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Abstract
The advent of massive social media platforms has brought with it an increase in contact
between children and strangers. It has become easier to exploit and harm children
online due to large social media platforms having inadequate systems for supervision of
interactions made on the platforms. Predators often isolate their targets from public
spaces and move to private communication methods, making the grooming attempts hard
to monitor. Increased access to young children online has made it a field of research to
find grooming attempts in private chats with automated machine learning systems. The
primary motivation has been improving the detection accuracy or detecting grooming
earlier. The Thesis argues that neither of these issues is the most pressing one. Instead,
the main issue within the field is the lack of access to su�cient amounts of high-quality
data that are platform, iconography and time insensitive.

Using a quantitative approach to building algorithmic solutions, this Thesis explores
the usage of features and algorithms for detecting predators. A framework was developed
to test combinations of features and algorithms and leverage their strengths. To detect
predators, six features and twenty-nine classical machine learning algorithms were trained
on a preexisting dataset. The features were all lexical, meaning that the features are
generated from text without any other data. The final solution explored Bag-of-words,
Binary bag-of-words, Term Frequency, Term Frequency-Inverse Document Frequency
(TF-IDF) , Linguistic Inquiry and Word Count (LIWC), and a combination of TF-IDF
and LIWC. The algorithms were predominantly linear models, support vector machines,
ensembles or variations on Naïve Bayes classifiers. The best combinations are aggregated
to soft voting ensembles that combine the predictions from several algorithms. Lastly,
the top-performing solutions are optimised with hyperparameter tuning.

The best performing solution gained third place in the current standings in detecting
predators with a score of 0.947, measured by f0.5, the primary metric in the field. The
solution was a two-stage approach using a Multi-layer Perceptron with TF-IDF to find
suspicious conversations and a RidgeClassifierCV with TF-IDF to find which participants
in the suspicious conversations were the predators. A high-performing solution shows
that using a quantitative approach has merit as a framework for finding suitable solutions.
The main contribution to the field of Sexual Predator Identification is the framework used
to develop solutions and the proposed solution for the problem of detecting predators.
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Sammendrag
I en tid der det blir flere store sosiale medieplattformer som aktivt brukes av unge,
så økes interaksjonen mellom barn og fremmede. Det har blitt enklere å utnytte barn
sin sårbarhet på nett gjennom digital plattformer. Manglende overvåkningstjenester på
plattformene gjør at det kan være mange usette interaksjoner mellom brukere. Overgripere
vil isolere barna så tidlig som mulig ved å flytte kommunikasjonen fra o�entlige til private
kommunikasjonsverktøy. Den økte tilgangen på barn gjennom internett har skapt et
fagfelt som forsøker å finne overgripere i avlukkede chatterom ved hjelp av maskinlæring.
Det har vært to primære drivkrefter i fagfeltet. Det ene er preventivt tiltak i form av
tidlig deteksjon, der målet er å bruke så få interaksjoner mellom overgriper og barn som
mulig på å avdekke overgreps forsøk. Det andre er å finne mer tre�sikre løsninger.

Denne oppgaven vil argumentere for at det primære behovet i fagfeltet ikke er knyttet
til disse to målene, men heller utfordringen knyttet til manglende data. Per i dag så
er det ikke nok data som er uavhengig av plattform, ikonografi og tidsperiode. Dette
gjør at det ikke er mulig å analysere de mer generelle mønstrene i overgrep på nett,
og hvordan utviklingen er i forhold til tid, plattformer og nye former for skriftlige
uttrykk. Ved bruk av en kvantitativ fremgangsmåte for å bygge algoritmer utforsker
denne oppgaven bruken av egenskaper og algoritmer for å avdekke overgripere i tekst.
Et rammeverk ble utviklet for å finne de beste løsningen og kombinere algoritmer og
egenskaper for å nyttegjøre seg styrkene og svakhetene i de forskjellige løsningene. For å
avdekke overgripere så ble seks egenskaper og tjueni algoritmer kombinert og trent på
den mest brukte datamengden i fagfeltet. Den endelige løsningen brukte termfrekvens,
termfrekvens inverse dokumentfrekvens (TF-IDF), bag-of-words, binær bag-of-words,
Linguistic Inquiry and Word Count (LIWC) og en kombinasjon av TF-IDF and LIWC.
Algoritmene i den endelige løsningen var fra flere familier, men de mest fremtredende
var støttevektormaskiner, ensembler, lineære modeller og Naïve Bayes algoritmer. De
beste kombinasjonene av egenskaper og algoritmer ble satt sammen i ensemblelæring.
Optimering av hyperparameter ble brukt på ensemblene for å øke tre�sikkerheten.

Den beste løsningen vil være den nåværende tredje beste løsningen i fagfeltet, med
en score på 0,947 i f0.5, som er den primære metrikken for denne problemstillingen.
Denne løsningen brukte en to-stegs arkitektur, der man først finner samtalene som er
antatt å inneholde overgrepsmateriale, og etter dette avgjøre hvem i samtalen som var
kilden til overgrepsinnholdet. For det første problemet så ble et nevralt nettverk med
termfrekvens anvendt, og for å avgjøre hvem i samtalene som var overgriperen så ble
det brukt en RidgeClassifier med termfrekvens. At løsningen fikk så høy resultat viser
at kvantitative metoder for utvikling av løsninger kan gi verdifulle resultat. Den nye
løsningen og rammeverket som har blitt brukt for å skape løsningen er de to primære
bidragene fra denne oppgaven til fagfeltet.
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1 Introduction
The rise of the Internet and social media has transformed how humans communicate and
connect with each other. It has allowed people to connect without knowing anything
about the other person. Open chat rooms like Twitch and Omegle make it possible
to meet strangers. In some cases, personal information is exchanged which allows the
conversations to move to more private and closed channels like Snapchat, SMS, or
Facebook. When children are involved, the unsupervised nature of these more closed
channels allows for the exploitation of said children. Sexual grooming is a process by
which adults try to gain sexual favour from children or adolescents. The process will,
in most cases, involve building strong bonds with the child, isolating them from their
social network, and desensitising them from sexual advances. The ultimate goal for most
grooming is control and free access to the child in question. Any person engaging in such
behaviour is defined as a sexual predator or groomer.

The Thesis has as its primary goal detect predators. For this purpose, data that
combines several sources containing predators, victims and regular Internet users are used
to train and evaluate the machine learning algorithms. The high-performing solutions
are analysed to detect patterns within the results that can be used to gain insights into
promising features and algorithms for detecting predators.

This chapter gives a high-level overview of the background and motivation for the
thesis. Following this, the research objective and research method are presented. Lastly,
the contribution of this Thesis to the field and the structure of the Thesis are described.

1.1 Background and Motivation
Sexual grooming is sadly quite prevalent. As Girouard (2008) claims, one out of every
seven children between the ages of 9 and 17 have been approached with sexual requests
online. Following this, Kierkegaard (2008) found that up to 89% of approaches from
groomers happen in chat rooms. With more and more children gaining access to the
Internet as it becomes a public utility, several concerns are raised in regards to the
health and well-being of all children. The ongoing coronavirus pandemic has significantly
increased the activities related to Child Sexual Abuse (CSA) seen as an increase in both
cases and key indicators like the use of Peer-to-Peer networks and activities of Child
Sexual Abuse Material (CSAM) forums (Europol, 2020).

Online sexual solicitation has a significant impact on the life of the children involved.
Victims of sexual abuse will in most cases experience feelings of shame, guilt and em-
barrassment (Baumgartner et al., 2010). Due to the extreme nature of sexual grooming,
it is not uncommon for this to leave permanent damage or trauma symptoms. These
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symptoms can manifest as a wide range of issues, including anxiety, depression, exter-
nalising problems, psychosomatic complaints, self-harm, PTSD and in extreme cases,
suicide. Engagements with groomers often heighten the risk for further victimisation in
the future, such as physical and sexual violence in their intimate relationships and entry
into commercial sexual exploitation.

Motivated by a wish to ensure the safety of children online, The Conference and Labs
of the Evaluation Forum (CLEF), which promotes research within natural language
processing (NLP), holds yearly series of shared tasks. In 2012, a shared task was held for
Sexual Predator Identification (SPI) with two problems presented:

1. Identify the predators among all users in the di�erent conversations

2. Identify the part (the lines) of the conversations which are the most distinctive of
the predator behaviour

The data published for the shared task has enabled researchers to analyse and predict the
nature of online sexual grooming. Several approaches and techniques have successfully
detected significant amounts of the predators in the datasets. However, few solutions
attempt to use quantitative methods to find lightweight, accurate, and easy to implement
solutions.

1.2 Goals and Research Questions
Goal Determine if a quantitative approach to algorithm design performs well for Sexual

Predator Identification

Several researchers have presented high-performing solutions. However, most, if not
all, have based their approach on qualitative information. This Thesis aims to use a
quantitative method to make data-driven implementation choices to develop a solution to
detect predators. The results from the developed solutions will be analysed to evaluate
patterns for the features and algorithms to understand what impacts performance. The
final purpose is to optimise a Sexual Predator Identification (SPI) solution.

Three research questions to support this goal are described in detail below.

Research question 1 What existing approaches are the most promising for detecting
predators?

To better understand the state of the field, a literary review of studies related to the
detection of grooming will be performed. The driving motivation in SPI is to improve
machine learning approaches to detect predators. Finding and understanding which
existing approaches are the most promising, in the sense of high performance in the
primary evaluation metric f0.5, is a prerequisite to finding what can be considered
promising to explore further and what can be considered baseline systems.

Research question 2 What types of features are viable and optimal for use in detecting
predators?

2
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Research Question 2 focuses on experimenting with di�erent features to find which are
the most impactful for detecting predators with the background gained from Research
Question 1 to select which features should be explored as part of the experimentation.

Research question 3 What categories of algorithms are most suited for use to detect
predators?

Research Question 3 aims to determine which of the implemented algorithms perform
well across all architectures and feature sets to isolate the benefit of each algorithm.

1.3 Research Method
The Thesis applies an experimental approach to reach the goal of the Thesis. A literary
review of the field was used to support the experimentation, gaining the required
insight into the most promising approaches in the field. The review was performed as a
Structured Literary Review combined with searching through references and citations
from authoritative publications in the field to discover all the most relevant publications.
A quantitative approach to experimentation was used with the promising solutions
discovered as part of the literary review, combined with additions and adjustments to
the approaches. The best solutions were determined by testing as many permutations
as feasibly possible of features and algorithms and ranking them based on the primary
metric f0.5. The experiments were performed by using data published as a part of the
PAN-12 competition, which aimed to find the best solution to detecting predators.

1.4 Contributions
• A solution with an f0.5 of 0.947, gaining a third place in the current standings

• A quantitative framework for comparing similar solutions against each other

• A thorough literature review of the current field

• An analysis of the state of the field

• The invalidation of the results a recent paper, reporting the best performance to
date with the use of Social Behaviour Biometrics (Wani et al., 2021).

1.5 Thesis Structure
1. Introduction

The chapter gives an overview of the goals and motivations behind the thesis.

2. Background Theory
Explains the relevant concepts and theories to introduce the prerequisites for
assessing and understanding the thesis

3



1 Introduction

3. Related Work
Presents the literary search and previous work in the field of Sexual Predator
Identification

4. Data
Discusses the need for data in SPI and describes each dataset, the format, and the
limitations of the datasets.

5. Architecture
Describes the systems and features used to run experiments and analysis of the
grooming data.

6. Experiments and Results
Starts with the experimental setup, explaining the process and parameters used
for analysis and detection of groomers. The latter half presents the results and
findings.

7. Evaluation and Discussion
Evaluates the experimental setup and analysis done and discusses the findings from
those.

8. Conclusion and Future work
Gives an in-depth explanation of the contributions, some closing remarks about
the Thesis and some insights into what future work in the field can be.
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2 Background Theory
In Sexual Predator Identification (SPI), there are several methods and techniques from
Natural Language Processing (NLP) and Machine Learning (ML) that are prerequisites to
understand how to solve the problem. This chapter will explain the necessary background
for the Thesis. Firstly looking at how the data is preprocessed, followed by how we
represent the texts to allow machine learning models to train on them. Then the machine
learning techniques employed are described, followed by the core tools used.

2.1 Preprocessing

Preprocessing is the task of preparing data for further processing or analysis. In NLP, we
commonly do two types of preprocessing called data preprocessing and text preprocessing.
This section will first present some common ways of handling data preprocessing followed
by techniques from text preprocessing.

2.1.1 Data Preprocessing

Given any data set for a task, there will be some data that is not needed or undesirable
to complete a task. The saying "Garbage in, garbage out" is a fitting description of the
goal of this step. Data filtering or data preprocessing is the task of determining what
data is to be considered valid and valuable and what is to be view as errors, incomplete,
noise or outliers.

Data preprocessing will, in most cases, be using metadata to determine what data
points are desirable. For chat log data, an example could be that only messages that are
in English can be utilised and therefore, all other data is discarded. Another example
would be only keeping the messages containing more than ten words and chat logs with
more than twenty messages, deeming the shorter ones too spare with information for us
proper analysis to be performed.

2.1.2 Text Preprocessing

Natural language is ambiguous and free-flowing, meaning that the same meaning can
be expressed in several almost similar ways or contain many words that do not add
information to the text. Text preprocessing is used to transform a single text document to
retain all the relevant information while removing all redundant information to increase
the quality of the data.
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2 Background Theory

Stop Words

Stop words are defined as the most common words in a given language. These words
share the characteristic that they most often build syntax in a language but are not
necessarily semantically significant. Stop word removal is removing these words that are
considered bloat in the text, with the motivation of leaving only important data that
allows for more accurate analysis for all the following techniques and models.

It is important to note that stop word removal can, in many cases, break syntactic
analysis, so it will most often be applied in tandem with varying lexical analysis.

Lemmatisation

Natural language often contains words that have several forms or derivatives. The most
common example being verbs like run, ran, running. Lemmatisation is the process of
reducing every word to the root form, known as the lemma. Lemmatisation reduces the
number of unique words while retaining the core meaning of each text, such that two
sentences that talk about the same subject in di�erent time forms will still be seen as
very similar, allowing for more accurate comparisons between text.

Normalisation

Text normalisation is transforming text with the same meaning that is expressed di�erently
to be represented the same way. Examples of text that should be normalised and which
techniques we apply to them can be found in Table 2.1.
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2 Background Theory

Name Text
D1 you are my little sister
D2 11 11
D3 77777 you are 77777

Table 2.2: Example documents

11 77777 are little my sister you
D1 0 0 1 1 1 1 1
D2 2 0 0 0 0 0 0
D3 0 2 1 0 0 0 1

Table 2.3: Example documents transformed to a Bag-of-words representation

Lemmatisation, as explained in Section 2.1.2, is technically a type of normalisation but
is considered a more extensive operation and, therefore, frequently categorised separately.

2.2 Text representations

This section is dedicated to explaining di�erent formats for representing texts. Text
representations are necessary because they allow computers to analyse and work with
natural language more easily. Firstly the section will cover standard Natural Language
Processing (NLP) techniques that have been applied. These techniques are used to
transform natural language in di�erent ways to allow for easier processing or analysis.
Standard techniques used in NLP will be explained first, followed by information about
other text representations specifically used for Sexual Predator Identification (SPI).

Table 2.2 is a modified subset of texts from the Twitch dataset described in Section
4.1.3. The corpus has been employed to explain the di�erent text representations more
precisely. For the rest of the chapter, A collection of texts is known as a corpus, while
each text is known as a document.

2.2.1 Bag-of-words

A Bag-of-words (BOW) represents documents by using the frequency of each word in a
document. The thought behind this is that the content of a document, represented by
the occurrence of words and their frequency, is enough to create a valid representation of
that document.

BOW is generated by first indexing every unique word in the corpus. This generates
a vocabulary where the words are indexed in alphabetical order. Then, each document
in the corpus is transformed into a vector with the count of each word in that specific
document.
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2.2 Text representations

11 77777 are little my sister you
D1 0 0 1 1 1 1 1
D2 1 0 0 0 0 0 0
D3 0 1 1 0 0 0 1

Table 2.4: Example documents transformed to a Binary bag-of-words representation

11 77777 are little my sister you
D1 0 0 0.447 0.447 0.447 0.447 0.447
D2 1 0 0 0 0 0 0
D3 0 0.816 0.408 0 0 0 0.408

Table 2.5: Example documents transformed to a Term Frequency representation

2.2.2 Binary bag-of-words

The binary bag-of-words (Bin-BOW) is the same as the BOW representation in Section
2.2.1. The only di�erence is that the assumption is now that we only need to know the
presence of words in a document to represent it. Meaning that it does not use frequency
as regular BOW does.

Meaning that as in Table 2.3 the first message would be equal while the two last
messages would have their 2’s represented as 1’s instead as seen in Table 2.4

2.2.3 Term Frequency

Term Frequency (TF) is a concept first described by Luhn (1958) as word frequency. A
way to better perform queries in text, rather than looking for just if a document contained
a term, it would also look at how many occurrences the words we were querying for had
in that document, giving it the ability to rank the documents by significance for the
query.

The pure Term Frequency is most commonly adjusted by taking the formula, which
accounts for the total amount of words in the document, meaning that we get the how
large percentage of the words in a document is that specific term. An example can be
seen in Table 2.5

TFi,j = ni,jq
k ni,j

2.2.4 Term Frequency-Inverse Document Frequency

Building upon the work of Luhn, Spärck Jones (1972) extended the ranking algorithm.
Term Frequency-Inverse Document Frequency (TF-IDF) also considers Inverse Document
Frequency (IDF), meaning that it also employs how many documents the term appears
in and the Term Frequency (TF) of that word in a single document.
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11 77777 are little my sister you
D1 0 0 0.373 0.490 0.490 0.490 0.373
D2 1 0 0 0 0 0 0
D3 0 0.880 0.334 0 0 0 0.334

Table 2.6: Example documents transformed to a Term Frequency-Inverse Document
Frequency representation

The Inverse Document Frequency adjusts the ranking such that words that appear
in few documents get a higher significance, which means that TF-IDF will rank words
common in a document but scarce in the corpus highly for that document. Which is
exactly what we can see as the di�erence between D2 and D3 in Table 2.6

IDFj = log n

dfj

TF ≠ IDF = TF ú IDF

2.2.5 N-grams

N-grams is a text representation that adds context to each word in a document. The
representation is presented by having n consecutive words in a collection called an "n-
gram", and the n denotes the number of consecutive words in each collection. The most
common types of N-grams are called unigram (1), bigram (2), and trigram (3).

Below the explanation, a bigram representation of the D1 can be seen as an illustration.
However, a note has to be made that there does not exist context words for the first and
last word, so they will always have a NULL or empty value.

N-grams do not vectorise the words as the previous examples do, and it only adds more
information to each word, meaning that n-grams can be used in conjunction with the
previous representations. A note to make with N-grams is that they increase the amount
of information and data in exchange for adding context, which increases processing time
instead of the earlier representations, which are more information-dense than natural
language.

[(NULL, you), (you, are), (are, my), (my, little), (little, sister), (sister, NULL]

2.2.6 MoodBook

Moodbook is an emotional lexicon that contains ten categories and words corresponding
to each of these categories. The lexicon was built by Mudasir Ahmad Wani and Hussain
(2018) as an extension of another emotional lexicon called EmoLex (Mohammad and
Turney, 2010). Both of these built on the work of Plutchik (1980), which proposed the
primary emotions, fear, anger, sadness, joy, surprise, disgust, trust and anticipation. In
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Fear Anger Sadness Joy Surprise Disgust Trust Anticipation EmotCat Pos Neg
D1 0 0 0 0 0 0 1 0 1 1 0
D2 0 0 0 0 0 0 0 0 0 0 0
D3 0 0 0 0 0 0 0 0 0 0 0

Table 2.7: Example documents transformed to a Moodbook representation

addition to the emotional categories, Moodbook has two sentiment polarities, positive
and negative. The lexicon spans 1839 di�erent words in total. Moodbook analyses the
English language to get a picture of the person’s emotional state while writing text.

As seen in the Table 2.7 only a single document had any emotional words. In this case,
sister is a positive and trusting word. MoodBook is the first text representation thus far
that depends on a pre-generated vocabulary, meaning that the size of the vectors is not
dependent upon the text it tries to represent.

2.2.7 Linguistic Inquiry and Word Count

Linguistic Inquiry and Word Count (LIWC) is a lookup table developed by Pennebaker
et al. (2015) that allows us to give a psycholinguistic profile to a text. The lookup contains
the meaning of words in terms of social tendencies, behavioural patterns, personality,
emotions, and some linguistic terms like Part of Speech tags, giving us a picture of a
writer’s social and psychological state while writing some document. This Thesis uses the
2015 version called LIWC-2015 that is composed of 6400 words, or root forms of words,
together with a selection of emoticons. Each word is connected to a set of categories that
describes the meaning of that word. In total, there are 74 categories that the words can
be categorised into. An example is that the word "breast" or any variation "breasts" has
the value categories [’bio’, ’body’, ’sexual’]. For this reason, LIWC also generates quite
lengthy variable-length text representations, meaning that it is not feasible to display
the result of vectorising the example documents.

2.3 Algorithms
This section will cover the general concepts relating to the usage of machine learning
algorithms that is relevant within SPI.

2.3.1 Supervised Learning

Supervised learning is a subset of machine learning (ML) within artificial intelligence
(AI). In NLP, supervised learning aims to learn the relationships between some labels
and some set of input data represented as vectors. An example is to decide if a male or
a female wrote a text. Supervised learning is often described by using a student and a
tutor. The student is given a task and tries to answer the task. The tutor will supervise
the task, and if the task is solved correctly, the supervisor will give insights into why, and
conversely, if the task is solved incorrectly, the tutor will explain some of the errors made
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by the student. In Supervised learning, we use both data and labels, where the data
can be a document that has been transformed with some text representation and a label
that describes what that text is. The analogy is that the algorithm is the student, while
the label is the answer sheet used by the teacher to grade the student. The algorithm
is given a document and tries to predict the label. If the predicted label is correct, the
algorithm will make it such that if a similar document is encountered, the new document
will be assumed to have similar labels as the previous document. If the predicted label is
not the same as the true label, an error function will try to some insight into what should
be adjusted di�erently the next time a similar document occurs. When the algorithm
has been trained on a su�cient amount of documents, which depends on the domain,
the text representation, and the algorithm in question, the algorithm becomes a trained
classifier that can predict the label of unseen documents. The data is split into training
and test datasets to evaluate how well a supervised algorithm performs. The training set
is used to learn how to predict by predicting and then be given the correct answers to
adjust the predictions. The test set is only used to predict, and when a prediction has
been made for all entries in the test set, it will be compared to the labels of the test set
to generate an evaluation score.

Many issues can arise within the training or learning process for algorithms. Only
the most prevalent one in SPI will be explained. This error is called overfitting, and as
the name implies, the algorithm has been fitted too well to something. In the case of
overfitting means that the algorithm has become too dependent on the training data and
does not generalise well to other data sources. If an algorithm gets 100% accuracy during
the training and gets a drastically lower accuracy when evaluated on unseen documents,
it indicates a case of overfitting. This discrepancy between training accuracy and test
accuracy indicates that the algorithm has become adept at recognising the di�erent
classes in the training set. There are many reasons this can occur, but a common one is
that the algorithm is not learning anymore but simply memorising the documents and
their labels. Another issue can be that the training set is very homogenous in some sense,
and this issue can be compounded if the test set does not share the homogenous traits
of the test set. The sources of these issues are numerous and outside the scope of the
Thesis to provide an exhaustive list. Overfitting can be especially di�cult in datasets
where the training and the test data are drawn from the same source.

