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Abstract: Cross-modal medical imaging techniques are predominantly being used in the clinical
suite. The ensemble learning methods using cross-modal medical imaging adds reliability to several
medical image analysis tasks. Motivated by the performance of deep learning in several medical
imaging tasks, a deep learning-based denoising method Cross-Modality Guided Denoising Network
CMGDNet for removing Rician noise in T1-weighted (T1-w) Magnetic Resonance Images (MRI) is
proposed in this paper. CMGDNet uses a guidance image, which is a cross-modal (T2-w) image of
better perceptual quality to guide the model in denoising its noisy T1-w counterpart. This cross-
modal combination allows the network to exploit complementary information existing in both images
and therefore improve the learning capability of the model. The proposed framework consists of two
components: Paired Hierarchical Learning (PHL) module and Cross-Modal Assisted Reconstruction
(CMAR) module. PHL module uses Siamese network to extract hierarchical features from dual
images, which are then combined in a densely connected manner in the CMAR module to finally
reconstruct the image. The impact of using registered guidance data is investigated in removing
noise as well as retaining structural similarity with the original image. Several experiments were
conducted on two publicly available brain imaging datasets available on the IXI database. The
quantitative assessment using Peak Signal to noise ratio (PSNR), Structural Similarity Index (SSIM),
and Feature Similarity Index (FSIM) demonstrates that the proposed method exhibits 4.7% and 2.3%
gain (average), respectively, in SSIM and FSIM values compared to other state-of-the-art denoising
methods that do not integrate cross-modal image information in removing various levels of noise.

Keywords: cross-modal; guided; denoising; MRI; machine learning; siamese network; deep learning

1. Introduction

Magnetic Resonance Imaging (MRI) is preferred for the structural and functional
analysis of several organs in the clinical setting thanks to its non-ionizing nature and
ability to highlight structures with high contrast. In particular, MR neuroimaging is widely
employed in the screening and diagnosis of brain cancers and neurodegenerative dys-
functions such as Alzheimer’s disease and multiple sclerosis [1]. MRI can highlight tissue
with various contrasts using different sequences of Radio-Frequency (RF) pulses. Specific
pathologies are accurately analyzed and interpreted when captured using a particular RF
pulse sequence. For instance, ‘substantia nigra’, a brain area affected due to Parkinson’s
disease can be visualized clearly on T2-w images compared to T1-w [2], whereas, T1-w
images are preferred in the quantification of atrophy, an irreversible loss of neurons associ-
ated with multiple sclerosis [3]. However, certain pathologies possess uncertain features
and assorted topography, whose existence needs to be validated by multiple modalities
especially if their surgical resection is essential. A cohort study comprising 200 surgically
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treated Craniopharyngiomas (CPs), an infiltrative brain tumor concluded that several key
radiological variables recognized on both T1-w and T2-w MR images correctly predicted
the CP topography in 86% of cases [4].

During MRI acquisition, noise is mainly introduced due to motion of charged particles
in the radio frequency coils. This noise affects the reliability of diagnosis and image analysis
tasks including feature extraction and segmentation [5,6]. Denoising of the images then
becomes indispensable to make them suitable for further analysis. Let X ∈ RP×Q and
Y ∈ RP×Q denote the ideal and observed MR images, respectively, and N ∈ RP×Q is the
noise contained in the MRI signal. The noisy observation Y of X can be expressed in the
case of an additive model as:

Y = X + N (1)

The objective of denoising algorithms is to reduce the noise content N in Y to obtain
an estimate of the original image X. The noise in MR images follows Rician distribution
whose probability density function is expressed as:

p(N | X, σN) =
N
σ2

N
exp

− (
N2+X2)

2σ2
N J0

(
XN
σ2

N

)
ε(N) (2)

In the above equation, J0 represents the 0th order Bessel function, N is a Rician
distributed random variable. ε(.) is the unit step Heaviside step function indicating that
the pdf expression is valid for non-negative values of N. X is a non-noisy signal as stated
above and σN is the noise variance. The Rician noise is a signal dependant noise and
demonstrates gaussian distribution when Signal-to-Noise Ratio (SNR) is high and rayleigh
distribution when SNR is low.

Despite the considerable amount of work devoted to image denoising during the two
last decades, it is still a challenging problem particularly in the case of signal-dependant
and correlated noise [7,8]. This is the case in medical imaging. Most often simplifying
assumptions are made to make the denoising problem more or less tractable. This has led
to a variety of denoising methods applied to various imaging modalities. Several denoising
approaches have been proposed in the past that can be broadly grouped into two types:
conventional methods and deep learning-based approaches. The conventional denoising
methods include spatial domain methods such as bilateral filter [9], Non-Local Means
filter (NLM) [10] and anisotropic filter [11] to name a few. Among these filters, the NLM
filter specifically demonstrates superior performance when the image contains regions of
various types of textures. Wavelet domain approaches were also widely researched for
image quality enhancement [12–14]; one such approach applies thresholding on the detail
coefficients. The wavelet-based denoising methods well preserve sharp edges in the images
compared to spatial domain methods. Optimization-based denoising techniques including
total-variation denoising [15] provide more control over preserving details in the image
and the extent of noise reduction. Recently, data driven machine learning approaches,
particularly deep learning methods are gaining incredible attention due to their promising
performance in various areas such as biomedicine [16–19], video processing. These methods
are able to mimic human cognition [20,21]. Similarly, these approaches clearly outperform
the conventional approaches in the area of denoising [22–24].

