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Abstract

Topologically protected objects have drawn attention in many research areas. From
quantum bits to skyrmions, from superfluid helium to the early universe, topology plays
a crucial role. It is not always easy to produce or characterize the desired defects and
often very special conditions are required. Not so in hexagonal ErMnO3, which displays
a ferroelectric domain structure at room temperature, which by nature contains one
dimensional topological defects, so called vortex cores. ErMnO3 has a Curie temperature
of TC = 1156℃, which allows to study the phase transition from the paraelectric to the
ferroelectric phase and therefore the formation of the vortex cores in the laboratory.
This gives the chance to study the Kibble-Zurek mechanism, which predicts that the
number of vortex cores that can be found in the material depends on the cooling rate
at which it transitions TC .
The goal of this thesis is to investigate the influence of limited system size on the for-
mation of topological defects according to the Kibble-Zurek mechanism by means of a
cooling rate experiment using polycrystalline ErMnO3. For this experiment four samples
are heated to 1472 °C and cooled over TC with different cooling rates, i.e. 10−2 K/min,
10−1 K/min, 100 K/min and 101 K/min. The analysis of the domain structure shows
that not only vortex-like domains are present in the individual grains, but also stripe-
like domains. It is proposed, that those stripe-like domains are caused by intergranular
strain fields, which interact with the vortex cores. Nonetheless an increase in vortex
density with increasing cooling rate can be found that can not be explained by strain
fields and is therefore assumed to originate in the Kibble-Zurek mechanism. The Kibble-
Zurek exponent is significantly lowered from K = 0.49 in the single crystal to K = 0.13
in the polycrystal. This change can be attributed to effects that are not present in single
crystals, such as strain fields, grain boundaries and limited system size.



Sammendrag

Topologisk beskyttede objekter har vakt oppmerksomhet innen mange forskningsom-
råder. Fra kvantebiter til skyrmioner, fra superflytende helium til det tidlige universet,
topologi spiller en avgjørende rolle. Det er ikke alltid lett å produsere eller karakteris-
ere de ønskede defektene og ofte kreves det helt spesielle forhold. Ikke så i sekskantet
ErMnO3, som vises en ferroelektrisk domenestruktur ved romtemperatur, som av natur
inneholder en dimensjonale topologiske defekter, såkalte virvelkjerner. ErMnO3 har
en Curie-temperatur av TC = 1156℃, som gjør det mulig å studere faseovergangen
fra paraelektrisk til ferroelektrisk fase og derfor dannelsen av virvelkjernene i laborato-
riet. Dette gir sjansen til å studere Kibble-Zurek-mekanismen, som forutsier at antall
virvelkjerner som kan finnes i materialet avhenger av kjølehastigheten der den går over
TC . Målet med denne oppgaven er å undersøke påvirkningen av begrenset system-
størrelse på for- mating av topologiske defekter i henhold til Kibble-Zurek-mekanismen
ved hjelp av en kjølehastighetseksperiment ved bruk av polykrystallinsk ErMnO3. For
dette eksperimentet fire prøver varmes opp til 1472 °C og avkjøles over TC med forskjel-
lige kjølehastigheter, dvs. 10−2 K/min, 10−1 K/min, 100 K/min og 101 K/min. Anal-
ysen av domenestrukturen viser at ikke bare virvellignende domener er tilstede i de
enkelte kornene, men også stripe- som domener. Det foreslås at disse stripelignende
domenene er forårsaket av intergranulære tøyningsfelt, som samhandler med virvelk-
jernene. Ikke desto mindre en økning i virvel tetthet med økende kjølehastighet kan bli
funnet som ikke kan forklares med belastning felt og antas derfor å stamme fra Kibble-
Zurek-mekanismen. The Kibble- Zurek-eksponenten er betydelig senket fra K = 0.49
i enkeltkrystallen til K = 0.13 i polykrystallen. Denne endringen kan tilskrives effek-
ter som ikke er til stede i single krystaller, som stammefelt, korngrenser og begrenset
systemstørrelse.
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1. Introduction

1.1. Motivation

Since its discovery in 1920 by Joseph Valasek [1, 2], ferroelectric materials have become
more and more a center of attention of research groups around the globe. Ferroelectric
materials are dielectric insulators that exhibit a spontaneous polarization that can be
switched by an external electric field. This property makes them very versatile materials
that are of great interest for a wide variety of future applications, from the production
of hydrogen [3] to nanoelectronics [4, 5]. They are also the backbone of many every-day
applications such as ferroelectric capacitors [6] and actuators [7].
Ferroelectric materials often display a structure that is separated into domains of differ-
ent polarization states that meet in domain walls. What the structure of the domains
and the domain walls looks like varies a lot between different materials and the domains
can range from stripe-like configurations and fishbone-like configurations as found in for
example BaTiO3 [8] and bubble domains in thin films [9], to vortex-like formations as
can be found in hexagonal manganites [10, 11]. But even within one material there are
countless methods to engineer the domains in size and shape.
The model material for this work is hexagonal ErMnO3, a material that is known to
exhibit a vortex-like domain structure. In this type of structure the domain walls are
meandering through the material in an isotropic fashion and meet in one-dimensional
topological defects, the so called vortex cores.
More explicitly it is not a single crystal of ErMnO3 that is studied as has extensively been
done in the past, but rather polycrystalline samples. The production of polycrystalline
manganites has only recently been achieved and their domain structure has not yet been
researched until this year by Schultheiß et al. [12]. Polycrystalline materials differ in
mainly one big factor from their monocrystalline counterparts, namely a limited system
size. Where in a single crystal the system can be viewed as effectively infinite, in a
polycrystal the system size is limited by the grain boundaries. Additionally, intergranular
strain fields have been shown to effect the domain structure [12].
This work will focus on the effect of a limited system size on the formation of topological
defects according to the Kibble-Zurek mechanism in the model system of polycrystalline
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ErMnO3. Because of the general nature of the Kibble-Zurek mechanism, the results of
this work are not only relevant for domain engineering in the ferroelectric community, but
also for other systems that display this defect formation mechanism, i.e. the formation
of the early universe [13–15], superfluid helium [16, 17] or colloidal systems [18].

1.2. Outline

This work is divided into 6 chapters, the first one being the introduction to the topic of
the domain structure in polycrystalline ErMnO3 and to why it is relevant for the study
of both ferroelectric materials and topological defects.
In the second one, the theoretical basis is constructed. The groundwork is laid by
explaining how ferroelectricity can arise and by introducing the model system ErMnO3

that is the focus of this work. Its domain structure will be discussed and explained
by means of Landau theory and a short excursion into topology and the Kibble-Zurek
mechanism. Furthermore the measuring tool that is existential to obtain the data for
this work, piezoresponse force microscopy (PFM) is introduced to the reader.
The third chapter of the work explains in detail, how the actual experiment was con-
ducted. It gives detailed insights in the tools that were used, both in the lab and for
analysis. It will cover how the samples were prepared, at which parameters the micro-
scope was operated and also how the relevant data was obtained from the images.
In the fourth chapter, the results from the experiment are presented. The PFM images
are analyzed for grain size, vortex density and frequency of stripe-like domains in order
to characterize the domain structure in the different samples.
Part five provides an extensive discussion of the results shown in chapter 4. The effect
of limited system size on the formation of topological defects is addressed as well as how
intergranular strain fields may play a role in the formation process of the ferroelectric
domains.
Finally the sixth chapter summarizes the results of this work and gives a brief outlook
on experiments that could be promising to conduct in the future.



