
Ocean Engineering 270 (2023) 113685

A
0

Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Towards contract-based verification for autonomous vessels
Tobias Rye Torben a,∗, Øyvind Smogeli a,b, Jon Arne Glomsrud c, Ingrid B. Utne a,
Asgeir J. Sørensen a

a Centre for Autonomous Marine Operations and Systems (AMOS), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
b Zeabuz AS, Trondheim, Norway
c Group Research and Development, Det Norske Veritas (DNV), Høvik, Norway

A R T I C L E I N F O

Keywords:
Autonomous vessels
Contract-based design
Verification
Formal methods
Simulation-based testing

A B S T R A C T

Design and verification of autonomous vessels represent a major interdisciplinary engineering challenge due
to the combination of high system complexity and the interaction with dynamic, uncertain, and unstructured
environments. This paper investigates the use of contract-based methods to address both design and verification
challenges of control systems for autonomous vessels. The paper first presents a formal framework for
specification of components and assume-guarantee contracts using the syntax of the Z3 automated theorem
prover. Then, the paper proposes a methodology for contract-based verification using the formal framework.
The methodology is divided into 4 steps: (1) Hazard identification between the autonomous vessel and the
operative environment in order to define the top-level component and contract, (2) stepwise refinement of the
top-level component into detailed sub-components and contracts, (3) definition of test setups for simulation-
based testing to verify that components meet their contract, and (4) applying a recursive procedure for
contracts-based system verification. The framework and methodology are demonstrated the in a case study
with an autonomous passenger ferry.
1. Introduction

The control systems that govern modern ships are continuously
increasing in complexity and becoming more software intensive. The
recent development of autonomous vessels represents the ultimate cul-
mination of this trend. Building on top of existing advanced maritime
guidance, navigation, and control systems, autonomous vessels must
additionally be capable of obtaining situational awareness and per-
forming intelligent planning and decision making under uncertainty in
the dynamic and unstructured maritime environment. The development
of autonomous vessels is enabled by recent advances in control, opti-
mization, planning, artificial intelligence, computer vision, and sensor
fusion, in addition to the ever-increasing computational resources avail-
able for embedded systems. However, although these technological
advances allow us to implement the different functionalities necessary
for autonomy, combining all of them into an integrated system, layered
on top of the already complex maritime control systems, results in
an unprecedented level of system complexity. In addition to the sheer
complexity, verification of autonomous systems is generally very hard
due to their extensive sensing and interaction with the open environ-
ment. This leads to an infinite number of unknown scenarios that an

∗ Corresponding author.
E-mail address: tobias.torben@ntnu.no (T.R. Torben).
URL: https://www.ntnu.edu/employees/tobias.torben (T.R. Torben).

autonomous vessel may encounter in operation, and it will thus never
be possible to specify the required behavior in every scenario during
design (Torben et al., 2022b; Murray et al., 2022). To design reliable
and robust autonomous vessel control systems and verify their safety
and functionality, there is a clear need for new methodology both in
design and verification.

Several recent works propose methodologies for verification of au-
tonomous vessel control systems. The use of Systems-Theoretic Process
Analysis (STPA) has been proposed for deriving safety requirements to
verify against (Rokseth et al., 2019; Chaal et al., 2020). The use of STPA
in combination with Bayesian Belief Networks has also been proposed
as a design methodology to give autonomous vessels an online risk
management capability (Utne et al., 2020). Simulation-based testing is
frequently proposed as a methodology to produce verification evidence
for autonomous vessels (Pedersen et al., 2020). Existing work addresses
simulation-based testing of collision avoidance aspects (Woerner et al.,
2019; Bakdi et al., 2021) and situational awareness aspects (Vasstein,
2021). Some work is also emerging on formal methods for design
and verification of autonomous vessels (Shokri-Manninen et al., 2020;
Foster et al., 2020). We strongly believe that design and verification
of autonomous vessels needs to be modular in order to manage the
vailable online 17 January 2023
029-8018/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.oceaneng.2023.113685
Received 15 October 2022; Received in revised form 18 December 2022; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

10 January 2023

https://www.elsevier.com/locate/oceaneng
http://www.elsevier.com/locate/oceaneng
mailto:tobias.torben@ntnu.no
https://www.ntnu.edu/employees/tobias.torben
https://doi.org/10.1016/j.oceaneng.2023.113685
https://doi.org/10.1016/j.oceaneng.2023.113685
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2023.113685&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Ocean Engineering 270 (2023) 113685T.R. Torben et al.

n
w
a
C
a
i
a
a
t
o
i
c
c
e
r
f
c
s
(
w
a
c
t
i
a
2
t
a
I
n
o
v
n
f

p
v
i
c
c
(
s
m
i
t
a
a
s
n
t
w
s
s
r
c
o

immense complexity. The current research frontier addresses method-
ology for system-level risk assessment and requirement derivation as
well as methodology to verify certain modules of autonomous vessels.
However, we see an unresolved need for a modular methodology to
go from system-level requirements and verification to detailed module
requirements and verification in a coherent and coordinated way. We
propose a contract-based approach as a candidate to address these
needs.

Contract-based design is a modular approach to system design. The
system is modularized into encapsulated design units called compo-
ents. Each component is associated with an assume-guarantee contract
hich specifies what the component assumes about its environment
nd what behavior it can guarantee given that these assumptions hold.
ontract-based design can also support stepwise refinement, where
high-level contract for a component at a high abstraction level is

ncrementally refined into more detailed contracts for sub-components
t lower abstraction levels (Abrial, 2011). The ultimate goal of taking
contract-based design approach is to enable compositional reasoning,

hat is, reasoning about the correctness of a composed system based
n the contracts of individual components. Compositional reasoning
ncludes both checking that the contracts of connected components are
ompatible and that the composition of contracts for sub-components
orrectly refines the higher-level contract. By taking on a suitable math-
matical formalism when specifying the contracts, it is also possible to
eason about the correctness of a composition or refinement step in a
ormal, mathematical manner (Cimatti and Tonetta, 2012). The use of
ontracts for specification was originally introduced in the context of
oftware engineering, with the design by contract methodology of Meyer
1992). In the same period, the foundation for compositional reasoning
as also developed in the pioneering work of Clarke et al. (1989)
s a divide-and-conquer solution to the scalability issues of model
heckers. Over the past two decades, significant research has attempted
o apply contract-based methods to cyber–physical systems resulting
n more complete frameworks combining specification, refinement,
nd verification (Sangiovanni-Vincentelli et al., 2012; Nuzzo et al.,
015). Contract-based methods have seen application in other indus-
ries which are faced with complex and safety critical systems, such as
viation (Nuzzo et al., 2014) and automotive (Benveniste et al., 2008).
n the maritime industry, however, contract-based methodologies have
ot yet seen any adoption. A notable exception is the recent publication
f Hake et al. (2021), which proposes a contract-based methodology for
erifying software updates on shipboard equipment. The authors are
ot aware of any previous research targeting contract-based verification
or autonomous vessels.

We believe that taking a contract-based design approach has the
otential to address many of the challenges related to design and
erification of autonomous vessel control systems. Having modularity
n a design is a well-proven technique for decomposing and managing
omplexity. Modularity often also comes as a necessity in maritime
ontrol systems when integrating custom and commercial-off-the-shelf
COTS) components from several different vendors. Having a more
tructured and formalized integration of control systems and equip-
ent from different vendors is a long-standing need in the maritime

ndustry (Smogeli et al., 2020). Another challenge for complex sys-
ems in general, and autonomous systems in particular, is to derive

complete and coherent set of system requirements to ensure safe
nd correct behavior (Rokseth and Utne, 2019). In a contract-based
etting, the contracts act as the requirements for individual compo-
ents. Because components can be structured hierarchically, meaning
hat a component can be implemented by a set of sub-components,
e can analyze the system at different abstraction levels. This may

implify the derivation of requirements, as the derivation of detailed
ub-components contracts often emerges naturally as a combination of
efining the higher-level contract and being compatible with other sub-
omponent contracts. Refinement checking ensures the completeness
2

f contracts with respect to the top-level contract. Another benefit
of deriving assume-guarantee contracts is that all assumptions in the
system are made explicit and may be monitored online as an addi-
tional safety function. In addition to compositional reasoning about
contracts, a central step in the verification process is to show that
each component complies with its contract. Due to the complexity and
the types of algorithms used in autonomous vessel control systems,
formal verification of contract compliance will likely be impossible
with the current state-of-the-art. Therefore, we propose simulation-
based testing as an alternative solution for verifying contract compli-
ance (Pedersen et al., 2020). Although exhaustive verification cannot
be achieved with a testing method, simulation-based testing already has
a strong and successful history in the verification of maritime control
systems (Smogeli and Skogdalen, 2011; Smogeli, 2015), and several
methodologies exist for increasing the exhaustiveness (Torben et al.,
2022a). It will be beneficial to use a combination of several different
simulators to achieve both realistic and integrated simulations and high
test coverage. We believe that a contract-based framework can be used
together with simulation-based testing in a mutually beneficial way.
The simulation-based testing acts as a means to generate evidence
of contract compliance, and the contract framework ensures that the
testing efforts combine in a structured and coordinated way in order to
build evidence of the overall system correctness.

The research objective of the current work is to investigate if a
contract-based design approach can enable more structured and for-
malized verification of autonomous vessel control systems, and the
main scientific contribution is a top-down methodology for contract-
based verification of such systems. This paper is outlined as follows.
In Section 2 we first introduce some mathematical foundations before
we present a framework for defining components and specifying con-
tracts using the Z3 theorem prover (de Moura and Bjørner, 2008). In
Section 3 we present a methodology for contract-based verification
using the framework of Section 2. The methodology is divided into
4 steps: (1) Hazard identification between the autonomous vessel and
the operative environment in order to define the top-level component
and contract, (2) stepwise refinement of the top-level component into
detailed sub-components and contracts, (3) definition of test setups for
simulation-based testing to verify that components meet their contract,
and (4) applying a recursive procedure for contracts-based system
verification. In Section 4, we demonstrate the use of the contract-
based framework and methodology in a case study with an autonomous
passenger ferry. In Section 5 we discuss some challenges of the method-
ology and possible approaches to address these. Concluding remarks
and suggestions for future work are given in Section 6.

2. Contract framework for system verification

In this section, we introduce the contract framework used in this
work. We begin by presenting the mathematical foundations, where
components and contracts are abstractly defined in terms of sets of
behaviors. Then we go on to introduce the Z3 theorem prover and show
concretely how components and contracts can be specified using the
syntax of Z3. Table 1 is included to give an overview of the most used
symbols.

2.1. Preliminaries: Mathematical foundation for contract-based design

The mathematical foundation for the framework is defined using
set notation. This is based on the assume-guarantee contract theory
from Benveniste et al. (2018), to which the reader is referred for further
details.

