wanted offset due to the control action made by the obstacle avoidance system.
The drone might then switch waypoint closer to the next path segment than the
designed offset. This is shown in Figure 3.3(a).
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(a) Unwanted behavior when switching way-
points based on along-path distance.
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(b) Correct behavior when switching based on
the relative distance to the two lines.

Figure 3.3: Behaviour with different strategies for changing waypoints. Orange shows
the drone position with a constant angle offset and blue marks the nominal path between
the waypoints. The drone starts at x = 0, y = 100.

This can be solved by switching waypoints when the drone is closer to the next path
segment than to the current path segment. This will avoid making the drone move
closer and then further away from the path segment. A margin can be implemented
to compensate for the drone dynamics, making the drone switch waypoint a bit
before it’s equally close to both path segments. The distance to the path segment
should be the closest distance to any point on the infinite line going through the
waypoints. The shortest distance a point x is away from the infinite line going
through points a and b can be calculated as

s(a,b,x) = (x− a)⊤
(b− a)

||b− a||
(3.24)

The behavior of this waypoint switching algorithm is shown in Figure 3.3(b).

3.4 Heading dynamics

For the fully actuated double integrator drone model, the heading does not affect
the position and velocity dynamics, as the drone is able to fly in any direction
independent of the heading. But as both the payload sensors (e.g. camera) and
range-finding sensors may be predominantly placed in one direction, the drone
may have to turn the sensors towards the movement direction to be able to detect
obstacles in its way. A simple heading dynamic is implemented in the simulator to
include this behavior.

ψ[k + 1] = γψ[k] + (1− γ)ψref [k] (3.25)
ψref = atan2(Vref,ca,x, Vref,ca,y); (3.26)
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Where ψ denotes the heading. The parameter γ ∈< 0, 1 > decides how quick the
heading dynamics will be.

3.5 Covariance propagation

3.5.1 Covaraince formulation

The
 

 

LOS guidance law is nonlinear due to the normalization of the χNED
los,ca vector

in Equation (3.18). Nonlinearities will distort a Gaussian probability distribution
making it difficult to propagate the covariance. The system is linearized to avoid
this problem.

First, the guidance law Equation (3.16) is re-written.

χNED
LOS,ca = E − F x̂p (3.27)

= E − Fxp − Fvp (3.28)

E = RNED
LOS Rca

∆0
0

+

0 0 0
0 1 0
0 0 1

RLOS
NEDWP1

 (3.29)

F = RNED
LOS Rca

0 0 0
0 1 0
0 0 1

RLOS
NED (3.30)

xp =
[
I 0

]
x, x̂p =

[
I 0

]
x̂, vp =

[
I 0

]
v (3.31)

Both x and v are stochastic variables where x is the state and v describes the uncer-
tainty due to measurement errors. Inserting Equation (3.28) into Equation (3.18)
yields

vref,ca = v0
E − Fxp − Fvp

||E − Fxp − Fvp||
(3.32)

This equation is linearized around the estimated expected position evaluated at
time-step k denoted as xk. This state should be propagated through the closed
loop state space Equation (3.6) using the nonlinear

 

 

LOS guidance Equation (3.18)
for the velocity reference vector. The linearization is done around v = 0 as v is
assumed to have zero mean. The linearization results in the following equations
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v̄ref,ca = v0(Ē − F̄x− F̄v) (3.33)
Ē = G+H

[
I 0

]
xk (3.34)

F̄ = H
[
I 0

]
(3.35)

G =
E − F

[
I 0

]
xk

||E − F
[
I 0

]
xk||

(3.36)

H =
F

||E − F
[
I 0

]
xk||

−

(
(E − F

[
I 0

]
xk)(E − F

[
I 0

]
xk)

⊤F

||E − F
[
I 0

]
xk||3

)
(3.37)

Inserting the linearized velocity reference vector into the state Equation (3.6) leads
to

x[k + 1] = ALOSx[k] + ΓLOSv[k] +w[k] + CLOS (3.38)
ALOS = Acl −Bclv0F̄ , ΓLOS = −Γcl −Bclv0F̄ (3.39)
CLOS = Bclv0Ē (3.40)

We now have a linear state space formulation. With the assumption that v[k] and
w[k] are independent white noise processes, all the input terms in Equation (3.38)
are uncorrelated and the covariance matrix of x[k + 1] can be calculated as

var(x[k + 1]) = ALOSvar(x[k])A⊤
LOS + Γvar(v[k])Γ⊤ + var(w[k]) (3.41)

var(x[k + 1]) = ALOSvar(x[k])A⊤
LOS + ΓRΓ⊤ +Q (3.42)

The initial variance is equal to the state estimator variance, R.

var(x[0]) = R (3.43)

3.5.2 Resulting covariance dynamics
Figure 3.4 shows how the uncertainty in position varies over time in the prediction.
The figure shows that the uncertainty in the predicted position will start low and
then gradually increase. It is interesting to note that the probability density func-
tion becomes elongated over time, having a larger uncertainty in the along-path
direction than in the across-path direction. This is a direct consequence of

 

 

LOS
guidance only counteracting across path error, making it asymptotically stable in
across path direction but only marginally stable in the along-path direction.

3.6 Mapping

To be able to avoid obstacles, a map has to be made based on the data from
range-finding sensors. This work assumes that one or more body-fixed sonars or
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(a) t=0 s (b) t=5 s

(c) t=10 s (d) t=20 s

Figure 3.4: The probability density function of the drone’s predicted position at different
time steps into the future.

radars are used. A laser range finder would be a special case where the field of
view of the range-finding sensor is just one line. The sensor is assumed to return
the shortest distance to any object within a cone with a width equal to the field
of view of the sensor. A radar would return multiple reflections, but only the first
is used as it is uncertain whether later reflections are caused by the radar wave
leaving or entering a new material. The exact location of the object inside the field
of view is unknown, only the distance from the sensor and the fact that it is inside
the field of view is known. This model is quite simplistic and does not incorporate
specular reflections or multipath. Specular reflection is when the entirety of the
emitted signal is reflected away from the sensor, which will not give a distance
measurement. Multipath is when the signal is bounced off multiple surfaces before
returning to the sensor, which makes the measured distance longer than the true
distance to the target. One method for handling specular reflections is presented
in [81]. There will be uncertainties in the position of a measured obstacle as there
will be uncertainties in the range measurement and in the position of the drone at
the time of the measurement. The uncertainties are assumed to be Gaussian. The
variance in position in the direction of the measurement is added together with the
variance of the sensor output to give the measurement uncertainty, σ2

t .
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SB-MPC formulation

The exact solution when using occupancy grid maps is to assign probabilities to
map states mi where each cell is either occupied or not. When a measurement r is
made, the probability of the different map states being the correct can be updated
as follows:

P (mi|r) =
p(r|mi)P (mi)

p(r)
(3.44)

Here P (mi) represents the prior probability of this map state being true and p(r|mi)
represents the inverse sensor model.

The probability density of making a measurement r in map state mi can be eval-
uated by finding the closest distance to an occupied cell within the sensor cone
of map state mi called mi,d, and then evaluating the following normal probability
density function:

p(r|mi) = normalpdf(x = r, µ = mi,d, σ = σt) (3.45)

As the number of possible map states grows exponentially with the number of
states it is impossible to exactly evaluate the map probabilities. Instead, as pro-
posed by [72], each cell is considered independent making it possible to consider
the probability of a cell, ci being occupied, P (ci), rather than the probability of the
map state, mi being true. A recursive method for updating the occupancy prob-
abilities while considering sensor uncertainty was developed by [75]. This method
was developed for a laser sensor where we get a 1D line of cells that could be in the
path of the sensor. This method can be extended to the 2D case of a range-finding
sensor with a larger field of view by first finding all cells within the field of view
and then sorting them based on their distance to the sensor. This will produce a
1D array of cells, where cells with lower indexes block cells with higher indexes
as they are closer to the sensor. This 1D array can be directly inserted into the
method of [75]. Figure 3.5 shows how the map looks like after one update with a
measured distance of 20 meters with σ2

t = 1m2 and the grid cell size of 1x1 meters.

Measurements from different sensors and at different time steps can be incorporated
by examining them one at a time. The resulting map from one update should be
used as the a-prior map for the next sensor update. The map is initialized to each
cell having a uniform chance of containing an obstacle. If a prior map over the
environment is known, then the map could instead be initialized with a higher
value where obstacles are expected to be.

3.7
 

 

SB-MPC formulation

The
 

 

SB-MPC strategy will compare different control actions and choose the action
that maximizes the mission objective while having an acceptable probability of
collision. For the 2D case, the list of candidate control actions is defined as follows.
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P
(c

i
)

Figure 3.5: Occupancy grid map updated with one measurement of a wide-angle range-
finding sensor. The z-axis gives the probability of there being an obstacle in a particular
cell, P (ci). The prior probability of obstacles was set to 0.1 in all cells.

α = [ −90 −75 −60 −45 −30 · · ·
−15 0 15 30 45 60 75 90 ]

(3.46)

v0 =
[
v∗0 0.5v∗0 0.25v∗0

]
(3.47)

Where v∗0 is the nominal speed of the drone. The resulting possible trajectories
from a stationary start-point along a straight path going downwards are shown in
Figure 3.6.

The drone model will be used to predict future behavior when applying the dif-
ferent combinations of angle and velocity control actions. The predicted state, as
well as the variance in the estimate at each future time step is used to check the
constraint and calculate the cost. The control action that optimizes the objective
(see Section 3.7.2) is chosen among the feasible actions that fulfill the constraints
(see Section 3.7.1). If no action is feasible then a default action will be taken (see
Section 3.7.3). The procedure is repeated at regular sampling intervals.

Only essential constraints and objectives are implemented to highlight how this
algorithm works. Other objectives could be added and tuned to give better mission-
specific performance.
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SB-MPC formulation
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Figure 3.6: All candidate trajectories from a stationary initial position where the nominal
path goes straight down. The different colors represent different speeds set points, orange
represents v0 = v∗0 , purple v0 = 0.5v∗0 , and blue v0 = 0.25v∗0 .

3.7.1 Constraint - Probability of collision
To ensure that the chosen route is safe, the probability of collision, Pc, has to be
lower than a specified maximum collision probability, Pc,max, for all time steps, t
in the simulation time-horizon, Th. The time horizon is chosen equal to the time
needed to identify obstacles, re-plan, and execute an evasive maneuver, thereby
ensuring that the probability of collision is acceptable over the reaction time of
the obstacle avoidance algorithm. With t0 indicating the current time-step the
constraint can be formulated as follows:

∀t∈{t0,t0+dt,...,Th
}Pc[t] < Pc,max (3.48)

The probability of collision at a specific time-step, Pc[t], is equal the probability
of the drone being in the same cell as an obstacle. This is calculated by summing
over all cells, ci, the probability of that cell containing an obstacle, P (ci), times
the probability that the drone is within that cell at that time-step P (Di[t]). With
N indicating the number of cells this can be formulated as follows:

Pc[t] =
N∑
i=1

P (ci)P (Di[t]) (3.49)

The probability of the drone being within a cell at time-step t, P (Di[t]), is evaluated
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Figure 3.7: Red marks the path followed by the drone if a control action of α = 90◦

is set for the first 20 time-steps, and then turned off for the next 20. Blue marks the
corresponding path with the nominal control action. dsca marks the resulting reduction
in traversed distance.

by integrating the probability distribution of the location of the drone at that
time-step over the area of the cell. The probability distribution of the drone’s
location is described as a normal distribution with the mean and variance given by
Equations (3.38) and (3.42).

3.7.2 Objective

The constraint ensures that the chosen path is safe. The objective function can now
be freely chosen based on the objective of the mission. One objective that ensures
progress along the path must be implemented. This can be done by maximizing the
traversed distance along the path. Deviations make the drone travel orthogonal to
the path reducing the traversed along-path distance. The drone must fly back to the
path at some point which introduces further delays. This is illustrated in Figure 3.7.
To figure out the delay introduced by a control action, the drone is first simulated
as normal with the control action active and is then further simulated with the
nominal control action until it reaches back to the path. The nominal action is the
behavior with α = 0 and v0 = v∗0 . This second simulation is done without variance
propagation and checking the risk constraint. This will significantly speed up the
second predictive simulation. By simulating the behavior from the control action
plus the behavior on returning to the path, the delay introduced by the control
action is captured. The traversed along-path distance is compared to the case where
only the nominal action is applied. The method is described in Algorithm 1 and
the resulting predicted reduction in along-path distance, dsca, introduced by the
control actions is minimized.
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3.8. Simulation

The prediction should stop when the drone is sufficiently close to the nominal path.
The acceptable cross-track error is denoted as δ. This has to be done as the drone
will asymptotically move towards the nominal path, but may never completely hit
it. With δ small, the resulting loss in along-path distance is negligible. The larger
δ is, the quicker the simulation is finished. A trade-off between computational time
and precision has to be made.

Algorithm 1 Calculation of relative distance along the path.
Let S0(t) denote the along-path distance for the nominal action at time t.
Let T0,max denote the latest time that is predicted for the nominal action.
Let Sca(t) denote the traversed distance for control action (ca) at time t.
Let Tca,max denote the latest time that is predicted for the control action ca.
Let Th be the time until a new control action will be chosen by the obstacle
avoidance algorithm.
Simulate S0(t) for t = 0 to t = Th
for all control actions ca do

Simulate Sca(t) for t = 0 to t = Th
while cross track error at Tca,max > δ do

Simulate Sca(t) for t = Tca,max + 1 without variance propagation
end while
if T0,max < Tca,max then

Simulate S0(t) for t = T0,max to t = Tca,max without variance propagation
end if
dsca ← S0(Tca,max)− Sca(Tca,max)

end for

3.7.3 Default action

When no action is feasible then the safest action among all the given actions and
the stop action should be taken. Often when the drone gets stuck, stopping might
be the safest choice. But if measurement errors lead to the current drone position
being dangerous, then it might be safer to take a non-zero action that will move
the drone further away from obstacles. If the stop action is chosen then the drone
should start rotating to improve the obstacle map.

3.8 Simulation

The simulations were done with 5 sensors, pointing forward, 30 degrees to the side,
and 60 degrees to the side. The field of view of the sensors was set to ±45◦ and
the range set to 30 meters. The position and velocity variance returned from the
estimator, R, and the model variance, Q, were set to 0.1m2. The variance in the
measured range is set to 0.5m2. The accepted probability of collision per time-step
is set to 0.1%. The map is initialized with a 10% a priori probability of containing
an obstacle. The parameters were set to give interesting behavior that highlights
the workings of the algorithm.
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3. Risk-based obstacle avoidance

Figure 3.8 shows that the drone successfully manages to safely fly around a corner
and into a tight corridor. An object is present in the blind spot around the corner.
The drone chooses to take a slight detour to acquire new information about the
corridor before it flies into it. This ensures that it avoids the obstacle. In the
corridor, the drone reduces its speed as the wide field of view of the range-finding
sensors makes it hard to distinguish walls from the safe area in between. Reducing
the speed gives the drone more time to acquire new data and make a new plan.

Figure 3.9 shows that the drone manages to find its way through a narrow opening.
Figure 3.10 shows the limitations of this algorithm. Figure 3.10(a) shows that the
drone manages to fly around smaller obstacles, but unable to circumvent larger
obstacles as in Figure 3.10(b). This is caused by there not being a control action
that lets the drone fly in a large enough arch with the given dynamics and look-
ahead distance ∆. Figure 3.10(c) shows that the drone can get stuck in convex hulls
without being able to escape. A solution to this problem would be to include more
extensive control action candidates and to have a higher level controller that detects
that the drone is stuck and re-plans the path taking the new obstacle information
into account.

3.9 Discussion and conclusion

This chapter has looked into obstacle avoidance based on the probability of collision
and developed an obstacle avoidance strategy that ensures that the probability
of collision is at an acceptable level for all time steps. The essential constraint,
which is that the path is safe over the critical time needed to re-plan and stop, is
implemented. The essential objective which is to traverse the path is implemented
as well. The simulation study showed that the proposed rules ensured that the
drone was safe at all times and that the drone managed to avoid smaller obstacles.
The strategy worked with the limited mapping capabilities of range-finding sensors
with a wide field of view. It produced the behavior of looking around corners before
entering and flying slower when only information about a limited area is known.
The strategy forced the drone further away from the walls when the planned path
incurred too much risk. The strategy is greedy, making it in some cases unable to
find a path around larger obstacles and out of convex hulls. The proposed strategy
ensures that the drone will be safe for all paths, and will stop or move to a safer
point when no path is feasible. This enables a higher-level controller, or human
planner, to plan a path based on a simplified map without taking the safety or
dynamics of the drone into consideration.

As we want to limit the actual probability of collision, the assumptions in the map-
ping method must be discussed. The main assumption in an occupancy grid map is
that all the cells are independent. This assumption does not hold as all the updated
cells from one measurement will be dependent as they give information on where
one object is located. If it turns out that the object is not in one cell, then the
probability that it is in another cell is increased as the object has to be somewhere.
For different measurements of different objects, the independent assumption holds.
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(a) t=0 s. The initial plan
of the drone. The size of the
sensor cone makes it impossi-
ble to determine if flying to-
ward the path is safe.

(b) t=12 s. After mapping
for a few seconds, a better
map of the world is achieved.
It is now deemed safe to fly
a bit closer to the planned
path.

(c) t=51 s. The drone is
tasked to fly around the cor-
ner. To avoid flying into un-
known territory the drone
makes a larger turn.

(d) t=92 s. The drone en-
ters a narrow corridor where
the sensors’ large field of view
makes it difficult to distin-
guish walls from open space.
This forces the drone to re-
duce its speed.

(e) t=94 s. The corridor
widens enabling the drone to
make a better map of its envi-
ronment. The drone increases
its speed.

(f) The true obstacles super-
imposed on the occupancy
grid map showing a good fit.
There was an obstacle hid-
den around the corner that
the drone managed to avoid
by taking a larger turn.

Figure 3.8: The drone is tasked to follow the blue lines downwards and to the left. The
planned path is too close to the wall to fly safely. The drone is marked as a black dot
and the planned path as the black line. The length of the line indicates the speed of the
drone. The background color indicates the state of the occupancy grid, white is safe and
darker colors indicate a higher probability of the cell containing an obstacle.
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3. Risk-based obstacle avoidance

(a) The sensor cone size makes it diffi-
cult to detect if there is an opening in
the wall. The drone reduces its speed
and approaches slowly.

(b) The drone moves towards a possi-
ble opening.

(c) An opening is found and the drone
flies through at full speed.

(d) The final path the drone followed.
The true obstacles are superimposed
on the occupancy grid map.

Figure 3.9: The drone is tasked to fly straight down, but the planned path does not take
the small opening into account.

(a) (b) (c)

Figure 3.10: Figures 3.10(a) and 3.10(b) show that the drone manages to circumvent
small obstacles, but fails at larger obstacles. Figure 3.10(a) is the largest obstacle the
drone is able to circumvent with the current control actions and ∆. Figure 3.10(b) is
slightly larger hindering the drone from circumventing it. Figure 3.10(c) shows that the
drone can get stuck on the wrong side of an obstacle.
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3.10. Future work

Occupancy grid maps attempt to merge dependent sensor information and inde-
pendent information of multiple measurements in one map with one value at each
cell which is bound to lose information. A problem caused by this simplification is
that the cell probability value is dependent on the cell size. For small cell sizes, the
probability does not act as predicted and the map converges to the a priori value
much closer to the drone than the measured range. This is highlighted for the 1D
case in [82]. As the problem is dependent on the number of possible map states it
gets significantly worse with the number of dimensions making this strategy unfit
for 3D. This also raises questions on how well the occupancy grid map manages to
represent the true uncertainty, as the grid cell size should not affect the uncertainty
in this manner.

A limitation of the sensor model used in this chapter is that it assumes a strict
border between which cells that are within the field of view, and which are outside.
In reality, a gradual transition is expected when using radars and sonars, where it
becomes gradually less likely to detect obstacles the further to the side they are.

One of the goals of considering the probability of collision, rather than setting a
fixed safety margin around the drone, was to use our knowledge on the uncer-
tainty in different sensors and the motion of the drone when deciding how close
to obstacles the drone should come. Explicitly considering the uncertainties could
potentially cause the drone to act less conservatively, as a safety margin must
be chosen conservatively large when not having a complete overview of all factors
involved. But, as the probability values of the occupancy grid map cannot be inter-
preted literally, the resulting probability of collision does not have a literal meaning.
This makes choosing the maximum acceptable probability of collision an ad-hoc
process, similar to choosing a safety margin. A difference between directly using
an ad-hoc safety margin and an ad-hoc probability of collision is that considering
the probability enables the system to change its behavior when the uncertainty
changes. This enables the drone to naturally consider changes in the uncertainty in
estimated pose and speed and the dynamics of how the uncertainty develops in the
future as shown in Section 3.5.2. Lastly considering uncertainty opens up for the
next step of considering risk. For a crash-resistant drone, the speed can be used to
quantify the potential consequences of contacting an obstacle. By considering risk
the drone can potentially navigate areas with large uncertainty in the presence of
obstacle if it moves at a low enough speed.

3.10 Future work

The main work that needs to be done within the mapping. A new method for
mapping that generates more realistic probability values and is able to handle 3
dimensions should be developed. Additionally, a better sensor model that considers
the gradual transition of the field of view is needed. Specular reflections and mul-
tipath are also important phenomena to consider. The collision avoidance strategy
should also be tested out in 3D with a more realistic drone mode.
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Chapter 4

Risk-based decision making

This chapter is based on the following publication

[47] S. V. Rothmund, C. A. Thieme, I. B. Utne, and T. A. Johansen, “A
Bayesian Approach to Risk-Based Autonomy for a Robotic System Execut-
ing a Sequence of Independent Tasks,” Submitted to Journal of Intelligent &
Robotic Systems, 2022. doi: 10.36227/techrxiv.14054141.v3

The method was developed by S. V. Rothmund in collaboration with C. A. Thieme.
Software development and simulations were done by S. V. Rothmund. Supervision
was provided by I. B. Utne and T. A. Johansen. The first draft was written by S.
V. Rothmund and revised by C. A. Thieme, I. B. Utne, and T. A. Johansen

4.1 Introduction

For a system to operate without direct human supervision, it must be able to
evaluate the situation and handle deviations from normal operation [83]. These de-
viations are often connected with uncertainty, making it necessary to consider the
risk of a task or operation. Risk can be defined as the “effect of uncertainty on ob-
jectives” [84]. Hagen et al. [6] argued that a system’s “ability to sense, interpret and
act upon unforeseen changes in the environment and the [system] itself” is vital for
achieving a high level of autonomy. Information on the state of real-world systems
and environments is often uncertain or incomplete [85]. When acting with uncer-
tain and incomplete information, the system cannot avoid making sub-optimal or
erroneous decisions that it should detect and act to minimize the consequences of.

This chapter aims at developing a risk-based decision system that improves the
ability of an autonomous system to interpret and act upon deviations from normal
operation and to counteract the consequences of past erroneous or sub-optimal
choices. This chapter focuses on operational decision-making for a robotic system
executing a series of independent tasks, such as inspection or intervention at mul-
tiple locations.
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4. Risk-based decision making

Previous literature exists on making decisions based on uncertainty or risk. [37]
uses a

 

 

BBN to evaluate the collision risk during an under-ice operation with an
autonomous underwater vehicle. Safety critical parameters, such as distance to the
ice sheet, are automatically changed by considering how they affect the risk evalu-
ated with the

 

 

BBN. [38] chooses an emergency landing location for an unmanned
aerial vehicle by evaluating the risk of the different landing locations with a

 

 

BBN.
[39] uses a

 

 

BBN to evaluate the effect of different recovery and security strategies
during a cyberattack against an industrial control system. Even though these works
make risk-based decisions, they do not consider improving the system’s ability to
interpret its health state and the state of the environment.

An ability to infer the health state of the system based on indirect observations
is demonstrated in [41], [86], [87] by using a

 

 

DBN. This previous research does
not consider how decision-making affects how the system develops, nor do they
consider using the inferred health state for automatic decision-making.

Considering the action made by the system and using the inferred state of hidden
variables for automatic decision-making has been done in educational systems [88]–
[90] and dialog systems [91], [92]. These systems use a

 

 

DDN to infer the state of
the user based on their observed response to different actions made by the system.
Even though these systems show some of the capabilities needed, they are made
for a distinctly different type of problem, making them not directly applicable to
automatic decision-making for robotic systems.

A system for inferring the state of the environment and the system based on indirect
measurements, and using the results for automatic decision-making for a robotic
system is presented in [40]. Here a

 

 

DBN is used to infer the states of different
underlying dynamic variables by combining information over time. The

 

 

DBN uses
this information to evaluate the probability that any of four pre-defined hazardous
scenarios have occurred or are likely to occur in the future. Recovery actions are
proposed if any of the scenarios are in a failed state, while preventive actions are
proposed if any of the scenarios are in an anomalous state or expected to be in a
failed state in the future.

A key difference between [40] and the work presented in this chapter, is that this
chapter considers operational decision-making while [40] considers emergency fault
handling. [40] therefore does not consider the risk and reward of executing different
actions, how the choice of action affects how the system develops over time, nor
does it consider inferring whether previous decisions were erroneous or sub-optimal.

The previously presented literature demonstrates that Bayesian models, such as
 

 

BBN,
 

 

DBN, and
 

 

DDN, are promising tools for achieving this chapter’s goal. Con-
sidering risk when making operational decisions was shown in [37], [38] to be a
feasible approach. This further strengthens the case for Bayesian models as these
model probabilistic relationships making them suitable to model risk [63].

This chapter develops a decision-making system for an autonomous robot executing
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4.2. Problem statement

a sequence of independent tasks. A
 

 

DDN model is used which enables the system
to combine direct measurements with the result of attempted task execution to
infer the state of the system and the environment. A heuristic is proposed which
evaluates if and how a task execution should be attempted, and whether a recovery
action is needed. Additionally, the system is able to update its belief regarding past
states thereby identifying previously attempted tasks that were wrongly skipped
and should therefore be re-attempted.

To demonstrate the proposed method a case study of an industrial inspection
multi-rotor drone is considered. The drone is tasked with mapping the thickness
of metal surfaces in an industrial facility to identify damages to the structure.
The measurements are conducted by contacting the surface with an ultrasound
probe [93]–[97]. The large number of measurements needed to get sufficient coverage
makes the operation costly for a human operator to directly and continuously
monitor, thereby warranting the need for autonomous execution.

The contribution of this chapter compared to earlier literature is the development of
an automatic risk-based system for operational decision-making, that is able to infer
the state of the system itself and the environment based on indirect measurements,
and that is able to evaluate past states with new information thereby enabling it
to counteract past mistakes.

The rest of the chapter is structured as follows: Section 4.2 states the problem
formulation. Section 4.3 presents the proposed method for developing and using
the

 

 

DDN. This method is applied to the case study in Section 4.4. Simulation
results from the case study are presented in Section 4.5. Section 4.6 discusses the
proposed method in light of the results from the case study. A conclusion is given
in Section 4.7.

4.2 Problem statement

This chapter considers a robotic system that executes a sequence of independent
tasks. Tasks are considered independent when “no task provides a necessary pre-
condition for the fulfillment of another task” [98]. This chapter does not consider
in which order the tasks should be executed. It is assumed that the tasks are
given as an ordered list at the start of the operation. The tasks are assumed to be
time-independent with no deadlines that have to be considered when planning.

This chapter considers a part of the autonomy layer that should decide if and how
a task should be executed and whether a recovery action is needed. The task exe-
cutions are assumed to have a probability of failing, in which case the system must
decide if the task should be attempted again or skipped. Two classes of recovery
actions are considered, requesting maintenance of the system, and returning to
a previously failed task. This chapter assumes that a predefined set of possible
execution actions are given for each task.
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4. Risk-based decision making

t-1 t t+1 t+2

Figure 4.1: Simple
 

 

DDN developed with the proposed method. Objectve nodes are shown
in orange, failure cause nodes in light blue, condition nodes in dark blue, measurement
nodes in green, and action nodes in gray. The current time step (t) is shown together with
one earlier time step (t− 1) and one future time step (t+ 1).

The available information before a task is attempted is insufficient to get a complete
overview of the state of the drone and the environment. The robotic system must
therefore incorporate information available on the outcome of previous actions to
improve its situation awareness.

4.3 Method

This section presents the proposed method for developing the
 

 

DDN that will be
used to infer the state of the robotic system and the environment, together with a
strategy for using the

 

 

DDN to choose what action the robotic system should take.

Figure 4.1 gives an example of the resulting
 

 

DDN for a simple problem with the
proposed method. The basic procedure for using the

 

 

DDN is as follows:

1. If available, insert evidence based on measurements available before a task is
attempted.

2. Evaluate the risk and gain of executing different actions.
3. Execute the optimal action.
4. If available, insert evidence based on the observed outcome of the action.
5. Make a new time-step in the

 

 

DDN. Each time step represents a decision that
is made.

4.3.1 Developing the
 

 

DDN
This chapter proposes developing the

 

 

DDN through a top-down approach. This
approach ensures that only states that can be distinguished from each other are
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4.3. Method

included. The following steps are used to develop the
 

 

DDN:

1. Describe the operation and system.

2. Model relevant objectives.

3. Model failure causes.

4. Model the condition of the failure causes.

5. Model dynamics.

6. Model measurements.

7. Quantify the
 

 

CPTs.

Step 1 - Describe the operation and system

The operational description defines the tasks the system should execute and which
actions the robotic system can choose between. This chapter considers three types
of actions: executing the task, maintaining the system, and changing task.

Executing the task is associated with a probability of achieving the goal of the
task and may lead to losses, which are discussed further in step 2. There can be
different ways of executing the task with different costs associated with execution
and with different consequences. There can be different ways of maintaining the
system that repairs or mitigates different types of failures. Maintenance actions are
associated with a direct cost that the system must weigh against the advantage of
maintaining the system.

When changing task, the system can choose between going to the next task in the
sequence or returning to a previous task. Leaving a task without fulfilling its goal is
associated with a cost. This cost is weighed against the expected cost of attempting
the task. How these trade-offs are made is discussed in detail in Section 4.3.2.

In the description of the robotic system, the available sensors and information from
different subsystems, such as a navigation system, are given.

Step 2 - Model relevant objectives

As risk is the “effect of uncertainty on objectives” [84], the relevant objectives must
be identified to make risk-based decisions. Two types of objectives are considered:
achieving the task goal and avoiding hazardous events. A hazard is a set of adverse
conditions that can lead to a loss [50]. Damage to the robotic system is one example
of a loss. Relevant hazards can be identified through different risk analysis methods,
such as preliminary hazard analysis (

 

 

PHA) [99] or
 

 

STPA [50]. A node is introduced
in the

 

 

DDN for every goal and hazard. Figure 4.1 shows a simplified case with only
one goal or hazard node, shown in orange. These nodes take on a binary state
indicating whether the objective will be met or not on this execution attempt.

63



4. Risk-based decision making

Task independent

condi on nodes

t0 t1
t2 t3 t4

Task 0 condi on nodes

Task 1 condi on nodes

Figure 4.2: Example of how different task-specific nodes can be connected to the rest
of the network at different time steps. Task 0 is connected to the rest of the network at
time steps 0, 1, and 3, while task 1 is connected at time step 2.

Step 3 - Model failure causes

Different failure causes, such as faults in the robotic system and adverse environ-
mental states, can prevent the objectives from being fulfilled. Not achieving an
objective is considered a failure. The failure causes can be identified with a risk
analysis; see [50], [99]. Nodes are introduced that represent groups of failure causes
that cannot be distinguished from each other, shown as light blue in Figure 4.1. All
failure causes that affect different measurements or that are affected differently by
the choice of action can potentially be distinguished from each other. The failure
cause nodes take on a binary state indicating whether any failure cause in this
group will cause a failure on this execution attempt.

Step 4 - Model the condition of the failure causes

The failure cause nodes introduced in the last step consider the expected outcome
of a single execution attempt. New nodes, called condition nodes, are introduced to
model the general condition of the failure causes. These nodes could, for example,
be defined as the amount of wear or the failure rate of a component. One condition
node is introduced for each failure cause node as shown in dark blue in Figure 4.1.
These nodes can have multiple states to model varying ability to achieve the goal.

Step 5 - Model dynamics

Using a dynamic model enables the system to incorporate information over time,
thereby improving its estimates of the underlying conditions. A new time step
is introduced in the

 

 

DDN for each decision that is made. The condition nodes
introduced in step 4 are connected to themselves between time-step as shown in
Figure 4.1. Having a separate time step for each decision makes it possible to use
the outcome of each action as a source of information.

Some conditions can be independent for each task. These conditions can be mod-
eled by having an instance of the node for each task in the operation. The nodes
representing the current task are connected to the current time step. An example
of this is given in Figure 4.2.

64



4.3. Method

Step 6 - Model measurements

Separate measurement nodes should be introduced to enable the modeling of mea-
surement uncertainty. Measurements available before a task execution should de-
pend on the condition nodes, while measurements of how the execution went should
depend on the objective or failure cause nodes. Figure 4.1 shows how measurements,
shown in green, can be available for condition nodes at the current time step and
for condition nodes and on how the execution went at previous time steps.

Step 7 - Quantify the
 

 

CPTs

The
 

 

CPTs used by Bayesian networks can be quantified based on expert judgment
and operational data. This enables the models to be used on novel systems where
operational data is missing. Quantification of

 

 

CPTs based on expert judgment is
not a trivial task, and many different methods exist to simplify the process [63],
[100]. This chapter simplifies the process by using Boolean operators to define which
combination of failure causes that affect the different objective nodes. The

 

 

CPT of
the failure cause nodes that are children of condition nodes translates the condition
into a probability of failure on this execution attempt. The

 

 

CPTs of the condition
nodes specify how the state can degrade or improve based on the choice of action.
The

 

 

CPTs of the measurement nodes quantify the measurement uncertainty.

4.3.2 Decision policy
Even though each task is independent, each decision that has to be made is not.
This is due to the actions affecting the state of the drone, which will affect future
actions. Finding the optimal decision policy when it’s not sufficient to consider a
single decision in isolation requires solving a

 

 

POMDP, which in the general case is
intractable except for small problems [68]. To circumvent this problem, a heuristic
policy is proposed. The policy considers the following three strategies consisting
of one or multiple actions: 1) move on to another task, 2) attempt to execute the
task once and then move on to another task, or 3) execute a maintenance action,
attempt to execute the task, and then move on to another task. The expected
cost of each strategy is evaluated, and the first action of the cheapest strategy is
executed. After executing the first action of the strategy, the optimal strategy is re-
evaluated. If strategy 2 is chosen multiple times in a row, then the system executes
the current task multiple times without moving to another task. This ensures that
the resulting closed-loop behavior can be closer to optimal behavior than any of
the proposed strategies.

The cost of strategy 1, C1, has only a cost if the goal of the current task is not
achieved. This cost, CG, is based on the consequence of not achieving the goal.
This is shown in Equation (4.1). More cases can be added if there can be a partial
fulfillment of the goal.