Indeed, acquisition of multi-modal medical imaging data during therapeutics is be-
coming increasingly common [25,26]. Since these diagnostic imaging techniques are one
of the largest sources of big data [27–31], their automated analysis is highly desirable to
facilitate the computer aided diagnosis of several diseases [32–35]. For instance, Computed
Tomography (CT) and positron emission tomography (PET) are concurrently acquired as a
standard treatment protocol in oncology. Similarly, T1 and T2-w MRI provides anatom-
ical and pathological information, respectively. The combination of this complementary
information plays a significant role in therapy and surgical planning. The concept of
‘weak learnability’ in ensemble learning further motivates to exploit the strength of this
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complimentarity. According to this concept, the learner (imaging modality here) can be
incorporated into the learning system to elevate its performance, provided it can perform
slightly better than random guessing [36].

With technical advancement and the availability of medical imaging techniques,
using multi-modal data for the underlying computer-aided tasks is attracting several
researchers. It has been exploited in segmentation, classification, super-resolution, and
denoising [36–38]. For instance, in the context of lung nodule detection, CT and PET images
were combined in a CNN-based approach [37]. Similarly, CT, PET, and MRI were also
combined for tumor segmentation [36]. It is worth mentioning here that multi-modal
information-based methods showed superior performance compared to those relying on a
single modality (either CT or PET) [39].

The use of multi-modal medical imaging methods in improving segmentation and
object detection motivates the researchers to employ the dual imaging in denoising as
well. Few research works presented for medical image denoising [23,40] show improved
performance over their single image denoising counterparts. Single image denoising
approaches have an intrinsic limitation where the corrupted information in the original
image is only hallucinated during the reconstruction process [41]. Consequently, these
approaches over smooth certain critical structures in the image at the expense of removing
noise [42]. It often leads to compromised performance of segmentation and object detection
algorithms [43]. In this context, techniques that rely on cross-modal guidance offer the
potential to overcome this limitation. Conventionally, cross-modal denoising methods use
an image of better perceptual quality to facilitate the restoration process. Cross-modality
guided medical image denoising is a relatively under-explored area; however, there exist a
few approaches for natural images. One of the traditional denoising methods attempted to
denoise depth maps using corresponding RGB images [44,45]. Deep learning-based cross-
modal denoising approaches include [46,47]. One of these methods uses RGB-depth data
pair to denoise depth images. Their proposed method consists of two CNNs; first to extract
features individually from the RGB (guidance) and depth (target) images; the features are
later concatenated to be fed to the third CNN, which selectively transfers the common
structures in both images to generate the denoised image [46]. This work was further
extended by adding a skip connection between the input image and the network prediction
to enforce residual learning [47]. This modification brought significant improvement in the
results by leveraging accurate details from the guidance to the target image.

A few cross-modal medical image denoising methods including [23,48,49] are found
in the literature. One such work consolidated information from PET and MRI (T1 and
T2 FLAIR) to denoise very low-dose PET images of the human brain [23]. The proposed
method ResUNet was a residual encoder-decoder network, where residual learning was
combined with U-Net. The PET, T1 and T2 FLAIR slices were stacked together and fed
to the network. Using 2.5D information offers a way to discriminate structural informa-
tion from noise. Compared to the ResUNet (PET without MRI), the combination of both
modalities not only resulted in improved denoising performance but also improved lesion
segmentation. In another similar CNN-based approach, amyloid PET images were concate-
nated with corresponding T1, T2, and T2 FLAIR images to learn denoising ultra-low-dose
PET images using standard dose PET as ground truth. U-Net with residual learning was
used in their approach. A similar idea was applied to T1 and T2 brain images [48]. The tra-
ditional guided filter was integrated with the deep learning framework, where guidance
map generator takes guidance and cross-modal noisy images as input (T1 and T2 MR
images). The guidance map generation component was realized using a modification of
popular architecture, U-Net; where the encoding path was extended to dual branches for
each modality followed by feature concatenation at the last encoding layer. The guidance
filter was then incorporated as a differential layer and implemented as a linear combination
of the guidance map and input image to yield the restored image. The method claimed
to outperform approaches that do not include the guidance information from input im-
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age directly in the restoration process and rather only rely on the network prediction as
final output.