Consider the variables 𝑣1, 𝑣2,… , 𝑣𝑛, each with domain 𝐷1, 𝐷2, .., 𝐷𝑛.
Let 𝑉 ∶= 𝐷1 × 𝐷2 × ⋯ × 𝐷𝑛. A reaction 𝑠 ∈ 𝑉 is defined as a vector
assigning values from 𝑉 to each variable. A behavior 𝜎 is defined as
a, possibly infinite, discrete-time sequence of reactions 𝜎 = 𝑠1, 𝑠2, 𝑠3,….
We add a special symbol, ⊥, to the domain of each variable, to indicate

the absence of a reaction to a particular variable and define the

Ocean Engineering 270 (2023) 113685T.R. Torben et al.

b
a
e
𝑀
b

l
t
t
w
c
C
s
S
c


v



a
h
p



T
a
t

d



c
i
w
s
d
p

Table 1
Overview of the most used symbols in this paper.
𝜎 Behavior
𝑀 Component
 Contract
𝐴 The set of behaviors that define the assumptions of an assume-guarantee contract
𝐺 The set of behaviors that define the guarantee of an assume-guarantee contract
𝜑𝐴 The logic formula which specifies the assumptions 𝐴 of a contract
𝜑𝐺 The logic formula which specifies the guarantees 𝐺 of a contract
𝑏 Observer for the contract 
silent reaction 𝜖 as the reaction which assigns ⊥ to each variable. For
simplicity, we consider only synchronous behaviors here, where each
variable is assigned a reaction simultaneously at discrete time steps.
Extensions to consider asynchronous behaviors may be achieved using
Kahn Process Networks (Kahn, 1974), as proposed by Benveniste et al.
(2018).

A component, 𝑀 , is described abstractly in terms of the set 𝑃 of
ehaviors the component exhibits. In practice, the set of behaviors for
component can for instance be specified in terms of a differential

quation or a computer program. The composition of two components
1 × 𝑀2 is defined as the intersection of their respective sets of

ehaviors 𝑃1 ∩ 𝑃2.
A contract is defined as a pair of assertions  = (𝐴,𝐺), where 𝐴 are

called the assumptions and 𝐺 are called the guarantees. The set  of
egal environments is the collection of all components 𝐸 for , such
hat 𝐸 ⊆ 𝐴. The set  of legal implementations of  is defined by
he collection of components 𝑀 such that 𝐴 × 𝑀 ⊆ 𝐺. All contracts
hich admit the same set of behaviors are by definition equivalent. A

ontract is saturated if 𝐺 = 𝐺 ∪ 𝐴𝑐 , where 𝐴𝑐 is the complement of 𝐴.
ontract saturation means that the set of guarantees is maximal in the
ense that it contains all behaviors where the assumptions do not hold.
ince the guarantees only are in force when the assumptions hold, all
ontracts can be transformed into an equivalent saturated contract.

Next, we define a set of contract operations. Let 1 = (𝐴1, 𝐺1) and
2 = (𝐴2, 𝐺2) be two saturated contracts defined over the same set of
ariables. The refinement relation 2 ≤ 1 is defined by

2 ≤ 1 iff 𝐺2 ⊆ 𝐺1 and 𝐴2 ⊇ 𝐴1.

If this relation is satisfied, we say that 2 refines 1. Refinement is
n ordering of the relative strength of contracts. Informally, a contract
as to have as strong or stronger guarantees and as permissive or more
ermissive assumptions as another contract in order to refine it.

The conjunction of 1 and 2, denoted 1 ∧ 2, is defined as

1 ∧ 2 ∶= (𝐴1 ∪ 𝐴2, 𝐺1 ∩ 𝐺2).

ypically, conjunction is used to impose several different contracts on
component, such that the component needs to comply with each of

hem in order to comply with the conjunction.
The composition of two contracts is denoted 1 ⊗ 2. Composition is

efined as

1 ⊗ 2 ∶= (𝐺1 ∩ 𝐺2, (𝐴1 ∩ 𝐴2) ∪ (𝐺1 ∩ 𝐺2)𝑐)

Similar to the composition of components, composition of contracts
an be used to construct composite contracts out of simpler ones. For
nstance, if a component is implemented by a set of sub-components,
e may want to verify that the composition of the contracts for the

ub-components refines the contract of the parent component. From the
efinition of composition, it can be seen that a component has to com-
ly with the guarantees of both 1 and 2. However, the assumptions of

the composite contract are relaxed, as some of the assumptions may be
covered by the guarantees of the other contract. It can be shown that
using these definitions, the conjunction and composition operators are
associative and commutative.

Finally, we define the concept of observers. Observers are in this
context used for evaluating whether a single behavior complies with
a contract or not, which is central when testing a component. For a
contract  = (𝐴,𝐺) and a behavior 𝜎, the observer 𝑏 (𝜎, 𝐴,𝐺) = 𝑇 𝑟𝑢𝑒

𝑐

3

iff 𝜎 ∈ 𝐺 ∪ 𝐴 . Otherwise, 𝑏 (𝜎, 𝐴,𝐺) = 𝐹𝑎𝑙𝑠𝑒.
2.2. Contract framework using the Z3 theorem prover

We continue by presenting a concrete contract framework that uses
the syntax of the Z3 automated theorem prover to specify components
and contracts and show how this relates to the abstract framework of
Section 2.1.

2.2.1. A short intro to Z3
Z3 is an open-source automated theorem prover (ATP) developed

by Microsoft Research (de Moura and Bjørner, 2008). ATPs are tools
that are given a mathematical theorem as input and attempt to au-
tomatically prove or disprove it. Z3 is an ATP of the Satisfiability
Modulo Theories (SMT) solver type. To understand SMT solvers, we
first introduce the simpler and more well-known boolean satisfiability
solvers, commonly referred to as SAT solvers. SAT solvers attempt to
decide if a boolean expression in the form of a propositional logic
formula is satisfiable or not, that is, if there is a combination of true
or false assignments to the boolean variable which makes the formula
true. SAT solving is nondeterministic polynomial-time complete (NP-
complete), and a wide range of important NP-complete problems can
be rephrased as SAT problems. Significant effort has therefore been put
into developing efficient heuristics for SAT solving, such that state-
of-the-art SAT solvers can solve problem instances involving several
hundred thousand variables.

SMT solvers generalize SAT solvers from boolean formulas to more
complex formulas involving e.g. integers, real numbers, arrays, or
strings. This is achieved by combining a SAT solver with a set of
domain-specific theories, such as linear arithmetic. SMT solvers can be
used as ATPs by checking the satisfiability of the negation of a theorem.
If the negation of the theorem is found to be unsatisfiable, then the
theorem is proved. If, on the other hand, a solution is found which
satisfies the negation of the theorem, this will disprove the theorem,
and the SMT will return the solution as a counterexample.

Z3 operates on first-order logic formulas, which in addition to the
operators of propositional logic (And (∧), Or (∨), Negation (¬) and
Implication (→)), contain the universal quantifier ‘‘for all’’, denoted
by the symbol ∀, and the existential quantifier ‘‘there exists’’, denoted
by the symbol ∃. Z3 has bindings for several programming languages.
In this paper we will use the Python bindings as the syntax to define
components and contracts due to its good readability and Python being
a widely known language.

2.2.2. Component model
Next we define the component model of our contract framework.

The model is illustrated conceptually in Fig. 1. The component interface
consists of out-ports, which are controlled by the component, and in-
ports, which are controlled by the environment of the component.
In addition, a component can have a set of parameters which are
constant during a simulation. The communication between components
is achieved by sending messages on out-ports that are received on the
in-ports of other components. The data structure of a message is defined
by its message type. The message type is defined by declaring a set of
variables defined by a variable name and data type. Variables can be
nested to form struct-like data structures. The allowed data types are
the Z3 basic data types Real, Int and Bool. The basic data types also
have fixed-length vectorial versions, denoted RealVector, IntVector and

Ocean Engineering 270 (2023) 113685T.R. Torben et al.
Fig. 1. Conceptual view of the component model used in this work.

Fig. 2. Example of a composite component structure with two abstraction levels.
Component 𝑀 is implemented by the sub-components 𝑀1, 𝑀2, and 𝑀3 such that
𝑀 = 𝑀1 ×𝑀2 ×𝑀3.

BoolVector. We note that Z3 supports several other datatypes, such as
strings, arrays, bit vectors and even floating point numbers, however,
this is not explored further in our work. For examples of message type
definitions, the reader is referred to the case study in Section 4.2.

The implementation of a component synchronously reads messages
from the in-ports and assigns messages to the out-ports at each discrete
time step. Assignment of a None object is used to indicate the absence
of an assignment (similar to the silent reaction in Section 2.1). We
separate between two types of components: Composite components,
which are implemented by composition of sub-components, and atomic
components which are implemented directly, for instance as a C pro-
gram or a ROS node. The fact that a component can be implemented
by a set of sub-components is a key concept in our component model.
This means that components can be structured hierarchically, which
enables a system to be analyzed at different abstraction levels. This
is an effective approach to manage the complexity both during the
design and verification phases. The following section will show how
we propose to utilize the hierarchical component structure in our
verification framework. An example of a composite component is given
in Fig. 2.

To draw a comparison back to the abstract framework of Sec-
tion 2.1, the variables 𝑣1, 𝑣2,… , 𝑣𝑛 correspond to the in-ports and
out-ports of the component. The domains of each variable, 𝐷1, 𝐷2, .., 𝐷𝑛
are defined by the corresponding message type of the component. A
behavior is a discrete sequence of messages assigned to each port of
the behavior, and the set of behaviors for the component is implicitly
defined by the implementation of the component. Composition of com-
ponents is achieved by connecting the out-ports of one component with
the in-ports of another component with the same message type.

2.2.3. Contract specification in Z3
As introduced in Section 2.1, contracts characterize the legal envi-

ronments and legal implementations for components. In assume/guar-
antee contracts, a contract  is defined by a pair of assertions that
specify the set of legal environment behaviors, called the assumptions
𝐴, and the set of guaranteed component behaviors given that the
4

assumptions hold, called the guarantees 𝐺. We propose to use first-
order logic formulas in the Z3 syntax to specify the sets 𝐴 and 𝐺 of
the contract.

In our framework, a contract is linked to a specific component and
therefore acts as a specification of requirements for the component.
To preserve modularity, a contract may only refer to the ports of the
component it is linked to. A contract consists of two first-order logic
formulas 𝜑𝐴 and 𝜑𝐺 which define the assumptions and guarantees,
respectively. The basic building blocks of the logic formulas are predi-
cates, which are functions 𝜋 ∶ 𝑉 ↦ B mapping values of the variables
𝑣 to a boolean value. An example of a predicate on the variable 𝑥 ∈ R
is 𝑥 ≤ 10. In the formulas 𝜑𝐴 and 𝜑𝐺, several predicates are combined
using the first-order logic operators. 𝑥 ≤ 10 ∧ 𝑥 ≥ 0 is an example of a
formula with two predicates connected by the ∧ operator. Usually, we
wish to specify several assumptions and guarantees for a component.
This can easily be achieved by letting the formulas 𝜑𝐴 and 𝜑𝐺 be
formulated as a conjunction of individual assumptions and guarantees.