2. Theoretical background

2.1. Ferroelectricity

2.1.1. Definitions

Polarization and surface charge

The polarization P of a material describes a charge separation inside the material. In
a dielectric material, which by definition is an electrical insulator, it is caused by an
external electric field E, which moves the charges apart following

Pi = χijEj (2.1)

where the dielectric susceptibility χij is a second-rank tensor [19]. Indices denote the
spacial coordinates x, y, z and Einstein’s sum convention is used in the following.
The total surface charge density D can then be defined as

Di = ϵ0Ei + Pi (2.2)

where ϵ = 8.85 × 10−12 F m−1 is the dielectric permittivity of vacuum. It follows that

Di = ϵ0Ei + χijEj

= ϵ0δijEj + χijEj

= (ϵ0δij + χij) Ej

= ϵijEj

where

ϵij = ϵ0δij + χij (2.3)

is the dielectric permittivity of the material. More oftenly reported than ϵij is the
dielectric constant of a material κij = ϵij/ϵ0.



2.1. Ferroelectricity 5

Stress and strain

The relation between the stress Xij applied to a material and the resulting strain xij

can be expressed by Hooke’s law

xij = sijklXkl (2.4)

where the fourth rank tensor sijkl is called the elastic compliance. The opposite relation
can be formulated as

Xij = cijklxkl (2.5)

and in this case the tensor cijkl is called the stiffness tensor. In some materials, external
stress can lead to surface charge density. This effect is called the direct piezoelectric
effect and is described by

Di = dijkXjk (2.6)

with the third-rank tensor of the piezoelectric coefficients dijk. The opposite relation

xij = dkijEk = dt
ijkEk (2.7)

is then also true, which is called the converse piezoelectric effect. Materials exhibiting
these effects are called piezoelectric materials. dt

ijk is the transposed matrix of dijk It
can be shown [20] that all piezoelectric coefficients are 0 for all 11 centrosymmetric point
groups as well as for non-centrosymmetric point group 432, because they prohibit odd-
rank tensors such as the piezoelectric tensor. This means, that none of the materials in
these groups can display any piezoelectric effect.

Pyroelectricity and ferroelectricity

Some materials can exhibit a polarization even without an applied electrical field. This
is then referred to as spontaneous polarization Ps [19]. If Ps is caused by a temperature
change, the effect is called pyroelectric effect, which is expressed by the equation

pi = ∂Ps,i

∂T
(2.8)
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where T denotes the temperature and pi is the vector of pyroelectric coefficients. D can
therefore be expressed in dependence of the temperature change ∆T

Di = ∆Ps,i = pi∆T (2.9)

This spontaneous polarization is only possible in materials that have a unique polar
axis. These materials all belong to 10 point groups, which are a subset of the non-
centrosymmetric point groups. Therefore all pyroelectric materials are also piezoelectric.
Note that the opposite is not true: not all piezoelectric materials are also pyroelectric.
Additionally it is possible, that Ps can be switched by applying an external electrical
field. Materials that show this behavior are called ferroelectric [19]. This in turn means
that all ferroelectric materials are pyroelectric and therefore also piezoelectric, while not
all pyroelectric materials are also ferroelectric.
Materials that exhibit only two polarization states with opposite directions are called
uniaxial ferroelectrics.

2.1.2. Phase transition and Landau theory

The properties of ferroelectric materials can be derived using Landau theory [21]. As-
sume the free energy f of a system, that breaks symmetry below a phase transition to
be

f = f0 + 1
2αη2 + 1

4βη4 + . . . (2.10)

where η is the order parameter of the system. As the phase transition from the para-
electric to the ferroelectric phase occurs at the Curie temperature TC we can write

α = α0(T − TC) (2.11)

The phase transition is of first order if β < 0 and of second order for β > 0 [22]. In this
work only the case of β > 0 is relevant as the model system undergoes a second order
phase transition.
The stable states of the system, found by minimizing the free energy, are therefore setting
the conditions

∂f

∂η
= 0 = α0(T − TC)η + βη3 (2.12)

∂2f

∂η2 > 0 (2.13)
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For T > TC these are fulfilled for η0 = 0, resulting in a single minimum. For T < TC

η0 = 0 gives a local maximum, the two minima are found at

η0 = ±
√

α0
β

(TC − T ) ∼ |T − TC |
1
2 = |T − TC |ν (2.14)

The exponent ν = 1
2 is called the critical exponent. Its value can also be derived using

molecular field theories [22], which yield the same result. This behavior is demonstrated
in Fig. 2.1.

Fig. 2.1.: Free energy over a second order phase transition with order parameter η.
Above TC the function has only one minimum at η = 0, while below it has two
minima at η = ±η0 [23].

For some ferroelectrics the order parameter η is the polarization. These materials are
called proper ferroelectrics.

Improper ferroelectrics

A ferroelectric material in which the polarization P is not the primary order parameter
is called an improper ferroelectric. In this case there exists another order parameter η

that is predominant such as structural distortion or charge and the polarization is only
secondary. In this case the free energy f needs to be expressed in terms of both order
parameters and takes the form [24]

f = f0 + 1
2α0(T − TC)(η2

1 + η2
2) + . . . − a(η2

1 − η2
2)P + bP 2 (2.15)
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Here the primary order parameter η = (η1, η2) consists of two components as explained
by Cowley et al. [25]. The equilibrium state for the primary order parameter can again
be found in two states at ±η0 = (±η1,0, 0) [24] and it scales with the square root of the
temperature difference.

η1,0 ∝ |T − TC |
1
2 (2.16)

For temperatures above TC , the free energy is therefore again a single well potential, while
below TC it changes to double well potential with position ±PS and depends therefore
on the secondary order parameter. Since P couples quadratically to η (P ∝ η2

1 + η2
2),

the temperature scaling of P is now linear.

Ps ∝ |T − TC | (2.17)

2.1.3. Domain structure

After undergoing the phase transition from a paraelectric to a ferroelectric phase, a
spontaneous polarization arises and with it a surface charge. This surface charge then in
turn produces an electric field called the depolarizing field Ed, which is oriented opposite
PS . Because upholding an electric field is energetically unfavorable, the material does
not fall into a state of a single polarization, but forms so called domains. Inside each
domain, the polarization direction is the same, but it points in a different direction than
the neighboring domain’s polarization. In a material that has only one polarization
axis, which means that the polarization between domains must change by 180°. In
other materials with multiple polarization axes, for example BaTiO3, other angles are
also possible, e.g, 90°. These domains of different polarization states are randomly
distributed throughout the material in a way that the net polarization of the whole
sample amounts to 0. The area where two domains meet is called a domain wall.
Of course upholding a domain wall comes at its own energy cost, because of the coupling
of the microscopic polarization states. From a microscopic perspective it is favorable to
have all polarization states pointing the same direction. This energy cost balances the
desire of the having an overall polarization of zero, the domains therefore do not become
as small as one unit cell as discussed in ref. [26].