The above-mentioned approaches are not very effective since simply concatenating
the images as network input as in [23] or combining features from all encoding layers [48]
does not fully exploit the potential of cross-modal complementarity. It leaves a huge space
to further explore the improvement of cross-modal denoising methods and advance in
this direction. Therefore, there is a need for a more efficient way of manipulating and
combining features. To address the denoising problem in MR images, we present a cross-
modality-guided denoising approach CMGDNet in this paper. The proposed model is
inspired by the work of Fu et al. [50], where a similar model was used to detect salient
objects in RGB-Depth images. Cross-modal image denoising for brain MR images was
earlier explored by Stimpel et al. [48]; however, simple feature concatenation at the last
encoding layer of their proposed method does not effectively exploit the information in the
non-noisy guidance image. Unlike the previous denoising approaches, CMGDNet extracts
hierarchical features from the input and guidance image using a siamese network (mirror
backbones) that are later combined in the complimentarity-aware mechanism. Although T1
and T2 images belong to different modalities; nonetheless, they capture similar structures
and analogous object contours. The guidance image (T2 in our case) has better perceptual
quality (noise-free), while T1 is of lower quality due to its sensitivity to acquisition noise.
This scenario renders cross-modal feature learning viable in the presence of a guidance
image. Our contributions in this work are listed as follows:

• A novel framework based on cross-modal guidance information is designed to de-
noise T1-w brain MR images. In particular, a siamese network is specifically modified
to train the denoising network using both T1 and T2 MR images. By exploiting
the diversity of information contained in the two modalities and in particular bet-
ter perceptual quality of T2 images and the structural information contained in T1
images, the proposed approach seeks additional guidance from these images in the
reconstruction process.

• Literature dictates that complementarity-aware cross-modal feature fusion is not well
explored in the context of denoising, hence in this work, an effective cross-modal
information fusion strategy is incorporated. The experimental results show that this
fusion mechanism works well in comparison to single image denoising approaches.

• Comprehensive experiments have been conducted to analyze the performance of the
proposed method on different noise levels both on registered as well as unregistered
data. Moreover, the role of different loss functions is inspected to analyze their impact
on denoising performance.

• In this work, two public datasets are customized keeping in view the requirement
of denoising in medical image analysis. The dataset consists of both T1 and T2 MR
images, meeting the requirement of learning models based on cross-modal guidance.

This paper consists of five sections. Section 1 gives an introduction to and motivations
for the work followed by background and related work. The dataset and proposed method-
ology are elaborated on in Section 2. Experiments, comparisons with different techniques,
and the results are discussed in Section 3. Section 4 summarizes the discussion of results.
The conclusion and suggested future work are presented in Section 5.

2. Materials and Methods

In this section, the dataset, experimental setup and proposed methodology are explained.

2.1. Dataset

The experiments in this work are conducted on two datasets which are subset of a publicly
available database IXI [51]. Both datasets are collections of T1, T2, and some other brain MR
imaging modalities of healthy patients. The detailed configuration and scanning parameters
can be found on the Brain IXI website: https://brain-development.org/ixi-dataset/. T1 and

https://brain-development.org/ixi-dataset/
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T2 MRI have been used in this work. Further details of both datasets and experimental
configuration are provided in the following subsections.

2.1.1. Dataset I: Hammersmith Hospital

The first experiment was done on the dataset acquired at Hammersmith Hospital,
United Kingdom using Philips 3T system. 70 T1 and T2 volume pairs were randomly
chosen, out of which 62 pairs were used for training and 8 for testing the denoising perfor-
mance. It is pertinent to mention here that the proposed method was tested on registered
as well as unregistered data and is explained in the following section. Furthermore, the role
of different loss functions with both configurations was also investigated.

2.1.2. Dataset II: Guy’s Hospital

The collection of T1 and T2 MRI acquired at Guy’s Hospital, UK using Philips 1.5T
system was also used in this work. Seventy T1 and 70 T2 volumes were randomly selected
for this purpose, out of which 62 pairs were used for training and eight for testing.

2.2. Preprocessing

All the volumes (T1 and T2) were resampled to 256× 256× 150. The proposed model
is trained and tested on two types of input-guidance image combinations. In the first case,
the model is trained on unregistered data, while in the second case, the corresponding T1
and T2 volumes are registered using 3D slicer, where T2 volume was moved/deformed
with reference to the T1 volume that is fixed. Rigid registration with 12 degrees of freedom
was used. Rician noise was added to the T1 slices. Min-max intensity normalization was
applied to the data. We conducted experiments on unregistered as well as registered data
at different levels of Rician noise. The detail of both configurations is elaborated in the
next subsection.

2.3. Implementation Details

The proposed method was implemented using the PyTorch library and trained on
NVIDIA TITAN RTX GPU with 24 GB RAM. The backbone was initialized using the pre-
trained parameters of DSS [52], while other layers were randomly initialized. The network
was fine-tuned through end-to-end paired learning. The learning rate and momentum val-
ues were 0.00005 and 0.99, respectively. Stochastic Gradient Descent learning was adopted
and the network was trained using the loss functions described in Equations (6) and (8) for
50 epochs.