Comparing this with the abstract definition of assume/guarantee
contracts in Section 2.1, the sets 𝐴 and 𝐺 are now defined by the logic
formulas 𝜑𝐴 and 𝜑𝐺. We only consider specification of time-invariant
properties in this work, that is, properties that must hold at each time
step. Extensions to consider temporal properties may be achieved by
using a temporal logic, such as Signal Temporal Logic (STL) (Maler
and Nickovic, 2004). For time-invariant assumptions and guarantees,
the sets 𝐴 and 𝐺 are simply subsets of 𝑉 . The formulas (𝜑𝐴, 𝜑𝐺), and
the sets (𝐴, 𝐺) are related as follows. Each predicate 𝜋𝑖 in the logic
formulas defines a set (𝜋𝑖) ⊆ 𝑉 where that predicate is true. When
combining predicates into a logic formula, the set that the formula
defines is defined for each logical operation. Logical conjunction, 𝜋1∧𝜋2
translates to set intersection (𝜋1) ∩ (𝜋2). Logical disjunction, 𝜋1 ∨ 𝜋2
translates to set union (𝜋1)∪(𝜋2). Logical negation, ¬𝜋1 translates to
set complement (𝜋1)𝑐 . Translation of the logical quantifiers (∀ and ∃)
is also possible, but this is not explored further in our work.

As shown in Section 2.1, a behavior 𝜎 complies with the contract if
𝜎 ∈ 𝐺 ∪ 𝐴𝑐 . In terms of the first-order logic formulas, 𝜎 complies with
the contract iff 𝜑𝐺(𝜎) ∨ ¬𝜑𝐴(𝜎) = 𝑇 𝑟𝑢𝑒. This coincides the definition
of logical implication: 𝑝 → 𝑞 ∶= 𝑞 ∨ ¬𝑝. Hence, a behavior 𝜎 satisfies
the contract  = (𝜑𝐺 , 𝜑𝐺) iff 𝜑𝐴(𝜎) → 𝜑𝐺(𝜎) = 𝑇 𝑟𝑢𝑒. Moreover, this
entails that the observer for  is simply defined as 𝑏 (𝜎, 𝜑𝐴, 𝜑𝐺) =
𝜑𝐴(𝜎) → 𝜑𝐺(𝜎). For specific examples of contracts, the reader is referred
to Section 4.2 of the case study.

3. Methodology for contract-based verification of autonomous
vessels

In this section, we propose a step-by-step methodology for contract-
based verification of autonomous vessels using the framework intro-
duced in Section 2. Step 1 defines the top-level level component and
specifies the top-level contract in order to ensure safe interactions with
the operative environment. Step 2 refines the top-level components and
contracts in a series of refinement steps until we reach a sufficient
level of detail. Step 3 defines the simulation-based test setup for each
component. Finally, Step 4 applies a recursive algorithm that verifies
contract refinement and runs simulation-based testing to verify contract
compliance. The methodology is illustrated in Fig. 3. We give a few
illustrative examples in this section. Instead, we recommend the reader
to look at the corresponding steps in the case study of Section 4 for
concrete examples.

Step 1: Define the top-level component and contract

To enable contract-based verification for an autonomous vessel,
we must first define the component structure and assign contracts to
the components. This can be done both during the design of a new
autonomous vessel and by formulating an existing autonomous vessel
design in terms of components and contracts. In Step 1, we begin at

Ocean Engineering 270 (2023) 113685T.R. Torben et al.
Fig. 3. The 4 steps of the proposed methodology for contract-based verification.
Fig. 4. Step 1: Define the top-level component and contract.
the top-level view, shown in Fig. 4. This consists of two components;
the autonomous vessel and its operative environment. The first step is
modeling the operative environment and identifying all relevant inter-
actions between the autonomous vessel and its operative environment.
This involves creating the necessary port definitions and corresponding
message types between the autonomous vessel component and the
operative environment component.

Next, the top-level contract between these components must be
formulated. The assumptions of the top-level contract specify which
environmental conditions the autonomous vessel is designed to operate
under, and thus define the operational design domain (ODD). The
guarantees of the top-level contract form the system-level requirements
on the behavior of the autonomous vessel.

Achieving completeness both in identifying relevant interactions
with the operative environment and constraining these in the top-
level contract is of paramount importance in the verification process.
Achieving sufficient completeness in requirements and identifying rel-
evant test scenarios for verification are generally major challenges in
the assurance process for complex systems (Rokseth and Utne, 2019)
and in particular for systems with a high level of autonomy (Rokseth
et al., 2019). The STPA methodology provides a systematic top-down
approach to hazard identification and generation of loss scenarios
which may constitute an important foundation for increasing the com-
pleteness when identifying interactions and formulating the top-level
contract. Moreover, we believe that our top-down approach simplifies
the requirement identification process since the top-level contract is
formulated at a high level of abstraction. More detailed requirements
are either derived from the top-level contract or emerge at lower ab-
straction levels to constrain the interactions between sub-components.
This allows us to focus on specifying the desired system-level behavior
at this stage, such as keeping a minimum distance to other vessels,
and leave the details regarding how these requirements are satisfied
and all the ways in which they can be violated, to the more detailed
requirements further down in the abstraction levels.

Note that the assumptions of the top-level component are special.
Since they are assumptions on the operative environment, they are
outside of our control. Examples of environmental assumptions are
assuming that the speed of other vessels is below some threshold, or
5

that the weather conditions satisfy certain criteria. Even though we
cannot control the environment to comply with these assumptions,
we believe it is important to specify them. Having awareness of the
assumptions of the environment is critical to designing a safe and
robust system, and it allows us to monitor these assumptions and take
appropriate action if they are violated.

Step 2: Stepwise refinement into sub-components

After the top-level component and contract have been established
in Step 1, Step 2 involves a series of design iterations where the com-
ponents and contracts are incrementally refined into a more detailed
and implementation-ready form. This process takes place as a series of
well-defined refinement steps. In each refinement step, a component
is decomposed into a set of sub-components, as illustrated in Fig. 2.
Additionally, contracts must be assigned to each new sub-component.
The composition of the contracts of the sub-components has to refine
the contract of the component which the sub-components implement.
The contracts of the sub-components also need to be compatible with
each other, that is, if an out-port of component 𝑀𝑖 with contract 𝑖 =
(𝜑𝑖

𝐴, 𝜑
𝑖
𝐺) is connected to an in-port of component 𝑀𝑗 with contract

𝑗 = (𝜑𝑗
𝐴, 𝜑

𝑗
𝐺), then the guarantees of 𝑖 have to be strong enough

to enforce the assumptions of 𝑗 . Note that the actual checking of the
correctness of the refinement is done in Step 4.

Arriving at component architecture with corresponding contracts
that respect both refinement and compatibility is a design exercise that
requires good engineering judgment. Architectural decisions must be
made, custom components must be designed and COTS components
must be selected. This is an iterative process that often involves contract
negotiations. For instance, when composing a set of sub-components,
one may realize that the selected sensor does not have the preci-
sion required to refine the contract of the parent component. In this
case, a new design iteration is required, for instance by selecting a
more precise sensor or designing a more precise controller. In fact,
this is very similar to the types of decisions that engineers typically
make during system design, however, the contract-based concepts of
contracts, composition, and refinement give a language and frame-
work to analyze these questions in a more structured and formalized
manner (Benveniste et al., 2018).

Ocean Engineering 270 (2023) 113685T.R. Torben et al.
The refinement process of Step 2 should be continued until all
components are described at a level of detail that can readily be im-
plemented in hardware or software. Moreover, all components should
be decomposed until they are simple enough to be verified to the
desired level of assurance. For critical components, the refinement may
continue all the way to individual software functions, whereas the
refinement of less critical components may be stopped at a higher level
of abstraction. In some cases, the refinement stops naturally at COTS
components.

Step 3: Defining test setups for simulation-based testing

Having the full system structure, in form of a component structure
with corresponding contracts, Step 3 involves defining test setups for
simulation-based testing of the components. We first give some back-
ground on why we propose to combine simulation-based testing and
contract-based verification before we state the specific activities for
Step 3.

3.1. Combining simulation-based testing and contract-based verification

Testing is a method for verifying a component where only a selected
subset of the behaviors of the component is checked. This is the
most common means of verification for embedded systems, because
exhaustive verification is often too time-consuming or not feasible at
all (Kapinski et al., 2016). In simulation-based testing, the component is
tested in a simulated environment. Parts of the component itself may
also be simulated in order to focus testing on certain aspects. Some
common component representations for simulation-based testing are
Hardware-in-the-Loop (HiL), where the real component software runs
on the real component hardware, Software-in-the-Loop (SiL), where
the real component software runs on virtualized hardware, and Model-
in-the-Loop (MiL), where a simulation model of the component is
used (Torben et al., 2022a). Simulation is able to analyze the system-
level behavior of highly complex systems. Autonomous vessels are
characterized by high levels of complexity in their hardware and soft-
ware systems, as well as in their complex interaction with the operative
environment. Combined with the intrinsic challenges related to verifi-
cation of autonomous functions, such as the use of machine learning
components and hard-to-predict emergent behaviors, currently there
exist no viable alternatives to simulation-based testing for verifying
their system-level behavior. It is widely agreed upon that simulation-
based testing will be a key solution for the assurance of autonomous
vessels (Pedersen et al., 2020). Next, we show how existing methodolo-
gies for simulation-based testing and contract-based verification can be
combined in a mutually beneficial way.

A central activity in contract-based verification is to prove that a
component complies with its contract. We call this activity contract
compliance checking. Most previous examples of contract-based verifica-
tion have used formal verification techniques for contract compliance
checking, such as model checking (Clarke, 1997). This is attractive,
as it results in a rigorous mathematical proof of contract compliance.
However, due to the overall complexity, the hybrid system dynamics,
and the use of advanced control techniques such as machine learn-
ing algorithms and model predictive control (MPC), state-of-the-art
formal verification techniques are not capable of formally verifying
all aspects of autonomous vessel control systems. Thus, we propose
simulation-based testing as an alternative approach to contract com-
pliance checking. Instead of formally verifying that all behaviors of
a component comply with the contract of the component, simulation-
based testing will generate evidence of contract compliance by running
an adequate number of simulations in well-chosen scenarios and evalu-
ating the resulting behaviors against the contract using an observer for
the contract. Existing methodology for simulation-based testing, which
addresses scenario selection and coverage assessment can readily be
used for contract compliance checking.
6

Hence, simulation-based testing may solve a problem for contract-
based verification of complex autonomous systems. At the same time,
contract-based verification addresses known challenges for simulation-
based testing. High-fidelity simulation of an entire autonomous vessel
and its operative environment is possible using 3D-rendering engines
for exteroceptive sensor simulation and software-in-the-loop for includ-
ing exact replicas of the control software in the simulations. However,
such simulations are typically highly computationally expensive result-
ing in low simulation speed and corresponding limited test coverage.
Many sub-systems can be simulated accurately using simplified mod-
els that are orders of magnitude less computationally expensive, and
thus achieve high test coverage. This suggests that several different
simulators should be combined in order to address both system-level
behavior at a high level of integration and sub-system behavior with
high test coverage. However, using several different simulators raises
the question of how the testing efforts by each of these should be com-
bined in a coordinated manner in order to build verification evidence
for the autonomous vessel. We believe that contract-based verification
addresses this question. The component structure of the system spec-
ifies the simulator taxonomy directly since each component will need
its own simulator to perform the contract compliance checking. The
contracts between the components ensure that the simulation efforts
combine in a structured and coherent way towards achieving an overall
assurance of the autonomous vessel. Additionally, as shown in the
following, contract-based verification provides a good framework for
test management.

