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A B S T R A C T

This work presents the new template matching capabilities implemented in Pyxem, an open source Python
library for analyzing four-dimensional scanning transmission electron microscopy (4D-STEM) data. Template
matching is a brute force approach for deriving local crystal orientations. It works by comparing a library
of simulated diffraction patterns to experimental patterns collected with nano-beam and precession electron
diffraction (NBED and PED). This is a computationally demanding task, therefore the implementation combines
efficiency and scalability by utilizing multiple CPU cores or a graphical processing unit (GPU). The code
is built on top of the scientific Python ecosystem, and is designed to support custom and reproducible
workflows that combine the image processing, template library generation, indexation and visualization all in
one environment. The tools are agnostic to file size and format, which is significant in light of the increased
adoption of pixelated detectors from different manufacturers. This paper details the implementation and
validation of the method. The method is illustrated by calculating orientation maps of nanocrystalline materials
and precipitates embedded in a crystalline matrix. The combination of speed and flexibility opens the door
for automated parameter studies and real-time on-line orientation mapping inside the TEM.
1. Introduction

Scanning nanobeam electron diffraction (NBED) and precession
electron diffraction (PED) have been applied for over two decades in-
side transmission electron microscopes (TEM) for orientation mapping
in nano-crystalline materials [1,2]. These methods rely on scanning an
electron probe with a small convergence angle on the order of 1 mrad
across an electron transparent sample while capturing a nanobeam
diffraction pattern image at each scan point. A common approach
to extracting orientations from the diffraction patterns is to use tem-
plate matching, whereby the pattern is compared to a large library
of pre-computed templates of simulated diffraction patterns [1,2]. For
sufficiently thin samples and a well aligned electron probe a spatial
resolution of around 1 nm can be achieved [3]. However, the angu-
lar resolution of the technique tends to be limited to about 1◦ [4].
These limitations notwithstanding, the technique enjoys widespread
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use as a fast and convenient method for nano-scale orientation map-
ping and has been extensively utilized to determine grain orienta-
tions in nanocrystalline materials [5–7] even combined with in-situ
straining [8].

Recently, interest in the field of 4-dimensional scanning transmis-
sion electron microscopy (4D-STEM) has been reignited thanks to the
emergence of fast and direct electron detectors [9]. With direct electron
detectors, high quality diffraction patterns can be collected in a fraction
of the time compared to the camera systems that are currently most
used. Additionally, as some of the authors of this manuscript have
shown, NBED orientation mapping can also benefit from the improved
signal-to-noise characteristics of pixelated detectors [3,10]. Improved
detector technology results in datasets that are larger and more com-
plex, requiring customizable analysis frameworks. As the complexity of
the analysis pipelines increases it becomes increasingly important for
them to be traceable and reproducible.
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For these reasons, a fast, scaleable, and flexible template matching
workflow was implemented in the open source Pyxem library. The im-
plementation makes use of the just-in-time (JIT) Numba compiler [11]
for compiling performance critical parts of the code, Dask [12] for
parallelizing the workload and processing datasets larger than memory,
and CuPy [13] for performing the calculations on the GPU. Pyxem
is a free and open source Python library that offers a large number
of 4D-STEM data analysis routines [14]. It builds on the open source
HyperSpy library [15] for microscopy data analysis. HyperSpy includes
a large number of file readers, making workflows in Pyxem file format
agnostic. With Pyxem and HyperSpy, analysis pipelines are built up
with a minimal amount of Python code in Jupyter notebooks [16] or
scripts; these are transparent and can be made completely reproducible.
As the entire code base is written with Python syntax, development
times are rapid and the code can be easily contributed to by non-
professional programmers like scientists in the field. Pyxem is also
bundled with two sub-libraries that are essential for practical orienta-
tion mapping: diffsims [17] for simulating the template libraries and
orix [18,19] for analyzing and visualizing orientation data.

A few alternative template matching implementations have
appeared in open source software packages recently, like
Problematic [20], diffractem [21] and py4DSTEM [22]. Problematic
and diffractem are aimed at analyzing data from serial diffraction and
diffraction tomography. These datasets are usually a lot smaller than
4D-STEM datasets so different constraints may apply. py4DSTEM is
specifically aimed at 4D-STEM data, but uses a very different template
matching approach compared to the commercial solution which is very
robust but can be slow for large template libraries and datasets.

This paper discusses the details of this new template matching
implementation in Pyxem, demonstrates its performance, compares
the orientation mapping results to those obtained with a commercial
solution, and illustrates with case studies.

2. The algorithm and implementation

2.1. Simulation of diffraction pattern templates using diffsims

Indexation of orientations via template matching relies on a library
of pre-computed diffraction pattern templates. The library is calculated
with diffsims, a Pyxem sub-library [17]. Each template is stored as a
list of Bragg reflections with reciprocal space coordinates (𝑘𝑥, 𝑘𝑦)𝑖 and
associated intensities 𝐼𝑖. The template library consists of a list of crystal
orientations that each have an associated template. Sampling all of
orientation space (the 𝑆𝑂(3) group) at small increments requires a very
large template library, but the number of templates can be drastically
reduced by observing that many orientations produce templates related
by a rotation in the imaging plane. If orientations are represented by
Euler angles (𝜙1, 𝛷, 𝜙2) according to the Bunge convention [23], then
all templates that share the same 𝛷 and 𝜙2 are related by in-plane
rotation. Therefore, the list of orientations making up the library must
only sample (𝛷, 𝜙2) or equivalently the surface of the unit sphere (𝑆2);
the in-plane angle 𝜙1 is set to zero for all the templates and is fit to the
image during the indexation process. The list of orientations is further
reduced by crystal symmetry to a subsection of 𝑆2 representing unique
beam directions; all Laue groups are supported in the software.

