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Abstract
An ensemble updating method for categorical state vectors is proposed. The method
is based on a Bayesian view of the ensemble Kalman filter (EnKF). In the EnKF,
Gaussian approximations to the forecast and filtering distributions are introduced, and
the forecast ensemble is updated with a linear shift. Given that the Gaussian approx-
imation to the forecast distribution is correct, the EnKF linear update corresponds to
conditional simulation from a Gaussian distribution with mean and covariance such
that the posterior samplesmarginally are distributed according to theGaussian approx-
imation to the filtering distribution. In the proposed approach for categorical vectors,
the Gaussian approximations are replaced with a (possibly higher order)Markov chain
model, and the linear update is replaced with simulation based on a class of decom-
posable graphical models. To make the update robust against errors in the assumed
forecast and filtering distributions, an optimality criterion is formulated, for which the
resulting optimal updating procedure can be found by solving a linear program. We
explore the properties of the proposed updating procedure in a simulation example
where each state variable can take three values.

Keywords Bayesian statistics · Data assimilation · Ensemble updating · Markov
chains

1 Introduction

State space models are widely used to analyse dynamic data in a wide range of scien-
tific disciplines, e.g. in finance, reservoir modelling, weather forecasting, and signal
processing. A general state space model consists of an unobserved process {xt }Tt=1
and a corresponding observed process {yt }Tt=1 where yt is a partial observation of
xt . The unobserved xt -process, usually called the state process, is assumed to be a
first-order Markov process, and the observations y1, . . . , yT of the observed process
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are assumed to be conditionally independent given {xt }Tt=1 with yt only depending on
xt . The main objective of state space modelling is some type of inference about the
state process given the observations. There are many inference procedures associated
with state space models, among which one of the most common is filtering. Filtering,
which is the problem addressed in the present article, refers to the task of computing,
for each time step t = 1, . . . , T , the distribution of the state xt given all observations
y1:t = (y1, . . . , yt ) available at time t . In some fields, filtering is known as sequential
data assimilation. Other common terms are history matching and online inference.
However, in the present article, we use the term filtering throughout.

Because of the particular dependency structure of the general state space model,
the series of filtering distributions can be computed recursively according to a recur-
sion which alternates between a forecast step and an update step. Generally, however,
apart from a few simple special cases, the exact solution to the filtering recursions is
intractable due to complex and/or high-dimensional integrals. Approximate strategies
are therefore required, and simulation-basedmethods, or ensemblemethods, represent
the most popular approach. An ensemble-based solution may, similarly to the original
filtering recursions, alternate between a forecast step and an update step. Instead, how-
ever, of computing the forecast and filtering distributions explicitly, the distributions
are represented empirically with an ensemble of realisations. The main challenge in
this context is the update step where, at time step t , an ensemble of (approximate)
realisations from the so-called forecast distribution pxt |y1:t−1(xt |y1:t−1) needs to be
conditioned on the new observation yt so that an updated ensemble of (approximate)
realisations from the filtering distribution pxt |y1:t (xt |y1:t ) is obtained. Since there is no
straightforward way to approach this task, ensemble methods require approximations
in the update step. This ensemble updating problem is the core focus of the present
paper. In particular, we address the problem of updating an ensemble of categorical
state vectors and present in detail an approximate ensemble updating method for this
situation.

Among the ensemble filtering methods that have currently been proposed in the
literature there are two main categories; particle filters (Gordon et al. 1993; Doucet
et al. 2001) and ensemble Kalman filters (EnKFs) (Burgers et al. 1998; Evensen 2003;
Tippett et al. 2003). Particle filters are based on importance samplingwhile EnKFs rely
on a linear-Gaussian assumption about the underlying state spacemodel. Particle filters
have the advantage of being asymptotically exact in the sense that as the ensemble
size goes to infinity, the filters converge to the exact filtering solution. In practical
applications, however, computational resources often restrict the ensemble size to be
quite small, and particle filters are known to collapse unless the ensemble size is very
large compared to the state dimension (Snyder et al. 2008). For the EnKF, the solution
is always biased unless the underlying state space model really is linear-Gaussian.
Despite this fact, the EnKF often performs remarkably well also in non-linear, non-
Gaussian situations and, unlike the particle filter, also scales well to problems with
very high-dimensional states. The filter is, however, inappropriate in situations with
categorical vectors, as considered in the present paper.

Loe and Tjelmeland (2021b), in a follow-up study to Loe and Tjelmeland (2021a),
present an alternative solution to the ensemble updating problem based on a gener-
alised view of the EnKF. Specifically, they describe a general updating framework
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where the idea is first to introduce assumed models for the intractable forecast and
filtering distributions and thereafter to update the prior samples by simulating samples
from a distribution which, under the assumption that the assumed forecast distribution
is correct, preserves the corresponding assumed filtering distribution. To make the
update robust against the assumptions of the assumed forecast and filtering models,
the distribution from which the posterior samples are simulated is also required to be
optimal with respect to a chosen optimality criterion. More specifically, the updating
distribution is required to minimise the expected value of a certain distance, or norm,
between a prior (forecast) and posterior (filtering) ensemble member. The framework
is Bayesian in the sense that the parameters of the forecast distribution are also treated
as random variables. Uncertainty about these parameters are thereby incorporated into
the updating. Two particular applications of the proposed framework are investigated,
one continuous and one categorical. In the continuous case, the assumed forecast and
filtering models are chosen as Gaussian distributions and the optimality criterion is to
minimise the expected Mahalanobis distance between a prior and posterior ensemble
member. The framework then leads to a Bayesian version of square root EnKF (Bishop
et al. 2001;Whitaker and Hamill 2002; Tippett et al. 2003). In the categorical case, the
assumed forecast and filtering distributions are instead chosen as first-order Markov
chains and the optimality criterion is to minimise the expected number of variables
of a prior state vector that change their values. An optimal transition matrix for simu-
lating a posterior ensemble member from a corresponding prior ensemble member is
constructed using a combination of dynamic and linear programming.

There are three important limitations to the updating procedure for categorical state
vectors proposed in Loe and Tjelmeland (2021b). Firstly, the procedure is difficult to
implement except in the binary case where there are only two possible values for each
variable of the state vector. Consequently, the authors only demonstrate the method in
binary numerical experiments. Secondly, the approximation to the forecast distribution
is restricted to be a first-order Markov chain. This means that models with higher-
order interactions, for example a higher-order Markov chain, cannot be considered.
Thirdly, the procedure is not applicable in two- or three-dimensional problems since
it requires that the state vector has a one-dimensional spatial arrangement. In the
present article, we address the first and second of these three issues. Specifically, we
present a modified and improved version of the updating procedure applicable also
for K > 2 classes and which allows the use of a higher-order Markov chain as the
approximate forecast distribution. In the procedure described in Loe and Tjelmeland
(2021b), a directed acyclic graph (DAG) is put forward to update each prior realisation.
The chosen structure of the DAG allows the corresponding optimal solution to be
computed recursively using a dynamic programming algorithm where a piecewise-
linear programming problem is solved in each recursive step. In the present article,
the starting point is, instead of a DAG, an undirected graphical model (UGM). This
UGM has a more flexible structure than the DAG in the sense that we can more
easily consider different types of dependency properties without overcomplicating
the computation of the optimal solution. The underlying graph is decomposable and
this gives the UGMmany convenient computational properties. The optimal updating
distribution is computed by solving a linear program derived from a series of local
computations on the UGM.
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The remains of this paper take the following outline. In Sect. 2, we review state
space models and the associated filtering problem in more detail, and we also present
some basic graph theory required to understand the proposed approach. In Sect. 3, we
present a slightly modified version of the general ensemble updating framework in
Loe and Tjelmeland (2021b), restricting the focus to categorical state vectors. In Sect.
4, we describe in detail how the general framework can be applied when a Markov
chain model is adopted for the assumed forecast distribution. Thereafter, we present
in Sect. 5 a simulation example where each element of the state vector can take K = 3
values. Finally, we finish off with a few closing remarks in Sect. 6.

2 Preliminaries

This section describes the filtering problem in more detail and also reviews some
graph-theoretic concepts related to the proposed approach. The section also introduces
notations that we use throughout the paper.

2.1 The filtering problem

Ageneral state spacemodel consists of an unobserved process {xt }Tt=1, x
t ∈ �x , called

the state process, and a corresponding observed process {yt }Tt=1, y
t ∈ �y , called the

observation process, where yt is a partial observation of xt at time t . The unobserved
state process {xt }Tt=1 is modelled as a first-order Markov chain with initial distribution
px1(x

1) and transition probabilities pxt |xt−1(xt |xt−1), t = 2, . . . , T . Throughout this
paper, we use the notations xs:t = (xs, . . . , xt ) and ys:t = (ys, . . . , yt ), s ≤ t , to
denote the vector of all states and the vector of all observations, respectively, from time
s to time t . The joint distribution of x1:T follows from the Markov chain assumptions
as

px1:T (x1:T ) = px1(x
1)

T∏

t=2

pxt |xt−1(xt |xt−1).

For the observation process, it is assumed that the observations are conditionally
independent given x1:T , with yt only depending on xt . The conditional distribution of
y1:T given x1:T thereby follows as

py1:T |x1:T (y1:T |x1:T ) =
T∏

t=1

pyt |xt (yt |xt ).

It is possible to adjust the model so that observations are only recorded at a subset of
the time steps {1, . . . , T }. However, for the sake of simplicity, we assume in this work
that an observation is recorded at every time step t = 1, . . . , T .

The objective of the filtering problem is, for each time step t = 1, . . . , T , to
compute the so-called filtering distribution, pxt |y1:t (xt |y1:t ), i.e. the distribution of

123



Ensemble updating of categorical state vectors 2367

the latent state xt given all the observations y1:t available at time t . Because of the
particular structure of the state space model, the series of filtering distributions can
be computed recursively according to a recursion which alternates between a forecast
step,

pxt |y1:t−1(xt |y1:t−1) =
∫

�x

pxt |xt−1(xt |xt−1)pxt−1|y1:t−1(xt−1|y1:t−1)dxt−1, (1)

and an update step,

pxt |y1:t (xt |y1:t ) = pxt |y1:t−1(xt |y1:t−1)pyt |xt (yt |xt )
pyt |y1:t−1(yt |y1:t−1)

, (2)

where

pyt |y1:t−1(yt |y1:t−1) =
∫

�x

pxt |y1:t−1(xt |y1:t−1)pyt |xt (yt |xt )dxt . (3)

The distribution pxt |y1:t−1(xt |y1:t−1) computed in the forecast step is called the fore-
cast distribution of xt . In the update step, this distribution is conditioned on the new
observation yt in order to compute the filtering distribution of xt , pxt |y1:t (xt |y1:t ).
The update step is essentially a standard Bayesian inference problem with the forecast
distribution becoming the prior and the filtering distribution the posterior.