2.4. Proposed Methodology

The conventional deep learning models for image denoising are trained to learn the
mapping from noisy image Y to non-noisy image X [41,53]. However, in cross-modality-
guided denoising methods, the model incorporates an additional multi-modal image G to
learn complementary information and facilitate the learning process.

X̂ = f (Y, G) (3)

Therefore, in the proposed method, the model is trained to minimize the loss function
L as:

f ∗ = arg min L ( f (Y, G), X) (4)

The proposed framework PHL-CMAR (Paired Hierarchical Learning-Cross-Modal
Assisted Reconstruction) employs CNNs for extracting features as well as combining these
features efficiently in the restoration process. PHL-CMAR framework consists of two
modules: PHL module and CMAR module. The PHL module is responsible for extract-
ing the features from paired (T1 and T2) images using the Siamese network to conduct
joint learning. It discovers commonalities between the dual inputs from a model-based
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perspective, which is then incorporated in the model via back-propagation. The features
extracted are then fed to the CMAR module, where they are combined to ultimately recon-
struct the denoised image. Both components of the proposed model are explained in the
subsequent sections.

2.4.1. Paired Hierarchical Learning (PHL)

The PHL module accepts two images, noisy T1 image Y and guidance image G, that is
T2 as input. ResNet is used as a trunk architecture for feature extraction. For both images,
the single-channel is copied three times to correspond with the RGB images which the gen-
eral VGG or Resnet-like models accept. ResNet uses skip connections to address the issue
of vanishing gradients and learns the residuals instead of the function [54]. Pre-trained
ResNet-101 was used for feature extraction. Since ResNet’s first convolution layer has a
stride of 2, which gives the feature spatial size of 160 × 160 at the shallowest level, conv1_1
and conv1_2 layers from VGG-16 are used to obtain the full feature size of 320 × 320.
Therefore, each hierarchical branch (1 to 6) is then connected to conv1_2 (borrowed from
VGG-16), conv1, res2, res3(3), res4(22), and res5 layers of the ResNet-101, respectively.
Axial slices were used where each image has dimension of 256 × 256 × 3. The shared
Siamese backbone extracts features from the dual images in the hierarchical side-output
manner [52] and is briefly described below. Since feature extraction is accomplished using
short connections, the feature set at every hierarchy contains varying dimensions. Another
component Feature Pruning (FP) is therefore introduced in the PHL module [50], which
ensures that the feature set from each hierarchy is of uniform size. Let us represent the
feature set corresponding to guidance image and input image by Fg and Fy, respectively.
Figure 1 shows the structure of PHL module. It is worth mentioning here that directly con-
catenating the two images has not been found as effective in detection tasks as combining
features in a hierarchical way [50]. The combination of ResNet with hierarchical feature
manipulation strategy allows the model to combine the complimentary information from
both modalities that are later combined using densely connected FE module.

Short Connections

Generally, the feature maps at the shallow layers of CNNs are crude. As the DL
network delves deeper, the successive convolution layers refine the feature maps obtained
earlier. However, the deeper-level feature maps lack regularity. Using short-connection
from following convolution layers to the earlier layers offers learning model a way to
consolidate the information from multiple levels. Integrating features in this manner
provides deep learning networks with information-rich multi-scale feature maps and
therefore improves the results [52]. The idea of using short connections in the CNN to
exploit multi-scale information was initially applied to edge detection [55] and later to
salient object detection in RGB images [52]. This concept was further incorporated in
the saliency detection framework using RGB-depth pair images [50], where the Siamese
network was used for feature extraction.

Using short connections similar to [52] can be particularly beneficial in the denoising
problem. A reasonable denoising algorithm should also be able to recover the corrupted
information while simultaneously preserving the critical structures in the images. Con-
sidering medical images, the denoising problem becomes even more sensitive since the
results would be later used in diagnosis and image analysis tasks such as segmentation.
The capability of exploiting rich information at the feature extraction phase motivates us to
include this strategy in our proposed model.
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Figure 1. Paired Hierarchical Learning (PHL).

2.4.2. Cross-Modal Assisted Reconstruction (CMAR)

The CMAR module combines the hierarchical features extracted by the PHL module
to perform upsampling. CMAR acts as a decoder in our proposed method and consists of
two components, i.e., Cross-Modal feature Synthesis (CMS) and Feature Expansion (FE).
The detail of the interactions among various elements of the CMS and FE components along
with their relationship with the PHL module is depicted in Figure 2. Both components are
explained in the subsections below:

Figure 2. Cross-Modal Assisted Reconstruction (CMAR).
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Cross-Modal Feature Synthesis (CMS)

Let us denote the feature set provided by the FP module as {Fy, Fg}, where Fy and Fg
correspond to the features extracted from noisy image, and guidance image, respectively.
CMS does feature multiplication followed by feature addition of the corresponding multi-
scale features. This operation can be mathematically expressed as:

CMS({Fy, Fg}) = Fy ⊕ Fg ⊕ (Fy ⊗ Fg) (5)

⊕ and ⊗ symbols in Equation (5) represents addition and multiplication (element-wise).
The addition operation exploits complementary information between both modalities in
the feature space, while the multiplication operation combines common information in
the cross-modal feature set. The complementarity-aware feature fusion in this manner
genuinely exploits superior perceptual quality of guidance image and therefore embeds
additional learning capability into the model.