3.2. Activities for Step 3

Step 3 of the methodology involves defining the test setup for each
component in the system. A schematic view of a generic test setup is
shown in Fig. 5. We split the test setup into two parts; the simulator
and the test management system. The simulator part consists of the
component under test in a HiL, SiL, or MiL representation, connected
with a simulation model of the environment of the component, which
generates the test inputs to the component under test. The simulator is
connected to the test management system over a test interface, which
outputs a behavior, 𝜎, for each simulation. The behavior is evaluated
against the contract  = (𝜑𝐴, 𝜑𝐺) of the component using the observer
𝑏 (𝜎, 𝜑𝐴, 𝜑𝐺), as described in Section 2.2.3. The assumptions 𝜑𝐴 of the
contract for the component under test should also be used to define and
focus the test scenarios. The scenario selection may use the evaluation
of previous simulations to adaptively select new scenarios. This can for
instance be achieved by guiding the scenario selections towards regions
of the scenario space with poor performance or high uncertainty, as
proposed in Torben et al. (2022a).

Step 4: Recursive contract-based verification

Having defined the component structure, assigned contracts, and
created a taxonomy of test setups for simulation-based contract com-
pliance checking, the system is finally ready for contract-based system
verification. The goal of this step is to prove that all refinement steps
from the top-level contract down to the atomic component contracts are
correct, that the contracts of all connected components are compatible,
and that all components comply with their contract. If this is achieved,
we have produced substantial verification evidence to show that the
implementation of the system meets the top-level contract. If the top-
level contract is sufficiently complete, this ensures that the autonomous
vessel exhibits safe and correct interactions with its operative envi-
ronment. If the verification fails at some stage, a design change is
required.

We split the contract-based verification procedure into three main
activities, which will be applied recursively down through the compo-
nent structure:

Ocean Engineering 270 (2023) 113685T.R. Torben et al.
Fig. 5. Step 3: Test setup for simulation-based contract compliance checking.
Fig. 6. The milliAmpere II ferry docking at the Ravnkloa side of the Trondheim canal. Photo: Egil Eide.
• Contract compliance checking
• Contract composition
• Refinement checking

We first show the derivation of how to perform these activities using
the contract framework of Section 2. Then, we present the recursive
procedure to be applied in Step 4, which combines these activities.
7

3.3. Derivation of contract-based verification activities

Contract compliance checking has already been briefly introduced
in Section 3. This involves verifying that a component complies with
its contract by simulation-based testing with the test setup defined in
Step 3. Stated more formally, contract compliance checking involves
verifying that all behaviors 𝜎 of a component with contract  = (𝜑𝐴, 𝜑𝐺)
satisfies 𝜑 (𝜎) → 𝜑 (𝜎).
𝐴 𝐺

Ocean Engineering 270 (2023) 113685T.R. Torben et al.
Contract composition involves composing the contracts for all sub-
components into one composite contract. Suppose the component 𝑀
with contract  = (𝜑𝐴, 𝜑𝐺) is implemented by 𝑘 sub-components
𝑀1,𝑀2,… ,𝑀𝑘 with contracts 1,2,… ,𝑘, such that 𝑀 = 𝑀1 ×𝑀2 ×
⋯×𝑀𝑘. Recall that the composition of two saturated assume-guarantee
contracts 𝑖 = (𝐴𝑖.𝐺𝑖) and 𝑗 = (𝐴𝑗 .𝐺𝑗) is defined in terms of sets of
behaviors as 𝑖 ⊗ 𝑗 = (𝐴𝑖⊗𝑗 , 𝐺𝑖⊗𝑗), with

𝐴𝑖⊗𝑗 = (𝐴𝑖 ∩ 𝐴𝑗) ∪ (𝐺𝑖 ∩ 𝐺𝑗)𝑐

𝐺𝑖⊗𝑗 = 𝐺𝑖 ∩ 𝐺𝑗 .

Transforming this from set-notation to first-order logic formulas
using the translations given in Section 2.2.3 yields the composite
contract

𝜑
𝑖⊗𝑗
𝐴 = (𝜑𝑖

𝐴 ∧ 𝜑𝑗
𝐴) ∨ ¬(𝜑𝑖

𝐺 ∧ 𝜑𝑗
𝐺)

𝜑
𝑖⊗𝑗
𝐺 = 𝜑𝑖

𝐺 ∧ 𝜑𝑗
𝐺 .

Also, recall that contract composition is associative and commuta-
tive, that is, 1 ⊗ (2 ⊗ 3) = (1 ⊗ 2) ⊗ 3 and 1 ⊗ 2 = 2 ⊗ 1.
This means that we can construct the logic formula for the composite
of any number of contracts using the above formulas by starting with
1 and incrementally composing it with new contracts. For 𝑘 contracts,
the composite contract 𝑐𝑜𝑚𝑝 = (𝜑𝑐𝑜𝑚𝑝

𝐴 , 𝜑𝑐𝑜𝑚𝑝
𝐺) is thus constructed as

𝑐𝑜𝑚𝑝 = (...(((1 ⊗ 2)⊗ 3)⊗ 4)...)⊗ 𝑘.
Refinement checking involves checking that the composite contract,

𝑐𝑜𝑚𝑝, for a set of sub-components refine the contract of the component
which they implement. In mathematical terms, this involves checking
that

𝑐𝑜𝑚𝑝 = 1 ⊗ 2 ⊗⋯⊗ 𝑘 ≤ .

We propose to formulate refinement checking as a theorem proving
problem and feed it to the Z3 ATP. Recall that 2 ≤ 1, iff 𝐴1 ⊆ 𝐴2 and
𝐺2 ⊆ 𝐺1. Translating this to first-order logic formulas and substituting
the composite contract 𝑐𝑜𝑚𝑝 for 1 and the contract of the parent
component  for 2 yields the following two theorems which must be
proved for refinement checking

𝜑𝐴 → 𝜑𝑐𝑜𝑚𝑝
𝐴

𝜑𝑐𝑜𝑚𝑝
𝐺 → 𝜑𝐺

Although it may not be obvious, this method of refinement check-
ing also checks that the contracts of sub-components are compatible
with each other. We will briefly demonstrate why the refinement
check will fail if there are incompatible contracts among the sub-
components. When the pair contracts (𝑖,𝑗) are not compatible, then
the assumptions of the composite contract, 𝜑𝑐𝑜𝑚𝑝

𝐴 will have assumptions
from 𝜑𝑗

𝐴 which are not covered by 𝜑𝑗
𝐺. Moreover, these uncovered

assumptions cannot be covered by the assumptions of the parent com-
ponent, 𝑀 , since they are part of an internal port connection between
sub-components and therefore not part of the interface of 𝑀 . The
refinement proof of 𝜑𝐴 → 𝜑𝑐𝑜𝑚𝑝

𝐴 will therefore fail, since there will be
cases where 𝜑𝐴 holds but 𝜑𝑐𝑜𝑚𝑝

𝐴 does not.

3.4. The recursive contract-based verification procedure of Step 4

Next, we state the recursive procedure used in Step 4 which com-
bines these three activities to achieve system verification. The proce-
dure is shown in Algorithm 1.

We formulate the contract-based verification process as a recursive
procedure, verifyComponent(). Step 4 simply involves applying this
procedure to the top-level component, and it will recursively call itself
for all sub-components. The recursion breaks when the procedure is
applied to atomic components. The input to the procedure is a compo-
nent 𝑀 with contract  = (𝜑 ,𝜑). The first step of the procedure
8

𝐴 𝐺
is the contract compliance checking, which involves verifying that
all behaviors 𝜎 of 𝑀 satisfy 𝜑𝐴(𝜎) → 𝜑𝐺(𝜎) using methodology of
choice. After this, the procedure branches depending on whether the
component is composite or atomic. If it is atomic, the recursion breaks
and the procedure terminates. If it is composite, the procedure proceeds
to verify the sub-components which implement 𝑀 . First, the contracts
of all sub-components are saturated. Then, the composite contract
𝑐𝑜𝑚𝑝 = (𝜑𝑐𝑜𝑚𝑝

𝐴 , 𝜑𝑐𝑜𝑚𝑝
𝐺) of all sub-component contracts is incrementally

constructed. Refinement checking is achieved by applying Z3’s prove
function to the theorems 𝜑𝐴 → 𝜑𝑐𝑜𝑚𝑝

𝐴 and 𝜑𝑐𝑜𝑚𝑝
𝐺 → 𝜑𝐺. Finally, the

procedure recursively calls itself with each sub-component of 𝑀 as
the arguments. This will do the contract compliance check for all
sub-components against their respective contracts, and continue to
verify their respective sub-component structures if they are composite.
Hence, by applying Algorithm 1 to the top-level component, the entire
component tree of the system will be verified.

Algorithm 1: verifyComponent(Component 𝑀)
input: Component 𝑀 with contract  = (𝜑𝐴, 𝜑𝐺)
// Contract compliance checking
Verify that all behaviors 𝜎 of 𝑀 satisfies 𝜑𝐴(𝜎) → 𝜑𝐺(𝜎) using
methodology of choice;
// If the 𝑀 is composite, verify the

sub-component structure
if 𝑀 is composite then

// Saturate all sub-component contracts
1,2, ...,𝑘

for i = 1:k do
𝜑𝑖
𝐺 = 𝜑𝑖

𝐺 ∨ ¬𝜑𝑖
𝐴;

end
// Composition of the sub-component

contracts 1,2, ...,𝑘
𝑐𝑜𝑚𝑝 = (𝜑𝑐𝑜𝑚𝑝

𝐴 , 𝜑𝑐𝑜𝑚𝑝
𝐺) = 1;

for i = 2:k do
𝜑𝑐𝑜𝑚𝑝
𝐴 = (𝜑𝑐𝑜𝑚𝑝

𝐴 ∧ 𝜑𝑖
𝐴) ∨ ¬(𝜑𝑐𝑜𝑚𝑝

𝐺 ∧ 𝜑𝑖
𝐺);

𝜑𝑐𝑜𝑚𝑝
𝐺 = 𝜑𝑐𝑜𝑚𝑝

𝐺 ∧ 𝜑𝑖
𝐺;

end
// Refinement checking
prove(𝜑𝐴 → 𝜑𝑐𝑜𝑚𝑝

𝐴);
prove(𝜑𝑐𝑜𝑚𝑝

𝐺 → 𝜑𝐺);
// Recursively apply verifyComponent() to

each sub-component of 𝑀
for each sub-component 𝑀𝑖 of 𝑀 do

verifyComponent(𝑀𝑖);
end

end
return

4. Case study: The milliAmpere II autonomous passenger ferry

In this section, we demonstrate the use of our contract-based verifi-
cation framework in a case study with the autonomous passenger ferry
milliAmpere II.

4.1. Description of the vessel and operation

milliAmpere II is a small autonomous double-ended ferry designed
for carrying 12 pedestrians and cyclists across the canal in Trondheim,
Norway. The milliAmpere II is a follow-up on the research prototype
milliAmpere (Brekke et al., 2022). In contrast to its predecessor, mil-
liAmpere II will be put into regular passenger traffic and is therefore
designed in accordance with the national regulations for passenger
transport (NMD, 1990). The ferry is owned and will be operated by the
Norwegian University of Science and Technology (NTNU) (see Fig. 6).