2.1.4. Ferroelecric hysteresis

When a small external electric field E is applied to a ferroelectric material, the polar-
ization P increases linearly with the field in accordance with eq. (2.1). Fig. 2.2 shows
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this, starting from the origin and following the loop with increasing field. As E becomes
stronger, domains in the material that opposed the field begin to flip. This leads to a
steep increase of P that is highly nonlinear, eq. (2.1) is not valid anymore. When all
domains have aligned with E, the increase of P is linear once more.

Fig. 2.2.: Ferroelectric hysteresis loop [27] where PR is the remanent polarization and
EC the coercive field. The dashed red line shows the extrapolation of the linear
regime where the polarization is saturated. It’s intersection with the polarization
axis is the spontaneous polarization Ps

If now E is decreased, P also begins to decrease, but when E = 0, P will keep a non-zero
value. This nonzero polarization is called the remanent polarization, PR. To decrease
P further, E needs to be inverted to its original direction. The field required to reach
P = 0 is called the coercive field, EC . From this point E can be decreased further until
P saturates again. In an optimal scenario, the hysteresis loop is perfectly symmetric.
The spontaneous polarization is usually defined as the intersection of the polarization
axis with the extrapolation of the linear regime of the saturated polarization (indicated
by the dashed lines in Fig. 2.2).

2.2. Hexagonal rare-earth manganites

Rare earth manganites RMnO3 are a group of improper ferroelectrics that can be divided
in two subgroups depending on the crystal structure they form. While the compounds
with large R3+-ions (R =Y, Sc, La-Lu) form an orthorhombic structure, the ones with
smaller ions (R=Sc, Y, In, Dy – Lu) crystallize to a hexagonal shape [28].
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Fig. 2.3.: Crystal structure of hexagonal manganites above (left) and below the Curie
temperature TC (right). Above TC the MnO5 bipyramids and the R3+ cations
are structured in even layers resulting in paraelectric properties. Below TC the
bipyramids are tilted, pushing the cations out of the even plain and into an up-up-
down formation. This structural shift induces a polarization along the z-axis and
therefore ferroelectric properties emerge in the material [29]. Image taken from [23].

Fig. 2.3 shows the crystal structure of RMnO3 above and below TC , which consists of
layers of MnO5 bipyramids interspersed with layers of R3+-ions. Above TC , both these
layers are evenly aligned in the xy-plane and the material is therefore paraelectric. After
undergoing the phase transition through TC , the bipyramids become tilted in a way that
they either point towards or away from a central cation. The cations themselves do not
stay in an even plain either, but arrange in an up-up-down formation. This dislocation
of the charged ions leads to a net polarization Ps in the z-direction of the material.
Using the same reasoning, a down-down-up formation is also possible, resulting in the
opposite polarization −Ps. These are the two possible polarization states for hexagonal
manganites that can be found in the domains, it is therefore uniaxial [29].
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2.2.1. Topology

The high temperature phase of rare-earth manganites has a P63/mmc space group,
which is centrosymmetric [30]. As the system undergoes the phase transition at TC

and the bipyramids are tilted as shown in Fig. 2.3, this symmetry is broken. Landau
theory [31] and first-principles calculations [32] show that for small amplitudes the energy
lowering is independent of the tilt angle. This implies that close to the phase transition
the symmetry of the system is a continuous rotational symmetry U(1), which resembles
a Mexican hat potential as shown in Fig. 2.4. This means that the free energy can be
expressed in polar coordinates in terms of an amplitude Q and a phase Φ.

Fig. 2.4.: Mexican hat potential below TC . Close to TC the broken symmetry is a
U(1) rotational symmetry where all tilt angles of the perovskites have the same
energy. The topological defects appearing in such a system are 1D vortices. As the
temperature is lowered further, six discrete tilt angles have the most favored energy,
corresponding to a Z6 symmetry [30].

Mapping the space group U(1) to its topological space, the 1D circle S1, the topological
defects occurring in the system can be found. The homotopy tables in [33] show that
the expected defects are one-dimensional vortices.
As the system temperature is reduced even further, the tilt angles no longer are contin-
uous, but a few angles have a favored energy state. These are at angles of 0, 2π/3 and
4π/3, which is described by a Z3 symmetry. These three tilts are denoted by an index
α, β and γ respectively. As they can tilt inwards or outwards, this adds another degree
of freedom of Z2 symmetry (denoted by a + or - sign in the index) such that the total
symmetry can be described as Z2 × Z3 = Z6. The inward/outward tilt determines the
sign of the polarization state, so if the resulting domain is in a +P or −P state. This
locking into discrete states leads to a discretized vortex core that is surrounded by six
domains of alternating polarization as shown in Fig. 2.5
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Fig. 2.5.: Close to TC the phase Φ is continuous, while for lower temperatures it is
discretized into six so called clover-leaf domains. The tilt angles have three possible
values 0, 2π/3 or 4π/3 denoted by the index α, β and γ. They can also tilt inwards
or outwards, denoted by a + or - sign. These six domain states meet in a disrcetized
vortex core [10].

Fig. 2.6 shows a PFM scan of monocrystalline ErMnO3 where blue and yellow signify
opposite piezoresponse signals and therefore domains of +P and −P polarization. Those
domains meet either in domain walls that separate a +P domain from a −P domain by
a sharp line or in a discretized vortex core of sixfold symmetry as sketched in Fig. 2.5.

Fig. 2.6.: Domain structure of hexagonal manganite [34]. Blue and yellow areas show
the two polarization states +P and −P . Domains either meet at domain walls that
are meandering through the sample or in vortex cores where six domains meet.
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2.2.2. Mechanical stress

In 2013 Artyukhin et al. [31], proposed that considering a strain

fstrain = −GQ2[(uxx − uyy)∂xΦ − 2uxy∂yΦ] (2.18)

leads to an additional stable configuration of domains that does not include vortices.
Instead a parallel array of domain walls, each with an increment of ∆Φ = ±π/3 is
the favored configuration. What they call a Φ-staircase can also be seen as stripe-like
domains as each step of π/3 also implies a flip of the polarization direction. This was
experimentally confirmed in 2014 by Wang et al. [35], where they applied mechanical
strain in the in-plane direction on samples of different geometries and observed both
areas with stripe-like domains in areas with high strain and vortex-like domains in areas
of low strain. In their work they also confirmed that all vortex cores follow the same
domain sequence (α−, β+, γ−, α+, β−, γ+) in clockwise direction, while all anti-
vortex cores follow this same sequence in counter-clockwise direction. By comparing the
transition region between vortex-like and stripe-like domains they could confirm that
also the stripe-like domains follow this chirality.