Feature Expansion (FE)

The feature maps from the CMS component are passed to the FE component, which
acts as a decoder in our framework and is embedded with dense connections. The dense
connections enable effective information flow from each decoder block to the next. Propa-
gating the multi-level features in a densely connected fashion has proven to improve the
learning capability of the network [56]. Inception module [57] is incorporated in the FE
module and is shown in Figure 3. Up-sampling in this module was done using simple
bilinear interpolation. Leveraging varying filter sizes such as 1× 1, 3× 3, and 5× 5 in Conv
layers, the inception module allows the network to learn spatial patterns at several scales.

Figure 3. Structure of Inception module.

The output from the last FE module, i.e., FE1 is fed to a 1 × 1 convolution layer to
acquire the reconstructed image in a supervised manner. The detail of the loss function is
given as follows.

2.5. Loss Function

Mean square error (MSE) is a standard objective function used in several image
processing problems including image super-resolution and denoising. Using MSE as a
loss function allows minimizing the residual error between pixels in the ground truth and
the network predicted image, which implies attaining a higher Peak Signal to Noise Ratio
(PSNR). MSE loss is expressed as follows:

LMSE(θ) = ‖X̂(θ)− X‖2 (6)
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However, it was observed that optimization using solely MSE sometimes generates
blurred images. In this context, an objective function motivated by structural information
can be integrated. SSIM is used to define the extent of local structural similarity between
two images and can be incorporated with MSE as a loss function to address the over-
smoothness phenomena associated with MSE. While the higher the SSIM value, the higher
is the structural similarity in images, the objective function is therefore expressed as follows:

LSSIM(θ) = 1− SSIM(X, X̂(θ)) (7)

The overall loss function of the proposed method is mathematically formulated as:

Ltotal(θ) = αLMSE + βLSSIM (8)

Equal values of α and β have been chosen for our experiment, that is 0.5.

3. Experiments and Results

The performance of the proposed method was validated by comparing it with five
state-of-the-art methods including Non-local means filter (NLM) [10], Stein’s unbiased
risk estimate (SURE) [58], Block-matching and 3D filtering (BM3D) [59], Multi-channel
Denoising convolutional neural network (MCDnCNN), referred as MCDN in the paper [24]
and FFD-Net [53]. Among the methods chosen, NLM [10] is a popular denoising method
that computes the weighted average of not only the local neighborhood but all pixels
in the image. Wavelet-based denoising approach SURE does not rely on prior statistical
modeling of wavelet coefficients [58]. Instead, it parametrizes denoising by computing
parameters that minimize this MSE estimate. BM3D is a popular approach based on
stacking similar 2D image patches followed by hard thresholding and Wiener filtering to
denoise 3D stacks [59]. Although BM3D was originally developed for removing Gaussian
noise in images; however, it has been applied to Rician noise removal as well [60]. MCDN
is a 10 convolution layer network embedded with residual learning taking multi-channel
input; however, we modified it to take identical slices. FFD-Net [53] is another CNN
architecture that is capable of handling a variable range of noise levels in a single model.

Moreover, the denoising performance was also evaluated by using different combi-
nations of loss functions on registered as well as unregistered data. Three metrics were
used to quantitatively evaluate the performance. The first metric peak signal-to-noise ratio
(PSNR) compares the root mean square error (RMSE) between the ground truth and de-
noised images. Another metric Structural Similarity Index (SSIM) was also included in the
assessment that measures the structural affinity between denoised images and the ground
truth. Feature Similarity Index (FSIM) [61] is a full reference image quality assessment
(IQA) metric that is often used to evaluate the performance of denoising methods [62].
It computes feature similarity between the two images based on the low-level features
including phase congruency and gradient magnitude.

In the following subsections, we describe in detail the experiments conducted on the
brain MR images using the proposed method and state-of-the-art methods.

3.1. Configurations

The performance of the proposed method CMGDNet was evaluated on unregistered
and registered data with different combinations of loss functions. Different configurations
of data and loss functions tested in the proposed method are mentioned in Table 1 and
briefly explained below:

3.1.1. CMGDNetrs

Under this configuration, registration was not performed between T1-w and T2-w
volumes. Using MSE as loss function, the model was trained and then tested on both
datasets. The results of this configuration are referred as ’CMGDNetrs’.
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3.1.2. CMGDNetss

The role of using an additional SSIM-based loss function was analyzed in case of
unregistered data under this configuration. Therefore, both SSIM and MSE were com-
bined here.