Ocean Engineering 270 (2023) 113685T.R. Torben et al.
Fig. 7. The area of operation for milliAmpere II. The crossing is an 85 m long stretch between Ravnkloa and Vestre Kanalkai across the canal in Trondheim, Norway.
milliAmpere II has length 8.5 m and beam 3.5 m. It has a fully
electric propulsion system with induction charging and four 10 kW
thrusters with controllable azimuth angles. The service speed is 5
knots. The ferry is equipped with a class-approved motion control
and automation system delivered by Marine Technologies. The navi-
gation system of the ferry is a GNSS-aided inertial navigation system
(INS) from SentiSystems with real-time kinematic (RTK) corrections.
This system provides 6DOF motion measurements with centimeter-
level positioning. The navigation system also features dead reckoning
capabilities to ensure safe return to quay in case of a GNSS outage. The
NTNU spin-off company Zeabuz has developed the high-level autonomy
system. The ferry utilizes a range of different exteroceptive sensors
for obtaining situational awareness. It is equipped with a top-mounted
Simrad maritime radar, FLIR Boson infrared cameras, and FLIR Blackfly
S RGB cameras, as well as Ouster OS1 lidars placed at the corners of
the ferry. The autonomy system is responsible for processing the sensor
data and for providing the motion control system with a collision-free
motion reference. The ferry will travel along a fixed pre-planned path
and only control the speed along that path to avoid collisions with other
vessels. The collision avoidance algorithm is described in Thyri et al.
(2020)

The area of operation is the stretch from Ravnkloa to Vestre
Kanalkai. The crossing is approximately 85 m long, which is expected
to take about one minute at normal service speed. The area is regulated
as fully enclosed waters, with a speed limit of 5 knots (2.6 m/s). The
maximum wave height in the area is 0.5 m and the maximum current
speed is 3 knots (1.5 m/s). The area may be subject to harsh weather,
and the ferry will be suspended if the wind speed exceeds 10 m/s. There
are no shallows and no static obstacles in the area, apart from the sides
of the canal and boats that are moored to the side of the canal. The
traffic in the canal consists of motorized vessels of varying sizes and
types. In addition, the canal is subject to heavy kayak and canoe traffic
during the summer season. A bird’s eye view of the area is given in
Fig. 7.

4.2. Applying the contract-based verification methodology

Having introduced the object of the case study, we proceed to follow
the steps in the contract-based verification methodology introduced in
9

Section 3. The full component structure we develop in the case study
is given in Fig. 8.

Step 1: Define the top-level component and contract
We start at the top-level view and define the interaction with the

operative environment. As described in Section 3, this should be done
by a systematic hazard identification process. To demonstrate the main
features of the methodology in a brief and concise manner, we limit the
scope to studying only a couple of key interactions with the operative
environment. We consider the interactions with a moving obstacle and
the environmental loads. We define an obstacle_motion out-port on the
operative environment which carries messages of the VesselMotionMsg
type:

class VesselMotionMsg:
def __init__(self, name):

self.speed = Real(name + ’_speed’)
self.course = Real(name + ’_course’)
self.position = RealVector(name +

’_position’, 2)

The value on the obstacle_motion port will be None if there are no
visible obstacles. We also define an in-port on the operative environ-
ment for the milliAmpere II motion, as the motion of milliAmpere
II may influence the behavior of the obstacle. We name this port
ferry_motion and it also carries messages of the VesselMotionMsg type.
Finally, we define an out-port named environment_loads with message
type EnvLoadMsg defined as:

class EnvLoadMsg:
def __init__(self):

self.current_speed =
Real(’current_speed’)
self.wind_speed =
Real(’wind_speed’)
self.wind_direction =
Real(’wind_direction’)
self.sig_waveheight =
Real(’sig_waveheight’)
self.peak_period =
Real(’peak_period’)

Ocean Engineering 270 (2023) 113685T.R. Torben et al.
Fig. 8. The component structure used in the case study.
The current direction is assumed to be parallel to the canal, and
the direction of flow is given by the sign of the current speed, where
a positive speed represents downstream current (from west to east in
Fig. 7).

Having defined the environmental interactions, the next step is to
define the top-level contract. As Fig. 4 showed, this contract plays a
fundamental role, as its assumptions form the ODD and the guarantees
form the top-level requirements to ensure safe interactions with the
operative environment. We define the following top-level contract:

mA2_assumptions =
And(obstacle_motion.speed >= 0,

obstacle_motion.speed <= 2.6,
env_loads.current_speed >= -1.5,
env_loads.current_speed <= 1.5,
env_loads.wind_speed >= 0,
env_loads.wind_speed <= 10.0,
env_loads.wave_height >= 0,
env_loads.wave_height <= 0.5)

mA2_guarantees =
And(distance_2d(obstacle_motion.position,
ferry_motion.position) >= 10.0,
distance_2d(ferry_motion.position , path) <=
1.0)

The assumptions are derived from the CONOPS for milliAmpere II.
The assumptions specify that the obstacles keep the speed limit for fully
enclosed waters of 5 knots (2.6 m/s), the current speed is less than
1.5 m/s, the wind speed is less than 10 m/s, and that the significant
wave height is less than 0.5 m. For the guarantees of the top-level
contract, we limit the focus to avoiding collisions with the moving
obstacle and following the pre-planned path. The guarantees specify
that the ferry’s distance to the moving obstacle should be greater than
10 m and that the ferry does not deviate from the pre-planned path
by more than 1 m. Since there are no static obstacles within these
margins, these two guarantees ensure that there are no collisions. Other
aspects could have been included here, such as passenger comfort
by constraining the allowed speed and acceleration. Such aspects are
10
excluded for the sake of brevity but would be incorporated in the
contract in the same way. The Z3 And operator builds a logic formula
which is the conjunction of all the arguments. The path variable is a 2-
dimensional vector whose value is equal to the point on the pre-defined
path which is closest to ferry_motion.position at all times. The distance_2d
function is defined as:

def distance_2d(pos1,pos2):
return Sqrt((pos1.north-pos2.north)**2
+ (pos1.east-pos2.east)**2)

Before we conclude Step 1, we refer back to Section 2 to show how
these concrete component and contract definitions relate to the math-
ematical notation. At the top-level view, the variables 𝑣1, 𝑣2,… , 𝑣11
correspond to the 11 variables in the message type definitions of the
obstacle_motion, ferry_motion and env_loads ports. That is, 𝑣1 = obsta-
cle_motion.speed, 𝑣2 = obstacle_motion.course, . . . , 𝑣11 = env_loads.peak_
period. The numbering is chosen arbitrarily in this example. The do-
mains of each variable, 𝐷1, 𝐷2, .., 𝐷11 correspond to the data types of
these variables, as defined in the message types. In this case, 𝐷1 =
𝐷2 = ⋯ = 𝐷11 = R, and 𝑉 = 𝐷1 × 𝐷2 × ⋯𝐷11 = R11. At each
time step, the implementation of the components assigns values to each
of these variables, resulting in a reaction 𝑠 ∈ R11. The discrete-time
sequence of reactions is the behavior, 𝜎, at this abstraction level. Let
𝑚𝐴2 = (𝜑𝐴, 𝜑𝐺) denote the top-level contract. The mA2_assumptions
specify the first-order logic formula 𝜑𝐴 and mA2_guarantees specifies
𝜑𝐺. Each of these formulas is built by combining predicates over the
variables 𝑣1, 𝑣2,… , 𝑣11 with first-order logic operators, in this case, the
And operator.

Step 2: Stepwise refinement into sub-components
Having defined the top-level component and contract, in Step 2 we

proceed by refining them into a set of sub-components that implement
the top-level component. As Fig. 8 shows, in the first refinement steps
we have chosen to split the top-level component (milliAmpere II) into
two sub-components; the autonomy system and the plant, in a standard
controller-plant configuration. The plant component contains the phys-
ical ferry and the low-level control functionality, such as the industrial
motion control system, the actuator control, and the navigation system.

Ocean Engineering 270 (2023) 113685T.R. Torben et al.

v
s
o

T
n
c
c
b
e
T
t
t
t

s
c
t
t
1
r
s
t
r
r
i
a
s
c
m
b
i

t
c
a
w
h

t
m
a

g
p
a

The interaction between the autonomy system and the plant takes
place over the motion_reference port, where the autonomy system pro-
ides the plant with the trajectory that the motion control system
hould track. We define the motion_reference port to also send messages
f the VesselMotionMsg type.

Next, we need to define the contracts at this abstraction level.
he contracts need to refine the contract for the top-level compo-
ent and be compatible across the two components. Additionally, the
ontracts may also need to consider any inherent limitations in the sub-
omponents, such as the precision of the motion control system. We
egin by defining the contract for the plant. The assumptions on the
nvironmental loads are simply copied from the top-level component.
he assumptions on the motion reference constrain the speed reference
o be between −2 m/s and 5 m/s, to receive a feasible trajectory to
rack. The guarantee of the plant specifies that the trajectory error of
he motion control system should be less than 1 m.

plant_assumptions =
And(env_loads.current_speed >= -1.5,

env_loads.current_speed <= 1.5,
env_loads.wind_speed >= 0,
env_loads.wind_speed <= 10.0,
env_loads.wave_height >= 0,
env_loads.wave_height <= 0.5,
motion_ref.speed >= -2.0,
motion_ref.speed <= 5.0)

plant_guarantees =
distance_2d(motion_ref.position ,
ferry_motion.position) <= 1.0

Next, we define the contracts for the autonomy system. The as-
umptions on the traffic port are copied directly from the top-level
omponent. The guarantees specify that the motion reference needs
o maintain a safe distance of 11 m from the obstacle. The safe dis-
ance from the ferry to the obstacle in the top-level contract was only
0 m, however, since the plant component can only track the motion
eference from the autonomy system with a precision of 1 m, the
afe distance guarantee for the motion reference needs to be increased
o 11 m for the autonomy system and plant contracts to correctly
efine the top-level contract. Additionally, we specify that the motion
eference should coincide with the pre-planned path at all times, mean-
ng that we only allow the autonomy system to generate references
long this path, effectively meaning it is only controlling the ferry
peed and position along the path. To be compatible with the plant
ontract, the autonomy system also needs to constrain the speed of the
otion reference. The contract specifies that the speed reference will be

etween −1 m/s and 3 m/s, in order to keep well within the limitations
n the plant assumptions.

autonomy_assumptions =
And(obstacle_motion.speed >= 0.0,

obstacle_motion.speed <= 2.6)

autonomy_guarantees =
And(distance_2d(motion_ref.position, path)

== 0,
distance_2d(motion_ref.position ,
obstacle_motion.position) >= 11,
motion_ref.speed >= -1.0,
motion_ref.speed <= 3.0)

Finally, we will do one more refinement step on the autonomy sys-
em component. As Fig. 8 shows, we implement the autonomy system
omponent by two sub-components; motion planning and situational
wareness. The situational awareness component senses other vessels
ith its exteroceptive sensors and estimates their position, speed, and
eading. This information is sent to the motion planning component
11
over the track port. The motion planning component generates a mo-
tion_reference signal such that the ferry keeps a safe distance from the
obstacle track.