2.3.2 Ensembles
Ensembles are collections of classifiers that are used together to improve performance.
There are several configurations of ensembles, some of them using classifiers connected
in series and some in parallel. For this problem, only a specific variation of parallel
configuration known as voting classifiers are considered.The core principle is that several
supervised learning algorithms are trained on the same dataset, and then each of them is
given a vote for what they think the label should be. There are two types of ways of
assigning value to the votes from each subclassifier within a voting ensemble. The first
is known as hard voting and is the most common. Each classifier gets a vote based on
what class the classifier predicted the sample to be. The more advanced version is soft
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voting classifiers that assign voting power by confidence for each specific entry.
In the same way that each classifier has a prediction, most classifiers also have confidence

in their prediction. An example would be that the classifier is 60% certain that the first
entry is a predator and therefore assign it to the class predator. Using the confidence
allows classifiers to be more granular, and ensembles only sway the vote significantly
if they are confident their prediction is correct. Both variations also have weighting
schemes that are used to skew the importance of the di�erent classifiers, allowing the
voting ensemble to give more importance to the most robust predictors. In e�ect, both
soft and hard voting allows for quite granular control, but the added value of using
confidence allows it not to be uniform how important a classifier is but instead based on
each specific prediction and the general importance of that classifier.

The goal is to allow each sub-classifier to mask its weaknesses and contribute with its
strengths.

2.3.3 Hyperparameter tuning

Classifier and ensemble have an optimal configuration that will yield the best results.
This optimal configuration can be found by using hyperparameter tuning. Machine
learning models have two sets of parameters. The first set of parameters is static from
the start of the training, and the second set is adjusted during training. The first set is
the hyperparameters that decide how the second set of parameters is calculated during
training. The second set of parameters is the parameters that get adjusted during the
training to accommodate the correct and faulty guesses of the algorithms, meaning that
the learning for the algorithm comes from adjusting this second set of parameters.

Since the hyperparameters define how the adjustments to the algorithms are made,
they are very influential in how a classifier performs, and in many cases turning these
hyperparameters well to the problem at hand can drastically improve the performance.
There are several strategies for finding the optimal set of hyperparameters, and three of
the most common ones will be explained in the following subsections.

Grid Search

The Grid search is the most intuitive and computationally heavy approach. Given a
range of values for each hyperparameter, it will try all combinations in an exhaustive
search, train each configuration and evaluate their performance. In e�ect, this is a very
straightforward approach that is only feasible for small search spaces or in cases where
the hyperparameters are already narrowed down to a smaller subset. The most redeeming
quality of the strategy is that for any space, it is guaranteed to find the optimal solution,
given enough time and processing power, and is a parallelisable problem since each tuning
is independent.
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Random Search

The random search is what the name implies. With ranges of values for each parameter,
each parameter is assigned a random value from the respective range. As opposed
to Grid Search, the only other di�erence is that Random Search has a finite amount
of permutations that it should try. The advantage over Grid Search is that for fewer
attempts, it is more likely that the tuning finds one of the promising regions of the
search space, giving a better than average performance in a shorter time. It has most of
the advantages except the guarantee of finding the optimal solution while having fewer
downsides.

Baysian search

Bayesian strategies try to incrementally change some parameters to discover what nudges
the performance in the right direction. So the more good performances are found
within a search region, the more that search region will be explored further to find the
optimal settings for the algorithm on this task. This is a combination of observing and
understanding the relationships between parameters by isolating them when tuning them
and searching for promising regions.

It is preferable to both Random and Grid search since it can give some information
about the relationships between parameters and is faster since it explores the most
promising regions instead of blindly or randomly testing combinations. However, it does
sacrifice some of the ability to run tunings in parallel by having a partial dependency on
earlier results.

2.4 Evaluation Metrics

Assessing the performance of machine learning algorithms can be done with several
metrics. The section will present the metrics used to evaluate algorithms in SPI.

True
positivepositive False

negative

False
positivenegative

positive

True
negative

negative

V
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Prediction

Figure 2.1: Binary Confusion Matrix
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Figure 2.1 shows the relation between a prediction and the truth. There are two correct
guesses, the true positive (TP) and the true negative (TN), and two incorrect guesses. A
false positive (FP), also known as a Type I error, denotes that something is true when it
is not. In the case of Sexual Predator Identification (SPI), this would be a case where
a system predicts a non-groomer to be a groomer. Conversely, if a predatory is falsely
believed to be innocent, this would be a false negative (FN), otherwise known as a Type
II error. The two true cases are when a predator or non-groomer are correctly predicted.
In Sexual Predator Identification, a subfield of information retrieval, it will be correct to
use the terms false positive and false negatives, so for the remainder of the Thesis, that
will be the terminology used.

Each metric we use to assess performance in algorithm solutions is based on the
occurrence of each of these four values. The most well-known of the metrics is called
accuracy and can be defined as

TP + TN

TP + TN + FP + FN

Accuracy is concerned with how many per cent of all predictions were correct. Accuracy
is, in many ways, a very coarse evaluation metric that is a good starting point and quite
e�cient in cases where there is a balance between the classes.

The three other metrics are recall, precision and f-score, and share an attribute that
accuracy does not. The metrics are all measured from the perspective of a single class,
meaning that each will have a di�erent value depending upon assessing the performance
for identifying predators or victims with the same algorithm. We can easily verify this in
the formula for the metrics, where accuracy is the only metric to use TN and FP.

For the rest of the explanation, we will look at the scoring metrics from the perspective
of predators.

TP

TP + FP

Precision will, in this case, ask, when the prediction is a predator, what is the certainty
that the prediction is correct. If no victim is ever predicted to be a predator, the precision
will be 100, or in other words, no prediction has been a false positive.

TP

TP + FN

What recall tells us is how many per cent of all predators were classified as predators,
and it can be rephrased as "how many predators got away?" If no predator is ever
predicted to be a victim, the recall will be 100. Or, in other words, the absence of false
negatives.

(1 + —2) ú precision ú recall

(—2 ú precision) + recall

F-score is a metric used to evaluate a classification system based on both recall and
precision, using a harmonic mean function between the two. F-score generally refers to
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the F1-score, which is the equally weighted version. However, adjusting the � in the
function will skew the f-score towards either precision or recall. In the cases where the
F-score is not an F1-score but has been skewed, it is also known as an F-beta score.
Setting the beta higher will favour recall while setting the beta lower will favour precision.
The important thing with F-score is that it is a measure that considers both precision
and recall, making it ideal as a balanced measure for finding the performance of a model
for a single class.

Cross-Validation is a model validation technique used to assess the performance of
a model by splitting the training dataset into equal pieces and training on some, and
validating on other parts of the training set.

There are several applications where this approach is favourable. Firstly it avoids
outliers in training results by also getting training results that have been assessed
on unseen data. A second application is for hyperparameter tuning, where unbiased
evaluations during training are important to decide what search regions are valuable.
Another common reason to use it is that it helps uncover errors in learning by using
the validation results to compare against the test results. If they are comparable, the
solution usually has few errors, but significant disparities point towards errors in the
learning, which in many cases comes in the form of overfitting.

The training set can be segmented into two sets to avoid this issue, one for training
and one for validation. However, splitting the training set, which comes from a single
source, introduces a new problem. How can it sample that dataset correctly to have valid
results when testing with the validation set. Controlled randomisation would help by
having the same balance of classes between the training set and the validation set. The
controlled randomisation is called a stratified approach. However, splitting the data in
two decreases the size of the training set drastically, which again is not beneficial since
quality models are dependent on as much data as possible up to a certain point.

An improvement is K-fold cross-validation, which is performed by first splitting the
training data into equal size folds. Then the algorithm is trained with one of the folds as
the validation set, while all the rest are used training data. This procedure is repeated
using each fold as a validation set once, training the algorithm K times. The validation
scores from the K training are averaged, giving the final validation score. K-fold cross-
validation allows the whole dataset to be trained on, and the whole training set has been
used as a validation set.

Both the evaluation of which algorithms are most appropriate to use for ensembles
and how the in-training evaluation of the hyperparameter tuning has been done with a
stratified ten-fold cross-validation.
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2.5 Tools
Pandas Pandas is a data handling tool for Python made to handle large amounts
of data and e�ciently manipulate it. It operates using rows and columns of data and
provides optimisation and support for many data formats.

The data frames it utilises is often interoperable with machine learning tools, making
it a natural way to handle data.

Scikit-learn Scikit-learn (Sklearn) is a package containing many of the most used
methods in machine learning. It is a toolkit with preprocessing, feature extraction,
algorithms and evaluation functions implemented.

LazyPredict LazyPredict is a package building on top of Sklearn that allows for
training many classifiers in series quickly. It implements an interface for training all
classifiers from Sklearn, XGBoost, and LightBoostG on the same data and returns
evaluations of the training and trained classifiers.

Modifications to LazyPredict To accommodate the needs of this thesis, LazyPredict
was modified to remove the automatic transformation of features. LazyPredict will, by
default, apply transformations to numeric and categorically data and discard any other
data. To allow for better integration with textual data, LazyPredict was rewritten to
skip the automatic transformation.

LazyPredict also avoids training some of the classifiers from Sklearn because they are
not compatible with all tasks. These restrictions were modified to allow for the use of
more classifiers.

Lastly, LazyPredict does not support model selection and does not report enough data
to find overfitting. An extra suit was added to the package allowing for custom scoring
metrics, and implementing cross-validation, such that the tool could be used for model
selection and report all the information needed for experimentation and results.

NLTK Natural Language ToolKit is a toolkit that aids in the processing of text and
the generation of features. It is commonly used for most text operations and feature
extractions due to having all the standard operations for NLP and being properly
optimised. It also implements several machine learning algorithms and more advanced
features like Named Entity Recognition and sentiment analysis.

Optuna Optional is self-described as an automatic hyperparameter optimisation soft-
ware framework. In essence, it is a full suite of hyperparameter tuning algorithms that
correctly log all events during the training to give proper insight into the hyperparameter
tuning. It is built to have bayesian search as the default and can visualise the results of
training. The framework has been popularised together with LazyPredict on Kaggle, a
website for Machine Learning competitions.
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3 Related Work
Related work will present a review of research into grooming analysis and prediction. The
review encompasses both statistical analysis to the extent needed for grooming analysis
and the machine learning approaches used to predict grooming. Following this, state of
the art based on stated results will be presented.

3.1 Topology and characteristics of the field
Due to the somewhat unique nature of Sexual Predator Identification (SPI), being a
small and cross-disciplinary field of study, the research in the field also has some less
usual aspects that should be discussed to give a proper understanding of the reasoning
behind the structure of the chapter. This section is dedicated to describing the most
prevalent of these unique features and how they a�ect a literary review.

The first, and probably most intuitive feature, is that researchers with di�erent
backgrounds will name their publications according to their field of study. An important
point within this is that researchers from di�erent fields have di�erent contributions to
SPI. While psychology gives the basis in theoretical frameworks that can be used to model
or analyse predators, informatics often has practical implementations of these theoretical
frameworks. At the same time, criminology aids in studying the prevalence and how
predatory behaviour is conducted. Publications from each profession are essential and
should be explored to gain proper insight into the problem domain. An example of how
many ways one can word problems in this domain, many publications use the words
paedophilia, grooming or online predatory behaviour interchangeably. In addition, online
can often be substituted for cyber, as in cyber predatory behaviour.

The second and probably more hidden feature of the field is that several clusters of
researchers work in SPI. These clusters are often made up of a leading researcher with
an older, widely cited publication and then new publications from that leading author
or the co-authors of the original publication in the field. Most of these clusters keep
looking further into the issue presented in the first paper, meaning that they specialise
in a single issue. The point of interest with these clusters is that even though several
of the newer publications often are of high quality, and with improved methodologies,
architectures, analysis or even an extension allowing for broader application, they rarely
come with entirely new information, meaning that the original publication covers the
most important insights, within the cluster. Since this means that a single publication
from one researcher can spawn up to five or more new publications inside the same family,
looking at the same problem, it is hard to find which of the six is favoured to be cited by
newer papers. In e�ect, this makes it so that there are complex and sparse networks of
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publications in the field.
The two issues mentioned above are both compounded by the last issue, which is hard

to pinpoint, but some publications containing interesting results in SPI are “hidden”
because they have names that are entirely hidden when searching for queries related to
the detection of the sexualisation of children.

Between these three issues, neither a structured literary review, using keywords to
generate queries, nor an approach by selecting good publications to search for new
publications will give su�ciently good results on their own. The most appropriate way
to untangle the connections between publications is a hybrid approach, using both SLR
to find the first publications and then search in the references and citations from each of
these publications and traversing as far as is deemed fruitful.

Another characteristic of the field is that it is not connected to the topology, which
should be discussed. Within the machine learning part of the field, there are several axes
by which one can examine the field. A single paper will often have a goal, an architecture
or ML model of choice, a set of features they use, and in some cases, the publication is
built upon some theoretical framework.

Most publications share at most three of these aspects with each other, and often
only two aspects or only a single. In addition, the field does not move uniformly over
time. Often a subfield like early detection of predatory chats will move in a burst over a
few years and then be more dormant for a period. These two events make it such that
structuring the related work by time will generate recurring themes, and structuring by a
feature will make the same papers mentioned with di�erent contexts in di�erent sections.
There is no perfect common ground that allows for a structured explanation of the field
that encompasses both the depth and the breadth of the field.

The closest compromise that was found was to explain each publication’s most exciting
part instead and order them in a hybrid format, starting chronologically and moving to
a split between goal and features.

3.2 Literary Review

A literary review was conducted to discover relevant solutions and possibilities in the field.
The goal of the review is to structure how to search for publications and the processing of
information in the publications. Firstly, the section explains how the Structured Literary
Review (SLR) was completed, followed by the SLR’s shortcomings, mainly due to the
cross-disciplinary nature of the field as described in Section 3.1. Lastly, the section
describes the other methods employed to search for literature used in combination with
SLR to improve precision and recall in the search.

3.2.1 Structured Literary Review

A Structured Literary Review (SLR) is a process to find and review literature. The core
of the process is defining search terms, using them on di�erent search engines and then
use inclusion and exclusion metrics to discard or evaluate di�erent papers.
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Group Term
1 Child
2 sex, sexual
3 abuse, grooming
4 predator, pedophile
5 classification, detection, analysis

Table 3.1: Terms used for Structured Literary Review

Queries
1, 2, 3
1, 2, 4
1, 3
2, 3
2, 4

Table 3.2: Query configurations for Structured Literary Review

Defining the search terms is a search strategy, while the evaluation metrics are called a
review protocol.

Search Strategy

Targeting the correct field of study and narrowing the search scope are core parts of the
search strategy. To ensure that the search strategy aligns with the research questions,
we define groups of terms from the field and combine these groups to generate specific
queries to input to search engines. In addition, it is correct to add some boundaries to
the search.

The groups and terms used will di�er based on the field of study, so some prior
knowledge of the field is required to pick appropriate terms and group them correctly.
Finding the standard terms used in the titles and keywords is possible with some relevant
articles, giving a baseline for search terms. To generate a group, we treat each term as a
synonym, using the logical OR operator to generate a group. Queries are several groups
used in conjunction, meaning that we use a logical AND operator between some groups
to generate a single query.

Table 3.1 and Table 3.2 shows the terms and queries used for the SLR for this Thesis.
An example of a 2,4,5 query would be : ("sex" OR "sexual") AND ("predator" OR

"pedophile" ) AND (“classification” OR ”detection” OR ”analysis”)
To further narrow the scope of the search, two additional parameters were added.

Firstly only the first five pages of results from any given search engine would be considered.
The rapid degradation in relevance for the search results required some cut-o� points to
avoid spending too much time filtering through irrelevant search results. In addition to
the page limit, a time limit was added. No papers written before 2007 were considered

21



3 Related Work

Primary Source

ResearchGate
SemanticScholar

Secondary Source

Arxiv
Science Direct

Table 3.3: Search Engines used for Structured Literary Review

due to the field’s significant increase in activity due to the 2012 CLEF conference.
The publications were retrieved from several databases and search engines. The search

engines were grouped into primary and secondary sources due to the varying scope
and size of the databases. Table 3.3 shows that two search engines were chosen as the
primary sources to conduct SLR, while two secondary sources were considered or briefly
cross-referenced against to look for significant discrepancies in the findings from the
primary sources.

Review protocol

The papers were evaluated against several metrics. They were evaluated using the
inclusion and exclusion criteria (ICs/ECs) seen in Table 3.4 to decide which papers
should be investigated further. Then, a set of quality assessment metrics were employed
to score each paper by quality and relevance.

Due to having many inclusion criteria, they were also split into primary and secondary
criteria. Studies were assessed based on the abstract, title, and background using the
primary inclusion criteria. If the study passed two out of three, it would be investigated
further.

ECs are used as a counter-part to ICs, as a tool to verify if a paper’s investigation
should be concluded. If either of the ECs were true, the study was outside the scope of
the Thesis. Some papers could be allowed further investigation based on secondary ICs,
or if the publication seemed to have some value that eluded the IC.
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Primary Inclusion Criteria

The main concern of the study is child sexual abuse problems related to the use of the Internet.
The study is a primary study presenting empirical results.
The study focuses on detection of predators in chatrooms

Secondary Inclusion Criteria

The study provides a solution or algorithm to solve the problem
The study uses a good dataset

Exclusion Criteria

The paper is purely about psychology
The study is a small scale analysis that cannot be automated

Quality Criteria

There is a clear aim of the research
The study is closely related to other studies in the field, either by good references, or by being referenced by other papers.
Is the study novel?
Are the results, discussion or the findings significant?

Table 3.4: Criteria for Structured Literary Review
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3.3 Sexual Predator Identification

Evaluation of the SLR

SPI is a cross-disciplinary field, so many articles or publications can match all the search
queries but focus di�erently. The first set of results which as seen in Table 3.5 were
discarded very early on were primarily focused on psychology. Even after evaluating and
updating the terms, groups, and queries to reflect the technical aspects of the Thesis,
the queries still predominantly returned irrelevant results. The issues stemming from
the results are two-fold, firstly we have low precision, and secondly, the recall is low.
Such issues point to the queries being both too broad and with the wrong focus. Such
indications should be taken as a prompt to reassess the baseline of the SLR, possibly
introducing some way of balancing the terms used in each group to fit the focus better.

The underlying reasons for the low precision and recall are mostly likely the topology
and characteristics of the field as described in Section 3.1

The discouraging results from the SLR initiated secondary strategies for finding relevant
articles.

3.2.2 Snowballing and reverse searching

In addition to SLR, two other methods can be employed to find relevant publications.
Snowballing consists of viewing which works an article references. Reverse searching
looks at which new articles cite an older relevant article.

Snowballing aims to discover related publications to ensure a complete overview of a
section of the field. Snowballing can be viewed as a modified depth-first search (DFS),
with ECs/ICs to prune some nodes. Fitting the description of a DFS, it is important to
decide a depth one is willing to snowball. Setting a max depth helps focus the search
and ensures a more uniform process. Snowballing turned out to be one of the most
e�cient and consistent tools for finding relevant publications for SPI. Note that this
points towards most newer publications being related to at least one authoritative older
article.

Reverse searching is performed by finding the most autorotative articles in a field and
looking at which articles have referenced them. This strategy allows us to find the newest
addition to the field through association. For the best results, reverse searching with a
previous state of the art publication will find every paper that has been compared to
this or benchmarked their results against the previous state of the art.

These two methods work best in conjunction, searching both forwards and backwards
from articles of interest. Such a search strategy is not a genuinely structured process,
as the search trees can get quite large and have complex routes to trace. However, the
benefit of considerably higher precision and recall was a necessary trade-o�.

3.3 Sexual Predator Identification
Sexual predator identification is divided into several sub-disciplines. There are various
ways to detect deviant behaviour like age disparity, Luring Communication Theory,
psycholinguistic profiling, to name a few. This section is structured to accommodate
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the nature of the field, firstly presenting the early work, pre-dating the highly-influential
PAN-12 dataset, followed by a competition held where the dataset was presented, lastly
ending with a subsection for each sub-discipline of interest.

3.3.1 Early work
In psychology and criminology, sexual predators have been researched heavily for a long
time, mainly in the context of o�ine predatory activity, but also with several frameworks
either specifically for online grooming or agnostic to the context of the grooming.

The earliest work in Sexual Predator Identification was not necessarily aware that
it would become part of the same field of study, nor was it a coordinated e�ort, but
instead smaller clusters of researchers with a shared interest in keeping the Internet safe
for children. The most common theme of the early work was the shared uncertainty of
whether it was even possible to detect predators with analysis or algorithms and the lack
of understanding of the actual tasks and di�culties within the field. The late 2000s and
early 2010s is a period of discovery for the field, laying the groundwork and the core
tenants of the field.

One of the earliest commonly referenced sources in the field is the definition of a
sexual predator made by Harms (2007). Defining it as “A communication process .... in
order to develop relationships that result in need fulfilment.” Having introduced another
researcher from informatics, Pendar, to the research on sexual predation. Pendar made
the first attempt to automate the detection of predatory activity, which can be viewed
as the birth of the field. The highly influential publication by Pendar (2007) built
the general framework we use today, and some of the procedures are still in use. In
addition, Pendar presented the most pressing issues we still face today, namely data
acquisition. Pendar introduced the use of Perverted Justice, a non-profit that posts online
conversations between groomers and adults posing as children. In the field’s infancy, it
was not known if it was even possible to discern di�erences between predators and victims.
As mentioned in the publication, it was highly likely that the topics of conversation were
shared between victims and predators since they engaged in conversation with each other.
To assess the feasibility of automated solutions to detecting grooming, Pendar employed
Support Vector Machines, a supervised learning algorithm, and K-nearest neighbour,
an unsupervised clustering algorithm, together with N-grams and BOW to prove that
predators and victims use di�erent subsets of the English language. Since PJ only has
positive labels (i.e., conversations that are confirmed to contain predators), the results
cannot be directly compared against today’s solutions, which has both grooming and
non-grooming data in the datasets. However, using the K-NN with Trigrams Pendar
achieved a 0.943 F1-score, meaning that the best solution could confidently di�erentiate
between victims and predators. With this publication, the necessary proof of concept for
the field had been made.

Using Perverted Justice, with the same data source as Pendar, Kontostathis and
Leatherman (2009) sought to uncover the communicative strategies of sexual predators
online to find patterns through keyword matching. The publication is the first to
clearly state the di�erence between two types of classification, predator vs non-predator
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and predator vs victim. However, the publication does not leverage the di�erences,
only noting how di�cult it is to discern predators from their victims compared to
grooming in a chat. In addition, being the first multi-disciplinary paper, mixing Luring
Communication Theory (LCT), a model for communication processes used to analyse
predation in psychology Olson et al. (2007). LCT describes five phases of grooming in
the following order. Gaining access, deceptive trust development, grooming, isolation
and then approach. LCT was expanded by one of the paper’s co-authors to adapt it to
the context of online grooming. The technical implementation of the expanded LCT
included nine categories of words that described either LCT phases or subphases of LCT.
Kontostathis and Leatherman made a dictionary of 454 unique words distributed among
the nine classes. The dictionary was created by manually analysing twelve chats from
PJ. The dictionary coded messages from victims and predators, using the count of words
in each subcategory to classify them. The classifier gained a 60% accuracy, showing
that victims and predators use the words from each luring class in di�erent amounts,
which means that theoretical frameworks like LCT can be implemented programmatically
to detect and analyse predators. The publication is the first example of methods from
outside text mining being used to analyse online predatory behaviour. One of the most
valuable contributions of the work is that since each line was coded individually and
could be done in real-time, it unwittingly is the first early detection system, a subfield of
SPI, that has gained some traction over the last five years. However, as with the work by
Pendar, this is a proof of concept, having several weaknesses, namely how fragile pure
keyword matching is for text analysis, coupled with small samples for both training and
test sets.