3.1.3. CMGDNetrg

In this case, registration was performed between T1 and T2 volumes. Registration was
done using 3D Slicer. Rigid Registration with 12 degrees of freedom was applied in all cases
where T1 volume was fixed, while T2 was moved with reference to T1 in the registration
process. The effect of registration can be better comprehended by visually inspecting the
registered and unregistered T2 images with reference to T1 in Figure 4. It can be noticed
that T1 and unregistered T2 slices are structurally similar; however, careful insight points
to structural mismatches at various regions in the image. After applying registration,
the structural similarity in the registered T2 image can be seen in the highlighted areas.
In the following experimental sections, we further analyze the impact of registration on
denoising and structural preservation in the presence of cross-modal image T2. The loss
function used in this case is MSE.

(a) (b) (c)

Figure 4. Comparison of registered and unregistered images. (a) T1. (b) T2-Unregist. (c) T2-Regist.

3.1.4. CMGDNetsg

SSIM was combined with MSE for analyzing the performance of the proposed method
on the registered data in this configuration.

Next, we explain the experiments conducted to compare the performance of CMGDNet
with other denoising methods.

3.2. Experiment I

The first set of experiments was conducted by comparing the proposed method
(‘CMGDNetsg’ configuration was used in this set of experiments) with state-of-the art
denoising methods. The experiments were conducted on the T1 images taken from two
datasets, HH and Guy’s, corrupted by Rician noise in the range 5% to 13%.

3.3. Experiment II

The second experiment was conducted to investigate the impact of registration on
the denoising performance; besides, the role of using different loss functions was also
evaluated. Therefore, the experiments were conducted using the four configurations
CMGDNetrs, CMGDNetss, CMGDNetrg, and CMGDNetsg, in Table 1.



Electronics 2021, 10, 2855 11 of 19

Table 1. Variants of CMGDNet.

Configuration Data Loss Function

CMGDNetrs Unregistered MSE

CMGDNetss Unregistered MSE + SSIM

CMGDNetrg Registered MSE

CMGDNetsg Registered MSE + SSIM

3.4. Experiment III

Another experiment was conducted to investigate the impact of integrating corre-
sponding cross-modal images in the proposed framework and analyze its impact in denois-
ing and preserving the structural information in the image. In order to do this, a noisy input
image (T1) was fed to both the branches of the PHL module instead of the combination of
noisy input and cross-modal (guidance) image. The model was then trained using MSE
and SSIM losses on Guy’s hospital dataset (contaminated with 13% noise).

4. Discussion

In this section, we summarize the discussion of our results. The results of Experiment
I are shown in Figures 5–7, where the denoising performance of the proposed method is
shown in comparison with state-of-the-art denoising methods. In Figure 5, the input images
were contaminated using 13% noise. All the images denoised using different approaches
suppress noise to some extent; however, NLM [10] removes important structural details in
the image and oversmoothes the contents of the denoised image during the restoration.
Wavelet-based technique SURE [58] and BM3D [59] preserve the structural details; however,
they do not eradicate noise to a reasonable extent. The deep learning methods clearly
show better performance compared to the traditional methods, both in removing noise and
maintaining the morphology of the image. Both MCDN [24] and FFD-Net [53] effectively
remove the noise. Similarly, CMGDNet also eradicates noise with reasonable preservation
of the structural information. The enlarged ROIs are also shown in the figure for careful
insight into the denoising performance of all the methods. Figure 6 shows the results
of denoising applied on images contaminated with 8% noise. A similar trend can be
observed in this case as well where the methods MCDN [24], FFD-Net [53], and CMGDNet
preserve important structures in the denoised images. However, NLM [10] produces
over-smoothing effects. The performance was quantitatively evaluated using PSNR, SSIM,
and FSIM. BM3D [59] works better compared to NLM and SURE [58]; this claim is also
supported by the higher PSNR value in Table 2. The performance of FFD-Net [53] and
MCDN is very similar when quantitatively evaluated. However, CMGDNet performs best
among all the techniques evaluated.

Table 2. PSNR(db)-SSIM values—HH Hospital Data.

Level Noisy NLM [10] SURE [58] BM3D [59] MCDN [24] FFD-Net [53] CMGNetsg

5% 25.71 28.84 28.89 29.45 36.32 36.15 36.87

8% 22.3 26.38 24.85 27.25 33.38 33.28 33.74

13% 19.8 23.224 22.821 24.671 31.116 30.81 31.77

Mean 22.6 26.148 25.52 27.12 33.61 33.41 34.126

5% 0.49 0.628 0.635 0.656 0.914 0.911 0.951

8% 0.413 0.565 0.532 0.628 0.834 0.822 0.885

13% 0.278 0.488 0.461 0.514 0.803 0.79 0.836

Mean 0.4 0.561 0.542 0.6 0.85 0.841 0.89
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(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