The first step in creating a template library is to form a list of
candidate orientations represented by points on the unit sphere surface.
Different sampling schemes were implemented in diffsims as shown
in Fig. 1(a); for the rest of this paper the Spherified cube 2 sampling
is used. When the sampling density is sufficiently high, i.e. when the
sampling interval is smaller than the precision of the method, the type
of sampling does not have a big influence on the results.

In the second step, a kinematical diffraction pattern is simulated
for each orientation on the grid. A reciprocal space grid within a
limiting radius is constructed, rotated by (0, 𝛷, 𝜙2), and the distance
of each grid point to the surface of the Ewald sphere is calculated.
2
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This geometric excitation error is used in a shape factor function,
representing the relrods centered on the diffraction spots, to determine
the spot intensity. Multiple shape factor functions are implemented
and the user can provide custom functions if desired. The reflection
intensities are determined by the structure factor 𝐹 through the well
known relation 𝐼 = 𝐹𝐹 ∗; finally 𝐼 is multiplied by the shape factor
to obtain the spot intensity. Structure factors are calculated using a
user supplied crystal structure and atomic scattering factors calculated
from parametrizations described in literature [24,25]. An alternative
approach is to set atomic scattering factors to 1, which may be preferred
for template matching [26] since it increases the weight of faint distant
reflections in calculating the best matching template. The final step
to obtaining the 2D diffraction pattern consists of projecting the spots
close to the Ewald sphere onto the 𝑘𝑥 − 𝑘𝑦 plane and discarding
reflections below a minimum intensity threshold.

This process is illustrated in Fig. 1(b), where the large yellow surface
represents part of the Ewald sphere and the points represent the recip-
rocal space grid of face centered cubic (FCC) Fe (serving as a simple
prototype for austenitic steel). Points far away from the Ewald sphere
are not excited and are represented with small blue spheres. Reflections
that are close by and intense are represented as large spheres going
from green, to yellow, to red when getting closer to the Ewald sphere.
The resulting projected pattern is shown in Fig. 1(c); the size and color
of the reflections serve to represent their intensity.

Diffsims can also take beam precession into consideration for simu-
lating the patterns. A full treatment of precession requires a numerical
integration of the relrods over the distance traced by the Ewald sphere.
This calculation is possible in diffsims but is computationally demand-
ing and impractical for simulating large template libraries. To simulate
large libraries, the approximations described in Ref. [27] were imple-
mented whereby the non-precessed intensity profile as a function of
geometric excitation distance is assumed to follow a Lorentzian distri-
bution. In this analytic approximation, the intensity of a diffraction spot
under precession 𝐼𝑝𝑟𝑒𝑐 is given by

𝐼𝑝𝑟𝑒𝑐 = 𝐼𝑡𝑏𝑖𝑛𝑡
𝜎
𝜋

√

2 𝑢 + 𝑧
𝑧2

(1)

where 𝑢 = 𝜎2(𝑔2𝜙2 − 𝑠2) + 1 and 𝑧 =
√

𝑢2 + 4𝜎2𝑠2. Here, 𝐼𝑡𝑏𝑖𝑛𝑡 is the
ntegrated intensity of the relrod from negative to positive infinity, 𝜎
s equal to 𝜋𝑡 with 𝑡 the thickness of the sample, 𝑔 is the length of the
eciprocal lattice vector, 𝜙 is the precession angle in radians, and 𝑠 is
he geometric excitation error without beam precession.

Currently diffsims does not take dynamic diffraction or multiple
iffraction into consideration. For simple crystal systems, considering
ynamic effects in the simulation does not substantially improve the
ccuracy of the method. Dynamic effects mainly influence relative spot
ntensities, but accurate spot intensities are not critical for obtain-
ng a good template matching result as was shown in Refs. [3,26]
nd was confirmed in this work. In more complex crystal systems,
ynamic diffraction may produce kinematically forbidden reflections.
hese reflections would be missing in the templates, and since the
emplate matching algorithm cannot distinguish between kinematical
nd dynamical reflections it may produce incorrect indexation results.
or most materials, the issue of dynamical diffraction can be largely
vercome by using beam precession during the experiment, since the
ragg conditions at which dynamic reflections are active are more re-
tricted. In future versions of diffsims multiple diffraction may become
upported.

.2. Indexation workflow

Each image in the 4D-STEM dataset must be compared to each
emplate in the library. Simultaneously, the in-plane angle 𝜙1 that

roduces the best match between image and template must be found.
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Fig. 1. Illustration of the template library procedure in diffsims. (a) Various orientation grids for the cubic crystal structure generated with different meshing algorithms. The
orientation is represented by the beam directions plot in the stereographic projection. (b) The reciprocal space grid of FCC Fe rotated to 𝛷 = 15◦ and 𝜙2 = 5◦. The Ewald sphere is
represented by the yellow surface. Spots closer to the surface are more intense, represented with larger and more intense colors. (c) The projected diffraction pattern with indexed
spots. Spots below a minimum intensity threshold were filtered out.
Following the method described in Ref. [28], the measure of best fit is
taken to be the correlation index as described by Eq. (2):

𝑄 =
∑

𝑖 𝑃 (𝑥𝑖, 𝑦𝑖)𝑇 (𝑥𝑖, 𝑦𝑖)
√

∑

𝑖 𝑃 (𝑥𝑖, 𝑦𝑖)2
√

∑

𝑖 𝑇 (𝑥𝑖, 𝑦𝑖)2
, (2)

where 𝑃 (𝑥, 𝑦) represent coordinates in the image and 𝑇 (𝑥, 𝑦) coordinates
in the template for all pixels 𝑖. In practice, the template is very sparse
and only non-zero at coordinates corresponding to diffraction spots, so
the sum in the numerator is reduced to a sum over all the template
diffraction spots. The denominator serves the purpose of optionally
normalizing 𝑃 and 𝑇 ; these values can be pre-computed and applied to
images and templates before indexation, thereby reducing the equation
for 𝑄 to a dot product.