Another set of researchers leveraging the Perverted Justice data were Gupta et al. (2012),
focused on using another theoretical framework, where Kontostathis and Leatherman
used LCT as their base, Gupta et al. used the theoretical framework known as “the
theory of online grooming” developed by O’Connell (2003). Instead of the nine classes
of luring from the expanded LCT, online grooming theory operates with six stages of
grooming: friendship forming, relationship forming, risk assessment, exclusivity, sexual
and conclusion. The most critical characteristic of the framework is that di�erent
adults will move through the stages at di�erent paces and in di�erent orders, sometimes
skipping parts, which means that these are general stages that most grooming cases follow.
With 75 chats manually annotated for the six stages of grooming, Gupta et al. built
psycholinguistic profiles for each stage of grooming by using LIWC, a text analysis tool
developed by Pennebaker et al. (2015). Initially analysing the psycholinguistic makeup
of each stage, and then tracking the transitions between the stages. One of the most
exciting findings is that the sexual stage of grooming is neither the most prominent nor
the central stage as Gupta et al. believed, but rather the relationship forming was the
most prominent. The relationship-forming accounts for 40% of all messages, while the
sexual stage online accounts for 24%. The analysis also proved that the psycholinguistic
categories were more than capable of discerning the di�erent stages by showing that the
di�erent stages contained di�erent semantic and lexical content. The publication is one
of the first to introduce nature describing features through LIWC, forgoing standard

27



3 Related Work

statistical and lexical features. A similar endeavour was previously attempted by Wollis
(2011), using LIWC with a modified version of the five stages of grooming, reducing it to
three stages; the modification of the theoretical framework coupled with problems related
to keyword matching with LIWC made the work less impactful than the study by Gupta
et al. In later years, several new e�orts have been done with nature-describing features,
like behavioural features, sentiment and emotion analysis, have been used, making this
the first example of such features being used to model predators, which by definition has
been characterised to have a deviant personality.

3.3.2 PAN 12

PAN is self-described as “A benchmarking activity to uncovering plagiarism, authorship
and social software misuse” 1. One of their shared tasks in 2012 was called Sexual
Predator Identification (SPI), and the attempts at solving the task added a large body
of work to the field. The shared task standardised the framework for SPI by providing a
dataset and suggesting an evaluation metric for the tasks (Inches and Crestani, 2012).
The shared task was split into two problems:

1. Detect all predators from a set of chat logs with both grooming and non-grooming
conversations.

2. Identify which lines were the most predatory

There were several exciting approaches to the problems introduced. Due to the
imbalance in the dataset, being less than 5% predatory conversations, many participants
employed filtering methods. The goal is to remove chats that cannot be predatory, in
most cases becoming a trade-o� between losing a few predatory chats and removing many
non-predatory chats to balance the dataset better. The two most successful approaches
being prefiltering and two-stage classifiers. Prefiltering is a rule-based approach, where
some metrics are used to remove chats that should be disregarded. Two stages classifiers
instead tried to split the problem into two subproblems. Firstly can predatory chats be
detected, and secondly, given a predatory chat, is it possible to find which participants
are the predators.

Most of approaches used behavioural features or lexical features to represent the text.
In this context, lexical features are purely based on the text, such as BOW or LIWC. In
contrast, behavioural features look at a participant’s actions or the patterns in the chat
log, looking at who has sent the most messages and the percentage of words a participant
sends.

Villatoro-Tello et al. (2012) had an attempt that both outperformed and was radically
di�erent from other entries. Using both a prefilter and a two-stage classifier, they were
able to gain an f0.5 score above 90. The novelty of the approach is twofold. Firstly the
choice of metrics for the prefilter was unique. They asserted that focusing on the most
important cases, i.e. removing conversations that did not contain enough information

1pan.webis.de
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to be classified accurately or only contained a single participant. The assumption they
made was that having more than five interventions per user would be a good indicator
of having enough information to be classified. They also removed conversations with
unknown characters that they believed represent ASCII art, text formed to look like
an image. The prefilter reduced the dataset by 90% while keeping above 90% of the
predators, which slightly increased the relative number of predators. The other novel
invention was their approach to the two-stage classifier. The approach split the problem
using a Suspicious Conversation Identifier (SCI) classifier, followed by a Victim from
Predator disclosure (VFP) classifier.

The SCI was trained by taking all conversations with at least one predator and labelling
them as predatory, while the rest were labelled as non-grooming chat and trained their
first stage algorithm on those to separate predatory conversations from non-predatory
conversations. A similar approach was employed for the VFP classifier, but instead taking
the conversations with at least one predator and splitting them into interventions as they
called it, one for each participant containing only the messages from that participant.
These interventions were then used to train the classifier. The finished algorithm used the
two classifiers in series to first find suspicious conversations, then split the text content,
and find which of the interventions was from the predator.

For the PAN-12 competition, Morris and Hirst (2012) used lexical features and beha-
vioural features. The lexical features were BOW and TF-IDF or variations of the two,
combined with unigrams and bigrams. For the preprocessing, emojis, names and numbers
were normalised. Examples being that emoticons were made into four classes.

In addition to this a novel feature called the partner flip was introduced. Partner flip
adds the number of times the other participant has said words that occur more than ten
times in total in the chat to the BOW of their partner, which means that the feature
that describes a predator also contains the more common words used by the victim.

For the non-textual aspect of the study, the behavioural features were crafted using
author level features like the total number of messages sent from a user. In addition,
several features tried to model their actions in the form of initiations and attentiveness.
The initiations tried to capture the engagement of the users, while the attentiveness was
more about keeping conversations going.

The approach for the architecture was reminiscent of Villatoro-Tello et al. trying to use
two layers of classifiers, where the first tried to take predatory from non-predatory, and a
second classifier to do victim from predator classification. To ensure that the classifiers
never classified two predators in the same chat, predators were only the one with the
highest confidence score of the two participants in a chat, the other being labelled as a
victim.

The results indicate that lexical features are powerful predictors, indicating that pure
lexical features with partner flip were stronger than behavioural features.

Several other researchers from the competition experimented with behavioural features
and LIWC with varying degrees of success. However, this shows a great deal of belief
and intuition pointing towards nature-describing features as viable solutions (Parapar
et al., 2012) (Hidalgo and Díaz, 2012).
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3.3.3 LCT and Chatcoder

Mcghee et al. (2011) improved upon the work of Kontostathis and Leatherman by building
the second iteration of Chatcoder, named Chatcoder2. The previous iteration had used
phrase-matching. Having a new goal in comparing the coding done by Chatcoder against
human coder, in this context being those that annotate the data in accordance with
the LCT framework. The system was changed to use rule-based matching instead,
which improved the system’s performance and coding interoperability. Rules are more
flexible than pure phrases, giving them the ability to look for all sentences that contained
two-word groups or other more advanced specifications. Grooming: “A post contains a
communicative desensitisation word (penis, sex).” Personal information “A post contains
an approach noun (car, hotel), a relationship noun (boyfriend, date), and does not
contain a personal information noun (age, pic).” In addition, the extended LCT model
was reduced to use three stages named “Exchange of personal information”, “Grooming”,
and “Approach”. The change was based on the assumption that the original nine classes
to be too many for short conversations. In addition to the rule-based features for coding
the conversations, a set of features were made to train machine learning (ML) algorithms.
Using the count of di�erent lexical features and POS tags, an algorithm was trained
to see how well they could automate the placement to di�erent stages. The rule-based
approach and the ML algorithm were tested against human coders to see which approach
overlapped the most.

Based on their accuracy results, several ML approaches were close to the 65% accuracy
with the rule-based system. However, on further inspection, the rules built inside the
ML algorithms to determine the category used approximately six times as many rules as
the original manual rule-based approach, meaning that they overcomplicated the issues
for the same accuracy.

The results indicate that the ML algorithm is less capable than the new rule-based
system. However, due to inconsistent coding from humans, the results are hard to verify.
Regardless of the issues they faced, it is clear that any work towards mimicking human
coders for annotation of grooming data is beneficial in a field where the acquisition and
annotation of data is a significant pain point.

Taking the use of LCT further was Cano et al. (2014), which tried to apply a set
of six di�erent feature types to the classification of LCT stages. With BOW, POS
tags, writing complexity, sentiment analysis, LIWC and discourse patterns. Cano et al.
tested all the features independently and all features combined for each stage to make
a classifier make three separate classifiers. Some terms were normalised to preprocess
the textual data, translating chat lingo and emoticons to standard English for predators
while removing stop words and stemming the words for all users. Except for in the case
of Trust development, using all features were the best solution. However, all n-grams did
on their own manage a perfect recall. Feature analysis was performed by leveraging the
information gain from each feature. The general results being that Discourse features
and all features performed best in precision, at around 80 varying for the stages. Gaining
a recall of 100 overall stages and a total precision of 70, meaning an f1 of 84.7 The most
exciting finding is from the discussion where the analysis of which features performed well
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shows that sentiment polarity is a weak predictor. However, more fine-grained sentiment
in the form of emotions is a promising predictor.

Diverting from the attempts of using di�erent feature types Kim et al. (2020) used
sentence embeddings with LSTM, with the coded data from Chatcoder 2 and PAN-12 to
train a model to first label the data into the three categories from Chatcoder 2, approach,
grooming and exchange of personal information, in addition, using a second classifier
to determine if the chat containing those message categories would be predatory. The
thought is that since predators and victims have di�erent ratios for the LCT categories,
that can be used to categorise if the participant is a predator or victim. To train and
validate the model, they split a custom made combination of PAN-12 and Chatcoder
with an 80/20 ratio. The model gained a precision of 0.9063, recall of 0.9355, F1 score
of 0.9148, and F0.5 score of 0.9058, which would comfortably put it as a top performer
in the PAN-12 competition and be the best by a wide margin for recall. This asserts
that the method has merit, however, since they used a mixed dataset, and with just a
subset of PAN-12, the results are not entirely apples to apple comparison. This is the
most unambiguous indication that the LCT framework can gain as high a score as the
two-stage approach, showing that several approaches are competitive as state of the art
for detection of predators.

3.3.4 Early dectection
Escalante et al. (2016) Tried early text classification with four datasets, comparing the
use of ensembles and SVM to determine how well the algorithm performed at a given per
cent of the information. With an implementation of Naive Bayes known as Early Naive
Bayes, that makes prediction for every x words, to show how much of the information in
a text is needed to perform the prediction, in e�ect performing several predictions at
di�erent points for the same entry. To preprocess the data for classification, stop words
were removed, and the words were stemmed. For SPI, a 3-gram character representation
was used. The results indicate that 10 - 20 per cent of the information was needed to
get 80 to 90 per cent of the performance possible. While the Early naive Bayes tops
out at an f1-score of 65, which would place it in the mid-field of PAN-12, the goal of
the publication was not to make the best performer for classification but to assess the
possibility for early detection. Early detection turned out to be a di�cult task, which was
assumed to be due to the imbalanced data. The main interest of this paper being that it
seems to be the first paper to attempt using early detection on SPI. It is a motivation
for further work, concluding that more theoretical analysis of the problem space and
proposed methods are needed to further the field.

Fellow NTNU student Kulsrud (2019) attempted to classify all three levels of predatory
identification, message, conversation and author. The thesis focused on the conversation
level, which was the basis for early detection. Using relatively standard preprocessing in
the style of Villatoro-Tello et al., and with TF-IDF, used with four classifiers, the results
mostly showed that the Ridge classifier and SVM with TF-IDF generally performed best
across the board.

On the Message level classification, the F0.5 score was around 32, which was self-
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described as not good. However, this is a complex task, given that predators write perfectly
normal messages and predatory messages. Regardless of the somewhat lacklustre results
on detecting grooming in messages, the conversations and authors were detected. The
results were competitive, gaining at best a 90 in f0.5 with SVM (TF-IDF) followed by a
Naive Bayes (TF-IDF) in a two-stage approach. However, the most exciting experiment
was the attempt at finding how many messages were needed to classify a predatory
conversation, turning out to plateau with close to 95 per cent of the performance at
about 20-30 messages. As pointed out in the discussion, this points to the early phases of
chatting having all the textual information needed to detect grooming, which would be
somewhat contradictory to some beliefs regarding stages of grooming and when di�erent
parts of grooming are performed.

Building further on this is the thesis by Vogt et al. (2021), who proposed early risk
detection for SPI. Using state of the art transformer networks in three BERT dialects,
a two-tier approach analyses sliding windows and continuously classifies the sequences
within the sliding windows. Vogt had the same issues that Kulsrud had, finding the
sweet spot between performance and early warning. The metrics used to evaluate how
good something is at early prediction are combined metrics using accuracy, speed, and
F-latency. F-latency uses how many messages have been sent before the warning is given
and how accurate the warning system is. Both of the classification steps are simple in
concept, the first only using BERT, Large, base, or mobile, which makes the features
themselves, to classify if a window of size x is predatory. With all these predictions for a
series of windows has been performed, a set of ten continuous windows are classified as
either predatory or not, based on a threshold called scepticism. The approach reached
an impressive F-latency of 0.81, indicating that the system both predicts early and
accurately. For real-world implementation, a system with such a high score is viable for
use in the state that it is, motivating that it is possible already today, without further
data to make solutions that have a possible chance of processing large amounts of data
for LEA.

3.3.5 Nature describing features
Nature describing features seek to profile the person’s traits or patterns in their actions,
rather than some statistical part of the textual data. The reason for making this
separation is that several researchers point out in their discussions and introductions
that there is an emotional, sexual and psychological di�erence between predators and
other people, making the progression in modelling these di�erences an important part of
the field.

One of the first uses of nature describing features was the use of sentiment and emotion-
based features done by Bogdanova et al. (2012a). Using the emotions, anger, disgust, fear,
joy, sadness and surprise, and their percentage of each marker as features together with
sentiment words, fixated discourse, and neuroticism. In addition to this, they employed
the work of Edwards et al. to find words from several categories: Approach words,
relationship words, family words, communicative desensitisation, and information sharing.
All these features were used on the same set of data as they used for the initial analysis,
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and the results point towards higher-level features being better than pure textual features
like N-grams or BOW. The High-level features gained an average accuracy of 92, while
the best textual feature, char trigram, gained 72.

One of the earliest attempts at modelling the behaviour of predators comes from
the second work of Bogdanova et al. (2012b), using fixated discourse through chains of
semantically related sex-related terms. With the word “sex” as start points for chains
and looking for semantically similar words with the two similarity metrics, the first one
was devised by Leacock and Chodorow, while Resnik made the second. The similarity
measures made it possible to generate chains of related words. Bogdanova et al. believe
this is an adequate way to model the unwillingness of a predator to change the topic from
something sex-related. The chains were evaluated on three datasets Perverted Justice,
NPS Chat, and a sample of 34 logs from oocities, a cybersex page. The three datasets
had significant di�erences in mean length of sex-related lexical chains, showing that
cybersex is mostly only sexually related and has very long chains of between 12 and 18
words, while PJ had shorter chains in the range of 8 to 12 NPS had between 0 and 6.
The exciting thing here is the ability to take some behavioural feature of predators and
model it to a specific feature that is analysable.

Bogdanova et al. (2014) Using a selection of high-level, the main contribution of the
publication was the feature analysis. These features were emotional, the word categories
from Mcghee, neuroticism, fixated discourse and others (emoticons and imperative
sentences). The paper shows the results of testing five individual high-level features on
an SVM and combining all features with the hold-out of a single feature at a time. These
two setups make it possible to discern what that feature added to the text representation.
The emotional features and fixated discourse was shown to be the most discriminating
features, while neuroticism and “other” were shown to be the weakest. The point is
proven by the emotional features having the most impact when removed from the text
representation.

The best solution is to use everything but the neurotic features. It increases the
accuracy to 0.97. The best performing features are SVM (char trigram and high-level
features) at 0.97 and 0.94, respectively. Also, testing single feature groups, emotion
features outperformed for discerning between sexual talk and predatory behaviour. The
exciting note made is that emotional features are specifically powerful at separating
sexual talk from grooming.

One of the earlier papers by Morris and Hirst (2012) to use behavioural features found
that at least 0.56 could be attained with pure behavioural features, meaning that it would
be considered a mid-field entry in the PAN-12 competition. The performance indicates
that pure behavioural features can get an outstanding result on a highly imbalanced
dataset. They also mention an interesting theory, that 1% of the features capture close to
99% of the information, motivating further research into the information gain of features.

Cardei and Rebedea (2017) attempted to implement imbalanced learning together
with behavioural features and textual features. The thesis had the two-stage classifier as
the basis for the approach while making some crucial additions. Firstly, the parameters
for prefiltering were adjusted to only use conversations with two people and more than
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twenty messages. The textual preprocessing of the dataset included stop word removal
and pruning words that are longer than twenty letters. A BOW-BIN was used together
with behavioural features that are based on Morris and Hirst (2012), using initiation and
responsiveness - a renaming of attentiveness. In addition, several features, like negation
rate, ease of reading with Flesch reading ease score, and sexual/slang word ratios were
employed, and the partner’s values for these features were also included when generating
the features for VFP identification. The two classifiers that were tested were SVMs and
RFs, both wrapped in the MetaCost algorithm to handle imbalance better. The final
two-chain classifier with all features used gained an f0.5 of 0.957, meaning this is the best
result at the time of publication and almost to date. The most exciting part of their work
is the analysis of which classifier performs best with which features. An f0.5 of 0.957 is
hiding some way more interesting findings, and that is the 100 Recall, 93 Precision of
RF with only behaviour features for the VFP module. The SCI module has a mediocre
performance of 0.938 for all values, which means that the results are primarily coming
from the module that usually is the weakest performer of the two. What is the most
interesting is that the results for the VFP were obtained purely with non-lexical features,
showing that modelling the nature and actions of the predators in some cases outright
outperforms lexical features, which contradicts findings from some other publications.
The results must be read with caution due to the metaCost balancing. Since all results
VFP have the same cost matrix, there is no way to infer what comes from the features or
what comes from the meta cost in comparison to a general random forest. They suggest
future work with sentiment analysis and LDAs, but what is most inspiring is that they
managed to improve the two-stage classifier by using behavioural features, showing that
they most likely can leverage information not present in the lexical features.

A unique study was performed by Cheong et al. (2013), in a research partnership
with a Danish company known as MovieStarPlant (MSP). Using a unique dataset from
the children’s game with the same name MSP, they tried to make a detection system
to find sexual predators in a real game. With a combination of lexical, sentiment and
behavioural features, with and SVM. The results were quite good results on their dataset,
which in contrast to most others, were relatively balanced in terms of information from
each group, 40 k vs 60k. Their ML solution outperformed all blocklisting techniques for
finding predators, and they did find that BOW approaches performed very well when
it was clear predatory intent. However, their behavioural features were almost as good,
and they saved much computational time. The main contribution of this paper was to
show that it is feasible to use real predators to detect sexual grooming and that it is a
solvable problem. They tested the trained methods on the PAN-12 tests and were able
to gain a 0.78 f1 score, with an accuracy of 93%, meaning that there must be significant
overlap between real predators and adults pretending to be predators.

Pranoto et al. (2015) analysed the value of 20 di�erent behavioural features to be able
to find the most independent ones, using the independence from others to indicate their
predictive power. Building on several theoretical frameworks like the online grooming
theory, he constructed the 20 features that would capture aspects of grooming and chose
the five with the strongest predictive power. Using these features with TF-IDF and LR,
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he gained a 94% accuracy. Even though this is a newer work, it used PJ and Literotica
to compare the sexual aspect of chatting. In this case, the features are also unique,
being even more high-level than most other features that try to capture behaviour. One
example is whether a predator asks for information about the child’s parents as a binary
feature. A feature type that is not present in other publications but found here is the
attempt at modelling fantasy, which is an integral part of sexuality and grooming. There
is a larger body of work related to the di�erence in contact-driven and fantasy-driven
sexuality, also specifically for grooming.

3.3.6 Deep Learning

One of the first attempts at using Deep Learning (DL) techniques in SPI was by Ebrahimi
et al. (2016). They employed single layer Convolutional Neural Nets (CNN) and several
textual features to classify predatory chats. Their main contribution was to study how
to implement CNNs for SPI and which textual features were most fit to use with CNNs.
Testing the Neural Net (NN) with one-hot encoding, BOW and word embeddings, the best
results were achieved with one-hot encoding, having an f1-score of 80%. Even though the
performance does not outclass other work, they discovered that general word embeddings
had subpar performance, and single layers of NN had in general better performance,
maybe indicating that the textual feature extraction they did lacked su�ciently complex
information to process with the current text representation. They encouraged future
work on the use of LSTMs rather than CNN, which is what Liu et al. (2017) attempted.

Approach the SPI with sentence embeddings and LSTM-RNN Liu et al. achieved
what would be the best results for SPI at the time. Approaching the problem by first
generating language models, that in turn, generated sentence vectors, which would then
be fed to a two-layer LSTM to detect suspicious conversations, and lastly to a FastText
based classifier, which scores based on sentiment analysis to find which participant is
the predator. In contrast to most other approaches, they chose not to filter the dataset
but rather to preprocess the text to normalise it, removing special characters. What
discerns this approach from the others is primarily that they have performance that rivals
Villatoro-Tello et al. Slightly exceeding both in recall and precision during training, this
is a more complex solution, but it does not require the manual filtration of chat logs,
which makes it much more versatile.

3.4 State of the art

This section is dedicated to the state of the art solutions to detecting predators. The
section will present the approaches that have the highest performance or is considered a
leading publication for another reason.

The first publication that can be considered state of the art (SOTA) is the highly
influential publication by Villatoro-Tello et al. (2012). However, this publication is SOTA
mainly because the approach and assumptions have become the closest to a standard
approach for the field. Expanding on the Villatoro-Tello et al.s approach is Fauzi and
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Bours (2020) which tries to leverage ensembles and several lexical features to improve
the performance within the same framework—experimenting with a collection of seven
algorithms and four text representations, in addition to building ensembles of the best
combinations. The approach added an element from Morris and Hirst, assuming there
will only be a single predator and therefore only setting the most confident predatory
pick from each conversation as a predator. The main finding aside from the SOTA
performance was that their soft voting ensembles, in general, perform best of all classifiers
on finding predatory conversations, gaining a perfect precision, recall of 0.954, and an
f0.5 of 0.9904.

The voting ensemble they created had three classifiers combined in both a hard or
soft voting combination. They proved that Villantoro-Tello s approach can perform even
better, meaning that it is possible that relatively “light-weight” solutions can still be
among the top performers in the field.

Coming from the same group of researchers Wani et al. (2021) has developed an entirely
di�erent approach. Instead of using filters and two-staged classifiers, a novel approach
is presented. Using the most prevalent words exclusive to victims and predators, they
generated a vocabulary of the most common words that separate the groups. In addition,
they expanded upon EmoLex, which is a lookup-table of emotion words, to generate
the new MoodBook lookup-table. Leveraging the fact that predators are emotionally
di�erent from other people, usually in the form of being emotionally unstable. With those
two features, they tried to predict predatory authorships without filtering on suspicious
conversations.