The assumptions on the traffic port of the situational awareness
component are copied from the autonomy system component. The
guarantee of the situational awareness component specifies that if there
is a visible obstacle, it will be detected and tracked with an error of less
than 3 m:

sitaw_assumptions =
And(obstacle_motion.speed >= 0,

obstacle_motion.speed <= 2.6)

sitaw_guarantees =
Implies(obstacle_motion is not None,

distance_2d(track.position ,
obstacle_motion.position) <= 3.0)

For the motion_planning component, we define no assumptions on
he track port. The guarantees specify that the motion reference should
aintain a safe distance to the obstacle track received by the situational

wareness system. However, due to the added uncertainty of 3 m in
the obstacle track introduced by the situational awareness system, the
safety margin of the motion reference system needs to be increased
from 11 m to 14 m to refine the autonomy system contract. The
uarantees for the motion reference to coincide with the pre-planned
ath and the constraints on the speed reference are copied from the
utonomy system component in order to refine its contract.

moplan_assumptions = True

moplan_guarantees =
And(distance_2d(motion_ref.position ,

track.position) >= 14.0,
distance_2d(motion_ref.position ,
path) == 0,
motion_ref.speed >= -1.0,
motion_ref.speed <= 3.0)

Step 3: Define test setups for simulation-based testing
Next, we proceed to Step 3 of the methodology, where the test

setups for simulation-based contract compliance checking are defined.
For the milliAmpere II case, there already exists an extensive set of
simulators used for development and verification. The simulators are
developed in a collaboration between NTNU, the autonomous ferry
start-up Zeabuz and the classification society DNV in the TRUSST
research project (RCN, 2021). We will use these simulators as a basis
for this section, and show how they can be configured to define test
setups for contract compliance checking.

An overview of the full simulator setup for milliAmpere II is given in
Fig. 9. The simulator is implemented over several different platforms.
The traditional maritime simulation models are implemented on the
Open Simulation Platform (OSP) (Smogeli et al., 2020), which is an
open standard for co-simulation of maritime systems built on the FMI
standard (Blockwitz et al., 2012). The 3D rendering of the virtual
world and sensor models for the exteroceptive sensors are simulated on
Gemini, which is an open-source simulation platform for autonomous
vessels (Vasstein et al., 2020). Gemini is built on the Unity game engine,
and its exteroceptive sensor models are based on a novel methodology
for simulating electromagnetic radiation sensors using game engine
technology (Vasstein et al., 2020). The autonomy software runs on the
ROS, and the simulator supports SiL simulation using exact replicas of
the autonomy software. This is also true for the COTS motion control
system, however, this runs on the proprietary platform of the vendor.
Some snapshots from the simulator in action are given in Fig. 10.

Recall that the goal of the simulation-based testing of a given
component is to verify that the component complies with its contract,

Ocean Engineering 270 (2023) 113685T.R. Torben et al.
Fig. 9. Overview of the milliAmpere II simulator. The black boxes indicate which parts of the simulator correspond to the component structure we have defined in Fig. 8. In the
autonomy system, the perception sensors, object detection, and comprehension modules together make up the situational awareness component.
Fig. 10. Snapshots from the milliAmpere II simulator. (A) The 3D rendering of the operation area and the ferry. (B) The interface for the motion control system, including DP,
thruster control, and navigation. (C) The output of the simulated RGB cameras. (D) A map of the situational awareness, where the detections from the simulated camera, lidar
and radar sensors are fused and used to estimate the pose and speed of obstacles. Also shown in D are the safety margin zones around each obstacle.
as illustrated in Fig. 5. To achieve this, we need a simulation model of
the component under test and a simulated test environment to generate
the test signals on the in-ports of the component. Together, this defines
the test setup for the component. We believe that it is advantageous
to keep the test environment of the component as simple as possible in
order to focus the testing to find inherent weaknesses in the component
under test. This both simplifies the simulator and reduces the size
of the test space for the component. Testing components in more
realistic environments is of course also very important, however, this
will be done when testing at the higher abstraction levels, where the
component will be integrated with other components and thus be tested
in a more realistic environment.
12
The full setup of Fig. 9 could represent the test setup for the top-
level component since it simulates all parts of the component and
its operative environment. To define the test setup for components
at lower abstraction levels, we can use this setup as a basis, remove
all modules which are deemed irrelevant and simplify all connected
modules as much as possible. Fig. 11 shows the test setup for contract
compliance checking of the autonomy system component. The vessel
motion of the ferry is set equal to the motion reference output of
the motion planning component, thereby we are assuming perfect
trajectory tracking of the plant. The main objective of this setup is
to test the integrated motion planning and situational awareness sys-
tem for collision avoidance. Fig. 12 shows the test setup for contract

Ocean Engineering 270 (2023) 113685T.R. Torben et al.
Fig. 11. Test setup for contract compliance checking of the autonomy system component.
Fig. 12. Test setup for contract compliance checking of the plant component.
compliance checking of the plant component. The main objective of this
setup is to test the trajectory tracking capabilities of the plant under dif-
ferent environmental loads and reference trajectories. To this end, we
have defined a test trajectoriesmodule which generates motion reference
inputs to the plant. Fig. 13 shows the test setup for contract compliance
checking of the motion planning component. In this setup we are sim-
plifying the test environment to use perfect tracks and perfect trajectory
tracking, thus reducing both the situational awareness system and the
plant to identity/pass through. The main objective of this setup is to
verify collision avoidance for the motion planning component. Being
very lightweight, this setup offers fast simulations and corresponding
high test coverage. Finally, the test setup for the situational awareness
component is shown in Fig. 14. The main objective of this setup is to
verify the obstacle tracking capabilities of the situational awareness
component. We are using the test trajectories module to generate the
ferry motion.

Step 4: Recursive contract-based verification
With the component structure, contracts, and test setup in place, we

can readily apply the recursive contract-based verification procedure
of Algorithm 1 to the milliAmpere II system to achieve contract-based
13
system verification. To demonstrate contract-based verification, we will
in this section go through the step-by-step computations of Algorithm
1 applied to the components and contracts developed in the case study.

The entry point for the verification is applying verifyComponent()
on the top-level milliAmpere II component. The first step is contract
compliance checking. This involves running simulations with the test
setup of Fig. 9 to verify that all behaviors 𝜎 satisfy 𝜑𝐴(𝜎) → 𝜑𝐺(𝜎).
This amounts to running scenarios where the obstacle motion and
environmental loads are within the assumptions and verify that the
ferry keeps a 10 m distance to the obstacle and tracks the path with
1 m precision. After the contract compliance check is completed, the
procedure continues into the branching statement of Algorithm 1, since
the top-level component is composite. First, the composite contract
of the sub-components is constructed by composing the contracts of
the autonomy system and the plant. Then, the procedure performs the
refinement check by passing the theorems 𝜑𝐴 → 𝜑𝑐𝑜𝑚𝑝

𝐴 and 𝜑𝑐𝑜𝑚𝑝
𝐺 → 𝜑𝐺

to Z3’s prove() function. This yields a proved result and thereby verifies
that the composite contract of the autonomy system and plant refine
the top-level contract and that the contracts of the autonomy system
and plant are compatible.

Ocean Engineering 270 (2023) 113685T.R. Torben et al.
Fig. 13. Test setup for contract compliance checking of the motion planning component.
Fig. 14. Test setup for contract compliance checking of the situational awareness component.
The next step in Algorithm 1 is to recursively apply verifyCompo-
nent() to the sub-components of the top-level component. The pro-
cedure begins by applying it to the plant component. First, the con-
tract compliance check is performed, this time using the test setup of
Fig. 12. After completing the contract compliance checking the recur-
sion breaks, since the plant is an atomic component. The procedure
then moves on to applying verifyComponent() to the autonomy system
component. This begins with contract compliance checking using the
test setup of Fig. 11. Since the autonomy system component is compos-
ite, the procedure continues into the branching statement of Algorithm
1, which composes the contracts for the situational awareness and
14
motion planning components and checks that the composite contract
refines the autonomy system contract. Passing refinement checking
theorems to Z3’s prove() function again yields a proved result.

Finally, we recursively apply verifyComponent() to the situational
awareness and motion planning components. The contract compliance
checks are executed using the test setups of Figs. 14 and 13, respec-
tively. Since both these components are atomic, the recursion breaks
and Algorithm 1 terminates. The entire formal reasoning for the case
study, including definition, saturation, and composition of contracts in
addition to the refinement proofs, was executed in 4.9 s on a laptop
with an Intel Core i9-9980HK CPU.

Ocean Engineering 270 (2023) 113685T.R. Torben et al.

t
s
i
a
p
v
a
n
p
c
c
s

s
e
u

5. Discussion

The results from the case study indicate that the proposed contract
framework and verification methodology overall achieve the goal of
modular verification. Next, we discuss some challenges we encountered
and some possible solutions, as well as directions for future work.

We experienced the Z3 first-order logic language as a natural and
expressive syntax for specifying contracts. However, we encountered
some difficulty in the automatic theorem proving of the refinement
checks. When calling Z3’s prove() function, a successful run returns
either proved or could not prove with a counterexample. However, in
some cases, it returns unknown or runs seemingly indefinitely without
returning a result. In these cases, it can be hard and time-consuming
to debug. It is well known that Z3 can be sensitive to seemingly
unimportant changes in the theorem formulation, such as the order
in which arguments are given. Some trial and error can therefore
be necessary to get a successful run. For proofs including boolean
variables and linear constraints over real variables, Z3 appeared to be
very capable and scalable. The proofs involving nonlinear functions
over real-valued variables did, however, also pose some difficulty. An
example of this is the proofs involving the distance_2d() function, which
is nonlinear due to the quadratic terms and the square root operation.
It was not unexpected that this was problematic, as automatic theorem
proving of such problems is a very hard computational problem that is
undecidable in general. To get successful proofs here, we sometimes
had to manually split the proofs into smaller and more manageable
pieces which were proved independently. Z3 offers functionality for the
user to input proof tactics, which may increase the capabilities to prove
hard problems. An alternative approach to enhance the capabilities to
prove nonlinear real-valued theorems is to use an interactive theorem
prover, such as Isabelle (Paulson, 1994) or Coq (Bertot, 2008). These
are generally capable of proving more complex problems, but also
require more expertise and input from the user.

In this work, a critical success factor for a contract-based verifica-
tion methodology is that it is scalable enough to give value to complex
industrial autonomy use cases. In order to present a case study in full
in this paper, the case study had to be simplified in several aspects. The
components were simplified versions of the real components in the mil-
liAmpere II system and not all interactions between components were
considered. The operative environment model was also simplified. The
contracts only considered certain aspects of the verification scope, and
important aspects such as passenger comfort, reliability, fault handling,
and timing were not considered. The refinement of the components
was also stopped at a quite high level of abstraction. Because of these
simplifications, the scalability of the methodology to industrial use
cases cannot be concluded based on the case study only. Our intuition
is, however, that such a structured approach is necessary to manage
the complexity of autonomous vessel systems, and that scalability is,
to a large degree, dependent on having sufficient tool support for
defining and managing a large number of components and contracts
in an enterprise setting. For the time being, the biggest obstacle to
scalability seems to be the formal compositional reasoning, as discussed
above. We do, however, believe that having a structured framework
for design and verification using the concepts of assume-guarantee
contracts, refinement, and composition, can provide great value to the
design and verification process, even if the contracts are expressed in
natural language and the compositional reasoning is informal.