In the preparation of this manuscript alternative quality metrics
such as Pearson’s correlation coefficient were considered. This was
motivated by perceived limitations of 𝑄, including the fact that weak
high-index reflections, which may be more sensitive to small changes
in orientation than strong low-index reflections, do not substantially
contribute to the dot product. In addition, erroneous reflections in the
template that do not match with a reflection in the image are not
penalized, because in calculating 𝑄 their intensity is multiplied by the
background intensity that is close to zero. However, alternative quality
metrics did not noticeably improve the reliability of the indexation
result compared to when 𝑄 was used, but they were significantly
more computationally expensive. In practice, carefully tailored image
processing combined with 𝑄 produced the best results. Typically a
gamma correction with 𝛾 < 1 is applied, which raises each pixel value
in the image to the power 𝛾. This has the effect of increasing the relative
intensity of weak reflections. Secondly, subtracting a constant from all
the pixels in the image helps to overcome the second limitation of 𝑄,
as erroneous positive reflections in the template are multiplied by a
negative value from the background, thereby penalizing 𝑄.

In summary, image processing and template simulation conditions
must be found such that:

1. the number of reflections in the image that are accounted for by
reflections in the template are maximized

2. the number of reflections in the template that are not accounted
for in the image are minimized

These metrics are easily used to qualitatively assess a well matching
template, but they are difficult to translate directly to a quantitative
optimization criterion. Realizing when the indexation algorithm has
issues with either of these metrics and adjusting image processing and
simulation conditions accordingly remains a manual effort of multiple
iterations.

Different approaches can be used to optimize the in-plane rotation
angle 𝜙1 when comparing a template to an image. Currently Pyxem
implements a direct approach which is illustrated in Fig. 2(a)–(e). The
image (a) and template (b) are both converted to polar coordinates,
(c) and (d) respectively. This is computationally efficient, but it is
3

important that the center of the direct beam is used as the origin for the
transformation. The optimal 𝜙1 is found by sliding the template across
the image, with wraparound, along the azimuthal axis 𝜙 and calculating
𝑄 at each shifted position as shown in Fig. 2(e). The diffraction spot co-
ordinates of the templates (𝑟𝑖, 𝜙′

𝑖) are rounded to the nearest integer so
that they correspond directly to coordinates of pixels 𝑃 ′(𝑟𝑖, 𝜙′

𝑖) that are
used to evaluate Eq. (2). The step size in 𝜙, and thus the resolution of
the in-plane angle, is determined by the angular sampling used during
the polar transform. It corresponds to 360◦ divided by the number of
pixel columns in the polar image. In the example of Fig. 2(c), the polar
image is 360 pixels wide so 𝛥𝜙1 = 1◦. The maximum correlation index
and the angle at which it is achieved are stored, and the process is
repeated for all templates in the library. The best correlation index for
each template can be plotted on the stereographic projection as shown
in Fig. 2(f). Note that the region in the stereographic projection is
twice as large as the original stereographic projection representing the
templates, since mirror images of all templates also represent unique
orientations and must be considered. Mirrored templates are generated
by reflecting spots across the 𝑦 = 0 line. The experimental pattern
is then indexed by selecting the template and corresponding in-plane
angle with the highest correlation index as shown in Fig. 2(f) and (g).
Alternatively, at the cost of some additional computation, the list of
correlations can be sorted and the top 𝑁 best matching templates can
be queried instead of only the best one.

The time complexity of the direct approach to match one template
to one image is 𝑂(𝑆𝜙) with 𝑆 the number of reflections in the template
and 𝜙 the width of the polar image. If 𝑆 becomes very large and the
template approaches a dense image, i.e. 𝑆 ≈ 𝑟𝜙 with 𝑟 the height of
the polar image, then the complexity becomes 𝑂(𝑟𝜙2). In this case a
fast Fourier transform (FFT) based cross-correlation method with time
complexity 𝑂(𝑟𝜙 log𝜙) may be preferred [29]. This method no longer
depends on the number of diffraction spots in a template, but bench-
marks showed that a few hundred diffraction spots per template are
necessary before the cross-correlation approach outperforms the direct
approach. An FFT based approach is used in the template matching
implementation of py4DSTEM [22].

While the direct approach implementation is reasonably fast, it may
still take half an hour to a few hours to index a dataset of a few
gigabytes in size on a common laptop with a limited number of CPU
cores. Therefore, an option was added to pre-filter the template library
as described in Ref. [30]. In this method, the image and templates are
integrated over the azimuthal direction, and the correlation between
the integrated image profile and the integrated template profile library
is calculated by a single matrix–vector product. Only the templates
with the highest correlation values are passed onto the full indexation
procedure. In this way the library for full indexation can be significantly
reduced, and typically only a tenth of the templates must be preserved
to arrive at the same optimum [30]. However, there is no guarantee
that the optimal template will always be included in the pre-filtered
set, and trials indicated that the method becomes less reliable for larger
template libraries and templates containing more spots. An evaluation
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Fig. 2. Illustration of the indexation procedure. (a) A diffraction pattern and (b) a template are converted to polar coordinates as shown in (c) and (d) respectively. (e) The
template is shifted across the polar image and the correlation index 𝑄 is calculated at each position. The process is repeated for all templates and the mirror images of each
template and the maximum correlation index and the angle at which it occurs is recorded for each. (f) The best correlation index for each template is mapped to each orientation
and plotted on the stereographic projection. Better matching templates are brighter, and the template with the highest correlation is taken to be the solution. The minimum and
maximum correlation values are indicated on the color bar; precise values of 𝑄 are arbitrary and depend on image preprocessing and simulation parameters. (g) The reflections
in the best matching template is represented with red circles on top of the experimental pattern.
Fig. 3. Illustration of the fast matching between integrated images and templates on the same image and template library as in Fig. 2. (a) The polar image with the azimuthally
integrated pattern plotted on top, as well as the azimuthally integrated best-fit template. (b) The correlation index between azimuthally integrated images and templates plotted
on the stereographic projection. Features look comparable to the results obtained from the full matching procedure in Fig. 2(f).
of the effect of pre-filtering on the orientation mapping result is given
in the supplementary materials; it is not used in any of the analyses in
this paper. The integrated matching procedure is illustrated in Fig. 3.