The approach proved promising, reporting performance close to 0.96 in all performance
metrics when using a RandomForestClassifier. What sets this paper apart from most
others is that they could find a pairing of features that are discriminating enough to find
enough information in the text to separate groomers from non-groomers. What sets this
approach apart from earlier SOTA approaches like Cardei and Rebedea and Liu et al.
is that the performance is across the board, not just very high in precision, but both
precision and recall. This makes the newly proposed solution much more versatile.

Lastly, there is a state of the art approach that is unique in the sense that it tries to
encourage work in another part of SPI. Lykousas and Patsakis (2020) presented a new
unlabelled dataset containing four years worth of live streaming data from LiveMe, which
has been verified to contain grooming attempts. The main body of the work is two-fold,
firstly presenting how the data was collected and the access to this data, and secondly
an analysis of the data which shows that unsupervised learning on unlabeled data can
detect grooming.

The detection of grooming was done by using the sexual terms in the LIWC dictionary
and finding the most related terms via the FastText word embedding. Taking all sexually
related words and replacing the tokens with a singular SEX_TERM token, the researcher
was able to find words that appeared in contexts with the SEX_TERM. Through analysis
of the words and sentences associated with the SEX_TERM, words like “open” and
“show” were prevalent, in addition to emojis like the bikini emoji.

This approach is novel in SPI, and it motivates that it should be possible to find
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grooming in datasets that are not labelled for it. This is a considerable advantage in a
field that has been somewhat stifled by the lack of access to larger quantities of data and
real data.
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This chapter explains the types of data needed to classify and analyse predatory data
and the datasets found during the exploration of the field. Firstly the chapter explains
what prerequisites exist for this type of data, followed by descriptions of all datasets that
were considered, ordered by if they were obtained or not. Lastly, the chapter describes
processing done to make a data exchange format for standardisation of the data.

In the field of SPI, getting access to datasets is one of the main challenges. Since
we are dealing with children, there are several legal and ethical matters one needs to
consider. Grooming and sexual abuses are both taboo and illegal activities; therefore,
Law Enforcement Agencies (LEA) restrict access to all data containing actual examples
of grooming. The reason being that victims are a vulnerable group. Ideally, researchers
would want to have datasets containing messages from both victims and predators to get
realistic results.

Today there are several datasets available to LEA and researcher, as described by
Keyvanpour et al. (2016) most the conversations are between participants from the
following groups:

1. Victims (children that have been groomed)

2. Psudo-victims
a) LEA pretending to be a child
b) Adult volunteers pretending to be a child

3. Adults chatting

4. Children chatting

5. Adult consensual sexting

6. Predators

Most datasets for grooming analysis and prediction will contain some balance of these
classes. To discern di�erent types of relationships from each other, we need examples
of several types of interactions. Grooming is, in most cases, represented by messages
between pseudo-victims and predators. Sexting between consenting adults represents
the di�erence between sexual language and grooming. Lastly, general chatting between
adults and children is the neutral baseline used as a comparison.

In addition to the di�erent types of participants, we also distinguish between labelled
and unlabelled data. Labelled data is data where we know what the contents of the data
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represents; in our case, it could be knowing if a chat contains a predator and which of
the participants is the predator. Unlabelled data would be only the chat-log, without
any knowledge of the classes or participants.

4.1 Datasets
Datasets are data collections with some shared attribute, i.e., the data is from the same
source. This section describes all the datasets that have been obtained or considered for
use as part of the Thesis. Each dataset is described by the sources it was collected from.
In addition to the data format, characteristics of the dataset, and any limitations of the
dataset.

4.1.1 Pan12
The PAN12 dataset was made available by PAN in 2012. PAN is a series of shared tasks
in digital text forensics started in 2009 and held as a part of the Conference and Labs
of the Evaluation Forum (CLEF) and hosted by The Web Technology & Information
Systems Network (WEBIS). Pan states that they are "... a series of scientific events and
shared tasks on digital text forensics and stylometry". The dataset was released as a part
of the competition to further research in the field of Sexual Predator Identification (SPI).
The goal of the competition was to solve two tasks.

1. Identify the predators among all users in the di�erent conversations

2. Identify the part (the lines) of the conversations which are the most distinctive of
the predator behaviour

The dataset consists of messages from several sources, including chat logs from open
chat forums like Internet Relay Communication (IRCs), services to meet new people like
Omegle and interactions between pseudo-victims and predators taken from the Perverted
Justice Website (PJ)1.

IRCs are large communities of people chatting on text-based servers. These servers
support both private one-on-one messaging and public/private chatrooms called channels.
The channels are topic-based, so the users can subscribe to topics that interest them.
A user can be part of the #main channel, but not the #GameOfThrones channel. By
crawling the public channels, researchers and others can collect large amounts of text
data. Geeks or tech-savvy people are the predominant userbases for IRC because the
IRCs are not as plug and play as more moderns solutions like Discord2.

Omegle is a website that allows two strangers to connect and to have an anonymous
online conversation. A user finds a partner by choosing a topic, and the user will be
matched with another user who has chosen the same topic. When these documents were
extracted, this was a text-based service akin to IRCs. What separates Omegle from

1
http://www.perverted-justice.com/?con=full

2
https://discord.com/
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regular chatting services is the ability to disconnect from a partner without warning.
Unless personal information was exchanged, neither party would ever be able to track
the other one down. This feature impacts the progress of the chat, seeing as Omegle
often has short conversations, where one part has failed to pique their partner’s interest.

Perverted-Justice (PJ) is a foundation that had the goal of protecting children online.
They trained adults to act as pseudo-victims. Besides awareness, the main activity was
luring predators to commit crimes on record. The famous show "To Catch a Predator"
was a part of PJ, where they cooperated with LEA to meet and detain a predator. Every
online chat that ended in a conviction would be made publicly available on their website.

Most of the dataset contains general Internet communication taken from the IRCs.
These are conversations from an extensive range of topics. The only common factor
is that there are no messages that can be interpreted as grooming attempts or sexual
conversations. The reasoning for this is to have a baseline with regular conversations
that are not attempts at grooming. From Omegle, most of the communication was
adults sexting, with the intended goal to teach algorithms the di�erence between sexual
conversations and grooming, as stated before. Lastly, there are the conversations from
PJ.

The distribution between these three types of conversations is very uneven to simulate
the real world since there are very few grooming cases in the real world compared to
the number of conversations on the Internet. PAN-12 chose to have 4% true positive
labels, indicating actual predators. The number was chosen based on assertions made
by a study of queries in peer-to-peer networks that 0.25% of queries were predatory, as
found by Latapy et al. (2011) and referenced by Inches and Crestani (2012).The increase
in percentage comes from the fact that 0.25% would be so low that machine learning
algorithms would not make accurate predictions.

The dataset as a whole contains a mix of all these conversations, structured as an
XML document in the following format.

<conversations>

<conversation id="ID">
<message line="Line">

<author> </author>
<time> </time>

<text> </text>
</message>

</conversation>

</conversations>

The dataset has two primary limitations. The first one is that all the sexual conversa-
tions are between adults, not teenagers or children. Adults tend to express themselves
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di�erently, making it easier for the algorithms to discern what is grooming and sexual
conversations by "guessing" the age of the participants.

Another major limitation is that the IRCs mostly contain a specific user group, geeks.
They usually talk more about computers or things related to IT or fantasy. The limited
scope of the conversational material can again make it so that every message related to
IT will be flagged as non-grooming.

4.1.2 Locard
Over the last few years, streaming platforms have become increasingly more popular.
Streaming is where one person is broadcasting a video live stream of themselves. These
streams can be video games, live discussions, or other content that people enjoy watching
live.

This trend is also present among young females. They are streaming themselves gaming
but also streaming other content. A particular class of this is where the streamer allows
the watchers to pay money to decide what they should do. The combination of a public
forum where viewers can request actions from a person, with the increasing popularity
among young girls, has raised concerns about grooming.

LOCARD is a European research partnership that tries to collect digital evidence of
crimes or misconduct online. One of their projects was to collect data from the Live
Streaming Service (LSS) LiveMe. liveme.com and try to find groomers trying to solicit
lewd actions from young, primarily female streamers.

The dataset comprises 39, 382, 838 chat messages exchanged by 1,428,284 users, in the
context of 291,487 live broadcasts during a period of approximately two years, from July
2016 to June 2018 (Lykousas and Patsakis, 2020).

The data does not contain any labels. The researchers that created the dataset analysed
it and found grooming in the dataset. In addition to this, streams often contain a lot of
content and creator specific language and imagery. These expressions can range from
vocabulary that is only found with a single streamer to emojis, images, or other media
with a significant presence within a small community.

The dataset is formated as a .feather file, a lightweight data format meant for data
frames in R and Python. The files are rows of with the following fields:

• from_user

• timestamp

• message

• ID

The one main limitation of this dataset is the fact that LiveMe has their own automated
anti-grooming systems. They remove alot of the words or messages that can be seen as
grooming attempts. The viewers have found ways around this by wilfully misspelling
words. This is a challenge for us, since we might in some cases need to decode the
misspelled words to be able to properly gain insights from the messages.
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4.1.3 Twitch

Twitch.tv is a Live Streaming Service (LSS) that predominantly streams game content.
The platform is also by far the largest LSS to date and is partially responsible for
popularising the streaming medium. The chats from game streams can often be viewed
as a conscious stream of related messages, all about the same thing. The messages are
reactions to what is happening in-game or actions done by the streamer. The researchers
collected the dataset to analyse and understand the di�erences between LSS and other
types of social media. These game streams contain the same type of creator and content
specific lingo that other LSS also have; however, game chats often have an even more
significant amount of rich semantic content in the form of ideograms like emojis or emotes.

The data set is unlabeled and consists of the top 20 most popular games and channels
between June and October 2019. Any stream that started with these games or from
these channels that primarily contained English messages were collected. The collection
resulted in almost 2000 streams from 666 streamers and over 60 million messages. Even
though the data does not explicitly state that it contains grooming, such a large dataset
should be analysed to check if it is possible to find grooming data to analyse and predict
in datasets not explicitly catering to the field of Sexual Predator Identification. Being
another LSS, it also should give some insights if compared against the Locard dataset.
The dataset contains two files for each stream. The first file contains the meta-data
collected from the stream. While the second file contains the chat log that was harvested.

The meta-data was structured as a JSON file with the following fields.

1 {
2 " user_view_count ": 84330058,
3 " user_broadcaster_type ": " partner ",
4 " stream_game_id ": "2748",
5 " stream_type ": "live",
6 " stream_viewer_count ": 3265,
7 " stream_start_date ": "2019-09-23T22:58:05Z",
8 " stream_language ": "en"
9 }

while the chat was formated as CSV files with the following fields:

• Time

• User

• Message

What sets this data set apart from the two others is how homogeneous it is. It only
contains messages about games and is also in opposition to LOCARD, a dataset where
the streamer decides the actions and controls the topics discussed.
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Name Description
Exchange of personal information Messages about topics related to relationships, living situations, upbringing, and personalia
Grooming Discuss sexuality or implies wants or intentions to have or partake in sexual activities with the victim.
Approach Isolating victims from their network, getting contact information or planning meetings.
Lines containing none of the classes General chatting

Table 4.1: Description of main classes within Luring Communication Theory

4.1.4 ChatCoder 2

The Chatcoder project is a generational project that attempts to use Luring Commu-
nication Theory (LCT) as the basis for building rule-based models to detect grooming
attempts and the patterns in grooming.

Chatcoder, the original project, collected 228 chat logs from the Perverted Justice (PJ)
website to develop an LCT program. Using 12 chats, the researcher generated a dictionary
of words categorized into eight classes that explained di�erent actions associated with
di�erent aspects of LCT. The second project labelled all the lines of 50 chat logs with
four di�erent classes, as described in Table 4.1.

As with PAN-12, this dataset is built as XML documents. There are three separate
documents, one containing all the chats collected by Chatcoder, including the unlabelled
ones, and two containing the labelled chats. The labelled chats have been split into only
victim lines and all coded chats.

<chatcoderadmin>

<ChatLog>

<name> </name>

<CodingVersionID> </CodingVersionID>

<lineNum> </lineNum>

<category> </category>

<userID> </userID>

<dateTime> </dateTime>

<body> </body>

</ChatLog>

</chatcoderadmin>

4.1.5 Acquisition of datasets

Acquisition of high-quality datasets has been a recurring issue in the field. So for ease of
access acquisition methods, the datasets have been listed, with citations to the paper
where they were initially presented.
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Pan-12 The PAN-12 dataset has historically been controlled by the Webis foundation,
which required contact by email with a request to access the data or implement a program
to access the data online through an available endpoint. However, recently they have
transferred the data to Zenodo3, a dataset hosting website used by many researchers.
The dataset is restricted, so a request must be made to access the data. The overview
explaining the contents of the dataset has been published as a paper by Inches and
Crestani (2012)

Locard Locard hosts their dataset on Zenodo, also having it restricted, so it requires a
manual review before being shared. It can easily be accessed by sending a request to
the maintainer of the dataset via the Zendodo4. The analysis and explanations for the
dataset can be found in the initial paper Lykousas and Patsakis (2020)

Twitch The Twitch dataset, also called Twitch-Chat, is accessible through a page
known as OSF, where they host the code to reproduce their results, together with the
paper and the dataset. 5

ChatCoder2 The author has to be contacted directly via email to access the Chat-
Coder2 dataset. Currently, the author works at Us Naval Academy, where the contact
information can be found. All relevant information about the dataset can be found in
the paper Mcghee et al. (2011)

4.2 Unobtained datasets
This section presents the datasets that were not accessible but were of interest. Firstly
explaining some general information about the dataset and why it is desirable, and then
explaining what prevented the acquisition of the dataset. The list is not an exhaustive
list of all datasets used or considered in the field, only those deemed most interesting
during the literary search for this thesis.

4.2.1 MovieStarPlanet

The first and most desired dataset would be MovieStarPlanet. MSP is a social children’s
game developed in Denmark, where the children create their custom avatars. Players can
play minigames or chat with people, which will, in most cases, be strangers. Groomers
have plagued MSP for many years, and in 2016 a researcher Cheong et al. (2013) got
a partnership with the company owning the game. The research partnership resulted
in a dataset containing all messages sent on a British game server over the span of 15
minutes. In total, they collected 60 000 lines of text. In addition, the moderators of the
game had already caught several groomers and flagged their usernames. They gave all

3
https://zenodo.org/record/3713280#.YgZrfO6ZNhE

4
https://zenodo.org/record/3560365#.YgZsXe6ZNhE

5
https://osf.io/39ev7/
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messages sent by these 60 o�enders, and this totalled 40 000 messages. MSP is one of
only two datasets encountered that contain actual victims, making it very desirable. Due
to the research partnership, the data cannot be used outside that context. To confirm
that the data was restricted to the project, the researcher in charge of the project was
contacted, and they confirmed that the data would not be possible to acquire.

4.2.2 Surete du Quebec
For his master thesis in Online Predator Identification, Mohammadreza Ebrahimi got
a small sample of real conversations from the Surete du Quebec, the LEA in Quebec,
Canada. Ebrahimi et al. (2016) This dataset mainly contained true positive entries
since it was taken from actual police records. Most of the conversations were in french,
meaning that it would not be feasible to integrate with an English dataset. There is not
stated anything about the availability of the dataset, so it is safe to assume that it is not
meant to be distributed.

4.2.3 Perverted Justice
The Perverted Justice website has 630 publicly available predatory conversations. These
are a superset of the true positive entries from the PAN-12 dataset and ChatCoder 2.
However, this is not a proper dataset but rather a collection of available data that has
not been collected or processed to a standard format. The conversations on the website
are structured but not organized. Every conversation consists of entries or messages,
and each entry has the following: text, timestamp, username, (optionally) comment.
However, the ordering of these parts of the entry is not consistent across conversations,
meaning that it requires semi-manual work to extract the data in a structured fashion. In
addition, they post comments from the pseudo-victim in charge of the case appended to
the text bodies of some entries. Usually, the comments will express disgust regarding the
actions of a predator or elation over getting confessions. There is a feature on the page to
disable the comments. However, the feature does not work consistently with web scraping
frameworks. Sadly the comments are neither uniform nor have an exclusive pattern, so
they cannot be easily removed with tools like Regex or other pattern matching without
at least some loss of conversational information. The data was not collected primarily
because of the amount of work required to access one dataset when about half is already
available through other datasets. If one needs to boost the number of unique predatory
chats, it should be possible to access them with web scrapping and some manual work.
Pan12 uses about 330 positive examples between the test and training set, allowing a
doubling of predators if one extracts all the predators from PJ.

4.3 Data preprocessing
Data preprocessing is the task of filtering and refining the data to be better suited for
the project. This section describes the preprocessing of all datasets done prior to the
analysis and prediction. Having four di�erent datasets with di�erent formats is a way
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to introduce errors and inconsistencies to the research. The data was normalized by
transforming all the conversations to a JSON format. This format enabled indexing of
all conversations based on UUID of the conversations.

1 { "type" : " predatory ",
2 " participents " :["id","id2"],
3 " Source " : " ChatCoder 2",
4 "uuid" : "stsa -sadsa -22-13-asd -sd",
5 " chatMessages ":[
6 {
7 ’sender ’:"id",
8 "line":2,
9 "time":"2016-01-29",

10 "text": "Hi i am a predator :",
11 "? category ": "Initation -pred"
12 }
13 ],
14 " amountOfTokens ": 201,
15 " chatLength " : 42
16 }

To reduce the size of the data object, all message data that was not text, sender,
timestamp, or category of content for the text were discarded.

In the end, each conversation had the following information, the participants, the
number of messages sent, the number of words in the text, the source, and if the content is
known to be predatory. During the processing, some messages were removed. Discarding
messages with a malformed text body or with invalid time information. The filtering
resulted in removing close to 1 000 messages out of several million. With a standard
data format, the rest of the Thesis could be written with standardised data functions,
enabling the analysis and prediction to be used with all the datasets.

The datasets were individually filtered, each by some metric inherit to the characteristics
of the dataset. Twitch and LiveMe by language and converastion length, since there is
no guarantee for language in unlabelled dataset from open chatrooms, while Chatcoder
and PAN-12 stayed untouched.
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5 Architecture
This chapter will describe the final architectures of the subsystems used to predict
predators. The architectures are high-level descriptions of the systems. Since each system
was subject to experimentation, this chapter will only state the final configurations, while
the next chapter outlines the experimental setup and how the final configurations were
reached. The chapter describes the whole disconnected system and then gives a more
in-depth description of each subsystem.

5.1 High-level description
This section explains the flow from initially getting the data to the finished prediction,
starting with a high-level overview of submodules the system is made of and what they
are meant to accomplish. Figure 5.1 shows the architecture for the whole system. There
will be a dedicated section following this section to explain each submodule.

As explained in Chapter 4 there are several datasets with di�erent formatting. Before
any prediction can be made, the initial data processing is performed to standardise
the format. Following this, the data is sent to the two separate systems for predicting
predators.

The pipeline is split into two subsystems to test the two state of the art architectures.
The two-stage classifier is a prediction pipeline fashioned after the system built by
Villatoro-Tello et al. (2012) while the Social Behavioural Biometrics (SBB) classifier tries
to use the emotions of the predators to predict predatory behaviour in one-stage, based
on the architecture from Wani et al. (2021).

5.2 Two-Stage Classifiers
As the name implies, it uses two classifiers. The first classifier, Suspicious Conversation
Identification (SCI), finds all chats that contain a predator. The first classifier acts as
a filter for the second classifier. The second classifier, Victim from Predator disclosure
(VFP), then uses the suspicious conversations, splitting the conversations into documents
for each participant and classifying each participant from the chats as either victim or
predator.

5.2.1 Preprocessing

The data from the PAN-12 competition contains a significant amount of non-grooming
data. Large amounts of the chats contain small amounts of data, primarily due to the
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Figure 5.1: Architectural overview of system

nature of the Omegle dataset, as described in the Section 4.1.1 about the PAN-12 dataset,
containing many short message histories due to early disconnects. Since the small amount
of data makes the classifiers unable to function correctly, this is seen as outliers or noise.
To account for the noise and outliers in the data, every chat that either contained fewer
than 20 messages or had only a single participant was removed.

This prefilter removed about 80% of the conversations in the dataset as seen in Table
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Figure 5.2: Classifier based on the architecture proposed by Villatoro-Tello et al. (2012)

Table 5.1: PAN-12 Filtering results
Filtering Train Test

Unfiltered 66927 155128
Prefiltered 12276 28559

5.1. For most tasks in NLP, we want to clean the textual data in some way. The goal is to
normalise the data by removing information that does not help solve the task. However,
in Sexual Predator Identification, this is not always desired. Primarily this is because
textual cleaning, in many cases, is a trade-o� between quality and quantity, where one
often discard some information to remove noise. If the data is uniformly discriminator or
there is uncertainty about which text features are discriminatory, we risk removing or
altering text containing essential information for this specific task.
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5.2.2 Suspicious Conversation Identification

Figure 5.2 has a submodule called Suspicious Conversation Identification (SCI), which
will be explored further in this subsection. Prediction on textual information requires the
data to be formatted correctly. In the case of conversation detection, a single document
represents a chat log, and all the messages from one chat are concatenated into a document
to accomplish this. Each of these documents is labelled based on whether a predator is
present in the chat. This step is required since we only know which chatters are predators,
not which predatory conversations.

The concatenated documents are then processed by feature extraction for SCI, Term
Frequency–Inverse Document Frequency (TD-IDF). The best performing classifier for
the SCI module was the Multi-Layer Perceptron Classifier (MLPClassifier), which was
combined with TF-IDF to get the best performance. The trained classifier gives predicted
labels to each document, allowing us to predict suspicious conversations.

5.2.3 Interlude

In between the two classifiers, there is a data wrangling step depicted as the "Suspicious
Conversation Authorships" in Figure 5.2. Given that the document representation for
the PAN-12 dataset is made to be a document per conversation for the SCI, it will have
to be transformed to be a document per author for the Victim from Predator disclosure
module (VFP).

Each conversation is then connected by their UUID, a unique identifier for each
conversation, and predicted status. For each conversation suspected to be predatory,
the conversation is fetched from the original data source. Then each author has all
messages that are part of a suspicious conversation concatenated to a "suspected predatory
document".

5.2.4 Victim from predator

Having the documents at a per author level, we can now detect if an author is predatory.
The Victim from Predator discolure module (VFP) is shown in Figure 5.2, and is quite
similar to the Suspicious Conversation Identification module (SCI), only using a di�erent
classifier. It is important to note that there is no preprocessing, as the prefilter and
the filtering done by the SCI module is all the processing needed. For this module, the
TF-IDF was still the best option. However, the RidgeClassifierCV turned out to be a
better predictor than MLPclassifier for Victim from Predator disclosure.

5.2.5 Evaluation

An additional step is to evaluate the results when getting a prediction for each participant
in a suspected predatory conversation. Since the final classifier from the Victim from
Predator disclosure, only classified authors from predatory chats, the rest of the authors
do not have a predicted value, so evaluation metrics cannot be calculated. Since every
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Figure 5.3: Classifier based on the architecture proposed by Wani et al. (2021)

chat that was not seen as predatory by the SCI module is stated not to be a predator,
we can set all participants from these chats to non-predators.