Phase-field simulation

Xue et al. [36] solved the equation of the free energy density in rare-earth manganites
numerically to further research the effect of strain on the domain structure. In Fig. 2.7
their results are shown where in the top half of the simulation box a strain was implied
that increases from (a) to (d). In the initial state (a) with no strain, the system displays
vortex-like domains in an isotropic fashion. As strain is applied in the top half, the
domains there start to elongate towards the upper end of the box, some vortex cores are
annihilated either on reaching the end of the system or by meeting an anti-vortex with
opposite chirality. As the strain increases, the domains become more and more stripe-
like until they reach a state of perfectly parallel domain walls. The number of vortex
cores increases again as the stripes become narrower and therefore more in number. The
strain-free bottom half of the simulation box stays isotropic with vortex-like domains.
The domain structure is unaffected by the change in structure in the top half except for
a small transition region between the two halves.
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Fig. 2.7.: Phase field simulation of the effect of strain on the domain structure. From (a)
to (d) an increasing strain is applied to the top half of the simulation box changing
the domain structure from vortex-like to stripe-like in this region. [36]

2.3. Scaling behavior and Kibble-Zurek mechanism

In their works on topological defects, Tom Kibble and Wojciech Zurek developed a theory
that describes the formation of domains and topological defects as a system undergoes
a second order phase transition. The density of topological defects in their description
depends on the rate at which the system is cooling down over the critical temperature.
Their description has been applied to a broad range of systems, from astrophysical phe-
nomena during the early stages of the universe [13–15] to superfluid helium [16, 17] all
the way to colloidal systems [18] and even to ferroelectric crystals [10].
To determine over which distances microscopic states (such as polarization, magnetiza-
tion, spin, etc.) influence each other inside a sample, an equilibrium correlation length ξ

can be defined. The temperature dependence of the equilibrium correlation length was
derived utilizing molecular field theories, as

ξ ∝ |T − Tcrit|−ν (2.19)

where ν is again the critical exponent and Tcrit the critical temperature. For ferroelectric
systems, the critical temperature is referred to as Curie temperature. Eq. (2.19) can also
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be written as

ξ(ϵ) = ξ0|ϵ|−ν (2.20)

with the reduced distance parameter

ϵ = Tcrit − T

Tcrit
(2.21)

Analogously an equilibrium relaxation time τ can be defined as

τ(ϵ) = τ0|ϵ|−zν , (2.22)

describing the time the system requires to reach its equilibrium state after being dis-
turbed. The exponent z is called the dynamic critical exponent and it relates the spatial
and temporal critical fluctuations. The material specific constants ξ0 and τ0 describe
the correlation length and equilibrium relaxation time at zero temperature and can be
determined using DFT calculations and experimental values. For ErMnO3, Q.N.Meier
et al. [10] show that ξ0 = 1.41 Å. It is important to note that both ξ and τ diverge at
the so called critical point where T = Tcrit as shown in Fig. 2.8 by the blue lines.

In their theory, Kibble and Zurek [13–17] assume that a sample is cooled down linearly
through Tcrit, that means that the temperature parameter ϵ changes linearly with time
t and can therefore be expressed as

ϵ = Tcrit − T

Tcrit
(2.23)

= t

τQ
(2.24)

where τQ is the characteristic time set by the cooling rate.
Far away from the critical temperature, so for |ϵ(t)| >> 0, the equilibrium relaxation
time is very small compared to the time it takes for the system to reach its critical point.
That means that the order parameter always has time to reach its equilibrium state. The
process is essentially adiabatic. As |ϵ(t)| gets close to zero, τ(ϵ) diverges according to
eq. (2.22), implying that the the system has no time to reach its equilibrium state before
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the critical point is reached. Therefore the dynamics in the system can effectively be
seen as frozen.
From this argument, Zurek suggests [17] to separate the phase transition into three
separate zones, so that the system goes from adiabatic to frozen and to adiabatic again.
This idea is sketched in Fig. 2.8 where the correlation time is plotted over the time
difference t − tcrit. The white areas to the left and right denote the adiabatic regimes
and the blue in the center shows the frozen-out regime.

quasi-adiabatic
dynamics

quasi-adiabatic
dynamics

"frozen-out"
stage

co
rr

el
at

io
n-

tim
e

distance to
transition

large cooling rate

small cooling rate

1 2 12

Fig. 2.8.: Cooling of a sample showing a second order phase transition. On the x-axis
the time difference tcrit − t, on the y-axis the correlation time. τ (blue) diverges
exponentially at tcrit − t = 0 while the | ϵ

ϵ̇ | = t (red) has a linear slope. The process
can be split into three regimes: Two adiabatic regimes far away from the critical
point where the order parameter can always reach its equilibrium state and a frozen
regime in the middle. Here the order parameter will not reach equilibrium, because
the relaxation time τ diverges. The freeze-out time t̂, at which the regimes meet is
used to predict the resulting domain size [37]. The meeting point where t = τ is
changing with cooling rate and therefore t̂ also depends on the cooling rate.

The dashed red lines represent the time at two different linear cooling rates, where the
lower cooling rate results in a steeper slope than the higher cooling rate. The blue line
shows the diverging relaxation time τ . The freeze-out time t̂ is the point where the
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cooling rate and the relaxation time are equal, so where their lines cross. This is the
case when

τ(t) ≈
∣∣∣∣ϵϵ̇
∣∣∣∣ = t (2.25)

with ϵ̇ = ∂ϵ/∂t. t̂ can therefore be found as

t̂ = τ(t̂) (2.26)

= τ0

|ϵ(t̂)|zν
(2.27)

= τ0

(t̂/τQ)zν
(2.28)

⇒ t̂1+zν = τ0τ zν
Q (2.29)

⇒ t̂ =
(
τ0τ zν

Q

) 1
1+zν (2.30)

This implies that the order parameter lags behind, i.e., the system is not in equilibrium,
for values of ϵ ∈ [−ϵ̂, ϵ̂], where

ϵ̂ = t̂

τQ
(2.31)

=
(
τ0τ zν

Q

) 1
1+zν τ−1

Q (2.32)

=
(

τ0
τQ

) 1
1+zν

(2.33)

A domain, as introduced is section 2.1.3, is defined as an area in which the microscopic
states are all equal, for example in a ferroelectric the polarization vector points in the
same direction. It is therefore practical to use the correlation length as a predictive
tool for the domain size, because it gives a measure of the range over which the states
influence each other. The average domain size can therefore be estimated by calculating
the correlation length
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ξ̂ = ξ(ϵ̂) (2.34)

= ξ0|ϵ̂|−ν (2.35)

=
(

τQ

τ0

) ν
1+zν

(2.36)

ξ̂ can then be used to find the density of topological defects n in the system as

n ∼ ξ̂d

ξ̂D
(2.37)

= 1
ξD−d

0

(
τ0
τQ

)(D−d) ν
1+zν

(2.38)

where D and d denote the dimensions of the system and of the expected defects respec-
tively. In a 3D system with 1D vortex cores as are found in ErMnO3, that means that
D − d = 2 and therefore that

n ∼ 1
ξ2

0

(
τ0
τQ

) 2ν
1+zν

(2.39)

Eq. (2.39) is known as „Kibble-Zurek“ equation and gives a direct relation between the
cooling rate over Tcrit that a sample undergoes and the resulting density of topological
defects.