Another motivation for doing modular verification is that it en-
ables more efficient change management. Since autonomous vessels
are highly software intensive they will likely be subject to frequent
software updates. After a software update, the system will need to be re-
verified. Re-verifying the entire system is a huge task, and doing this for
every update is not desirable. The recursive contract-based procedure of
Algorithm 1 can be extended to support selective re-verification, that is,
only re-verify the parts of the system which are affected by the change.
15

A straightforward approach to this is to add a hash to each component.
The hash should be computed based on the component implementation,
port definition, parameters, and contract. For composite components,
the hash should also be computed based on the hash of all sub-
components. The verifyComponent(Component M) procedure can then
check if the hash of the 𝑀 has changed since the last verification and
erminate immediately if it has not changed. Suppose for instance a
oftware update has been made to the situational awareness component
n Fig. 8. This would change the hash of the situational awareness,
utonomy system, and milliAmpere II components, but not the motion
lanning and plant components. The re-verification would thus re-
erify the situational awareness component, its integration into the
utonomy system, and its integration into the milliAmpere II compo-
ent, but would skip the re-verification of the motion planning and
lant components. If the contract compliance checking for the changed
omponent is exhaustive, it would be sufficient to only re-verify that
omponent. However, this will in general not be the case when using
imulation-based contract compliance checking.

As introduced in Section 1, a key challenge for verifying autonomous
ystems is that they extensively sense and interact with the open
nvironment, and there will be an infinite number of scenarios that are
nknown during design. Such scenarios are often referred to as edge
cases. This challenge is well-known from automotive autonomy, which
has approached the challenge by extensive use of machine learning,
with the hope that vast amounts of training data will expose the self-
driving system to a sufficient number of edge cases. This approach has
not yet been successful (Koopman, 2021). We believe that contracts
may offer an alternative solution. While it is very hard to design an
autonomous system that will act correctly in all edge cases, it may
be feasible to design a system that can detect when a situation is
outside the ODD and do something safe, such as going to a minimum
risk condition (MRC). Compared to the automotive application, the
safety margins generally are larger, and the speed is generally lower
in maritime applications. Therefore, it may possible to ensure safety
by going to an MRC. Online monitoring of the assumptions of the top-
level contract, which specify the ODD, can implement such a system.
We therefore consider online monitoring of assumptions and the use of
this in the high-level decision making as an important topic for future
work.

Finally, there are some directions in which the methodology can be
extended. As mentioned in Section 2.1, we only consider synchronous
behaviors. The extension to asynchronous behavior is a natural next
step. Extensions to more expressive contracts is also a possible di-
rection for future work. Examples include temporal contracts, using
e.g. a temporal logic, and the use of quantifiers in the first-order
logic formulas. Using the concept of different viewpoints, as proposed
by Nuzzo et al. (2015), to combine different orthogonal aspects in
the contracts is another interesting extension. A critical aspect of the
proposed methodology is that it is dependent on completeness in the
top-level contracts to achieve the verification objective. Furthermore,
generating sufficiently many relevant test scenarios for the simulation
may be demanding. As we briefly mentioned in Section 3, risk analysis
may provide an important basis for defining safety requirements for the
system, as well as for developing and selecting the test scenarios. We
see this as an important direction for future work.

6. Conclusions and further work

This paper has introduced contract-based methods to the design and
verification of autonomous vessels. We have presented a framework for
specifying components and contracts based on the automatic theorem
prover Z3 and a contract-based verification methodology using this
framework. The contract-based verification methodology approaches
compositional reasoning by constructing a composite assume-guarantee
contract. Using the Z3 automated theorem prover, formal and auto-
matic refinement checking has been achieved. Furthermore, we have

shown how simulation-based testing can be used in conjunction with a

Ocean Engineering 270 (2023) 113685T.R. Torben et al.

y

contract-based framework in a mutually beneficial way. The contract-
based verification method was ultimately stated as a concise recursive
procedure for system verification. The contract framework and verifica-
tion procedure were demonstrated in a case study with the autonomous
passenger ferry milliAmpere II.

The discussion highlighted the need for further work in the auto-
matic theorem proving of the compositional reasoning. In particular,
methods to better handle proofs including nonlinear functions over real
variables should be investigated. Use of Z3’s proof tactics or interactive
theorem provers were suggested as possible directions for future work.
The discussion also suggested possible extensions to the methodology,
including online monitoring of assumptions and investigating the use of
risk analysis methods as a basis for defining the top-level contract and
test scenarios. Finally, the discussion highlights the need for demon-
strating the use of the contract-based framework in an industrial-scale
project to investigate the scalability of the method. Our hope is that
our introduction of contract-based methods to maritime autonomy will
trigger more research and development in this direction and ultimately
contribute to safer and more robust autonomous vessel control systems.

CRediT authorship contribution statement

Tobias Rye Torben: Conceptualization, Methodology, Formal anal-
sis, Writing – original draft. Øyvind Smogeli: Conceptualization,

Writing – review & editing. Jon Arne Glomsrud: Conceptualization,
Writing – review & editing. Ingrid B. Utne: Conceptualization, Writ-
ing – review & editing, Funding acquisition. Asgeir J. Sørensen:
Conceptualization, Writing – review & editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The work by T.R. Torben, I.B Utne, and A.J. Sørensen is partly
sponsored by the Research Council of Norway through the Centre of
Excellence funding scheme, project number 223254, AMOS, Norway,
and project ORCAS, Norway with project number 280655. The work by
Øyvind Smogeli and Jon Arne Glomsrud is sponsored by the Research
Council of Norway through the TRUSST project with project number
313921.

References

Abrial, J.R., 2011. Modeling in event-b: System and software engineering. Cambridge
University Press.

Bakdi, A., Glad, I.K., Vanem, E., 2021. Testbed scenario design exploiting traffic big data
for autonomous ship trials under multiple conflicts with collision/grounding risks
and spatio-temporal dependencies. IEEE Trans. Intell. Transp. Syst. (June 2019),
1–17. http://dx.doi.org/10.1109/TITS.2021.3095547.

Benveniste, A., Caillaud, B.t., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.,
2008. Multiple viewpoint contract-based specification and design. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (Eds.), Formal Methods for Components
and Objects. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 200–225.

Benveniste, A., Caillaud, B.t., Nickovic, D., Passerone, R., Raclet, J.-B., Reinkemeier, P.,
Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T.A., Larsen, K.G., 2018.
Contracts for system design. volume 12. Now.

Bertot, Y., 2008. A short presentation of coq. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(Eds.), Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 5170 LNCS.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 12–16. http://dx.doi.org/10.
16

1007/978-3-540-71067-7{_}3.
Blockwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., Friedrich, M.,
Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., Viel, A., 2012. Functional
mockup interface 2.0: The standard for tool independent exchange of simulation
models. In: Proceedings of the 9th International MODELICA Conference, September
3-5, 2012, Munich, Germany, Vol. 76. pp. 173–184. http://dx.doi.org/10.3384/
ecp12076173.

Brekke, E.F., Eide, E., Eriksen, B.-O.H., Wilthil, E.F., Breivik, M., Skjellaug, E.,
Helgesen, O.K., Lekkas, A., Martinsen, A.B., Thyri, E.H., Torben, T., Veitch, E.,
Alsos, O.A., Johansen, A., 2022. Milliampere: An autonomous ferry prototype. J.
Phys. Conf. Ser. 2311 (1), 012029.

Chaal, M., Valdez Banda, O.A., Glomsrud, J.A., Basnet, S., Hirdaris, S., Kujala, P., 2020.
A framework to model the STPA hierarchical control structure of an autonomous
ship. Saf. Sci. 132 (July), 104939. http://dx.doi.org/10.1016/j.ssci.2020.104939.

Cimatti, A., Tonetta, S., 2012. A property-based proof system for contract-based design.
In: Proceedings - 38th EUROMICRO Conference on Software Engineering and
Advanced Applications, SEAA 2012. IEEE, pp. 21–28. http://dx.doi.org/10.1109/
SEAA.2012.68.

Clarke, E.M., 1997. Model checking. In: Ramesh, S., Sivakumar, G. (Eds.), Founda-
tions of Software Technology and Theoretical Computer Science. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 54–56.

Clarke, E.M., Long, D.E., McMillan, K.L., 1989. Compositional model checking. In: Pro-
ceedings. Fourth Annual Symposium on Logic in Computer Science. pp. 353–362.
http://dx.doi.org/10.1109/LICS.1989.39190.

Foster, S., Gleirscher, M., Calinescu, R., 2020. Towards deductive verification of
control algorithms for autonomous marine vehicles. In: Proceedings of the IEEE
International Conference on Engineering of Complex Computer Systems. pp.
113–118.

Hake, G., Hohl, C.P., Hahn, A., 2021. Continuous contract based verification of updates
in maritime shipboard equipment. http://dx.doi.org/10.3390/jmse9070688, URL:
https://doi.org/10.3390/jmse9070688.

Kahn, G., 1974. The Semantics of a Simple Language for Parallel Programming.
Technical Report.

Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K., 2016. Simulation-based
approaches for verification of embedded systems. IEEE Control Syst. Mag. 36
(November).

Koopman, P., 2021. SOTIF & edge cases. URL: https://users.ece.cmu.edu/~koopman/
lectures/ece642/L103_SOTIF_EdgeCases.pdf.

Maler, O., Nickovic, D., 2004. Monitoring temporal properties of continuous signals. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems.
Springer, pp. 152–166.

Meyer, B., 1992. Applying ’design by contract’. Computer 25 (10), 40–51.
de Moura, L., Bjørner, N., 2008. Z3: An efficient SMT solver. In: International

Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 337–340.

Murray, B., Rødseth, O.J., Nordahl, H., Wennersberg, L.A.L., Pobitzer, A., Foss, H.,
2022. Approvable AI for autonomous ships: Challenges and possible solutions. In:
Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022).
pp. 1975–1982. http://dx.doi.org/10.3850/978-981-18-5183-4.

NMD, 1990. Nordisk Båtstandard for Yrkesbåter Under 15 Meter. Technical Report.
Nuzzo, P., Sangiovanni-Vincentelli, A.L., Bresolin, D., Geretti, L., Villa, T., 2015. A

platform-based design methodology with contracts and related tools for the design
of cyber-physical systems. Proc. IEEE 103 (11), 2104–2132. http://dx.doi.org/10.
1109/JPROC.2015.2453253.

Nuzzo, P., Xu, H., Ozay, N., Finn, J.B., Sangiovanni-Vincentelli, A.L., Murray, R.M.,
Donzé, A., Seshia, S.A., 2014. A contract-based methodology for aircraft electric
power system design. IEEE Access 2, 1–25. http://dx.doi.org/10.1109/ACCESS.
2013.2295764.

Paulson, L.C., 1994. Isabelle: A Generic Theorem Prover, Vol. 828. Springer Science &
Business Media.