The cost of strategy 2, C2(e), depends on the choice of execution action, e. There is
a direct cost for executing action e, CE(e), and an indirect cost if a hazardous event
occurs. There can be multiple different hazards, each associated with its own cost,
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which are given as elements in the vector CH(e). Experiencing a hazardous event
can jeopardize the ability to successfully perform future task executions. This cost
is not directly considered but should instead be compensated for when designing
the cost of the hazard CH(e). This cost can depend on the choice of execution
action. If the execution does not achieve the goal of this task, then there will be
the additional cost of moving to another task, C1. The probability of achieving the
task’s goal, PG, and the probability of different hazardous events occurring, PH ,
when executing an action are evaluated using the

 

 

DDN. These values are found
by evaluating the probability that the objective nodes are in a failure state at the
current time step. The resulting cost function is shown in Equation (4.2). This cost
is evaluated for all possible execution actions, e, applicable to the current task.

The cost of strategy 3, C3(m, e), depends on the choice of maintenance action,
m, and execution action, e. The maintenance action can increase the probability
of achieving the goal and reduce the probability of hazardous events occurring.
The effect of the maintenance action is evaluated by inserting it as evidence in the
action node at the current time step of the

 

 

DDN and then simulating one step
forward in time by temporarily adding a new time step to the

 

 

DDN. The cost of
execution (strategy 2) after performing maintenance m can then be evaluated at
this time step, C2,m(e). The cost of the maintenance action must be included as
well. This cost is often quite high but can improve the success rate of multiple
future task execution attempts. The maintenance cost, CM (m), is divided by the
expected number of executions until maintenance is needed again, N(m). The re-
sulting cost is shown in Equation (4.3) and should be evaluated for all combinations
of maintenance actions, m, and execution actions, e.

C1 =

{
0 If the goal of the current task is achieved
CG Otherwise

(4.1)

C2(e) =CE(e) +CH(e)⊤PH + (1− PG)C1 (4.2)
C3(m, e) =CM (m)/N(m) + C2,m(e) (4.3)

When moving to another task (strategy 1), the system can choose to revisit a
previously attempted task. The expected cost of executing a previously attempted
task is evaluated by simulating that the system moves to this task. The system
returns to a previously attempted task if the expected cost of executing the task,
C2(e), plus the cost of returning to the previous task, CRet, is lower than the cost of
omitting the task, C1, as shown in Equation (4.4). A task is reattempted if the visit
is warranted for any of the available execution actions. If none of the previously
attempted tasks are worth another attempt, then the system will move to the next
task in the sequence that is not attempted.

CRet + C2(e) < C1 (4.4)

Attempting a task before and after maintaining the system enables the system to
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Figure 4.3: The conditional probability tables and dependencies in the
 

 

DDN for the
inspection drone case study. Some tables are intentionally left blank and are instead
given in Tables 4.1 to 4.3. Nodes containing a * refer to the table marked with a * shown
on the bottom left of the figure.

identify if a maintenance action helped. This behavior is encouraged by always
choosing an execution action if the current task has not been attempted and if
strategy 2 is cheaper than strategy 1. If this is not the case, then the normal policy
is followed.

67



4. Risk-based decision making

Figure 4.4: The ScoutDI drone during an ultrasound inspection of a storage tank. Cour-
tesy ScoutDI.

4.4 Case study

In this section, the proposed method is applied to a multirotor drone tasked with
industrial inspection. The case study setup is developed in cooperation with the
drone inspection technology company ScoutDI. Figure 4.4 shows the ScoutDI drone
performing an ultrasound thickness measurement. The case study is based on sim-
ulation.

4.4.1 Developing the
 

 

DDN

Step 1 - Describe the operation and system

The operation consists of measuring metal surface thickness with an ultrasound
sensor mounted on a multirotor drone. A large number of points are typically
inspected. Every inspection point is considered a task in the proposed method.
The system can choose between two different ways of inspecting the surface of the
inspection point: a normal inspection and a slower but safer inspection. A small
amount of gel is dispensed from a tank mounted on the drone for each inspection.
One maintenance action available to the drone is to refill this tank. Another is to
request a full maintenance check by an operator. The drone can skip inspection
points deemed too costly to inspect autonomously.

The drone is equipped with a lidar used to detect obstacles and navigate.

Step 2 - Model relevant objectives

The goal of each task is to measure the surface thickness of the inspection points.
The drone is assumed to operate in controlled industrial facilities consisting of
metal surfaces without any humans present. This makes damage to the drone the
most relevant loss. A hazard that can cause this loss is uncontrolled contact with
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a surface or other object. Nodes representing the two objectives are shown on line
L1 in Figure 4.3.

Step 3 - Model failure causes

Through discussions with ScoutDI different failure causes were identified. Some of
the failure causes, such as an empty gel tank, rust or dirt stuck on the ultrasound
sensor, or inspection surfaces covered with rust or dirt can prevent data from being
gathered. Other failure causes, such as a worn motor, poor navigation quality, or
obstacles, can lead to uncontrolled contact in addition to preventing data from
being gathered. To simplify modeling, two intermediate nodes are introduced: one
for failure causes preventing data from being gathered, the other for failure causes
preventing both controlled contact and data from being gathered. These are shown
on line L2 in Figure 4.3.

The drone and the surface of the inspection point are affected differently by choice
of action. Executing an inspection may damage the drone, while the surface will not
be affected. Similarly, maintaining the drone does not affect the surface. Moving
to a new inspection point will change the surface but not affect the drone. A
distinction between drone-related and surface-related nodes is therefore needed.
Furthermore, the refill-gel action only affects the gel level. These nodes are shown
on line L3 in Figure 4.3.

Before an inspection is executed, a lidar scan of the inspection surface can reveal
protruding obstacles that will prevent controlled contact and data gathering. The
limited resolution of the lidar can cause it to systematically miss thin obstacles,
such as welding joints or minor surface irregularities. A distinction between failure
causes that are measurable and those that are not can therefore be made, as shown
on line L4 in Figure 4.3.

Step 4 - Model the condition of the failure causes

A slightly dirty or uneven surface, or a minor fault in the drone, can reduce the
likelihood of an inspection succeeding without hindering it completely. For all nodes
except the “gel level” node, the states of the condition nodes reflect the average
frequency at which the respective conditions will cause a failure. These frequencies
are discretized into different states, as shown on line L5 in Figure 4.3.

The state of the gel level indicates the amount of gel left. When the gel level
approaches zero, an insufficient amount of gel might be deployed. This will prevent
data from being gathered.

Step 5 - Model dynamics

Drone-related conditions have a probability of degrading with each inspection at-
tempt. The probability and severity of the degradation depend on whether an
uncontrolled contact occurred and whether a normal or safe inspection was per-
formed. The gel level is gradually depleted with each inspection attempt. There can
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Table 4.1: Initial probability distributions.
Gel level Drone

condition
wrt. data
gathering

Surface
condition
wrt. data
gathering

Unmeasurable
surface condition
wrt. controlled
contact and data
gathering

Measurable
surface condition
wrt. controlled
contact and data
gathering

Drone condition
wrt. controlled
contact and
data gathering

0% 0 0.03 0.3 0.02 0.01 0.005
25% 0 0.03 0.05 0.005 0.01 0.005
50% 0 0.04 0.05 0.005 0.01 0.005
75% 0 0.5 0.2 0.005 0.07 0.01

100% 1 0.4 0.4 0.965 0.9 0.975

Table 4.2: Probability of transitioning to worse states given the choice of action and
whether an uncontrolled contact is avoided. The table gives the probability of degrading
the state by different amounts. Transitions that lead to negative probabilities are omitted
before the resulting distribution is normalized. The probability of transitioning to a better
state is 0.

Node name Drone condition
wrt. data gathering

Drone condition wrt. controlled
contact and data gathering

Action Normal inspect Safe inspect Normal inspect Safe inspect
Avoiding uncon-
trolled contact Failure Success Failure Success Failure Success Failure Success

-100% 0.025 0.005 0.005 0.0025 0.025 0 0.005 0
-75% 0.025 0.005 0.005 0.0025 0.025 0 0.005 0
-50% 0.025 0.005 0.005 0.0025 0.025 0 0.005 0
-25% 0.025 0.005 0.005 0.0025 0.025 0 0.005 0
-0% 0.9 0.98 0.98 0.99 0.9 1 0.98 1

be some variation in the amount of gel dispensed making the number of inspection
attempts before a refilled uncertain.

The surface-related conditions are assumed constant over time and independent at
each inspection point. These are handled as discussed in Section 4.3.1 step 5 and
illustrated in Figure 4.2.

Step 6- Model measurements

The “surface suitability measurement” is introduced as shown at the bottom of
Figure 4.3. This measurement is, as discussed in step 3, based on how flat the area
around the inspection point seems based on the lidar scan.

After an inspection is executed, a measurement of how the execution went is
needed. Whether data is successfully gathered is readily available from the ul-
trasound thickness sensor. Whether an uncontrolled contact occurred cannot be
directly measured. Instead, this can be inferred based on the trajectory conformity
measurement. This measurement is made by comparing the observed trajectory of
the drone with the intended trajectory and identifying any deviations in position,
velocity, and heading.
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Table 4.3: Probability of reducing the gel level by different amounts.

Gel level
-15% 0
-10% 0.1
-5% 0.8
-0% 0.1

Step 7 - Quantify the
 

 

CPTs

Contact-based inspection drones are in the early stage of development. It is, there-
fore, little operational data and experience to use as a basis for the quantification.
The choice of hardware and software design will significantly affect the quantifi-
cation process. The quantification will be sensitive to factors such as how robust
the ultrasound sensor is, how robust the drone is to impact, and how well the
drone manages to navigate. To demonstrate the proposed algorithm, some exam-
ple values are chosen in collaboration with ScoutDI. The following assumptions
were considered during the quantification process:

• Some inspections require the operators to clean the inspection surface first
[101]. As this is not possible for the drone, there is a chance that there will
be surfaces where the drone cannot gather data.

• The drone must be in stable contact to get a measurement. Touching the wall
correctly with the sensor is difficult, making it likely that the drone will fail
at some inspection attempts.

• The sensor can become defect due to dirt or rust sticking to it. This can
happen even without an uncontrolled contact occurring

• An uncontrolled contact can displace the sensor or damage the drone’s in-
tegrity, making it unable to continue. The likelihood of damaging the drone
is low as it is built to be robust to impacts.

The result of the quantification process is shown in Figure 4.3 and Tables 4.1
to 4.3. The initial probability distributions can be found in Table 4.1. Tables 4.2
and 4.3 show the probabilities of transitioning to a worse state for the different
drone condition nodes when an inspection is attempted. The refill gel action will
set the gel level to 100%. The full maintenance action sets all drone-related nodes,
including the gel level, to their initial distribution.

4.4.2 Decision policy
The decision policy presented in Section 4.3.2 is used with the parameters given in
Table 4.4. These costs are based on the expected time use of the different actions.
The expected time use of an uncontrolled impact is based on the expected time
needed to repair the different degrees of damages that can occur times the likelihood
of them occurring from an uncontrolled impact. It is assumed that an uncontrolled
contact will seldom damage the drone, making the cost relatively low. Even if the
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Table 4.4: The different costs used in the decision policy for the case study.

Symbol Cost
CE(e = Normal inspect) 0.5 min
CE(e = Safe inspect) 1 min
CH(e = Normal inspect) 20 min
CH(e = Safe inspect) 10 min
CM (m = Refill) 10 min
CM (m = Full maintenance) 60 min
N(m = Refill) 20
N(m = Full maintenance) 30
CG 10 min
Cret 0.5 min

drone is not damaged, it might require human assistance if it falls to the ground.
The cost of not achieving the goal is based on the additional time used for a manual
inspection. Evaluating an exact value for these costs can be difficult in practice.
Some tuning of the values might therefore be necessary if the observed behavior
is inadequate. Having values that can be interpreted still gives an advantage as it
gives an intuition on what the values should be.

4.5 Results

This section presents four scenarios for the inspection drone case study. These
scenarios are chosen to demonstrate how the proposed approach fulfills the five
previously defined requirements. The scenarios represent different types of failures
and events that are deemed likely to occur during the drone’s mission. Scenario
1 considers a case where the ultrasound sensor is not working. In Scenario 2 the
drone is unable to have a controlled contact. Scenario 3 demonstrates the effect
measurements have on the system’s behavior. Lastly, Scenario 4 considers a case
where the gel is depleted.

The simulations are done by having a model of the drones state and the sate of the
different inspection surfaces as state machines. Their respective states define which
values that are measured that are made and what the output will be of different
actions. The drone’s state can either be working, with a defective ultrasound sensor,
or in a state making it unable to make controlled contact. Each inspection surface
can either be ideal, unable to be measured, with a measurable blocking obstacle,
or with an immeasurable blocking obstacle. The

 

 

DDN used to make decisions is
evaluated using the SMILE [60] library for Python.

Scenario 1 - Sensor defect

In this scenario, the ultrasound sensor is not working. All inspections end with no
data being gathered but perfect trajectory conformity. Figures 4.5 to 4.7 show how
the belief of the system develops over time when new inspections are attempted.
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Time step Measured failure causes Chosen action Measured objective fulfillment
0 Surface suitability: Perfect Normal inspect Data: No, Trajectory conformity: Perfect
1 Surface suitability: Perfect Normal inspect Data: No, Trajectory conformity: Perfect
2 Surface suitability: Perfect Normal inspect Data: No, Trajectory conformity: Perfect
3 Surface suitability: Perfect Move to IP1

Figure 4.5: Scenario 1. The table shows the measurements available before inspection,
the choice of action, and the resulting measurements. The graph shows the state of failure
causes relevant in this scenario. The solid line shows the belief of the drone that a failure
cause is present at each time step. The dashed line shows the updated belief of past states
evaluated every time the drone moves to a new inspection point (IP), which is marked
with a vertical line. The color of the dashed line indicates when the updated belief was
evaluated.

Only the belief that drone-related and surface-related failure causes will prevent
data gathering are shown. The rest of the failure causes have a belief close to 0
throughout this scenario.

Figure 4.5 shows the behavior and beliefs of the drone when it is at the first
inspection point. As seen in the table in Figure 4.5, the drone attempts to execute
an inspection, which results in no data but perfect trajectory conformity. After
the first inspection fails, the belief that surface-related failure causes prevent data
from being gathered increases, as shown by the solid blue line. The belief that
drone-related failure causes prevent data gathering also increases but much less.
This is due to it being more probable that a single failed inspection is caused by
the surface than by the drone. This trend continues for the subsequent inspection
attempts. At time step 3, the belief that surface-related failure causes will prevent
data gathering is high enough, making the drone skip the current inspection point
and move on to inspection point 1.

The dashed blue line in Figure 4.5 shows the system’s belief about past states
evaluated at time step 3. As the stat of the surface cannot change, the belief about
the past states is equal to the newest belief. The state of the drone can, on the
other hand, degrade, making the updated belief regarding the state of the drone
at time step 0 slightly lower than at time step 3.

Figure 4.6 is a continuation of Figure 4.5 that includes the beliefs, measurements,
and actions at inspection points 1 and 2 as well. At inspection point 1, the same
behavior is observed as at inspection point 0. After three failed attempts, the system
skips this inspection point and moves on to inspection point 2. When evaluating
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Time step Measured failure causes Chosen action Measured objective fulfillment
4 Surface suitability: Perfect Normal inspect Data: No, Trajectory conformity: Perfect
5 Surface suitability: Perfect Normal inspect Data: No, Trajectory conformity: Perfect
6 Surface suitability: Perfect Normal inspect Data: No, Trajectory conformity: Perfect
7 Surface suitability: Perfect Move to IP2
8 Surface suitability: Perfect Normal inspect Data: No, Trajectory conformity: Perfect
9 Surface suitability: Perfect Full maintenance
10 Surface suitability: Perfect Normal inspect Data: Yes, Trajectory conformity: Perfect
11 Surface suitability: Perfect Return to IP1

Figure 4.6: Scenario 1 part 2, continuation of Figure 4.5. The table shows the measure-
ments available before inspection, the choice of action, and the resulting measurements.
The graph shows the state of failure causes relevant in this scenario. The solid line shows
the belief of the drone that a failure cause is present at each time step. The dashed line
shows the updated belief of past states evaluated every time the drone moves to a new
inspection point (IP), which is marked with a vertical line. The color of the dashed line
indicates when the updated belief was evaluated.

the past states at time step 7, shown with the orange dashed line in Figure 4.6,
the probability that the drone-related failure causes are preventing data gathering
has increased. Since the belief that drone-related failure causes prevented data
gathering in time steps 0-3 has increased, the belief that surface-related failures
caused the failed inspection at inspection point 0 decreases. This can be seen by
the dashed orange line being lower than the dashed blue line at time step 0-3 for
the surface-related failure causes.

After failing an inspection at inspection point 2 as well, the belief that the drone-
related failure causes prevent data gathering is high enough, making a full mainte-
nance worth the cost. After maintenance, the following inspection at time step 10
is successful. As the inspection failed before the maintenance but succeeded after,
it becomes more probable that there was a fault with the drone that was solved
by the maintenance. Reasoning backward in time decreases the probability that
surface-related failures caused the previously failed inspections, as shown with the
dashed green line in Figure 4.6

When considering where to go next, the system evaluates whether a previously
visited inspection point is worth another inspection attempt. Since the belief that
the surfaces on these inspection points caused the failures has decreased, the system
concludes that they are worth another attempt. Figure 4.7 shows how the system
first visits inspection point 1 again, where data is gathered successfully. This further
strengthens the belief that the drone caused the previously failed inspections. The
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Time step Measured failure causes Chosen action Measured objective fulfillment
12 Surface suitability: Perfect Normal inspect Data: Yes, Trajectory conformity: Perfect
13 Surface suitability: Perfect Return to IP0
14 Surface suitability: Perfect Normal inspect Data: Yes, Trajectory conformity: Perfect
15 Surface suitability: Perfect Move to IP3

Figure 4.7: Scenario 1 part 3, continuation of Figures 4.5 and 4.6. The table shows
the measurements available before inspection, the choice of action, and the resulting
measurements. The graph shows the state of failure causes relevant in this scenario. The
solid line shows the belief of the drone that a failure cause is present at each time step.
The dashed line shows the updated belief of past states evaluated every time the drone
moves to a new inspection point (IP), which is marked with a vertical line. The color of
the dashed line indicates when the updated belief was evaluated.

system then returns to inspection point 0 and has a successful inspection before
moving on to a new inspection point.

Scenario 2 - Inability to get controlled contact

The drone is in a condition such that it cannot establish good contact with the
surface. All inspections result in data not being gathered and medium path confor-
mity. The belief that drone-related and surface-related failure causes prevent data
gathering and that drone-related and unmeasurable surface-related failure causes
prevent controlled contact and data gathering is shown in Figure 4.8. The rest of
the failure causes have a belief close to zero throughout this scenario.

In this scenario, the drone does not attempt to inspect the inspection point again
after the failed inspection attempt at time step 0, as shown in Figure 4.8. This is
due to the large cost associated with the possibility of having uncontrolled contact
if the inspection is reattempted. At inspection point 1, a safe inspection action is
performed since there is a considerable probability that the failure at time step 0
was caused by the drone. The system attempts one last inspection at inspection
point 2 before requesting full maintenance. After maintenance, a safe inspection
is executed since the failure might have been caused by the surface, which was
unaffected by the maintenance action. As the inspection was successful, the belief
that surface-related failure causes prevented controlled contact and data gathering
at inspection point 2 decreased. When reasoning backward in time at time step
7, as shown by the dashed green line, the belief that “drone-related failure causes
prevents controlled contact and data gathering” at time steps 0 and 2 is significantly
increased. This decreases the belief that the failed inspection was caused by surface-

75



4. Risk-based decision making

Time step Measured failure causes Chosen action Measured objective fulfillment
0 Surface suitability: Perfect Normal inspect Data: No, Trajectory conformity: Medium
1 Surface suitability: Perfect Move to IP1
2 Surface suitability: Perfect Safe inspect Data: No, Trajectory conformity: Medium
3 Surface suitability: Perfect Move to IP2
4 Surface suitability: Perfect Safe inspect Data: No, Trajectory conformity: Medium
5 Surface suitability: Perfect Full maintenance
6 Surface suitability: Perfect Safe inspect Data: Yes, Trajectory conformity: Perfect
7 Surface suitability: Perfect Return to IP1
8 Surface suitability: Perfect Safe inspect Data: Yes, Trajectory conformity: Perfect
9 Surface suitability: Perfect Move to IP0

Figure 4.8: Scenario 2. The table shows the measurements available before inspection,
the choice of action, and the resulting measurements. The graph shows the state of failure
causes relevant in this scenario. The solid line shows the belief of the drone that a failure
cause is present at each time step. The dashed line shows the updated belief of past states
evaluated every time the drone moves to a new inspection point (IP), which is marked
with a vertical line. The color of the dashed line indicates when the updated belief was
evaluated.

related failure causes, making another attempt worth its cost. A safe inspection is
performed at inspection point 1, as there could still be surface-related failure causes
at this inspection point.

Scenario 3 - Surface suitability

This scenario demonstrates how the surface suitability measurement affects the
choice of actions. Figure 4.9 shows how the system decides not to attempt an in-
spection if the surface suitability measurement is poor. With a medium surface
suitability measurement, a safe inspection is attempted, but the system only at-
tempts one inspection. When the surface suitability measurement is good but not
perfect, two inspection executions are attempted before moving on.

76



4.5. Results

Time step Measured failure causes Chosen action Measured objective fulfillment
0 Surface suitability: Poor Move to IP1
1 Surface suitability: Medium Safe inspect Data: No, Trajectory conformity: Perfect
2 Surface suitability: Medium Move to IP2
3 Surface suitability: Good Safe inspect Data: No, Trajectory conformity: Perfect
4 Surface suitability: Good Normal inspect Data: No, Trajectory conformity: Perfect
5 Surface suitability: Good Move to IP3
6 Surface suitability: Perfect Normal inspect Data: Yes, Trajectory conformity: Perfect
7 Surface suitability: Perfect Move to IP4

Figure 4.9: Scenario 3. The table shows the measurements available before inspection,
the choice of action, and the resulting measurements. No graphs are shown as they give
little additional information in this scenario.

Time step Measured failure causes Chosen action Measured objective fulfillment
... ... ... ...
33 Surface suitability: Perfect Move to IP5
34 Surface suitability: Perfect Normal inspect Data: Yes, Trajectory conformity: Perfect
35 Surface suitability: Perfect Move to IP6
36 Surface suitability: Perfect Normal inspect Data: No, Trajectory conformity: Perfect
37 Surface suitability: Perfect Refill gel
38 Surface suitability: Perfect Normal inspect Data: Yes, Trajectory conformity: Perfect

Figure 4.10: Scenario 4. The table shows the measurements available before inspection,
the choice of action, and the resulting measurements. All inspections prior to time-step 33
resulted in data being gathered and perfect trajectory conformity. The graph shows the
state of failure causes relevant in this scenario. The solid line shows the belief of the drone
that a failure cause is present at each time step. The dashed line shows the updated belief
of past states evaluated every time the drone moves to a new inspection point (IP), which
is marked with a vertical line. The color of the dashed line indicates when the updated
belief was evaluated.
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Scenario 4 - Gel level
This scenario demonstrates the effects of the gel level node. Figure 4.10 shows the
expected value of the gel-level node in addition to the belief that gel-level-related
failure causes prevent data gathering to better show how the gel depletes over
time. The figure starts after 12 successful inspections. With each inspection, the
expected gel level decreases. The belief that the “gel-level-related failure causes
preventing data gathering” first increases when the expected gel level is close to
depleted. When no data is gathered in the inspection attempt at time step 37, the
drone assumes a low gel level caused it, making it execute a refill.

4.6 Discussion

Scenario 1 shows that the system is able to distinguish between faults with the
drone and adverse inspection surfaces by combining information over time. This
enables the system to executing maintenance actions when needed. Furthermore,
this scenario demonstrates that reasoning backward in time enables the system
to realize that the previously visited inspection points were not the cause of the
failure as it previously assumed. This enables the system to return to previously
failed tasks and reattempt the inspection.

Scenario 2 shows a case similar to scenario 1, with the difference that the drone
experienced a worse trajectory conformity. This could be explained by an unmea-
sured obstacle in this current location, by a damage to the drone, or it could be a
random failure. The possibility that there was an unmeasurable obstacle made the
system not reattempt the failed task, as it did in scenario 1, but rather go directly
to the next task. The possibility that there was a failure with the drone made the
drone execute a safe inspection at the second location. This demonstrates how the
system reasons with risk, and how it considers the underlying causes while doing
so.

Scenario 3 demonstrates that the system considers the measurements available
before the task execution to proactively manage risk. Scenario 4 demonstrates how
the gel-level node affects the behavior. In scenario 1, the system does not believe
that the gel level caused the failed inspections, as the failure occurs immediately
after take-off. In scenario 4, many inspections were successfully performed before
the execution failed, making it probable that the gel was depleted. This shows that
the system manages to distinguish between different types of internal faults when
it affects the system differently.

The proposed method for building the DDN ensures that the condition nodes,
which are the possible explanations for the observed behavior, are quite general.
Having general nodes ensures that the nodes actually represent features the system
is able to distinguish based on the observations. When there is a high belief that
“drone-related failure causes prevent data gathering", the system does not know
what the failure cause is. It could be anything preventing the drone from gathering
data at multiple inspection points that do not affect its motion. The sensor could
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be displaced, there might be dirt on the sensor, or the sensor might be wrongly
calibrated or unsuitable for the current mission. Which of these scenarios is true is
irrelevant, as they all prevent data from being gathered and have the same solution:
requesting maintenance. Constructing general condition nodes for all possible ways
the system can be affected by actions and measurements ensures that the system
has a possible explanation for all observations.

The DBN produced by the proposed method does not model the severity of the
losses that can be caused by the occurrence of a hazard, such as having an uncon-
trolled contact. The different losses that can occur may have different severity and
probabilities associated with them. Modeling the losses could enable the system to
distinguish between different levels of severity, enabling the system to change its
behavior accordingly.

Based on the observed results, no obvious sub-optimal behavior with the proposed
heuristic decision policy was observed. One drawback with the heuristic is the
discount factor, N(m). This factor could, in theory, be based on the probability of
degrading the drone with each inspection attempt. This factor has a straightforward
interpretation and effect on the resulting behavior, making the discount factor an
acceptable trade-off between simplicity and quality of the heuristic.

The resulting decision policy needs to evaluate the network multiple times for each
time step to simulate the effect of different maintenance actions and to evaluate
whether the system should return to a previous point. This could potentially be
alleviated by further simplifications, such as specifying thresholds for the different
condition nodes. A predefined maintenance action can then be executed when the
belief surpasses the threshold. The drawback of this approach is that it would lose
information on the interaction between components. This is especially important
for more complicated systems with more causal factors.

The point of the case study was to demonstrate capabilities that can be achieved
with the proposed system. It was not to solve the case study in the most optimal
or simplest manner. Similar behavior as the presented results could be achieved
by, for example, defining an exhaustive set of conditional rules on which action
to perform for each possible set of measurements that are made. An example of
such a rule would be to always skip a task if it has failed three times, and always
repair if three tasks are skipped. These types of methods may work for very simple
problems but do not scale well for more complex problems as the possible com-
bination of measurements that require special rules often grows very quickly. By
instead estimating what the hidden state of the system and environment is and by
modeling the effect of actions, as done in this chapter, this problem is alleviated.

Evaluating DDNs becomes computationally expensive when the number of time
steps increases. The number of time steps can be limited by using a sliding window
approach where only the n newest time steps are included in the DDN [56]. The
initial condition of the DDN must reflect the information that is no longer inside
the sliding window. This can be achieved by setting the priors at the first time
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step inside the window equal to the posterior evaluated at the last step outside the
window. A drawback with a sliding window approach is that only time steps inside
the window will be considered when evaluating past states with new information.
This constitutes a challenge for the proposed method as the number of time steps
that are computationally feasible to consider might be too low to consider all
previously attempted tasks that are interesting to reconsider. One possible way to
alleviate this problem is to find a more compact way to represent information on
previous tasks. Currently, previous tasks are represented by multiple time steps,
one for each execution attempt and a time step for every move and repair action.

4.7 Conclusion

This chapter presents an approach for structuring a DDN and using it for oper-
ational decision-making. The chapter’s goal is to contribute toward enabling au-
tonomous systems to safely operate without direct human supervision. Through a
case study of an industrial inspection drone it is demonstrated how the resulting
system is able to increase the drones situation awareness about its own state and
the state of the environment, and how the drone can use this information to make
risk-based decisions. Additionally it is demonstrated how evaluating past states
with new information can reveal tasks the drone wrongly skipped that it should
return to for another inspection attempt.

Future work can consider how the severity of a hazard occurring can be modeled,
how evaluating past states could be simplified such that a longer time horizon can
be considered, and on experimental validation.
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Chapter 5

Supervisory risk control

This chapter is based on the following publication

[49] S. V. Rothmund, C. A. Thieme, I. B. Utne, and T. A. Johansen, “Su-
pervisory Risk Control with Application to Industrial Drone Inspection,”
Submitted to Autonomous Robots, 2022. doi: 10.36227/techrxiv.21287334
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Johansen

5.1 Introduction

To safely increase the level of autonomy of robotic systems operating outside of
controlled environments it is essential to enable the system to identify changes
in the environment and the robotic system itself and to adapt to the identified
changes [83]. To explore this topic, this chapter considers a case study of a teth-
ered industrial inspection drone. The drone, shown in Figure 5.1, is designed for
indoor visual inspection of hard-to-reach places in industrial facilities. This drone
is manually controlled but should be simple and safe to operate even for unskilled
operators. The goal of this work is to give the drone the necessary situation aware-
ness and adaptability to enable unskilled operators to safely operate the drone.
The definition of situation awareness given in [12] is adopted in this work. This
definition considers the system’s ability to sense and comprehend the current state
and project how the state will develop in the future. This chapter focuses on the
comprehension part of situation awareness.

It is proposed in [35] that giving the robotic system a holistic understanding of risk
can give it the situation awareness needed to ensure safety. Several research articles
have used a risk measure to control robotic systems. Most of the articles consider
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Figure 5.1: The ScoutDI tethered drone used as the case study. Courtesy ScoutDI.

a single, or a few, sources of risk (often called hazards), such as the variance in the
current and future position of the robotic system and dynamic obstacles [20]–[23],
variance in the future position of the robotic system and mapping uncertainty [24],
[46], uncertainty in traffic density [102], or time, distance, and/or relative speed to
obstacles [14]–[17]. These works demonstrate how risk information can increase the
situation awareness of the system, but do not produce the holistic understanding
needed to ensure safety.

The possibility of including multiple risk sources which could give a holistic under-
standing of risk is discussed in [30]. They use a risk map when planning the path of
an autonomous ship. This risk map could be built based on multiple factors such as
sea-state, visibility, and maneuverability. The concept of using risk maps to aggre-
gate different sources of risk has been explored in [31]–[34] as well. [44], [45] presents
a concept called Safety-Driven Behaviour Management. This concept consists of
a situation model that is used to evaluate the risk level. [44], [45] present differ-
ent general approaches for extracting information from the environment, building
the situation model, and assessing the risk. However, they do not consider how
decisions are to be made based on the risk level.

Another concept is presented in [35] called supervisory risk control. They propose
to use a risk model that is built based on the results of risk analysis in the control
of autonomous systems. A risk analysis is a systematic process to identify what can
go wrong, how likely it is, and what the consequences would be [64]. Performing
a risk analysis gives a foundation for which factors that should be included in the
model and how they relate to each other. In [35] the results of a

 

 

STPA [50] are
used as a basis to make a

 

 

BBN [103] that can evaluate the risk during operation.
[35] does not consider how the

 

 

BBN is to be used for online risk control. Different
possibilities for using the result of the risk analysis in control systems are discussed
in [104]. Different approaches where

 

 

BBNs are used for decision-making can be
found in [38]–[41].
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Both [36] and [37] continue the work in [35] by developing supervisory risk con-
trollers for different case studies with the proposed method. [36] controls the ma-
chinery mode of an autonomous ship by considering, amongst others, the risk eval-
uated with a

 

 

BBN during operation. Their work uses an
 

 

STPA as the basis for mak-
ing the

 

 

BBN, as in [35], but extends the method to also consider consequences. [37]
uses the same general idea but uses a hazard identification (

 

 

HAZID) as the basis
for making the

 

 

BBN instead. The resulting supervisory risk controller decides on
an adequate distance to the ice sheet for under-ice autonomous underwater vehicle
operations.

Several articles have presented risk analyses for different drone operations [105]–
[113]. None of these works have considered using the results of the risk analysis for
online decision-making. Different

 

 

BBN models of drone operations can be found in
[42], [43], [105], [106], [114]–[117]. Only [42], [43] consider using the models online
to monitor the system, but they do not consider using the model for automatic
decision-making. Among the surveyed literature, only [44], discusses using an online
risk model for automatic decision-making for drone operations, but considers it
outside of their scope. None of the surveyed literature are using a holistic risk
model for automatic decision-making to ensure safe drone operations.

The goal of the supervisory risk controller is to reduce the risk of accidents by
modifying safety-critical parameters during operation. This can be compared to
the goal of run-time assurance which is to ensure safety. Run-time assurance, as
presented in [118], considers an operational envelope, fixed limits on different states
of the system, that ensures that no accident will occur if the limits are upheld. By
instead using risk, as in the supervisory risk controller, the system can get a holistic
overview where it can consider how the different states interact with each other
to create hazardous events. A fixed separate threshold on each state will most
often be a more conservative approach, as not considering the interconnections
must be compensated for by increasing the safety margins. Real-time assurance,
as presented in [118], ensures safety by switching from a non-assured complex
function to a simpler but assured function when the system approaches the limits
of the operational envelope. The assured function shall then guarantee that the
system never leaves the limits of the operational envelope, and preferably move
the system back to the state where the complex function can again be used. This
scheme ensures that the whole system stays within an operational envelope even
though it employs a complex function that cannot be assured. The supervisory risk
controller takes a different perspective by instead employing a risk model made on
the basis of a risk analysis to reduce the risk of accidents. Run time assurance and
a supervisory risk controller have different domains where they are important, and
many systems could potentially benefit from having both.

The contribution of this chapter is to further develop the method proposed in [35],
and to apply and experimentally test it on an industrial inspection drone case study.
This work extends the methods proposed in [35]–[37] by modeling the relationship
between causal factors and the available measurements, and by extending the

 

 

BBN
used in these works to a

 

 

DDN. These changes enable the system to identify the
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Measurements,
State estimates

Controlled system

Operator/user

Optimal parameter  
configuration

Situation awareness,
Request abort 

Supervisory risk
controller

Figure 5.2: Overview of a supervisory risk controller that monitors a system and modifies
parameters that determine how the system acts.

state of causal factors by combining information from different measurements over
time, thereby increasing the situation awareness of the system. This work is the
first to apply a real-time supervisory risk controller in an experimental setting
where it changes parameters affecting the behavior of a robotic system to ensure a
safe operation.

The rest of the chapter is structured as follows. Section 5.2 outlines the general
method which is applied to the inspection drone case study in Section 5.3. Results
from the experiments are presented in Section 5.4. The results and method are
discussed in Section 5.5 before a conclusion is given in Section 5.6.