2.4. Piezoresponse force microscopy

In order to visualize the domain structure in a ferroelectric material, the fact that every
ferroelectric material is also piezoelectric is very useful. Piezoresponse force microscopy
(PFM) is a technique that can measure the piezoelectric properties on the nanoscale.
Due to the different orientation of the ferroelectric domains and the resulting different
piezoelectric response, this technique gives information on the domain structure of fer-
roelectric materials.
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Fig. 2.9.: Setup of a piezoresponse force microscope [38]. (a) shows the cantilever,
where a laser light is reflected onto a photodetector. The arrows show the direction
in which the sample can expand and contract and the corresponding reaction of the
cantilever (buckling, torsion, deflection). (b) shows a sketch of the cantilever and
its different types of distortion from side and top view. (c) shows the photodetector
that is split into four sections. Each type of distortion leads to the laser beam
being moved in a different direction and thus hitting a different quadrant of the
photodetector. The signal is split into vertical and lateral that is read out separately.

Fig. 2.9 shows the working principle of a PFM setup. A cantilever that has a conductive
tip of few nanometers in diameter, is in contact with the sample. A laser beam is shone
on the top surface of the cantilever in such a way that is reflected onto a photodetector
as shown in Fig. 2.9 (a). The detector is separated into four quadrants as shown in
Fig. 2.9 (c) and initially the laser hits the central spot between the four parts. Then an
AC voltage is applied between the cantilever and the backside of the sample, causing
the sample to expand and contract because of its piezoelectric properties. Different
polarization states cause the sample to expand in a different direction. This causes the
cantilever to be distorted as shown in Fig. 2.9 (b), which in turn is monitored by the
laser position on the detector. There are different types of deformation the cantilever
can undergo i.e. buckling, deflection and torsion, which each have a different effect on
the laser displacement. Which type of distortion is happening is determined by the
direction in which the material is moving. It is not only the type of distortion that is
measured, but also the phase. As an AC current is applied, the material will expand
and contract with the same frequency, but +P and −P domains will show a phase shift



20 2. Theoretical background

of π in their oscillation, because they show an opposite reaction the the applied field.
With this method the different domains can be made visible [38–40]. To determine the
exact polarization states of the domains, more advanced methods like vector PFM are
necessary.
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3.1. Sample preparation

High-purity ErMnO3 powder is manufactured using solid-state synthesis using Er2O3

(99.9 % Purity; Alfa Aesar, Haverhill, MA, USA) and Mn2O3 (99.0 % Purity; Sigma-
Aldrich, St. Louis, MO, USA). More details can be found in ref. [12]. 0.5 g of this
powder is pressed into flat cylindrical pallets with a diameter of 1 cm for each sample.
To ensure isotropic pressure distribution on the sample a coldisostatic press is used
(Autoclave Engineers, Parker-Hannifin, Cleveland, OH, USA) to exert a pressure of
29 000 psi (≈200 MPa).

3.2. Furnace calibration

Before sintering the sample, one needs to ensure that the thermo-element inside the
furnace is accurate enough. Therefore the furnace is heated to TC . Fig. 3.1 shows the
temperature profile of an external thermocouple that is inserted into the tube of the
furnace. The tube itself has a length of 120 cm, the thermocouple is inserted to half the
length, because the temperature profile is assumed to be symmetric. The insertion depth
is measured from the end of the tube. The tube sticks outside the box of the furnace,
in which the heating elements are sitting. That means that for small insertion depths
the temperature is far too low, because the thermocouple, while already in the furnace
tube, is still outside the heated box of the furnace. As the thermocouple approaches the
center of the furnace, the temperature gets closer and closer to the target value. The
6 cm to each side of the middle have exactly the target temperature.
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Fig. 3.1.: Temperature profile inside the tube furnace. The insertion depth measures,
how far the thermocouple is inserted into the tube of the furnace. In the center of
the furnace (at 60 cm depth) and up to 6 cm to the side of it, the set temperature
is exactly on point with the measured temperature. This way it is ensured that TC

is inside the 40 K cooling range.

3.3. Cooling rate experiment

For sintering the sample, it is heated to a temperature above the TC as illustrated in
Fig. 3.2. For this experiment a sintering temperature Ts = 1475 °C was chosen, with a
dwell time of 24 h. Those conditions were chosen to achieve grains large enough to host
multiple domains as explored in ref. [12]. To ensure that the grain size is equal for all
samples the dwell time at Ts was chosen to be long, to minimize the driving forces for
grain growth during the cooling process [12].
Cooling down after the sintering process the actual experiment is conducted: Each sam-
ple is cooled through TC at a different cooling rate. For all samples a cooling rate of
5 K/min is chosen, except for a 40 K interval around TC . From 1176 °C to 1136 °C the
cooling rate is adjusted to the different values needed for the experiment. The cool-
ing rates chosen are 10−2 K/min (blue), 10−1 K/min (green), 100 K/min (yellow) and
101 K/min (red). This procedure is similar to the work done on single crystals by Q.N.
Meier et al. [10].
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Fig. 3.2.: Temperature profile for sintering the samples. The tube furnace is heated to
the sintering temperature Ts = 1475 °C and left to dwell there for 24 h. Afterwards it
is cooled to 1176 °C with a rate of 5 K/min. From 1176 °C to 1136 °C the cooling rate
is set to four different values of 10−2 K/min (blue), 10−1 K/min (green), 100 K/min
(yellow) and 101 K/min (blue). Having crossed TC with the respective rate, the
cooling to room temperature continues at 5 K/min.

3.4. Piezoresponse force microscopy

After the sintering and cooling the samples are lapped with 9 µm calcinated aluminum
oxide solution (Logitech, Glasgow, UK) in order to image the bulk of the sample. The
chemical composition and the mechanical boundary conditions might be different at the
sample surface. Furthermore the surface is exposed to air, which might lead to unwanted
reactions. To also get rid of topographic influences and to make atomic force microscopy
(AFM) measurement possible, the sample is polished to a root mean square (RSM) of
ca. 20 nm (averaged over 1500 µm2 per sample) after lapping, using a mechano-chemical
procedure with an SF1 polishing suspension (Logitech, Glasgow, UK).
That the lapping and polishing is only possible in this fashion, because the hexagonal
manganites are not ferroelastic, so the mechanical force applied has no impact on the
domain structure.
The PFM images were obtained using a NT-MDT Ntegra Prisma setup (NT-MDT,
Moscow, Russia) measuring off-resonance at a frequency of 40.13 kHz with an amplitude
of 10 V. The tip used was platinum coated Spark 150 pt (NuNano, Bristol, UK). To
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enhance the weak signal from the off-resonance two lock-in amplifiers were used (SR830,
Stanford Research Systems, Sunnyvale, CA, USA).