There are two important special caseswhere thefiltering recursions canbe computed
exactly. The first is the linear-Gaussian model where the initial distribution px1(x

1)

is Gaussian and where pxt |xt−1(xt |xt−1) and pyt |xt (yt |xt ) are Gaussian with mean
vectors being linear functions of xt−1 and xt , respectively. The forecast and filtering
distributions are then also Gaussian and Eqs. (1) and (2) lead to the famous Kalman
filter (Kalman 1960). The second situation where the filtering recursions are tractable
is the finite state space hidden Markov model for which the state space �x consists of
a finite number of states. The integrals in Eqs. (1) and (3) then reduce to finite sums. If,
however, the number of states in �x is large, for example if xt is a high-dimensional
vector of categorical variables, the summations become too computer-demanding to
cope with, and the filtering recursions are left computationally intractable.

Generally, the integrals in Eqs. (1) and (3) make the recursive solution to the filter-
ing problem intractable, and approximate solutions therefore become necessary. The
most popular approach is the class of ensemble-basedmethods, where a set of samples,
an ensemble, is used to empirically represent the sequence of filtering distributions. A
great advantage of the ensemble context is that it simplifies the forecast step. Specifi-
cally, if an ensemble {̃xt,(1), . . . , x̃ t,(M)} of independent realisations from the filtering
distribution pxt |y1:t (xt |y1:t ) is available, a forecast ensemble {xt+1,(1), . . . , xt+1,(M)}
with independent realisations from the forecast distribution pxt+1|y1:t (xt+1|y1:t ) can
be obtained by simulating

xt+1,(i) |̃xt,(i) ∼ pxt+1|xt (·|̃xt,(i))
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Fig. 1 An undirected graph with four vertices

independently for i = 1, . . . , M . The consecutive updating of the ensemble, however,
remains challenging. There is simply no straightforward way to condition the forecast
ensemble {xt+1,(1), . . . , xt+1,(M)} on the new observation yt+1 so that a new filter-
ing ensemble {̃xt+1,(1), . . . , x̃ t+1,(M)} of independent realisations from the filtering
distribution pxt+1|y1:t+1(xt+1|y1:t+1) is obtained. In the present article, we propose
an approximate way to do this when the elements of the state vector are categorical
variables.

2.2 Decomposable graphical models (DGMs)

This section introduces decomposable graphical models (DGMs), a certain type of
undirected graphical models, or Markov random fields (Kindermann and Snell 1980;
Cressie 1993; Cowell et al. 1999). For simplicity, the focus is restricted to discrete
DGMs. In the following,we startwith a brief reviewof somebasic theory on undirected
graphs in Sects. 2.2.1 and 2.2.2. Thereafter, discrete DGMs are introduced in Sect.
2.2.3, while Sects. 2.2.4 and 2.2.5 consider simulation from discrete DGMs. A more
thorough introduction to graph theory and graphical models can be found in, e.g.,
Cowell et al. (1999).

2.2.1 Undirected graphs

An undirected graph G is an ordered pair G = (V , E) where V is a set of vertices,
or nodes, and E ⊂ {V × V } is a set of edges. The elements of the edge set E are
pairs of distinct nodes, {i, j}, i, j ∈ V , i �= j . If {i, j} ∈ E then node i and node j
are said to be neighbours, or adjacent. Figure 1 illustrates a simple undirected graph
with four vertices where, as per convention, vertices are represented by labelled circles
and edges by lines between the circles. For this graph we have V = {1, 2, 3, 4} and
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}.

If there is an edge between every pair of nodes in a graph G, the graph is said to
be complete. A subgraph of G is a graph GA = (A, EA) where A ⊆ V and EA ⊆
E ∩{A×A}. If a subgraphGA = (A, EA) ofG is complete, its set of nodes A is called
a clique. A clique is called amaximal clique in G if it is not a subset of another clique.
Throughout this article, we denote the set of maximal cliques by C . For the graph
pictured in Fig. 1, the empty set ∅ and {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {3, 4},
and {1, 2, 3} are cliques, while {1, 2, 3} and {3, 4} are maximal cliques.
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A path of length n from node i to node j is a sequence (α0, . . . , αn) of distinct
nodes where α0 = i and αn = j and {αk−1, αk} ∈ E , k = 1, . . . , n. Note that if there
is a path from node i to node j in an undirected graph, there is also a path from node j
to node i . For the graph pictured in Fig. 1, there are two paths from node 1 to node 4:
(1, 2, 3, 4) and (1, 3, 4). Two nodes i and j are said to be connected if there is a path
from node i to node j , and an undirected graph is said to be connected if every pair
of vertices are connected. A tree is a connected undirected graph with the additional
property that the path between every pair of vertices is unique. The graph in Fig. 1 is
thus not a tree since there are different paths between some of the vertices.

2.2.2 Decomposable graphs and junction trees

An undirected graph G = (V , E) is said to be decomposable if the set of maximal
cliques can be ordered in a way so that all elements in maximal clique number i
(say) that are also in any later maximal cliques, are all contained in one of the later
maximal cliques. If an undirected graph is decomposable, a so called junction tree
for the maximal cliques can be defined, which in turn allow efficient computations of
many properties.

Mathematically, the requirement for an undirected graph to be decomposable can
be formulated as follows. Let C = {c1, . . . , c|C|} denote the set of maximal cliques of
an undirected graph G = (V , E), where |C | denotes the number of maximal cliques.
The graph is then decomposable if the elements of C can be ordered as (c1, . . . , c|C|)
so that for each i = 1, . . . , |C | − 1 there is a j > i such that

si = ci ∩ (ci+1 ∪ · · · ∪ c|C|) ⊆ c j . (4)

The property in Eq. (4) is called the running intersection property, and the sets
s1, . . . , s|C|−1 are called the separators of the graph. The set of all separators,
S = {s1, . . . , s|C|−1}, and the set of maximal cliques, C , are uniquely determined
by the structure of the graph G; however, the ordering (c1, . . . , c|C|) is generally not
unique. Figure 2a shows a simple decomposable graph with six vertices. The maximal
cliques of this graph are {1, 2, 3}, {3, 4, 5} and {4, 5, 6}, and there are two orderings of
these that fulfil the running intersection property, namely ({1, 2, 3}, {3, 4, 5}, {4, 5, 6})
and ({4, 5, 6}, {3, 4, 5}, {1, 2, 3}). In the following we use the first of these order-
ings, (c1, c2, c3) = ({1, 2, 3}, {3, 4, 5}, {4, 5, 6}). The separators are s1 = {3} =
{1, 2, 3} ∩ ({3, 4, 5} ∪ {4, 5, 6}) ⊆ c2 and s2 = {4, 5} = {3, 4, 5} ∩ {4, 5, 6} ⊆ c3.

From a decomposable graph, a corresponding junction tree can be derived. A junc-
tion tree J for a decomposable graph G is a tree with C = {c1, . . . , c|C|} as its node
set and the additional property that for every pair ci , c j ∈ C every node on the unique
path between ci and c j in J contains the intersection ci ∩ c j . In a visual represen-
tation of a junction tree, it is common to include the separators as squared labels on
the edges. This is illustrated in Fig. 2b which shows one of the possible junction tree
representations for the decomposable graph in Fig. 2a.

A junction tree is a nice way to organise a decomposable graph, and many compu-
tations are easier to perform on the junction tree. Depending on the structure of the
graph, however, it can be a complicated task to construct a corresponding junction
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{1, 2, 3} {3} {3, 4, 5} {4, 5} {4, 5, 6}

(b)

Fig. 2 (a) A decomposable graph, and b a corresponding junction tree representation

tree. There exist several algorithms for this purpose, see Cowell et al. (1999). In all
the examples we encounter in the present article, the decomposable graph under study
has a structure which makes it particularly simple to construct a junction tree, and
therefore we do not focus on the problem of constructing junction trees in this paper.

2.2.3 Discrete decomposable graphical models

A discrete decomposable graphical model (DGM) is a probabilistic model consisting
of a decomposable graphG = (V , E), a random vector x = (xi , i ∈ V ) of categorical
variables xi ∈ {0, 1, . . . , K − 1}, and a probability distribution px (x). Alternatively,
a discrete DGM can be defined as a discrete Markov random field whose underlying
graph is decomposable. In the following, the notation xA is used to denote the variables
of x associated with subset A ⊆ V , and �xA ⊆ �x is the sample space of xA. Taking
0/0 = 0, the distribution px (x) of a discrete DGM can always be expressed as

px (x) =
∏

c∈C pxc (xc)∏
s∈S pxs (xs)

, (5)

where C is the set of maximal cliques in G and S is the set of separators (Cowell
et al. 1999). This expression can easily be shown using basic probability rules and the
Markov properties assumed for a DGM. Intuitively, the numerator in Eq. (5) includes
the distribution of the elements in x that are in one or more separators more than once,
and this is corrected for by the product in the denominator.