5.2 Method

The work in this chapter considers a supervisory risk controller [35] as shown
in Figure 5.2. The supervisory risk controller sits on top of the existing control
system and monitors how the system operates. It uses this information, together
with information supplied by the human operator, to build its situation awareness.
The supervisory risk controller can affect the operation in three different ways.
One of the ways is to modify parameters in the different lower-level controllers to
ensure an acceptable risk of continuing the operation. The second is to request
that the human operator aborts the mission if no parameter choice makes the risk
acceptable. Lastly, the supervisory risk controller forwards its information about
the situation to the human operator to increase their situation awareness.

In [35], a two-phase process for designing the risk model that will be used in the
supervisory risk controller is proposed. The chapter adds a third phase that is
considering the control algorithm itself:

A: Perform risk analysis to identify how the system can fail.
M: Develop a risk model to evaluate the risk during operation based on the risk

analysis.
C: Develop a control algorithm that based on the risk model changes control
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system parameters identified in the risk analysis and evaluates whether an
abort should be requested.

The risk analysis is performed to identify causal factors and analyze how they
can lead to a loss. Performing a risk analysis increases the chance that potentially
disastrous events are considered and handled. The purpose of the risk model is
to evaluate the risk during operation based on the factors identified with the risk
analysis. Having a single model that combines all factors enables the system to get
a holistic understanding of the situation.

The supervisory risk controller, as shown in Figure 5.3, uses the risk model, which is
continuously updated with new measurements, to evaluate the optimal parameter
configuration. Modifying control system parameters based on the risk level during
operation enables the robotic system to adapt to the current situation and make
risk-based decisions. In the opposite case, with a static parameter choice, a trade-off
has to be made between safety in a worst-case situation and efficiency under normal
conditions. Adapting the control parameters based on the risk allows the system to
use conservative parameters in worst-case conditions and liberal parameters under
normal conditions, thereby increasing both safety and efficiency.

An overview of the process of making the supervisory risk controller is given in
Figure 5.4, which is explained in more detail in the subsequent sections. When
following this procedure it can become necessary to revise previous steps with the
knowledge gathered from subsequent steps.

Evaluated risk

Risk Model  
(DDN)

Parameter  
configuration Optimal control

algorithm

Measurements,
State estimates

Optimal parameter  
configuration

Situation awareness Request abort

Figure 5.3: The internal workings of the supervisory risk controller shown in Figure 5.2.
A risk model is gradually updated with measurements and state estimates. An optimal
control algorithm finds the optimal parameter configuration by evaluating the risk of
different configurations using the risk model.
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A: Risk analysis 
Extended STPA 

M: Risk model 
DDN 

C: Control algorithm
Optimization 

A1: Define the  
purpose of the

analysis

A2: Model the control
structure

A3: Identify unsafe
control actions

 A4: Identify loss
scenarios

C1:Define parameters
to control

C2: Define the cost
function

C3: Choose adequate
optimization algorithm

M2: Model
consequences

M3: Model
measurements

A5: Analyze
consequences

A6: Identify
measurements

M5: Define and
quantify states

M1: Model scenarios

M4: Model dynamics

Figure 5.4: Overview of the proposed process when using an extended
 

 

STPA for risk
analysis, a

 

 

DDN for risk modeling, and an optimization algorithm for control. Dashed
lines represent interactions between the three phases.
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5.2.1 Risk analysis
The first part of the supervisory risk controller design is to perform a risk analysis.
This analysis should be done by risk specialists together with domain experts who
have experience operating the system under investigation. When possible, historical
data from operations, or data from controlled experiments, should be used to give
insight into the system under investigation.

[35] proposes to use
 

 

STPA based on [50] for the first phase of the analysis (A).
Although there are other relevant methods, the advantage of

 

 

STPA is that it has
a systems approach that enables it to identify emergent failures which occur due
to the interactions of system components [50]. This property makes

 

 

STPA suitable
for analyzing robotic systems due to their complex interactions of software and
hardware components.

 

 

STPA has been shown to identify accident scenarios that
are difficult to identify with other methods [119].

The original purpose of the
 

 

STPA was to identify constraints for the system de-
sign. As this chapter considers using the results for automatic decision-making two
additional steps are added. Steps A1 to A4 are based on [50], while step A5 is
similar to the expansion proposed in [36], and step A6 is a novel contribution in
this chapter.

A1: Define the purpose of the analysis by defining the system that is to be an-
alyzed, together with the system boundaries, which losses should be consid-
ered, and system-level hazards that can cause these losses.

A2: Model the system as a hierarchical control structure. This model describes the
system as a set of controllers that interact with control actions and feedback.
Each controller has a process model that defines what it knows about the rest
of the system and the environment. The responsibilities of each controller are
defined.

A3: Identify unsafe control actions (
 

 

UCAs). These are actions that in some con-
text can cause a hazard. This step should not consider whether it’s possible
or likely for such an action to be performed in this context.

A4: Identify scenarios that describe how an
 

 

UCA can occur.
A5: Identify how different causal factors affect the severity of losses caused by the

scenarios identified in step A4.
A6: Identify measurements that give information on causal factors. Measurements

in this context are not limited to direct sensor readings but can be any in-
formation available to the supervisory risk controller during a mission.

5.2.2 Risk model
The second phase of the supervisory risk control design process is to develop the
online risk model. The risk model evaluates the risk, probability distribution over
consequences, of continuing the operation based on the information available to
the model.
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Figure 5.5: Example structure for the resulting
 

 

DDN. M1 through M3 refer to steps
introduced in Section 5.2.2.

Following [35] a
 

 

BBN is constructed based on the result of the
 

 

STPA. A
 

 

BBN is
used since it can handle many different types of factors where precise relationships
are not known, and as it naturally evaluates probabilities. These features enable

 

 

BBNs to produce the holistic risk awareness needed. This chapter extends the
 

 

BBN
to a

 

 

DDN allowing the model to incorporate information over time and to consider
the decisions made by the system.

The following steps are based on [35] but are expanded here to include the infor-
mation gathered in steps A5-A6 and to consider a dynamic model.

M1: Model the relationships between causal factors and the occurrence of the
scenarios defined in step A4.

M2: Model the relationship between scenario occurrence and losses based on step
A5.

M3: Model the relationship between causal factors and measurements based on
step A6.

M4: Model dynamics by connecting causal factors across time.
M5: Define the states of the nodes in the network and quantify the relationships

between nodes based on historical data, data from controlled experiments,
and expert judgments.

An example of how the resulting network can look is given in Figure 5.5.

5.2.3 Supervisory risk control algorithm
The last phase of the supervisory risk controller design is the development of the
control algorithm itself. Different approaches for utilizing risk measures in control
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algorithms are presented in [104]. In this work, a cost optimization approach is
chosen as it can directly use the evaluated risk in its cost function. The general
process for using the risk model to find the optimal set of control parameters is as
follows:

1. Insert observations on the measurement nodes in a new time step in the
 

 

DDN.
2. Find the choice of parameters that minimizes a cost function that considers

the risk. The risk is evaluated by first inserting the parameter choice as
evidence in the parameter nodes in the new time step of the

 

 

DDN and then
by evaluating the probability distribution of the loss nodes at this time step.

3. Apply the optimal parameter choice to the relevant controllers.

The control algorithm is designed with the following steps:

C1: Chose which parameters to modify.
C2: Define the cost function considering both the risk and the cost of the param-

eter choice.
C3: Choose an optimization algorithm.

The parameters that are relevant are factors identified in steps A4 and A5 that
can be modified by the supervisory risk controller during operation.

The cost function should consider the different risks, probability distribution over
consequences, for the different losses, and the reduction in operational efficiency
or system capabilities due to changing the parameters. How the parameter choice
affects the operation must be quantified and included as a term in the cost function.
The risks should be constrained to ensure an acceptable risk level. If no choice
of parameters fulfills the constraints then the parameters that minimize the risk
should be chosen and a mission abortion should be requested.

The resulting optimization problem is in the general case a nonlinear integer pro-
gram without derivative information. This is due to the

 

 

DDN being able to model
nonlinear interactions, having discrete states, and not having derivative informa-
tion available. If no more assumptions can be made, then the optimal solution can
only be found by searching over all possible combinations of parameter choices. If
the

 

 

DDN and the cost function are constructed such that the local optimum of
the cost function is equal to the global optimum then algorithms such as the hill
climbing algorithm [48] can be used. If this is not the case then heuristic algorithms
such as simulated annealing [48], [120] can be used to get a good but not necessarily
optimal solution.

5.3 Industrial drone inspection

A case study of an industrial inspection quadcopter drone developed by the drone
inspection technology company ScoutDI is considered. The drone is used to visu-
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ally inspect hard-to-reach locations in industrial environments. A human operator
controls the velocity of the drone using a joystick. An obstacle avoidance system
modifies the velocity command based on information from a lidar mounted on the
drone to prevent collision with obstacles. The drone is connected to a ground sta-
tion with a tether which ensures reliable communication and supplies power to the
drone. Note that an experimental development drone was used in this work. Cru-
cial parts of the drone, such as the obstacle avoidance algorithm and parts of the
hardware configuration, differ from the ones ScoutDI use in their present customer-
ready products. Any risks identified in this chapter, therefore, do not necessarily
represent risks in the customer-ready products of ScoutDI.

5.3.1 Risk analysis
This risk analysis was done in cooperation with ScoutDI through multiple work-
shops, informal meetings, and stress testing of the system. The initial workshop
was performed with the lead software engineer in the spring of 2021 and followed
the

 

 

STPA procedure [50] as presented in Section 5.2.1. This was followed up by
informal meetings with the lead hardware engineer and CTO through the summer
and early fall of 2021. These meetings were more of a loose brainstorming process,
where different

 

 

UCAs from the
 

 

STPA were used as starting points. The results
from these meetings were used to update the initial

 

 

STPA. The stress testing was
done in the spring of 2022 and consisted of exposing the drone to situations that
were identified in the workshop and in the informal meetings to be potentially
hazardous. These tests gave insight into how the drone works, how it can fail, and
how different failure causes can be measured. Getting information from the lead
software and hardware engineer together with the CTO ensured a wide coverage
of different potential problems.

A1 - Define the purpose of the analysis

The goal of this case study is to develop a supervisory risk controller that monitors
the drone’s operation and modifies different control parameters to ensure an ac-
ceptable risk level. Focus is therefore placed on onboard components of the drone
that are related to obstacle avoidance, navigation, and control. The operator is
located outside the room where the drone operates, there are therefore no humans
present in the drones operating environment. The analysis will therefore focus on
the following losses:

L1: Damage to drone or facility.
L2: Mission aborted.

The hazards that can lead to these losses (losses marked with square brackets),
which the supervisory risk controller has some control over, are as follows:

H1: Physical contact with obstacle [L1][L2].
H2: Loss of controlled flight [L1][L2].
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Velocity command

Joystick input

Obstacle avoidance 
[obstacle state] 

Motor command

Flight controller
[navigation estimate] 

Laser  
height  

measurementDrone platform

LIDAR
scan

IMU 

Figure 5.6: Control structure for the inspection drone case study. The process models
needed by the different controllers are marked in brackets.

A2 - Model the control structure

The control structure is shown in Figure 5.6, which consists of an obstacle avoidance
module, the flight controller, and the drone platform.

The obstacle avoidance system gets a joystick input from the human operator and
generates a velocity command which it sends to the flight controller. The obstacle
avoidance system is responsible for ensuring that the drone follows the safe part
of the joystick input while maintaining a larger distance than the safety distance
to all obstacles. This case study applies a simple obstacle avoidance algorithm
that removes the part of the joystick input that points toward the closest obstacle
closer than the safety distance. Additionally, a velocity is added that pushes the
drone away from the closest obstacle closer than the safety distance. The obstacle
avoidance system needs a process model of the location of obstacles relative to the
drone. This process model is derived from lidar measurements. As there can be
dust or other particles in the air that may cause sporadic reflections a dust filter
is applied. This dust filter removes points close to the drone that do not have a
sufficiently close point in the previous lidar scan.

The flight controller evaluates motor commands for each of the four motors. The
primary responsibility of the flight controller is to keep the drone stable, the sec-
ondary responsibility is to follow the velocity command given by the obstacle avoid-
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ance module. This means that the flight controller will ignore the velocity command
when needed to stabilize the drone. To control the drone, the flight controller has
a process model of the navigational state of the drone. An extended Kalman filter
(

 

 

KF) is used to integrate information from the lidar and the inertial measurement
unit (

 

 

IMU).

The drone platform consists among other things of rotors, sensors, and a power
controller. The power controller supplies the motors with the correct voltage to
reach the motor command provided by the flight controller. The drone platform is
in this analysis considered the controlled process.

The responsibilities of the controllers are as follows:

R1: The obstacle avoidance system is responsible for keeping the drone further
away from obstacles than the safety distance [H1].

R2: The obstacle avoidance system is responsible for following the safe part of
the joystick input.

R3: The flight controller is responsible for generating a motor command that
keeps the drone stable and in the air [H2].

R4: The flight controller is responsible for generating motor commands that follow
the velocity commands close enough to ensure that the drone does not deviate
outside of the safety distance [H1].

Hazards relevant to the different responsibilities are marked in square brackets.

A3 - Identify unsafe control actions

The
 

 

STPA handbook [50] provides four categories for
 

 

UCAs. These are how the
control action can cause a hazard by: 1) not being provided, 2) being provided, 3)
being provided too late or out of order, 4) being stopped too soon or applied too
long. These categories are useful when the controllers communicate with discrete
or sporadic commands, such as activating a module. Since this case study only
considers controllers that continuously send each other time-varying control inputs,
these categories were of less help.

Instead, it was considered how the controllers could fail to fulfill their responsibil-
ities. Based on this approach the following

 

 

UCAs were identified:

U1: Obstacle avoidance system provides a velocity command towards an obstacle
closer than the safety distance [H1].

U2: Obstacle avoidance system does not provide a velocity command away from
an obstacle that is closer than the safety distance [H1].

U3: Flight controller provides motor commands that are inadequate to keep the
drone within the safety distance of the velocity command [H1].
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U4: Flight controller provides motor commands that are inadequate to stabilize
the drone [H2].

Relevant hazards are marked in square brackets.

A4 - Identify loss scenarios

When defining the scenarios it is useful to have a list of possible scenario cat-
egories. The

 

 

STPA handbook [50] gives a long list of categories that should be
considered. Many of these categories, however, are most relevant during the design
of the system. The following refined points based on [50] were considered the most
interesting for supervisory risk control:

• How can measurement errors make the process model wrong thereby causing
an

 

 

UCA?
• How can the process model be wrong even with correct measurements thereby

causing an
 

 

UCA?
• How can environmental conditions cause a control action to become unsafe?
• How can the control algorithm generate

 

 

UCAs even with a correct process
model and sufficient environmental conditions?

• How can commands from a higher level controller cause an
 

 

UCA?
• How can the actuator that is executing the control command or communica-

tion channel transmitting the command cause it to become unsafe?

The different loss scenarios were identified by going through the list above for each
of the

 

 

UCAs. The resulting full list of scenarios is found in Section 5.7. As the
goal of this chapter is to work as a proof of concept, it is considered outside the
scope to consider all of the identified scenarios. A subset of the scenarios that are
considered is given in Table 5.1. Note that all scenarios related to computational
hardware and navigational state estimation were chosen to be outside the scope of
this chapter.

Table 5.1 also contains causal factors that were identified as substantially affecting
the likelihood of the scenario occurring. When evaluating causal factors it is neces-
sary to decide on an adequate level of detail. The approach used in this chapter was
to start by introducing quite general causal factors and then refining them when
parts of the factors were relevant for other scenarios, losses, or measurements.

While stress testing the drone it was found that even when the drone was standing
still with no disturbance, good motors, low tether tension, and a large distance to
walls, floor, and ceiling, the motor load was still varying quite a lot. The motor load
could suddenly increase for a few seconds before going down again to the expected
level. This phenomenon will be referred to as varying motor effects in the rest of
the chapter as its cause was not identified.
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Table 5.1: Refined scenarios based on the complete list given in Section 5.7. Parameters
that the supervisory risk controller can control are marked with a [P].

ID Scenario Causal factors
Scenarios related to [U1] and [U2]
S1: Thin obstacles that are detected in only

some of the lidar scans are filtered away
as noise causing the drone to come closer
to the obstacle than the safety distance.

Environment unobservability

Scenarios related to [U3]
S2: Safety distance smaller than the braking

distance of the drone causes the drone to
violate the safety distance.

Maximum speed [P]
Safety distance [P]

S3: External disturbance causing violation of
the safety distance.

Disturbance
Safety distance [P]

S4: Loss of control authority due to motor
saturation causes violation of the safety
distance.

Motor wear
Motor load to counteract
tether tension
Maximum vertical accelera-
tion [P]
Motor load to counteract dis-
turbances
Varying motor effects
Safety distance [P]

Scenarios related to [U4]
S5: Physical contact with obstacle causes loss

of controlled flight.
Physical contact with obsta-
cles [H1]
Speed [P]

S6: Motor failure causes loss of controlled
flight.

Motor wear

S7: Excessive disturbance causes loss of con-
trolled flight.

Disturbances
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Table 5.2: Measurements providing information on the identified causal factors.

Measurement Causal factors
Number of points filtered away by the
dust filter

Environment unobservability
Dust in the air

Amount of dust on the camera feed Dust in the air
Roll/pitch error (measured compared
to reference)

Disturbances

Motor load Motor wear
Motor load to counteract tether ten-
sion
Motor load to counteract disturbance
Varying motor effects

Drone tilt (static roll/pitch angles) Diagonal tether tension
Laser down distance Height over ground

A5 - Analyze consequences

The potential consequence to the drone if it contacts an obstacle is that it can
induce a large enough disturbance to cause loss of controlled flight, as described in
scenario [S5]. Increasing the speed of the drone increases the kinetic energy which
makes this more likely. The drone can also contact an obstacle in a way that causes
a loss of control even at lower speeds. This is more likely to occur when the drone
loses control authority due to motor saturation as the drone then moves in an
uncontrolled manner.

Loss of control will in all cases cause the mission to be aborted [L2] as the drone has
to be checked for damages before the mission can be continued. Additionally, it can
cause damage to the drone or the facility [L1]. The severity of the damages depends
mainly on the potential energy of the drone as the drone operates at relatively low
speeds. This means that the damage potential increases with the height over the
ground.

A6 - Identify measurements

Information on how different causal factors can be measured is based on the stress
testing of the system. The stress test exposed the system to situations where the
causal factors given in Table 5.1 were in an adverse state. It was then analyzed
how this affected different measurable quantities. It was also analyzed which other
factors affected the measurements as the measurement could also be caused by
factors that do not increase the risk. The resulting list of measurements is given in
Table 5.2.

Hard-to-detect obstacles, such as wire fences and welding joints, may only sporadi-
cally be detected by the lidar scans. These sporadic measurements may be removed
by the dust filter. The number of points filtered away by the dust filter, therefore,
does not only give information on the amount of dust in the air but also on the
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environment unobservability. Whether there is dust in the air can be seen with
the camera. In this proof-of-concept, the human operator must evaluate the pres-
ence of airborne dust from the camera feed and forward it to the supervisory risk
controller.

The level of external disturbances affecting the drone can be estimated by com-
paring the roll and pitch angle setpoints given by the flight controller with the
observed roll and pitch angles. The observed roll and pitch angles should be a de-
layed version of the commanded value due to the dynamics of the drone. Any roll
or pitch angles that are not caused by a command are caused by disturbances. To
compensate for delays, the commanded values for the last 1 second are recorded,
and the maximum and minimum values are extracted. If the measured value is be-
tween the maximum and minimum then the error is set to 0. If not, then the error
is equal to how much larger or smaller the value is than the maximum or minimum.
The Euclidean norm of the roll and pitch angle errors are taken to produce a single
value. Note that constant offsets such as diagonal tether tension will not greatly
affect this measurement.

Increases in the load of the motors are in addition to joystick inputs caused by
having to counteract tether tension, disturbance, motor wear, and quickly varying
motor effects. When evaluating the motor load, the expected effect of the joystick
input should be simulated and removed such that the measurement only gives
information on the state of the environment and the drone. Experiments showed
that the increased motor load by accelerating in the horizontal plane was minimal,
only when changing the height of the drone was there a noticeable effect. To avoid
having to evaluate the expected motor load from the joystick, focus was placed on
horizontal motion during most of the experiments.

The motor load needed to lift the tether can be directly calculated when the tether
hangs straight down. The tether may hang at an angle if it is approaching full
extension, it is stuck, or it is exposed to a lot of friction. In these cases, the tether
tension may exceed what is expected when considering height alone. If the tether
is at an angle, then a horizontal force will act on the drone. The drone must then
tilt to counteract this force, which can be measured by the roll and pitch angle
measurements. How much motor load is needed to counteract the increased tether
tension caused by the diagonal tether depends on factors that are not measured.
The additional load must be zero when the drone is not tilted and is more likely
to be large with larger drone tilts. The tilt of the drone is evaluated by low-pass
filtering the roll and pitch angles with a time constant of 3 s to filter away quick
variations due to disturbance and changes in joystick input. The tilt is then the
Euclidean norm of the low-passed roll and pitch angles.

5.3.2 Risk model

Figure 5.7 shows the
 

 

DDN made from the results of the risk analysis by following
the steps outlined in Section 5.2.2.
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Figure 5.7: DDN for the industrial inspection drone. Dark blue nodes represent interme-
diate, scenario, and loss nodes. Parameters the supervisory risk controller can control are
shown in orange, measurement nodes in green, and underlying causal factors in light blue.
The causal factors are dynamic. [L1] and [L2] represent losses introduced in Section 5.3.1
step A1. [S1] to [S7] represents scenarios introduced in Section 5.3.1 step A4

M1 and M2 - Model causal factors, scenarios, and losses

The scenarios related to inadequate obstacle avoidance ([S2], [S3], [S4]) do not
directly cause a loss but can do so through scenario [S5]. Scenario [S1] does not
directly cause a loss but negates the effect of the safety distance which can make
scenarios [S2], [S3], [S4], and [S5] more likely.

M3 - Model measurements

Some of the measurements were introduced as separate nodes that are affected by
the underlying causal factors. Introducing separate measurement nodes enables the
modeling of measurement uncertainty. A separate node was not introduced when
the uncertainty was deemed insignificant to the resulting behavior.

M4 - Model dynamics

The causal factors that are not directly observable (such as height over ground) or
are known parameters (such as safety distance) are made dynamic by connecting
them to their previous state. An update frequency of 1s was chosen for the net-
work as it was considered sufficiently fast to react to changes in the drone and its
environment.
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M5 - Define and quantify states

The
 

 

CPTs used by
 

 

BBNs,
 

 

DBNs, and
 

 

DDNs can be quantified based on operational
data and expert judgments. Even though the stress testing gave some data, it was
far from sufficient for direct quantification. Experience gathered from the stress
testing was used as a basis for quantifying based on an expert judgment.

There are multiple challenges when quantifying
 

 

CPTs based on expert judgments.
One type of challenge relates to psychological biases that affect the judgment pro-
cess [121]. Another type comes from determining all the values of the

 

 

CPTs. The
size of the

 

 

CPTs quickly grows large when the number of parent nodes and the
number of discrete states increases. Determining all the values in a consistent man-
ner can be challenging. Different approaches for alleviating this challenge are pre-
sented in [122]. All of the presented methods define some anchor points, add some
uncertainty, and then use different interpolation functions to fill in the rest of the
values.

A different approach is followed in this work. First, a qualitative description of how
we expect the nodes to relate to each other is given. A mathematical function is then
constructed to behave similarly to the qualitative description. This step is similar to
the different interpolation methods surveyed by [122], but with the difference that
knowledge about how the nodes should relate to each other is used in the design
of the function. The next step is to tune parameters in the function by setting
different input values and testing if the output is as expected. The parameters of
the function are then modified until they give reasonable output values. This step
is similar to specifying anchor points. We found this process easier to follow as it
more directly could utilize our knowledge of input-output-relationships.

The list of descriptions, equations, and the definition are given in Tables 5.3 to 5.6,
where N (µ, σ) represents a normal distribution with mean µ and standard de-
viation σ, B(p) represents a Bernoulli distribution that takes the value 1 with
probability p, U(a, b) represents a uniform distribution between a and b, and E(a)
represents an exponential distribution with parameter a. The states of all nodes
are limited to either be in the Boolean set {0, 1}, or to be in the real-valued in-
terval [a − b]. Values outside the interval are set equal to the closest value inside
the interval. It’s important to note that the mathematical description should not
be seen as exact relations between the nodes. It should rather be seen as a way
of encoding the qualitative knowledge of the expert in a way that a computer can
use.

The initial states of the different causal nodes are assumed to most likely be in
the best possible state. The motor wear is assumed to have a very low chance
of starting in a significantly worse state, while the other nodes have a significant
chance of starting in a significantly worse state. This behavior is modeled with a
doubly truncated normal distribution with zero mean where the variance defines
how likely it is that the node is in a worse state. The resulting distributions are
given in Table 5.5. Different distributions, such as the beta distribution, could
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have been used as well. The beta distribution has the advantage of naturally being
within 0 and 1, thereby avoiding the truncation which is needed for the normal
distribution. A drawback with the beta distribution is that its form is defined
by shape parameters that the authors found less intuitive to work with than the
variance of the normal distribution. This together with the fact that the truncated
normal distribution has been previously used for modeling qualitative judgments
[123] made the choice fall on the normal distribution.

All of the measurement nodes (Table 5.6), except those that are leaf nodes, are
modeled as consisting of a normal distribution plus an exponential distribution.
The normal distribution acts as a low-pass filter smoothing out noise. The expo-
nential distribution biases the distribution towards measuring good values. This
produces asymmetric behavior where the underlying state quickly changes when a
poor state is measured, but changes slower when a good state is measured. This
enables the system to react quickly to worsening conditions while still keeping con-
servative for a while when the situation seems to improve. Note that this produces
a biased estimator as the mean measurement will be lower than the underlying
causal factors. This bias is partly counteracted by adding its effect to the mean of
the normal distribution and by considering the bias when evaluating the risk. This
solution is not perfect, but as exact values are not needed to evaluate the risk it is
deemed acceptable.

The disturbance and environment unobservability nodes (see Table 5.5) are modeled
as slowly varying. The variation consists of a scaling factor that contains the state
and added normally distributed white noise. The state of the motor wear can only
get worse. A very small non-negative random trend is therefore added to the motor
wear at each time step. The varying motor effect can suddenly jump up, this is
modeled as a somewhat low probability of the state becoming any worse state with
equal likelihood. The varying motor effect should also gradually decrease, this is
modeled as a pure negative normally distributed white noise. This difference in
the model for motor wear and varying motor effect ensures that short-lasting high
motor loads are explained with the varying motor effect, while long-lasting effects
are explained as motor wear.

Note that for nodes related to component health, such as motor wear, methods
from reliability analysis [124] can be used to better model how the component will
degrade over time. A very simple model is employed here to limit the scope of this
article. Future work on including methods from reliability analysis in supervisory
risk control would be of interest, perhaps in a case study with more focus on the
health of different hardware components.

The continuous definitions given in this section are discretized using the tools avail-
able in GeNie [125]. GeNie can evaluate

 

 

CPTs based on equations with specified
discretization intervals. A tradeoff between computational burden and precision
has to be made when choosing the number of discretization intervals. For this case
study, 10 intervals were chosen. The measurement nodes and causal factors have
uniformly distributed intervals. The scenario nodes have intervals that produce a
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Table 5.3: The definition of scenario and loss nodes.

Name State
definition

Qualitative description Function

L1) Damage
to drone or
facility

Value loss per
time

The damage potential increases
linearly with height, there is still
a risk of damage at low heights.
Full tether extension is 40m.

0.8 (0.1
+0.3Height over ground/40)
(S5 + S6 + S7)

L2) Mission
aborted

Value loss per
time

The mission is always aborted if
a loss of control occurs. The cost
is substantially lower than the
worst-case cost of damaging the
drone.

0.2 (S5 + S6 + S7)

S7) Excessive
disturbance
causes loss of
controlled
flight

Number of
occurrences
per time, [0-1]

Much more likely to occur with
very high disturbance.

(Disturbance)30

S6) Motor
failure causes
loss of
controlled
flights

Number of
occurrences
per time, [0-1]

More likely to occur with high
motor wear.

(Motor wear)3

S5) Physical
contact with
obstacle
causes loss of
control

Number of
occurrences
per time, [0-1]

Increasing the kinetic energy
increases the chance of losing
control. Control can still be lost
at low speeds if the contact is
uncontrolled. For scenario S2 a
bit too small a safety distance
will let the drone reduce the
speed somewhat before impact.

S4(0.3 + 0.1Maximum speed2)
+S3(0.2 + 0.1Maximum speed2)
+S2 0.4 max(Maximum speed −
Effective safety distance/0.9, 0)2

S4) Motor
saturation
causing
deviation
beyond safety
distance

Number of
occurrences
per time, [0-1]

Much more likely to occur when
total motor load is close to
saturation. The frequency
decreases with an increased
safety distance. Deviation beyond
safety distance can still occur,
even though unlikely, at the
largest safety distance.

max(1.1 total motor load − 0.1 +
Maximum vertical acceleration/10, 0)4
(0.01 + 0.99 (1.2
−Effective safety distance)2)

S3)
Disturbance
causing
deviation
beyond safety
distance

Number of
occurrences
per time, [0-1]

Frequency of occurrence increases
quickly when the disturbance
exceeds the safety distance.
Worst-case disturbance requires a
safety distance of around 0.7.

(Disturbance0.5
−Effective safety distance)3

S2) Safety
distance
smaller than
braking
distance

Number of
occurrences
per time, [0-1]

Through experimentation it was
found that the braking distance
was approximately linear with a
coefficient of 0.9. The frequency
should increase quickly when the
safety distance is smaller than
the braking distance.

max(0.9maximum speed
−Effective safety distance
+0.6, 0)10

S1) Presence
of
unobservable
obstacles

Boolean,
{0,1}

Frequency of occurrence increases
when the environment
unobservability increases.

B(Environment unobservability4.5)
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Table 5.4: The definition of intermediate nodes.

Name State defini-
tion

Qualitative description Function

Effective
safety
distance

Distance
[0.1-1.2]

Equal 0 if there are unobserv-
able obstacles present.

S1Safety distance

Total motor
load

Part of mo-
tor capacity,
[0-1]

Motor load increases linearly
with all factors.

Motor wear
+Varying motor effects
+Motor load from turbulence
+Motor load from tether

Motor load
from tether

Part of mo-
tor capacity,
[0-1]

At the maximum height, the
drone must lift the entire
tether weight which uses 70%
of the available motor ca-
pacity. When the drone is
tilted the motor load of the
drone can increase beyond
what’s expected from the
height alone as the drone has
to work against the tether
tension. How much depends
on a lot of unknown factors
and is therefore uncertain.

0.6Height over ground/40
+max(N (1, 0.3), 0)
(Drone tilt − 0.03)/0.1

Motor load
from tether

Part of mo-
tor capacity,
[0-1]

Experiments show that the
disturbance often causes a
motor load with equal mag-
nitude, but with a lot of vari-
ation.

max(N (1, 0.3), 0)
Disturbance

Table 5.5: Initial distribution and transition probabilities for causal nodes. N̄ (µ, σ)
represents the doubly truncated normal distribution where all values outside of [0,1] are
omitted, and the resulting distribution is normalized. x− represents the previous state of
the same node.

Name State definition Initial
distribution

Transition probability

Motor wear Part of motor
capacity, [0-1]

N̄ (0, 0.01) x− +max(N (0, 0.0001), 0)

Varying motor
effect

Part of motor
capacity, [0-1]

N̄ (0, 0.6) x− −max(N (0, 0.1), 0)
+B(0.05)U(0, 1− x−)

Disturbance [0-1] N̄ (0, 0.3) N (0.95x−, 0.05)
Environment
unobservability

[0-1] N̄ (0, 0.2) N (0.92x−, 0.18)
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Table 5.6: Definition of measurement nodes. Note that the distribution of measurements
nodes that also are leaf nodes have no effect and are therefore set to uniform distributions.

Name State definition Distribution
Height over ground [0m - 40m] U(0, 40)
Drone tilt [0.03rad - 0.1rad] U(0.03, 0.1)
Measured motor load [1700rpm - 1949rpm]

(
N (Total motor load + 0.2, 0.1)−
E(1)

)
(1949− 1700) + 1700

Measured roll/pitch
error

[0.002rad - 0.04rad] (N (Disturbance+0.1, 0.1)−E(1))
(0.04− 0.002) + 0.002

Camera noise {0,1} B(0.5)

Number of filtered
away points

[0 points - 6 points]


U(0, 6) Camera noise = 1

6
(
N (environment

unobservability + 0.1,

0.3)− E(1)
) else

logarithmic scale. The upper bound of each interval for the scenario nodes is eval-
uated with the function (100(i+1)/N − 1)/99 where i ∈ {0, ..., N − 1} is the index
of the interval while N is the number of intervals. The first interval starts at 0 and
the last one ends at 1. A problem when adding multiple discretized states, such as
in the nodes total motor load and motor load for tether, is that the discretization
uncertainty accumulates. To avoid this problem the states were rounded down to
the lower end of the interval before adding. This ensured that the output of the
sum was in its lowest possible state if all inputs were in their lowest possible state.

Control algorithm

Safety distance (D), maximum speed (S), and maximum vertical acceleration (A),
were chosen as parameters the supervisory risk controller should control. These
parameters were chosen as they were identified as greatly affecting the identified
scenarios. The supervisory risk controller will only change the vertical component of
the maximum acceleration as altering the horizontal component made the system
less stable. The motor load needed to accelerate in the vertical direction is also
much larger than in the horizontal direction, making the vertical direction more
important. The following cost function was chosen:

{D,S,A} =argmin
(
a(D −Dlb)/(Dub −Dlb)

+ b
(
1− (S − Slb)/(Sub − Slb)

)
+ 0.25

(
1− (A−Alb)/(Aub −Alb)

))
s.t. E[L1(D,S,A)] + E[L2(D,S,A)] < 0.01

(5.1)

The safety distance can take values between Dlb = 0.1m and Dub = 1.2m, max-
imum speed between Slb = 0.1m/s and Sub = 1.5m/s, and maximum vertical
acceleration between Alb = 0.5m/s2 and Aub = 2m/s2. The upper limit on max-
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imum speed and maximum vertical acceleration were chosen based on what felt
comfortable to fly with in the location where the experiments were done. The max-
imum safety distance was set to be sufficient for allowing the drone to brake in time
when flying at 1.5m/s. To ensure an acceptable risk level a constraint is introduced
that requires that the risk of losses L1 and L2, which are evaluated with the

 

 

DDN,
must be under a maximum risk threshold. This threshold is tuned in to give good
behavior.