To index a large dataset, the indexation procedure is simply re-
peated for each image. This is parallelized and scheduled as optimally
as possible using Dask [12]. Dask also makes it possible to process
datasets larger than computer memory by only loading parts of the
dataset from storage when they need to be processed.

3. Materials, methods and datasets

Two datasets were collected inside a JEOL 2200FS TEM operating at
200 kV with a 4 K TemCAM-XF416 pixelated CMOS detector (TVIPS).
4

The first dataset was collected on a sample of Cu-Ag alloy described
in Ref. [31]. The dataset was thoroughly analyzed in Ref. [3]. The mi-
croscope conditions were a beam convergence angle of around 2 mrad,
a camera length of 15 cm, a precession angle of 0.3◦ and precession
frequency of 100 Hz. Images were collected at 2k×2k pixel resolution
with a dwell time of 50 ms, but were binned to 512 × 512 pixels for
analysis. The second dataset was collected on a sample of ion irradi-
ated Ti-stabilized stainless steel containing nano-sized precipitates. The
dataset is described in Ref. [10]. The convergence angle was around
0.5 mrad and the camera length 80 cm; the beam was not precessed. For
both datasets, scan points were about 2 nm apart. Data was collected
in the .tvips file format and converted to the .BLO and .HSPY formats
using in house tools that have been made freely available [32]. All
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analyses in this paper using Pyxem were run on a desktop computer
with a 16 core AMD Ryzen 9 3950x CPU, an NVIDIA RTX 3080 GPU,
and 64 GB of RAM running the Arch Linux operating system.

4. Results

4.1. Evaluation of reliability

To verify the reliability of the implementation, the Cu-Ag dataset
was indexed both in Pyxem and using the commercial ASTAR software
(NanoMegas). Indexation results from ASTAR are widely accepted in
the community and thus form a suitable benchmark for comparison to
the Pyxem method. In both softwares, the image pre-processing and
template simulation parameters were optimized iteratively such that
the indexation of randomly chosen diffraction patterns looked reason-
able by visual inspection as per the two rules in Section 2.2. In Pyxem,
the direct beam in each image was centered, the diffuse background
in the images was removed using a difference-of-Gaussians procedure,
and the resulting image was smoothed by Gaussian blur. Thresholding
was used to set low intensity pixels to zero and gamma correction
with exponent 0.5 was applied to enhance the weaker reflections. In
both ASTAR and Pyxem a template library, derived from the FCC Cu
structure, of around 11000 templates was used corresponding to a
maximum angular deviation between neighboring orientations of 0.3◦.
n Pyxem atomic scattering was ignored in simulating the templates
nd a linear shape function was used for the relrods. Indexation was
erformed using the ‘‘full indexation’’ setting in ASTAR and without
re-filtering in Pyxem. Since ASTAR requires the images to be in 8-bit
ormat, the original 16-bit data was truncated at pixel values of 1000
the maximum pixel value was around 4000 in the direct beam) and
he range 0–1000 was scaled to the 8-bit 0–255 range. The full Pyxem
nalysis workflow with parameters for the preceding steps is provided
s a Jupyter notebook in a publicly accessible git repository [33]. The
riginal data can be downloaded as a Zenodo dataset [34].

The inverse pole figure (IPF) maps for the Z, Y and X direction are
hown in Fig. 4(a), (d) and (g) for Pyxem and Fig. 4(b), (e), and (h) for
STAR respectively. To highlight the differences between the maps, the
ngular deviation between the ASTAR and Pyxem results are shown in
ig. 4(c), (f), and (i). This is calculated as

=
|

|

|

|

|

cos−1
(

𝑣𝐴 ⋅ 𝑣𝑃
|𝑣𝐴||𝑣𝑃 |

)

|

|

|

|

|

, (3)

ith 𝑣𝐴 and 𝑣𝑃 the vector represented in each pixel of the ASTAR and
yxem maps.

Fig. 4(j) and (k) show the correlation index maps (Eq. (2)) for
yxem and ASTAR respectively. These two 𝑄 maps cannot be compared
n a pixel by pixel basis because the simulation of templates and
ormalization are done differently, resulting in different linear scaling.

Correspondence between the two methods is good; for most points
n the grain interiors the deviation in grain orientation is less than 3◦.
he deviation is largest in some pixels near grain boundaries, and in

ocations where 𝑄 is low. In these regions, there may be ambiguity in
he diffraction patterns when multiple crystals contribute to the signal.
ach template in the library can only represent a rotated single crystal,
o ambiguous diffraction patterns can be indexed differently depending
n small differences between image preprocessing parameters.

In some locations in the grain interior the two maps differ substan-
ially, as shown for one diffraction pattern in Fig. 5(a) and (b). The inset
hows the location on the map where the pattern was extracted. Pixels
here the maps differed substantially were associated with ambiguous
iffraction patterns containing contributions from overlapping crystals.
he template identified by Pyxem accounts for most of the bright reflec-
ions but fails to capture the reflections marked with white arrows that
riginate from another grain. The ASTAR indexation does account for
hese reflections, but ASTAR misses the bright systematic row. Clearly
his is a region where the green grain on the left and the orange grain on
5

he right overlap, resulting in ambiguity. Indexing overlapping grains
s possible in specific cases by using masking techniques [35] but they
ere not implemented for this example. Fig. 5(c) shows the correlation
ap on the stereographic projection as calculated by Pyxem, with

he best orientations according to Pyxem and ASTAR indicated. Both
epresent local maxima, showing that a minor change in simulation
arameters or image processing conditions could change their relative
eight.