DGMs support several efficient algorithms and are fundamental for the work of this
article. In particular, it should be noted that, if (c1, . . . , c|C|) is an ordering of the max-
imal cliques fulfilling the running intersection property in Eq. (4) and (s1, . . . , s|C|−1)

is the corresponding ordering of the separators, we have

pxsi (xsi ) =
∑

xci \si

pxci (xci ) =
∑

xci+1\si

pxci+1
(xci+1) for all xsi ∈ �xsi

. (6)

2.2.4 Simulation from discrete DGMs

Consider a discrete DGM px (x) with respect to a graph G = (V , E). To simu-
late a realisation from px (x), a recursive procedure can be adopted, which goes as
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follows. First, px (x) is decomposed into pxi |xV \{i}(xi |xV \{i}) and pxV \{i}(xV \{i}) for
some i ∈ V . Thereafter, pxV \{i}(xV \{i}) is decomposed into px j |xV \{i, j}(x j |xV \{i, j})
and pxV \{i, j}(xV \{i, j}) for some j ∈ V \ {i}. Then, pxV \{i, j}(xV \{i, j}) is decomposed
into pxk |xV \{i, j,k}(xk |xV \{i, j,k}) and pxV \{i, j,k}(xV \{i, j,k}) for some k ∈ V \{i, j}. Contin-
uing in this manner, we ultimately end up with only one variable xl and corresponding
marginal distribution pxl (xl). A realisation x ∼ px (x) can then be generated by
recursively simulating from the series of conditional distributions, in the reverse order
as they were computed. Without loss of generality, suppose that the vertex set is
V = {1, . . . , n} and that the nodes have been numbered so that nodes are removed in
the order from n to 1. This means that we make us of the following factorisation of
px (x):

px (x) = px1(x1)
n∏

i=2

pxi |x1:i−1(xi |x1:i−1). (7)

Having computed all the factors in Eq. (7), simulation from px (x) follows easily
by first simulating x1 ∼ px1(x1), thereafter x2|x1 ∼ px2|x1(x2|x1), and so on. The
recursive procedure described above, as well as the factorisation in Eq. (7), is general
and holds for any distribution px (x), not necessarily a discrete DGM. However, for
many models, it is inconvenient to factorise px (x) in this manner, since it can be a
complicated task to compute all the factors. If the model is a DGM, however, and a
corresponding junction tree J is available, computations can become particularly easy
and efficient, as we discuss in the following.

First, note that the distribution in Eq. (5) can be expressed as

px (x) ∝ exp

{
∑

c∈C
Vc(xc)

}
, (8)

where Vc(xc) in this context is called a potential function for clique c.With the junction
tree J given, it is convenient to start the decomposition of px (x) in a leaf of J . Denote
the clique to which the chosen leaf corresponds by c∗. Since c∗ is a leaf of J , there
is at least one node i ∈ V which is only present in c∗. Suppose, without loss of
generality, that the nodes have been numbered so that this is the case for node n, i.e.
that node n is only contained in clique c∗. We can then easily decompose px (x) into
pxn |x1:n−1(xn|x1:n−1) and px1:n−1(x1:n−1) as follows. Since node n is only contained in
clique c∗, the variable xn only enters the right-hand-side expression in Eq. (8) through
the potential function Vc∗(xc∗). This means that pxn |x1:n−1(xn|x1:n−1) can be computed
as

pxn |x1:n−1(xn|x1:n−1) = exp {Vc∗(xc∗)}∑
xn exp {Vc∗(xc∗)} . (9)

The other part, px1:n−1(x1:n−1), can be computed, up to a constant of proportionality,
by summing out xn from Eq. (8),
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p(x1:n−1) ∝
∑

xn

⎛

⎝exp

⎧
⎨

⎩
∑

c∈C\c∗
Vc(xc)

⎫
⎬

⎭ exp {Vc∗(xc∗)}
⎞

⎠ . (10)

Using that node n is only contained in clique c∗, we can rewrite this expression as

px1:n−1(x1:n−1) ∝ exp

⎧
⎨

⎩
∑

c∈C\c∗
Vc(xc)

⎫
⎬

⎭
∑

xn

exp {Vc∗(xc∗)} . (11)

That is, we only need to sum over xn in exp {Vc∗(xc∗)}. Now, if we define a new
potential function for the clique c∗ \ {n},

Vc∗\{n}(xc∗\{n}) = log

(
∑

xn

exp {Vc∗(xc∗)}
)

,

we can rewrite Eq. (11) in the more convenient form

px1:n−1(x1:n−1) ∝ exp

⎧
⎨

⎩
∑

c∈C\c∗
Vc(xc)

⎫
⎬

⎭ exp
{
Vc∗\{n}(xc∗\{n})

}
. (12)

It is not necessary to compute the normalising constant in Eq. (12) in order for the
remaining computations to proceed.

Next, we want to decompose px1:n−1(x1:n−1) into pxn−1|x1:n−2(xn−1|x1:n−2) and
px1:n−2(x1:n−2). For this, consider first the junction tree JV \{n} we obtain after remov-
ing node n from c∗ in J . Removing node n from c∗ can affect the structure of JV \{n} in
two different ways: either JV \{n} has the same number of nodes as J , or it has one node
less. To understand why, consider the clique c∗ \ {n} that we obtain after removing
node n from c∗. Moreover, let c̃ denote the neighbour of c∗ in J and let GV \{n} denote
the graph obtained by removing node n from G. For the clique c∗ \ {n}, there are now
two possibilities: either it is a subset of c̃, i.e. c∗ \ {n} ⊆ c̃, or it is not a subset of
c̃, i.e. c∗ \ {n} � c̃. If c∗ \ {n} � c̃, then c∗ \ {n} is a maximal clique in the graph
GV \{n}, and JV \{n} is essentially the same tree as J except that c∗ is replaced with
c∗ \ {n}. The clique c∗ \ {n} then represents a leaf in JV \{n}, and we can decompose
px1:n−1(x1:n−1) into pxn−1|x1:n−2(xn−1|x1:n−2) and px1:n−2(x1:n−2) in the same manner
as we decomposed px (x) above. If, on the other hand, c∗ \ {n} ⊆ c̃, we must merge
c∗ \ {n} and c̃ before we can proceed. Specifically, this entails that we need to add the
potential functions of the two cliques together,

Ṽc̃(xc̃) = Vc̃(xc̃) + Vc∗\{n}(xc∗\{n}).
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We can then rewrite Eq. (12) as

px1:n−1(x1:n−1) ∝ exp

⎧
⎨

⎩
∑

c∈C\{c∗,c̃}
Vc(xc)

⎫
⎬

⎭ exp
{
Ṽc̃(xc̃)

}
. (13)

After merging the cliques, we can decompose px1:n−1(x1:n−1) in Eq. (13) into
pxn−1|x1:n−2(xn−1|x1:n−2) and px1:n−2(x1:n−2) in the same manner as we decomposed
px (x) into pxn |x1:n−1(xn|x1:n−1) and px1:n−1(x1:n−1). Notice, however, that it is possi-
ble that c̃ is not a leaf in JV \{n}. If so, we must move to a clique which does represent a
leaf, and decompose px1:n−1(x1:n−1) by removing a node and corresponding variable
from this clique.

Ultimately, we end up computing px1(x1). A realisation from px (x) can then
be obtained by first simulating x1 ∼ px1(·), thereafter x2|x1 ∼ px2|x1(·|x1), then
x3|x1, x2 ∼ px3|x1,x2(·|x1, x2), and so on.

2.2.5 Conditional simulation from discrete DGMs

Suppose again that px (x) is a discrete DGMwith respect to a graph G = (V , E), and
let J be a junction tree for G. In the previous section, we described how to simulate
from px (x). Now, we address the closely related problem of how to simulate from the
conditional distribution pxA|xV \A (xA|xV \A), A ⊂ V . First, Bayes rule gives

pxA|xV \A(xA|xV \A) ∝ pxA,xV \A(xA, xV \A) = px (x). (14)

By insertingvalues for xV \A inEq. (14),weobtain an expression for pxA |xV \A (xA|xV \A)

up to a constant of proportionality. Thus, since pxA|xV \A (xA|xV \A) is also a dis-
crete DGM, we can simulate from pxA|xV \A (xA|xV \A) using the recursive procedure
described in Sect. 2.2.4, as this procedure only requires that pxA|xV \A (xA|xV \A) is
known up to a constant of proportionality. Before starting the computations, how-
ever, a new graph GA and corresponding junction tree JA must be constructed for
pxA|xV \A (xA|xV \A), and the clique potentials for the maximal cliques of GA must be
computed. The graph GA is simply obtained by removing the nodes V \ A from V
and all edges {i, j} from E where i ∈ V \ A and/or j ∈ V \ A.

As an illustrative example, consider a DGM with respect to the graph in Fig. 2a.
Suppose values for x3 and x4 are given and that we want to simulate from the condi-
tional distribution p(x1, x2, x5, x6|x3, x4),

px1,x2,x5,x6|x3,x4(x1, x2, x5, x6|x3, x4)
∝ exp

{
V{1,2,3}(x1, x2, x3) + V{3,4,5}(x3, x4, x5) + V{4,5,6}(x4, x5, x6)

}
.

For this toy example, we have A = {1, 2, 5, 6} and V \ A = {3, 4}. The graph GA is
shown in Fig. 3a and the junction tree JA is shown in Fig. 3b. The graph GA only has
twomaximal cliques, {1, 2} and {5, 6}, and the separator is simply the empty set ∅. The

123



2374 M. K. Loe, H. Tjelmeland

2

1

5 6

(a)

{1, 2} {∅} {5, 6}

(b)

Fig. 3 (a) The graph GA with A = {1, 2, 5, 6} for the graph in Fig. 2, and b the corresponding junction
tree JA

potential functions corresponding to the maximal cliques {1, 2} and {5, 6} become,
respectively,

Ṽ{1,2}(x1, x2) = V{1,2,3}(x1, x2, x3)

and

Ṽ{5,6}(x5, x6) = V{3,4,5}(x3, x4, x5) + V{4,5,6}(x4, x5, x6),

where now x3 and x4 are constant values. With GA, JA and these potential functions
given, we can simulate from

px1,x2,x5,x6|x3,x4(x1, x2, x5, x6|x3, x4) ∝ exp
{
Ṽ{1,2}(x1, x2) + Ṽ{5,6}(x5, x6)

}

using the procedure described in Sect. 2.2.4.

3 Updating framework for categorical vectors

In this section we present our framework for the ensemble updating of categorical
state vectors. The framework is a modified version of what is presented in Loe and
Tjelmeland (2021b). Our focus is all the time on the updating of one specific ensemble
member, number i say. We start in Sect. 3.1 by formulating an assumed Bayesian
model for all quantities involved in the updating of ensemble number i . Next, in Sect.
3.2.1, we characterise a class of updating procedures that is correct under this assumed
Bayesian model. This class of updating procedures is computationally hard to work
with, so our next step, in Sect. 3.2.2, is to formulate a class of updating procedures
that is only approximately correct under the assumed Bayesian model, but which is
computationally simpler to work with. The last step in our framework, which we
discuss in Sect. 3.3, is to define a criterion for identifying, within the class of updating
procedures that are (approximately) correct under the assumed model, an updating
procedure that is robust against the assumptions made in the assumed Bayesianmodel.
In Sect. 4 we develop the computational details of the resulting updating procedure
when the assumed Bayesian model is based on a ν’th order Markov chain model.
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θt

xt,(1) xt,(2) · · · xt,(i) · · · xt,(M) xt

yt
xt,(i)

Fig. 4 Graphical illustration of the assumed Bayesian model for the updating of xt,(i) to x̃ t,(i)

3.1 Assumed Bayesianmodel

A graphical illustration of our assumed Bayesian model for the variables involved in
the updating of the forecast sample xt,(i) to a filtering sample x̃ t,(i) is shown in Fig. 4.