In different parts of an operation, it can be preferable to either try to minimize the
safety distance or maximize the maximum speed. The human operator can during
flight set a target for maximum speed or safety distance. If a maximum speed target
is set then the upper bound for maximum speed is set equal this target and the
parameter a is set to 1 while b is set to 5 to prioritize a large maximum speed. If
a safety distance target is set then the lower bound of the safety distance is set
equal to this target and the parameter a is set to 5 while b is set to 1 to prioritize
a small safety distance. Maximum acceleration is in all cases considered the least
important.

The computational time needed to evaluate a
 

 

DBN or a
 

 

DDN increases with the
number of time steps, as each new time step introduces a copy of each node. To get
an acceptable computational time it is therefore essential to limit the number of
time steps that need to be evaluated. To ensure that the network can be evaluated
fast enough only 1.5-time steps are considered [126]. 1.5 time steps consist of, as
shown in Figure 5.8, one full time step with all the nodes and a “half” time step
with only the previous state of dynamic nodes. The general process of using 1.5
time steps is as follows:

• Evidence is inserted on time-step t

• The optimal parameter choice is evaluated at time-step t

• The updated (posterior) distribution of the dynamic nodes at time step t is
used as the new prior distribution of the dynamic nodes at time-step t− 1

The safety distance and maximum speed were discretized into 10 intervals, while the
maximum vertical acceleration was only discretized into 5 intervals as there was no
need for higher resolution in this state. Evaluating the 500 possible permutations
with these discretization intervals took about 0.2 s with the 1.5-time-step approach
by using the exact solver available in the SMILE engine[60]. It was therefore deemed
feasible to perform an exhaustive search.

To prevent the states from switching too quickly a low pass filter was applied to
the states when they switch from a more conservative to a less conservative value.
This ensures that the states change quickly when needed to reduce the risk, but
change slowly in the opposite case. The low-pass filter is then formulated as follows
where D̄, S̄, Ā represent the filtered parameter choices.
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Figure 5.8: Example of considering 1.5 time steps in a
 

 

DBN or
 

 

DDN. Time step t − 1
only contains the previous state of dynamic nodes.

D̄ =

{
D D ≥ D̄
0.15D + 0.75D̄ D < D̄

(5.2)

S̄ =

{
S S ≤ S̄
0.15S + 0.75S̄ S > S̄

(5.3)

Ā =

{
A A ≤ Ā
0.15A+ 0.75Ā A > Ā

(5.4)

5.4 Results

This section presents the results of flying the drone with the supervisory risk con-
troller active. The supervisory risk controller runs on a separate computer located
on the ground, which communicates with the drone through the tether. The

 

 

DDN
is evaluated using the SMILE engine [60]. All tests were performed at the testing
facility of ScoutDI shown in Figures 5.10, 5.14, 5.17 and 5.19.

Eight cases are considered that highlight the working of different nodes in the
network. Case 1 and 2 show the effect of disturbance, Case 3 the height over ground,
Case 4 environment unobservability, Case 5 camera noise, Case 6 motor wear,
Case 7 motor load from tether, and Case 8 the combined effect of environment
unobservability and total motor load.

Video of the experiments can be found at https://youtu.be/RKhG9bguRJY or by
scanning 5.9.
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Figure 5.9: Video of experiments. https://youtu.be/RKhG9bguRJY

Figure 5.10: The ScoutDI drone flying in an enclosed area with more disturbance.
Relevant for Case 1 and 3.

Case 1 - Entering an enclosed area

In this case, the drone enters an enclosed area, shown in Figure 5.10, where the
walls interfere with the air streams produced by the drone causing significant dis-
turbance. Figure 5.11 shows how the different states in the

 

 

DDN develop over time.
In the beginning the safety distance is set equal to its target value as there is no
disturbance. The supervisory risk controller sets the maximum speed quite low as
a higher value would cause the braking distance to be longer than the safety dis-
tance. As the drone enters the enclosed area around the 60 s mark, an increased
disturbance is identified and the safety distance is increased to ensure that the dis-
turbance will not cause the drone to collide. On the bottom plot of Figure 5.11 it
is shown how the total motor load increases when the drone enters the enclosed
area. Most of the increase is explained by the motor load from disturbance. Max
acceleration is decreased to reduce the probability of motor saturation. Note that
environment unobservability is non-zero even though there are almost no filtered
away points. This is caused by the biased estimator that is used. The risk evalu-
ation has taken this into consideration so that an environment unobservability of
around 0.2 is considered a perfect condition.

105



5. Supervisory risk control

30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 v
al

ue
Max speed Safety distance Max acceleration

30 40 50 60 70 80 90 100 110
0

0.5

1

E
xp

ec
te

d 
va

lu
e

Measured roll/pitch error Disturbance

30 40 50 60 70 80 90 100 110
0

0.5

1

E
xp

ec
te

d 
va

lu
e

Number of filtered points Environment unobservability

30 40 50 60 70 80 90 100 110
Time [s]

0

0.5

1

E
xp

ec
te

d 
va

lu
e

Measured motor load Total motor load Motor load disturbance

Figure 5.11: Case 1 - Entering an enclosed area with high disturbance. The expected
value of relevant nodes normalized to be within 0 and 1 are shown. A safety distance
target of 0.1m (0 after normalization) is set.

Case 2 - Violently shaking the tether
Figure 5.12 shows a case where the tether is violently shaken, from a bit after the
206 s mark to a bit after the 214 s mark, thereby causing an excessive amount of
disturbance. As there is a substantial chance of losing control due to this disturbance
a mission abortion is recommended, which is marked with the red field.

Case 3 - High disturbance at different heights
Figure 5.13 shows a similar situation as in Case 1 but demonstrates the effect
the height of the drone has on the choice of actions. At around the 130 s and the
150 s mark, the measured height over ground of the drone was artificially increased.
Note that this artificial increase in height makes the total motor load increase far
beyond the measured values, as a larger portion of the tether should have been
suspended in the air thereby increasing the weight. This makes the supervisory
risk controller act more conservative than needed. The safety distance can be seen
to substantially increase when the height over ground increases, even though the
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Figure 5.12: Case 2 - Shaking the tether causing excessive disturbance. The expected
value of relevant nodes normalized to be within 0 and 1 are shown. A safety distance
target of 0.1m (0 after normalization) is set.

disturbance is similar or decreasing. This change is mainly caused by the increased
consequences of flying at larger altitudes. Right after the 150 s mark mission abor-
tion is recommended at a single time step. This is likely caused by a combination
of the increased consequences caused by the increased height together with a slight
increase in environment unobservability and total motor load.

Case 4 - Flying close to a wire fence

Figure 5.14 and Figure 5.15 show a case where the drone flies up to a wire fence that
is hard to detect with the lidar. The sporadic reflections of the wire fence are filtered
away by the dust filter. This makes the environment unobservability increase. As
this renders the safety distance ineffective a speed reduction is instead performed
so that the consequences of potential contact with an obstacle are reduced.

107



5. Supervisory risk control

110 120 130 140 150 160 170 180 190
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 v
al

ue
Max speed Safety distance Max acceleration Abort

110 120 130 140 150 160 170 180 190
0

0.5

1

E
xp

ec
te

d 
va

lu
e

Measured roll/pitch error Disturbance Height over ground

110 120 130 140 150 160 170 180 190
0

0.5

1

E
xp

ec
te

d 
va

lu
e

Number of filtered points Environment unobservability

110 120 130 140 150 160 170 180 190
Time [s]

0

0.2

0.4

0.6

0.8

1

E
xp

ec
te

d 
va

lu
e

Measured motor load Total motor load Motor load disturbance
Motor load tether

Figure 5.13: Case 3 - High disturbance at different heights. The expected value of
relevant nodes normalized to be within 0 and 1 are shown. A safety distance target of
0.1m (0 after normalization) is set.

Figure 5.14: The ScoutDI drone flying close to a wire fence. Relevant for Case 4, 5, and
8.
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Figure 5.15: Case 4 - Flying close to a wire fence. The expected value of relevant nodes
normalized to be within 0 and 1 are shown. A maximum speed target of 1.5m/s (1 after
normalization) is set.

Case 5 - Flying in dusty conditions
Figure 5.16 shows a case that mimics flying in dusty environments by flying the
drone close to the same wire fence as in Figure 5.14 but the camera noise mea-
surement is set to 1. This makes the number of filtered away points no longer give
information on the environment unobservability, as it instead reports on actual
dust in the environment. The environment unobservability then asymptotically in-
creases towards its steady state value, unaffected by the number of filtered away
points. This increase makes the supervisory risk controller reduce the max speed,
but not as much as in Case 4.

Case 6 - Flying with extra weight
Figure 5.17 and Figure 5.18 show a case where a water bottle is fastened to the bot-
tom of the drone which increases the measured motor load. A large safety distance
is chosen to reduce the probability of hitting an obstacle if the motors saturate.
Some of the motor load is explained by the increased disturbances caused by the
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Figure 5.16: Case 5 - Flying in dusty conditions. The expected value of relevant nodes
normalized to be within 0 and 1 are shown. A maximum speed target of 1.5m/s (1 after
normalization) is set.

Figure 5.17: The ScoutDI drone flying with a water bottle fastened to it. Relevant for
Case 6.
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Figure 5.18: Case 6 - Flying with extra weight. The expected value of relevant nodes
normalized to be within 0 and 1 are shown. A safety distance target of 0.1m (0 after
normalization) is set.

bottle swinging. As this is not sufficient to explain the entire effect the varying
motor effect is also increased. As the measured motor load stays at a large value
over time the probability that it is caused by motor wear is gradually increasing.
Once it’s sufficiently likely that motor wear is a problem then aborting the mission
is recommended. As the drone is low over the ground and does not have a tilt the
model evaluates that the extra motor load is not caused by the tether.

Case 7 - Flying with non-vertical tether load

Figure 5.19 and Figure 5.20 show a case where the water bottle is fastened to
the tether which is lifted into the air. This produces a sideways force on the drone
causing the drone to have a constant tilt. The measured drone tilt makes the motor
load from tether increase significantly. The motor wear and varying motor effect
do not change significantly when the measured motor load increases as the increase
can be explained with the large motor load from tether. Note that a constant tilt
of the drone has little to no effect on the measured roll/pitch error, as intended, as
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both the commanded and measured roll and pitch angles will quickly converge to
the same offset. The constant tilt therefore only affects the motor load from tether.

Case 8 - Large motor load in front of the wire fence

Figure 5.21 shows a case where the drone flies in front of the wire fence shown in
Figure 5.14 but where the measured motor load suddenly starts to increase. The
increase is caused by the drone coming too close to the ceiling making it harder for
the propellers to suck in air. In Case 6 the extra motor load was solved by increas-
ing the safety distance. In this case, the large environment unobservability makes
increasing the safety distance ineffective. In Case 4 the increased environment un-
observability was solved by reducing the speed. This has little effect when hitting
obstacles due to motor saturation. The supervisory risk controller recommends to
abort the mission as there is no solution that can reduce the risk due to motor
saturation when there is a large environment unobservability.

5.5 Discussion

Case 1, 4, and 6 demonstrate that the supervisory risk controller considers what
the underlying causes are when finding a solution that ensures acceptable risk. 8
demonstrates that the supervisory risk controller has a holistic perspective when
making decisions. Case 3 demonstrates that the supervisory risk controller not only
considers the probability of occurrence but also the potential consequences when
making a decision.

Case 5 and 7 demonstrate that the supervisory risk controller is able to combine
information from multiple measurements to get a better understanding of the situ-

Figure 5.19: The ScoutDI drone flying with a water bottle fastened to an elevated tether.
Relevant for Case 7.
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Figure 5.20: Case 7 - Flying with non-vertical tether load. The expected value of relevant
nodes normalized to be within 0 and 1 are shown. A safety distance target of 0.1m (0
after normalization) is set.

ation. 6 demonstrates that the supervisory risk controller can combine information
over time to distinguish between different underlying causal factors.

Case 2, 6, and 8 demonstrate that interacting with the human operator, by re-
questing an abort, is crucial for ensuring a safe operation when there is nothing
the supervisory risk controller can do to ensure an acceptable risk level.

Combined the different cases demonstrate that the system is able to understand
the state of the underlying causes based on the available measurements and to
make risk-based decisions based on this understanding.

Quantitatively evaluating the performance of high-level decision systems that act
to minimize risk can be very difficult as there is no ground truth to compare with.
As the purpose of the system is to support a human operator a true measure of
quality would be to use the system for a while and see if it reduces the number
of incidents or lets the human operator act less conservatively thereby increasing
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Figure 5.21: Case 8 - Large motor load in front of the wire fence. The expected value
of relevant nodes normalized to be within 0 and 1 are shown. A maximum speed target of
1.5m/s (1 after normalization) is set.

the performance of the system. Such an experiment is outside the scope of this
chapter, and we are thus left with making an expert evaluation of whether actions
made by the supervisory risk controller seem reasonable in the different cases.
When demonstrating the system to employees at ScoutDI, a common comment
was that beyond visual line of sight (such as in confined spaces) it can be hard
to have a complete overview of the state of the drone, and in these cases having
such a system would be very helpful. The supervisory risk controller can alert the
human operator on what the underlying problems are thereby enabling the human
operator to solve the problem. A common concern was that we had to ensure that
the change in parameters would not prevent the human operator from getting out
of dangerous situations, by for example reducing the maximum vertical acceleration
when there is a strong updraft or error in the height estimator.

Performing a risk analysis definitely gave insight into which effects should be con-
sidered when building the risk model. One challenge with using the

 

 

STPA is that
it is not an iterative process thereby making the outcome sensitive to how the haz-
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ards are initially specified. Once loss scenarios are identified, there is no defined
process for refining the scenarios to get more details. In the case study, starting
with only the loss of controlled flight as a hazard, we got a scenario of contact with
obstacles causing loss of controlled flight, with no obvious way of identifying the
cause of the contact. This was handled by adding uncontrolled contact to the list
of hazards, which had the uncommon effect of making a hazard the causal factor
for a loss scenario. Different approaches for refining the scenarios identified with
the

 

 

STPA are presented in [127], [128].

The main challenge when developing the risk model is the quantification of the
node states. There was too little historical data available to evaluate accurate
probabilities and risk values. Instead, all the nodes were given unitless definitions,
such as value loss per time, as seen in Table 5.3. This placed the focus on ensuring
good ratios between the values of the different nodes.

Tuning in the right values to make the supervisory risk controller behave in a good
manner was quite a large task. It took quite some testing to understand how dif-
ferent parameters affect the resulting behavior. Quantification of the

 

 

DDN became
simpler when using the proposed method of first giving a qualitative description
and then encoding it as an equation. The fact that the nodes had meaningful states
made the quantification of the

 

 

DDN simpler as this gave some intuition on how
the states should be compared to each other.

Bayesian networks have the advantage of supporting arbitrary probabilistic func-
tions to model the relationships between nodes. This enabled this paper to use
non-linear functions in the node definitions. A drawback is that the state spaces
must be discretized, which can cause different types of discretization problems that
have to be handled.

Modeling the distributions of the measurements as a combination of a normal
distribution and an exponential distribution has the wanted effect of making the
underlying state quickly react to worsening states while not reacting too fast to
single good measurements. This is important for the case study as there are a lot of
sporadic good measurements even in adverse situations. The normal distribution
has the effect of smoothing out the noise. This is especially important in 1 as there
are some sporadic non-zero measurements of number of filtered away points that
would have caused the supervisory risk controller to be unnecessarily conservative
if they were not filtered away. The bias introduced with this approach seems to be
sufficiently counteracted as no effect was noticed on the resulting behavior.

An improvement that could be made to the system is to replace the conditional
statement in the definition of number of filtered away points with a max statement.
This would ensure that the environment unobservability does not increase even
though the human operator has said that there is camera noise when there are
no filtered away points. Another improvement would be to dynamically limit the
upper bound of the safety distance such that it could never be larger than what
fits in the drone’s current environment.
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The resulting behavior of the supervisory risk controller can, as with any behav-
ior, instead be achieved by specifying an exhaustive list of how the drone should
act for each possible combination of current and past measurements. Such solu-
tions are practically impossible to implement for any but the simplest systems, as
the list becomes inhibiting long. A more realistic alternative to the supervisory
risk controller is therefore to implement simpler rules such that the safety margin
should be a function of the disturbance and the max speed a function of the num-
ber of filtered away points. By instead using a probabilistic model as presented
in this chapter it becomes possible to infer what underlying states are, thereby
distinguishing between causal factors that cannot be directly observed, and to see
different causal factors in light of each other thereby giving a holistic overview
that is difficult to achieve with a short set of fixed rules. Additionally, by using a
model of the system for decision-making, behavior can emerge that the developers
of the system did not originally think of. This was the case for requesting aborting
the mission when there were unobservable obstacles present at the same time as a
large motor load. The authors had not considered this combination before it was
accidentally observed during an experiment. This highlights another challenge with
more direct rule-based solutions, as it is not trivial to ensure that the developers
of such systems have thought about every possibility that must be considered.

5.6 Conclusion

This chapter develops and experimentally tests a supervisory risk controller for a
tethered industrial inspection drone. An

 

 

STPA is performed to identify relevant
loss scenarios which are modeled with a

 

 

DDN. The
 

 

DDN is used to automatically
set safety-critical parameters during operation to ensure safety.

From the experimental results, it is demonstrated how the
 

 

DDN is able to identify
the state of the environment and the drone itself by combining information from
multiple measurements over time. Furthermore, it is shown how the

 

 

DDN can be
used to evaluate a set or parameters that ensures an acceptable risk level during op-
eration and how it can be used to evaluate whether the mission should be aborted.
Using a single

 

 

DDN to model all causal factors and scenarios at once produces a
holistic risk model. This enables the supervisory risk controller to consider multiple
causal factors in light of each other when choosing an adequate set of parameters
or deciding to recommend aborting the mission.

The resulting supervisory risk controller is used to assist unskilled operators during
flight. However, the abilities demonstrated in this chapter are even more relevant
for autonomous systems operating in unstructured environments without direct
human monitoring or control. For such systems to safely operate it is essential to
have a system, such as the supervisory risk controller, that monitors the operation
and uses this information to modify how the system performs its tasks and to
consider whether a task should be aborted.

Two main branches for further work are considered. Firstly, the proof of concept
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supervisory risk controller developed in this chapter could be extended to include
more of the scenarios identified in the

 

 

STPA. Especially scenarios relating to navi-
gational state estimation and computational hardware should be explored further.
Secondly, the general method could be applied to an autonomous operation, where,
for example, the drone is tasked with surveying all surfaces in a confined space.

Acknowledgment

We would like to thank ScoutDI for their cooperation in this work. Specifically,
we would like to thank Morten Fyhn Amundsen, Kristian Klausen, and Kristoffer
Slåttsveen for their input to the risk analysis. Furthermore, we would like to thank
the rest of ScoutDI for their help when preparing for the experiments and for
lending us their equipment.

117



5. Supervisory risk control

5.7 STPA scenarios
Table 5.7: Scenarios identified with the

 

 

STPA. [U1] through [U4] refer to unsafe control
actions introduced in 5.3.1 step A3

Scenario description
 

 

UCAs
Obstacles missing from the lidar scan preventing the collision
avoidance algorithm from keeping the drone further away from
the obstacle than the safety distance. Obstacles can miss from
the lidar scan due to being thin enough making the laser beams
miss or due to being transparent.

[U1] [U2]

A hard-to-detect obstacle shows sporadically up on the lidar
scan but is filtered away by the dust filter (which aims at filter-
ing away sporadic points caused by dust in the air), preventing
the collision avoidance algorithm from avoiding the obstacle.

[U1] [U2]

Obstacle map containing two obstacles closer than the safety
distance on opposite sides of the drone prevents the drone
from moving away from either obstacle. This can occur either
through the safety distance having increased, dynamic obsta-
cles, or due to non-existing obstacles suddenly showing up on
the obstacle map (due to noise, dust in the air, multi-path, or
reflections from the drone itself that are not adequately filtered
away).

[U2]

Obstacle map containing two obstacles closer than the safety
distance on opposite sides of the drone can cause the drone to
oscillate wildly between the two obstacles.

[U1]

Dynamic obstacles moving toward the drone faster than the
drone’s max-speed cause the drone to come closer to an obsta-
cle than the safety distance.

[U2]

Joystick input commands the drone to move toward its blind
zones. The drone cannot see obstacles below or above it due
to the limited field of view of the lidar.

[U1]

Obstacle within the blind zone of the drone prevents the colli-
sion avoidance system from moving away from it.

[U2]

Lidar defect caused by overheating or other hardware failure
causes no data to be gathered, thereby preventing the obstacle
avoidance module from working.

[U1] [U2]

The obstacle avoidance module calculates a new input too
slowly to fly the drone away from an obstacle in time.

[U1]

Lidar defect caused by overheating or other hardware failure
prevents the drone from evaluating its speed and heading, caus-
ing the drone to not follow the velocity setpoint.

[U3]

Errors or displacement of
 

 

IMU results in reduced quality of the
navigation estimate, causing the drone to deviate beyond the
safety distance or in the worst case lose control.

[U3], [U4]
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An environment that lacks landmark features that can be
tracked with a lidar prevents the navigation system from iden-
tifying the drone’s speed and heading causing the drone to not
follow the velocity setpoint.

[U3]

Too few points in the lidar scan prevent the navigation system
from identifying the drone’s speed and heading causing the
drone to not follow the velocity setpoint.

[U3]

Motor saturation causes loss of a control degree of freedom,
making the drone ignore velocity commands from the flight
controller. Excessive motor saturation over a long time can in
the worst case cause loss of controlled flight.

[U3], [U4]

Turbulence causes the drone to deviate from the velocity com-
mands. Excessive turbulence can in the worst case cause loss
of controlled flight.

[U3], [U4]

A long portion of the tether suspended in the air can start
swinging from the winds produced by the propellers, causing
a sideways thrust making the drone deviate from the velocity
command. This can, in the worst case, cause a loss of controlled
flight.

[U3], [U4]

Sudden large tether motion, such as it falling off an overhang,
causes a sudden pull, making the drone deviate from the ve-
locity command. This can, in the worst case, causes loss of
controlled flight.

[U3], [U4]

Too low limits on the maximal linear acceleration cause the
drone to deviate beyond the safety distance.

[U3]

Contact with obstacles at too high speed causes loss of con-
trolled flight.

[U4]

Self-induced vibrations from motor or propeller damage cause
loss of controlled flight.

[U4]

Motors or propellers are unable to produce adequate thrust to
stabilize the drone due to wear or overheating.

[U4]

Power outage causing loss of controlled flight. [U4]
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avoidance at sea
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Chapter 6

Development of intention model

This chapter is based on the following publication

[51] S. V. Rothmund, T. Tengesdal, E. F. Brekke, and T. A. Johansen, “Inten-
tion modeling and inference for autonomous collision avoidance at sea,” Ocean
Engineering, vol. 266, p. 113 080, Dec. 2022. doi: 10.1016/j.oceaneng.
2022.113080

The method was developed by S. V. Rothmund with input from T. Tengesdal.
Software development and simulations were done by S. V. Rothmund. Supervision
was provided by E. F. Brekke and T. A. Johansen. The first draft was written by
S. V. Rothmund and revised by T. Tengesdal, E. F. Brekke, and T. A. Johansen

6.1 Introduction

When navigating at sea, understanding the intentions of other ships can be cru-
cial for avoiding accidents [129]. Blindly assuming that the other ship will fol-
low the traffic rules put forth by

 

 

COLREGs[13] is insufficient as shown in [130].
They demonstrated the existence of local unwritten rules and agreements between
captains that went contrary to the rules specified by

 

 

COLREGs. Furthermore,
 

 

COLREGs is open to disagreements making it unsafe to act only based on your
own interpretation of the situation [131], [132]. For an autonomous ship to safely
operate in these conditions, it is essential that the ship can pick up on the intentions
of other ships.

A large variety of ship collision avoidance algorithms exists in the literature [133],
[134]. Most algorithms that consider

 

 

COLREGs handle ships that do not fulfill the
traffic rules by executing reactive evasive actions when the ships get close enough.
In [135] this is handled by having a separate short-term controller, in addition to
their

 

 

COLREGs compliant controller, which disregards
 

 

COLREGs when the ships
are close enough. A different approach is taken in [14] where they have a sepa-
rate collision risk and

 

 

COLREGs compliance penalties. The collision risk penalty
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increases when the ships get closer, ensuring that an evasive action will be taken
even if it conflicts with the main

 

 

COLREGs rules.

A different approach is taken in [71] where they instead simulate multiple possi-
ble future trajectories the other ships can follow. The probabilities of the different
trajectories are based upon the likelihood of the other ships having different in-
tentions, such as being

 

 

COLREGs compliant. This enables the collision avoidance
algorithm to take early and substantial actions if the intentions are uncertain or
if it becomes apparent that the other ship does not act according to the rules.
However, [71] does not consider how these intentions can be identified.

Different methods exist for identifying the intentions of other ships [25], [132],
[136]. [136] presents a method to identify whether the give-way ship is doing an
evasive action or not. This enables the ship to comply with

 

 

COLREGs rule 17,
which states that stand-on ships should act if the give-way ship is not taking
appropriate action. [25] presents a Bayesian model that evaluates the probability
that the other ship follows its obligations as specified by

 

 

COLREGs rules 14 to
17 based on its observed motion. [132] develop a scoring system to evaluate to
what degree ships follow

 

 

COLREGs rules 7, 8, and 13-17. This method is designed
to evaluate different collision avoidance algorithms but can also be used online to
evaluate how well other ships are acting in accordance with the rules.

These articles [25], [132], [136] evaluate whether the other ship is acting as expected
based on the own-ships interpretation of the situation. They do not model the
underlying causes making the ship not act as expected. These underlying causes
could, for example, be a disagreement of the situation or one of the ships having
priority over the other.

Works on intention modeling exist for air traffic [26], [137], road traffic [27], and for
robot pedestrian interactions [28], [29]. These works show different ways of inferring
the goal, behavior, or trajectories of the other agents in the encounter. Only [29]
consider underlying causes that affect how an agent acts. They use information on
whether a pedestrian is alone or in a group to affect the prior probability that it
will hurry over at a flashing green light.

This chapter uses a
 

 

DBN to model and infer the intentions of other ships in open
waters. Different intention variables are defined based on the different ways ships
can interpret and conflict with the behavioral rules specified by

 

 

COLREGs. The
 

 

DBN combines these intention variables with a model based on
 

 

COLREGs Rule 7,
8, 11, and 13 to 18 to define the possible ways the ship can act. A ship’s intentions
are gradually inferred by ruling out all possible combinations of intention states
that contradict the observed course and speed. This way of modeling ensures that
the intention probabilities are independent of how often the model is updated with
new observations.

The concept of intention inference can be compared with the concept of behavior
consistency analysis used in fault diagnosis. Behavior consistency analysis concerns
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identifying faults in the system it runs on. This is done by observing input-output
pairs and then identifying if they are best described with the nominal model of
the system or with a model that describes the system with a particular fault [138].
Even though the intention model considered the inference of other agents, where
only the output is observable, some similarities exist. Instead of inputs in the
normal sense, we can consider the current situation (position, course, and speed
of all vehicles) as the input. We then wish to evaluate whether a ship follows for
example: the model of following COLREGS in the way we have interpreted it,
the model of not complying with its give-way obligation and therefore keeping its
course, or the model of disregarding the rules on how to give way. A substantial
difference between behavior consistency analysis and the procedure presented in
this chapter is that instead of explicitly making different models and then using
hypothesis testing to identify which model that best explains our observation, we
instead consider a single model that describes all the different possible behaviors.
The inference capabilities supplied by hypothesis testing in fault diagnosis is here
an integrated part of the model.

The contribution of this chapter and the novelty compared to earlier literature is a
modeling framework that considers how underlying causes affect a ship’s behavior
and which can infer the state of multiple different intention variables based on
measured properties. Modeling the underlying causes enables the model to identify
situations that can cause misunderstandings, making it possible to take early ac-
tions to avoid a potentially dangerous situation. Furthermore, it enables the model
to adapt to the current situation by letting additional information, such as relative
ship size and location, affect the intentions. Being able to infer the state of multiple
intention nodes enables the model to describe the future motion of other ships with
higher fidelity than simply being

 

 

COLREGs compliant or not. The resulting inten-
tion probabilities can be used for collision avoidance with algorithms that explicitly
consider the intentions [71] or as decision criteria replacing the static distance used
to decide when to always act to avoid collision [135].

The rest of the chapter is structured as follows. Section 6.2 presents the proposed
 

 

DBN. Results of simulation trails are shown in Section 6.3. The results are discussed
in Section 6.4 and a conclusion is given in Section 6.5.

6.2 Method

This section presents a
 

 

DBN used to model and infer the intention of meeting ships.
The term intentions will be used for a ship’s internal states that we wish to infer
such that we can understand how the ship will act. Examples of different intention
variables are what the ship considers to be a safe distance, what priority it thinks
it has relative to the other ships, and what it thinks that the

 

 

COLREGs situation
is.

The
 

 

DBN model takes the perspective of a single ship, which will be called the
reference ship, and models its relation to all other ships in the area. The index ρ
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will be used to identify the other ships in the area. To model multiple ships, the
model must be repeated for each ship. How to make inference using the model is
described in Section 6.2.1.

Each of the intention variables are modeled as nodes in the
 

 

DBN. These nodes are
stochastic variables as the intention is unknown. The intention nodes are modeled
as time-independent nodes as it is assumed that the intentions do not change within
one encounter. The prior distribution of the intention nodes describes how often
the different intentions are encountered in situations similar to this one. How these
priors are designed is described in more detail in Section 6.2.4.

The intentions are updated based on different measured properties that can be
evaluated based on the relative position between the ships, their course, and their
speed. The different measured properties are given in Table 6.3. A tracking system
is assumed to be used to evaluate the ships course, speed, and position. The tracking
system is assumed to give high quality tracks, such that the intention module does
not need to account for measurement uncertainty.

The
 

 

DBN evaluates the probability that a particular combination of measurements
and intention node states are compatible. Which combinations that are compatible
are defined by

 

 

COLREGs rules 8, and 13 to 18 and are described in Section 6.2.2
using logic statements. How these can be translated into

 

 

CPTs is described in
Section 6.2.3. The resulting

 

 

DBN is shown in Figure 6.4.

When a new observation is made, the different measured properties are inserted
as evidence on the measurement nodes in a new time-step of the

 

 

DBN. These
measurement nodes are time-dependent, thereby enabling the system to combine
information over time. The network can be used to evaluate the probability that the
observation is compatible with the prior distribution of the intention nodes. The
distribution of the intention nodes can be updated by eliminating all combinations
of intentions that contradict the observation. This is achieved by inserting evidence
in the network stating that intentions and observed measurements are, in fact,
compatible. The updated posterior distribution of the intention nodes can be used
to give an updated prediction on how the reference ship will act. Two different ways
of using the updated intention probability distributions for collision avoidance are
outlined in Section 6.2.5.

Modeling whether a particular combination of observations and intention node
states are compatible enables the system to gradually infer the reference ship’s
intentions without considering how often observations are given to the system.
Giving the exact same observation multiple times to the system will not affect the
probability distribution of the intention nodes, as the first observation has already
eliminated all combinations of intentions that would be eliminated by the second
observation.

A simplified example can illustrate this procedure. Figure 6.1 shows a simplified
network that only considers when the ship will act.

 

 

COLREGs rule 8(a) states
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Table 6.1: Logical notation

Symbol Meaning
∧ Logical and
∨ Logical or
¬ Logical not
= Defines that the expressions on both sides

are equal
== Evaluates whether both sides are equal
̸= Evaluates whether both sides are not

equal
∀ρ∈P Requires that an expression is true for all

values of ρ in the set P
∃ρ∈P Requires that there is at least one ρ in the

set P where the expression is true
P \ {ρ} Considers the set P without the element

ρ

COLREGS role

stand-on

give-way

Intends to ful ll

its obliga ons

false 0.05

true 0.95

Ample me 

inten on

0-5 min 0.01

5-10 min 0.05

10-15 min 0.15

15+ min 0.79

Time un l

CPA

0-5 min

5-10 min

10-15 min

15+ min

Can wait

false Time un l CPA 

Ample me inten on

true Time un l CPA >

Ample me inten on

Will give way

false COLREGS role == stand-on ∨

¬Intends to ful ll its obliga ons

true COLREGS role == give-way ∧

Intends to ful ll its obliga ons

Must give way now

false ¬Will give way ∨ Can wait

true Will give way ∧ ¬Can wait

Is giving way

false

true

Behavior compa ble with inten ons

false ¬Is giving way ∧ Must give way now

true Is giving way ∨ ¬Must give way now

Figure 6.1: A simplified example network used to illustrate the proposed inference
method. Measurement nodes are shown in green, intention nodes in orange, and mod-
eling nodes in blue. The initial probability distribution is shown for the intention nodes.
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6. Development of intention model

that a ship should act in “ample time”. Two intention nodes are then needed,
one modeling the reference ship’s definition of ample time and the other modeling
whether the reference ship intends to follow this rule. When an observation is made,
the following evidence is inserted: time until closest point of approach (

 

 

CPA), which
role the reference ship has according to

 

 

COLREGs, and whether the reference ship
is giving way. In this example, the observation is only compatible with the intention
of the reference ship if either of the following is true: it is giving way, it has a stand-
on (

 

 

SO) role, if it does not intend to follow the rules, or if the time until
 

 

CPA is
longer than the reference ships definition of ample time.

The intention probabilities can be updated to reflect the observation by inserting
evidence on the “Behavior compatible with intentions” node stating that it must
be in the “true” state. If it, for example, is observed that the time until

 

 

CPA
is 10 minutes, the reference ship has a give-way (

 

 

GW ) role, and it is not giving
way, then the model can exclude the possibility that the ship intends to follow its
obligation to give way while at the same time considers ample time to be more than
10 minutes. It is left with the possibility that it will not follow its obligations at all
or that it considers ample time to be shorter than 10 minutes. For this example, the
updated probability that the reference ship does not intend to fulfill its obligations
evaluates to 47%. This is due to the prior likelihood that the reference ship will
give way at a short distance (0.01 + 0.05 = 0.06) is similar to the prior likelihood
that it will not fulfill its obligations (0.05). This simplified example is unable to
model the underlying causes that influence how a ship will act. The rest of this
section handles this by considering many more of the

 

 

COLREGs rules.

6.2.1 Basic procedure
For every new observation:

1. Insert information from observed position, course, and speed as evidence on
the measurement nodes

2. Insert evidence stating that the compatible to all node (C ) is in the state
true.

3. Evaluate the updated probabilities for the different intention states
4. Expand the network with a new time-step

6.2.2 Intention model logic
This section presents a series of logic statements that define which combinations of
intentions and observations that are compatible. These statements are based on the
behavioral rules specified by

 

 

COLREGs Rule 7, 8, 11, and 13 to 18. Rules regarding
traffic separation schemes (Rule 10), narrow channels (Rule 9), and sailing vessels
(Rule 12) are not considered in this chapter.