Pedersen, T.A., Glomsrud, J.A., Ruud, E.L., Simonsen, A., Sandrib, J., Eriksen, B.O.H.,
2020. Towards simulation-based verification of autonomous navigation systems.
Saf. Sci. 129 (December 2019), 104799. http://dx.doi.org/10.1016/j.ssci.2020.
104799.

RCN, 2021. TRUSST: Assuring trustworthy, safe and sustainable transport for
all. URL: https://prosjektbanken.forskningsradet.no/project/FORISS/313921?
Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=
date&sortOrder=desc&resultCount=30&offset=210&TemaEmne.2=N/T1/ring+og+
handel.

Rokseth, B., Haugen, O.I., Utne, I.B., 2019. Safety verification for autonomous ships.
In: MATEC Web of Conferences, Vol. 273. p. 02002. http://dx.doi.org/10.1051/
matecconf/201927302002.

Rokseth, B., Utne, I.B., 2019. Deriving safety requirement hierarchies for families of
maritime systems. Trans. R. Inst. Nav. Archit. A 161, A229–A243. http://dx.doi.
org/10.3940/rina.ijme.2019.a3.526.

Sangiovanni-Vincentelli, A., Damm, W., Passerone, R., 2012. Taming Dr. Frankenstein:
Contract-based design for cyber-physical systems. Eur. J. Control 18 (3), 217–
238. http://dx.doi.org/10.3166/EJC.18.217-238, URL: http://dx.doi.org/10.3166/
ejc.18.217-238.

Shokri-Manninen, F., Vain, J., Waldén, M., 2020. Formal verification of COLREG-based
navigation of maritime autonomous systems. In: Lecture Notes in Computer Science.
pp. 41–59.

http://refhub.elsevier.com/S0029-8018(23)00069-0/sb1
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb1
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb1
http://dx.doi.org/10.1109/TITS.2021.3095547
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb3
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb3
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb3
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb3
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb3
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb3
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb3
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb4
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb4
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb4
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb4
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb4
http://dx.doi.org/10.1007/978-3-540-71067-7{_}3
http://dx.doi.org/10.1007/978-3-540-71067-7{_}3
http://dx.doi.org/10.1007/978-3-540-71067-7{_}3
http://dx.doi.org/10.3384/ecp12076173
http://dx.doi.org/10.3384/ecp12076173
http://dx.doi.org/10.3384/ecp12076173
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb7
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb7
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb7
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb7
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb7
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb7
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb7
http://dx.doi.org/10.1016/j.ssci.2020.104939
http://dx.doi.org/10.1109/SEAA.2012.68
http://dx.doi.org/10.1109/SEAA.2012.68
http://dx.doi.org/10.1109/SEAA.2012.68
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb10
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb10
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb10
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb10
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb10
http://dx.doi.org/10.1109/LICS.1989.39190
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb12
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb12
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb12
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb12
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb12
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb12
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb12
http://dx.doi.org/10.3390/jmse9070688
https://doi.org/10.3390/jmse9070688
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb14
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb14
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb14
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb15
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb15
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb15
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb15
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb15
https://users.ece.cmu.edu/~koopman/lectures/ece642/L103_SOTIF_EdgeCases.pdf
https://users.ece.cmu.edu/~koopman/lectures/ece642/L103_SOTIF_EdgeCases.pdf
https://users.ece.cmu.edu/~koopman/lectures/ece642/L103_SOTIF_EdgeCases.pdf
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb17
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb17
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb17
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb17
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb17
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb18
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb19
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb19
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb19
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb19
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb19
http://dx.doi.org/10.3850/978-981-18-5183-4
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb21
http://dx.doi.org/10.1109/JPROC.2015.2453253
http://dx.doi.org/10.1109/JPROC.2015.2453253
http://dx.doi.org/10.1109/JPROC.2015.2453253
http://dx.doi.org/10.1109/ACCESS.2013.2295764
http://dx.doi.org/10.1109/ACCESS.2013.2295764
http://dx.doi.org/10.1109/ACCESS.2013.2295764
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb24
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb24
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb24
http://dx.doi.org/10.1016/j.ssci.2020.104799
http://dx.doi.org/10.1016/j.ssci.2020.104799
http://dx.doi.org/10.1016/j.ssci.2020.104799
https://prosjektbanken.forskningsradet.no/project/FORISS/313921?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=date&sortOrder=desc&resultCount=30&offset=210&TemaEmne.2=N/T1/ring+og+handel
https://prosjektbanken.forskningsradet.no/project/FORISS/313921?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=date&sortOrder=desc&resultCount=30&offset=210&TemaEmne.2=N/T1/ring+og+handel
https://prosjektbanken.forskningsradet.no/project/FORISS/313921?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=date&sortOrder=desc&resultCount=30&offset=210&TemaEmne.2=N/T1/ring+og+handel
https://prosjektbanken.forskningsradet.no/project/FORISS/313921?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=date&sortOrder=desc&resultCount=30&offset=210&TemaEmne.2=N/T1/ring+og+handel
https://prosjektbanken.forskningsradet.no/project/FORISS/313921?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=date&sortOrder=desc&resultCount=30&offset=210&TemaEmne.2=N/T1/ring+og+handel
https://prosjektbanken.forskningsradet.no/project/FORISS/313921?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=date&sortOrder=desc&resultCount=30&offset=210&TemaEmne.2=N/T1/ring+og+handel
https://prosjektbanken.forskningsradet.no/project/FORISS/313921?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=date&sortOrder=desc&resultCount=30&offset=210&TemaEmne.2=N/T1/ring+og+handel
http://dx.doi.org/10.1051/matecconf/201927302002
http://dx.doi.org/10.1051/matecconf/201927302002
http://dx.doi.org/10.1051/matecconf/201927302002
http://dx.doi.org/10.3940/rina.ijme.2019.a3.526
http://dx.doi.org/10.3940/rina.ijme.2019.a3.526
http://dx.doi.org/10.3940/rina.ijme.2019.a3.526
http://dx.doi.org/10.3166/EJC.18.217-238
http://dx.doi.org/10.3166/ejc.18.217-238
http://dx.doi.org/10.3166/ejc.18.217-238
http://dx.doi.org/10.3166/ejc.18.217-238
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb30
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb30
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb30
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb30
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb30

Ocean Engineering 270 (2023) 113685T.R. Torben et al.
Smogeli, O., 2015. Managing DP system software - A life-cycle perspective.
IFAC-PapersOnLine 48 (16), 324–334.

Smogeli, O., Ludvigsen, K.B., Jamt, L., Vik, B., Nordahl, H., Kyllingstad, L.T., Yum, K.K.,
Zhang, H., 2020. Open simulation platform – An open-source project for maritime
system co-simulation. In: 19th Conference on Computer and IT Applications in the
Maritime Industries. pp. 239–253.

Smogeli, O., Skogdalen, J.E., 2011. Third party HIL testing of safety critical control
system software on ships and rigs. In: Offshore Technology Conference. One Petro,
pp. 839–845.

Thyri, E.H., Breivik, M., Lekkas, A.M., 2020. A path-velocity decomposition approach
to collision avoidance for autonomous passenger ferries in confined waters. IFAC-
PapersOnLine 53 (2), 14628–14635. http://dx.doi.org/10.1016/j.ifacol.2020.12.
1472, URL: https://doi.org/10.1016/j.ifacol.2020.12.1472.

Torben, T.R., Glomsrud, J.A., Pedersen, T.A., Utne, I.B., Sørensen, A.J., 2022a. Auto-
matic simulation-based testing of autonomous ships using Gaussian processes and
temporal logic. J. Risk Reliab. 1–21.
17
Torben, T.R., Smogeli, O., Utne, I.B., Sørensen, A.J., 2022b. On formal methods for
design and verification of maritime autonomous surface ships. In: Proceedings of
the 7th World Maritime Technology Conference. Copenhagen, pp. 251–262.

Utne, I.B., Rokseth, B., Sørensen, A.J., Vinnem, J.E., 2020. Towards supervisory risk
control of autonomous ships. Reliab. Eng. Syst. Saf. 196 (June 2018), 106757.
http://dx.doi.org/10.1016/j.ress.2019.106757, URL: https://doi.org/10.1016/j.ress.
2019.106757.

Vasstein, K., 2021. A high fidelity digital twin framework for testing exteroceptive
perception of autonomous vessels.

Vasstein, K., Brekke, E.F., Mester, R., Eide, E., 2020. Autoferry gemini: A real-time
simulation platform for electromagnetic radiation sensors on autonomous ships.
IOP Conf. Ser.: Mater. Sci. Eng. 929 (1), http://dx.doi.org/10.1088/1757-899X/
929/1/012032.

Woerner, K., Benjamin, M.R., Novitzky, M., Leonard, J.J., 2019. Quantifying protocol
evaluation for autonomous collision avoidance: Toward establishing COLREGS
compliance metrics. Auton. Robots 43 (4), 967–991. http://dx.doi.org/10.1007/
s10514-018-9765-y.

http://refhub.elsevier.com/S0029-8018(23)00069-0/sb31
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb31
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb31
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb32
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb32
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb32
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb32
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb32
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb32
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb32
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb33
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb33
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb33
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb33
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb33
http://dx.doi.org/10.1016/j.ifacol.2020.12.1472
http://dx.doi.org/10.1016/j.ifacol.2020.12.1472
http://dx.doi.org/10.1016/j.ifacol.2020.12.1472
https://doi.org/10.1016/j.ifacol.2020.12.1472
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb35
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb35
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb35
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb35
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb35
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb36
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb36
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb36
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb36
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb36
http://dx.doi.org/10.1016/j.ress.2019.106757
https://doi.org/10.1016/j.ress.2019.106757
https://doi.org/10.1016/j.ress.2019.106757
https://doi.org/10.1016/j.ress.2019.106757
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb38
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb38
http://refhub.elsevier.com/S0029-8018(23)00069-0/sb38
http://dx.doi.org/10.1088/1757-899X/929/1/012032
http://dx.doi.org/10.1088/1757-899X/929/1/012032
http://dx.doi.org/10.1088/1757-899X/929/1/012032
http://dx.doi.org/10.1007/s10514-018-9765-y
http://dx.doi.org/10.1007/s10514-018-9765-y
http://dx.doi.org/10.1007/s10514-018-9765-y

	Towards contract-based verification for autonomous vessels
	Introduction
	Contract framework for system verification
	Preliminaries: Mathematical foundation for contract-based design
	Contract framework using the Z3 theorem prover
	A short intro to Z3
	Component model
	Contract specification in Z3

	Methodology for contract-based verification of autonomous vessels
	Step 1: Define the top-level component and contract
	Step 2: Stepwise refinement into sub-components
	Step 3: Defining test setups for simulation-based testing
	Combining simulation-based testing and contract-based verification
	Activities for Step 3
	Step 4: Recursive contract-based verification
	Derivation of contract-based verification activities
	The recursive contract-based verification procedure of Step 4

	Case study: The milliAmpere II autonomous passenger ferry
	Description of the vessel and operation
	Applying the contract-based verification methodology
	Step 1: Define the top-level component and contract
	Step 2: Stepwise refinement into sub-components
	Step 3: Define test setups for simulation-based testing
	Step 4: Recursive contract-based verification

	Discussion
	Conclusions and further work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