3.5. Image analysis

3.5.1. Grain size and Vortex density

The grain size is determined using the image program imageJ. To determine the number
of pixels of one grain Pgrain, a polygonal shape is drawn along the grain boundaries,
for which the program then gives a pixel count. To calculate the real grain size Agrain,
Pgrain is divided by the total number of pixels in the whole image Pimage and multiplied
by the area of the image Aimage.

Agrain = Pgrain

Pimage
· Aimage. (3.1)

The number of vortex cores n in each grain is counted manually and the vortex density
ρ is calculated as

ρ = n

Agrain
. (3.2)

To make understanding more intuitive, the grains are then assumed to be approximately
circular so that the grain radius r can be calculated as

r =
√

Agrain

π
. (3.3)

3.5.2. Stripe periodicity

To calculate the average domain frequency for a sample, 20 profiles are drawn through
periodic domain structures as demonstrated in Fig. 3.3a. The profiles show the pixel
values for each pixel contained in the drawn lines. To correct for noise, the line is chosen
to be 30 pixels wide, which are averaged together to give one value in the profile, which
is plotted in Fig. 3.3b. Applying a fast fourier transform then gives the frequency of
each profile. Of the resulting spectrum, only the highest peak was considered as shown
in Fig. 3.3d. The peak in the frequency spectrum at 0 µm−1 is ignored for this method
as it is caused by uncorrelated features in the profile. To confirm the function of this
method, the domain frequency was additionally calculated manually for individual sam-
ples by counting the domains and dividing by the length of the profile as demonstrated
in Fig. 3.3c. The frequency values for all 20 profiles are then averaged to give one mean
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value per image and the standard deviation is used as error. The individual values are
used to create a distribution of frequencies, which again contains further information on
how the domain structure changes from sample to sample.

a)

b)
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c)

d)

Fig. 3.3.: Image analysis method to measure the domain frequency of stripe-like do-
mains. a), b) The profile of a periodic feature is extracted. c) The number of peaks
divided by the length of the profile gives an estimate of the frequency. d) Fourier
transform gives a precise measure of the frequency.
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4.1. Microstructural analysis

Fig. 4.1 shows a topography scan of the sample surface of the polycrystalline ErMnO3

taken with the AFM. It is corrected by a 6th-order polynomial so that any tilt or bend
of the surface is removed and only features that can not be accounted for by an uneven
surface are visible. Several features can be noted: The dark spots that are visible are
pores in the sample, the biggest of which is located in the top left corner of the scan.
They can be so deep that the AFM tip can not follow them to get a signal and are
therefore completely dark. For the same reason they will not give PFM contrast and
will equally appear as dark spots in the PFM scans shown in Fig. 4.3.
Secondly there are dark outlines visible that crate a web throughout the sample. Some of
them correspond to grain boundaries as shown in the blue inset. Others are microcracks
that appear after domain formation when cooling down the sample, as is known to
happen for polycrystalline ceramics [41–43]. To tell one from the other is not possible
using only topography, but electron backscattered diffractometry (EBSD) or analysis of
the domain structure using PFM can help in the matter.
The small, slightly darker spots that appear on many of the grains are dirt particles that
are sitting on the sample surface. These features are found in all samples equally (see
more images in appendix A).
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Fig. 4.1.: Topographic image of polycrystalline ErMnO3 revealing grain boundaries,
microcracks, pores and dirt particles on the sample surface. The blue inset shows
an example grain boundary in red, while the dark lines inside the marked grain are
microcracks. The pink boxes show examples of dirt particles on the sample, the
yellow boxes frame examples of pores.

4.2. Grain size

To investigate the grain size, an average of 20 grains on each PFM image shown in
Fig. 4.3 were analyzed by using imageJ as described in section 3.5. The quantitative
analysis of the grain size in Fig. 4.2 shows that the grains have an average radius between
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16.5 µm (10−2 K/min) and 10.9 µm (101 K/min), so they differ by about a factor of 2.
The trend seen in Fig. 4.2 is that with increasing cooling rate, the grain size decreases.
The error bars are given by the standard deviation. The change in domain structure in
this experiment is therefore solely caused by the change in cooling rate and not influenced
by a change in grain size.

Fig. 4.2.: Grain size as a function of the cooling rate in the different samples. The grains
that were cooled more slowly show slightly bigger grains than the ones cooled with
a high cooling rate.

4.3. Nanoscale electromechanical analysis

Fig. 4.3 shows the piezoresponse of the four samples cooled at different rates as described
in section 3.3. Subfig. a)-c) show the out-of-plane signal, while subfig. d) shows the
in-plane signal), the respective other image can be found in Appendix B. The yellow
and blue colors indicate areas of opposite response signal. This signal is directly related
to the polarization state of the material and therefore shows the underlying ferroelectric
domain structure. In all four samples similar patterns are revealed: In the center of the
individual grains, vortex cores can be found while towards the grain boundaries stripe-
like domains are the predominant form. All vortex cores exhibit the six-fold symmetry
that was discussed in section 2.2.1. In some smaller grains there are no vortex cores
present at all. In most cases, stripe-like domains meet the grain boundaries at a 90°
angle. It can be noted that in places where the domains are in stripe-like formation, the
domain walls are mostly parallel and the width of the domains is about the same for all
stripes in that region. There is no preferential direction in the system, neither for the
orientation of the stripes inside one grain, nor for the grain orientation in the sample.
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a) b)

c) d)

Fig. 4.3.: Domain structure of ErMnO3 at different cooling rates over TC : a)
10−2 K/min, b) 10−1 K/min, c) 100 K/min, d) 101 K/min. a)-c) show the normal
contrast, while d) shows the lateral contrast. The grain boundaries have been out-
lined in red for better visibility. As the cooling rate increases, the domain size
visibly decreases and the domain shape changes from isotropic and vortex-like to
more stripe-like patterns.

Aside from the well known structure of the hexagonal manganites, an additional effect
can be observed: As the cooling rate increases, the domains decrease in size. Where in
Fig. 4.3a (10−2 K/min) a grain sometimes contains only about ten domains and a single
vortex core, the grains in Fig. 4.3d (101 K/min) often contain many more domains. The
domain structure also seems to change. Even though both vortex-like and stripe-like
domains are present in all samples, the distribution changes. In Fig. 4.3a (10−2 K/min),
large areas are taken up by vortex-like domains while the stripe-like domains mostly
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form close to the grain boundaries. In Fig. 4.3c (100 K/min) on the other hand there
are only very few vortex-like domains. Often the whole grain is permeated by stripe-like
domains. There are still many vortex cores to be seen, but only few domains end in
more than one vortex core, most extend from one vortex core to the grain boundary.