In regions with small deviations between the ASTAR and Pyxem so-
utions there were no clear metrics to favor one solution over the other,
uggesting that for this dataset and method the angular resolution is
imited to about 3◦ although this might be improved by additional
mage processing [3].

.2. Performance

The problem of comparing one image to all templates in the library
n the current implementation has a time complexity of 𝑂

(

𝑁𝑆
𝛥𝜙1

)

, where
𝑁 is the number of templates in the library, 𝑆 is the average number of
reflections in each template, and 𝛥𝜙1 is the in-plane angular sampling.
This is demonstrated in Fig. 6(a), which shows the time required to
index a single pattern for various combinations of 𝑁 , 𝑆, and 𝛥𝜙1.
Each point represents the mean of 5 independent measurements, the
error bar represents ± the standard deviation. The linear relationship
between time and the problem size metric 𝑁𝑆

𝛥𝜙1
is apparent both for

the CPU and GPU implementations. On the hardware tested here (see
Section 3), the slope of the line of best fit was approximately 5.5 ×
10−8 s◦ on 16 CPU cores, and 1.1×10−8 s◦ on the GPU. To provide a fair
basis for comparison, the CPU implementation was also constrained to
a single core, which yielded a slope of 8.0 × 10−7 s◦. This shows that
the speed scales linearly with CPU cores. The GPU is 5 times faster
than 16 cores for large problems, so 80 CPU cores would be necessary
to achieve similar performance as the GPU. Performance depends on
additional hardware parameters like clock cycles, cache sizes, number
of GPU cores, etc. so the values reported here are only indicative.

All timings include the overhead of converting the image to polar
coordinates. The GPU time also includes the time to send the data
to the GPU and to retrieve the result. Fig. 6(a) shows that for large
problem sizes this overhead is negligible given that the lines of best fit
have a y-intercept very close to 0. For small problem sizes, constant
overhead can dominate, as shown in Fig. 6(b) where the same data
from (a) was plotted on log–log axes. The data is segmented by 𝛥𝜙1,
which shows that on the CPU the overhead of converting images to
polar coordinates is substantially slowed down as the polar image
size is increased (smaller 𝛥𝜙1); this trend is not apparent in the GPU
implementation. For very small template libraries, the times for a single
core and multiple cores converge, showing that the polar conversion is
performed on a single CPU core. The constant overhead on the GPU
can be attributed mainly to sending and receiving image data from
the GPU, and the plot shows this is not so significant: only for very
small problems with coarse 𝛥𝜙1, and thus very small constant overhead,
can the CPU outperform the GPU. Hence, the acceleration of the polar
transform on the GPU also provides substantial benefit. For both CPU
and GPU implementations, the constant overhead will be influenced
by the size of the experimental images; in this case a 512 by 512 pixel
image was tested.

The time necessary to index a dataset of multiple images can be
roughly estimated by multiplying the value from Fig. 6 with the total
number of images. For example, indexing the entire dataset of 8400
images from Fig. 4 with 𝑁 = 11476, 𝑆 = 57, and 𝛥𝜙1 = 1◦, took 5 min
9 s on the CPU (37 ms per pattern) and 1 min 33 s on the GPU (11 ms
per pattern). This is close to the values predicted from the lines of best
fit: 42 ms/pattern and 8 ms/pattern on the CPU and GPU respectively.
Note that to achieve these times the entire dataset was loaded into
RAM and all images were already pre-processed. Including the time to
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Fig. 4. Comparison of the indexation result for Pyxem and ASTAR. (a) and (b) represent the Pyxem and ASTAR IPF-Z maps respectively with (c) the angle between the vectors in
each pixel of (a) and (b). Analogous maps are plotted for IPF-Y in (d-f) and IPF-X in (g-i). (j) and (k) show the correlation index maps for Pyxem and ASTAR. Due to differences
in intensity range, these maps should not be compared on a pixel-by-pixel basis; only relative intensities within the same map are meaningful.
Fig. 5. Comparison of the indexation result in (a) Pyxem and (b) ASTAR for a single pattern where there is substantial disagreement. The inset in both images shows the location
of the pattern on the IPF-Z map. (c) The correlation map for the pattern obtained with Pyxem, which represents the correlation of each template in the library with the image on
the stereographic projection, shows that the Pyxem and ASTAR solutions are local maxima.
load data from disk and perform image preprocessing triples the time
to 15 min on the CPU and 3 min on the GPU.

To assess the performance of the Pyxem implementation relative
to other open source template matching codes, benchmarking results
for indexing a single image in Problematic [20] and py4DSTEM [22]
were also plotted in Fig. 4. There is only one point for Problematic,
derived from the example provided by the developer, since 𝛥𝜙1 is
hard-coded and 𝑁 cannot be freely varied. For similar problem sizes,
the 1-core CPU implementation in Pyxem is about 12 times faster
compared to py4DSTEM and about 30% faster than Problematic. Prob-
lematic implements template matching in a similar way as Pyxem
and the performance critical parts of the code are written in Cython
so performance is good. py4DSTEM uses a very different template
matching methodology, and likely trades performance for robustness
and ease of use. In addition, since they use the FFT matching approach,
performance likely does not depend on 𝑆, and relative performance
6

may improve for more complex patterns. Nevertheless, compared to
the tested open source alternatives, Pyxem is fast on a single core. In
addition, it can take full advantage of additional cores or a GPU.