The model includes an unknown parameter vector θ t ∈ �θ for which a prior
model fθ t (θ t ) is adopted. Moreover, the latent state vector xt and the prior samples
xt,(1), . . . , xt,(M) are all assumed to be conditionally independent and identically dis-
tributed given θ t , i.e.

fxt ,xt,(1),...,xt,(M)|θ t (xt , xt,(1), . . . , xt,(M)|θ t ) = fxt |θ t (xt |θ t )
M∏

i=1

fxt |θ t (xt,(i)|θ t ),

where fxt |θ t (xt |θ t ) is an assumed prior model for xt |θ t . The observation yt is
assumed to be conditionally independent of θ t and xt,(1), . . . , xt,(M) given xt ,
and distributed according to an assumed likelihood model fyt |xt (yt |xt ). Given
xt,(i), θ t and yt , the posterior realisation x̃ t,(i) is conditionally independent of
xt,(1), . . . , xt,(i−1), xt,(i+1), . . . , xt,(M) and xt . For simplicity, we denote in the fol-
lowing the set of prior samples except the sample xt,(i) by xt,−(i), i.e.

xt,−(i) = {xt,(1), . . . , xt,(i−1), xt,(i+1), . . . , xt,(M)}.

Conceptually, the assumed models fxt |θ t (xt |θ t ) and fyt |xt (yt |xt ) can be any para-
metric distributions. In order for the framework to be useful in practice, however, they
must be chosen so that the corresponding posterior model

fxt |θ t ,yt (xt |θ t , yt ) ∝ fxt |θ t (xt |θ t ) fyt |xt (yt |xt ) (15)

is tractable. Moreover, fθ t (θ t ) should be chosen as conjugate for fxt |θ t (xt |θ t ).
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3.2 Class of updating distributions

Based on the assumed Bayesian model defined above we characterise in this section a
class of updating procedures for generating the filtering ensemble element x̃ t,(i) from
forecast ensemble member xt,(i). First, we derive in Sect. 3.2.1 a class of updating
distributions which are exact in the sense that, under the assumption that the forecast
samples are distributed according to the assumedBayesianmodel, the posterior sample
x̃ t,(i) is distributed according to the resulting posterior model in Eq. (15). Thereafter,
we introduce in Sect. 3.2.2 a class of updating procedures that are only approximately
correct under the assumed Bayesian model, but which is computationally simpler to
deal with.

3.2.1 Derivation of a class of updating distributions

A natural minimal restriction for the updating of xt,(i) to x̃ t,(i) is to require that the
procedure is consistent with the assumed model. One can then say that the updating
is correct under the assumed model. In addition one would naturally also like the
updating to be robust against the assumptions made in the assumed Bayesian model,
but this is not the main focus in this section.

A naïve updating procedure that is consistent with the assumed model is simply
to set x̃ t,(i) equal to a sample from fxt |xt,(1),...,xt,(M),yt (·|xt,(1), . . . , xt,(M), yt ). This
procedure may, however, be very sensitive to the assumptions of the assumed model.
To get a more robust updating procedure, a better alternative is to generate x̃ t,(i) as a
modified version of xt,(i), as indicated by the graph in Fig. 4. In such a setup, the role
of xt,(i) is as a source of randomness in the generation of x̃ t,(i). One should therefore
remove xt,(i) from the conditioning set in the naïve updating procedure and instead
require that x̃ t,(i) is a sample from fxt |xt,−(i),yt (·|xt,−(i), yt ) under the assumed model.

Thus, the updating of xt,(i) to x̃ t,(i) should be such that

fx̃ t,(i)|xt,−(i),yt (x
t |xt,−(i), yt ) = fxt |xt,−(i),yt (x

t |xt,−(i), yt ) (16)

for all xt , xt,−(i) and yt . In the following we study what implications the restriction
in Eq. (16) have on how to generate x̃ t,(i) from xt,(i).

Introducing the parameter vector θ t , the distribution on the left hand side of Eq. (16)
is obtained by marginalising out θ t from the joint distribution fθ t ,̃xt,(i)|xt,−(i),yt (θ

t , xt |
xt,−(i), yt ). Rewriting the distribution on the right hand side of Eq. (16) in a similar
way it follows that Eq. (16) can be rewritten as

∫

�θ t

fθ t ,̃xt,(i)|xt,−(i),yt (θ
t , xt |xt,−(i), yt )dθ t =

∫

�θ t

fθ,xt |xt,−(i),yt (θ
t , xt |xt,−(i), yt )dθ t .

(17)

Writing each of the joint distributions in these two integrands as a product of the
marginal distribution for θ t and the conditional distribution for the other variable
given θ t , the restriction reads
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∫

�θ t

fθ t |xt,−(i),yt (θ
t |xt,−(i), yt ) fx̃ t,(i)|θ t ,yt (xt |θ t , yt )dθ t

=
∫

�θ t

fθ t |xt,−(i),yt (θ
t |xt,−(i), yt ) fxt |θ t ,yt (xt |θ t , yt )dθ t . (18)

A sufficient condition for this relation to hold is that the two integrands are equal for
each θ t . From this it follows that a sufficient condition for Eq. (18) to hold is that

fx̃ t,(i)|θ t ,yt (xt |θ t , yt ) = fxt |θ t ,yt (xt |θ t , yt ) (19)

for all xt , θ t and yt . Thereby, we understand that xt,(i) can be updated by first simu-
lating

θ t,(i)|xt,−(i), yt ∼ fθ t |xt,−(i),yt (·|xt,−(i), yt )

and thereafter simulate

x̃ t,(i)|xt,(i), θ t,(i), yt ∼ fx̃ t,(i)|xt,(i),θ t,(i),yt (·|xt,(i), θ t,(i), yt ),

where fx̃ t,(i)|xt,(i),θ t,(i),yt (̃xt,(i)|xt,(i), θ t,(i), yt ) is a distribution which fulfils Eq. (19).

Generally, a class of updating distributions fx̃ t,(i)|xt,(i),θ t,(i),yt (̃xt,(i)|xt,(i), θ t,(i), yt )
consistent with the requirement in Eq. (19) exists. The simplest option is to use the
assumed posterior model fxt |θ t,(i),yt (xt |θ t,(i), yt ) and simulate x̃ t,(i) independently

of xt,(i). However, this means that we possibly lose valuable information from xt,(i)

about the true forecast and filtering distributions that we may not have been able to
capture with the assumed model. To preserve more of this information from xt,(i), it
is important to simulate x̃ t,(i) conditionally on xt,(i).

Conceptually, an updating distribution fx̃ t,(i)|xt,(i),θ t,(i),yt (̃xt,(i)|xt,(i), θ t,(i), yt ) can
be constructed by first constructing a joint distribution fxt,(i),̃xt,(i)|θ t,(i),yt (xt,(i), x̃ t,(i)|
θ t,(i), yt ), and thereafter condition this distribution on xt,(i). The joint distribution
fxt,(i),̃xt,(i)|θ t,(i),yt (xt,(i), x̃ t,(i)|θ t,(i), yt ) can be factorised as

fxt,(i),̃xt,(i)|θ t,(i),yt (xt,(i), x̃ t,(i)|θ t,(i), yt )
= fxt |θ t,(i) (xt,(i)|θ t,(i)) fx̃ t,(i)|xt,(i),θ t,(i),yt (̃xt,(i)|xt,(i), θ t,(i), yt ). (20)

To be consistent with the requirement in Eq. (19), fxt,(i),̃xt,(i)|θ t,(i),yt (xt,(i), x̃ t,(i)|θ t,(i),
yt ) must fulfil

∑

xt,(i)

fxt,(i),̃xt,(i)|θ t,(i),yt (xt,(i), x̃ t,(i)|θ t,(i), yt ) = fxt |θ t,(i),yt (̃xt,(i)|θ t,(i), yt ), (21)

that is, when marginalising out xt,(i) we end up with the assumed posterior model. To
be consistent with the model assumptions, and so that the factorised form in Eq. (20)
holds, the distribution must also fulfil
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∑

x̃ t,(i)

fxt,(i),̃xt,(i)|θ t,(i),yt (xt,(i), x̃ t,(i)|θ t,(i), yt ) = fxt |θ t,(i) (xt,(i)|θ t,(i)), (22)

that is, when marginalising out x̃ t,(i) we end up with the assumed prior model. In
principle, infinitely many distributions fxt,(i),̃xt,(i)|θ t,(i),yt (xt,(i), x̃ t,(i)|θ t,(i), yt ) con-
sistent with the requirements in Eqs. (21) and (22) exist. In practice, however, it
is generally difficult to assess one of these distributions, except the naïve solution
where fx̃ t,(i)|xt,(i),θ t,(i),yt (·|xt,(i), θ t,(i), yt ) is set equal to the assumed posterior model

fxt |θ t,(i),yt (·|θ t,(i), yt ). Therefore, we must resort to approximations, which we con-
sider in more detail below.

3.2.2 A class of approximate updating distributions

In this sectionwepropose an approximation to fxt,(i) ,̃xt,(i)|θ t,(i),yt (xt,(i), x̃ t,(i)|θ t,(i), yt ),
which we denote by q(xt,(i), x̃ t(i)|θ t,(i), t t ). Like fxt,(i),̃xt,(i)|θ t,(i),yt (xt,(i), x̃ t,(i)|θ t,(i),
yt ), also the approximation q(xt,(i), x̃ t,(i)|θ t,(i), yt ) defines a joint distribution for
xt,(i) and x̃ t,(i) for given values of θ t,(i) and yt . However, whereas fxt,(i),̃xt,(i)|θ t,(i),yt
(xt,(i), x̃ t,(i)|θ t,(i), yt ) defines a conditional distribution for the two variables consis-
tentwith the assumedBayesianmodel,wedonot require this forq(xt,(i), x̃ t(i)|θ t,(i), t t ).
We define a class of allowed distributions q(xt,(i), x̃ t(i)|θ t,(i), t t ) by replacing the
restrictions in Eqs. (21) and (22) with two weaker restrictions, which we detail in the
following.