The section is structured following a top-down approach where the statement de-
scribing the most general model variable is presented first. Model variables that
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6.2. Method

Table 6.2: Intention variables

Symbol Description States
IAT What time until

 

 

CPA the reference ship
considers ample time

real valued

ICC Whether the reference ship intends to be
 

 

COLREGs-compliant when performing
evasive maneuvers

binary

ICSρ What
 

 

COLREGs situation the reference
ship thinks it has towards ship ρ

{
 

 

HO ,
 

 

OT -en
 

 

OT -ing ,
 

 

CR-PS ,
 

 

CR-SS}
IGS Whether the reference ship acts

according to good seamanship
binary

IPρ
Whether the reference ship acts as if it
has a lower or higher priority towards
ship ρ

{higher , similar , lower}

IRC What distance at
 

 

CPA the reference
ship considers a risk of collision

real valued

IRCF How far in front of a ship the reference
ship considers a crossing as risky

real valued

ISD What the reference ship considers a safe
distance at

 

 

CPA
real valued

ISDF How far in front of a ship the reference
ship considers a crossing as safe

real valued

ISDM What the reference ship considers a safe
distance at

 

 

CPA to the current midpoint
(See Section 6.2.2).

real valued

ISS At what distance the reference ship
consider that the situation starts

real valued

IU Whether the reference ship acts in an
unmodeled way

binary

are used in more general statements are then gradually introduced. The different
model variables are given in Table 6.4, intention variables in Table 6.2, measure-
ment variables in Table 6.3, and parameters in Table 6.5.

C [t] - Compatible to all

An observation is compatible with the intention states of the reference ship at
time step t if it is compatible towards all ships in the area at that time step.
The area considered must be large enough to encompass all ships that potentially
affect how the reference ship acts. All observations are also considered compatible
if the ship intends to act in an unmodeled manner (IU ). This state works as a
“dead hypothesis” that normally does not have any effect as discussed in [139], but
springs into life under unexpected observations. These types of hypotheses enable
a model to handle observations that do not fit with any of the nominal hypotheses,
which in this case are behaviors that do not coincide with the behavioral rules
outlined in this section. This state, therefore, works as a catch-all for behavior not
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6. Development of intention model

Table 6.3: Measurement variables. The values are evaluated based on the measured
position, speed, and course of the different ships in an encounter. Measurements that
cannot be directly evaluated based on the position, speed, or course are described when
the measurement is first used in Section 6.2.2.

Symbol Description States
MC [t] Current course of the reference ship real valued
MS [t] Current speed of the reference ship real valued
MCSρ

[t] Current
 

 

COLREGs situation reference
ship has towards ship ρ (See
Section 6.2.2)

{
 

 

HO ,
 

 

OT -en
 

 

OT -ing ,
 

 

CR-PS ,
 

 

CR-SS}

MDρ
[t] Current distance between the reference

ship and ship ρ
real valued

MDCPAρ
[t] Distance between reference ship and

ship ρ at
 

 

CPA assuming both will keep
their current course and speed

real valued

MDFρ [t] How far the reference ship crosses in
front on ship ρ assuming both keep their
current course and speed. This value is
set to ∞ if the ship does not cross in
front of ship ρ

real valued

MDMρ [t] Distance at
 

 

CPA to the current midpoint
between the reference ship and ship ρ,
assuming constant course and speed for
the reference ship. (See Section 6.2.2)

real valued

MMPSρ
[t] Whether the reference ship will pass the

current midpoint between itself and ship
ρ on its port or starboard side

{starboard , port}

MPρ [t] Whether reference ship has passed ship
ρ. (See Section 6.2.2)

binary

MTCPAρ
[t] Time until

 

 

CPA between reference ships
and ship ρ assuming both will keep their
current course and speed

real valued

MAFρ [t] Whether the reference ship will pass aft
or in front of ship ρ assuming both keep
their current course and speed. (See
Section 6.2.2)

{Aft , Front}
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6.2. Method

Table 6.4: Model variables

Symbol Description States
C [t] Observation compatible with the

intentions of the reference ship
binary

Cρ[t] Observations and intentions compatible
towards ship ρ

binary

CEM ρ[t] Correct evasive maneuver towards ship ρ binary
C_CR_SSρ[t] Correct crossing evasive maneuver with

ship ρ on the starboard side
binary

C_CR_PSρ[t] Correct crossing evasive maneuver with
ship ρ on the port side

binary

C_HOρ[t] Correct head-on (
 

 

HO) evasive maneuver
towards ship ρ

binary

C_OT ρ[t] Correct overtaking (
 

 

OT -ing) evasive
maneuver towards ship ρ

binary

CIC ρ[t] Change in course towards ship ρ {starboard , straight
port}

CISρ[t] Change in speed towards ship ρ {higher , none, lower}
GSρ[t] Good seamanship towards ship ρ binary
GWC ρ[t] Gives way correctly towards ship ρ binary
IC ρ[t] Initial course when the situation started

towards ship ρ. Course is given in the
 

 

NED frame.

real valued

ISρ[t] Initial speed when the situation started
towards ship ρ

real valued

Pρ[t] Has passed ship ρ safely binary
PAρ[t] There has been a port action towards

ship ρ
binary

Rρ Role towards ship ρ {
 

 

GW ,
 

 

SO}
RC ρ[t] There is currently a risk of collision with

ship ρ
binary

RSρ[t] It is a risky situation towards ship ρ binary
SOCρ[t] Stands on correctly towards ship ρ binary
SDρ[t] The reference ship will cross at a safe

distance towards ship ρ
binary

SSρ[t] Situation has started towards ship ρ binary
SAρ[t] There has been a starboard action

towards ship ρ
binary

WGW ρ[t] Will give way towards ship ρ binary
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6. Development of intention model

Table 6.5: Example parameters chosen for demonstrative purposes. The parameters
can be modified based on properties of the current situation, such as ship size, speed,
and weather. The minimal acceptable definition of ample time (ATmin), safe distance at

 

 

CPA (SDmin), safe distance front (SDFmin) and safe distance to the current midpoint
(SDMmin), should be based on the maneuverability of the own-ship and how risk averse
the operation should be.

Symbol Description Value
PCIC Max change in course that is considered as keeping the

course
10◦

PCIS Max change in speed that is considered as keeping the speed 2m/s
ATmin Ownships minimal accepted definition of ample time 60 s
SDmin Ownships minimal accepted definition of safe distance at

 

 

CPA
75m

SDFmin Ownships Minimal accepted definition of safe distance to
cross in front

100m

SDMmin Ownships minimal accepted definition of safe distance to
midpoint

75m

considered by the DBN model.

Subscript ρ represents the ID of another ship in the encounter while P represents
the set of all ships in the encounter other than the reference ship. Mathematically,
this is expressed through the following logical clause:

C [t] =
(
∀ρ∈PCρ[t]

)
∨ IU (6.1)

Cρ[t] - Compatible towards ship ρ

An observation is compatible with the intention states of the reference ship towards
ship ρ if either of the following is true:

• The collision avoidance situation has not started yet (SSρ).
• The ships have passed each other safely (Pρ)
• The ships will pass each other in such a manner that it is not a risky situation

(RSρ).
• If the reference ship has a

 

 

GW role (Rρ) and gives way correctly towards
ship ρ (GWC ρ).

• If the reference ship has a
 

 

SO role (Rρ) and stands on correctly towards ship
ρ (SOC ρ).

Cρ[t] =¬SSρ[t] ∨ Pρ[t] ∨ ¬RSρ[t]

∨
((
Rρ ==

 

 

GW
)
∧GWC ρ[t]

)
∨
((
Rρ ==

 

 

SO
)
∧ SOC ρ[t]

)
(6.2)
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SSρ[t] - Situation started

According to
 

 

COLREGs Rule 11, the behavioral rules only apply for ships in sight
of each other.

 

 

COLREGs Rule 3 specifies that a ship is in sight if it can be seen
visually. At what distance the reference ship sees ship ρ is unknown and modeled
with the intention variable ISS . The situation starts whenever the distance between
the ships (MDρ

) is shorter than the situation start intention. Map data can be used
to evaluate at which distance the ships are likely to see each other.

SSρ[t] =SSρ[t− 1] ∨
(
MDρ [t] < ISS

)
(6.3)

RSρ[t] - Risky situation

If there is a risk of collision (RC ρ) at one point of time after the situation starts
(SSρ), then the situation should be considered as risky.

RSρ[t] =

{
false if ¬SSρ[t]

RC ρ[t] ∨ RSρ[t− 1] otherwise
(6.4)

RC ρ[t] - Risk of collision

Actions to avoid collision are only needed if the reference ship considers that there
is a risk of collision (

 

 

COLREGs Rule 7, 12, and 14). According to
 

 

COLREGs Rule
7(i), a risk of collision exists if the compass bearing from the reference ship to ship
ρ “does not appreciably change” [13]. How much change that is sufficient would
depend on the distance between the ships, as one would experience a quicker bear-
ing change once the ships get closer. To simplify this requirement, the expected
crossing distance is used to evaluate whether there is a risk of collision. The accept-
able distance when crossing in front can be larger than what is acceptable to the
side of the ship. This is handled by defining two different intention variables, one
specifying how far in front of a ship the reference ship considers it risky to cross
(IRCF ) and one specifying the distance at

 

 

CPA that is considered risky (IRC ).
These are compared to the expected crossing distance in front (MDFρ

) and at
 

 

CPA (MDCPAρ
) assuming both ships keep their current course and speed.

RC ρ[t] =
(
MDCPAρ

[t] < IRC

)
∨
(
MDFρ

[t] < IRCF

)
(6.5)

Pρ[t] - Safely passed

If the reference ship has passed ship ρ (MPρ
) and is at a safe distance (SDρ),

then the reference ship does not need to consider the ship any longer. A ship is
considered as passed if the time until closest point of approach, assuming constant
course and speed for all ships, is negative.

Pρ[t] =MPρ [t] ∧ SDρ[t] (6.6)
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SOC ρ[t] - Stands on correctly

The reference ship stands on correctly towards ship ρ if it does not change its
course (CIC ρ) or speed (CISρ), or if it does a correct evasive maneuver (CEM j)
towards another ship (j) it has a

 

 

GW role (Rj) for (Rule 17).

SOC ρ[t] =
((

CIC ρ[t] == straight
)
∧
(
CISρ[t] == none

))
∨
(
∃λ∈P\{ρ}

(
Rλ ==

 

 

GW
)
∧ CEM λ[t]

)
(6.7)

GWC ρ[t] - Gives way correctly

The reference ship gives way correctly towards ship ρ if it is executing a correct
evasive maneuver CEM ρ. According to

 

 

COLREGs Rule 8, the ship must take
evasive actions in what it considers “ample time” (IAT ). The “time” in ample time
is measured as the time until

 

 

CPA assuming both ships keep their current course
and speed (MTCPAρ). How long before

 

 

CPA the reference ship consider as “ample
time” is modeled with the intention variable IAT . The ship is allowed to stand on
correct (SOC ρ) before what it considers “ample time”.

GWC ρ[t] =CEM ρ[t] ∨
((
MTCPAρ

[t] > IAT

)
∧ SOC ρ[t]

)
(6.8)

CEM ρ[t] - Correct evasive maneuver

For an evasive maneuver to be correct, it must comply with “good seamanship”
(GSρ) (

 

 

COLREGs Rule 8) if the reference ship has an intention to act with “good
seamanship” (IGS ). Additionally, the maneuver must fulfill the requirements speci-
fied by

 

 

COLREGs if the reference ship has an intention to be
 

 

COLREGs-compliant
when performing evasive maneuvers (ICC ).

 

 

COLREGs specify a set of situations
and how to act in each scenario. These consist of overtaking (

 

 

OT -ing) (Rule 13)
another vessel, being overtaken (

 

 

OT -en) (Rule 17), head-on (
 

 

HO) (Rule 14), cross-
ing with the other ship on the starboard side (

 

 

CR-SS ) (Rule 15), and crossing with
the other ship on the port side (

 

 

CR-PS ) (Rule 17). What
 

 

COLREGs situation the
reference ship believes it has towards ship ρ is denoted as ICSρ .

CEM ρ[t] =
(
¬IGS ∨GSρ[t]

)
∧
(
¬ICC ∨

((
(ICSρ ==

 

 

OT -en)

∨ (ICSρ
==

 

 

OT -ing)
)
∧ C_OT ρ[t]

)
∨
((
ICSρ

==
 

 

HO
)
∧ C_HOρ[t]

)
∨
((
ICSρ

==
 

 

CR-SS
)
∧ C_CR_SSρ[t]

)
∨
((
ICSρ

==
 

 

CR-PS
)
∧ C_CR_PSρ[t]

))
(6.9)
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SDρ[t] - Safe distance

According to
 

 

COLREGs Rule 8, actions to avoid collision shall result in the ships
passing at a safe distance. Whether the reference ship and ship ρ will pass at a safe
distance is evaluated by assuming that both ships will keep their current course
and speed. This assumption holds for ship ρ if it has a

 

 

SO role, as
 

 

SO ships are
required to keep their course and speed (

 

 

COLREGs Rule 17). If the reference ship
has a

 

 

GW role, then it is expected to mark its intent by substantially changing its
course or speed (

 

 

COLREGs Rule 8) before returning to the initial course. Assuming
that it will keep its course and speed should result in passing at a safe distance if
the ship has started to act to avoid a collision. As with risk of collision (RC ρ[t]),
different intention and measurement nodes are included for a safe crossing distance
in front (MDFρ

, ISDF ) and at
 

 

CPA (MDCPAρ
, ISD).

SDρ[t] =
(
MDCPAρ

[t] > ISD
)
∧
(
MDFρ

[t] > ISDF

)
(6.10)

C_OT ρ[t] - Correct
 

 

OT -ing evasive maneuver

 

 

COLREGs Rule 13 specifies that the
 

 

OT -ing vessel shall keep out of the way of
the vessel being “

 

 

OT -en”. Checking that the ships are crossing at a safe distance
(SDρ) is therefore sufficient.

C_OT ρ[t] = SDρ[t] (6.11)

C_HOρ[t] - Correct
 

 

HO evasive maneuver

For
 

 

HO situations,
 

 

COLREGs Rule 14 specifies that the ships must make a star-
board turn such that they pass each other port to port. As both ships have to give
way in this situation, assuming that ship ρ will keep its current course is unrealis-
tic. Instead, a new measurement is used that considers the distance at

 

 

CPA to the
current midpoint between the ships (MDMρ). As the current midpoint does not
change when the ships’ courses change, considering a safe distance to the current
midpoint thereby requires that the reference ship has to do an evasive maneuver
even though ship ρ has already changed its course. The distance at

 

 

CPA to the cur-
rent midpoint is evaluated assuming the reference ship will keep its current course
and speed. Which distance to the midpoint the reference ship considers as safe is
denoted as ISDM . Which side the reference ship passes with the midpoint on is
denoted as MMPSρ

.

C_HOρ[t] =
(
MMPSρ [t] == port

)
∧ (MDMρ [t] > ISDM ) (6.12)

C_CR_SSρ[t] - Correct crossing starboard-side evasive maneuver

In a crossing situation, Rule 15 of
 

 

COLREGs specifies that a ship should, in ad-
dition to cross at a safe distance (SDρ), avoid crossing in front of another ship it
has on its starboard side. Whether the reference ship crosses aft or front of ship ρ
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(MAFρ) is evaluated by first finding the intersection point of the paths followed
by the ships assuming that they keep their current course. Which ship that first
arrives at this point crosses in front of the other.

C_CR_SSρ[t] =
(
MAFρ [t] == aft

)
∧ SDρ[t] (6.13)

C_CR_PSρ[t] - Correct crossing port-side evasive maneuver

If a ship with the other on its port side is forced to take action, then
 

 

COLREGs
Rule 17(c) specifies that it, in addition to cross at a safe distance (SDρ), should
avoid changing its course (CIC ρ) towards port.

C_CR_PSρ[t] =
(
CIC ρ[t] ̸= port

)
∧ SDρ[t] (6.14)

MCSρ
[t] -

 

 

COLREGs situation

According to
 

 

COLREGs Rule 13(b), a ship is
 

 

OT -ing another when it is coming
up on the ship “from a direction more than 22.5 degrees abaft her beam” [13].
Uncertainty in the heading of the other ship can lead to different interpretations
of the situation. Uncertainty in whether it is an

 

 

OT -ing situation is modeled by
using the classifier as shown in Figure 6.2. The size of the uncertainty region can be
based on a combination of historical data and expert opinion. Different situations
could be presented to different experienced captains where they could express their
trust that other ships would identify this situation correctly. The values used in
this chapter are chosen for demonstrative purposes.

A
 

 

HO situation is defined by
 

 

COLREGs Rule 14(a) to be when two vessels are
meeting on “nearly reciprocal courses”, while Rule 14 (b) specifies when a

 

 

HO
situation exists based on the visibility of different lights of the other ship. This opens
up for disagreements from different definitions of “nearly reciprocal” and how the
ships observe each other. With the presence of current and winds, a ship observing
the course of the other by radar or

 

 

AIS might come to a different conclusion than
one observing the heading of the other ship based on the visibility of lights [132].
Furthermore, measurement uncertainties in the course of the other ship can lead to
misunderstandings. The classifier shown in Figure 6.3 is used to accommodate this
uncertainty. Identifying the uncertainty and mean of which angle a

 

 

HO situation
starts can be evaluated similarly to the

 

 

OT -ing case. In addition, the mean can be
chosen based on case law and certifying agency requirements as proposed in [132].

The probability that the reference ship evaluates the current situation as an
 

 

OT -ing
or

 

 

HO situation is based on the two classifiers given in Figure 6.2 and Figure 6.3.
The remaining probability gives the probability that the reference ship evaluates
the situation to be a crossing situation. Whether the reference ship is in front or aft
of the other ship when the situation starts defines whether it is

 

 

OT -ing or being
 

 

OT -en. Whether the other ship is on the port or starboard side defines whether
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Figure 6.2: Classifier giving the probability that it is an
 

 

OT -ing situation. Relative
bearing is defined as the bearing from the ship being

 

 

OT -en to the
 

 

OT -ing ship relative
to the heading of the ship being

 

 

OT -en. 22.5° abaft the beam as specified in
 

 

COLREGs
Rule 13 is the same as ±112.5° relative to the heading. This classifier considers a 15°
uncertainty in the situation.

it is a
 

 

CR-PS or
 

 

CR-SS situation. This information is inserted as virtual evidence
on the measured

 

 

COLREGs situation node, MCSρ
.

According to
 

 

COLREGs Rule 13(d), subsequent alterations in bearing do not
change the situation. The situation is therefore defined when the situation starts,
which can lead to misunderstandings as the different ships may define that the
situation starts at different time points [131]. To model the uncertainty caused by
when the reference ship thinks that the situation starts, a situation measurement
node (MCSρ

) is introduced. The state of this node is equal to the state of the sit-
uation intention node (ICSρ) only at the time-step where the reference ship thinks
that the situation starts. At all other time-steps, the probability of measuring the
different states of the measurement node is unaffected by the state of the intention
node. Which time-step the reference ship thinks that the situation starts is un-
certain, making it uncertain which measurement that defines the intention state.
There should be an equal probability of measuring all states when the measurement
node is independent of the intention node.

MCSρ
[t] =

{
ICSρ if SSρ[t] ∧ ¬SSρ[t− 1]

[0.2, 0.2, 0.2, 0.2, 0.2] otherwise
(6.15)
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Figure 6.3: Classifier giving the probability that it is a
 

 

HO situation. The relative
heading between the two ships defined the probability. This classifier considers a 10°
uncertainty in the situation.

Rρ - Role

A ship must give way if it has lower priority (IPρ), either as specified in
 

 

COLREGs
Rule 18 or due to unwritten rules [130]. If the ship has higher priority, it must
stand on. If the priority is similar, then the role is given by Rule 13 to 15. In a

 

 

HO
situation, both ships must give way (Rule 14). In an

 

 

OT -ing situation, the
 

 

OT -ing
vessel must give way (Rule 13). In a crossing situation, the one with the other ship
on its starboard side must give way (Rule 15).

Rρ =


 

 

GW

if
(
IPρ == lower

)
∨
((
IPρ == similar

)
∧
(
(ICSρ ==

 

 

HO) ∨ (ICSρ ==
 

 

CR-PS )
∨ (ICSρ

==
 

 

OT -ing)
))

 

 

SO otherwise

(6.16)

GSρ[t] - Good seamanship

Good seamanship is difficult to define and can contain many different behaviors.
In this work, good seamanship restricts the ship from changing which side it turns
towards to avoid collision. The ship is not allowed to have made both a starboard
action (SA) and a port action (PA) during a collision encounter.
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GSρ[t] = ¬
(
SAρ[t] ∧ PAρ[t]

)
(6.17)

SAρ[t] =

{
false if ¬SSρ[t](
CIC ρ[t] == starboard

)
∨ SAρ[t− 1] otherwise

(6.18)

PAρ[t] =

{
false if ¬SSρ[t](
CIC ρ[t] == port

)
∨ PAρ[t− 1] otherwise

(6.19)

CIC ρ[t] - Change in course

A change in course is evaluated by comparing the initial course (IC ρ) with the
measured course (MC ). The initial course is saved when the situation starts (SSρ).
If the change in course is less than PCIC then it is considered as keeping the course.
PCIC should be chosen small enough to ensure that all intended course changes are
marked as such, while being large enough to ensure that measurement uncertainty
and small oscillations due to waves are not marked as a course change.

IC ρ[t] =

{
MC [t] if ¬SSρ[t]

IC ρ[t− 1] otherwise
(6.20)

CIC ρ[t] =


starboard if MC [t] >

(
IC ρ[t] + PCIC

)
port if MC [t] <

(
IC ρ[t]− PCIC

)
straight otherwise

(6.21)

CISρ[t] - change in speed

The initial speed (ISρ) and change in speed are evaluated in the same manner as
for the course. The same considerations should be made when choosing PCIS .

ISρ[t] =

{
MS [t] if ¬SSρ[t]

ISρ[t− 1] otherwise
(6.22)

CISρ[t] =


higher if MS [t] >

(
ISρ[t] + PCIS

)
lower if MS [t] <

(
ISρ[t]− PCIS

)
none otherwise

(6.23)

6.2.3 Translation into
 

 

DBN
A

 

 

DBN is made from the logic statements given in Section 6.2.2. A node is intro-
duced for each intention variable, measurement variable, and model variable. Arcs
are introduced based on the dependencies given by the equations in Section 6.2.2.
The resulting topology can be seen in Figure 6.4.

The logical statements given in Section 6.2.2 need to be translated into
 

 

CPTs to
be used by the

 

 

DBN. This can be done by evaluating whether the output is “true”
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Figure 6.4: Figure showing the topology of the resulting
 

 

DBN for a single ship en-
counter. Nodes related to situation start (ISS , SSρ[t]) are omitted to reduce complexity.
See Tables 6.2 to 6.4 for abbreviations. Subscript 1 indicates that this model considers
the relation between the reference ship and ship with index 1. In a multi-ship encounter,
all nodes with index subscript would be repeated for any additional ship in the encounter.
Green nodes represent measurements, orange node intentions, and blue nodes model vari-
ables. All nodes inside the dashed box are time-dependent and are repeated for each time
step. Circular arrows indicate connections between subsequent time steps.

or “false” for all combinations of inputs. This results in
 

 

CPTs consisting of 0/1
probabilities. Nodes that according to Tables 6.2 to 6.4 are real-valued must be
discretized. A suitable range and discretization step must be defined. The software
GeNIe [125] allows the user to specify equations and to use real-valued nodes. It
can then automatically discretize and translate these equations into

 

 

CPTs.

6.2.4 Priors
Information from the current situation, such as ship types and the type of envi-
ronment, can improve the prior distributions of the intention nodes. Examples of
different factors that could be considered are shown in Table 6.6. These influencing
factors can be included as time-independent nodes that affect the intention states.

Different approaches can be followed to identify factors that affect the intentions.
One way is to have a workshop with experts in the field, such as experienced
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Table 6.6: Factors that can influence the intentions of the reference ship. Table 6.7
specifies and quantifies the dependencies.

Factor Reason States
Maneuverability A poor maneuverability requires earlier

actions and larger margins
low/medium/high

Location Ships tend to act earlier and have
larger margin in open seas than inland
waterways

open sea/innland

Ship type A leisure craft is less likely to know
and follow rules and best practice

commercial/
leisure

Relative ship
size

Larger ships tends to have priority
over smaller ships [130]

smaller/similar/
larger

Speed Ships require larger safety margins
when going at a fast speed

slow/fast

captains. This workshop can be similar to risk analysis workshops such as in [140]
and [119]. Another option is to study captains during operation as done in [130].
This has the advantage of being more correct than a workshop, but some factors
might not show up during the study. A last option is to analyze historical data
logged with the

 

 

AIS that larger vessels are required to be equipped with [141].
This method would be more general as much more data from different ships and
situations could be analyzed. It will, however, be limited to the information that
is logged with the

 

 

AIS, which does not necessarily include all factors that could
be of interest. A combination of the three approaches is preferable to maximize
correctness and completeness.

The same methods can be used for quantifying how the intention nodes are affected
by the identified factors.

 

 

AIS data could be used to build prior distributions on,
among others, how far before

 

 

CPA different types of ships tend to give way and how
close they tend to be at

 

 

CPA. This information could be supplemented with data
from operation studies and expert judgment to model how factors not included
in the

 

 

AIS affect the distribution. Different methods for building
 

 

CPTs based on
expert information are analyzed in [100].

Performing a thorough identification and quantification is outside the scope of this
chapter. Table 6.7 shows the quantification used to produce the results presented
in Section 6.3.

6.2.5 Using the intentions

This section presents two different ways of using the evaluated intention probabil-
ities for collision avoidance.
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6. Development of intention model

Table 6.7: Prior probability distribution used in the simulation study for the different
intention states as a function of the influencing factors. To keep the list short, factors
are only included that were of relevance to the scenarios presented in Section 6.3. States
marked in bold are used unless otherwise specified. N (µ, σ) indicates a truncated normal
distribution with expected value µ, standard deviation σ, and limited to be larger than 0.
For binary states the probability of “true” is given. Discrete states are given in the order
specified in Table 6.2.

Intention Influencing factor Prior distribution
IAT Maneuverability: low N (480 s, 80 s)

Maneuverability: medium N (360 s, 75 s)
ICC Ship type: commercial 0.99
ICSρ

None [0.2, 0.2, 0.2, 0.2, 0.2]
IGS Ship type: commercial 0.995
IPρ

Relative ship size: similar [0.05, 0.90, 0.05]
Relative ship size: larger [0.01, 0.59, 0.4]

IRC Maneuverability: medium,
Location: open sea

N (1 km, 175m)

IRCF Maneuverability: medium,
Location: open sea

N (1.5 km, 250m)

ISD Maneuverability: medium,
Location: open sea,
Speed: slow

N (300m, 75m)

Maneuverability: low,
Location: open sea,
Speed: slow

N (700m, 100m)

ISDF Maneuverability: medium,
Location: open sea,
Speed: slow

N (500m, 120m)

ISDM Maneuverability: medium,
Location: open sea,
Speed: slow

N (300m, 75m)

ISS Maneuverability: medium,
Location: open sea

N (7 km, 1.7 km)

IU None 0.9999
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6.2. Method

Decision criteria

The first approach considers whether the own-ship should consider the reference-
ship in the collision avoidance algorithm. Collision avoidance algorithms similar to
[135] do not need to consider the reference ship if the own-ship has a

 

 

SO role, and
the reference ship is planning to give way. A new node can be introduced into the
network to evaluate whether the reference ship is planning to give way or not. A
threshold can be proposed that defines how likely it must be that the reference
ship will give way for it to be safely ignored by the collision avoidance algorithm.

The node representing whether the reference ship is planning to give way depends
on whether the reference ship has a

 

 

GW role (Rρ), considers it a risky situation
(RSρ), and if its definitions of ample time (IAT ), safe-distance at

 

 

CPA (ISD), safe
distance when crossing in front (ISDF ), and safe distance to the current midpoint
(ISDM ) are acceptable. Additionally, the reference ship is assumed not to give way
if it acts in an unmodeled manner (IU ). Equation (6.24) shows the logic statement
that defines whether the ship will give way towards ship ρ (WGW ρ).

WGW ρ[t] =
(
Rρ ==

 

 

GW
)
∧
(
IAT > ATmin

)
∧
(
ISD > SDmin

)
∧
(
ISDF > SDFmin

)
∧
(
ISDM > SDMmin

)
∧ RSρ[t] ∧ ¬IU (6.24)

Candidate trajectories

The second approach evaluates whether a candidate trajectory for the reference
ship is compatible with the estimated intentions. Measurements can be evaluated
based on the candidate trajectory and inserted into the network. The network can
then be used to evaluate the probability that this trajectory is compatible with the
reference ship’s intentions (C[t]). These candidate trajectories with corresponding
probability can be used as scenarios in scenario-based collision avoidance algorithms
similar to [71]

Minor alterations are needed to evaluate the measurements based on trajectories.
All measurements that consider that the reference ship is keeping its course and
speed are instead evaluated using the candidate trajectory of the reference ship
while only assuming that all other ships in the encounter will keep their course and
speed. The current course (MC ) and speed (MS ) must be evaluated a bit into
the candidate trajectory so that the ship has time to execute the potential evasive
action. If the situation has not started, then a trajectory keeping the course and
speed will be wrongly given a high probability. This is avoided by setting the
current distance (MDρ [t]) to zero. The time until

 

 

CPA (MTCPAρ) is not relevant
for the candidate trajectories as the entire future motion of the ship is considered as
known. Instead, this measurement is set to the minimum acceptable time (ATmin).
An intention to give way at a shorter time than acceptable will evaluate a high
probability for trajectories that keep the course and speed. This makes the collision
avoidance algorithm take evasive actions if it is likely that the reference ship will
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6. Development of intention model

give way at an unacceptable short time before
 

 

CPA. The rest of the measurements
can be evaluated as usual.

There are many different ways of generating candidate trajectories. This work
generates trajectories based on line-of-sight guidance, as proposed in [14]. These
trajectories are generated by simulating a simple ship model that uses a line-of-
sight guidance rule to evaluate a reference course that gradually converges towards
the nominal path [80]. The nominal path is assumed to go in a straight line going
through the position where the ship was first observed, pointing in the same di-
rection as the ship’s course at this point. Adding different constant offsets to the
reference course generates different trajectories that quickly move away from and
then align parallel to the original course. Figures 6.5 and 6.13 shows the resulting
trajectories with a constant offset in speed or course. All the trajectories assume
that evasive actions are done at the current time-step and not at future time-steps.
This assumption can be acceptable for collision avoidance, as it is enough to know
if the other ship will give way in time and to what side it will give way.

6.3 Results

This section presents different simulation scenarios that demonstrate the capabil-
ities of the intention model. Scenario 1 to 7 go into detail on specific situations
to highlight how the intention model works. The specific scenarios focus on tra-
jectories the ships can take in the future. The probabilities of different candidate
trajectories being compatible with the reference ship’s intentions (C [t]) are pre-
sented. Note that probabilities for all trajectory candidates do not need to sum
to 1 as there can be multiple trajectory candidates that are compatible with the
intentions of the reference ship.

Scenario 8 to 11 show sets of many different similar situations to demonstrate the
sensitivity of the intention model to changes in the situation. In these scenarios the
focus is on the underlying intentions and whether the ship will give way (WGW i).
How these states develop as the ships approach each other is shown.

The
 

 

DBN is in each scenario evaluated using the SMILE [60] library for C++. A
separate instance of the model is run for all ships in the encounter.

Scenario 1 - Gradual inference

This scenario demonstrates an ability to identify the intentions based on observa-
tions. Figure 6.5 shows two ships meeting on a collision course. The situation is
a clear crossing situation where, according to

 

 

COLREGs Rule 15, the blue ship is
responsible for giving way while the red should stand on. The model evaluates a
93% chance that the blue ship will give way (WGW ) and a 6% chance that the
red ship will give way. The blue ship can give way either by reducing its speed or
making a starboard turn.
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Figure 6.5: Scenario 1. Two ships are meeting on a collision course in a clear crossing
situation. The figure shows the different candidate trajectories (dashed lines). The prob-
ability at the end of each trajectory and the thickness of the line show the probability
that the trajectory is compatible with the ship’s intentions (C [t]). Trajectories with re-
duced speed are shown with a lighter color. The ship symbols are scaled for visualization
purposes and do not represent the true ship size.
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Figure 6.6: Scenario 1. Shows the same encounter as Figure 6.5 at a later time-point.
The figure shows the different candidate trajectories (dashed lines). The probability at
the end of each trajectory and the thickness of the line show the probability that the
trajectory is compatible with the ship’s intentions (C [t]). Trajectories with reduced speed
are shown with a lighter color. The ship symbols are scaled for visualization purposes and
do not represent the true ship size.
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Figure 6.7: Scenario 1. Shows the same encounter as Figures 6.5 and 6.6 at a later
time-point. The red ship has changed its course 45°to starboard and halved its speed.
The figure shows the different candidate trajectories (dashed lines). The probability at
the end of each trajectory and the thickness of the line shows the probability that the
trajectory is compatible with the ship’s intentions (C [t]). Trajectories with reduced speed
are shown with a lighter color. The ship symbols are scaled for visualization purposes and
do not represent the true ship size.

Figure 6.6 shows the same situation at a later time-point. As the blue ship has not
yet done any action to avoid collision, it becomes more likely that it believes it has
a higher priority making it not give way at all. The model, therefore, evaluates a
68% chance that the blue ship will give way. As the red ship has not changed its
course or speed, it becomes less likely that it thinks it has lower priority, which
results in a 1% chance that it will give way.

When the red ship starts to make an evasive maneuver, as shown in Figure 6.7,
it becomes more likely that the red ship acts to avoid collision. Note that the
candidate trajectories are generated relative to the nominal path of the ship, which
is assumed to continue northwards. As the time until

 

 

CPA is very short, it is
unlikely that the red ship has such a short definition of ample time. The model,
therefore, evaluates a 32% chance that the red ship acts in an unmodeled manner.
The probability that the red ship will give way is evaluated to be 29%.

Scenario 2 -
 

 

COLREGs incompliant action.

This scenario demonstrates the modeling of incompliant behavior. Figure 6.8 shows
two ships meeting on a collision course where the blue ship has turned its course
to port to cross in front of the red ship. The model predicts that the blue ship will
continue to cross in front even though this is not compliant with

 

 

COLREGs.
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Figure 6.8: Scenario 2. The ships approached in the same manner as shown in Figure 6.5.
The blue ship performed a

 

 

COLREGs incompliant maneuver by changing course to port
to avoid collision. The figure shows the different candidate trajectories (dashed lines). The
probability at the end of each trajectory and the thickness of the line show the probability
that the trajectory is compatible with the ship’s intentions (C [t]). Trajectories with re-
duced speed are shown with a lighter color. The ship symbols are scaled for visualization
purposes and do not represent the true ship size.
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Figure 6.9: Scenario 3. The red ship is approaching the blue ship with a higher speed
and a relative bearing of 113 degrees relative to the heading of the blue ship. The bearing
is close to the limit between overtaking and crossing, which can cause uncertainty. The
figure shows the different candidate trajectories (dashed lines). The probability at the end
of each trajectory and the thickness of the line shows the probability that the trajectory
is compatible with the ship’s intentions (C [t]). Trajectories with reduced speed are shown
with a lighter color. The ship symbols are scaled for visualization purposes and do not
represent the true ship size.
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Figure 6.10: Scenario 4. Two ships are approaching in a head-on situation where it
is uncertain whether there is a risk of collision (RC i). The figure shows the different
candidate trajectories (dashed lines). The probability at the end of each trajectory and
the thickness of the line show the probability that the trajectory is compatible with the
ship’s intentions (C [t]). Trajectories with reduced speed are shown with a lighter color.
The ship symbols are scaled for visualization purposes and do not represent the true ship
size.