5.3 Social Behavioural Biometrics classifiers

Social Behavioural Biometrics (SBB) is a term coined by which analyses the behaviour
and interactions of people online to classify them. The goal is to make a behavioural
or emotional profile for each message or chat. Di�ering quite considerably from the
Two-stage classifier, this type of classification uses a single step, generating the documents
on a per author basis from the start, instead of filtering with suspicious conversations as
seen in Figure 5.3

5.3.1 Features

As a part of the feature set for the SSB classifier, a Predator Victim Vocabulary is used.
Predator Victim Vocabulary (PreVicVocab) is a vocabulary defined by the N most used
words exclusive by each group. The vocab is generated by first finding the N topmost
used by each group, and after this, the exclusive words for one group are combined into
a vocabulary.

This vocabulary is generated by first prefiltering the PAN-12 dataset, inspired by
the method from Villatoro-Tello et al. (2012) but with di�erent parameters. The filter
removes conversations that are not between two participants or has less than six messages.
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With the prefiltered dataset, we find the top 10 000 words from each group that have
more than 24 occurrences in their respective group. Bag-of-words algorithms can then
use the vocabulary as a substitute for generating the vocab by reading all the documents.

Since this is a single-stage classifier, as seen in the Figure 5.3 we split the documents
on a per author basis for the classification, the same as was done for the Victim from
Predator disclosure classification.

Social Behavioural Biometrics classifiers are distinct because what distinguishes the
method is what features they use. They use the Moodbook together with the specialised
BOW. The thought is that since predators are emotionally and psychologically di�erent
from other people, and to a greater extent, di�erent from victims, these attributes should
be used to separate the two. Moodbook is, as defined in Mudasir Ahmad Wani and
Hussain (2018), a set of categories and words matching those categories, in other words,
a lookup table for emotions. In addition, to the features from Moodbook, there are two
final features, counting how many of the positive and negative moodbook features are
present in a text.

5.3.2 Classifier
For the classifier in the SBB approach, a Labelspreading algorithm was seen to perform
the best. The algorithm directly classifies all authorships in the PAN-12 dataset.
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This chapter describes the process of finding parameters for the architecture that perform
well for detecting predators and the results of the approaches. The chapter first describes
the shared methodology used to experiment and build the architecture shown in Chapter
5 and then the experimentation to get the final configuration for the two-stage classifier
and the Social Behavioural Biometrics classifier (SBB). Following this, the results from
the validation and hyperparameter tuning of the algorithms are presented. Lastly, the
test results are presented, leaving the analysis and interpretation of the contents of the
results to the following chapter.

6.1 Experimental Plan

In the field of Sexual Predator Identification (SPI), there is a sentiment echoed by many
researchers, while no one to date has been able to provide any empirical evidence of
this situation. That is the notion that we do not know the overall best feature, the best
model, or the best anything for SPI. Di�erent researchers have di�erent approaches to
solving the problem, and few studies have similar enough setups to be comparable to
each other. Therefore we can not genuinely compare single aspects of the studies directly
with each other without making some assumptions. The dissimilarities make it hard to
conclude which specific parts of the approaches are the most important to the approach’s
success.

That is not to say that there is no comparison between solutions or knowledge of which
features perform well for a single approach to the problem. Nevertheless, there is not a
de facto best feature or model for the field as a whole.

Some researchers will find that Binary BOW (Bin-BOW) is the best approach for
textual features, while others will select Term Frequency-Inverse Document Frequency
(TF-IDF) for a surprisingly similar approach and find that it turned out to be better
than Bin-BOW.

This somewhat chaotic element in the field requires us to make fewer assumptions when
feasible without increasing the problem complexity too much. In short, this describes a
problem space that requires a methodical approach to experimentation.

To this end, the experimental plan for both approaches to the SPI architecture use
quantitative data to make decisions for the study, rather than conventional wisdom or
heavy reliance on the specific insights from others.

The experimentation can be subdivided into the optimisation of three parts: choice of
feature extraction, the classification model’s choice, and the classification model’s tuning.
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The methodology for each of these parts is the same. The method starts by testing a
base architecture chosen based on authoritative publications in the field. The base is
tested with many models and features, using the results to determine the best algorithms
for further investigation. Each of the best algorithms is assembled into ensembles that are
hyperparameter tuned to optimise the performance. The problem is split into sections,
solving them incrementally to avoid brute-forcing the whole solution and increasing the
problem space exponentially.

6.2 Shared SPI experimental setup

Since the architecture for the Social Behavioural Biometrics classifier and the two-stage
classifiers can be implemented with many di�erent classifiers, this section explains
the shared architectural design. They share the selection process of the classifiers,
hyperparameters and selection of classifiers for voting ensembles.

All the algorithms were trained and tested on the same data to determine which had
the best performance for the given task. Determining "best performance" is somewhat
unquantifiable by a single unit of measurement, so four measures, Precision, Recall, f0.5
and f2.0, were employed instead.

Since the PAN-12 competition used f0.5 as the primary scoring metric, this Thesis has
used it as the primary evaluation metric. In e�ect, all steps have been assessed on and
tuned to increase the f0.5, and all tables are sorted on f0.5. However, due to there being
some researchers voicing concerns regarding if f0.5 is the best choice for a primary metric
in the field of SPI, f2.0 has also been reported.

The three most feasible classifiers for each module were chosen for the soft voting
ensembles. The evaluation was done on a combination of performance, computational
cost, overlapping performance with other algorithms, uniqueness and if the classifiers
supported confidence.

Uniqueness is a constraint set due to several of the classifiers being presented as
di�erent classifiers while, in reality, only being variations of a single algorithm that can
be reproduced with the correct parameters. An example of this constraint is that the
Stochastic Gradient Decent (SGD) classifier is an SVC with an SGD learning approach,
so the underlying algorithm is still an SVC.

Due to using soft voting ensembles rather than hard voting ensembles, the classifiers
had to give a confidence value for their predictions since this is the value used for soft
voting. The most common parameters on each algorithm are chosen to be tuned. The
strategy for finding these is using online resources for each algorithm and then expanding
the commonly used search space somewhat to give the bayesian search strategy more
ability to explore the interactions between parameters freely.

Some restrictions apply, primarily due to some of the parameters not supporting other
parameters, such that either the search spaces had to be restricted for parameters, or
other parameters had to be dropped entirely to avoid failing too many training sessions.

Optuna, the hyperparameter tuning framework, was set to have 100 training sessions
for each classifier. The number of sessions was chosen to give Optuna enough training
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sessions to optimise but set a bit low to avoid computational costs since many algorithms
were tuned.

6.3 Two-stage classifiers
This section contains all the information about the experimentation and development of
the two-stage classifier that resulted in the final configuration as described in Chapter 5

To find the best combinations of features and models, all features were tested against
all models to look for patterns in the performance.

The features used for the testing are bag-of-words (BOW), Binary bag-of-words (Bin-
BOW), Term-Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF),
Linguistic Inquiry and Word Count (LIWC) and Combined(TF-IDF+LIWC). The reason
for using TF-IDF and LIWC for the Combined feature is because, as we can see in
Table 6.4a out of all the top five features evaluated by f0.5, TF-IDF had all top entries.
When initially deciding which feature should be used for combined, only the Suspicious
Conversations Identification (SCI) module had been developed, so the feature set was
developed based on the indications from this module.

The six features were combined with the twenty-nine algorithms seen in Table 7.2
to find the optimal combination, and the 174 permutations were evaluated on all four
scoring metrics.

6.3.1 Suspicious Conversations Identification
For the Suspicious Conversations Identification (SCI) module, the best combinations
can be seen in Table 6.4a. Three of these classifiers were chosen as part of a soft voting
ensemble. Ideally, these would be the top three f0.5 algorithms that can report confidence
and that are not built on the same underlying model. The choice for models for SCI
should be the Multi-Layer Perceptron (MLP), CalibratedClassifierCV (CCCV) and
Linear SVC classifiers. Since these three all ranked highest on the primary metric, and
all supported confidence measures. However, in the case of soft voting ensembles, the
CCCV uses Linear SVC as a base_estimator for calculating confidence, meaning that
the algorithms are based on the same algorithm. For this reason, both the Linear SVC
and SGDClassifier can become the same as the CCCV, so to air on the side of caution,
both were excluded, the Passive-Aggressive Classifier (PAC) classifier cannot predict
probabilities, meaning that in the end, it uses a SVC. For this reason SVC, MLP and
CCCV were the final selection used for the soft voting ensembles, as can be seen in Table
6.1 under the name SCI.

6.3.2 Victim from Predator disclosure
Building on the same principles, the combinations for the Victim from Predator disclosure
(VFP) module can be seen in Table 6.4b.

The three best f0.5 algorithms were Logistic Regression, RidgeClassifier, and Multi-
Layer Perceptron. The RidgeClassifier did not support confidence values needed for soft
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Stage Classifier 1 Classifier 2 Classifier 3
SCI CalibratedClassifierCV MLPClassifier SVC
VFP Stochastic Gradient Decent Classifier MLPClassifier Logistic Regression
SBB K-nearest Neighbour Random Forest XGBoost

Table 6.1: Classifiers used for the soft voting ensembles

voting ensembles and was excluded. Since both the Logistic Regression was already
a part of the ensemble and RidgeClassifiers were o�-limits, the following algorithm of
choice was the Stochastic Gradient Descent (SGD) classifier with Term Frequency, which
became the last algorithm for the Victim from Predator disclosure ensemble setup.

6.3.3 Other test performed

Several other approaches, models, or features were explored in the early stages of
experimentation. These smaller-scale experiments aimed to gain some insights into
the field. However, all of them had shortcomings that made it undesirable to continue
exploring them to the point of fully implementing a solution with them.

Some early testing was performed with behavioural features, but the features were
perceived as fragile since both the format and metadata vary between sources and dataset.
In addition, they are costly to design and implement, making them seem even more fragile
than features like Moodbook, LIWC and textual features that are easily implemented
and only depend upon the textual data.

Following this, some experimentation was done with transfer learning models. Sadly,
the results were inconsistent, bound mainly to the random seed used on initialisation.
In short, it meant that the median or average performance of RoBERTa, BERT, and
distilBERT was mediocre compared to traditional machine learning when considering
the inconsistency. The best single performance ever gained was from a transfer learning
model. However, the average or median performance would be closer to the top 10%.

Afterwards, it was attempted to tune the hyperparameters of the vectorisers that
generated the textual features. Using Term Frequency-Inverse Document Frequency
(TF-IDF) and Bag-of-words, neither had any indications that there were improvements
to be made. Testing with n-grams, restricted vocabulary sizes or minimum or maximum
document frequencies.

The test was performed as a hyperparameter tuning of both algorithms and vectoriser
and evaluated manually based on the top mean scoring values, where TF-IDF consistently
beat out all other vectorisers and had no benefit from any tuning.

Lastly, tests with advanced neural nets in Keras were performed. The experiments
tried to leverage the ability to find more complex patterns from Long short-term memory
(LSTM) and Convolutional neural network (CNN), in addition to basic neural nets, all
with TF-IDF and word embeddings. However, none of the initially tested solutions gave
results that warranted any further investigation into the feasibility of this approach.
The advanced neural networks had indications of slightly better performance in some
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specific cases, but like the transfer learning models, it seemed to be outliers rather than
consistently better performance. However, they had a much higher computational cost,
making them a less feasible solution as a whole.

There is a caveat with early small scale experiments that the indications might come
from inexperience in the field or just that the tuning of the approaches was not correct.
These experiments are reported to give a complete overview of approaches that were
attempted.

6.4 Social Behavioural Biometrics classifier

This section describes the steps to develop and experiment on the Social Behavioural
Biometrics (SBB) classifier. Since the classifier is initially built to use a specific set of
features, experimentation has primarily focused on choosing optimal algorithms for the
problem, generating ensembles to boost predictive power, and hyperparameter tune the
algorithms to optimise the solutions.

6.4.1 Generation of features

A core part of the SBB approach is the two features employed, Moodbook for leveraging
the emotional di�erences between predators and other people, and Predatory and Victims
Words (PreVicVocab) to use textual features that are strongly discriminatory each group.

The PreVicVocab was generated per the descriptions given in the publication by Wani
et al. (2021). The process starts by finding prefiltering the conversations from the dataset,
inspired by Villatoro-Tello et al. (2012). However, as opposed to the original publication,
the parameters are only conversations with two participants, and more than six messages
are considered. The data is normalised by removing stopwords and punctuation from all
these chats.

From all the predatory conversations in the prefiltered dataset, two separate lookup
tables contain all the words and frequencies from messages sent by predators or victims
are generated. The lookup tables were set to have some constraints. Firstly, the tables
only keep the 10000 most prevalent words and remove any words that occurred less than
25 times for each group. With the lookup tables completed, the exclusive words for each
group were concatenated to a single vocabulary.

The procedure did not generate the same vocabulary as the original publication, getting
199 Victim words and 167 predatory words, whereas the original publication had 304
and 299 words for the groups. In e�ect, this meant that somewhere the generation had
di�ered. The discrepancy prompted further investigation, where it became clear that
for most words, the counts made by this approach, seen in Table 6.2, and the original
publication, as seen in Table 6.3 were very close and, in some cases, even the same for
both groups.

Curiously the values found in Table 6.3 give identical counts for two words, seemingly
indicating a typo, and this might point towards some minor errors in the paper accounting
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6 Sexual Predator Identification

Horny Friends Swear
Victim 2 87 25
Predator 78 124 10

Table 6.2: Attempted recreation of Predator-Victim vocabulary

Horny Friends Swear
Vicitm 2 2 25
Predator 82 82 10

Table 6.3: Original data published about the Predator-Victim vocabulary

for the inability to reproduce the PreVicVocab. The discrepancy was further investigated
in Section 7.1.5 of the evaluation.

After getting in touch with the authors of the original paper that proposed the approach,
they agreed to provide access to the dataset they used. However, in their words, a dataset
is not the raw textual data but rather the data transformed to features and labels. The
dataset they provided was ready to be processed by a classification algorithm.

6.4.2 Model selection
The algorithms were tested on the dataset provided by the researchers, and this yielded
the validation results seen in Table 6.4c.

The top three algorithms based on the f0.5 score would be LabelSpreading, Extra
Trees and Random Forest. The LabelSpreading algorithm was discarded due to being
computationally too expensive to compute. Initially, it failed to fit due to excessive RAM
usage during the parallelized training session of cross-validation. However, the situation
did not improve when fewer threads ran the process. The result was that the training
sessions took several hours. For this reason, the K-NearsNeighbours was favoured above
the LabelSpreading algorithm. The Extra Trees algorithm was also discarded favouring
the XGBoost Classifier due to the similarities between the ExtraTrees and RandomForest
classifiers. The two algorithms are very similar but with di�ering ideologies. ExtraTrees
favour speed by not finding the optimal solutions, while RandomForest has a more
optimal strategy. In short, it makes them interchangeable for this specific experiment.

6.5 Validation results
This section describes the results from the validation scores of the three modules used
for Sexual Predator Identification (SPI). These results are integral to deciding which
algorithms perform the best and should be part of the ensembles and which algorithms
should be hyperparameter tuned. The best performance will be shown for precision,
recall, f-scores and accuracy for a module.

However, since these are validation results, there are some things to keep in mind.
Firstly, the validation results are based on the ten-fold cross-validation done as a part of
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Model Feature Type f0.5 f2.0 Recall Precision Accuracy
MLPClassifier TF-IDF 0.978 0.973 0.972 0.979 0.997
CalibratedClassifierCV TF-IDF 0.975 0.975 0.975 0.976 0.997
LinearSVC TF-IDF 0.975 0.972 0.970 0.977 0.997
PassiveAggressiveClassifier TF-IDF 0.975 0.976 0.977 0.974 0.997
SGDClassifier TF-IDF 0.974 0.971 0.970 0.975 0.996
MLPClassifier TF 0.972 0.963 0.960 0.975 0.996
SVC TF-IDF 0.971 0.950 0.943 0.979 0.995
CalibratedClassifierCV TF 0.971 0.966 0.964 0.973 0.996
SVC TF 0.970 0.958 0.954 0.974 0.995
MLPClassifier Bin-BOW 0.970 0.958 0.954 0.974 0.995

(a) Validation results for training of SCI Module
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
MLPClassifier Bin-BOW 0.957 0.956 0.956 0.958 0.955
LogisticRegression Bin-BOW 0.956 0.956 0.956 0.956 0.955
RidgeClassifierCV TF-IDF 0.955 0.950 0.948 0.957 0.952
LogisticRegression BOW 0.950 0.903 0.889 0.969 0.929
RidgeClassifierCV TF 0.950 0.965 0.971 0.945 0.956
RidgeClassifierCV Bin-BOW 0.947 0.942 0.941 0.948 0.944
MLPClassifier BOW 0.946 0.942 0.941 0.949 0.944
SGDClassifier TF 0.944 0.919 0.912 0.953 0.933
PassiveAggressiveClassifier TF 0.942 0.958 0.964 0.937 0.948
LinearSVC TF-IDF 0.942 0.941 0.941 0.944 0.941

(b) Validation results for training of VFP Module
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
LabelSpreading SBB 0.971 0.894 0.871 0.999 0.970
ExtraTreesClassifier SBB 0.970 0.894 0.871 0.999 0.969
RandomForestClassifier SBB 0.969 0.894 0.871 0.996 0.969
KNeighborsClassifier SBB 0.967 0.893 0.871 0.994 0.968
XGBClassifier SBB 0.964 0.893 0.871 0.990 0.968
MLPClassifier SBB 0.963 0.893 0.871 0.989 0.968
BaggingClassifier SBB 0.960 0.892 0.871 0.985 0.967
ExtraTreeClassifier SBB 0.960 0.892 0.871 0.985 0.967
DecisionTreeClassifier SBB 0.956 0.891 0.871 0.980 0.966
LogisticRegression SBB 0.954 0.888 0.868 0.978 0.964

(c) Validation results for training of SBB

Table 6.4: Validation results
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the training of each algorithm. Meaning one-tenth of each training set has been held-out
to be used as a validation set; this has been repeated ten for all ten folds, giving an
averaged score for validation across all folds.

Another note that must be made is that both the SCI and VFP modules have had the
six di�erent feature combinations versus one feature set for the SBB module, meaning
that they have six times as many results in the non-truncated table. The di�erence
in results might make it such that only showing the top ten algorithms might give the
impression that the VFP and SCI generally were more even in performance when it
comes to the f0.5 score. However, this is more a quirk due to the di�erences in results
per table, rather than a point of interest that should be investigated further.

6.5.1 Suspicious Conversations Identification

For the Suspicious Conversation Identification, it is clear that Term Frequency (TF)
based feature extractions are favoured for this problem and that pure textual features
are more suited than those incorporating LIWC. From Table 6.4a we can see that nine
out of ten solutions use TF-based features, while all ten use textual features.

Another pattern is small margins between solutions, with the f0.5, accuracy, and
precision having an interval of below 0.01. The margins are even more apparent with the
accuracy, where the score only has an interval of 0.002, indicating that it might be a not
very sensitive metric for the SCI module.

Evaluated on the primary metric, f0.5, Multi-layer Preceptron with Term Frequency-
Inverse Document Frequency (TF-IDF) has the best performance, with a score of 0.978.
Since F0.5 is a derivative of recall and precision with a skew towards precision, it is not
surprising that this solution also has the shared highest precision with SVC (TF). A
similar pattern can be seen for the Passive Aggressive Classifier (TF-IDF), which has
both the best recall and f2.0. With values of 0.977 and 0.976. These are linked in the
same way that precision and f0.5, making it natural to have these links between the
scores.

6.5.2 Victim from Predator disclosure

In solutions with several stages of classifiers, errors and bad performance will usually
propagate from earlier to later. However, a subtly in this is that such problems are only
applicable for test results and not local validation results. This note has to be made since
it makes it such that the validation scores seen here will not be comparable to the test
scores presented in the following two sections.

In the same manner that TF-based features were favoured for SCI, we can see in Table
6.4b that the three algorithms, Multi-layer Preceptron (MLP), Logistic Regression (LR)
and RidgeClassifiers, generally perform well. In addition to this, we can see a relatively
uniform spread among the textual features in the top ten. These two facts could indicate
that algorithms are more vital than features for this problem.

The strongest predictor for f0.5 is MLP (Bin-BOW), with a score of 0.957 in f0.5. F0.5
is the only metric where the MLP has the highest score.
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The LR (BOW) has the highest precision with a 0.969, having a score of 0.01 over the
preceding score. The gap is a considerable margin taking the small range of values for
precision.

The RidgeclassifierCV (TF) has the best performance for the last three metrics, f2.0,
accuracy and recall. Scoring, 0.965 in f2.0, 0.971 for recall and 0.956 for accuracy. The
solution also has a considerably higher recall than the runner-up, with a gap of 0.015.

6.5.3 Social Behavioural Biometrics

The SBB results are unique in one fashion. Though the results are sorted on f0.5, every
column in Table 6.4c has ended up being perfectly sorted in descending order. What this
means in e�ect is that the algorithms are sorted in order of superiority, where each place
is better than the next in every sense, given that there are no other evaluation metrics.

One of the most exciting things is that the recall has a value of 0.871 for nine out of
ten algorithms, making the range of recall and f2.0 scores very small. On the other side,
both the precision and f0.5 have a larger range of about 0.02.

Based on those two observations, something should be investigated further; however,that
will be left for evaluation. (See Section 7.1.5)

Lastly, the LabelSpreading algorithm has the best score in all five metrics, with an
f0.5 of 0.971, f2.0 of 0.894, precision of 0.999 and a recall of 0.871, with the subsequent
two algorithms having the same score after rounding.

6.6 Hyperparameter tuning

This section details the settings and test results generated by the hyperparameter tuning.
There are two main points of interest. Firstly, the final configuration of all the

hyperparameters for each tuned algorithm, and secondly, the test results compare the
real-world performance of the algorithms in their base configuration vs the tuned versions.

After 100 training sessions, each algorithm’s final configuration is decided by the best
validation performance gained in Optuna. Then the test results are presented for the
base and tuned version of the algorithms.

6.6.1 Suspicious Conversations Identification

The Table 6.5a shows the configuration of the hyperparameter tuned algorithms for the
SCI module. The most important information from this table is that the CalibratedClas-
sifierCV (CCCV) does not take in any parameters because it has an internal routine for
hyperparameter tuning.