Let q(xt,(i), x̃ t,(i)|θ t,(i), yt ) be a DGM with respect to a graph G with vertex set
V = {1, . . . , 2n} and maximal clique set C = {c1, . . . , c|C|} where |C | is the number
of maximal cliques. Associate the n variables of xt,(i) with the nodes 1, . . . , n and
the n variables of x̃ t,(i) with the nodes n + 1, . . . , 2n, so that, for j = 1, . . . , n,
the variable xt,(i)j is associated with node j and the variable x̃ t,(i)j is associated with
node j + n. Next, let A1, . . . , A|C|, B1, . . . , B|C| denote a sequence of subsets of

V1:n = {1, . . . , n} such that the nodes of V that are associated with (xt,(i)A j
, x̃ t,(i)Bj

) form
clique c j . Mathematically, that is

A j = {i ∈ c j ; i ≤ n} (23)

and

Bj = {i − n; i ∈ c j , i > n}. (24)

Thereby, q(xt,(i)A j
, x̃ t,(i)Bj

|θ t,(i), yt ) represents the distribution of the variables (xt,(i)A j
,

x̃ t,(i)Bj
) associated with clique c j , j = 1, . . . , |C |. For example, if c1 = {1, 2, n + 1},

then A1 = {1, 2} and B1 = {1}, and q(xt,(i)1:2 , x̃ t,(i)1 |θ t,(i), yt ) represents the distribution
for the variables (xt,(i)1 , xt,(i)2 , x̃ t,(i)1 ) associated with the nodes of clique c1.
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From Sect. 2.2 we know that since q(xt,(i), x̃ t,(i)|θ t,(i), yt ) is a DGM it is fully
specified by its clique probabilities and can be expressed as

q(xt,(i), x̃ t,(i)|θ t,(i), yt ) =
∏|C|

j=1 q(xt,(i)A j
, x̃ t,(i)Bj

|θ t,(i), yt )
∏|C|−1

j=1 q(xt,(i)A j∩A j+1
, x̃ t,(i)Bj∩Bj+1

|θ t,(i), yt )
.

Hence, in order to specify q(xt,(i), x̃ t,(i)|θ t,(i), yt ), all we need to do is to appropriately
specify eachof the cliqueprobabilitiesq(xt,(i)A j

, x̃ t,(i)Bj
|θ t,(i), yt ), j = 1, . . . , |C |. Recall

that the goal is to specify q(xt,(i), x̃ t,(i)|θ t,(i), yt ) such that it approximately represents
the joint distribution in Eq. (20) subject to the constraints in Eqs. (21) and (22). To
construct such a q(xt,(i), x̃ t,(i)|θ t,(i), yt ), we replace the requirements in Eqs. (21) and
(22) by

∑

xt,(i)A j

q(xt,(i)A j
, x̃ t,(i)Bj

|θ t,(i), yt ) = fxtB j
|θ t,(i),yt (̃x

t,(i)
Bj

|θ t,(i), yt ), j = 1, . . . , |C |,

(25)

and

∑

x̃ t,(i)B j

q(xt,(i)A j
, x̃ t,(i)Bj

|θ t,(i), yt ) = fxtA j
|θ t,(i),yt (x

t,(i)
A j

|θ t,(i)), j = 1, . . . , |C |, (26)

respectively. That is, instead of requiring that q(xt,(i), x̃ t,(i)|θ t,(i), yt ) fully pre-
serves fxt |θ t (xt |θ t ) and fxt |θ t (xt |θ t , yt ), as required in Eqs. (21) and (22), we
only require that the marginal distributions fxtA j

|θ t (xtA j
|θ t ) and fxtB j

|θ t ,yt (xtB j
|θ t , yt )

are preserved. Another constraint we need to take into account when specifying
q(xt,(i), x̃ t,(i)|θ t,(i), yt ) is that the clique probabilities must be consistent in the sense
that, if we let (c1, . . . , c|C|) denote an ordering of the cliques inC which fulfils the run-
ning intersection property in Eq. (4), the probabilities for two consecutive cliques c j
and c j+1 must return the same marginal distribution for the separator s j = c j ∩ c j+1.
Mathematically, this can be written as

∑

xt,(i)A j \A j+1

∑

x̃ t,(i)B j \B j+1

q(xt,(i)A j
, x̃ t,(i)Bj

|θ t,(i), yt )

=
∑

xt,(i)A j+1\A j

∑

x̃ t,(i)B j+1\B j

q(xt,(i)A j+1
, x̃ t,(i)Bj+1

|θ t,(i), yt ). (27)

Assuming we are able to construct a DGM q(xt,(i), x̃ t,(i)|θ t,(i), yt ) consistent with
the requirements discussed above, we can condition this DGM on xt,(i) and simulate
x̃ t,(i)|xt,(i) as described in Sect. 2.2.5.

123



2380 M. K. Loe, H. Tjelmeland

Algorithm 1: Summary of general updating procedure
1. Select the distributions fθ t (θ

t ), fxt |θ t (xt |θ t ) and fyt |xt (yt |xt ) introduced in Section 3.1

2. for i = 1, . . . , M do

a) Simulate
θ t,(i)|xt,−(i), yt ∼ f

θ t |xt,−(i),yt (·|xt,−(i), yt )

as described in Appendix B
b) Construct a DGM q(xt,(i), x̃ t,(i)|θ t,(i), yt ) which fulfils Eqs. (25) to (27) and maximises

Eq. (28)
c) Simulate

x̃ t,(i)|xt,(i) ∼ q (̃xt,(i)|xt,(i), θ t,(i), yt )
as described in Section 2.2.5

end

3.3 Defining an optimal solution

There may be infinitely many distributions q(xt,(i), x̃ t,(i)|θ t,(i), yt ) which fulfil the
requirements in Eqs. (25)–(27). In this section we formulate a criterion that can be
used to identify an update distribution within the class defined above, that is robust
with respect to the assumed Bayesian model. To preserve as much information from
xt,(i) as possible in x̃ t,(i), we define the optimal q(xt,(i), x̃ t,(i)|θ t,(i), yt ) as the one
which maximises the expected number of elements in xt,(i) that remain unchanged,
i.e. the q(xt,(i), x̃ t,(i)|θ t,(i), yt ) that maximises

g(xt,(i), x̃ t,(i)) = E

⎡

⎣
n∑

j=1

1
(
xt,(i)j = x̃ t,(i)j

)
⎤

⎦ , (28)

where the expectation is taken over q(xt,(i), x̃ t,(i)|θ t,(i), yt ). Intuitively, this is a rea-
sonable optimality criterion for categorical variables which should make the update
robust. By making minimal changes to xt,(i), the updated sample x̃ t,(i) may be able to
capture properties of the true filtering distribution p(xt |y1:t ) that wemay not have cap-
tured with the posterior distribution f (xt |θ t , yt ) resulting from the assumed Bayesian
model. The key steps of the resulting updating procedure are summarised inAlgorithm
1.

4 Updating procedure using aMarkov chain assumed prior

Using the updating framework introduced above, we in this section develop the result-
ing updating procedure when the assumed Bayesian model is based on a ν’th order
Markov chain model. In particular we propose to choose the maximal cliques of the
DGM q(xt,(i), x̃ t,(i)|θ t , yt ) in such a way that the optimal solution can be computed
by solving a linear optimisation problem.
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4.1 Model specifications

Assuming the vector xt to have a one-dimensional spatial arrangement, we choose the
assumed prior distribution fxt |θ t (xt |θ t ) to be a Markov chain of order ν ≥ 1,

fxt |θ t (xt |θ t ) = fxt1:ν |θ t (xt1:ν |θ t )
n∏

j=ν+1

fxtj |xtj−ν: j−1,θ
t (xtj |xtj−ν: j−1, θ

t ).

For the likelihood model fyt |xt (yt |xt ), we assume that yt = (yt1, . . . , y
t
n) contains n

conditionally independent observations, with ytj depending only on xtj ,

fyt |xt (yt |xt ) =
n∏

j=1

f (ytj |xtj ). (29)

This choice of assumedprior and likelihoodyields a posteriormodel fxt |θ t ,yt (xt |θ t , yt )
which is also a Markov chain of order ν. The initial and transition probabilities of
this posterior Markov chain can be computed efficiently with the forward filtering-
backward smoothing algorithm for hidden Markov models (e.g., Künsch, 2000).

The parameter vector θ t should define the initial and transition probabilities of the
assumed prior Markov chain. A Markov chain of order ν is specified by n − ν + 1
transition matrices, each matrix consisting of K ν rows and K columns. Denote in the
following these transition matrices by θ t1, . . . , θ

t
n−ν+1. Furthermore, let θ0 be a vector

representing the initial probabilities of the Markov chain, and consider

θ t = (θ t0, θ
t
1, . . . , θ

t
n−ν+1).

Following the recommendations of Section 3.1, we choose fθ t (θ t ) as conjugate
for fxt |θ t (xt |θ t ). Here, this entails adopting a Dirichlet distribution for θ t0 and a
Dirichlet distribution for each of the K ν row vectors in each transition matrix θ tj ,
j = 1, . . . , n − ν + 1, and to let all these Dirichlet distributed parameters be
a priori independent. For simplicity, the remaining technical details of the spec-
ification of fθ t (θ t ) are presented in Appendix A, whereas how to simulate from
θ t |xt,−(i), yt ∼ fθ t |xt,−(i),yt (θ

t |xt,−(i), yt ) we discuss in Appendix B.