Scenario 3 - Uncertain
 

 

COLREGs situation

This scenario demonstrates how uncertainty in the
 

 

COLREGs situation affects
the model. Figure 6.9 shows a scenario where the red ship is approaching the
blue ship from an angle that is close to the border between an overtaking and
a crossing situation. The situation metric evaluates a 54% chance of it being an
overtaking situation, in which case the red ship should give way to either side.
The remaining 46% is evaluated as a crossing situation, in which case the blue
ship should give way behind the red ship. This results in a substantial probability
for both keeping the course and speed and taking evasive actions. For the blue
ship, none of the candidate trajectories where course alone was changed made the
blue ship cross behind the red ship at a safe distance. The only option among the
candidate trajectories that gave way behind the red ship was for the blue ship to
reduce its speed.

Scenario 4 - Risk of collision

This scenario demonstrates uncertainties that arise from whether there is a risk of
collision (RC i). Figure 6.10 shows two ships meeting in a head-on situation. The
model evaluates a 61% chance that there is a risk of collision, and a 86% chance
that either ship will give way. If there is no risk of collision, then all actions that
keep the ships at a risk-free distance are acceptable. Either way, making a large
starboard turn is acceptable as it results in crossing as specified in

 

 

COLREGs Rule
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14.

Scenario 5 - Effect of priors, ship size

Figure 6.11 shows the same scenario as Scenario 1 but utilizes information that the
blue ship is significantly larger than the red ship. The model, therefore, evaluates a
substantially larger probability that the blue ship has priority over the red, which
results in a 58% chance that the blue ship will give way and a 40% chance that the
red ship will give way.

Scenario 6 - Effect of priors, maneuverability

Figure 6.12 shows the same scenario as Scenario 1 but with the maneuverability of
both ships set to low. This makes it more likely that the blue ship will try to cross
with a larger distance between the ships.

Scenario 7 - Multi-ship encounters

Figure 6.13 shows an encounter with three ships, where the red and green ship
have a head-on encounter, while the blue ship has an overtaking encounter with
the red ship and a head-on encounter with the green ship. If the blue ship had only
considered the red ship, then it would be allowed to cross on either side of the ship.
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Figure 6.11: Scenario 5. Same situation as Scenario 1. Information that the blue ship is
substantially larger than the red ship is inserted as prior information. The figure shows
the different candidate trajectories (dashed lines). The probability at the end of each tra-
jectory and the thickness of the line show the probability that the trajectory is compatible
with the ship’s intentions (C [t]). Trajectories with reduced speed are shown with a lighter
color. The ship symbols are scaled for visualization purposes and do not represent the
true ship size.
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Figure 6.12: Scenario 6. Same situation as Scenario 1. Information that both ships have
a low maneuverability is inserted as prior information. The figure shows the different
candidate trajectories (dashed lines). The probability at the end of each trajectory and
the thickness of the line show the probability that the trajectory is compatible with the
ship’s intentions (C [t]). Trajectories with reduced speed are shown with a lighter color.
The ship symbols are scaled for visualization purposes and do not represent the true ship
size.
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Figure 6.13: Scenario 7. A collision encounter consisting of three ships. The figure shows
the different candidate trajectories (dashed lines) with their respective probability of being
compatible with the ship’s intentions (C [t]). The thickness of the line is proportional to
the probability of that trajectory being compatible with the ship’s intentions. The ship
symbols are scaled for visualization purposes and do not represent the true ship size.
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As the evasive maneuver has to be correct towards both ships, it can only change
its course toward starboard.

Scenario 8 - Entry angle

(a) Will give way (WGW i) (b) Priority higher (IPi
= higher)

Figure 6.14: Multiple different simulations of two ships approaching each other from
different angles. The red ship is standing still and the blue ship is keeping its course and
speed constant. Each subplot shows how a different state develops as the ships approach.
The color shows the probability that the relevant state is “true” at each time step in the
different approaches.

Figure 6.14 shows how the intentions develop as two ships approach from different
angles. Figure 6.14(a) shows how the blue ship is initially assumed to give way
except if it is approaching in a crossing situation with the red ship on its port side.
The gradual transition in whether the blue ship will initially give way demonstrates
the gradual transitions between the different

 

 

COLREGs situations. Figure 6.14(b)
shows how the belief that the ship thinks it has higher priority gradually increases
as it approaches.

Scenario 9 - Maneuver angle

Figure 6.15 shows how the intentions develop as two ships approach in a crossing
situation with different angles on the avoidance action. Figure 6.15(a) shows that
as long as the avoidance action is large enough it will be assumed that the blue ship
will give way, if not then Figure 6.15(b) shows that it is assumed that the blue ship
acts as if it has higher priority. In the cases where the blue ship has changed course
to port, Figure 6.15(c) shows a low probability that the blue ship has an intention
be

 

 

COLREGs-compliant when performing evasive maneuvers. In the cases where
the port maneuver is small enough to be marked as the ship acting as if it had
a higher priority the

 

 

COLREGs-compliant evasive maneuver will not fall as the
model already has an explanation for the observed behavior.

Scenario 10 - Maneuver times

Figure 6.16 shows how the intentions develop as two ships approach in a crossing
situation with port and starboard maneuvers at different times. Figure 6.16(a)
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(a) Will give way (WGW i) (b) Priority higher (IPi
= higher)

(c) COLREGS-compliant evasive maneuver
(IC)

(d) Unmodeled behaviour (IU )

Figure 6.15: Multiple different simulations of two ships approaching in a crossing sit-
uation where the blue ship performs an avoidance maneuver with different angles. The
red ship is standing still. Each subplot shows how a different state develops as the ships
approach. The color shows the probability that the relevant state is “true” at each time
step in the different approaches.

shows that for sufficiently early actions the blue ship will be marked as giving way.
In the cases where these actions are to the port side, the

 

 

COLREGs-compliant
evasive maneuver state will drop as shown in Figure 6.16(c). In the cases the actions
are too late, Figure 6.16(d) shows that the ship is marked as showing unmodeled
behavior as the ship changes course into a collision.

Scenario 11 - Head-on offset
Figure 6.17 shows how the intentions develop as two ships approach in a head-on
situation with different sideways offsets. Figure 6.17(a) shows how it was initially
assumed that the blue ship will give way as long as the sideways offset is not too
large, when it is too large it is assumed that there is no risk of collision as shown in
Figure 6.17(d). In the cases where the ships get too close, the behavior is explained
with the ship acting as if it has a higher priority, shown in Figure 6.17(b), or that
there was no risk of collision, after all, shown in Figure 6.17(d). Figure 6.17(c) does
not have any significant changes as the state is only affected by non-compliant
evasive maneuvers. As no maneuver is made the behaviour is instead explained
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(a) Will give way (WGW i) (b) Priority higher (IPi
= higher)

(c) COLREGS-compliant evasive maneuver
(IC)

(d) Unmodeled behaviour (IU )

Figure 6.16: Multiple different simulations of two ships approaching in a crossing situa-
tion where the blue ship performs either a starboard or port avoidance action at different
times. The red ship is standing still. Each subplot shows how a different state develops
as the ships approach. The color shows the probability that the relevant state is “true”
at each time step in the different approaches.

with a higher priority.

6.4 Discussion

Scenario 1 demonstrates that the model is able to infer the intentions of a ship based
on its observed position, course, and speed. The blue ship did not change its course
as it approached. This behavior could be explained by the blue ship having high
priority or by having a short ample time. Once the ships came closer, the probability
that the blue ship had a definition of ample time that was lower than the remaining
time until

 

 

CPA decreased. This increased the probability that the blue ship had
higher priority. The red ship changed its course and speed shortly before

 

 

CPA to
avoid collision. Before this point in time, the model did not increase the chance that
the red ship would give way as it did not give any indications of giving way. When
the red ship finally changed course, the time until

 

 

CPA was very short, making it
quite unlikely that the red ship had such a short definition of ample time. As this
behavior does not fit very well with the model, a high chance was evaluated that

153



6. Development of intention model

(a) Will give way (WGW i) (b) Priority higher (IPi
= higher)

(c) COLREGS-compliant evasive maneuver
(IC)

(d) Risk of collision (IRC )

Figure 6.17: Multiple different simulations of two ships approaching in a head-on sit-
uation with different sideways offsets. The red ship is standing still and the blue ship is
keeping its course and speed constant. Each subplot shows how a different state develops
as the ships approach. The color shows the probability that the relevant state is “true”
at each time step in the different approaches.

the red ship acts in an unmodeled way. A collision avoidance algorithm using this
intention inference module should display conservative behavior when unmodeled
behavior is observed. This will be the case when evaluating candidate trajectories,
as all trajectories will have an increased probability of being compatible. When
using the intentions as decision criteria, unmodeled behavior will count as not
giving way, thereby making the own-ship give way.

1 and 2 show that having multiple different intention variables that can explain a
ship’s behavior increases the fidelity of the model. In both scenarios, the blue ship
acted in a

 

 

COLREGs incompliant manner. Modeling how the ships are incompliant
enables the model to distinguish between Scenario 1 where the blue ship will stand
on and the red ship must give way, and Scenario 2 where the blue ship does an
evasive maneuver, although to the wrong side.

Modeling of the underlying causes that can cause misunderstandings is demon-
strated in Scenario 3. Having a clear distinction between the different

 

 

COLREGs
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situations is prone to cause misunderstandings, as it is unlikely that the ships will
evaluate borderline situations exactly the same. By modeling this uncertainty, it
becomes clear that its insufficient to blindly trust the own-ships interpretation of
the situation.

In Scenario 4 the uncertainty stems from whether there is a risk of collision. This
scenario gives an example where it is insufficient to consider a single parameter
for collision avoidance, such as if the ship will give way. In most other situations,
the own-ship must give way if the other ship does not fulfill its obligation. In this
situation, the opposite is true; if the other ship fulfills its obligations, then both
ships must give way. If the other ship keeps its course, then the own-ship can turn
a safe situation into a potentially dangerous one by giving way with a significant
starboard maneuver, which is required by

 

 

COLREGs rule 14.

Scenarios 5 and 6 show that additional information, such as the relative ship size
or ship maneuverability, can be used to affect the intention probabilities. Having
a collision avoidance algorithm that adapts to the current situation is crucial as
ships act in very different manners in different situations, such as open waters and
inland waterways. The proposed intention model presented in this chapter is a step
towards this ability as it gives the collision avoidance algorithm an understanding
of how the other ship will act in the current situation.

Scenario 7 demonstrates that the model can consider encounters with multiple
ships. The model considers whether an observed position, course, and speed are
compatible with the intention towards all vehicles. The model does not consider
that the reference ship has an idea of what the other ships plan to do. This could,
for example, be that the blue ship in Figure 6.13 predicts that the red ship will
make a starboard turn and therefore chooses to take an even larger starboard turn.

Scenarios 8 to 11 demonstrates the sensitivity of the intention models to how the
ships meet and act. Additionally, it shows the effect of the initial distribution of the
different intention variables. Scenario 8 shows the effect of the situation classifiers
given in Figures 6.2 and 6.3 on the initial probability that the ship will give way.
Furthermore, it shows the effect of ample times (IAT ) initial distribution on when
it becomes likely that the ship has a higher priority. Scenario 9 shows the effect of
safe distance (ISD) and safe distance fronts (ISDF ) initial distributions on what is
considered a valid avoidance action. Scenario 11 shows the effect of safe-distance
midpoints (ISDM ) initial distribution on how far to the side the blue ship has to
pass the red ship for it to be considered as giving way. It also shows the effect of
risk of collisions (IRC ) initial distribution.

Evaluating different candidate trajectories has some advantages, such as being
able to better portray situations such as the one shown in Scenario 4. For the
trajectories to realistically portray how the reference ship will act, there must be
a candidate trajectory that adequately describes the other ship’s trajectory. The
candidate trajectory and actual trajectory must be close enough to result in the
correct collision avoidance behavior for a collision avoidance algorithm utilizing
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these intentions. Choosing suitable candidate trajectories is not a trivial task. The
ones used in this chapter cannot handle more complicated situations, such as those
where the ship is unable to act at the initial time-step but can act at a later one
and where the reference ships make more drastic or sequential changes in course
or speed.

The probabilities associated with each candidate trajectory do not represent the
probability that the reference ship will follow this trajectory. Instead, it represents
the probability that this trajectory is something the reference ship would consider
acceptable when only considering properties related to

 

 

COLREGs. If it is known
that the ship will follow

 

 

COLREGs and how it defines the different ambiguities
such as ample time and safe distance, then all trajectories that adhere to this
definition of the rules will be given a 100% probability of being compatible with
the intentions.

This chapter has not considered grounding risk or the
 

 

COLREGs rules regarding
traffic separation schemes (Rule 10), narrow channels (Rule 9), and sailing vessels
(Rule 12). Regarding traffic separation schemes and grounding risk, generating
candidate trajectories will be more challenging as the trajectories must cover the
ship’s different options, such as following and leaving the traffic separation scheme
correctly. In these situations, it might be necessary to dynamically generate the
trajectories based on the current circumstances. An additional challenge arises in
narrow channels due to stand-on vessels being allowed to change their course to
follow the channel [132].

Furthermore, the model does not explicitly consider measurement uncertainties.
This should not be a problem as long as the noise is less than PCIC and PCIS .
If the noise is substantial, then measurement uncertainty should be modeled as
well. This can be achieved by having separate nodes representing the measured
state and the measurement itself. The measurements themselves should be child
nodes of the measured state, and their

 

 

CPTs should describe the measurement
uncertainty. This way of modeling is called the measurement idiom [63].

The model assumes all initial changes in course are large enough to avoid collision
without requiring additional course changes. This assumption does not hold if the
model is fed an observation in the middle of a course change. The model can then
evaluate that the ship is not standing on correct (as it changed its course), nor is it
giving way correct (as the course change is too small to avoid collision). This can
be handled by introducing a node indicating whether the other ship is currently
changing its course.

To have acceptable computational time, the number of time-steps in the
 

 

DBN must
be limited. This can be achieved with a sliding window approach where only the
last couple of observations are considered [56]. The priors for the intention nodes
must be updated to represent the information that is no longer inside the window.
This is done by setting the intention priors equal to what the posterior was at
the last time-step that is no longer in the window. With a limited window, the

156



6.5. Conclusion

frequency of new observations inserted into the model must be considered. Feeding
information more often makes the window consider a shorter time span which will
contain more similar observations. This will reduce the inference capabilities of
the model. Feeding information less often makes the model respond to changes
slower. Not all measurements need to be saved as a time-step in the

 

 

DBN. The
newest time-step of the

 

 

DBN could be updated at a quick frequency and then only
saved as a new time-step if it contained substantial new information relative to the
previously saved time-steps. This should make the

 

 

DBN respond quickly and keep
a high inference quality with a limited window.

An alternative to the probabilistic approach presented in this chapter would be
to utilize a rule-based system. These rules could for example specify that a ship
does not fulfill its give-way obligation if it gets closer to the own-ship than a speci-
fied threshold. The probabilistic approach presented in this chapter has advantages
compared to such a rule-based system. First, it is able to utilize statistics on how
ships have historically acted in similar situations. This makes the proposed method
rely less on ad-hoc parameters such as at which distance a ship is no longer con-
sidered to fulfill its give-way obligations. Secondly, a probabilistic approach can
handle unclear situations by communicating the uncertainty in the intention and
trajectory probabilities, and by being able to infer how the other ship most likely
interpreted the situation based on the observed behavior. Lastly, the probabilities
produced by the intention inference module can enable collision avoidance algo-
rithms to make holistic decisions when multiple pieces of uncertain information
has to be considered in light of each other.

6.5 Conclusion

This chapter presents a novel approach for modeling and inferring the intentions
of other ships in a potential collision encounter at sea. The simulation study shows
that the method is able to infer the state of different intention nodes, identify
situations that are likely to lead to misunderstanding, and adapt the intention
probabilities to the current situation. This opens up for new possibilities for col-
lision avoidance algorithms. It could enable collision avoidance algorithms to act
more safely and predictably as they will better understand the future motion of
meeting traffic. They could become able to take early proactive actions to turn a
situation prone to misunderstandings into a clear situation where all ships agree
on how to act. Lastly, it opens up for collision avoidance algorithms to adapt to
the current situation, such as relative ship size and locations. This is an essential
feature for collision avoidance algorithms working in multiple different situations
where different tuning parameters are needed.

The focus of this chapter is the enhanced modeling and inference capabilities
achieved with the proposed framework. Future work is needed on expanding the
model to include the parts of

 

 

COLREGs that were not considered, to consider
grounding, to consider factors outside of

 

 

COLREGs that affect how ships behave,
and to validate the model with historical data. Furthermore, work is needed on
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gathering the statistics that work as priors for the different intention states and
on identifying how they are affected by available information on the current situa-
tion. Lastly, collision avoidance algorithms must be developed that can utilize the
increased situational awareness provided by this model.
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Chapter 7

Application of intention model in
sea trials

This chapter is based on the following publication

[52] T. Tengesdal, S. V. Rothmund, E. A. Basso, T. A. Johansen, and H.
Schmidt-Didlaukies, “Obstacle Intention Awareness in Automatic Collision
Avoidance: Full Scale Experiments in Confined Waters,” Submitted to Field
Robotics, 2022

The
 

 

PSB-MPC algorithm was mainly developed by T. Tengesdal, with S. V. Roth-
mund developing the

 

 

COLREGs violation cost and interface with the intention
model. The intention model is developed by S. V. Rothmund. The main software
platform was developed by T. Tengesdal. S. V. Rothmund developed software re-
lated to the intention model. Experiments were prepared by T. Tengesdal with
help from S. V. Rothmund, E. A. Basso, and H. Schmidt-Didlaukies. Supervision
was provided by T. A. Johansen. The first draft was written by T. Tengesdal and
S. V. Rothmund. Revision was provided by T. A. Johansen.

7.1 Introduction

7.1.1 Motivation

A key part of achieving autonomy for maritime surface vessels is robust and de-
liberate collision avoidance (

 

 

COLAV) systems. These systems are responsible for
providing both a safe and efficient avoidance solution in situations where there is
a risk of collision with nearby dynamic and static obstacles. To ensure safety, the

 

 

COLAV system must provide maneuvers that ensure a low risk of collision with
static and dynamic obstacles, in addition to adherence to the regulations put forth
by the

 

 

COLREGs [13]. Furthermore, the system should also ensure progress along
the intended ship trajectory and strive toward low energy expenditure.
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COLAV can be split into two parts. The first part is having adequate situation
awareness. situation awareness can be divided into three levels, perception, com-
prehension, and projection [12]. For

 

 

COLAV at sea, perception represents identify-
ing the position, speed, and course of the different ships, comprehension represents
identifying the intentions of the ships, and projection represents identifying the
future motion of the ships. This chapter focuses on the comprehension and projec-
tion part of situation awareness by using a modified version of the intention model
presented in Chapter 6.

The second part of collision avoidance considers decision-making based on the sit-
uation awareness. A challenge when developing decision-making algorithms for col-
lision avoidance is the need to plan

 

 

COLREGs compliant and optimal trajectories
while being able to react quickly when changes are observed. A hybrid approach
for handling this challenge is to divide the

 

 

COLAV planning system into multiple
levels, as done in e.g. [135], [142], [143]. In a three-layer structure, as in [135], the
highest level is a planner, which runs at low frequency and is responsible for finding
a globally optimal trajectory to the ship’s goal location while taking static obsta-
cles into account. The mid-level planner is responsible for handling the collision
avoidance and compliance with

 

 

COLREGs in the local area, thus needing to take
both static and dynamic obstacles into account. Lastly, the low-level planner is de-
signed to operate at a high frequency in order to handle reactive collision avoidance
when new situational information renders the trajectories planned by the higher
levels unsafe. In this chapter, the focus is placed on the mid-level

 

 

COLAV plan-
ning, which based on the understanding of the intentions of other ships, finds a
collision-free trajectory that complies with the

 

 

COLREGs regulations [144].

To fully enable both situation awareness and decision-making for collision avoid-
ance, there is also a need for efficient computational platforms, which can both
handle and take advantage of the increasing amounts of situational information
made available today through modern sensor technology and

 

 

AIS data. As certain
situations can require the

 

 

COLAV system to consider thousands of possible evasive
own-ship maneuvering decisions, static obstacles, and dynamic obstacle intention
scenarios with inherent uncertainty, an important part of the decision-making will
be to process situation awareness information and possible decision candidates ef-
ficiently.

7.1.2 Previous Work

Maritime COLAV has been an active research field since the 1950s [145], and many
algorithms have been proposed for solving this problem. This literature review will
consider the subset of proposed methods that tackle static and dynamic obstacles,
that explicitly consider uncertainties present in dynamic obstacle kinematics, and
uncertainty in their intentions, without assuming inter-ship communication. For a
general comprehensive literature review on maritime COLAV, please refer to [133],
[134], [145]–[148]. For a review on COLAV studies where inter-ship communication
is assumed, see [149].

160



7.1. Introduction

The work in [150] developed an A-star search-based trajectory planner for finding
COLREGS-compliant and collision-free trajectories considering dynamic and static
obstacles in a lattice. Monte Carlo (MC) simulation with fuzzy logic and trajectory
history data was used to find the set of most probable dynamic obstacle trajectories.
From the set, the most probable trajectory is considered in the collision avoidance
module. No prediction uncertainty was considered for the dynamic obstacles, and
the computational efficiency of the planner was only tested in a specific setting.

A* search is applied to collision-free lattice-based trajectory planning [21], where
trajectory deviation, collision risk, and non-compliance of COLREGS are penal-
ized in the cost function. An intention-based motion model is used for dynamic
obstacles, which uses historical data in order to classify a vessel as COLREGS-
compliant or not, and which incorporates reactive COLAV. The details on this
model are however not given.

A two-layered COLAV planning system with a global and local lattice-based tra-
jectory planner was developed in 2017 [151]. Here, Voronoi Diagrams together with
Fermat‘s Spiral is used to generate a continuous path free of static obstacles. Local
re-planning windows are used for taking detected dynamic and static obstacles into
account, where the dynamic obstacle motion is predicted under uncertainty using
the Constant Velocity (CV) model [152]. However, this can be overly conservative,
as the CV model often has unrealistic uncertainty growth in real-world cases [153].
Furthermore, the run-time properties of the local planner were not studied.

Rapidly exploring Random Trees (RRTs) was used in a sampling-based COLAV
planning algorithm for COLREGS-compliant dynamic and static collision avoid-
ance in [154]. The planner used a joint simulator for predicting both the own-ship
and dynamic obstacle motion, with potential fields being used in the joint predic-
tion to ensure collision-free trajectories. The planning algorithm was shown to be
real-time feasible through multiple simulations. However, the joint simulator as-
sumes that nearby ships will always perform deterministic COLREGS-compliant
maneuvers if possible, which is not necessarily the case in practice.

Different types of Velocity Obstacle (VO) based methods have been proposed for
COLAV in [25], [155]–[158], where the core idea is to compute a set of reachable
velocities for the own-ship which do not cause collision with nearby dynamic obsta-
cles. COLREGS adherence and dynamic obstacle kinematic uncertainties have been
considered by specifying additional constraints when computing the VO, in prob-
abilistic versions of the algorithm [25], [156]. These methods do however assume
constant velocity for dynamic obstacles, unless their trajectories are known before-
hand, and can be classified as reactive approaches since the sense-act methodology
is used.

In [136], nonlinear VO (NL-VO) is used for the own-ship, together with a method
for estimating the intent of vessels having a give-way role. The trajectories of
dynamic obstacles with give-way roles are processed using the Douglas-Peucker
algorithm, to find their action parameterized as turning points. The reachable ve-
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locity of the obstacle at these action points is then checked for intersection with the
corresponding own-ship generated NL-VO set, and is used for determining whether
the own-ship having stand-on role should perform emergency evasive maneuvers.

Fast probabilistic velocity obstacle (fPVO) for multi-ship COLAV is introduced in
[158], where the own-ship roles with respect to all nearby vessels are calculated
based on a symmetric own-ship - target ship COLREGS role classification method
and used to determine whether or not an evasive maneuver should be taken. The
evasive maneuver taken minimizes a cost function that penalizes high collision risk,
COLREGS role violation, and trajectory deviation. However, the study assumes
that all involved vessels adhere to the COLREGS and try to avoid collision, which
is not always valid in practice. The method is extended into a reciprocal (R-fPVO)
version in [159], using a DBN for intent inference as in [160]. The Bayesian network
estimates the probability of an obstacle ship being COLREGS-compliant or not,
and maps this into a rule-compliance factor which scales the COLREGS role viola-
tion cost. In contrast, the work presented in this article uses an intention inference
method able to infer multiple intention states which in total models the behavior
of meeting traffic.

The Scenario-based Model Predictive Control (SB-MPC) for maritime COLAV was
first presented in [14] and was extended to the Probabilistic SB-MPC (PSB-MPC)
in [144] to explicitly handle dynamic obstacle kinematic uncertainty through the
estimation of collision probabilities associated with pairs of predicted own-ship and
obstacle trajectories. The method was further extended in [71] to incorporate intent
information, where it was shown able to take into account alternative obstacle
trajectory scenarios under kinematic uncertainty. The MPC was refined in [20] to
consider intent information by using a set of estimated probabilities for a set of
uncertain predicted obstacle trajectory scenarios and implemented on a Graphical
Processing Unit (GPU) with anti-grounding in [53]. Prior to the present research,
the PSB-MPC COLAV planning algorithm had not been tested with an intention
inference module, only with usage of a priori intention information.

7.1.3 Proposed Method

Previous work on automatic maritime COLAV has most often neglected or sim-
plified the situational awareness part of COLAV, assuming constant behavior in
speed and course for nearby dynamic obstacle ships without uncertainty. This as-
sumption of constant course and speed for vessels involved in encounters will not
hold in practice, and limits the own-ship decision-making, possibly leading to more
reactive avoidance maneuvers being made. Recently, more studies are emerging
that have considered the uncertainty in intent and kinematics of nearby obstacle
ships to different extents [21], [133], [150], [151], [159], [161].

Furthermore, an aspect that has not been considered by most COLAV planning
algorithms, is the vagueness of the COLREGS and that nearby vessels can have
different perspectives and inclinations towards adhering to the rules. Following
the rules blindly in any situation can prove to be detrimental [130]. On several
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points the rules are open to disagreements, making it unsafe to act only based
on your own interpretation of a situation [162]. This is also discussed in [163],
which illustrates the uncertainties related to the interpretation and adherence of
several COLREGS rules. Clearly, inter-ship communication would aid in making
safe COLREGS-compliant decisions, but this cannot be relied on being the case in
general. Therefore, estimating how and if nearby ships follow the COLREGS under
uncertainty will be important in order to resolve hazardous situations safely.

Thus, in this article, we propose a COLAV system with an intention inference mod-
ule as in [51] for providing added situational information to the PSB-MPC planning
algorithm as in [20], [53], and validate the system in experimental trials. All obsta-
cle ships involved in the encounters broadcast their GNSS information for easier
tracking system handling, which lets the present article focus on the projection part
of situational awareness. The intention information comes in the form of probabili-
ties for likely future obstacle ship trajectories and probabilistic inclinations toward
how the ship adheres to the COLREGS. The probability information, predicted
trajectories, and other dynamic obstacle information is combined with static ob-
stacle data from navigational charts and fed into the PSB-MPC COLAV planning
algorithm. The PSB-MPC utilizes parallel processing to handle larger amounts of
situational information and possible own-ship avoidance decisions than what would
be possible on a sequential computation platform. This results in increased situ-
ational awareness for the COLAV system, when using the uncertain information
on the kinematics and intents of nearby dynamic obstacles in the planning. To the
authors‘ knowledge, this study represents the first field experimental validation of
an intention module for estimating if and how dynamic obstacles adhere to the
COLREGS, in a risk-based deliberate COLAV planning algorithm.

The contributions of this article are thus as follows.

• Exploitation of a new intention model for obstacle ships in a risk-based
COLAV for increased situational awareness.

• First experimental validation of an intention-aware COLAV system with par-
allel processing capabilities.

7.1.4 Chapter Overview

The chapter is structured as follows. Section 7.2 gives an overview of the
 

 

COLAV
system architecture and software framework, in addition to the experimental plat-
form used. Sections 7.3 and 7.4 details the intention inference module and the

 

 

PSB-MPC
 

 

COLAV planning algorithm. Experimental results are given in Sec-
tion 7.5 and discussed in Section 7.6 and conclusions are lastly given in Section 7.7.
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7.2 System Architecture and Experimental Setup

7.2.1 COLAV System

An overview of the system architecture when using the
 

 

PSB-MPC
 

 

COLAV planning
algorithm with a situation awareness system including intention inference is given
in Figure 7.1. Relevant system components are described below:

GHM Grounding Hazard Manager. Responsible for processing all data
related to static obstacles, in a parameterization suitable for the

 

 

PSB-MPC. A list of relevant hazards, typically inside a radius of
dso,relevant around the current own-ship position, is sent to the

 

 

PSB-MPC. electronic navigational chart (
 

 

ENC) data is used to
get grounding hazard information.

DOM Dynamic Obstacle Manager. Responsible for processing all data re-
lated to dynamic obstacles, and for generating prediction scenarios.
A prediction scenario here refers to an alternative maneuver or tra-
jectory for the obstacle. The dynamic obstacle data includes track-
ing system information and estimated intention information for
confirmed tracked obstacles. A list of data from relevant dynamic
obstacles, inside a radius of ddo,relevant, is sent to the

 

 

PSB-MPC.
The dynamic obstacle data specifically includes, among others, the
current time estimates and error covariances, predicted trajecto-
ries, and estimated probabilities for each alternative maneuvering
scenario.

DOII Dynamic obstacle intention inference. Updates the intention model
based on observed behavior. Receives dynamic obstacle data with
predicted trajectories for each obstacle, and evaluates the proba-
bility that the obstacle will follow different candidate trajectories.
See Section 7.4.

PSBMPC Finds the optimal own-ship trajectory based on static and dynamic
obstacle data. See Section 7.3.

7.2.2 The Own-ship Platform

The field experiments used the fully actuated milliAmpere 2 vessel as the own-ship
platform, shown in Figure 7.2. The vessel is owned by

 

 

NTNU and is used for re-
search and technology development purposes in the field of autonomous maritime
transport in urban areas. It is 8.6m long, 3.5m wide, fully electric, and equipped
with four Fischer Panda 10 kW azimuth thrusters. To obtain accurate own-ship
navigation data, the ferry uses a moving base real time kinematics (

 

 

RTK) solution
with two global navigation satellite system (

 

 

GNSS) receivers and two
 

 

RTK anten-
nas. At the time of the experiments, a virtual reference station (

 

 

VRS) was used
with a Network Transport of RTCM data over IP (NTRIP) client for corrections,
due to an

 

 

RTK base station being down.
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Figure 7.1: COLAV system overview used in the experiments.

Figure 7.2: The Milliampere 2 ferry used as the autonomous ship in the experiments.
Courtesy of Mikael Sætereid.
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The robotic operating system (
 

 

ROS) is used as middleware for the
 

 

COLAV system,
with software packages for each system component. The Milliampere 2 ferry uses
a commercial dynamic positioning (

 

 

DP) system from Marine Technologies, which
takes in trajectory references in planar pose, velocity, and acceleration. It is con-
figured to perform small heading changes, mostly relying on speed changes, since
back-and-forth ferry transportation is the goal. This created some challenges for
trajectory tracking and

 

 

COLREGs adherence in this work, as it is important to
make apparent maneuvers to comply with

 

 

COLREGs rule 8.

The
 

 

PSB-MPC
 

 

COLAV planning algorithm calculates the desired trajectory for
the ferry to follow, and converts the output to the correct format of input for
the

 

 

DP system. The
 

 

PSB-MPC and the situation awareness module runs on a
separate computer, which is connected to an onboard Milliampere 2 computer via
ethernet. The onboard computer is responsible for enabling autonomy on the ferry
and connects to the navigation, sensor, and

 

 

DP systems. The separate computer
is a workstation running with Ubuntu 20.04.3 LTS as its operating system with an
Intel(R) Core(TM) i9-10900K 3.70GHz processor, 32 GB RAM, and an NVIDIA
GeForce RTX 3090 GPU.

7.2.3 Target Tracking

As the main research objective is to showcase how an intention inference module
can be used with a

 

 

COLAV planning algorithm for safer and more efficient ship
guidance, we use a simple communication setup where dynamic obstacles send

 

 

GNSS information to the own-ship tracking system. The tracking system then
filters these measurements using a linear

 

 

KF [66] to produce tracks for each vessel,
using a constant velocity (

 

 

CV) model [164] for the estimation, as done in simulation
in [144]. We then use 4G routers on each vessel to establish communication.

The target ships (dynamic obstacles (
 

 

DOs)) considered in the experiments is a
Jeanneau Marlin 65 vessel called Havfruen depicted in Figure 7.3(a), and the Cy-
berotter 1 depicted in Figure 7.3(b). To get

 

 

GNSS information from Havfruen, the
vessel-driver runs a laptop with a Ublox ZED-F9P receiver that sends position
measurements over

 

 

ROS to the own-ship using
 

 

ROS Ublox driver software. The
Cyberotter has an onboard SBG

 

 

GNSS system, which in the same fashion sends
its

 

 

GNSS information over
 

 

ROS. The own-ship is here configured as the
 

 

ROS mas-
ter, running on the workstation on milliAmpere 2, which is connected via ethernet
and the 4G communication link to Havfruen and the Cyberotter.

Due to the Milliampere 2 ferry being restricted to operate within channels and
harbor areas without waves, all experiments were performed in the easternmost
basin of Nyhavna, Trondheim, Norway.

1More information at https://otter.itk.ntnu.no/doku.php?id=cyberotter.
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(a) Havfruen. Courtesy of Mannhullet at
 

 

NTNU.
(b) Cyberotter [165].

Figure 7.3: The target ships or dynamic obstacles Havfruen and Cyberotter used in the
experiments.