The performance of ASTAR is not shown on the figure since it was
not available on the same hardware; only one license was available
for an installation on a Windows 7 workstation from 2012 with 4
CPU cores and 8 GB of RAM. On this workstation, ASTAR was very
performant for the problem sizes tested. A dataset of 52000 images
could be indexed with a library of 𝑁 = 1081 templates, 𝑆 = 16, and
𝛥𝜙1 = 1◦ in 5 min 10 s on 3 CPU threads, which means on average
6 ms to index one image. This is faster than Pyxem-CPU with 16 cores
for a comparable problem size. ASTAR was created at a time when
available computational power was limited, hence using the available
resource as efficiently as possible was likely a primary concern in
the development. A number of design choices reflect the focus on
maximizing performance, such as the fact that only 8-bit images can
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Fig. 6. Indexation time for a single diffraction pattern image for various combinations of in-plane angular increment 𝛥𝜙1, number of templates in the library 𝑁 , and number of
spots per template 𝑆 on (a) linear axes and (b) log–log axes. In addition to the CPU and GPU implementations for Pyxem presented in this paper, benchmarking results from
py4DSTEM [22] and Problematic [20] are also plotted. All benchmarks were performed on a desktop PC with an AMD Ryzen 16 core CPU and an NVIDIA RTX 3080 GPU. The
CPU implementation was also timed on a single core.
be processed and template intensities are represented using single byte
integers. However, this speed comes at the cost of reduced flexibility.
It would also appear that ASTAR makes use of additional optimizations
under the hood, since the authors’ benchmarks showed that indexation
times were not a linear function of the number of templates in the
library.

The performance of Pyxem was also measured on different hard-
ware, the details of which are given in the supplementary materials.

4.3. Custom indexation procedures

Thanks to the flexibility of Pyxem, customized workflows can easily
be constructed. This section illustrates a two-stage indexing procedure
for identifying orientations of overlapping phases, specifically for the
case of nano-sized precipitates embedded in a crystalline matrix. Since
the reflections of the matrix phase always dominate over the signal
of the precipitates, a reliable indexation of the precipitates requires a
subtraction of the matrix signal from the images. Strategies to achieve
this are described in Refs. [28,35] and the tools were successfully ap-
plied to reveal orientations of nanoprecipitates in irradiated steel [36].
The technique consists of three stages: first the matrix is indexed,
then the dominant matrix contribution in the experimental patterns is
masked, and finally the precipitate fraction is indexed on the masked
dataset. This is illustrated for one pattern in the irradiated steel dataset
from Ref. [36] in Fig. 7(a), (b) and (c). The tools that were used to
analyze this data in Ref. [36] are proprietary, and as of yet not widely
accessible.

Here, a similar, fully reproducible workflow was constructed using
Pyxem to analyze the same dataset. The complete data processing
pipeline is provided in a Jupyter notebook accessible through a public
git repository [33]; the dataset is accessible on Zenodo [37].

As with the Cu-Ag dataset, the patterns were centered and
background-subtracted. To correct for astigmatism in the projector sys-
tem an affine transformation was applied to the images, the parameters
of which were found by comparing the austenite matrix reflections to
the ⟨110⟩ template. This method was reliable, since after this transfor-
mation was applied, the correspondence between the G-phase signal
and templates was also improved. However, it is recommended to
derive image distortion parameters from the diffraction pattern rings
in a sample like Au nanoparticles on a carbon support, especially if no
good reference phase is available. Such a calibration was not performed
prior to the collection of this dataset.
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The patterns were subsequently indexed using a library of about
1000 templates (maximum deviation of 1◦ between templates) from
FCC Fe. The result of the indexation is shown in Fig. 7(d) as an IPF-
Z map, showing that the data was collected in a single grain close to
a ⟨110⟩ zone. Fig. 7(e) and (f) show the result from Ref. [36] and its
angular deviation from the Pyxem result respectively. Deviations up to
about 4◦ can be observed.

To remove the intense matrix reflections, a mask was created by
calculating the average of all the diffraction patterns and thresholding
the resulting image. A number of erosion and dilation operations were
performed to remove small noise-like features in the mask, and to
ensure the removal of tails from intense diffraction peaks. The final
mask that was applied to the images is shown in Fig. 7(b).

The masked dataset was subsequently indexed using a library of
about 4000 templates (maximum deviation of 0.5◦ between templates)
from Mn6Ni16Si7 phase (G-phase). Due to the larger lattice parameter
of the G-phase compared to the matrix phase (austenite), templates
contain many more reflections and small changes in orientation can
drastically change the patterns. For this reason, a larger template li-
brary was simulated using smaller orientation increments. Additionally,
a very small relrod width was chosen, such that only the reflections
very close to the Ewald sphere would be included.

The parameters of the indexation procedure were optimized itera-
tively on individual patterns containing signal from the precipitates. In
order to meet the requirements discussed in Section 2.2 two processing
steps had to be introduced: firstly, the intensity of all diffraction spots
in the template library were set to unity (ignoring both the structure
factor and relrod shape factor), and secondly a small constant (about
10% of the maximum pixel intensity) was subtracted from all pixels
in the experimental images. Without these steps most patterns were
erroneously indexed, because the templates contained a few intense
reflections which dominated in the evaluation of 𝑄 over many very
weak reflections. The many weak reflections that matched with the
background were also not penalized. After the gamma correction and
masking of the matrix phase, the intensities of the already weak G-
phase reflections in the experimental images were almost equal. Hence,
by giving each reflection in the templates equal weight in the calcu-
lation of 𝑄 and by setting the background to a small negative value,
the optimal template is one with the highest number of matching spots
and the fewest spots corresponding to background. Due to the large
lattice parameter of the G-phase, reflections are closely spaced and most
patterns contain reflections from higher order Laue zones that show
the curvature of the Ewald sphere (see Fig. 7(c)). These features are
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Fig. 7. Illustration of the two-stage indexation procedure. The dataset is first indexed with the matrix phase as shown in (a). (b) A mask is created to index the templates by
averaging all the images and thresholding. (c) The masked dataset is indexed using the template library from the precipitates. (d), (e), and (f) show the IPF-Z maps obtained from
indexing the matrix phase with Pyxem, ASTAR, and the angular deviation between them, respectively. (g) (h) and (i) show analogous maps for the precipitates (low correlation
index pixels were set to black). (j) and (k) are the Pyxem and ASTAR correlation index maps for the precipitate indexation.
very sensitive to small changes in orientation, so their intensity is not
relevant.