4.2 Class of updating distributions

Having specified the distributions fθ t (θ t ), fxt |θ t (xt |θ t ) and fyt |xt (yt |xt ) of the
assumed Bayesian model, the next task is to characterise the class of DGMs
q(xt,(i), x̃ t,(i)|θ t , yt ) introduced in Sect. 3.2. For this, we need to specify the cliques
of the underlying decomposable graph of q(xt,(i), x̃ t,(i)|θ t , yt ) or, equivalently, the
A j and Bj -sets in Eqs. (23) and (24). For some integer d ≥ 1, the A j and Bj -sets are
specified as

A j = Bj = { j, j + 1, . . . , j + d − 1} (30)

123



2382 M. K. Loe, H. Tjelmeland

1 2 3 4 5

6 7 8 9 10

(a)

{1, 2, 6, 7} {2, 6} {2, 3, 7, 8} {3, 7} {3, 4, 8, 9} {4, 9} {4, 5, 9, 10}

(b)

Fig. 5 a Underlying graph for the DGM q(xt,(i), x̃ t,(i)|θ t , yt ) of Sect. 4 when d = 2, b a corresponding
junction tree representation

1 2 3 4 5

6 7 8 9 10

(a)

{1, 2, 3,

6, 7, 8}
{2, 3,

7, 8}
{2, 3, 4,

7, 8, 9}
{3, 4,

8, 9}
{3, 4, 5,

8, 9, 10}

(b)

Fig. 6 a Underlying graph for the DGM q(xt,(i), x̃ t,(i)|θ t , yt ) of Sect. 4 when d = 3, b a corresponding
junction tree representation

for j = 1, . . . , n−d+1. Visually, the decomposable graphG can then be represented
as a two-dimensional grid with two rows and n columns, or as a 2×n matrix. The first
row is associated with the nodes 1, . . . , n and the second row is associated with the
nodes n+1, . . . , 2n. Each maximal clique is formed by d consecutive columns, hence
we call it a 2× d clique. The variables associated with each 2× d clique are xt,(i)j : j+d−1

and x̃ t,(i)j : j+d−1. Figures 5a and 6a illustrateG when d = 2 and d = 3, respectively, when
the state vector xt contains n = 5 variables. Figures 5b and 6b show corresponding
junction tree representations. The chosen graphical structure makes it fairly trivial to
construct corresponding junction trees.
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The criteria in Eqs. (25)–(27) can now be rewritten as

∑

xt,(i)j : j+d−1

q(xt,(i)j : j+d−1, x̃
t,(i)
j : j+d−1|θ t,(i), yt ) = fxtj : j+d−1|θ t,(i),yt (̃x

t,(i)
j : j+d−1|θ t,(i), yt ), (31)

∑

x̃ t,(i)
j : j+d−1

q(xt,(i)j : j+d−1, x̃
t,(i)
j : j+d−1|θ t,(i), yt ) = fxtj : j+d−1|θ t,(i) (x

t,(i)
j : j+d−1|θ t,(i)), (32)

and

∑

xt,(i)j

∑

x̃ t,(i)j

q(xt,(i)j : j+d−1, x̃
t,(i)
j : j+d−1|θ t,(i), yt ) =

∑

xt,(i)j+d

∑

xt,(i)j+d

q(xt,(i)j+1: j+d , x̃
t,(i)
j+1: j+d |θ t,(i), yt ), (33)

respectively.

4.3 Computing the optimal solution

When themaximal cliques of theDGMq(xt,(i), x̃ t,(i)|θ t,(i), yt ) are as specified inSect.
4.2, the optimal solution of q(xt,(i), x̃ t,(i)|θ t,(i), yt ), i.e. the solution which maximises
the expected value in Eq. (28), can be computed by solving a linear optimisation
problem where the unknowns are all the clique probabilities q(xt,(i)A j

, x̃ t,(i)A j
; θ t , yt ),

j = 1, . . . , n − d + 1. To see this, notice first that the objective function in Eq. (28)
can be rewritten as

E

⎡

⎣
n∑

j=1

1
(
x (i)
j = x̃ (i)

j

)
⎤

⎦

=
K−1∑

k=0

n∑

j=1

q(xt,(i)j = k, x̃ t,(i)j = k| θ t,(i), yt )

=
K−1∑

k=0

⎛

⎝
n−d∑

j=1

q(xt,(i)j = k, x̃ t,(i)j = k; θ t,(i), yt )

+
n∑

j=n−d+1

q(xt,(i)j = k, x̃ t,(i)j = k| θ t,(i), yt )

⎞

⎠ . (34)

All the terms in Eq. (34) can be computed by summing out variables from a corre-
sponding clique distribution q(xt,(i)A j

, x̃ t,(i)A j
; θ t,(i), yt ). More precisely, term number

j in the sum from 1 to n − d in Eq. (34) can be computed by summing out vari-
ables from q(xt,(i)A j

, x̃ t,(i)A j
; θ t,(i), yt ), while each term in the sum from n − d + 1 to n

can be computed by summing out variables from q(xt,(i)An−d+1
, x̃ t,(i)An−d+1

; θ t,(i), yt ). This

leads to an objective function which is a linear function of q(xt,(i)A j
, x̃ t,(i)A j

; θ t,(i), yt ),
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j = 1, . . . , n − d + 1. The objective function is to be maximised subject to the con-
straints in Eqs. (31) to (33), which are also linear functions of q(xt,(i)A j

, x̃ t,(i)A j
; θ t,(i), yt ).

Because q(xt,(i), x̃ t,(i)|θ t,(i), yt ) is a probability distribution, wemust also include the
constraint that q(xt,(i)A j

, x̃ t,(i)A j
|θ t,(i), yt ) sums to one,

∑

xt,(i)A j

∑

x̃ t,(i)A j

q(xt,(i)A j
, x̃ t,(i)A j

|θ t,(i), yt ) = 1, (35)

and that it can only take values between zero and one,

0 ≤ q(xt,(i)A j
, x̃ t,(i)A j

|θ t,(i), yt ) ≤ 1. (36)

These constraints are also linear functions of q(xt,(i)A j
, x̃ t,(i)A j

; θ t,(i), yt ). Thus, we have
a linear optimisation problem, or a linear program, which can be efficiently solved
with standard linear programming techniques.

5 Simulation example

In this section, the updating procedure described in Sect. 4 is demonstrated in a simula-
tion example. The example involves a filtering problemwhere the unobservedMarkov
process {xt }Tt=1 consists of T = 100 time steps, the dimension n of xt is n = 200,
and there are three classes for each element xtj of x

t : 0, 1, and 2.

5.1 Experimental setup

Our simulation experiment is a modified version of the binary simulation scheme in
Loe and Tjelmeland (2021b). As for the example in that article, we let us inspire
from the process when water comes through to an oil producing well in a petroleum
reservoir. It should be stressed, however, that we do not claim our setup to be a realistic
description for this process.

The t in xtj represents time and j the location in the well, with j = 1 being at the
top of the well and j = n at the bottom.We let the events xtj = 0 and xtj = 1 represent
the presence of porous sand stone filled with oil and water, respectively, in location j
of the well at time t , while the event xtj = 2 represents non-porous shale in the same
location. One should note that the spatial distribution of sand stone and shale does not
change with time, whereas the fluid in a sand stone may change.

We start by simulating a reference, or true, sequence of states, x1, . . . , xT . We
simulate these as a Markov chain with an initial distribution for x1 and a forward
model for generating x2 . . . , xT . The precise initial and forward models we are using
are defined in Appendix C. The simulated reference states are shown in Fig. 7a.

The horizontal and vertical axes in the figure is time and depth, respectively. The
yellow is shale and the green and blue are sand stone filled with water and oil, respec-
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Fig. 7 Simulation experiment: a The generated reference process {xt }100t=1, b the first coordinate

{(ytj,1, j = 1, . . . , 200)}100t=1 of the observation process {yt }Tt=1, and (c) the second coordinate {(ytj,2, j =
1, . . . , 200)}100t=1. In (a) yellow is shale and green and blue are sand stone filled with water and oil, respec-
tively. In (b) and (c) the colours represent the values of the continuous distributed observation processes

tively. The initial and forward models are constructed so that at time t = 0 all the sand
stone is filled with oil, whereas at time t = T most of the sand stone is filled with
water.

Given the reference states x1, . . . , xT shown in Fig. 7a we simulate corresponding
observations y1, . . . , yT . At each time t we assume the elements of yt to be condition-
ally independent given xt . To avoid that the likelihood effectively induces an ordering
of the three possible values for each xtj , we let y

j
t be a vector of two conditionally inde-

pendent normally distributed components, and choose the mean values and variances
of these normal distributions to obtain a likelihood that has full symmetry between
the three possible values of xtj . A detailed description of the likelihood function used

is given Appendix C. Images of the two components of the simulated y1, . . . , yT are
shown in Fig. 7b and c. As in Fig. 7a, the horizontal and vertical axes represent in
these figures time and depth, respectively, whereas the colours represents real values
as shown by the associated colour bars.

Having generated values for y1, . . . , yT we consider these as observed values and
the underlying reference process as unknown. We then run the proposed filtering
procedure proposed above. To generate the initial ensemble {x1,(1), . . . , x1,(M)} we
generate independent samples from the same distribution we used to generate the
reference state at time t = 0. Moreover, in the filtering procedure we use the same
forward model as we used when generating the reference state at times t > 0, and
same likelihood function as we used to generate y1, . . . , yT from the reference states.

When running the proposed updating procedure, we need to set a value for ν, i.e. the
order of the assumed Markov chain model fxt |θ t (xt |θ t ), and a value for the integer d
in Eq. (30) which determines the structure of q(xt,(i), x̃ t,(i)|θ t , yt ). High values for ν

and d, and high values for d especially, make the construction of q(xt,(i), x̃ t,(i)|θ t , yt )
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Table 1 Results from simulation experiment: proportion of correctly classified variables xtj obtained with
the MAP estimates in Eq. (37) computed in five independent runs

d = 1, ν = 1 d = 2, ν = 1 d = 3, ν = 1 d = 1, ν = 2 d = 2, ν = 2 d = 3, ν = 2

0.8649 0.8903 0.8912 0.8472 0.8831 0.8688

computer-demanding. Below, we investigate the two values ν = 1 and ν = 2, and
for each of these we consider the three values d = 1, d = 2 and d = 3. Thereby,
we have six combinations, or cases, for (ν, d). For each of these six cases, we per-
form five independent runs, using ensemble size M = 20. The hyper-parameters
at0(0), . . . , a

t
0(K

ν − 1), at, ji (0), . . . , at, ji (K − 1) of the prior distribution fθ t (θ t ) for
θ t (cf. Appendix A) at each time step t are all set equal to one, and 500 iterations are
used in the MCMC simulation of θ t,(i)|xt,−(i), yt (cf. Appendix B).