7.3 The
 

 

PSB-MPC
 

 

COLAV Planning Algorithm

The
 

 

PSB-MPC [20], [53] is a finite control set
 

 

MPC [166], [167], and uses sampling-
based optimization for deliberate

 

 

COLAV planning. It considers a finite set of
own-ship trajectories and finds the optimal one which minimizes a cost function

Hl(t0) = Hl
do +Hl

colregs +Hl
so +Hl

p (7.1)

at the current time t0. The cost function penalizes dynamic obstacle collision risk
cost Hl

do, breaching the
 

 

COLREGs with respect to all dynamic obstacles Hl
colregs,

grounding on static obstacles Hl
so, in addition to penalizing deviations from the

nominal trajectory Hl
p, respectively. Here, l is the index of the control behavior

or own-ship trajectory being considered. The control behavior consists of nM se-
quential avoidance maneuvers taken by the own-ship. It is parameterized by a
sequence

[
(U l

m,1, χ
l
m,1), ..., (U

l
m,nM

, χl
m,nM

)
]

consisting of speed multiplicative fac-
tors U l

m and additive course angle offsets χl
m, which are applied to the autopilot

references Ud and χd in speed over ground (
 

 

SOG) and course over ground (
 

 

COG)
at different time steps in the prediction horizon. The optimal control behavior is
found as

l∗(t0) = argmin
l
Hl(t0) (7.2)

where the solution gives us an optimal avoidance trajectory for the own-ship, which
is regarded as a reference trajectory to be tracked by the

 

 

DP-system. A sampling
time of 5 seconds is used for the

 

 

MPC. The
 

 

PSB-MPC problem is illustrated
in Figure 7.4. Note that the control behaviors displayed here are for illustrative
purposes.

Details on the prediction models for the own-ship and the
 

 

DOs, how the grounding
cost (Hl

so) and path deviation costs (Hl
p) are calculated, details on how the algo-
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Figure 7.4: PSBMPC illustration, with the own-ship running the algorithm in blue.
Nearby dynamic obstacles are shown in cyan and brown, and grounding hazards in beige.
Candidate control behaviors predicted by the

 

 

MPC are shown, where the color from
red to green represents the cost, with green being the lowest. Thus, the green candidate
trajectory is the optimal one. The figure is from [53]

.

rithm can be parallelized for running on a graphical processing unit (
 

 

GPU), and
how autopilot references are constructed based on the desired trajectory are not
included in this thesis. They can be found in the article this chapter is based on
[52].

7.3.1 Cost Function
Dynamic Obstacle Cost

The dynamic obstacle cost captures the probabilistic collision risk and is here
chosen as a sum over all nearby obstacles

Hl
do =

ndo∑
i=1

Hl,i
do (7.3)

where the individual dynamic obstacle cost is given by a weighted sum over the
nips prediction scenarios

Hl,i
do =

ni
ps∑

s=1

P̂i
sH

l,i,s
do (7.4)

with the prediction scenario probabilities {P̂i
s}

ni
ps

s=1 as weights. The prediction sce-
nario probabilities are evaluated with the dynamic obstacle intent inference (

 

 

DOII)
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module. Details on the collision cost associated with the pair of an own-ship control
behavior l and a dynamic obstacle i behaving as in prediction scenario s (Hl,i,s

do )
can be found in [52].

COLREGS Violation Cost

The
 

 

COLREGs violation cost has here been updated, relative to [20], [53], to
consider the entire candidate trajectory of the own-ship when evaluating whether
or not the rules were breached and is meant to make adherence to the

 

 

COLREGs
rules 8, 13, 14, 15, 16 and 17 easier. The total

 

 

COLREGs cost, Hl
colregs is evaluated

by summing the
 

 

COLREGs violation costs over all dynamic obstacles

Hl
colregs =

ndo∑
i=1

Hl,i
colregs (7.5)

which enables multi-ship
 

 

COLREGs adherence. The cost towards a specific dy-
namic obstacle i for a control behavior l is evaluated by summing the violation
costs for all different prediction scenarios s weighted by the prediction scenario
probabilities as

Hl,i
colregs =

ni
ps∑

s=1

P̂i
sH

l,i,s
colregs (7.6)

where the scenario-specific cost is

Hl,i,s
colregs = κSOµ

l,i
SOP̂

i
WGW + κGWµl,i

GW P̂i
CCEM + κRAµ

l
RA (7.7)

and µl,i,s
SO and µl,i,s

GW are binary indicators of whether or not the own-ship following
control behavior l violated its stand-on or give-way role with respect to dynamic
obstacle i behaving as in scenario s. The binary indicator µl

RA is equal to 1 if
the control behavior l induces an initial avoidance maneuver that does not lead
to a readily apparent action. The cost (7.7) considers the entire own-ship and
dynamic obstacle trajectories in the violation evaluation, which is different from
previous research [14] where only instantaneous states were considered. Distinct
penalty parameters κSO, κGW , and κRA are used to weight the stand-on, give-
way, and readily apparent violation costs separately. The stand-on violation cost
is weighted by the estimated probability P̂i

WGW that the obstacle will fulfill its
give-way obligations when specified by the

 

 

COLREGs, obtained from the intention
inference module. The give-way violation cost is similarly weighted by the estimated
probability P̂i

CCEM that the obstacle will perform a
 

 

COLREGs compliant evasive
maneuver when specified by

 

 

COLREGs, also obtained from the intention inference
module. See Section 7.4 for more information.

The
 

 

COLREGs situation CS is defined when the distance d0i from the own-ship
to obstacle ship i at the current time is less than a given parameter dcolregs. This
ensures that subsequent changes in course or bearing do not change the situation, as
stated in

 

 

COLREGs rule 13(d). The
 

 

COLREGs situation is determined as follows
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7. Application of intention model in sea trials

• If the bearing from the own-ship to the obstacle is more than 22.5◦ abaft the
beam of the own-ship, then the own-ship is being overtaken and CS =

 

 

OT -en
(

 

 

COLREGs rule 13(b)).

• If the bearing from the obstacle to the own-ship is more than 22.5◦ abaft the
obstacle beam then the own-ship is overtaking and CS =

 

 

OT -ing (
 

 

COLREGs
rule 13(b)).

• If the relative heading between the ships is within 180°± 10°, then there is a
head-on situation and CS =

 

 

SO (
 

 

COLREGs rule 14).

• If there is no head-on or overtaking situation then there is a crossing situation
(

 

 

COLREGs rule 15), and either a port side or starboard side crossing based
on the following:

– If the bearing to the obstacle ship relative to the own-ship heading is
negative, the obstacle ship is on the port side and CS =

 

 

CR-PS .
– If the bearing to the obstacle ship relative to the own-ship heading is

positive, the obstacle ship is on the starboard side, and CS =
 

 

CR-SS .

For a control behavior l, no penalty is given if the time until
 

 

CPA with respect to
obstacle i, tl,icpa, is longer than a time threshold Tstart. Also, no penalty is given
if the ships will pass at a distance at

 

 

CPA, dl,icpa, that is larger than a distance
threshold dcolregs, i.e. dicpa > dcolregs. Note that all distance calculations take the
extent of the own-ship and an obstacle into account.

A control behavior l gets a stand-on violation penalty if the own-ship has a stand-
on role and the control behavior leads to a change in course (CIC l) of more than
CICSO

max = 15◦, or change in speed (CIS l) of more than CISSO
max = 0.5m/s. No

stand-on penalty is given if the current distance d0i to the obstacle is below a critical
value dcritical = 15m, as all ships should then act to avoid collision (

 

 

COLREGs
rule 17 (a)(ii) and (b)).

µl,i
SO =tl,icpa < Tstart ∧ dl,icpa < dcolregs ∧ d0i > dcritical ∧

(CS ==
 

 

OT -en ∨ CS ==
 

 

CR-PS ) ∧ (CIC l ̸= none ∨ CIS l ̸= none) (7.8)

A control behavior l gets a give-way violation penalty if it does not act as specified
in

 

 

COLREGs rules 14, 15, and 17.
 

 

COLREGs rule 14 specifies that ships in a
head-on situation should pass port-to-port (P2P). According to

 

 

COLREGs rule 15
a ship in a crossing situation with the other on its starboard side

 

 

CR-SS , should
cross aft of that ship (CA). If a ship is forced to take action in a crossing situation
with the other on its port side,

 

 

CR-PS , then it should avoid changing the course
to port (

 

 

COLREGs rule 17(c)).

µl,i
GW =tl,icpa < Tstart ∧ dl,icpa < dcolregs ∧ (CS ==

 

 

SO ∧ ¬P2P l ∨
CS ==

 

 

CR-SS ∧ ¬CAl ∨ CS ==
 

 

CR-PS ∧ CIC l == port) (7.9)
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7.4. Dynamic Obstacle Intention Inference (DOII)

Table 7.1: The initial distribution used for the intention variables. N (µ, σ)[a,b] indicates a
normal distribution with expected value µ, standard deviation σ, truncated to be between
a and b, and discretized into 30 evenly spaced intervals. The probability of “true” is given
for binary states.

Symbol Prior
IAT N (60 s, 4 s)[0,100]
ICC 0.98
ICSρ

MCSρ

IGS 0.99
IPρ

[higher = 0.05, similar = 0.90, lower = 0.05]
ISD N (25m, 2.5m)[0,30]
ISDF N (20m, 4m)[0,50]
ISDM N (15m, 2.5m)[0,30]
IU 0.00001

Lastly, a control behavior l gets a readily apparent violation penalty if it does not
adhere to

 

 

COLREGs rule 8, which will be the case if the behavior induces any non-
zero initial speed or course modification that is not sufficiently high to make the
resulting avoidance maneuver apparent. Here, any non-zero course modification
which is less than CICGW

min = 45◦ or any non-zero speed modification less than
CISGW

min = 0.5m/s gains a violation:

µl,i
RA =tl,icpa < Tstart ∧ dl,icpa < dcolregs ∧ (7.10)

((|χl
m,1| > 0 ∧ |χl

m,1| < CICGW
min) ∨ (U l

m,1 > 0 ∧ U l
m,1 < CISGW

min)) (7.11)

The large course change threshold was chosen due to the Milliampere 2 ferry not
being tuned to make large heading changes when tracking trajectories.

7.4 Dynamic Obstacle Intention Inference (DOII)

The
 

 

DOII module gets a list of dynamic obstacle estimates and prediction scenarios
from the dynamic obstacle manager (

 

 

DOM). The goal of the
 

 

DOII is then to eval-
uate the probabilities that the dynamic obstacle will follow the different scenarios
(P̂i

s). Additionally, the module gives the probability that the obstacle will fulfill its
give-way obligations (P̂i

WGW ) and the probability that it will perform a
 

 

COLREGs
compliant evasive maneuver (P̂i

CCEM ) when supposed to.

The
 

 

DOII uses a modified version of the intention model presented in Chapter 6.
Changes that are made to the model are presented in Section 7.4.1 and the up-
dated model is shown in Figure 7.5. Section 7.4.2 presents how the computational
burden is limited, Section 7.4.3 how the probability of the prediction scenarios are
evaluated, and Section 7.4.4 how the probabilities directly used in the

 

 

COLREGs
violation cost are evaluated. Definition of terms is given in Tables 6.2 to 6.4 with
new terms in Table 7.2. The prior distributions used in the experiments are found
in Table 7.1.
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7. Application of intention model in sea trials

Figure 7.5: Topology of the
 

 

DBN used in this chapter. The figure shows the case of an
encounter with two ships. Everything inside the dotted line is time-varying and repeats
for each time step in the

 

 

DBN. The intention nodes, shown in orange, are time-invariant.
The abbreviations are explained in Tables 6.2 to 6.4 and 7.2.

Table 7.2: New measurement variables.

Symbol Description States
MPSρ [t] Whether the reference ship will pass with ship ρ

on its port or starboard side
{starboard , port}

MCCC [t] Whether the reference ship is currently changing
course. Takes the state true if there has been a
course change more than PCIC = 10◦ the last
PCCT = 6 s.

binary

7.4.1 Changes in the intention model

Due to problems with having a constant speed of the
 

 

DOs during the start of the
experiments all changes in speed were ignored in the intention model. The

 

 

DOs
only intentionally changed their course, never the speed, in all of the experiments
presented in this chapter.

The largest change done in this chapter is to remove nodes related to situation
started (SS ) and risky situation (RS ). These were removed as they were deemed
unnecessary for the experiments presented in this chapter as they are done in con-
fined waters where there is no uncertainty in whether there is a risk of collision
and when the situation starts. This change was to simplify the model for experi-
mentation. This change was implemented by setting SSρ = true and RSρ = true
with a 100% probability, and by removing the risk of collision (RC ρ) node.
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7.4. Dynamic Obstacle Intention Inference (DOII)

As it is assumed known when the situation starts in the experiments, the change
in course can be directly measured (MCIC ) by subtracting the current course and
speed from the initial course and speed. The change in course (CIC ) and change in
speed (CIS ) is therefore set equal to the measured value, while initial course (IC )
was removed.

CIC =MCIC (7.12)

Similarly, as there is no uncertainty in when the situation starts there is no need
for a separate

 

 

COLREGs situation measurement (MCSρ
) node. The measurement

is instead inserted as the prior distribution of the
 

 

COLREGs situation intention
node (ICSρ) as show in Table 7.1.

A limitation in the work presented in Chapter 6 was that it did not handle measure-
ments made during a course change. This is solved in this chapter by introducing a
new measurement of whether the ship is currently changing course (MCCC ). This
measurement considers the course change over the last PCCT seconds. Choosing a
larger PCCT makes the model identify the reference ship’s actions slower. Choosing
PCCT small makes it more likely that a measurement in the middle of a course
change is interpreted as an intentional choice of course. 6 s was found to work well
in the setting considered in this chapter. If the reference ship is currently changing
course then the reference ship will be marked as giving way correctly (GWC ρ).
The updated function for GWC ρ is then:

GWC ρ[t] =CEM ρ[t] ∨
(
(MTCPAρ

[t] > IAT ) ∧ SOC ρ[t]
)
∨MCCC (7.13)

During testing, problems were observed where the model too often went for unmod-
eled behavior, even when the behavior could be modeled with not being

 

 

COLREGs
compliant or not displaying good seamanship. These were solved by changing where
the terms related to good seamanship and

 

 

COLREGs compliant were included. IGS

and ICC were removed from the definition of correct evasive maneuver (CEM ρ)
and were instead included in the definition of compatible towards ship ρ (Cρ) as
follows:

Cρ[t] =Pρ[t] ∨ (Rρ ==
 

 

SO ∧ SOC ρ[t])

∨
((

(Rρ ==
 

 

GW ∧GWC ρ[t]) ∨ (¬ICC ∧ SDρ)
)
∧ (GSρ ∨ ¬IGS)

)
(7.14)

An error in Equation (6.7) for multi-ship encounters when one of the ships has
passed the reference ship is solved by updating the stand on correct (SOC ρ) equa-
tion to include information on whether the ship had passed (P).

173



7. Application of intention model in sea trials

SOCρ[t] = (MCIC [t] == straight ∧MCIS [t] == none)

∨
(
∃λ∈P\{ρ}Rλ ==

 

 

GW ∧ CEM λ[t] ∧ ¬Pλ[t]
)

(7.15)

During testing a bug in the code which evaluates whether the reference ship passes
front or aft of ship p was observed. Due to time limitations, a workaround was pro-
posed instead of solving the problem. The bug was circumvented by redefining the
definition of crossing starboard-side evasive maneuver (C_CR_SSρ) to consider
whether it’s passing with ship ρ on the port side instead.

C_CR_SSρ[t] = (MPSρ == port) ∧ SDρ[t] (7.16)

Good seamanship (GSρ) was extended to require that if the reference ship changed
its course to port then it has to pass with ship ρ on its starboard side, and vice
versa.

GSρ[t] = ¬(SAρ[t] ∧ PAρ[t]) ∧MCIC [t] ̸=MPSρ
[t] (7.17)

7.4.2 Limiting computational burden

As the computational burden of evaluating the
 

 

DBN increases with each new time-
steps, the number of time steps has to be limited. This was achieved by in most
cases inserting a new measurement on the current time step thereby overriding
the previous measurement. A new time-step is made if the previous time a new
time-step was made is more than ∆ts,max = 20 s, or if the previous time-step was
made no less than ∆ts,min = 10 s and either ship in the encounter has changed their
course more than Θ = 15◦. These bounds were chosen quite large to ensure that
the computational time at all times during the experiments would be low enough
to allow real-time inference.

7.4.3 Probability of prediction scenarios

The procedure for evaluating trajectory candidates presented in Section 6.2.5 is
used. As a large number of prediction scenarios can be compatible with the in-
tentions, the resulting distribution over the different scenarios must be normalized
such that it sums to 1. Additionally a prior is introduced to bias the distribution
towards trajectory candidates that keep the reference ship’s current course. The
prior 1 + cos(δs0) is used, where δs0 is the difference between the course held 10 s
into a scenario s and the current course of the reference ship. The time interval of
10 s is chosen as it gives enough time for the reference ship to change its course. The
constant 1 is used to ensure that the prior is always positive. The probability of a
candidate trajectory can then be evaluated as follows where η is a normalization
factor:

P̂i
s = ηPr{C [t]}(1 + cos(δs0)) (7.18)
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7.4.4 Direct intention information
The probability P̂i

WGW considers if the reference ship (obstacle i in the
 

 

PSB-MPC
formulation) will fulfill its give-way obligations, which is dependent on whether
it does not have higher priority (IPρ

), it intends to adhere to
 

 

COLREGs when
performing evasive maneuvers (ICC) and does not display unmodelled behavior
(IU ):

P̂i
WGW = Pr{(IPρ

̸= higher) ∧ ICC ∧ ¬IU} (7.19)

The second probability considers if the reference ship (obstacle i in the
 

 

PSB-MPC
formulation) will perform a

 

 

COLREGs compliant evasive maneuver, and is given
by:

P̂i
CCEM = Pr{ICC} (7.20)

7.5 Experimental Results

The
 

 

COLAV system described in Sections 7.2 to 7.4 was tested in the following nine
different scenarios, with the relevant

 

 

COLREGs rules indicated in parentheses:

1. Head-on scenario with correct dynamic obstacle behavior, where the obstacle
makes a starboard turn (

 

 

COLREGs rule 14).
2. Head-on scenario with wrong dynamic obstacle behavior, where the obstacle

makes a port turn (
 

 

COLREGs rule 14).
3. Crossing with a dynamic obstacle as stand-on and own-ship as the give-way

vessel (
 

 

COLREGs rule 15 and 16).
4. Crossing with the own-ship as stand-on, and a dynamic obstacle which does

not adhere to
 

 

COLREGs and does not give way (
 

 

COLREGs rule 15 and 17).
5. Crossing with the own-ship as stand-on, with a

 

 

COLREGs compliant dynamic
obstacle taking a starboard turn (

 

 

COLREGs rule 15 and 17).
6. Overtaking scenario with the obstacle being overtaken (

 

 

COLREGs rule 13
and 16).

7. Overtaking scenario with the own-ship being overtaken (
 

 

COLREGs rule 13
and 17).

8. Combined overtaking and crossing starboard side scenario, with the own-ship
overtaking an obstacle and being the give-way vessel for another obstacle
(

 

 

COLREGs rules 13, 15 and 16-17).
9. Combined crossing starboard side and port side scenario (

 

 

COLREGs rules
15 and 16-17).

Furthermore,
 

 

COLREGs rule 7 on adequate collision risk assessment and rule 8 on
performing apparent actions in ample time are also relevant for all the scenarios.
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7. Application of intention model in sea trials

For each scenario, the chosen trajectory of the Milliampere 2 ferry together with
the different prediction scenarios is shown at three different time instants (see
Figures 7.7 to 7.15). The thickness of the dashed lines, representing the different
prediction scenarios, are scaled based on their likelihood as evaluated by the

 

 

DOII.
Additionally, how the intention states develop through the scenarios are shown to-
gether with the course and speed of all vessels involved. The priority state indicates
whether the vessel will act as if it has a higher priority (ignoring its obligations to
give way) or lower priority (ignoring its obligation to stand on). The

 

 

COLREGs
compliant state indicates whether the vessel will ignore all the specifications in

 

 

COLREGs regarding how to give way, but still try to avoid collision. Good sea-
manship indicates whether or not the ship shows how it is going to act. Unmodelled
behavior indicates all other non-compliant behavior.

In the two-ship scenarios, Havfruen was used as the dynamic obstacle i = 1 (
 

 

DO1).
In the three-ship scenarios, the Cyberotter is the second dynamic obstacle i = 2
(

 

 

DO 2). Milliampere 2 was set to track a desired speed of 1m/s in all scenarios,
except when it was overtaking another vessel, and in the combined overtaking
and port side crossing scenario, where reference speeds of 2.0m/s and 1.5m/s were
used, respectively. Low speeds were used due to the experiments being performed in
confined waters, and because Milliampere 2 has a max speed limitation of 2.5m/s.
The dynamic obstacles speeds vary from 0.5m/s to 3.0m/s.

The
 

 

PSB-MPC
 

 

COLAV planning algorithm was tuned to reflect the confined space
Milliampere 2 was to operate in. Two sequential maneuvers (nm = 2) was consid-
ered in the horizon of the

 

 

MPC, where the second maneuver is taken after tts = 60 s.
Thus, the own-ship is planned to perform an initial maneuver at t0, and a corrective
one at t0+ tts, which does not necessarily return the ship to its nominal trajectory.
The own-ship safety zone was set to dsafe = 8.6m. The algorithm parameters for
grounding cost were chosen to allow the own-ship to maneuver within a margin of
approximately 5m to nearby grounding hazards.

Videos of the experimental work can be found at https://youtu.be/9cmDqQDgBDc
or by scanning 7.6. Note that the video was shot on only one of the experiment
days. Some of the scenarios in the video do therefore not correspond exactly to the
scenarios presented in this chapter.

Figure 7.6: Video of experiments. https://youtu.be/9cmDqQDgBDc
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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Figure 7.7: Scenario 1 - Head-on with a compliant dynamic obstacle (
 

 

DO). The dots on
the lower subfigures show the values at the three time instants in (a).

Scenario 1 - Head-on With a Compliant Dynamic Obstacle

Results from the compliant head-on scenario are given in Figure 7.7 and show that
the own-ship performs a

 

 

COLREGs compliant evasive maneuver. Shortly after the
40 s mark, the intention model starts to infer that the obstacle ship acts as if it
has a higher priority than the own-ship. This is due to the ships getting quite close
without the dynamic obstacle taking action. Once the dynamic obstacle takes an
evasive action, the probability of it having higher priority quickly drops to 0.

Scenario 2 - Head-on With a Non-compliant Dynamic Obstacle

Results from the non-compliant head-on scenario is given in Figure 7.8. The sce-
nario shows that the own-ship starts to perform a

 

 

COLREGs-compliant evasive
maneuver. Similar to the previous scenario, the probability of the dynamic obsta-
cle acting as if it has higher priority increases for a short time as the dynamic
obstacle acts quite late. Once the dynamic obstacle changes course to port, the in-
tention model switches between the dynamic obstacle either not being

 

 

COLREGs
compliant or showing unmodelled behavior. At t = 50 s it has concluded on the
dynamic obstacle not being

 

 

COLREGs compliant. The knowledge of the obstacle
being non-compliant enables the own ship to disregard

 

 

COLREGs as well and avoid
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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Figure 7.8: Scenario 2 - Head-on with a non-compliant dynamic obstacle (
 

 

DO). The
dots on the lower subfigures show the values at the three time instants in (a).

collision through a port avoidance maneuver.

Scenario 3 - Crossing With the Own-ship as Give-way Vessel,
and a Compliant Stand-on Dynamic Obstacle

Figure 7.9 shows results for the starboard side crossing. The own-ship performs
a

 

 

COLREGs-compliant evasive maneuver by changing its course to starboard and
reducing its speed to avoid collision. Reducing the speed is the most effective action
in this case as the confined spaces make larger course changes more susceptible to
grounding. Furthermore, the Milliampere 2 thruster configuration and

 

 

DP-system
are configured for small heading changes and slow movements, which makes it
easier to change speed than to alter the course. The collision avoidance algorithm
is tuned such that Milliampere 2 should still try to change its course as this can
be easier to see from the other vessel’s point of view.
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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Figure 7.9: Scenario 3 - Crossing with the own-ship as give-way vessel, and a compliant
stand-on dynamic obstacle (

 

 

DO). The dots on the lower subfigures show the values at the
three time instants in (a).

Scenario 4 - Crossing With the Own-ship as Stand-on Vessel,
and a Compliant Dynamic Obstacle

Results from this scenario are given in Figure 7.10. The intention model correctly
predicts that the obstacle ship will make a starboard maneuver to avoid collision.
The own-ship can therefore keep its course and speed without increasing the risk of
collision. This fulfills the requirements that stand-on vessels shall keep their course
and speed (unless forced to give way), as specified in

 

 

COLREGs rule 17.

Scenario 5 - Crossing With the Own-ship as Stand-on and a
Non-compliant Dynamic Obstacle

Results from the port side crossing scenario with a non-compliant dynamic obstacle
are given in Figure 7.11. The probability of the dynamic obstacle acting as if it
has a higher priority gradually increases as the obstacle ship comes closer without
significantly changing its course or speed. Once it is quite likely that the dynamic
obstacle will not give way, the own-ship decides to half its speed to avoid a potential
collision. This shows that the resulting algorithm is able to deviate from the stand-
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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tion states.
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Figure 7.10: Scenario 4 - Crossing with the own-ship as stand-on vessel, and a compliant
dynamic obstacle (

 

 

DO). The dots on the lower subfigures show the values at the three
time instants in (a).

on requirements when needed, as specified in
 

 

COLREGs rule 17(b). The algorithm
also adheres to rule 17(c) by not changing its course to port.

Scenario 6 - Overtaking

Results from the overtaking scenario are given in Figure 7.12. The scenario shows
that the own ship is able to avoid collision while overtaking, but the intention pre-
dictions are not ideal. This is due to the intention module interpreting all course
changes larger than some threshold as being done with an intention. This does not
work well in this scenario as the dynamic obstacle is holding a too low velocity
for keeping its course steady enough, as can be seen in Figure 7.12(c). This exper-
iment could not be performed at a higher speed due to the speed limitations of
Milliampere 2.

The intention module concludes at the 40 s mark that the dynamic obstacle is
displaying unmodelled behavior. This state can explain all possible behaviors and
thus gives all future scenarios equal likelihood. The variations in the rest of the
states after the 40 s mark can therefore not be caused by new observations as the
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7.5. Experimental Results

(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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Figure 7.11: Scenario 5 - Crossing with the own-ship as stand-on and a non-compliant
dynamic obstacle (

 

 

DO). The dots on the lower subfigures show the values at the three
time instants in (a).

observations are already explained by the unmodelled behavior state, nor do they
affect the likelihood of different scenarios. We believe that these variations are
computational quirks caused by the states being unobservable.

Scenario 7 - Overtaken

The
 

 

COLAV system is shown to also handle its stand-on role when being over-
taken, with results given in Figure 7.13. A bit after the t = 60 s mark the dynamic
obstacle changes course toward the own-ship. This is to avoid collision with float-
ing platforms not shown in the figure. As the intention model observed that the
dynamic obstacle changes course towards what seems like a collision course with
the own-ship, it marks the dynamic obstacle as showing unmodelled behavior. The
good seamanship decreases right before it is marked as unmodelled behavior as the
dynamic obstacle changes course to port while still planning to cross with the own-
ship on its port side. Similar variations in intention states as discussed in Scenario
6 are observed once unmodelled behavior becomes equal to 1.

The scenario also shows a weakness in the current
 

 

PSB-MPC dynamic obstacle pre-
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7. Application of intention model in sea trials

(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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Figure 7.12: Scenario 6 - The own-ship overtakes a dynamic obstacle (
 

 

DO). The dots
on the lower subfigures show the values at the three time instants in (a).

diction setup, where obstacles are predicted to follow alternative trajectories about
a nominal straight line from their current course and speed when the

 

 

COLREGs
situation starts. The waypoints set for the nominal straight line path of

 

 

DO 1 did
here not properly reflect the ground truth planned trajectory of the obstacle, as it
changed course northwards when starting the overtaking maneuver. An improved
approach would be to update the dynamic obstacle nominal straight line trajectory
at regular intervals, especially after a

 

 

COLREGs situation has ended. This would
make the alternative prediction scenarios better reflect the possible maneuvering
areas in the vicinity of the obstacle.

Scenario 8 - Combined Overtaking and Crossing Port Side

Results from the first three-ship scenario is given in Figure 7.14. Milliampere 2
has a stand-on role towards Havfruen (

 

 

DO 1), and a give-way role towards the
Cyberotter (

 

 

DO 2). The
 

 

PSB-MPC shows compliance with
 

 

COLREGs rule 17(d)
by ignoring its stand-on role and performing an evasive starboard maneuver. The
intention inference module is able to estimate that Havfruen will make a give-
way maneuver by passing behind both ships. For the Cyberotter, the intention
model starts by correctly predicting that it will keep its course and speed. At the
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7.5. Experimental Results

(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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Figure 7.13: Scenario 7 - The own-ship is overtaken by a semi-compliant dynamic ob-
stacle (

 

 

DO). The dots on the lower subfigures show the values at the three time instants
in (a).

time t = 50 s the intention module notices that the Cyberotter changes its course
towards starboard. As this is a change in course towards a collision, the intention
module concludes with unmodelled behavior.

Scenario 9 - Combined Crossing Starboard Side and Port Side

Results from the second three-ship scenario are given in Figure 7.15. The own-ship
running the

 

 

COLAV system initially slows down and then changes its course to
pass behind the Cyberotter. The intention model initially predicts correctly that
the Cyberotter will keep its course and speed, while Havfruen will cross behind
the own-ship. A bit before the 50 s mark the Cyberotter is observed changing its
course towards a collision, which makes the intention model mark it as unmodelled
behavior.
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7. Application of intention model in sea trials

(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes. The
Havfruen vessel (

 

 

DO 1) is shown in green, whereas the Cyberotter (
 

 

DO 2) is shown in purple.
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Figure 7.14: Scenario 8 - Combined overtaking and crossing port side scenario with
compliant dynamic obstacle (

 

 

DO). The dots on the lower subfigures show the values at
the three time instants in (a).

7.6 Discussion

7.6.1 Experiment Outcome

From gauging the experimental results, the
 

 

COLAV system using the
 

 

PSB-MPC as
a deliberate planning algorithm with a

 

 

DBN for intent information shows promise
and results in increased situation awareness for the own-ship. In Scenario 4 the
intention-aware

 

 

COLAV system enables the own-ship to keep its course and speed,
as it predicts that the obstacle will perform an evasive maneuver. When it is ap-
parent, in Scenario 5, that the obstacle will not perform an evasive maneuver, the

 

 

COLAV system makes use of its intention model to better avoid collision. In Sce-
nario 2 the intention module estimated that the dynamic obstacle was not adhering
to the

 

 

COLREGs, which enabled the
 

 

PSB-MPC to ignore
 

 

COLREGs as well to
plan a collision-free trajectory. In the trials, the own-ship running the

 

 

COLAV
system is shown to comply with the

 

 

COLREGs rules 8 and 13-17. Furthermore,
better adherence with

 

 

COLREGs rule 7 is also achieved, as the intention module
enables better collision risk assessment and

 

 

COLREGs situation evaluation in the
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes. The
Havfruen vessel (

 

 

DO 1) is shown in green, whereas the Cyberotter (DO 2) is shown in purple.
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Figure 7.15: Scenario 9 - Combined Crossing Starboard Side and Port Side scenario
with compliant dynamic obstacle (

 

 

DO). The dots on the lower subfigures show the values
at the three time instants in (a).

 

 

PSB-MPC planning algorithm.

7.6.2 Uncertainty Management

As the own-ship uses
 

 

GNSS with a
 

 

VRS for real-time corrections, the navigation
data for the ferry has negligible uncertainty compared to the safety margin (dsafe)
set for the ferry. On the other hand, no corrections were applied to the

 

 

GNSS
data from the two dynamic obstacles, and we thus relied on the

 

 

KF performing
adequately. The filter was tuned such that positional estimates with standard de-
viations around 0.7m were obtained, which was verified to be correct before the
experiments started. Furthermore, the kinematic uncertainty associated with dy-
namic obstacle estimates was handled through the collision probability estimation
in the

 

 

PSB-MPC, as in [20].

Regarding the map data used for avoiding grounding hazards in the
 

 

PSB-MPC,
a manual drive-through of the Nyhavna basin boundary was done to verify the
data accuracy. As the map data did not include newer static obstacles such as the
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7. Application of intention model in sea trials

Havet sauna platform, a new landfilling on the western side, and a few docked
vessels along the basin boundary, unmapped hazards were added manually before
the experiment.

7.6.3 Limitations

There are a few limitations to the experiments in this work. Firstly the collision
avoidance algorithm was designed for ships meeting on open seas, where

 

 

COLREGs
is normally considered. Due to the limitations of the Miliampere 2 ferry, the ex-
periments had to be done in inland areas where the sea was sufficiently calm. The
largest available area in Trondheim was quite small making it difficult to realisti-
cally test the algorithm. Secondly, the Milliampere 2 platform with its commercial

 

 

DP-system was not designed for agile ship maneuvering, and this put a limitation
on the performance one could extract from the vessel. The

 

 

DP-system was over-
damped, tuned for passenger comfort and small, slow movements as a ferry should
perform. The vessel slows down substantially when performing heading maneuvers,
which made the trajectory tracking challenging. For the overtaking scenarios, the
own-ship had problems keeping to its speed due to the platform being designed
and tuned for keeping speeds of nominally 1.0m/s.

These concerns made the limitations of the intention inference module affect the
experiments more than we would expect it to do in open waters. With low velocities,
the dynamic obstacles had problems keeping a constant course. As the intention
inference module interprets all course changes larger than a threshold as deliberate
actions taken by the dynamic obstacle, it often had to default to the unmodelled
behavior state to explain its observations. This was especially apparent when using
the Cyberotter (Scenario 8 and 9) and for Havfruen in the overtaking scenario
(Scenario 6) when its speed was reduced to 1m/s. One could increase the course
change threshold to filter away more of the random course changes. However, this
has the drawback of making the module potentially miss actual course changes that
it should consider. A smarter method for ignoring random motions is therefore
warranted. Furthermore, the intention model does not consider land and static
obstacles. This was especially noticeable in the overtaken scenario (Scenario 7)
when the dynamic obstacle changes its course to avoid collision with a floating
platform.

Other limitations with the intention model are with the approach for handling
measurements in the middle of the course change and the approach for limiting the
computational burden. The approach presented in Equation (7.15) for handling
measurements in the middle of the course change does not realize that a ship is
incompliant during a course change. This makes the model react unnecessarily slow
when the ship is obviously changing course in the wrong direction. This could be
solved by considering whether it’s possible for the ship to cross in a compliant
manner by continuing to change course in the same direction. The limitations used
on deciding when new time steps are introduced were set quite conservatively to
ensure that the computational burden would under no circumstances be too large
for real-time inference during the experiments. Less conservative bounds could
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7.7. Conclusion

probably have been chosen. A better approach is warranted that can guarantee
acceptable computation time while at the same time keeping more data in memory.
This could for example be done by implementing the sliding window approach as
discussed in Chapter 6.

While doing the experiments it became apparent that being able to use the heading
of the other ships would be better than using the course. While supervising the
experiments on board Milliampere 2 we could see that the heading of the dynamic
obstacle had changed long before it became apparent when looking at the course
alone. Enabling an autonomous ship to track the heading of the other ship, by for
example using extended object tracking [168], could enable the inference module to
more quickly realize what the other ship is doing and thereby enable the collision
avoidance module to respond quicker.