All of the feature types for all of the results in the test results for hyperparameter
tuning of the SCI module are Term Frequency-Inverse Document Frequency (TF-IDF)
as seen in Table 6.6a. This is because it has been inherited from Table 6.4a where almost
all of the solutions prefered TF-IDF, in e�ect determining what the feature type would
be in the following table.
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Classifier Parameter Search Space Final Value

SVC - TF-IDF
c 1e-2 - 1e2 18.86
gamma 1e-4 - 1e1 0.1018
kernal rbf, poly, sigmoid sigmoid

CalibratedClassifierCV - TF-IDF NaN Nan Nan

MLP - TF-IDF

hidden_layer_size 10-100 (13,40,100)
activation tanh tanh
alpha 1e-5 - 5e-2 0.000505
solver adam adam
learning_rate adaptive adaptive

Ensemble
SVC_weigth 1 - 10 9.495
MLP_weigth 1 - 10 5.773
CCCV_weigth 1 - 10 7.824

(a) Hyperparameter optimization settings for Suspicious Conversation Identification
Classifier Parameter Search Space Final Value

SGD - TF

alpha 1e-8 - 1 0.0009466
tol 1e-8 - 1 0.0001361
loss "modified_huber", "perceptron" "modified_huber"
penalty "l1", "l2", "elasticnet" "l2"

LR - Bin-BOW

C 1e-4 - 1e4 7.905
tol 1e-4 - 1e4 158
penalty ’l2’ l2
solver newton-cg,lbfgs,sag,saga lbfgs

MLP - BOW

hidden_layer_size 10-100 (42,22,10,10)
activation tanh tanh
alpha 1e-5 - 5e-2 4.750e-04
solver adam adam
learning_rate adaptive adaptive

Ensemble
SGD_weigth 1 - 10 9.453
MLP_weigth 1 - 10 6.335
LR_weigth 1 - 10 4.730

(b) Hyperparameter optimization settings for Victim from Predator disclosure
Classifier Parameter Search Space Final Value

RF

n_estimators 50-1000 544
criterion gini,entropy gini
max_depth 10-200 44
min_samples_split 2-15 10
min_samples_leaf 2-10 2
max_features sqrt,auto sqrt

XGB

n_estimators 10-1e3 724
learning_\rate 1e-3 - 1e1 1.0875
max_depth 30-1000 924
subsample 1e-4 - 1 0.9454

KNN
n_neighbours 2-50 22
metric manhatten manhatten
leaf-size 2-50 4

Ensemble
RF_weigth 1 - 10 0.333
XGB_weigth 1 - 10 3.147
KNN_weigth 1 - 10 3.442

(c) Hyperparameter optimization settings for Social Behavioural Biometrics

Table 6.5: Settings for hyperparameter optimization
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Model Feature Type f0.5 f2.0 Recall Precision Accuracy
Tuned Soft Voting Ensemble TF-IDF 0.987 0.961 0.953 0.997 0.997
Soft Voting Ensemble TF-IDF 0.987 0.961 0.953 0.996 0.997
Tuned SVC TF-IDF 0.985 0.962 0.954 0.994 0.997
Base SVC TF-IDF 0.985 0.947 0.935 0.999 0.997
MLP TF-IDF 0.985 0.950 0.939 0.997 0.997
Tuned MLP TF-IDF 0.984 0.950 0.939 0.996 0.997
CCCV TF-IDF 0.984 0.959 0.951 0.993 0.997

(a) Test Results for Hyperparameter tuned Suspicious Conversation Identification
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
Tuned Soft Voting Ensemble Multi-Feature 0.944 0.828 0.795 0.990 1.000
Base Soft Voting Ensemble Multi-Feature 0.944 0.837 0.807 0.986 1.000
Tuned SGD TF 0.936 0.823 0.791 0.981 1.000
Base MLP Bin-BOW 0.936 0.804 0.768 0.990 1.000
Tuned LR Bin-BOW 0.931 0.800 0.764 0.985 1.000
Base LR Bin-BOW 0.931 0.800 0.764 0.985 1.000
Tuned MLP Bin-BOW 0.929 0.802 0.768 0.980 1.000
Base SGD TF 0.923 0.814 0.783 0.966 1.000

(b) Test Results for Hyperparameter tuned Victim from Predator disclosure
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
Tuned Soft Voting Ensemble SBB 0.935 0.829 0.799 0.976 1.000
Soft Voting Ensemble SBB 0.928 0.828 0.799 0.967 1.000
RF SBB 0.921 0.827 0.799 0.958 1.000
Tuned RF SBB 0.911 0.825 0.799 0.944 1.000
Tuned XGB SBB 0.911 0.825 0.799 0.944 1.000
XGB SBB 0.889 0.820 0.799 0.914 1.000
KNN SBB 0.833 0.807 0.799 0.842 1.000
Tuned KNN SBB 0.833 0.807 0.799 0.842 1.000

(c) Test Results for Hyperparameter tuned Social Behavioural Biometrics

Table 6.6: Test results for hyperparameter tuned algorithms
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We can see that two out of three algorithm pairs have been positively impacted from
being optimised. However, this is slightly optimistic as two out of the three algorithm
pairs fluctuate with 0.001 in all metrics between the base and the tuned version.

The pairing of algorithms that do have some impact from being hyperparameter tuned
is the Support Vector Machines—incidentally being the algorithm with the highest f2.0
and recall, being slightly better than the following algorithm the soft voting ensembles in
both metrics with 0.001.

Lastly, we can see that ensembles perform better for the SCI problem. They are
scoring an f0.5 of 0.987 for the tuned soft voting ensembles. Although the base soft
voting ensembles the same score for all metrics aside from precision, the tuning has a
0.001 higher score.

6.6.2 Victim from Predator

From the results in Table 6.6b there are several points of interest, but first, one note
has to be made about the Feature Type "Multi-Feature". It denotes that each of the
classifiers within the voting classifier has distinct feature types, so they cannot be labelled
as a single feature type.

As opposed to the SCI module, it is clear that the tuning impacts the VFP. All
algorithms perform as good or better after having been tuned. Especially in the case
of the SGD classifier, the di�erence between the tuned and base variations are pretty
significant.

For the primary metric, the best performing algorithm is again the tuned ensemble
with a 0.944. Naturally, with the best f0.5, the ensemble also has the highest precision
with a 0.99. However, this score is shared with the base MLP. The base ensemble achieves
the best recall and f2.0, 0.837 and 0.807, respectively.

6.6.3 Social Behavioural Biometrics classifiers

One of the most exciting features of the Table 6.6c is that the table is perfectly sorted,
regardless of which column, meaning that the ordering is which solutions are strictly
better than the others.

Another feature is that all algorithms have the precisely same recall of 0.799, which is
the same that we could see for the validation results in Table 6.4c. Such a pattern means
that all performance changes between the algorithm come from higher or lower precision.

There are some mixed results regarding tuning. The RandomForest preferred the base
implementation, while the k-nearest neighbors (KNN) did not seem to be impacted by
tuning. In comparison, the ensemble and XGBoost prefered the tuned version.

Generally, the fluctuation in precision between the pairs of algorithms is above 0.01.
In e�ect, having some impact, but not a large one, on the performance.

Lastly, the strictly best algorithm was the tuned ensemble, having a score an f0.5 of
0.935, f2.0 of 0.829 with a precision of 0.976 and the 0.799 recall shared with all other
solutions.
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6.7 Test results
This section presents the test results for the two approaches, which is equivalent to the
actual score in the PAN-12 competition.

The results are presented by joining the Social Behavioural Biometrics (SBB) classifiers’
results and the complete two-chain classifier score.

Firstly one thing should be reiterated. All the scores for the two-stage classifiers are
unique since there are two classifiers connected in series, which means that the first
classifier impacts the results of the second classifiers. In e�ect, errors in the first classifier
propagate and compound to the second classifier.

For this reason, all of the results are calculated by using a shared classifier for the
SCI part of the problem. All of the VFP classifiers are using the conversations that an
MLPClassifier with TF-IDF classified as suspicious, which is the best classifier for SCI as
seen by the validation results in Table 6.4a.

When analysing Table 6.7, it is immediately apparent that there is a pattern in the best
classifiers. The top five algorithms have the same score and are all SBB classifiers. Aside
from these possible anomalies, the highest performing solution is the RidgeClassifierCV,
with TF-IDF having an f0.5 of 0.947. The highest precision, 0.990, is obtained by the
Tuned Soft Voting Ensemble, which is a score shared with the two BOW-based MLP
algorithms. Lastly, the best performing algorithm in the form of recall is the PAC
with TF-IDF, which subsequently has the highest F2.0, with scores of 0.835 and 0.86,
respectively.

A final note should be made that there is a preference in the test results for the SBB
and TF-based features, having twenty-two out of thirty entries.
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Model Feature Type f0.5 f2.0 Recall Precision Accuracy
LabelSpreading SBB 0.952 0.833 0.799 1.000 1.000
DecisionTreeClassifier SBB 0.952 0.833 0.799 1.000 1.000
RandomForestClassifier SBB 0.952 0.833 0.799 1.000 1.000
ExtraTreesClassifier SBB 0.952 0.833 0.799 1.000 1.000
MLPClassifier SBB 0.952 0.833 0.799 1.000 1.000
RidgeClassifierCV TF-IDF 0.947 0.848 0.819 0.986 1.000
MLPClassifier TF-IDF 0.946 0.844 0.815 0.986 1.000
MLPClassifier TF 0.946 0.844 0.815 0.986 1.000
SGDClassifier TF-IDF 0.946 0.844 0.815 0.986 1.000
PassiveAggressiveClassifier TF-IDF 0.945 0.860 0.835 0.977 1.000
Tuned Soft Voting Ensemble Multi-Feature 0.944 0.828 0.795 0.990 1.000
LinearSVC TF-IDF 0.944 0.847 0.819 0.981 1.000
Base Soft Voting Ensemble Multi-Feature 0.944 0.837 0.807 0.986 1.000
MLPClassifier BOW 0.941 0.818 0.783 0.990 1.000
MLPClassifier Bin-BOW 0.938 0.811 0.776 0.990 1.000
SGDClassifier TF 0.938 0.830 0.799 0.981 1.000
CalibratedClassifierCV TF-IDF 0.937 0.827 0.795 0.981 1.000
RidgeClassifierCV TF 0.936 0.833 0.803 0.976 1.000
Tuned SGD TF 0.936 0.823 0.791 0.981 1.000
LinearSVC TF 0.936 0.823 0.791 0.981 1.000
RidgeClassifier Combined 0.935 0.839 0.811 0.972 1.000
RidgeClassifier TF-IDF 0.935 0.839 0.811 0.972 1.000
XGBClassifier SBB 0.935 0.829 0.799 0.976 1.000
Tuned Soft Voting Ensemble SBB 0.935 0.829 0.799 0.976 1.000
SGDClassifier Bin-BOW 0.933 0.835 0.807 0.972 1.000
PassiveAggressiveClassifier TF 0.933 0.835 0.807 0.972 1.000
Perceptron TF-IDF 0.932 0.842 0.815 0.967 1.000
CalibratedClassifierCV TF 0.931 0.809 0.776 0.980 1.000
Tuned LR Bin-BOW 0.931 0.800 0.764 0.985 1.000
Logistic Regression Bin-BOW 0.931 0.800 0.764 0.985 1.000

Table 6.7: Top thirty test results
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7 Evaluation and Discussion
This chapter presents the evaluation of the results and the contrast to work done by other
researchers in the field. The chapter also discusses choices made during the planning and
experimentation. Reflecting on how these choices contrast against the work and findings
of other researchers.

7.1 Evaluation
This section analyses and evaluates the results for the Thesis. The main points of interest
are presented, starting with a subsection dedicated to the performance of the proposed
solutions. Following this, two subsections, analysing the value of di�erent feature families
and algorithm families for solving tasks within Sexual Predator Identification. The fourth
subsection looks into the usage of evaluation metrics in the field and how it impacts the
proposed solutions. Following this, a subsection dedicated to the literary review finally
closes the section by investigating a state of the art paper with debatable results.

7.1.1 Results analysis
Per stage performance

In Sexual Predator Identification, three stages need to be completed to detect predators
when applying the architecture proposed by Villatoro-Tello et al. (2012). Firstly, a
prefiltering stage aiming to remove the entries that do not contain enough information to
be predicted. Following this, a classifier is used to find all conversations that contain
predators, known as the Suspicious Conversation Identification (SCI) module. Lastly, a
second classifier is used to discern which users within the suspicious conversation are the
predator. This stage is known as the Victim from Predator disclosure (VFP).

There are several observations to make regarding a setup like this. Firstly the prefilter
sets an upper bound for the best possible recall on the task. Meaning that, given that out
of 100 predators, if only 80 passes the prefilter, the highest recall every obtainable will
be 0.8, and the highest f0.5 score will become 0.952. Secondly, the SCI module impacts
the learning of the VFP module. There are two cases where the SCI module negatively
impacts the VFP module. Firstly, with a lower recall in the SCI module, the VFP will
lack enough predators to learn what discerns predators from other people. Secondly,
with a lower precision in the SCI module, the dataset for the VFP module will become
imbalanced.

Looking at the proposed solution as described in Figure 5.2, we can analyse which step
removes the most predators from the test set, which would indicate the most significant
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Step Removed Predators Precentage of total lost predators
Prefilter 27 59
SCI 12 26
VFP 7 15

Table 7.1: Predators removed per stage

constraint to performance, which can be found in Table 7.1.
It is clear that the prefilter removes most predators, followed by the SCI stage.This

could indicate that the complexity of the problem decreases throughout the stages. One
explanation for this could be that data quality increases as the data go through the
stages. However, this would also imply that the quality increase is more significant than
the weaknesses introduced by faulty predictions in the SCI module.

From Section 4.1.1 the dataset is known to be both imbalanced and noisy. Incidentally,
the two first stages handle each of the problems. The noisy data is cleaned with the
prefilter, removing the data that does not hold enough information to be predicted. While
the SCI rebalances the dataset by removing all the conversations with only innocent chat
participants, it rebalances the dataset heavily. The class balance after the SCI stage is
215 predators and 164 victims for the proposed solution, meaning that the SCI rebalances
to the point of having more predators than victims in the test set.

Proposed Solution

The best performing solution seen in Figure 5.2 is the two-stage classifier with a Multi-
Layer Perceptron with TF-IDF for the Suspicious Conversation Identification and a
RidgeClassifierCV with TF-IDF for the Victim from Predator disclosure.

Regarding the features, it is clear that it means that there is a preference for TF-IDF,
for the analysis of why, Section 7.1.3 goes into detail regarding that issue. The best
performing solution from the validation results for the SCI module, as seen in the Table 1
in the appendix, is the Multi-Layer Perceptron. Since the SCI is an intermediary step in
detecting predators, only the validation results are being used to evaluate what solution
performs well.

A possible reason for the combination of MLP and TF-IDF being the best solution
for SCI, can be seen in Section 7.1.3 regarding features, and section 7.1.4 regarding
algorithms, where MLP and TF-IDF are the highest performings from both categories.
The combination of the most adaptable algorithm and the most adaptable feature making
the best solution is not surprising. Ideally, the ensemble methods or the hyperparameter
tuning should increase the performance, but as described in Section 7.1.4 the results have
been mixed for both apporaches.

The best performing result uses the RidgeClassifierCV with TF-IDF. One of the main
properties of RidgeClassifiers is attempting to lower the multicollinearity or oversimplified
redundancy of information within features. In other words, the RidgeClassifiers perform
well when the features that are strong predictors for the problem are closely related. High
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multicollinearity can come from either class, meaning a high degree of multicollinearity
between the predators, victims, or both groups. One very likely source of multicollinearity
for Sexual Predator Identification is that the textual features, to a certain extent, can
represent the emotional, social and psychological di�erences between predators and
other people. Several di�erent words can represent the same psychological di�erences
and, therefore, be highly correlated if this is the case. Given that this is the case,
RidgeClassifier seemingly filters the information appropriately.

However, it might be that the preference for the algorithms is a representation of the
algorithmic complexity issues outlined in Section 7.1.4. In short, complex algorithms on
simple features like TF-IDF can see past the issues that problems like multicollinearity
introduce. A good match between algorithm complexity and features being the cause of
the high performance is slightly supported by RidgeClassifier and MLP being two of the
best algorithms overall, regardless of the module.

7.1.2 Validation and test sets
Another exciting note is the many disconnects between the validation and test scores, as
seen in the score for the Suspicious Conversation Identification, found in validation Table
1 and test Table 5 in the appendix. Generally, the recall is higher across all modules in
the validation scores, while the precision is higher in the test scores. The most plausible
reason for this is the lack of homogeneity in the training and test datasets. The two
datasets can be similar from a statistical standpoin. However, this does not ensure that
the actual entries within each dataset are similar. For example, with 50 predators in
each dataset with an equal amount of messages sent each, the contents for the messages
can di�er. Some predators are more inclined towards relationship forming, while others
are more sexual, meaning that there will be di�erences between training and test sets.

The lower recall in the test results means more predators evade detection in the test set.
In other words, the algorithms are generally more hesitant to predict that a conversation
is predatory. This could be due to a larger variety of textual expressions for the predators
in the test set than the predators found in the training sets. On another note, the
validation sets are one-tenth of a sample with 136 predators, which is lower than the
test set with 227 predators. Given that there are significantly more predatory entries
in the test set than in the training set, both in absolute values and proportionally, it
makes sense that the predators in the test set are more heterogeneous than those in the
validation set, simply by being a larger and broader group.

The higher recall and lower precision of the validation score mean that the algorithms
seem to be overly eager to predict an entry as a predator during the validation stage.
It could point to the predators within the training set being more self-similar, meaning
that they exhibit some unique traits. However, these traits are shared with some other
chat participants. Since the patterns between the validation and test scores are found
for both the Suspicious Conversation Identification (SCI) and the Victim from Predator
disclosure (VFP), it is reasonable to assume that the similarity might come from the
other participants in the same chat as the predators. In other words, the participants in
predatory chats might be more self-similar in the training set than their counterparts in
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the test set.

7.1.3 Features
The test results from Table5 in the appendix and validation results from Table 1 in the
appendix show a clear preference for TF-based features in the SCI module. Most of the
top ten solutions are either TF-IDF or TF features. Given that the field generally has
tiny margins for results, it is challenging to discern concrete patterns that can explain the
reasons for the preference of these techniques. Nonetheless, several possible explanations
come to mind.

Firstly, TF-based features perform better for compound scores, which means that
the average score of TF-based solutions is higher than for other features. However, the
highest score reachable is shared with BOW for the recall and precision. An example can
be seen from the best test result in Table 5. The best solution is an SVC with Bin-BOW.
The more granular metrics give some context, the best test result for recall can be found
with the SGDClassifier, which uses Bin-BOW, having a score of 0.96. An interesting
pattern can be seen with precision, where the best score for a recall above 0.5 is a 0.999
achieved by PassiveAggressiveClassifier, RidgeClassifier and SVC with TF-IDF. The SVC
with BOW-BIN matches that precision.

One of the main reasons for the increase in the compound scores for TF-based solutions
is the slightly higher recall that TF-based solutions have compared to the BOW-based
solutions. An example of this can be seen in the Victim from Predator disclosure (VFP)
test results found in Table 6. Generally, the recall among the top-performing BOW-based
solutions is lower than for the top-performing TF-based solutions, and the di�erence
is 0.03. Seemingly this suggests that the general advantage of TF-based features is
connected to finding more predators.

There are several possible reasons for the recall being higher with TF-based features.
Firstly, BOW-based solutions use the presences and frequency of specific words to determ-
ine the contents of a text. In comparison, TF-based features only see the commonality of
the words in the document, either locally or in a collection of documents. One possible
reason can be that the count of terms that indicate attempts at grooming is not as good
as looking at how many rare terms are used. Groomers are di�erent from other people,
meaning that it is expected that their language is skewed di�erently from the rest of the
population. However, it might be that predators do not share which words they use, as
much as sharing the pattern of using more rare words.

Another reason could be that the distribution of common and rare language within a
document is a more powerful predictor than the words used. Oftentimes groomers will
mimic the writing of their intended target, which means that they often use simplistic
language to seem more approachable for children while also using uncommon terms for
the more grooming-related parts of the conversations. Patterns in the commonality of
terms could allow algorithms to recognise some of the more elusive predators, as this
might be a better marker than the usage of specific words. The slight increase in general
performance for TF-based features is most likely connected to the predators not sharing
vocabulary as much as patterns in usage of common and rare words or the balance
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between the two.
Throughout all the results, one thing sticks out: the consistent lack of Combined and

Linguistic Inquiry and Word Count (LIWC) solutions being in tables. Making it clear
that LIWC-based features perform subpar at best. There are several possible reasons for
this. One thing that is known is that LIWC models less information than BOW-based
and TF-based solutions, meaning that it is expected that there is some information loss,
making it a weaker feature when used alone. The concern for the lack of ability to model
the problem as a whole is the reason for combining the features of LIWC and TF-IDF
to a combined feature. The lower performance might be expected for the SCI module,
which is more general, trying to find predatory content. However, the VFP module has
the explicit goal of discerning victims from predators, where the psychological di�erences
between the groups are essential in discerning the two groups. One of the possible reasons
for the lack of performance for the VFP module might be connected to the fact that
LIWC is a general feature for personality, psychology and social behaviour. It might
not be specific enough to target the traits of the predators, needing more advanced
psychological analysis, more akin to looking for dark triad traits within the text. Another
possible reason is that using all terms in LIWC might have been unfortunate. Some of
the terms in LIWC might be more valuable than others, ending up introducing noise by
not removing the less valuable terms from the dictionary.

7.1.4 Algorithms
Classifiers are used in Sexual Predator Identification for two primary purposes: find-
ing conversations containing predators and discerning which chat participants are the
predators. With six features across two modules, validation and testing each solution,
every single algorithm has been trained 24 times. To better analyse and process the
performance of the algorithms, the top five results from the 24 situations is aggregated
to a table. The resulting Table 7.2 shows the sum of instances that were preferred by all
solutions.

Two notes need to be made about the table. Firstly, the variation in classifiers per
family makes the ordering inaccurate. The varying size of each family favoured large
families, meaning that the neural_network and the calibration families are the two top
performers and should be moved to the top. Aside from the varying family sizes, the
ranking is consistent.

Secondly, since the table has been generated based on the classifier families assigned
by Sklearn, the python package that implements all the algorithms, the linear_models
and Svm families have been split. All SVMs are linear_models, but this is not reflected
in Sklearn.

In short linear models, calibration models, and neural networks adapt the best to
the problem. One possible reason the linear models perform well is that the problem
is linearly separable with the given feature representation and noise removal with the
prefilter. Meaning that the complexity of the problem is not too high, favouring easier to
compute and understand patterns. Low complexity could be an enticing thought, given
that the early testing of more advanced neural networks did not give any considerably
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Family Sum Name Instances

Linear_model 49

SGDClassifier 11
LogisticRegression 13
RidgeClassifierCV 9
RidgeClassifier 7
PassiveAggressiveClassifier 5
Perceptron 4

Neural_network 21 MLPClassifier 21

Svm 18
LinearSVC 12
SVC 5
NuSVC 1

Ensemble 11

AdaBoostClassifier 3
RandomForestClassifier 5
ExtraTreesClassifier 3
StackingClassifier 0
BaggingClassifier 0

Calibration 10 CalibratedClassifierCV 10

Tree 3 ExtraTreeClassifier 3
DecisionTreeClassifier 0

Naive_bayes 3

GaussianNB 0
CategoricalNB 0
MultinomialNB 3
BernoulliNB 0

Discriminant_analysis 1 QuadraticDiscriminantAnalysis 0
LinearDiscriminantAnalysis 1

Dummy 0 DummyClassifier 0

Neighbors 0 NearestCentroid 0
KNeighborsClassifier 0

Semi_supervised 0 LabelPropagation 0
LabelSpreading 0

Table 7.2: Usage of algorithms among top solutions
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better results. Low complexity should favour the Naivë_Bayes family of classifiers, which
has only three instances. Given the weak performance of the Naivë_Bayes classifiers and
the complexity of the task, it is reasonable to assume that there is some more advanced
information in the features.

This could be due to the problem being highly complex, meaning that the current
features are not su�cient to model the information in the dataset correctly. If this
assumption is valid, these insu�cient features might still contain traces of the more
complex information. Generating a situation where the simple models can only interpret
the easily accessible patterns in the data. At the same time, the halfways complex
models, like the random forest, ends up trying to model more complex relations, but the
algorithms are not advanced enough to do so, leaving the simple neural network the only
algorithm that can leverage the extra information, giving it a slight edge over the other
algorithms.