5.2 Results

To evaluate the performance of the proposed approach, we first compute, for each
of the five runs of each of the six combinations of (ν, d), the maximum a posteriori
probability (MAP) estimate x̂ j

t of xtj , t = 1, . . . , T , j = 1, . . . , n,

x̂ tj = argmax
k

{
p̂tj (k)

}
, (37)

where

p̂tj (k) = 1

M

M∑

i=1

1(̃xt,(i)j = k), k = 0, 1, 2, (38)

is an estimate of the marginal filtering probability pxtj |y1:t (k|y1:t ). Figure 8 shows

images of the computed MAP estimates {x̂ tj , j = 1, . . . , n}Tt=1 from one of the five
runs performed for each of the six cases. From a visual inspection, it seems that we in
all cases manage to capture the main characteristics of the true xt -process in Fig. 7a,
but the MAPs shown in Fig. 8a and d, which are obtained using d = 1, are possibly a
bit noisier than the others.

Table 1 lists the ratio of correctly classified variables xtj based on theMAPs obtained
from the five independent runs of each case.

According to Table 1 we classify around 85-90% of the variables correctly, and
we obtain the best results when using the combinations ν = 1, d = 2 and ν =
1, d = 3. This may suggest that adopting a first-order Markov chain (i.e., ν = 1) for
fxt |θ t (xt |θ t ) and using 2×2- or 2×3-cliques (i.e., d = 2 or d = 3) in the construction
of q(xt,(i), x̃ t,(i)|θ t,(i), yt ) is a robust strategy.

To further investigate the performance of the proposed approach, we estimate for
each j and t the probability that x̃ t,(i)j is equal to the true value xtj , and we do this for
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Fig. 8 Results from simulation experiment: MAP estimates of {xtj , j = 1, . . . , 200}100t=1

each of the classes k = 0, 1, 2. Specifically, for each run and for each j = 1, . . . , n,
t = 1, . . . , T , we compute, if xtj = 0,

π0|0 = 1

M

M∑

i=1

1(̃xt,(i)j = 0),

while if xtj = 1, we compute

π1|1 = 1

M

M∑

i=1

1(̃xt,(i)j = 1),
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and if xtj = 2, we compute

π2|2 = 1

M

M∑

i=1

1(̃xt,(i)j = 2).

There are, in the latent xt -process shown in Fig. 7a, 11929 variables xtj taking the value
0, 7271 variables taking the value 1 and 800 variables taking the value 2. Thereby,
since we run each of the six (ν, d) combinations five times, we obtain for each (ν, d)

combination 5 · 11929 samples of π0|0, 5 · 7271 samples of π1|1 and 5 · 800 samples
of π2|2. We denote the corresponding sample means by π̄0|0, π̄1|1 and π̄2|2, and we let
π̄ = 1

3

(
π̄0|0 + π̄1|1 + π̄2|2

)
. Figure 9

presents histograms constructed from the samples of π0|0, π1|1 and π2|2 for each
case, and Table 2

summarises the corresponding computed values for π̄0|0, π̄1|1, π̄2|2 and π̄ . The
values for π̄ indicate that, again, we obtain the best results using ν = 1, d = 2 and
ν = 1, d = 3. Computationally, using d = 3 is more demanding, and since the
improvement it offers over d = 2 is only minor, the best approach may be to use
ν = 1, d = 2.

6 Closing remarks

An ensemble updating method for categorical state vectors is proposed. The proposed
procedure is an improved version of the updating procedure for categorical vectors
described in Loe and Tjelmeland (2021b). What is new is mainly in how the optimal
solution of q(xt,(i), x̃ t,(i)|θ t , yt ) is computed. Loe and Tjelmeland (2021b) construct
the conditional distribution q (̃xt,(i)|xt,(i), θ t , yt ) directly based on a directed acyclic
graph (DAG) for q(xt,(i), x̃ t,(i)|θ t , yt ). The chosen structure of the DAG allows the
optimal solution of q (̃xt,(i)|xt,(i), θ t , yt ) to be computed recursively using a com-
bination of dynamic and linear programming. This strategy works well when the
elements of xt are binary, but the algorithm is difficult to generalise to situations
with more than two classes. Moreover, only one particular dependency structure for
q (̃xt,(i)|xt,(i), θ t , yt ) is considered, and it is difficult, or essentially impossible, to
generalise the algorithm to copewithmore complicated structures allowing for higher-
order interactions. In the present article, we take a different approach which in the end
results in a more flexible and general procedure. Instead of a DAG, the starting point
is an undirected graphical model for q(xt,(i), x̃ t,(i)|θ t , yt ), specifically a DGM.When
specifying the maximal cliques of this DGM one has a certain level of flexibility,
which makes it possible to study different dependency structures between xt,(i) and
x̃ t,(i). The optimal solution is computed by solving a single linear program which is
both easier to implement and computationally more efficient than the dynamic pro-
gramming algorithm proposed in Loe and Tjelmeland (2021b). Moreover, we can
easily consider more than two classes. The proposed procedure is demonstrated in a
simulation example with three classes, and the results look promising.
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Fig. 9 Results from the simulation experiment: Histograms of π0|0 (left), π1|1 (middle) and π2|2 (right)
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Table 2 Results from simulation experiment: Estimated probabilities for observing x̃ t,(i)j equal to the true

value xtj for each class k = 0, 1, 2

d = 1, ν = 1 d = 2, ν = 1 d = 3, ν = 1 d = 1, ν = 2 d = 2, ν = 2 d = 3, ν = 2

π̄0|0 0.8210 0.8685 0.8687 0.8151 0.8587 0.8848

π̄1|1 0.7558 0.7837 0.7964 0.7508 0.7840 0.7590

π̄2|2 0.7423 0.7480 0.7412 0.6935 0.7285 0.6985

π̄ 0.7730 0.8001 0.8021 0.7531 0.7904 0.7808

In Sect. 3.2, we introduced an exact and an approximate class of distributions for the
updating of the prior sample xt,(i). Although it may seem disadvantageous to pursue an
approximate approach over an exact one, we believe that in this case the approximate
approach actually provides better results. The constraints of the approximate approach
are less restrictive and allows the optimality criterion to affect the solution to a larger
extent, which may result in an optimal updating distribution which is more robust
against the assumptions of the assumed Bayesian model. That is, even if the assumed
Markov chain model is far from the truth, the optimal model q(xt,(i), x̃ t,(i)|θ t,(i), yt )
still provides reasonably good results.

Future work naturally includes to extend the proposed procedure to two dimen-
sions. Assuming xt is defined on a two-dimensional grid, a possible choice of model
for fxt |θ t (xt |θ t ) is then a Markov mesh model (Abend et al. 1965). However, when it
comes to the construction of the DGM q(xt,(i), x̃ t,(i)|θ t , yt ), the two-dimensional sit-
uation causes trouble, and we probably need to introduce some sort of approximations
to overcome this.
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A Prior specification

This appendix specifies in more detail the prior distribution fθ t (θ t ) for the param-
eter θ t of the Bayesian model in Sect. 4.1. Recall from Sect. 4.1 that θ t =
(θ t0, θ

t
1, . . . , θ

t
n−ν+1), with θ t0 representing the probabilities of the distribution

fxt1:ν |θ t (xt1:ν |θ t ) and θ ti , i = 1, . . . , n − ν, representing the K ν × K transition matrix

fxti+ν |xti :i+ν−1,θ
t (xti+ν |xti :i+ν−1, θ

t ). To simplify some of the following notations, we
will make use of the notation

N (v) =
V∑

j=1

KV− jv j

where v = (v1, . . . , vV ) is a vector of V categorical variables v j ∈ {0, 1, . . . , K −1}.
Each configuration of v thereby corresponds to an integer N (v) ∈ {0, . . . , KV − 1}.
Now, let

θ t0 = (θ t0(0), θ
t
0(1), . . . , θ

t
0(K

ν − 1))

and

θ t0(N (xt1:ν)) = fxt1:ν |θ t (xt1:ν|θ t ).

Hence, if for example fxt |θ t (xt |θ t ) is a third-order Markov chain (i.e., ν = 3)
then θ t0(N (0, 0, 0)) = θ t0(0) is the probability for (xt1, x

t
2, x

t
3) = (0, 0, 0), while

θ t0(N (0, 0, 1)) = θ t0(1) is the probability for (xt1, x
t
2, x

t
3) = (0, 0, 1). Next, let

θ ti = (θ
t,0
i , . . . , θ

t,K ν−1
i )T and θ

t, j
i = (θ

t, j
i (0), . . . , θ t, ji (K − 1))

so that θ t, ji , j = 0, . . . , K ν − 1 represents row number j + 1 of the transition matrix
θ ti , and

θ
t,N (xi :i+ν−1)

i (xti+ν) = fxti+ν |xti :i+ν−1,θ
t (xti+ν |xti :i+ν−1, θ

t ).

Hence, if for example ν = 3, then θ
t,N (0,0,0)
1 (0) is the probability that xt4 = 0 given that

(xt1, x
t
2, x

t
3) = (0, 0, 0), while θ

t,N (0,0,1)
1 (0) is the probability that xt4 = 0 given that

(xt1, x
t
2, x

t
3) = (0, 0, 1). To obtain a prior fθ t (θ t ) which is conjugate for fxt |θ t (xt |θ t )

when fxt |θ t (xt |θ t ) is a Markov chain, we start by assuming that θ t0, θ
t,0
1 , θ

t,1
1 , . . . ,

θ
t,K ν−1
n−ν are all independent a priori,

fθ t (θ
t ) = fθ t0(θ

t
0)

n−ν∏

i=1

K ν−1∏

j=0

f
θ
t, j
i

(θ
t, j
i ).
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Next,we adopt aDirichlet distribution for each of the vectors θ t0, θ
t,0
1 , θ t,11 , . . . , θ t,K

ν−1
n−ν .

Specifically, for θ t0 we adopt a Dirichlet distribution with known hyper-parameters

at0(0), . . . , a
t
0(K − 1), and for each θ

t, j
i we adopt a Dirichlet distribution with known

hyper-parameters at, ji (0), . . . , at, ji (K − 1). Then, we have

fθ t0(θ
t
0) ∝

K−1∏

k=0

(
θ t0(k)

)at0(k)

and

f
θ
t, j
i

(θ
t, j
i ) ∝

K−1∏

k=0

(
θ
t, j
i (k)

)at, ji (k)
.