4.4. Vortex density and domain frequency

4.4.1. Vortex density

Fig. 4.4 shows the vortex density in the samples of different cooling rates where the
error bars show the standard deviation. To obtain these results, the grain sizes on the
PFM scans for each sample were calculated as described in section 3.5. The number of
vortex cores was counted manually for each grain and then divided by the total area of
the grain (eq. (3.2)). For the analysis, the same grains were used as for the grain size
analysis, so again an average of 20 grains per sample. For the cooling rates 10−2 K/min,
10−1 K/min and 100 K/min an increase in vortex density by ca. 200% can be seen, while
the vortex density at 101 K/min is decreased again.

Fig. 4.4.: Vortex density at different cooling rates. The vortex density increases with
increasing cooling rate on a logarithmic scale. For a cooling rate of 101 K/min, the
average vortex density is reduced.

From the vortex density the correlation length ξ̂ can be calculated by solving eq. (2.38)
for ξ̂ so that
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n ∼ ξ̂d

ξ̂D
= 1

ξ̂2
(4.1)

⇒ ξ̂ ∼ 1√
n

(4.2)

The resulting values for the correlation length lie between 2.8 µm (100 K/min) and 5.0 µm
(10−2 K/min).

4.4.2. Domain frequency

As the vortex density only gives a measure for the vortex-like domains, the stripe-like
domains need to be investigated separately. The number and size of stripe-like and
vortex-like domains are not necessarily directly correlated, as not every stripe-like do-
main ends in a vortex core. It can indeed in some grains be seen that stripe-like domains
cross through the whole grain without meeting a vortex core, both ends terminating at
a grain boundary. Therefore the spatial frequency of the stripe-like domains was deter-
mined as described in section 3.5.
Fig. 4.5 shows the spatial frequency of the stripe-like domains for the different samples.
Qualitatively it shows the same trend as Fig. 4.4: For the cooling rates 10−2 K/min,
10−1 K/min and 10−0 K/min the domain frequency increases from 1.00 1/µm to 1.70 1/µm
while the domain frequency at 101 K/min is lowered to 1.47 1/µm.

Fig. 4.5.: Domain frequency at different cooling rates. The domain frequency shows a
trend similar to the vortex density in Fig. 4.4. It increases at first, followed by a
drop at a cooling rate of 101 K/min.
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To get more insight into how the stripe-like domain structure varies with cooling rate, the
distributions of domain frequencies were plotted in Fig. 4.6. Each distribution contains
80 single values obtained as described in section 3.5. All four distributions roughly follow
a Gaussian distribution, but it is apparent that the statistics of 80 values is not enough
to give a smooth curve. With changing the cooling rate, two things change: the position
of its maximum µ and its width given by the standard deviation σ. The positions of
the maxima confirm the results of Fig. 4.5, but the width gives further information. In
Fig. 4.6a the distribution is quite narrow (σ = 0.355), while for the others it becomes
a lot wider, e.g. in Fig. 4.6c (σ = 0.718). This shows that not only the median value
of the domain frequency changes, but also that the domain size in the sample cooled at
10−2 K/min is much more homogeneous than in samples that are cooled with a higher
cooling rate. This can also be confirmed by the PFM images Fig. 4.3 where the visible
domains are all roughly of the same size. In Fig. 4.3d on the other hand there are still
some domains that are quite big while some stripe-like domains are so narrow that they
are barely resolved.

a) µ = 0.866, σ = 0.355 b) µ = 1.365, σ = 0.606

c) µ = 1.447, σ = 0.718 d) µ = 1.46, σ = 0.57

Fig. 4.6.: Distribution of domain frequencies for each cooling rate: a) 10−2 K/min, b)
10−1 K/min, c) 100 K/min, d) 101 K/min. They can be approximated by a Gaus-
sian distribution, the position µ and standard deviation σ of which give further
information on the domain structure.
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5.1. Microstructure

As described in section 4.1, all samples show the same general features of microcracks,
dirt, pores and grain boundaries. No significant change in the number of pores and
cracks can be seen, it is therefore safe to assume that the cooling rate does not impact
those features in a major way, as was already discovered for other manganites [44]. The
grain size on the other hand changes by about a factor of 2 as shown in Fig. 4.2. This
effect is most likely not directly caused by the cooling rate itself, but by the fact that
having a low cooling rate also means that the sample is at a higher temperature for a
longer time. The grain growth happens mostly at TS = 1475 °C, but it can also happen
at lower temperatures. The sample that is cooled at 10−2 K/min for example takes more
than 70 h to cool down to room temperature, while it only takes 11 h for the sample
cooled at 10−1 K/min. The effect of grain size on the domain structure has been studied
by Schultheiß et al. in ref. [12], where they show that the domain size decreases with
increasing grain size. At their proposed scaling rate of d = g−0.1 a factor of 2 in grain
size leads to a factor 0.933 in domain size, which is negligible for the purposes of this
study.

5.2. Domain structure in polycrystals

The origin of ferroelectricity in the polycrystalline ErMnO3 is the same as in single
crystals, therefore the domain structure is also similar. The material is still uniaxial
even though the orientation of the polarization direction can vary from grain to grain
and the topological defects in form of vortex cores can still be seen throughout the
sample. However the presence of stripe-like domains is a feature that occurs much less
frequently in single crystals. Their existence can be attributed to intergranular strain
fields appearing during the sintering process when the grains form and when their crystal
structure changes upon cooling down, causing the grains to accumulate elastic strain.
Because of their anisotropic expansion coefficient and different grain orientation, the
expansion of each grain has a different direction, causing the grains to press against
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each other. The resulting strain leads to other stable domain configurations where the
domains run parallel to each other and that do not include vortex cores [12, 35] as
discussed in section 2.2.2. The fact that even though the strain fields permeate multiple
micrometers deep into the grains there are still large areas where vortex cores are present
can be attributed to the fact that there are areas of zero strain fields in the center of the
grain [45]. This also accounts for the inverse scaling behavior observed by Schultheiß
et al. in [12], because as the grains get bigger, the overlap of opposite strain field is
smaller. In this way they can effectively impose more of their effect on the sample, thus
producing more stripe-like domains and resulting in a smaller domain size. Since the
average domain size is approximately equal throughout the sample, this effect does not
account for changes in the average domain size between the samples.

Fig. 5.1.: Vortex density plotted over the stripe frequency for the different cooling rates.
The data points for cooling rates of 10−2 K/min to 100 K/min show that the vortex
density increases with stripe frequency, which matches the results from Fig. 4.5 and
Fig. 4.4.