Highly complex data does not explain why the more advanced neural networks did
not work. It would be contradictory to believe the weaker classifiers cannot leverage the
information when the advanced algorithms perform worse. One possible reason is that
the more advanced features used for the neural networks are more information-dense but
not enough to map the complex relations in the data. Leaving the extra information
more confusing to the advanced neural network than for a simpler algorithm. The issue
then is the relation between the complexity level of features and the strength of the
algorithms. Without a more comprehensive selection of features and a wider selection of
advanced algorithms, it is not possible to trace the true source of the observations.

The Deep Learning (DL) architecture employed by Liu et al. (2017) was quite similar to
the early testing framework from this Thesis. They attempted to use the Long Short-Term
Memory (LSTM) version of a Recurrent Neural Network (RNN). This Thesis attempted
to use Recurrent Neural Networks and Convolutional Neural Networks as algorithms for
the SCI and VFP module. However, this was only attempted with GloVe 500d features
and not advanced sentence embeddings as in the case of Liu et al., which supports the
notion that there was some mismatch between the findings from this work and their
findings.

Disparities in the complexity of the features and models could also explain why the
transfer learning did so well because it generates features of an appropriate complexity
level rather than taking in other features. However, even though machine learning, deep
learning, and transfer learning models show some indications that the relation between
features and models is sensitive in SPI, there are some unresolved issues.

Firstly, there is a mismatch between the linear_models, the ensembles and the neural_-
network. The relationship between the three is that we have neural_network, ensembles
and linear_models in order of descending complexity. For this reason, we should expect
that for a set of equally complex features, the three families should rank in the same
order. However, this is not the case. The ensembles have lower performance than the
linear_models, yet the Neural Network outperforms all. Seemingly there are two possible
sources for the results. Firstly, the neural network is adaptable enough to filter away the
relations in the data it cannot use and adapt better to several levels of complexity within
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features. Secondly, the ensemble families are somehow underperforming in relation to
the features used. A possible explanation is that both the ensemble families and the
neural network would perform better with more complex features, but the adaptability
of neural networks has allowed it to perform better than all other solutions despite not
being peak performance. However, this cannot be verified without testing the ensembles
and the neural_networks further.

In summary, the di�erent levels of complexity for the algorithms are essential in
determining how well a pairing of features and algorithms can perform in Sexual Predator
Identification, with TF-IDF as the best-performing feature as described in Section 7.1.3,
machine learning algorithms with an average level of complexity perform the best.

Hyperparameter tuning

Hyperparameter tuning was performed with the top three solutions from each module
to gain even more performance from the promising solutions. Table 6.6 with the test
results for the hyperparameter tuned solutions shows that in five out of seven cases for
the two-chain classifier, the tuned variations of the algorithms outperformed the base
variation. This would indicate that hyperparameter tuning increases the performance.
However, this is slightly deceptive, as there are only two cases where the di�erence
between the tuned and base variations are considerable. Both are in the Victim From
Predator (VFP) module seen in Table 6.6b, where the SGD became considerably better,
most notably in precision where the tuned version has an increase of 0.15. Contrasting
this, the MLP became considerably worse when tuned, but only in precision where the
score decreased by 0.1.

The results raise two concerns: why is there a lack of impact for most hyperparameter-
tuned solutions, and why has SGD and MLP been impacted?

The lack of impact could be due to a failure in the tuning process. Among the most
common issues for hyperparameter tuning is improperly defined search spaces, stopping
the Optuna framework from converging on an optimal search space region. This can
become an issue if the search space is too large or the framework is given too few training
sessions to converge. An issue with a failure in training being the cause for the lack
of impact is that wrong tuning should result in some impact, in most cases degraded
performance. Lack of impact could only happen if none of the tuned parameters impacts
the algorithms.

A more likely reason for the lack of impact is that many di�erent configurations are near
the optimal performance for several classifiers. This means that even though there might
be a single optimal solution, it will not be significantly better than most other attempts.
Even though the tuning is working, the result tables will not show any indications of
change in the performance.

The second issue is the large disparities in performance for the tuned Stocastich
Gradient Decent Classifier and Multi-layer Perceptron classifier in the Victim from
Predator disclosure, seen in the Table 6.6b. Firstly, the SGD classifier had an improved
performance of 0.008 for recall and 0.015 for precision. One reasonable explanation for
the increase in performance is that the base settings for the SGD are not suboptimal for
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Figure 7.1: Ranking of importance of parameters during hyperparameter tuning for
Stochastic Gradient Decent

the problem, possibly quite wrong, giving the optimisation framework more opportunities
to improve the final result.

From the Figure 7.1 it is clear that the most impactful parameters are the loss and
tolerance, so evaluting the final configuration seen in Table 6.5 against the standard
found in the documentation from Sklearn 1 should give some insights.

The hyperparameter importance figure might give a wrong impression due to the
search space for the loss only being two values, "modified_huber" and "perceptron", which
neither are the default for the classifier. By default, the classifier uses "hinge", which
gives a linear SVM, which was excluded favouring greater variation for the ensemble
between the LR and the SGD. The changed perspective on the loss makes tolerance
even more important. For an easier analysis it has been generated a Figure 7.2 which
shows the the top trainings for the SGD classifier, and what parameters were favoured by
the training framework. Seeing that there is a concentration on the right hand column,
between 0.001 and 0.001 means that a tolerance that is set slighly below the default of
0.001 is preferable and is most likely the source of the increased performance from the
tuning.

There are some likely sources regarding the lowered performance from the Multi-Layer
Perceptron. The most common issue would be a faulty search space for this algorithm;
however, as seen in Table 6.5 the MLP classifiers are tuned both for the VFP and SCI
stages and with the same search spaces, which means that comparing the validation results
for the hyperparameter tuning found in Table 4 should give some insights. However, the
lowered performance is only present in the VFP stage, suggesting that the issue is not

1SciKitLearn
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Figure 7.2: Hyperparameter tuning training sessions for Stochastic Gradient Decent

related to the search spaces.
Other possible reasons for a lowered performance could be connected to the di�erences

in the problems. As mentioned in the Section 7.1.1 the complexity of the problems
decreases for the later stages of the task, which means that the VFP stage should be
easier to solve than the SCI stage. An easy problem can be closer to optimal performance
without being tuned, which would suggest that tuning on a simple problem should yield
less impact. Conversely, this harms the tuning.

A more likely reason would then be that the di�erences between the training and
test set are more impactful for the VFP stage than for the SCI stage. In other words,
attempting to tune the problem towards the training set should lower the performance;
however, neither the test results from Table 6.6 nor the validation results from Table 4
support this.

For the sake of completeness, an issue regarding the Logistic Regression for the
Victim from Predator disclosure (VFP) module seen in Table 6.5b has to be mentioned.
A misconfiguration in the code allowed the algorithm to have a vast search space
for the tolerance (tol). Ideally, this tolerance would never go above 1, but due to
a misconfiguration, the tolerance and C shared search spaces even though they are
very di�erent parameters. The misconfiguration uncovered an interesting fact that the
tolerance was set to 158, which is an absurdly large number in many senses.

Meaning that for the Logistic Regression, a parameter had been set to something
unusable. The most likely reason is that the parameter is not important, or at least less
important than other parameters for Logistic Regression Looking at the available graphs
from Optuna containing information about the training sessions, we can see that this is
the case in Figure 7.3.
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Figure 7.3: Ranking of importance of parameters during hyperparameter tuning for
Logistic Regression

Ensembles

One attempt to boost the proposed solutions’ predictive power was combining the top
three algorithms in each module into soft voting ensembles.

Looking at the test results in Table 6.6 the ensembles perform the best for all modules.
In the Susipicous Conversation Detection (SCI) module, the margins between the solutions
were small, meaning that there are no only slight indiciations in regards to the cause
of the increased performance. A slight increase like this might come from the strongest
classifier, in this case, the SVC, carrying most of the weight but the increased recall from
the CalibratedClassifierCV being able to sway the vote in cases where the SVC could
not discern the pattern. For the Victim from Predator disclosure (VFP) module seen in
Table 6.5b, it is clear the score improvement comes from a higher recall, mostly having a
recall 0.02 points above the average from the other solutions. Given the high test results,
it is an indication that the ensembles can leverage the strengths of the di�erent classifiers
within the ensembles, seeing as the recall for the base and tuned ensembles are higher
than any of the individual subclassifier in the respective ensembles.

However, even though the tuned soft voting ensemble performs the best in test scores
among the hyperparameter tuned algorithms, it does not mean that it has the highest
test scores. By comparing the values in the completed SCI test score from Table 5 in the
appendix, it is clear that the best solution has an f0.5 of 0.989 while the tuned classifier
is in second place with 0.987. This disparity most likely stems from the fact that the soft
voting ensembles usage of confidence values from the algorithms disallows several of the
best algorithms from being used within the ensembles as mentioned in the Sections 6.3.1
and 6.3.2.
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For the validation results for the Victim from Predator disclosure (VFP), as seen in
Table 4b, the ensembles perform almost 0.015 below the best single classifier solution,
and in addition, only two out of eight solutions are below the two soft voting classifiers.
One of the prerequisites for bagging classifiers performing well is having a medium to
high variance in the models. If they do not, the strongest classifier will, in e�ect, be
confused by the votes from the weaker classifiers, introducing noise. The cause of the
lowered performance only being in the VFP module might be due to the Stochastic
Gradient Descent (SGD) classifier and the Logistic Regression (LR) classifier being from
the same family.

One of the main findings is the di�erences in score between the validation results as
seen in Table 4 and the test results seen in Table 6.6. The most likely cause for the
di�ering scores comes from the heterogeneity of the training and test set as explored in
Section 7.1.2

Hyperparameter tuning is more focused and involves fewer algorithms making in-
consistencies in scores between runs more visible. The changed scores can be seen in
the hyperparameter tuning validation Table 4c in the appendix and VFP validation
results from Table 2. The clearest example of this Multi-Layer Perceptron (MLP) with
Bin-BOW. During the training done to select algorithms for tuning, it gained a recall of
0.956 and a precision of 0.958, while when the base implementation was trained during
the hyperparameter tuning, it had a recall of 0.927 and a precision of 0.964. In Sexual
Predator Identification, a di�erence of 0.03 in recall is relatively large. Interestingly
this also made it such that in the validation results from Table 2 the MLP was the
best performing algorithm and Logistic Regression with Bin-Bow being the second best,
however when the algorithms were trained for the hyperparameter tuning seen in Table
4c the ordering flipped.

One of the possible reasons for changes in results between runs could be the random
seed. The random seed is a number that is used to calculate random values, which most
algorithms use at some point during training. The random seed is usually set in advance
to get consistent results between training. The variables are not isolated without doing
this, meaning it is impossible to conclude what changes have impacted performance.
Interestingly, the Logistic Regression (LR) implementation of ScikitLearn (Sklearn) sets
the global random seed2, both overriding the one set by a user if they do that and,
therefore, controlling the behaviour of the succeeding algorithms within the same file.
For the MLP classifier, which in this case has switched place with the LR between the
initial validation training and the hyperparameter tuning base run, there is only one way
to override this unintended behaviour, by setting the random_state parameter for the
algorithm. Incidentally, this is the case for this Thesis, as the LazyPredict package sets
random seeds within itself by using a defined random_state for all classifiers that have
the parameter. The LR is run before the other classifiers in code the hyperparameter
tuning, meaning that two di�erent locked random seeds have been used between the
validation and base hyperparameter tuning runs.

A second and often more plausible reason for varying validation scores between runs of
2
https://github.com/scikit-learn/scikit-learn/issues/15266
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the algorithm would be that the random seed used to generate the cross-validation of
the datasets is changing. However, this was set in advance, independently of each run,
meaning that the dataset used to train the algorithms have not been impacted by the
varying random seeds.

7.1.5 Social Behavioural Biometrics

An interesting note has about the Social Behavioural Biometrics (SBB) classifier approach
to Sexual Predator Identification is that the publication Wani et al. (2021) had some
inaccuracies. Due to the irregularities found in the initial stages of trying to recreate the
Predatory and Victim Words Vocabulary (PreVicVocab) as described in Section 6.4.1,
more time was invested in figuring out the cause of these irregularities.

The first finding was that some extensive oversampling of the training set had been
done. One of the examples is that one of the predatory authors3 has 48 entries in the
training set and one entry in the test set. In the case of a two-stage classifier, the same
author can be present in many conversations, but since the SBB classifier only uses the
authorships rather than the conversations, there cannot be duplicate authors.

Further analysis of the data frame shows there are 233 groups of duplicated entries, all
groups having the size of 48 entries. From the prefiltering stage that is shared between
two-stage classifiers and SBB, the number of predators after filtering should be 234, so it
is feasible to assume that this is the source of this number. In e�ect, this means that
the paper does not describe all the actions done to the data in advance of the training,
making it incomplete.

The keen-eyed reader might have caught the reference that there was an overlapping
entry across the training and test sets. The intersection was 77% in the test set and 100%
in training. An intersection grade translates to how tainted a dataset is, which means
every predator was encountered 48 times during training before being encountered in the
test set. A tainted dataset outright invalidates all the test results presented, meaning
that they cannot be compared to other solutions.

In short, this is the basis for the adjustments made to the results table in the preceding
Chapter 6 excluding the SBB classifier as the best performing solution, since this would
make the use of the results without further investigation disingenuous. Most of these
findings can be due to mishaps or incompleted work. However, it makes it such that a
new study needs to be performed to verify the approach’s merits as a solution for SPI.
Nothing indicates that the SBB features are not well suited for SPI. However, the paper
that presented the approach and presentation is insu�cient to claim the results or the
validity of the feature presented.

7.2 Discussion
This section will discuss how well the Thesis has been able to answer the research objective
and research questions by looking at the work done, comparing the findings to other

3(4a9332d7466b98d11c23e4447b26460a)
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work, and analysing if the justifications for choices made during the development of the
system still are valid, in light of the findings and evaluation.

Research question 1 What approaches are the most promising for detecting predators?

In order to get a proper understanding of what can be considered a promising approach
to detecting predators, a literary review was conducted using Structured Literary Review
(SLR), a method to ensure that the most relevant publications are found.

However, as mentioned in Section 3.1, a small multidisciplinary field where many of
the authors have di�erent research backgrounds does not lend itself as well to Structured
Literary Review. The main reason is that the language each author use to set titles will
be significantly impacted by which field the author considers their main field of study.

Snowballing and reverse searching were employed to handle the challenges posed by
search engines’ lower than desired performance. In short, leveraging authoritative papers
as anchoring points to find most of the related work, as described in Section 3.2.2. In
e�ect, this introduced a trade-o� between quantity and quality, where the SLR will, in
the end, find almost all the good papers, even though the e�ort to do so will be higher,
snowballing and revers searching is less structured, especially when combined; however,
it will give higher quality results in a shorter amount of time.

The trade-o� seems reasonable given the inability to leverage the usually powerful
functionalities of research search engines to any good e�ect. It is impossible to compare
the choice against other researchers as currently, it has not been encountered any high-
quality, in-depth discussions or evaluations from other researchers of how to handle the
complexity of naming in the field.

For the contents of the literary review, there are several trends in the best performing
detection systems for predators. Generally, it can be seen that there are some overlapping
things between most of the most successful approaches:

• They all acknowledge the low data quality by using a filtering method to remove
noise from the datasets they use.

• Most researchers split whichever task they want to solve into subproblems, most
aptly by using the SCI and VFP modules, but also for other approaches.

• There have been some overarching movements towards understanding predators’
behavioural and emotional aspects, which have continuously shown much promise.

• Highly advanced features can perform well, but only with appropriately advanced
models.

However, most researchers encountered during the literary review had chosen some
feature or algorithm that was a core part of the approach they sought to explore. Due to
the inherent complexity of the task, which is the root cause for the two-stage classifier
architecture proposed by Villatoro-Tello et al. (2012), coupled with the fact that there
are many ways of presenting results, and most implementations of the two-stage classifier
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has some slight configurations that are di�erent, like prefilter settings, which makes it
hard to compare the findings between research directly.

For this reason, it was chosen to focus more of the e�orts on lightweight approaches in
such a sense that they could easily be implemented alongside each other. This means
that some nodes containing promising results might not have been picked as nodes for
further snowballing and reverse searching, meaning that there might be gaps in the
literary review for some families of features and algorithms considered more advanced.
It is pretty unlikely that this has had any tangible impact, as snowballing had been
performed from the key publications in the field like Inches and Crestani (2012) and
Pendar (2007) which every single other notable publication has referenced.

In short, even though there are patterns in the approaches that perform well, which
will constitute what can be considered promising results, due to issues with reporting,
and incomparable architectures, it is hard to give more than indications about what can
be considered promising approaches, for this reason, it was deemed better to proceed with
a cautious approach, which did not assume too much about what would give increased
performance.

Research question 2 What types of features are viable and optimal for use in detecting
predators?

Research Question 2 seeks to use the insights gained from Research Question 1 to
decide a set of features that were considered promising that could be used for further
investigation to find which of the investigated features are the most viable.

Initially, based on the findings from research question 1, it was clear that there existed
several approaches that had hand-crafted features or features that somehow were tightly
coupled to either the algorithm or the approach used to detect predators. The inflexible
nature of these features was deemed unsatisfactory, meaning behavioural features, lexical
chains of sexual terms, and several deep learning implementations like advanced sentence
embeddings were initially considered as less desirable.

Even though they were considered undesirable, behavioural features based on the
description from Cardei and Rebedea, word embeddings in the form of GloVe 500d
were implemented; however they were developed before the full selection of algorithms
were ready, so they were only tested with Multinomial Naive Bayes, SVMs and Logistic
Regression. The results were lacklustre, as mentioned in Section 6.3.3 regarding the early
testing that was attempted.

For this reason, Bag-of-words (BOW), Binary bag-of-words (Bin-BOW), Term-
Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF), Linguistic
Inquiry and Word Count (LIWC) and Combined(TF-IDF+LIWC) were chosen as the
features to explore, in addition to Moodbook and a specialised variation of BOW for the
Social Behavioural Classifier. All these features share the core trait that they are able
to be automatically generated consistently across several sources and can run with any
machine learning system.

The consequences of the choice to use textual features can maybe be most clearly seen
in the section discussing the highest performing solutions from Section 7.1.1 and the

83



7 Evaluation and Discussion

evaluation of the algorithms in Section 7.1.4. Since the selected algorithms are quite
simple features, it seems to have impacted the more advanced algorithms from deep
learning that were tested during the early stages to perform worse. That conclusion is
drawn mostly based on the fact that many researchers listcite have been able to gain
comparable scores to the state of the art with deep learning and matching features.

The findings can be seen in the Section 7.1.3 from evaluation, where generally, as
a family, TF-based features performed the best, even having the interesting trait of
generally having slightly higher compound scores, mostly due to an overall increase in
recall over the other feature families.

The findings stand in contrast to most findings, where each researcher seems to find
their own preferred features for each stages of the two-stage classifier. The reason for
the disparity can come from several sources and is most likely connected to one of the
limitations for many publications in the field, being the fact that few of the publications
share enough of the implementation to easily compare the findings of others.

However, given that the f0.5 scores from the top-ten solutions for both the Suspicious
Conversation Identification and the Victim from Predator disclosure are so high, it is
feasible to conclude that the TF-based features are will perform better than BOW-based
solutions as a rule of thumb; however, some BOW-based solutions can slightly outperform
the best TF-IDF solutions. While LIWC has had a subpar performance overall.

Research question 3 What categories of algorithms are most suited for use to detect
predators?

Research Question 3 seeks to use the insights gained from Research Question 1 to
decide which algorithms should be used, in the same manner as Research Question 2 has
done.

Many di�erent algorithms have been employed based on the available literature, most
notably Neural Networks (NN) and Support Vector Machines (SVM). However, as no
studies have used enough algorithms to compare scores directly between algorithms,
most researchers seemingly use either SVM, NN or a small selection of other algorithms.
However, to avoid the problem altogether, an approach inspired by Fauzi and Bours
(2020) was employed, where a large selection of algorithms were used. There is a crucial
di�erence between this Thesis and the work by Fauzi and Bours which is that they
selected the algorithms themselves, while the proposed solutions take the largest selection
of available algorithms that are compatible with the approach within reason.

An immediate limitation of this approach is, therefore, that heavier algorithms from
Deep Learning and Transfer Learning are not easily integrated into the same system,
meaning that they, for this reason, has not been explored in-depth, making the compar-
ison of which algorithms perform well, only applicable to traditional machine learning
algorithms.

Besides the publication from Fauzi and Bours there are not any other works using
large enough selections of algorithms and features to make it possible to compare the
findings from Section 7.1.4 with. Generally, it is a trend towards linear models, basic
neural networks and calibration models performing well. The findings would suggest

84



7.2 Discussion

Rank Researcher Precision Recall f0.5
1 Cardei and Rebedea (2017) 1.000 0.818 0.957
2 Liu, Suen, and Ormandjieva (2017) 1.000 0.811 0.955
3 Ulberg 0.986 0.819 0.947
4 Fauzi and Bours (2020) 0.956 0.858 0.934
5 Villatoro-Tello, Juárez-González, Escalante, Montes-y-Gómez, and Pineda (2012) 0.9804 0.7874 0.9346

Table 7.3: Comparing our results to other solutions in the field

that medium complexity and highly complex machine learning algorithms perform well.
However, the findings are highly connected to the set of features as described in Section
7.1.3, meaning that the findings are only valid for simple features.

Goal Determine if a quantitative approach to algorithm design performs well for SPI

With the research questions presented in Section 1.2 and the evaluation and discussion
for the questions, the goal of the Thesis has been reached. Training on data presented as
a part of the PAN-12, a large selection of twenty-nine algorithms and six features across
two modules for a total of 348 training scenarios has been developed. A quantitative
approach to developing solutions to detect predators has successfully been developed.

From the experiments, it is clear that within the bounds of the combinations of
algorithms and features, TF-based features and neural networks are preferred, however
generally showing small margins between the top-performing solutions. Comparing the
solutions against other researchers in the field as seen in Table 7.3, the proposed solution
currently has the third-highest score.

State of the field Taking into account the performance seen in the solutions in the field
today, coupled with the test results achieved by our approach, it is reasonable to question
what problem is the right one to solve within Sexual Predator Identification. A famous
concept, the "Theory of Constraints", states that every process has a constraint that is
the largest, and total throughput can only be increased by alleviating the constraint.

In terms of real-world benefits, today’s limiting factor is not the algorithmic solutions’
performance, as discussed in the paragraph in Section 7.2 regarding the quality of
solutions. The main constrain is the lack of access to realistic data. It is stated as one
of the main concerns by Pendar (2007), the first author in the field, flagging it as a
significant issue.

As seen in the comparison of solutions in the field, the two top performers, which
incidentally has the highest performance on one module each, are both publications from
2017. This suggests that much work has been given out since then, not acknowledging
that combining the strength of the approaches could have generated something close to
an optimal solution several years ago.

The current solutions will be good at detecting possible abuse on platforms where it is
feasible to deploy extensive large-scale analysis of all messages. However, the performance
is only guaranteed for one-to-one messaging and generally under other conditions like the
assumption that adults pretending to be children will be su�cient to generate realistic
grooming content.
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Given that Internet culture is fast-moving and children are early adopters of new
technologies, predators will follow suit. In e�ect, it makes it such that data will be
outdated regarding iconography, slang, and platform-specific lingo or actions. Getting
high-quality data to make SPI solutions is a continuous task rather than a one-time e�ort
like the PAN-12 dataset.