Fig. 7(g) shows the indexed result from the masked dataset as an
IPF-Z map; pixels with low correlation index were set to black to reveal
the precipitates. The correlation index map is shown in Fig. 7(j). The
orientation and correlation maps from Ref. [36] are shown in Fig. 7(h)
and Fig. 7(k) respectively. The angular deviation between the Pyxem
and proprietary solutions is given in Fig. 7(i). Within the particles,
deviation between the solutions is less than 1◦, outside the particles
the indexation is arbitrary since there is only noise in these patterns.
Because the indexation only relies on the presence of spots and not their
intensity, and because all templates in the library are very different
from each other due to the small relrod width, the orientation of the
precipitates is determined with very high precision. In the template
library of the matrix phase, many templates are very similar and
only differ in spot intensity, which results in a lower precision in the
indexation. A smaller camera length, such that spots from higher order
Laue zones would also be captured in the image, may improve the
indexing precision of the matrix.
8

Alternative approaches to indexing the dataset were also attempted.
For example, instead of using a single mask, the best matching template
from each pattern in the first indexation step can be converted to
a mask by placing circles at the coordinates of each reflection. For
this particular dataset this proved to be an inferior strategy because
there were features in the diffraction pattern that did not correspond
to either of the phases, instead originating from defects or surface
contamination and oxidation. These features were not masked with
the template mask approach and subsequently interfered with the
indexation of the precipitates. However, this type of approach may be
necessary for datasets of polycrystalline materials containing multiple
phases, since the required mask is different in every grain. Finally, it
may also be possible to separate contributions from different phases
in the diffraction patterns using unsupervised learning techniques,
such as principal component analysis (PCA) and non-negative matrix
factorization (NMF) [38]. These techniques are also implemented in
Pyxem and may serve as a helpful preprocessing step before template
matching.
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5. Discussion

This paper demonstrated the template matching capabilities in
Pyxem for extracting orientation information from NBED and PED
datasets. Two use cases were provided as examples, and compared
to the commercial solution ASTAR. Similar results could be obtained;
deviations between the solutions could be attributed to ambiguity in
the diffraction patterns from overlapping crystals or limited differen-
tiability among templates in the library. Under these circumstances,
small differences in image pre-processing or library simulation con-
ditions could have an outsized effect on the best matching template
for ambiguous patterns. With the integrated but flexible workflow
offered by Pyxem, it is relatively easy to investigate the effect of these
pre-processing parameters and their relative importance to the result.
From this analysis, the maximum precision of the indexation result
can be estimated. While 1◦ is the often quoted maximum precision of

BED/PED orientation mapping [4,39], as was shown in this paper the
recision can vary strongly depending on experimental parameters such
s camera length, local orientation and lattice parameters of the phases
nvolved. Conversely, this paper also showed that differences in spot
ntensity are unreliable for indexation, so accurate simulations of spot
ntensities or pixel depth do not have a big influence.

In order to optimize data acquisition conditions for obtaining the
ighest precision in orientation, a quantitative relation to the various
xperimental parameters would be desirable. The highest uncertainty
n determining the orientation is in determining the correct beam
irection and associated angles 𝛷 and 𝜙2; 𝜙1 can be determined to

nearly arbitrary precision. Here beam direction should be interpreted
as the crystal’s real space vector that is parallel to the electron beam.
To estimate the uncertainty in the beam direction, as a first order ap-
proximation the rel-rods that correspond to reflections in the diffraction
pattern can be imagined as pinning points that constrain the surface
of the Ewald sphere. Since the reflection is present in the pattern, the
Ewald sphere must intersect the rel-rod. If it is assumed that each rel-
rod has the same length equal to twice the maximum excitation error
𝑠𝑚𝑎𝑥, and if it is assumed the reflection intensity is not significant,
then the Ewald sphere is most constrained by the reflections furthest
away from the reciprocal space origin. In this approximation, all beam
directions that correspond to an Ewald sphere that intersects with the
rel-rods of the most distant diffraction spots are valid beam directions.
In one dimension and for one reflection, the uncertainty interval for the
beam direction angle can be expressed as

± 𝛥𝜃𝑚𝑎𝑥 = arctan
(

𝑠𝑚𝑎𝑥
|𝑔|𝑚𝑎𝑥

)

(4)

where |𝑔|𝑚𝑎𝑥 is the length of the reciprocal lattice vector corresponding
to the most distant reflection. The beam direction has two degrees of
freedom, so the uncertainty in the beam direction can be represented
as a cone with an irregularly shaped base. In directions with fewer
spots, the uncertainty in orientation is higher, meaning the cone of
uncertainty is elongated in that direction. For example, in the matrix
diffraction pattern in Fig. 2(a) there are few reflections along the
(020)−(02̄0) row of reflections. This means there is a higher uncertainty
in the orientation component determined by the rotation around (202̄).
The effect can be seen in Fig. 2(f): the patch of beam directions with
high correlation is extended in the direction from [101] to [111], which
is the path that is traced by the beam when rotating away from [101]
over (202̄). This also illustrates that correlograms like Fig. 2(f) offer a
practical way to visualize the cone of uncertainty, and that optimizing
image processing and template simulation parameters should aim to
make this peak as sharp as possible to minimize uncertainty in the
orientation.

For the example in Fig. 2(a), using |𝑔|𝑚𝑎𝑥 = 0.55 Å−1 for 𝑔 = (020)
and 𝑠𝑚𝑎𝑥 = 0.1 Å−1 as was used in the template simulation library
Eq. (4) predicts an uncertainty of about ±10◦, which roughly agrees
with the longest dimension of the bright peak in Fig. 2(f); the value
9
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is approximately twice as large as the maximum deviation from the
ASTAR results in Fig. 7(f).