B Parameter simulation

In this appendix we explain how to simulate from θ t,(i)|xt,−(i), yt ∼ fθ t |xt,−(i),yt (θ
t |

xt,−(i), yt ) when fθ t (θ t ) is as specified in Appendix A and fxt |θ t (xt |θ t ) and
fyt |xt (yt |xt ) constitute a finite state-space hidden Markov model as specified in Sect.
4.1.

Generally, one can simulate θ t,(i)|xt,−(i), yt by introducing xt as an auxiliary vari-
able and construct a Gibbs sampler which simulates (xt , θ t ) from the joint distribution

fxt ,θ t |xt,−(i),yt (x
t , θ t |xt,−(i), yt ) ∝ fθ t (θ

t ) fxt |θ t (xt |θ t ) fyt |xt (yt |xt )
∏

j �=i

fxt |θ t (xt,( j)|θ t )

by alternating between drawing xt from the full conditional distribution fxt |θ t ,xt,−(i),yt

(xt |θ t , xt,−(i), yt ) and θ t from the full conditional distribution fθ t |xt ,xt,−(i),yt

(θ t |xt , xt,−(i), yt ). From the dependency structure of the assumed Bayesian model,
see Fig. 4, it follows that

fxt |θ t ,xt,−(i),yt (x
t |θ t , xt,−(i), yt ) = fxt |θ t ,yt (xt |θ t , yt ) (39)

and

fθ t |xt ,xt,−(i),yt (θ
t |xt , xt,−(i), yt ) = fθ t |xt ,xt,−(i) (θ

t |xt , xt,−(i)). (40)

Thereby, we see that both of the full conditional distributions of the Gibbs sampler
are tractable, so the Gibbs sampler can be implemented without difficulties.

When fθ t (θ t ) is as specified in Appendix A and fxt |θ t (xt |θ t ) and fyt |xt (yt |xt )
constitute a HMM as specified in Sect. 4.1, the distribution in Eq. (39) becomes a
first-order Markov chain whose initial and transition probabilities can be computed
with the smoothing recursions for HMMs (Künsch 2000). For the distribution in Eq.
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(40), it can easily be shown that θ t0, θ
t,k
j , j = 1, . . . , n − ν, k = 0, . . . , K ν − 1 are all

independent given xt and xt,−(i), i.e.

fθ t |xt ,xt,−(i) (θ
t |xt , xt,−(i)) = fθ t0|xt ,xt,−(i) (θ

t
0|xt , xt,−(i))

∏

j,k

f
θ
t,k
j |xt ,xt,−(i) (θ

t,k
j |xt , xt,−(i)),

and that θ t0|xt , xt,−(i) is Dirichlet distributed with parameters

ãt0(r) = at0(r) + 1
(
N (xt1:ν) = r

) +
∑

m �=i

1
(
N (xt,(m)

1:ν ) = r
)

,

for r = 0, . . . , K ν − 1, and that each θ
t,k
j |xt , xt,−(i), for j = 1, . . . , n − ν and

k = 0, . . . , K ν − 1, is Dirichlet distributed with parameters

ãt,kj (r) =at,kj (r) + 1
(
N (xtj : j+ν−1) = k

)
1
(
xtν+ j = r

)

+
∑

m �=i

1
(
N (xt,(m)

j : j+ν−1) = k
)
1
(
xt,(m)
ν+ j = r

)
,

for r = 0, . . . , K − 1.

C Forward and likelihoodmodels in the simulation example

In this appendix we specify the exact initial distribution, and forward and likelihood
models we use in the simulation example discussed in Sect. 5. We start by defining the
forward model, thereafter we discuss the initial distribution and finally the likelihood
model.

To simplify the specification of the forward model, we let xt given xt−1 by a first-
order Markov chain, so that

pxt |xt−1(xt |xt−1) = pxt1|xt−1(xt1|xt−1)

n∏

j=2

pxtj |xtj−1,x
t−1(xtj |xtj−1, x

t−1). (41)

Moreover, for j = 2, . . . , n − 1 we assume that xtj in pxtj |xtj−1,x
t−1(xtj |xtj−1, x

t−1)

only depends on (in addition to xtj−1 of the vector x
t ) the three elements xt−1

j−1, x
t−1
j

and xt−1
j+1 of the vector x

t−1. Thereby,

pxtj |xtj−1,x
t−1(xtj |xtj−1, x

t−1) = pxtj |xtj−1,x
t−1
j−1,x

t−1
j ,xt−1

j+1
(xtj |xtj−1, x

t−1
j−1, x

t−1
j , xt−1

j+1)

(42)

for j = 2, . . . , n − 1. For j = 1 and j = n we correspondingly assume

pxt1|xt−1(xt1|xt−1) = pxt1|xt−1
1 ,xt−1

2
(xt1|xt−1

1 , xt−1
2 ) (43)
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and

pxtn |xtn−1,x
t−1(xtn|xtn−1, x

t−1) = pxtn |xtn−1,x
t−1
n−1,x

t−1
n

(xtn|xtn−1, x
t−1
n−1, x

t−1
n ). (44)

In the following, we first discuss the specification of Eq. (42). To obtain a model where
the spatial distribution of sand stone and shale does not change in time we set for all
xtj−1, x

t−1
j−1, x

t−1
j+1 ∈ {0, 1, 2},

pxtj |xtj−1,x
t−1
j−1,x

t−1
j ,xt−1

j+1
(xtj |xtj−1, x

t−1
j−1, x

t−1
j = 2, xt−1

j+1) =
{
1, for xtj = 2
0, otherwise,

(45)

and

pxtj |xtj−1,x
t−1
j−1,x

t−1
j ,xt−1

j+1
(xtj = 2|xtj−1, x

t−1
j−1, x

t−1
j , xt−1

j+1) = 0, for xt−1
j ∈ {0, 1}.

(46)

For the remaining probabilities in Eq. (42), we adopt the same values as used in Loe
and Tjelmeland (2021b), see Table 3.

The reasoning behind these probabilities is that if xt−1
j = 1 the probability for

having xtj = 1 should be high, and in particular this probability should be high if also

xtj−1 = 1. If xt−1
j = 0 the probability for having also xtj = 0 should be high unless

xtj−1 = xt−1
j−1 = xt−1

j+1 = 1.
The probabilities in Eqs. (43) and (44) we simply define from the values set for the

probabilities in Eq. (42) by defining the values lying outside the simulated lattice to be
zero. For x1 we define that all the elements should be equal to 0 or 2, and assume the
elements to be independent with px1j

(x1j = 2) = 1/40 and px1j
(x1j = 0) = 1 − 1/40.

This results in a vector x1 with a few (typically one node thick) layers of shales, with
the remaining elements being oil filled sand stone. One realisation from the specified
Markov process for {xt }Tt=1 is shown in Fig. 7a. This realisation is also used as the
reference process, and thereby to simulate the observations used in the simulation
example.

For the likelihood fyt |xt (yt |xt ), we know from Sect. 4 that it is sufficient to specify
fytj |xtj (y

t
j |xtj ) since the elements of yt are assumed to be conditionally independent

given xt , with ytj only depending on xtj . To avoid that the likelihood induces an
ordering of the three possible values of xtj , we let ytj be a vector with two compo-
nents, ytj = (ytj,1, y

t
j,2), and choose fytj |xtj (y

t
j |xtj ) as a bivariate Gaussian distribution

N (ytj ;μ(xtj ),�) with a mean vector

μ(xtj ) =

⎧
⎪⎨

⎪⎩

(0, 0) if xtj = 0,

(1, 0) if xtj = 1,

( 12 ,
√
3
2 ) if xtj = 2,

(47)
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Table 3 Simulation experiment: Probabilities defining the forwardmodel pxt |xt−1 (xt |xt−1) of theMarkov

process {x}Tt=1 that are not specified in Eqs. (45) or (46)

xtj−1 xt−1
j−1 xt−1

j+1 p(xtj = 1|xtj−1, x
t−1
j−1, x

t−1
j = 0, xt−1

j+1) p(xtj = 1|xtj−1, x
t−1
j−1, x

t−1
j = 1, xt−1

j+1)

0 0 0 0.0050 0.9800

0 0 1 0.0400 0.9800

0 0 2 0.0050 0.9800

0 1 0 0.0100 0.9900

0 1 1 0.0400 0.9800

0 1 2 0.0100 0.9800

0 2 0 0.0050 0.9900

0 2 1 0.0400 0.9800

0 2 2 0.0050 0.9800

1 0 0 0.0100 0.9900

1 0 1 0.0400 0.9999

1 0 2 0.0100 0.9999

1 1 0 0.0400 0.9999

1 1 1 0.9800 0.9999

1 1 2 0.0400 0.9999

1 2 0 0.0100 0.9999

1 2 1 0.0400 0.9999

1 2 2 0.0100 0.9999

2 0 0 0.0050 0.9999

2 0 1 0.0400 0.9999

2 0 2 0.0050 0.9999

2 1 0 0.0100 0.9999

2 1 1 0.0400 0.9999

2 1 2 0.0100 0.9999

2 2 0 0.0050 0.9999

2 2 1 0.0400 0.9999

2 2 2 0.0050 0.9999

and covariance matrix � = σ 2 I . As illustrated in Figure 10,
the mean vectors μ(0), μ(1) and μ(2) are chosen to lie at the vertices of an equi-

lateral triangle with unit sides. This is to avoid an ordering of the three classes. We
assume in this simulation experiment that the true likelihood model pyt |xt (yt |xt ) and
the assumed likelihood model fyt |xt (yt |xt ) are equal. As such, the assumed likelihood
model fyt |xt (yt |xt ) is used to generate the observation process {yt }Tt=1. Specifically,
using the simulatedMarkov process shown in Fig. 7a and setting σ = 1.0, we generate
{yt }Tt=1 by simulating, independently for each j = 1, . . . , 200 and t = 1, . . . , 100,

ytj ∼ fytj |xtj (·|x
t
j ).
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(0, 0) (1, 0)

( 1
2 ,

√
3

2 )

ytj,2

ytj,1

N (ytj ;µ(0),Σ) N (ytj ;µ(1),Σ)

N (ytj ;µ(2),Σ)

Fig. 10 Simulation experiment: Illustration of assumed likelihood model fytj |xtj (y
t
j |xtj )

An image of {(ytj,1, j = 1, . . . , n)}Tt=1 is shown in Fig. 7b and an image of {(ytj,2,
j = 1, . . . , n)}Tt=1 is shown in Fig. 7c.
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