(b1) (b2) (b3) (b4)

(b5) (b6) (b7) (b8)

Figure 5. Comparison of proposed method with state-of-the-art denoising methods: (a1) Noisy. (a2) NLM [10].
(a3) SURE [58]. (a4) BM3D [59]. (a5) MCDN [24]. (a6) FFD-Net [53]. (a7) CMGDNetsg. (a8) GT, Corresponding en-
larged regions of the denoised images: (b1) Noisy. (b2) NLM [10]. (b3) SURE [58]. (b4) BM3D [59]. (b5) MCDN [24].
(b6) FFD-Net [53]. (b7) CMGDNetsg. (b8) GT

The visual comparison of the performance of the proposed method with other de-
noising methods conducted on the Guys dataset (13% noise) is shown in Figure 7. NLM
and SURE exhibit worse performance among all the methods tested. NLM eradicates
significant details from the image while SURE removes minimal noise. BM3D performs
slightly better than the two approaches. MCDN preserves structural information of the
image; however, it leaves some noticeable noise in the image. The performance of FFD-Net
visually in this case is comparable with CMGDNet. The quantitative assessment also
validates the visual observations, which are shown in Table 3. For instance, NLM and
SURE are ranked low at all the noise levels by PSNR and SSIM. BM3D performs better than
both NLM and SURE. It is pertinent to mention that even the more robust conventional
denoising methods such as BM3D leveraging the benefits of spatial and transform domains
rely on pre-defined assumptions that do not work well under several types and levels of
noise. On the other hand, deep learning approaches allow the underlying model to learn
various levels of feature representations from raw to the higher level. In the context of
denoising, the model thus learns the uncertain noise distributions from the input data.
Consequently, these techniques can adapt to several types of noise efficiently. The deep
learning methods in the proposed study perform better than the conventional methods
on all the metrics. However, the cross-modal image information further enhances the
network learning capability. Overall, the images denoised using all the methods still look
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blurry compared to the ground truth. It is because it is not possible to recover the image
contents completely that have been corrupted by noise without any loss of information.
However, it can be sensed that the denoising at level 8% introduces less blur compared
to the denoising applied to images containing 13% noise. Overall, the proposed method
achieves the best performance among all the methods both in PSNR and SSIM. CMGDNet
exhibits an average gain of 4.7% in SSIM value compared to the second-best MCDN (0.89
against 0.85).

(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

Figure 6. Denoising Results: Noise Level 8%. (a1) Noisy. (a2) NLM [10]. (a3) SURE [58]. (a4) BM3D [59]. (a5) MCDN [24].
(a6) FFD-Net [53]. (a7) CMGDNetsg. (a8) GT.

(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

Figure 7. Comparison of proposed method with state of the art denoising methods. (a1) Noisy. (a2) NLM [10]. (a3) SURE [58].
(a4) BM3D [59]. (a5) MCDN [24]. (a6) FFD-Net. (a7) CMGDNetsg. (a8) GT.
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Table 3. PSNR(db)-SSIM values—Guys Hospital Data.

Level Noisy NLM [10] SURE [58] BM3D [59] MCDN [24] FFD-Net [53] CMGDNetsg

5% 23.45 26.96 28.07 30.41 31.67 33.14 33.12

8% 20.58 24.92 22.41 25.65 28.07 28.82 30.37

13% 17.37 22.74 21.33 23.28 25.68 27.56 28.81

Mean 20.46 24.87 23.93 26.44 28.47 29.84 30.76

5% 0.43 0.585 0.652 0.731 0.802 0.861 0.864

8% 0.367 0.519 0.481 0.543 0.782 0.794 0.81

13% 0.24 0.426 0.408 0.484 0.741 0.752 0.786

Mean 0.345 0.51 0.513 0.586 0.775 0.803 0.82

All the denoising methods included in this study bring improvement in preserving
low-level features in the restored images when compared to the input noisy image as can
be seen in terms of FSIM values (Tables 4 and 5). It is worth mentioning here that the FSIM
scores for all the methods are very close particularly at low noise levels (5%). However,
this difference is more pronounced at the higher noise levels (13%). For instance, at 13%
noise, the proposed CMGDNet method shows the best performance on both datasets.
The average gain in FSIM values in the case of CMGDNet (FSIM value 0.903) compared to
the second-best performing method FFD-Net [53] (FSIM value 0.883) was 2.3%.

Table 4. FSIM values—HH Hospital Data.

Level Noisy NLM [10] SURE [58] BM3D [59] MCDN [24] FFD-Net [53] CMGDNet

5% 0.868 0.9116 0.932 0.922 0.9414 0.946 0.954

8% 0.825 0.922 0.914 0.922 0.9385 0.936 0.946

13% 0.702 0.828 0.753 0.862 0.89 0.882 0.92

Mean 0.798 0.887 0.866 0.902 0.923 0.921 0.94

Table 5. FSIM values—Guys Hospital Data.