For the Cu-Ag dataset, the camera length was shorter and |𝑔|𝑚𝑎𝑥 =
2.6 Å−1 and 𝑠𝑚𝑎𝑥 = 0.1 Å−1, which results in an uncertainty of ±2◦. This
analysis shows that in order to maximize angular resolution, the camera
length should be chosen such that the most distant visible reflections
are situated at the edge of the detector. The visibility of diffraction
spots depends on the atomic scattering factor, which is approximately
inversely proportional to beam energy. Hence a lower beam energy
should increase |𝑔|𝑚𝑎𝑥. A lower beam energy also increases the Ewald
sphere curvature, making it easier to capture higher order Laue zone
reflections in the image. Resolution also benefits from more sensi-
tive detectors that can capture weaker reflections at higher scattering
angles, as was shown in Ref. [3].

Eq. (4) can also help to estimate the necessary angular sampling for
the template library. The maximum excitation error is generally un-
known, and is typically estimated from the sample thickness. However,
for generating template libraries, a much larger value is usually selected
to include more diffraction spots in the templates [26]. An upper bound
is half the distance between consecutive planes that make up the recip-
rocal space grid. The most widely spaced planes in reciprocal space lie
at a distance 1∕𝑎 from each other, with 𝑎 the lattice parameter, which
would imply 𝑠𝑚𝑎𝑥 = 1

2𝑎 . For non-cubic crystal systems, 𝑉 1∕3 could be
used as a substitute for 𝑎 with 𝑉 the unit cell volume. This upper bound
implies there is no gap between reflections from different Laue zones; if
𝑠𝑚𝑎𝑥 is larger, reflections from higher order Laue zones will overlap in
the patterns. A better estimate of 𝑠𝑚𝑎𝑥 can be achieved by calibrating
it based on the width of the empty bands between consecutive Laue
zones. For the Cu and austenite template libraries, the upper boundary
estimate of 0.14 Å−1 is not far off from the value of 0.1 Å−1 that was
used to generate the template libraries. Using a smaller value for 𝑠𝑚𝑎𝑥 in
these simple crystals usually makes the patterns very sparse with few
reflections and this makes it difficult to converge to a good solution.
Hence for these small crystals, a better resolution than about 2◦ will not
e achieved and this resolution is sufficient for generating the template
ibrary. For the G-phase (𝑎 = 11.3 Å) on the other hand, 𝑠𝑚𝑎𝑥 should not

exceed 0.04 Å−1. For this phase, higher order Laue zones were visible
in some of the diffraction patterns and 0.01 Å−1 was found to match the
experiments well. This yields a maximum resolution of ±0.3◦, therefore
a template library of approximately this resolution was used to index
the G-phase. These ideas could be validated and refined by employing
template matching on datasets where the orientation of the crystal is
known a priori, for example by simulating the diffraction patterns using
the multi-slice technique implemented in packages like abTEM [40].

Different requirements in template library resolution and differ-
ences in template complexity also influence performance. The relations
above and the fact that indexing a pattern has time complexity 𝑂

(

𝑁𝑆
𝛥𝜙1

)

can be used to make an educated guess about performance based on the
phases present in the material. The number of templates 𝑁 is roughly
proportional to 1

(𝛥𝜃)2 with 𝛥𝜃 the spacing between templates. Through
Eq. (4) and 𝑠𝑚𝑎𝑥 ∝ 𝑎−1, it follows that 𝑁 ∝ 𝑎2, i.e. a larger unit cell
equires a much larger template library. In addition, the number of
pots in a template 𝑆 is proportional to 𝑎2. 𝛥𝜙1 is not dependent on

the crystal structure. Hence the time to index patterns scales roughly
with 𝑎4 or 𝑉

4
3 . Actual performance will depend on the Laue groups of

he phase, the chosen camera lengths, 𝛥𝜙1, and the available hardware.
Workflow flexibility, openness, speed, and reproducibility are be-

oming increasingly important in light of the growing popularity of fast
ixelated detectors which are producing ever more complex datasets.
ue to the tight integration with HyperSpy, file formats do not impose
ny barriers for analyzing data with Pyxem. The open source nature of
he code means that it can be freely adapted and extended, for example
owards real-time indexing. A single diffraction pattern can be reliably
ndexed within a few to tens of milliseconds, which is on the same
rder as the acquisition time for a pattern on a CMOS or CCD based
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detector. Hence these processes could easily run in parallel meaning
that routine orientation mapping of single phase materials with NBED
could become automated like electron backscatter diffraction (EBSD)
in the scanning electron microscope. A prototype along these lines is
being worked out by integrating with the LiberTEM library [41,42].
For the extremely fast direct electron detectors, such as the EMPAD
detector, the code would not be fast enough to perform real time
indexing. Multiple optimizations could still be explored, like improving
the algorithm for optimizing the in-plane angle 𝜙1 and parallelizing the
image preprocessing steps; the authors welcome all contributions that
improve the current implementation.

6. Conclusion

In this paper, the new template matching capabilities implemented
in Pyxem for analyzing NBED and precession diffraction data were
discussed, from implementation, through performance, to applications.
The code enabled reliable and fast orientation mapping in nanostruc-
tured materials on high quality datasets originating from a pixelated
detector. Through the fine grained control over the entire analysis pro-
cess the effects of image processing and template simulation parameters
on the result could be evaluated. In addition, a two stage indexation
procedure was implemented for mapping the orientation of nano-sized
precipitates embedded in a crystalline matrix, a workflow that could
be adapted by many other researchers. All the workflows in this paper
are fully documented and reproducible and can serve as templates for
other open, custom and transparent analysis workflows.
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