7.7 Conclusion

In this work, a dynamic obstacle intention-aware
 

 

PSB-MPC-based
 

 

COLAV sys-
tem has been presented, using a

 

 

DBN for intention inference online. The resulting
system is verified in experimental trials to show compliance with

 

 

COLREGs rules
8, 13-17. The results presented show that incorporating a way of inferring the in-
tentions of nearby dynamic obstacles proves to give

 

 

COLAV planners such as the
 

 

PSB-MPC improved situation awareness. This results in more efficient trajectory
planning, where

 

 

COLREGs-compliant maneuvers can be aborted if the other vessel
is shown or estimated to be non-compliant. It also better enables stand-on compli-
ance for autonomous agents, as it is necessary to infer to which degree a give-way
vessel will perform proper maneuvering.

Future work involves testing the intention-aware
 

 

COLAV system in a more open sea
environment, as the intention inference algorithm was originally not designed for
situations in confined spaces with limited maneuvering possibilities. The presented

 

 

COLAV system should also be tested in a less pre-planned setting, with target
tracking in real maritime traffic. Further developments are needed to make the
intention inference more robust to natural variations in the measured course of
other ships and to make it handle course changes and limiting the computational
burden in a better manner. Furthermore, work is needed to improve the prediction
of alternative obstacle maneuvering scenarios to also consider nearby grounding
hazards and the current

 

 

COLREGs situation.
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Chapter 8

Validation using historical AIS
data

This chapter is based on the following publication

[54] S. V. Rothmund, H. E. Haugen, G. D. Veglo, E. F. Brekke, and T. A.
Johansen, “Validation of ship intention model for maritime collision avoidance
control using historical AIS data,” Submitted to ECC, 2023

Software for running the intention model on AIS data is developed by H. E. Haugen
with modifications from S. V. Rothmund. Distributions based on AIS data are
developed by G. D. Veglo. Preparation of results was performed by S. V. Rothmund.
Supervision was provided by S. V. Rothmund, E. F. Brekke, and T. A. Johansen.
The first draft of this chapter was written by S. V. Rothmund and revised by T.
A. Johansen and E. F. Brekke.

8.1 introduction

In Chapter 6 the intention model is tested on different simulated scenarios where
the goal is to illustrate how the model works. In Chapter 7 the intention model is
used in controlled experiments where it is demonstrated how the model worked on
real measurements and in a real-time setting. In this chapter, the intention model is
tested on historical

 

 

AIS data gathered near the coast of Norway. Furthermore, some
of the example distributions used by the intention model in Chapters 6 and 7 are in
this chapter replaced with empirical distributions extracted from the historical

 

 

AIS
cases. The contribution of this chapter is to test how the intention model performs
on real ship encounters with real distributions, thereby validating the model and
identifying potentials for improvement.

The rest of this chapter is structured as follows. First, an overview of the AIS
data set is given in Section 8.2. Then the intention model used by this chapter is
specified in Section 8.3. Section 8.4 presents the distributions used by the mode.
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8. Validation using historical AIS data

Figure 8.1: Areas on the coast of Norway where AIS data has been collected [169].

The results of applying the model to historical AIS cases are given in Section 8.5
and discussed in Section 8.6, before a conclusion is given in Section 8.7.

8.2 AIS data set

This chapter uses a
 

 

AIS data set provided by The Norwegian Coastal Administra-
tion (Kystverket) collected from there different parts outside of the coast of Norway
shown in Figure 8.1. The northern data set has data points from between 1.1.2018
and 31.7.21, except between 1.6.2019 and 31.7.2019. The southern data set from
1.1.2018 to 31.12.2019 and the western data set from 1.1.2019 to 31.12.2020.

The data set consists of the AIS messages sent from all ships with AIS transponders
in the area within the specified time periods. The most important part of the AIS
message for this chapter is the time-stamp, the unique identifier of each ship, their
position, course, and speed over ground. Note that, generally, only larger ships are
required to have AIS transponders [141]. This means that there might be ships
present but not in the data set, which affected the behavior of the logged ships.

This data set has been previously analyzed by multiple master [170]–[172] and
doctoral thesis [169] at NTNU. From these works, a refined data set is produced
where 28421 encounter cases are extracted and automatically classified with differ-
ent parameters of interest. Of these, 1206 encounter cases are manually classified
to actually be collision avoidance situations where the ships act in accordance with

 

 

COLREGs.

As the different ships do not transmit AIS messages with the same frequency or

190



8.3. Model

Table 8.1: The initial distribution used for the intention variables. N (µ, σ)[a,b] indicates a
normal distribution with expected value µ, standard deviation σ, truncated to be between
a and b, and discretized into 30 evenly spaced intervals. The probability of “true” is given
for binary states.

Symbol Description Prior
IAT Ample time See Figure 8.3(a)
ICC COLREGS compliant evasive

maneuvers
0.99

IGS Good seamanship 0.99
IPρ

Priority [higher = 0.05, similar = 0.90,
lower = 0.05]

IRC Risk of collision distance N (1500m, 250m)[0,2500]
IRCF Risk of collision distance front N (1500m, 250m)[0,2500]
ISD Safe distance See Figure 8.3(b)
ISDF Safe distance front See Figure 8.3(b)
ISDM Safe distance midpoint See Figure 8.3(b)
ISS Situation start distance N (13 000m, 1000m)[0,15000]
IU Unmodeled behaviour 0.00001

phase, interpolation was done by [170] to get the estimated position, course, and
speed of both ships at the same time points. The resulting data set has a time
resolution of one message per minute. More information on the data set can be
found in [170], [172].

The data available for the research presented in this chapter is therefore:

• One file for each encounter case, consisting of the timestamps, id, position,
speed, and course of all ships in the encounters at different time steps. Only
the interpolated cases where the data are synchronized are considered in this
work.

• A list over all encounter cases and automatically extracted parameters.

8.3 Model

This chapter uses the full model containing situation started and risk of collision,
as in chapter Chapter 6, with the improvements proposed in Chapter 7. More
specifically the model in Chapter 6 is used with the improvements proposed in
Equations (7.13) to (7.17).

8.4 Definitions and prior distributions

Initial distributions are given in Table 8.1 while parameter choices are given in
table 8.2.
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Table 8.2: Parameter choices.

Symbol Description Value
PCIC Max change in course that is considered

as keeping the course
15 degree

PCIS Max change in speed that is considered
as keeping the speed

1.5m/s
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Figure 8.2: Empirical distributions extracted from historical AIS cases from outside the
Norwegian coast. This figure shows how the distribution behaves for large values.
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Figure 8.3: This figure shows the same data as in Figure 8.2 but where the focus is
placed on shorter distances and times that are more important to distinguish for collision
avoidance. These distributions are used by the intention model.

The distributions for “ample time” and “safe distance” are evaluated based on
parameters extracted from the AIS data set by [169]–[172]. Only the cases that
are manually inspected and classified as being correct

 

 

COLREGs situations are
used. The distributions showing the full width of the data are shown in Figure 8.2.
Figure 8.3 shows the same data but where maximal ample time is set to 1800 s and
maximal safe distance to 1500m. This ensures a large resolution on the times and
distances relevant for collision avoidance. All values larger than the maximum are
added to the largest bin.

The distribution for “risk of collision distance” and “situation start distance” are
not as easy to extract from the classified data. These are instead manually chosen
to work well for the cases used to generate the results.
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8.5. Result

Including the course and speed of ships as nodes in the DBN requires discretizing
the state. Discretization steps of 10◦ are chosen for the course and 0.72m/s for
speed (with an upper limit on 18m/s). This was the finest resolution that was
feasible to use when discretizing using the GeNie software [125]. The course and
speed change parameters given in Table 8.1 had to be chosen larger than their
corresponding discretization step size.

The discrete states represent alternative explanations to acting in accordance with
 

 

COLREGs. The intention model weighs the probability of these states being in
an adverse state against the probability of the ship having a definition of ample
time, safe distance, and risk of collision lower than the current measured value.
Using very small values may cause numerical inaccuracies as a sampling-based
approximate solver is used for evaluating the

 

 

DBN. For unmodelled behaviour, the
lowest possible value is chosen that did not cause any problems.

8.5 Result

This section presents the results of applying the intention model to different en-
counter cases from the AIS data set. Each encounter is played back with the in-
tention inference module active. The estimated intentions for both ships in the
encounter are presented. The encounter cases are manually chosen from the data
set. Focus was placed on testing encounters where the main maneuvers of the ship
relate to collision avoidance, and cases where it is interesting to infer the intentions.

For each case it is shown how the following parameters develop over time:

• “Speed over ground”: Directly taken from the AIS data.
• “Course”: Directly taken from the AIS data.
• “Intention

 

 

COLREGs situation”: Evaluated based on what the value of the
classifiers given in Figures 6.2 and 6.3 are at the moment when the situation
starts.

• “Predicted distance of at
 

 

CPA”: Evaluated assuming both ships keeping their
current course and speed.

• “Change in course port/starboard”: Indicates whether the reference ship has
significantly changed course relative to the initial course.

• “Situation started”: This state defines when, among others, the
 

 

COLREGs
situation and initial course is specified. Distance between the ships is used to
define when the situation starts.

• “Risky situation”: Indicates whether there has been a risk of collision, in
which case the behavioural rules from

 

 

COLREGs should be followed for the
rest of the encounter. Distance at

 

 

CPA is used to define whether there is a
risk of collision.

• “Intention
 

 

COLREGs compliant evasive maneuver”: Indicates whether the
ship appears to consider

 

 

COLREGs when performing evasive maneuvers.

193



8. Validation using historical AIS data

0 1000 2000 3000 4000 5000 6000
East

-2000

-1500

-1000

-500

0

N
or

th

Position

t=60

t=180

t=300

t=420

t=540

t=660

t=60t=180t=300

t=420

t=540
t=660

Ship 1
Ship 2
Startpoint

60 180 300 420 540 660
time [s]

3

4

5

sp
ee

d 
[m

/s
] Speed over ground

60 180 300 420 540 660
time [s]

-50
0

50
100

an
gl

e 
[d

eg
]

Course

60 180 300 420 540 660
time [s]

0

0.5

1

pr
ob

ab
ili

ty

Intention colregs situation Ship 1
HO
CR_PS
CR_SS
OT_ing
OT_en

60 180 300 420 540 660
time [s]

200

400

600

di
st

an
ce

 [m
] Predicted distance at CPA

60 180 300 420 540 660
time [s]

0

0.5

1

pr
ob

ab
ili

ty

Change in course port

60 180 300 420 540 660
time [s]

0

0.5

1

pr
ob

ab
ili

ty

Change in course starboard

60 180 300 420 540 660
time [s]

0

0.5

1

pr
ob

ab
ili

ty

Situation started

60 180 300 420 540 660
time [s]

0

0.5

1

pr
ob

ab
ili

ty

Risky situation

60 180 300 420 540 660
time [s]

0

0.5

1

pr
ob

ab
ili

ty

Intention COLREGS compliant evasive maneuvers

60 180 300 420 540 660
time [s]

0

0.5

1

pr
ob

ab
ili

ty

Intention good seamanship

60 180 300 420 540 660
time [s]

0

0.5

1

pr
ob

ab
ili

ty

Intention priority lower

60 180 300 420 540 660
time [s]

0

0.5

1

pr
ob

ab
ili

ty

Intention priority higher

60 180 300 420 540 660
time [s]

0

0.5

1

pr
ob

ab
ili

ty

Intention unmodeled behaviour

60 180 300 420 540 660
time [s]

0

0.5

1

pr
ob

ab
ili

ty

Intention colregs situation Ship 2
HO
CR_PS
CR_SS
OT_ing
OT_en

Figure 8.4: Case 1 - Correct crossing situations. The dashed vertical lines correspond to
the timestamps in the position plot.

This state does not change if the ship does not perform an evasive maneuver,
which will instead affect intention priority higher.

• “Intention good seamanship”: Indicates that the ship is not changing which
side it is performing an avoidance maneuver towards and is not changing its
course to cross at a shorter distance.

• “Intention priority lower”: Indicated that the ship will give-way no matter
the

 

 

COLREGs situation.
• “Intention priority higher”: Indicates that the ship will stand-on no matter

the
 

 

COLREGs situation.
• “Intention unmodelled behaviour”: Indicates that the ship acts in a manner

not considered by the intention model.

Case 1 - Crossing correctly
Figure 8.4 shows two ships meeting in a crossing encounter. The red ship performs
a

 

 

COLREGs-compliant evasive maneuver at the 300 s mark. The higher priority
intention of the red ship increases quite a lot before the maneuver as the maneuver
is quite late compared to the ample time distribution. The probability that the
blue ship will comply with

 

 

COLREGs when performing evasive actions falls at the
last two time steps due to the blue ship reducing its speed by 40% and turning its
course a bit to port.
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Figure 8.5: Case 2 - Crossing situation where the wrong ship acts. The dashed vertical
lines correspond to the timestamps in the position plot.

Case 2 - Crossing incorrectly

Figure 8.5 shows a crossing encounter where the ship that according to
 

 

COLREGs
rule 15 has the stand-on role performs an early evasive maneuver. The course
change is quite slow and small making the intention model evaluate a medium
probability that the red ship has performed a starboard evasive maneuver and
therefore acts as if it has a lower priority. The probability that the red ship intends
to follow

 

 

COLREGs when performing evasive maneuvers does not reduce much as
the maneuver is in compliance with

 

 

COLREGs rule 17c. The probability that the
blue ship acts as if it has higher priority does not increase significantly even though
it does not change its course or speed. This is due to the red ship already having
acted which makes keeping the course and speed acceptable give-way behavior for
the blue ship.

Case 3 - Crossing or head-on

Figure 8.6 shows a situation where the ships are approaching at an angle close to
the border between crossing and head-on. The intention model evaluates a 70%
chance that it is a crossing situation and a 30% that it is a head-on situation.
Only the red ship acts by taking a

 

 

COLREGs compliant starboard maneuver.
The resulting behavior is compliant with the rules for both crossing and head-on
situations making the

 

 

COLREGs situation intentions not change.
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Figure 8.6: Case 3 - Situation which can be interpreted as both a crossing and a head-on
situation. The dashed vertical lines correspond to the timestamps in the position plot.

Case 4 - Head-on passing on starboard side

Figure 8.7 shows a head-on situation where the ships pass with each other on the
starboard side which is contrary to

 

 

COLREGs rule 14. The intention model infers
that the red ship is as acting as if it has higher priority as it does not change its
course or speed. The intentions of the blue ship are not as clear as it changes its
course a bit back and forth, making the intention model switch between the ship
acting as if it has a higher priority, performing an incompliant evasive maneuver,
and showing unmodeled behavior. In all cases, good seamanship is quite reduced.

Case 5 - Head-on low risk of collision

Figure 8.8 shows a similar situation as in Case 4 but where the ships pass at a
greater distance. In this case, the behavior is mainly explained by there not being
a risk of collision, in which case the ships do not need to act. At the start of the
encounter, the model evaluates around a 75% chance that the ships consider that
there is a risk of collision. As the ships get close without performing an evasive
maneuver this probability gradually decreases.
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Figure 8.7: Case 4 - Head-on situation where the ships pass with each other on the
starboard side. The dashed vertical lines correspond to the timestamps in the position
plot.

Case 6 - Head-on port maneuver

Figure 8.9 shows a head-on situation where the ships actively change course to pass
with the other on the starboard side, which is contrary to

 

 

COLREGs rule 14a. The
model correctly identifies that the ships are performing evasive maneuvers in a

 

 

COLREGs incompliant manner.

Case 7 - Situation started

Figure 8.10 shows a situation where uncertainty about when the situation starts
plays an important role. Before the 360s mark, the blue ship takes a starboard turn
before it aligns back up on a collision course. The intention model assumes that
the

 

 

COLREGs situation started after this course change, after which the blue ship
performs a late

 

 

COLREGs incompliant evasive maneuver by changing its course
to cross in front of the red ship. To get this result the situation start distance had
to be reduced to N (5000, 750)[0,8000]. Without this change then the blue ship was
marked as acting in an unmodelled manner as it turned towards a collision course
after the situation had started.
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Figure 8.8: Case 5 - Head-on situations where the ships pass on the wrong side at a large
distance. The dashed vertical lines correspond to the timestamps in the position plot.

8.6 Discussion

The results show how the intention model manages to correctly identify when
ships act in accordance with

 

 

COLREGs, Cases 1 and 3, and when this is not
the case, Cases 6 and 7. Furthermore, they show that the intention model can
distinguish between incompliant maneuvers, Cases 6 and 7, compliant maneuvers
but the wrong ship acts, Case 2, and situations where no ship acts, Cases 4 and 5.

The “ample time” distribution defines when ships, that have so far not performed a
maneuver, will be marked as either having a higher priority, Case 4, or considering
that there is no risk of collision, Case 5. In Cases 1 and 7 the probability that one
of the ships acts as if it has a higher priority increases quite a lot before the evasive
maneuver is performed. It might be that this apparently late behavior should be
expected if the type of ships and location of the encounter is also considered.
Having separate distributions for different locations and ship types can enable the
intention model to understand that, for example, small ships in inland areas tend
to act later and come closer than large ships in open waters.

A limitation with the “ample time” definition is that it does not consider how
difficult it is to perform the evasive action. Much earlier actions must be taken in
head-on situations where there is a large offset to the wrong side, Case 5, than in
for example crossing situation with no offset, Case 1.
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Figure 8.9: Case 6 - Head-on situation where the ships act to pass on the incorrect side
according to

 

 

COLREGs. The dashed vertical lines correspond to the timestamps in the
position plot.

Cases 4 and 5 shows the effect of the “risk of collision” distribution. Both present
cases where neither ship performs an avoidance action. In Case 4 this is explained
by the ship acting as if it has higher priority, while it in Case 5, where the ships
pass at a larger distance, is explained by there not being a risk of collision.

The effect of the “situation start” distribution is shown in Case 7. Reducing the
situation start distribution enabled the intention model to filter out a course change
that was not related to collision avoidance. Having this low definition of when the
situation starts would not work in other cases, such as Case 2, as it would then
not realize that the red ship has actually performed an avoidance action. It might
be that a different definition of when the situation starts is warranted in these
two cases if one is for example near the coast while the other is in open waters.
Alternatively, it might be inadequate to define when the situation starts from
distance alone.

Modeling the “situation start” in the
 

 

DBN has some advantages as shown in Case
7, but makes the model much more complex and requires that the initial head-
ing and speed of the ship is included as nodes in the

 

 

DBN. Introducing them as
nodes requires that the heading and speed are discretized. The maximum number
of discretization intervals that can be used in practice are quite limited as the
computational burden of evaluating a

 

 

DBN increases substantially with the num-
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Figure 8.10: Case 7 - Crossing situation where there is a maneuver change unrelated to
collision avoidance at the start of the encounter. The dashed vertical lines correspond to
the timestamps in the position plot.

ber of intervals. Having few and large intervals is a problem when a ship starts
with a course or speed close to the boundary between two intervals, then a small
change in course in one direction can be marked as the ship changing course, while
a larger course change in the opposite direction can be marked as the ship keeping
its course. To limit this problem a quite large definition of how small speed and
course change that are considered as standing-on is used. This is especially helpful
in Case 5 where even though the red ship keeps a very steady course, the probabil-
ity that the ship changes its course to port starts to increase. This large definition
has limitations in Case 2 where it causes uncertainty about whether or not the red
ship has performed a collision avoidance maneuver, even though it clearly has.

Cases 1 and 2 show an error in the inference where the probability that the ships
will comply with

 

 

COLREGs when performing evasive actions decreased a bit, even
when the avoidance actions are in accordance with

 

 

COLREGs. This error does not
constitute a large problem as the reduction in probability is small, but it is an
indication that something is wrong with the inference. The cause of this error has
not been found, but it seems to not directly be related to the logic of the intention
model itself. It rather seems to be related to the model being sensitive to numerical
errors. Further investigation on understanding and alleviating this error is needed.

Another limitation observed during testing, but not present in any of the presented
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cases, is that having a safe distance to the current midpoint in head-on situations,
as defined in Equation (6.12), is not enough if the ships meet at a relatively large
angle. This can be solved by requiring that the ships in addition must have a safe
distance (SD) and pass at the correct side (MMPSρ

[t] == port) at
 

 

CPA.

8.7 Conclusion

In this chapter, the intention model presented in Chapter 6 is tested on historical
data using empirical distributions. The tests demonstrate that the model is able
to identify different ways the ship’s behavior can conflict with the rules, either
by acting as if they have higher or lower priority, giving way in an

 

 

COLREGs
incompliant manner, or by not considering it a risk of collision. It furthermore
demonstrates that it is feasible to use empirical distributions in the model.

This research has also demonstrated some weaknesses with the model that opens
up for further work. The main limitation is with filtering out actions unrelated to
collision avoidance. The current implementation that considers whether the situ-
ation has started can handle some cases but makes the model more complicated
and introduces discretization issues. Finding a better solution would substantially
improve the model. Furthermore, a new method for ample time that considers how
difficult the avoidance maneuver will be, is warranted. Lastly, the model does not
handle actions not related to collision avoidance, such as avoiding grounding or
following a traffic separation scheme or narrow channel.
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Chapter 9

Conclusion

This chapter consists of three sections. First, in Section 9.1, a summary and reflec-
tion is given where the focus is placed on differences and similarities between the
chapters. Then the discussion on the contributions of the different chapters to the
research questions and opportunities for future work are presented in Section 9.2.
Finally, some concluding remarks are given in Section 9.3.

9.1 Summary and reflections

This thesis presents different contributions on increasing the risk awareness for con-
trol of autonomous robots. The thesis consists of two parts each with its own focus.
Part I focuses on a drone operating in static environments where the challenge is
to identify the state of the system and the environment based on incomplete in-
formation. Part II focuses on an autonomous ship in dynamic environments with
multiple agents. Here the challenge is to identify the intentions of the other agents.

Chapter 3 and Part II present contributions on increasing risk awareness for robotic
systems by improving the systems model of single factors that are connected with
significant uncertainty. Chapter 3 considers the uncertainty in the location and
shape of obstacles stemming from observing the environment with a wide-angle
radar. This chapter develops a collision avoidance algorithm that considers this
uncertainty together with the uncertainty in the drones motion to evaluate the risk
of collision. Considering the uncertainty enables the system to be proactive when
entering areas where its knowledge is incomplete. Part II considers the uncertainty
in the intention of other ships at sea. This uncertainty is arguably the largest
source of uncertainty in encounter situations. This part develops an intention model
that enables the system to identify situations prone to cause misunderstanding,
understand the intention of other ships based on their observed behavior, and
adapt the model to the current situation.

Chapters 4 and 5 presents two different contributions on how to give a robotic
system a holistic understanding of risk. Chapter 4 considers operational decision-
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making that has to be done every time a task execution fails. This chapter develops
a decision-making system that is used to decide whether a task should be attempted
again, the task should be skipped, or maintenance should be requested. By having
a holistic model that considers the history of the outcome of actions, the system
is able to identify the underlying causes which enable it to take appropriate ac-
tion. Considering the uncertainty in the situation awareness enables the system to
proactively avoid hazardous events. Chapter 5 considers decisions that have to be
made continuously during an operation. This chapter develops a holistic risk model
that monitors the state of the system and changes safety-critical parameters to en-
sure a safe operation. The holistic model enables the supervisory risk controller
to identify the underlying cause by combining information over time and to see
different problems in light of each other when making decisions.

A difference in the proposed method of Chapters 4 and 5 is how the underlying
states are defined. In Chapter 4 focus is placed on which states that can be distin-
guished from each other based on the available information, that is, states which
are observable. In contrast, Chapter 5 instead focuses on the results of the risk
analysis when choosing a state. In practice, this difference is not big as it is still
useful to have the result of a risk analysis available in Chapter 4 when considering
which causal factors that are relevant to include, and since the detail level of causal
factors in Chapter 5 should be based on which states that are observable.

A more substantial difference is in how the underlying states are combined to
evaluate the risk. In Chapter 4 it is assumed that the underlying causal factors could
be realized as either sufficient or insufficient on each task execution attempt. Logical
gates, such as and and or are then used to combine the causal factors to evaluate
the risk. This approach moved all uncertainty to the realization of the underlying
causes. A drawback of this approach is that it does not handle cases where multiple
underlying factors affect the realization. This is handled in Chapter 5 by allowing
more freedom in the modeling of the resulting risk. A drawback with this approach
is that it requires substantially more quantification work than in Chapter 4.

The difference in the formulation also relates to Chapter 4 considering binary
outcomes of the hazardous event occurring or not, while Chapter 5 evaluates the
frequency of occurrence. A binary outcome is natural when evaluating the result
of a single discrete event as in Chapter 4, while a frequency is more natural when
evaluating the risk of continuing the mission with this parameter configuration as
in Chapter 5.

The 1.5
 

 

DBN approach used in Chapter 5 makes the computational burden in-
significant compared to Chapter 4 and Part II where it put limitations on the
inference capabilities. The drawback of the 1.5

 

 

DBN approach is that it forgets all
dependencies of past states. This would be too limiting for Chapter 4 and Part II
as the focus of these chapters is to identify the underlying states based on a history
of observations. This is also a focus in Chapter 5, but is here limited to differentiate
between states that are varying slowly and quickly, which is adequately modeled
with the 1.5

 

 

DBN approach. Remembering all past states as in Chapter 4 enables
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the system to evaluate past states with new information which makes it possible
to alleviate past mistakes. This ability is not relevant for continuous control as in
Chapter 5 and Part II, as it is not possible for these systems to return to a past
situation and undo the error.

Each chapter in Part II presents different ways of validating the intention model. In
Chapter 6 the model is tested on constructed simulation scenarios. Using simulated
scenarios enables the testing of large quantities of scenarios with gradual variations
in initial state. This demonstrates how sensitive the model is to the initial state.
Chapter 7 tests the model in a real-time setting on controlled experiments. This
evaluated how the model holds up to real-time use. Additionally, it evaluates how
the model works with real data which has significantly more noise and random
variations than the simulated data. Lastly, Chapter 8 tests the model on historical
data. This evaluates how well the model works on behavior that actually happens
at sea.

The intention model introduced in Chapter 6 considers uncertainty in when the
situation started and whether there is a risk of collision. These uncertainties are
removed in Chapter 7 as they were deemed irrelevant for the experiments presented
in this chapter but are included again in Chapter 8. How “risk of collision” is mod-
eled is shown to work well in Chapter 8. Regarding “situation started” Chapter 8
shows that a way of filtering out maneuvers not related to collision avoidance is im-
portant for understanding the intentions of ships, but that the method presented in
Chapter 6 for modeling when the situation starts might not be the ideal solution.

9.2 Contribution to research questions, and future work

RQ 1 How can uncertainty in static obstacles be modeled when considering the
uncertainty in the sensor mapping the obstacle, and how can this be com-
bined with uncertainty in the navigation of the robotic system itself in a
risk-based collision avoidance algorithm?

Chapter 3 contributes towards RQ 1 by making an obstacle avoidance algorithm
that uses the probability of collision considering both the obstacle uncertainty and
the navigational uncertainty of the drone. The obstacle uncertainty is modeled as an
occupancy grid map that is updated considering the uncertainty in the measured
distance and where inside the field of view of the sensor the obstacle is. Even
though this chapter contributes towards RQ 1, it is still an open question of how
to model the uncertainty in the environment in a realistic manner. This chapter uses
occupancy grid maps which do not store information on conditional dependencies
between cells. This makes the probability value in each cell depend on factors
that should be unrelated, such as the grid cell size. The resulting values in each
cell can be interpreted as an occupancy level, but can not be interpreted as an
approximation of the real probability. Opportunities for future work on RQ 1 are
therefore to find a probabilistic sound way to model uncertainty in the environment.

207



9. Conclusion

RQ 2 How can the intention of other agents at sea be modeled and inferred in
greater detail so that the future behavior of the agent can be predicted with
higher accuracy?

Chapter 6 contributes towards RQ 2 by developing an intention model that can
be used to infer the intentions of other ships in a collision avoidance situation at
sea. The model enables the autonomous ship to identify situations prone to cause
misunderstandings and to understand the intention of other ships with greater
accuracy than simply being compliant or not. The model manages well to identify
when ships do

 

 

COLREGs incompliant evasive maneuvers, when they act as if
they have higher priority, and whether there is a risk of collision. A limitation of
the proposed method is that it does not consider grounding hazards and traffic
separation schemes. Future work on finding a formulation that takes these cases
into account is needed for the intention model to be complete enough to operate
in most places.

Chapter 8 contributes further towards RQ 2 by evaluating the intention model on
historical data using empirical distributions. This chapter verifies that the model
works on real ship behavior. This chapter replaced some of the example distribu-
tions used to describe ship behavior with empirical distributions based on the

 

 

AIS
data. Only the distributions that are easily available from the already classified
data are used. Further work is needed on finding experimental distributions for
the last distributions as well. Furthermore, it was shown that applying the same
distribution to all cases was not necessarily an ideal solution. Further work could
therefore be done on adapting the distribution to the current situation. Finally,
some weaknesses with the model are presented in the chapter, mainly related to
identifying when the situation starts. Further work is needed on finding a better
way to filter away all maneuvers not related to collision avoidance.

RQ 3 How can an improved situation awareness of the other ships’ intentions
improve the collision avoidance capabilities of autonomous ships?

Chapter 7 contributes towards RQ 3 by making an intention aware
 

 

COLAV sys-
tem which combines the intention model with the

 

 

PSB-MPC collision avoidance
algorithm and experimentally tested the resulting system. The experiments demon-
strate that the system is able to give way correctly and to fulfill its stand-on obli-
gations. Furthermore it demonstrates that the system is able to break its stand-on
obligations when it becomes apparent that the other ship will not give way, and
break its

 

 

COLREGs compliance obligations when needed to due to the other ship
disregards

 

 

COLREGs. A limitation of the presented experiments is that they are
done in confined waters while the algorithm is designed primarily for encounters
at open sea. Future work could therefore be done on full-scale experiments in open
waters. A limitation of the intention model is that it too easily locks into the un-
modeled behavior state. This was often caused by random course changes that had
no underlying intention, or by small maneuvers to avoid static obstacles. Future
work could be done on alleviating this problem, by for example having a way for

208



9.2. Contribution to research questions, and future work

the intention model to disregard measurements that turns out to be outliers.

RQ 4 How can a robotic system build and use risk awareness for operational
decision-making for considering which task or action to do next?

Chapter 4 contributes towards RQ 4 by making a
 

 

DDN which increased the risk
awareness and decision-making capabilities of a drone. A holistic model is developed
that can identify the cause of the underlying problems by combining information
on the choice of actions and observed results over time. This enables the system
to consider the uncertainty in the system’s knowledge about the state of the drone
and its environment when making risk-based decisions. Additionally, this chapter
demonstrates that evaluating past states with new information can be useful as it
enables the system to identify and handle past sub-optimal actions. This informa-
tion enables the system to return to past tasks which it has wrongly skipped. A
limitation of the work presented in this chapter is the computational complexity
of keeping all past decisions in the

 

 

DDN. Opportunities for future work is to find
a formulation that requires remembering fewer past states without compromising
the inference capabilities of the model too much.

RQ 5 How can a robotic system build and use risk awareness for continuous de-
cisions that have to be made during a task execution?

Chapter 5 contributes towards RQ 5 by making a method for increasing risk aware-
ness for continuous monitoring and control during the mission execution. A holistic
model is developed that infers the state of different causal factors by combining in-
formation from different measurements over time. The model is then used to make
risk-based decisions by considering the different underlying causal facts in light
of each other. The experimental trials demonstrate that the system can modify
safety-critical parameters in real-time to increase safety. The focus of this chapter
is to present a proof of concept of a supervisory risk controller for a manually
controlled drone operation. Future developments of supervisory risk control could
be done on applying the proposed method to different case studies, such as for a
more autonomous operation without direct human supervision, or by considering
a larger system where a more complicated model is warranted.

RQ 6 How can a situation awareness model based on the results from a risk anal-
ysis be used to ensure safer autonomy?

Both Chapters 4 and 5 contribute towards RQ 6. Chapter 4 considers that the
output of a risk analysis should be kept in mind when designing the failure-cause
nodes. Without an understanding of how the system can fail it is impossible to
decide which failure-causes nodes that are needed. Chapter 5 goes further in this
regard by actually performing the risk analysis and more directly using the results
of the risk analysis in the modeling phase. Here the loss scenarios identified with the

 

 

STPA are directly used as part of the
 

 

DBN. These works thereby contribute towards
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RQ 6 by making a situation awareness model based on the results of a risk analysis.
Chapter 5 considered only a subset of the loss scenarios identified with the

 

 

STPA.
Further work can therefore be done on making a model that incorporates all of the
identified scenarios. Furthermore, it was at times quite challenging to use

 

 

STPA
for making the supervisory risk controller presented in Chapter 5, which warranted
the changes proposed throughout Chapter 5. Future work could be done on further
improving the risk analysis process for making a supervisory risk controller.

An autonomous robot mission requires both discrete decision-making about which
action to do next and continuous evaluation and control of how the actions are exe-
cuted. Future work could be done on combining the works in Chapters 4 and 5 in a
single joint risk-aware autonomous system. The risk-based discrete decision-making
system could then evaluate a maximum acceptable risk threshold for executing the
task, which the supervisory risk controller would use during the execution of the
task. If there is no way of performing the task within the risk threshold, then the
supervisory risk controller would make the system return to a safe state and request
that the decision-making-system re-plans.

9.3 Concluding remarks

The goal of this thesis was to give robotic systems at least parts of the risk-
awareness that skilled human operators possess. This thesis has contributed to-
wards this goal with respect to better modeling of uncertainties in the environ-
ment and uncertainties in other agents’ intentions, and by developing holistic risk
awareness models for discrete and continuous decision making.

Most of the presented works have used
 

 

BBNs, or their dynamic extensions
 

 

DBNs
and

 

 

DDNs.
 

 

BBNs have in recent years been much used in system health manage-
ment and risk modeling, but have received limited attention for automatic control.
This thesis has demonstrated different capabilities that can be achieved by using

 

 

BBNs for automatic control, especially with respect to improving the situation
awareness of the system. Based on the demonstrated capabilities and due to the
interpretability of

 

 

BBNs, I believe that they have potential for making smarter and
safer high-level controllers of future autonomous systems.

The intention model developed in this thesis has demonstrated new capabilities that
are crucial for understanding the behavior of meeting traffic. The model presented
in this thesis can work as a starting point for developing new and better intention
models that are more robust and work in a broader set of conditions. I believe that
the core concept of using a

 

 

DBNs in the proposed manner has virtue and should
be considered in future intention inference algorithms.

This thesis has presented interdisciplinary work by using theories from risk man-
agement in cybernetic systems. Most risk-aware controllers developed in the cy-
bernetics discipline tend to have a limited view of risk by only considering single
factors, most often navigation uncertainty. Including the holistic view of risk, which
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is the focus of risk management, is crucial for ensuring safe systems. This can be
done in the traditional way of making system requirements and ensuring that the
proposed controller fulfills all requirements, or with the method explored in this
thesis of making risk models that are an active part of the control system. Based
on the results of this thesis, I believe that using an online risk model as part of the
controller will enable us to make safer and more efficient systems, as having a risk
model rather than a set of constraints can potentially make the system’s behavior
less conservative without compromising safety.
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