To analyze the connection between stripe-like and vortex-like domains more closely, the
vortex density is plotted over the stripe frequency in Fig. 5.1. Note that this plot does
not give a causality, but a correlation. Here a clear trend can be seen that as the stripe
frequency increases, so does the vortex density. It can not be extracted if the scaling is
linear, because too few data points are given. That the vortex density and the stripe
frequency are dependent on each other is expected since most of the stripe-like domains
end in a vortex core on one end and most vortex cores are connected to stripe-like
domains. The only exceptions are stripe-like domains that run all the way through the
grain without meeting a vortex core and areas where the domains are purely vortex-like.
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5.3. Scaling behavior & Kibble-Zurek mechanism

To investigate the impact of polycrystallinity on the formation of topological defects,
the vortex density that was measured for the polycrystalline samples is compared to
literature values measured from single crystalline ErMnO3 by Q.N. Meier et al. [10]
as shown in Fig. 5.2. The blue polycrystalline data here show the same trend as the
single crystal shown in red, i.e. the vortex density increases with cooling rate, but the
effect is strongly suppressed. A fit with the Kibble-Zurek equation eq. (2.39) for both
data sets yields that the Kibble-Zurek exponent K = 2ν

1+zν is decreased from K = 0.49
for the single crystal to K = 0.13 for the polycrystal. The scaling exponent K = 0.49
is a universal constant for all hexagonal manganites in the single crystalline state as
shown in ref. [10]. The two main effects that can be held responsible for this change in
scaling behavior are the finite system size and the intergranular strain fields, which will
individually be discussed in the following sections.

Fig. 5.2.: Vortex density as a function of cooling rate. The vortex density increases
logarithmically with the cooling rate according to the Kibble-Zurek scaling. The
Kibble-Zurek exponent determines the slope of the curve on a log-log scale and
differs by a factor of 4 between the single crystal and the polycrystal.

5.3.1. Finite system size

A single crystal is in principle a perfect system: There is an approximately infinite
number of atoms that have a perfectly periodic structure, each atom behaves exactly
the same as it experiences the same potential as every other atom. Only very few atoms
sit on the surface of a single crystal that could behave differently and those are usually
not used in measurements for exactly that reason. In a polycrystalline material, things
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are not quite as simple: The total surface area of the individual crystals is many times
as large as that of a single crystal, the surface atoms are also part of the measurement,
neighboring crystals can influence each other and the individual crystals can not be
regarded as infinite anymore. In short: many edge effects start playing a role that can
be disregarded in a single crystal.
For the formation of domains and vortex cores one aspect is particularly relevant: the
correlation length. As discussed in section 2.3, the correlation length is the relevant
quantity that determines the domain size after the phase transition from the paraelectric
phase to the ferroelectric phase. What is not taken into account in the Kibble-Zurek
mechanism is what happens when the system size is so small, that only few atoms do
not experience the influence of the edge of the system, namely the grain boundary. This
is the case for the samples used for this experiment where the correlation length is only
a factor of 3-5 smaller than the grain size. In this case it might be energetically more
favorable to have domains that terminate in a grain boundary rather than producing a
vortex core. This would lead to a reduced number of vortex cores and a suppression of
the Kibble-Zurek exponent as observed in Fig. 5.2.

5.3.2. Strain fields

As discussed in section 2.2.2, strain fields are responsible for the emergence of stripe-like
domains in ErMnO3. Those strain fields can either be applied mechanically [35] or can
originate from intergranular tensions [12]. In their work, Xue et al. [36] demonstrate
using phase-field simulations, that those strain fields can lead to the creation and annihi-
lation as well as the movement of the vortex cores. The stronger the strain field becomes,
the stronger also the influence on the vortex cores becomes [12, 35, 36]. More and more
vortex cores are created to create stripe-like domains with a higher frequency, but at
the same time more and more vortex cores are annihilated at the grain boundaries. It
is therefore clear that strain fields play a role in the formation of vortex cores, but it
is not clear if stronger strain fields lead to fewer or more vortex cores. One thing that
was not investigated by Schultheiß et al. is the formation of stripe-like domains that are
not connected to a vortex core. In Fig. 4.3 it can in some cases be seen, that domains
cross a grain from one grain boundary to another without terminating in a vortex core.
This is likely the effect of very strong strain fields in one direction that push out all the
vortex cores in one area. This of course only works in a system where the individual
grains are small enough that the strain fields permeate it strongly enough and where
the vortex cores can annihilate at the grain boundary. Taking this effect into account
it is reasonable to assume that strain fields alone do not necessarily change the vortex
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density one way or another. In combination with a finite system however, out of which
the vortex cores can be driven, they decrease the number of vortex cores in the sample
and lead therefore to a suppression of the Kibble-Zurek exponent.



6. Conclusion

The goal of this work was to investigate the impact of polycrystallinity on the formation
of topological defects following the Kibble-Zurek mechanism by means of a cooling rate
study in polycrystalline ErMnO3. For this study, four samples were prepared by solid-
state synthesis that were then sintered at 1475 °C for 24 h to achieve constant grain
size in the samples. Upon cooling down, the cooling rate over TC was then adjusted to
10−2 K/min, 10−1 K/min, 100 K/min and 101 K/min respectively. The resulting domain
structure was then visualized using PFM.
Analysis of the PFM images confirmed that the grain size throughout the samples is
changing by less than a factor of 2, which is not significant enough to have an impact
on the domain structure.
In the grains, two types of domains can be found: stripe-like and vortex-like domains.
Both were analyzed separately by different methods. To get a measure of the stripe-like
domains, their spatial frequency was determined, while the vortex-like domains were
characterized by the vortex density. Both measures show the same qualitative trend,
both stripe frequency and vortex density increase with increasing cooling rate up to
a cooling rate of 100 K/min and are then again reduced for 101 K/min. A fit with
the Kibble-Zurek function leads to the result that the Kibble-Zurek exponent for the
polycrystal K = 0.13 is strongly suppressed in comparison to the single crystal where
K = 0.49.
This different scaling is attributed to two different effects: On one hand, the finite
system size that is limited by the grain boundaries. Grains that are on the same order
of magnitude as the correlation length make the formation of vortex cores more unlikely,
instead stripe-like domains are forming. On the other hand intergranular strain fields
interact with the vortex cores. The strain fields also lead to a domain state that favors
stripe-like domains and can lead to the vortex cores being pushed out of the grain.
To further research the interplay of strain and cooling rate during the formation of
vortex cores, different combinations of strain and cooling rate should be applied and the
parameter space should be explored in more detail.
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A. Topography

a) b)

c) d)

Fig. A.1.: Topography of ErMnO3 at different cooling rates over TC : a) 10−2 K/min, b)
10−1 K/min, c) 100 K/min, d) 101 K/min. All samples show the features discussed
in section 4.1: Dark spots correspond to pores in the sample, small specks are
caused by dirt. The dark lines that are visible can either signal a grain boundary
or a microcrack inside a grain. To differentiate between the two, further analysis of
the domain structure or electron backscatter diffraction (EBSD) are necessary.
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B. Domain structure

a) b)

c) d)

Fig. B.1.: Domain structure of ErMnO3 at different cooling rates over TC : a)
10−2 K/min, b) 10−1 K/min, c) 100 K/min, d) 101 K/min. a)-c) show the lateral
contrast while d) shows the normal contrast.
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