Level Noisy NLM [10] SURE [58] BM3D [59] MCDN [24] FFD-Net [53] CMGDNet

5% 0.824 0.89 0.85 0.896 0.91 0.918 0.925

8% 0.77 0.884 0.877 0.888 0.881 0.89 0.91

13% 0.66 0.758 0.715 0.813 0.822 0.841 0.874

Mean 0.751 0.844 0.814 0.865 0.871 0.883 0.903

Another experiment (Experiment II) was conducted on the HH dataset using 13%
noise. The denoising results are shown in Figure 8 along with enlarged regions for careful
inspection. Table 6 shows the quantitative assessment results on different variants of data
(i.e., registered and unregistered) using two different loss functions. Among the variants of
the proposed method, it is observed that registration between the corresponding T1 and T2
images together with employing SSIM as loss function with MSE facilitates in improving
the structural similarity between denoised image and ground truth as implied by the
higher SSIM values in the case of CMGDNetsg compared to its corresponding variants
CMGDNetrs and CMGDNetss; however, noticeable improvement in PSNR values was not
observed under this configuration.
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Table 6. PSNR-SSIM values—HH Hospital Data (Variants of CMGDNet).

Metric Noisy CMGDNetrs CMGDNetss CMGDNetrg CMGNetsg

PSNR 19.8 31.12 30.86 31.62 31.77

SSIM 0.278 0.787 0.764 0.811 0.836

Table 7. PSNR-SSIM values—Guys Hospital Data (Variants of CMGDNet).

Metric Noisy T1-T1 CMGDNetrs CMGDNetss CMGDNetrg CMGDNetsg

PSNR 17.37 26.52 28.44 28.21 28.63 28.81

SSIM 0.24 0.7 0.73 0.72 0.75 0.786

(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8) (a9)

(b1) (b2) (b3) (b4)

(b5) (b6) (b7)

Figure 8. Role of using cross-modal guidance information in denoising: Results of CMGDNet method (a1) Noisy. (a2) Un-
reg. T2. (a3) Reg. T2. (a4) T1-T1. (a5) CMGDNetrs. (a6) CMGDNetss. (a7) CMGDNetrg. (a8) CMGDNetsg. (a9) GT, Corre-
sponding enlarged ROI (b1) Noisy. (b2) T1-T1. (b3) CMGDNetrs. (b4) CMGDNetss. (b5) CMGDNetrg. (b6) CMGDNetsg.
(b7) GT.



Electronics 2021, 10, 2855 16 of 19

Role of Cross-Modal Guidance Information

To better understand the motivation of using cross-modal guidance information,
the guidance image was bypassed and a noisy T1 image was fed to both branches of the
PHL module as explained in Section 3.4. The results of this setup and its comparison with
other variants of the proposed method are shown in Figure 9. Visually, the denoised images
are similar on the whole; however, the enlarged ROI shows slight structural differences
among the results. The model trained using identical noisy images fed to both branches
(without guidance image) fails to recover various structures of the input image. Both
CMGDNetrs and CMGDNetss yield better results compared to the T1-T1 configuration;
however, they also lack in recovering some structural information. CMGDNetrg shows
better performance compared to the three variants in terms of retaining structural sim-
ilarity with the ground truth. Incorporating SSIM in the registered configuration, that
is CMGDNetsg configuration performs best. It not only retains structural similarity to a
considerable extent, moreover, it also gives sharp edges compared to all the other variants.
The PSNR-SSIM values for all the configurations tested are shown in Table 7.

(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

(b1) (b2) (b3) (b4) (b5) (b6)

Figure 9. Comparison of proposed method (different configurations). (a1) Noisy. (a2) Unreg. T2. (a3) Reg. T2. (a4) CMGDNetrs.
(a5) CMGDNetss. (a6) CMGDNetrg. (a7) CMGDNetsg. (a8) GT, Corresponding enlarged RoI: (b1) Noisy. (b2) CMGDNetrs.
(b3) CMGDNetss. (b4) CMGDNetrg. (b5) CMGDNetsg. (b6) GT.

5. Conclusions

In this paper, a deep cross-modal guided denoising approach CMGDNet was pre-
sented for brain MR images, where the complementary information from the cross-modal
image was exploited to embed the model with additional learning capability. Hierarchical
feature manipulation combined with densely connected upsampling was particularly used
to harness the additional guidance information effectively in image restoration process.
Our quantitative and qualitative experimental analysis shows that the cross-modal denois-
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ing shows superior results compared to single image denoising approaches. The capability
of combining cross-modal image features in a systematic way, rather than simple concate-
nation proved to be influential in denoising. Furthermore, the experiments show that
although the method works well on unregistered data; however, using registered data aids
in recovering the structural information of the image. The proposed denoising approach
can be used as an effective preprocessing step in various image analysis tasks.

In the future, it would be interesting to extend the research work to other organs such
as the liver, lungs, and other multi-modal medical imaging modalities.
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