The lack of papers pursuing this well-known data issue is probably layered. One of
the possible barriers to entry is that collecting the data is complex, so using the PAN-12
dataset is common since it reduces complexity for all studies that do not have data
collection as the primary goal. Secondly, given that it is possible to collect relevant
data, getting the desired data from real predatory situations would be preferred. Given
that these two already significant hurdles are overcome, a researcher would still need
permission to share the dataset publicly.

In short, this Thesis does not address the most pressing issue, and neither does the main
body of work within the field; however, this should not detract from the importance of the
new contributions. Finding new approaches to detect predators is valuable; however, the
direct results from each approach might be changed if new data becomes available. The
main contribution is finding promising approaches, while the specific implementations
and results might be less interesting.

Quality of solutions in the field Due to the inherent complexity of the field, reading
and interpreting the results is not simple. One subtly is that even though we have f0.5,
recall and precision, the dataset PAN-12 is noisy, and it is not known if it is even possible
to find all the predators in the test set, even with a perfect solution. For this reason, the
results in the field should be contextualised a bit. 27 of the 254 predators are removed
from the test set with the current prefiltering settings. As mentioned in the Section 7.1.1
the prefilter is still the stage that removes most of the predators. Lowering the number
of predators that get removed while still removing all the data that can be considered
noise should be one of the best ways of increasing performance on the PAN-12 dataset.
However, retaining more predators requires some way of evaluating the performance of
the prefilter, which does not currently exist. The closest approximation would be using
the subtask in early detection, that is, to find the lower bound of information needed
to detect a predator. As this is not trivial, it is left as a suggestion for future work to
investigate how to optimise the prefilter and what insights can be gained from that.

Without a way to evaluate the performance of the prefilter, it can be assumed for the
sake of discussion that it is in a close to optimal state already, which would allow for
some further analysis of the results in the field. An optimal prefilter gives a limit for
recall, meaning that the highest obtainable recall in this scenario is 0.893. However, such
a limit does not indicate how well the current approaches in the field perform or how
well the proposed solution works.

Combining the best solution to the Suspicious Conversation Identification (SCI) and
Victim From Predator disclosure (VFP) modules, scored on recalls, allows us to approx-
imate how good the approaches in the field are. Using the Deep Learning SCI module
from Liu et al. (2017) and the VFP proposed by Cardei and Rebedea (2017), as seen in
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Module Method Researcher Precision Recall f0.5
SCI Two layer LSTM (Sentence Vectors) Liu 0.996 0.998 0.996
VFP Cost Balanced Random Forest (Behavioural Features) Cardei 0.993 1 0.994
SPI Merged best solutions Theoretical 0.993 0.892 0.971
SPI Best possible solution Theoretical 1.0 0.893 0.977

Table 7.4: Best currently known solution per stage4

Table 7.44 would yield the best result possible. Merging the two approaches gets a total
recall of 0.919 after applying the adjustments to the scores necessitated by the prefilter
removing predators.

With the practical limit to the recall, the corresponding limit for the f0.5 score would
be 0.977, with the merged solution having an f0.5 of 0.971. Meaning 99.39% of the
practically available max performance is already reachable. Making the same adjustments
for the full approach from Cardei and Rebedea would translate to 97.95% of the max
performance and 96.93% for the proposed solution. In short, it indicates that the
algorithmic solutions to the problem are already very advanced, given the constraints,
and that an approximation of the best solutions that can be obtained with current
methods is already almost performing perfectly.

It is essential to be careful not to overstate the value of insights like this since there are
several challenges to making too many assumptions based on the information presented
here. Firstly, the practical limit only shows how well the current solutions perform
within the currently known boundaries. It can, at best, give indications of the upper
bound of performance for detecting predators within this dataset. Secondly, a known
issue is that solving problems in stages introduces error propagation, the fact that low
precision or recall in the SCI module will make the training set for the VFP incorrect.
Since the VFP module is trained on what it assumes to be truthful information from
the SCI module, any form of errors will worsen the VFP module. The issue is further
compounded by the fact that di�ering prefiltering settings between approaches make it
such that the basis that each classifier is trained on is di�erent, even if the evaluation is
the same for all solutions. In e�ect, it is impossible to plainly add the scores from the
di�erent approaches to get a score for the best currently available solution. The merged
solution is an approximation of the best possible outcome, meaning that combining the
two approaches most likely will degrade the performance.

An analysis like this only helps contextualise the results from the current solutions in
the field, and the proposed solution, showing that evaluating the results of approaches in
the field of Sexual Predator Identification has several subtleties that should be considered.

4Neither the SCI nor VFP module has recall adjusted for the predators removed by the prefilter.
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Online grooming attempts are an ongoing risk for all children’s wellbeing, especially as
more youths access the Internet and phones that allow them to interact with strangers.
The work in the field of Sexual Predator Identification shows that it is possible to detect
predators from online chat logs, which is an essential step in moving away from manually
finding groomers to larger automatic systems. The Thesis seeks to use a quantitative
approach to drive decisions with data. A general framework using lightweight features and
algorithms has been proposed to improve the ability to find predators. The framework
allowed several hundred combinations of features and algorithms to be tested, enabling
the comparison of results to find the underlying reasons for the performance of features
and algorithms. The study managed to find highly performant combinations for each
subtask within the problem of detecting predators. The results show many viable
combinations, meaning that focusing on maximal performance in the primary metric
might not be desirable; instead, it should be prefered to look at a combination of
runtime, implementational complexity and performance. The chapter will describe the
contributions made to the field of Sexual Predator Identification. Closing the final chapter
of the Thesis with suggestions for future work, which would be valuable additions to the
field.

8.1 Contributions
There are three main contributions from the Thesis: Firstly, the usage of a quantitative
approach to designing algorithmic solutions within SPI, secondly, the review of the
related work and analysis of the current state of the field, and lastly, the invalidation of
the results in the publication presenting the Social Behavioural Biometrics approach to
Sexual Predator Identification (Wani et al., 2021).

The main contribution is a flexible framework that allows us to expand with more
algorithms and features to test approaches to find the optimal combination given the
available resources. The framework can be explained as a step-wise optimisation of the
following:

• Feature choice

• Algorithm choice

• Combining algorithms to ensembles

• Hyperparameter tuning
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The resulting framework aided in finding the optimal solution given the available twenty-
nine algorithms, and six features, spread across two modules was an MLPClassifier with
TF-IDF to find suspicious conversations and a RidgeClassifierCV with TF-IDF for the
victim from predator disclosure, resulting in a total score of 0.947, placing it as the best
approach from the PAN-12 competition but making it the third given the current state
of the field. The value of working within a framework like this will only increase over
time as more features, algorithms and steps of the process are rigorously tested from
a quantitative approach. The value of this contribution is heavily tied to the second
contribution, which was the review of related literature. To my knowledge, it has not been
noted how well the best solutions perform and that the prefilter is the main bottleneck
for performance on the PAN-12 dataset. In e�ect, this makes any attempts at increasing
performance on the PAN-12 dataset redundant. However, this does not devalue the
approaches being developed on the PAN-12 dataset, only those approaches with the
primary goal of improving performance on the PAN-12 dataset. With this in mind, the
contribution of the framework shows that removing intuition and using data to drive
decisions in experimentation for SPI is a feasible approach.

Lastly, the final contribution is reviewing and invalidating the results for the Social
Behavioural Biometrics approach proposed by Wani et al.. In short, based on the
description of the architecture proposed, it would not be possible to gain a recall of 0.96
as claimed, due to the prefilter setting an upper bound for recall at 0.917. It is not
mentioned that the training set was oversampled, in addition to the test and training
sets having a big intersection, where all predators in the test set were already present in
the training set, which means that the test-set is not a hold-out invalidating any results
generated from the dataset.

8.2 Future Work

This section will present other considered approaches, methods or techniques that could
be applied to improve the current approaches or other thoughts about how to approach
work in the field discovered during the project.

8.2.1 Automatic exploration of unknown datasources

As per the paper by Europol (2020), they were able to find grooming data by using
LIWC’s sexual terms and FastText, a word embedding, to find the misspellings and
related terms. By searching within the sexual terms and using topic modelling, they
could discern grooming in large scale unlabelled data sources.

However, sexuality is not the only discriminatory part of grooming behaviour. An
example is that predators spend more time forming relationships with the children than
talking about sexual themes (Gupta et al., 2012). In addition, there are several other
ways than purely sexual ways to identify the discerning characteristics of predators as
explored in Section 3.3.5 concerning nature describing features.

Using emotion features to explore many datasets should find clusters of predators,
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which can be manually reviewed for quality. The addition of new sources of predators
would allow for better true positives, and hopefully, find ways of identifying good sources
for false positives and false negatives. In short, laying the groundwork for building more
robust, generalised algorithms that are more agnostic to new platforms, the evolution of
Internet slang, and the new iconography that are invented and put into use over time as
platforms mature.

A subtlety has to be mentioned. The generation of the PAN-12 dataset as described
in Section 4.1.1 was considered a one-time task rather than building a system that
could be continuously used to generate new data. The primary goal should be to build
a framework or approach to continuously making new sources of predatory content
accessible to researchers, limiting the issues of grooming evolving, and changing as new
platforms and textual methods of expression appear.

8.2.2 Prefilter settings

As mentioned in the evaluation, in Sections 7.1.1 and 7.2 the current bottleneck for most
approaches that follow the style of Villatoro-Tello et al. (2012) is the prefilter. Work
to introduce the prefilter as a step in the framework described in Section 8.1 would
allow for finding better settings. Several approaches can be attempted to find better
settings, and they all will share the need for some statistical analysis of the dataset
to find some theoretical underpinning for what in chat logs can be considered to hold
information—either being amount of messages, the total length of content for an author or
conversation, or completely di�erent metrics. Even though early detection has the same
goal of finding the lower bound of information needed to detect predators, the prefilter is
at the same time di�erent in nature. The prefilter seeks to find the balancing point of
removing irrelevant entries and keeping predators, while early detection is more concerned
with keeping all predators. However, the shared goal might make early detection an
excellent field to explore possible ways of evaluating lower bounds of information needed
to detect predators.

8.2.3 Combining solutions from other researchers

As demonstrated in Section 7.2 under the paragraph regarding the quality of the solutions
in the field, there already exists two or more solutions that are close to the maximum
performance we can gain with the PAN-12 dataset using the two-stage classifier, setting
aside the issue of prefilters described in Section 7.1.1. However, it is also impossible to
know how the error propagation between the stages will impact each module, meaning
that merging two approaches might not get the theoretical max from adding the numbers.
With this uncertainty, it would be best to have a study that can conclude whether or
not it is possible to merge approaches and obtain the practical maximum performance
given the restrictions in recall imposed by the prefilter on detecting predators with the
PAN-12 dataset.
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8.2.4 AutoML
Incidentally, the framework in this approach is curiously similar to another field of study
known as AutoML. AutoML is a field that tries to automate every step of machine
learning, describing it as a way to input any data and get out an optimal solution.
Given an extension of the current AutoML applications that would allow for the usage
of two-classifiers and more extensive feature sets that are specifically meant for SPI, it
would lower the implementation time for each new approach within the field.
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Appendices
1 Validation Results

Table 1: Full table of SCI validation result
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
Base MLP TF-IDF 0.978 0.974 0.973 0.979 0.997

MLPClassifier TF-IDF 0.978 0.973 0.972 0.979 0.997

Soft Voting Ensemble TF-IDF 0.977 0.977 0.978 0.977 0.997

Tuned MLP TF IDF 0.977 0.976 0.975 0.978 0.997

Tuned SVM TF-IDF 0.976 0.978 0.979 0.976 0.997

Tuned Soft Voting Ensemble TF-IDF 0.976 0.978 0.979 0.976 0.997

CalibratedClassifierCV TF-IDF 0.975 0.975 0.975 0.976 0.997

LinearSVC TF-IDF 0.975 0.972 0.970 0.977 0.997

Base CCCV TF-IDF 0.975 0.975 0.975 0.975 0.997

PassiveAggressiveClassifier TF-IDF 0.975 0.976 0.977 0.974 0.997

SGDClassifier TF-IDF 0.974 0.971 0.970 0.975 0.996

MLPClassifier TF 0.972 0.963 0.960 0.975 0.996

CalibratedClassifierCV TF 0.971 0.966 0.964 0.973 0.996

Base SVC TF-IDF 0.971 0.950 0.943 0.979 0.995

SVC TF-IDF 0.971 0.950 0.943 0.979 0.995

SVC TF 0.970 0.958 0.954 0.974 0.995

MLPClassifier Bin-BOW 0.970 0.958 0.954 0.974 0.995

LinearSVC TF 0.969 0.966 0.965 0.971 0.996

RidgeClassifierCV TF-IDF 0.966 0.930 0.918 0.979 0.993

RidgeClassifier TF-IDF 0.966 0.930 0.918 0.979 0.993

RidgeClassifierCV TF 0.966 0.948 0.942 0.972 0.994

SGDClassifier TF 0.966 0.965 0.965 0.966 0.995

LogisticRegression Bin-BOW 0.965 0.952 0.948 0.970 0.995

CalibratedClassifierCV Bin-BOW 0.965 0.955 0.952 0.969 0.995

SVC Bin-BOW 0.965 0.941 0.933 0.973 0.994

MLPClassifier BOW 0.965 0.960 0.958 0.967 0.995

Perceptron TF-IDF 0.964 0.959 0.957 0.967 0.995

RidgeClassifier Combined 0.964 0.937 0.928 0.973 0.994

LinearSVC Bin-BOW 0.964 0.958 0.957 0.965 0.995

RidgeClassifier TF 0.962 0.928 0.917 0.974 0.993

XGBClassifier TF-IDF 0.959 0.934 0.926 0.968 0.993

XGBClassifier Bin-BOW 0.959 0.937 0.929 0.967 0.993

PassiveAggressiveClassifier TF 0.959 0.969 0.973 0.955 0.995

RidgeClassifierCV Combined 0.958 0.913 0.900 0.974 0.992

XGBClassifier Combined 0.957 0.920 0.908 0.970 0.992

SGDClassifier Bin-BOW 0.953 0.967 0.972 0.949 0.995

XGBClassifier BOW 0.953 0.925 0.916 0.963 0.992

PassiveAggressiveClassifier Bin-BOW 0.952 0.936 0.931 0.957 0.993

LogisticRegression BOW 0.951 0.933 0.927 0.957 0.992

XGBClassifier TF 0.950 0.911 0.898 0.964 0.991

RidgeClassifierCV Bin-BOW 0.950 0.891 0.873 0.971 0.990

AdaBoostClassifier Combined 0.945 0.939 0.937 0.947 0.992

LogisticRegression TF 0.944 0.871 0.849 0.971 0.988

LinearSVC BOW 0.943 0.936 0.934 0.945 0.992

Perceptron Bin-BOW 0.943 0.948 0.949 0.941 0.993

LogisticRegression TF-IDF 0.939 0.839 0.811 0.978 0.986

MLPClassifier Combined 0.938 0.947 0.950 0.935 0.992

AdaBoostClassifier TF 0.935 0.920 0.915 0.941 0.991

Perceptron TF 0.934 0.929 0.928 0.938 0.991

SGDClassifier BOW 0.933 0.949 0.954 0.927 0.992

AdaBoostClassifier BOW 0.932 0.909 0.902 0.940 0.990

AdaBoostClassifier TF-IDF 0.931 0.914 0.908 0.937 0.990

AdaBoostClassifier Bin-BOW 0.930 0.912 0.906 0.937 0.990

Perceptron BOW 0.920 0.936 0.942 0.914 0.990

PassiveAggressiveClassifier BOW 0.917 0.921 0.922 0.916 0.989

CalibratedClassifierCV BOW 0.916 0.783 0.748 0.971 0.982

RidgeClassifier Bin-BOW 0.908 0.878 0.869 0.919 0.986

BaggingClassifier Combined 0.887 0.794 0.767 0.923 0.980
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Table 1 continued from previous page
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
BaggingClassifier TF-IDF 0.883 0.768 0.736 0.931 0.979

BaggingClassifier BOW 0.882 0.802 0.778 0.914 0.981

BaggingClassifier Bin-BOW 0.880 0.803 0.780 0.909 0.980

CalibratedClassifierCV Combined 0.878 0.716 0.676 0.952 0.976

LabelSpreading TF-IDF 0.871 0.937 0.962 0.851 0.986

BaggingClassifier TF 0.871 0.763 0.733 0.914 0.978

LabelPropagation TF-IDF 0.867 0.938 0.964 0.846 0.986

LinearSVC Combined 0.862 0.844 0.844 0.874 0.980

KNeighborsClassifier BOW 0.851 0.696 0.657 0.919 0.974

MLPClassifier LIWC 0.848 0.810 0.801 0.866 0.978

XGBClassifier LIWC 0.847 0.759 0.734 0.881 0.976

LogisticRegression Combined 0.840 0.761 0.739 0.870 0.975

LogisticRegression LIWC 0.832 0.757 0.735 0.862 0.975

RidgeClassifierCV BOW 0.817 0.773 0.760 0.835 0.973

ExtraTreesClassifier Bin-BOW 0.812 0.544 0.490 0.973 0.966

DecisionTreeClassifier Combined 0.806 0.792 0.788 0.811 0.974

DecisionTreeClassifier BOW 0.801 0.795 0.793 0.803 0.974

RandomForestClassifier LIWC 0.801 0.580 0.531 0.917 0.966

CalibratedClassifierCV LIWC 0.800 0.585 0.537 0.912 0.966

DecisionTreeClassifier Bin-BOW 0.800 0.794 0.792 0.802 0.973

LabelSpreading TF 0.790 0.871 0.902 0.766 0.975

ExtraTreesClassifier LIWC 0.788 0.543 0.493 0.928 0.964

ExtraTreesClassifier BOW 0.786 0.499 0.446 0.972 0.963

AdaBoostClassifier LIWC 0.782 0.708 0.687 0.810 0.969

LabelPropagation TF 0.781 0.873 0.910 0.754 0.974

DecisionTreeClassifier TF 0.778 0.774 0.773 0.779 0.971

DecisionTreeClassifier TF-IDF 0.775 0.757 0.751 0.781 0.970

RandomForestClassifier Combined 0.775 0.478 0.424 0.977 0.962

RandomForestClassifier BOW 0.771 0.472 0.418 0.977 0.961

RandomForestClassifier Bin-BOW 0.770 0.474 0.421 0.974 0.961

BaggingClassifier LIWC 0.768 0.591 0.549 0.853 0.964

LinearDiscriminantAnalysis LIWC 0.759 0.560 0.515 0.863 0.963

NearestCentroid TF-IDF 0.757 0.890 0.946 0.721 0.972

ExtraTreesClassifier Combined 0.757 0.450 0.396 0.982 0.960

RandomForestClassifier TF-IDF 0.730 0.413 0.361 0.980 0.958

KNeighborsClassifier LIWC 0.727 0.642 0.618 0.762 0.962

KNeighborsClassifier Combined 0.727 0.642 0.618 0.762 0.962

SVC BOW 0.725 0.447 0.401 0.962 0.960

MultinomialNB Bin-BOW 0.718 0.785 0.811 0.699 0.965

ExtraTreesClassifier TF-IDF 0.707 0.388 0.338 0.977 0.956

RandomForestClassifier TF 0.692 0.369 0.319 0.978 0.955

KNeighborsClassifier Bin-BOW 0.692 0.514 0.474 0.784 0.957

SGDClassifier LIWC 0.687 0.710 0.724 0.683 0.958

RidgeClassifier BOW 0.686 0.738 0.757 0.671 0.960

SGDClassifier Combined 0.685 0.722 0.739 0.677 0.959

KNeighborsClassifier TF-IDF 0.685 0.886 0.983 0.637 0.962

PassiveAggressiveClassifier Combined 0.676 0.572 0.552 0.765 0.959

BernoulliNB Combined 0.668 0.401 0.354 0.859 0.954

ExtraTreesClassifier TF 0.644 0.321 0.275 0.976 0.952

SVC LIWC 0.642 0.355 0.311 0.899 0.952

PassiveAggressiveClassifier LIWC 0.642 0.598 0.595 0.672 0.952

SVC Combined 0.640 0.353 0.308 0.900 0.952

BernoulliNB Bin-BOW 0.624 0.358 0.313 0.831 0.951

BernoulliNB BOW 0.624 0.358 0.313 0.831 0.951

BernoulliNB TF-IDF 0.624 0.358 0.313 0.831 0.951

BernoulliNB TF 0.624 0.358 0.313 0.831 0.951

KNeighborsClassifier TF 0.618 0.848 0.968 0.567 0.949

NearestCentroid Bin-BOW 0.606 0.763 0.835 0.567 0.947

RidgeClassifier LIWC 0.602 0.298 0.255 0.926 0.950

GaussianNB TF 0.599 0.391 0.350 0.729 0.949

MultinomialNB BOW 0.590 0.848 0.994 0.536 0.943

GaussianNB TF-IDF 0.584 0.388 0.349 0.703 0.948

Perceptron LIWC 0.582 0.704 0.778 0.555 0.936

DecisionTreeClassifier LIWC 0.567 0.572 0.574 0.566 0.943

Perceptron Combined 0.562 0.674 0.783 0.542 0.909

RidgeClassifierCV LIWC 0.550 0.269 0.230 0.898 0.948

GaussianNB Bin-BOW 0.540 0.338 0.301 0.678 0.945

ExtraTreeClassifier TF-IDF 0.539 0.476 0.458 0.565 0.941

ExtraTreeClassifier Combined 0.537 0.497 0.485 0.552 0.940

NearestCentroid TF 0.521 0.797 0.968 0.467 0.925

LinearSVC LIWC 0.521 0.587 0.759 0.571 0.829

ExtraTreeClassifier TF 0.515 0.474 0.463 0.531 0.938

ExtraTreeClassifier BOW 0.494 0.481 0.478 0.499 0.934

ExtraTreeClassifier Bin-BOW 0.482 0.461 0.454 0.490 0.933

NearestCentroid BOW 0.477 0.692 0.821 0.433 0.915

GaussianNB BOW 0.443 0.559 0.644 0.438 0.910

ExtraTreeClassifier LIWC 0.438 0.445 0.448 0.436 0.925
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Table 1 continued from previous page
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
BernoulliNB LIWC 0.181 0.412 0.714 0.153 0.720

GaussianNB LIWC 0.172 0.345 0.916 0.155 0.348

MultinomialNB Combined 0.172 0.313 0.431 0.149 0.801

MultinomialNB LIWC 0.158 0.425 0.970 0.131 0.574

NearestCentroid Combined 0.150 0.320 0.512 0.128 0.738

NearestCentroid LIWC 0.150 0.320 0.512 0.128 0.738

LinearDiscriminantAnalysis Bin-BOW 0.122 0.302 0.598 0.102 0.625

QuadraticDiscriminantAnalysis LIWC 0.114 0.329 0.893 0.094 0.425

LinearDiscriminantAnalysis Combined 0.112 0.286 0.598 0.093 0.584

LinearDiscriminantAnalysis BOW 0.101 0.262 0.556 0.084 0.571

LinearDiscriminantAnalysis TF 0.098 0.258 0.568 0.081 0.550

GaussianNB Combined 0.097 0.299 1.000 0.079 0.213

LinearDiscriminantAnalysis TF-IDF 0.089 0.241 0.553 0.074 0.513

QuadraticDiscriminantAnalysis BOW 0.081 0.246 0.838 0.066 0.210

QuadraticDiscriminantAnalysis Bin-BOW 0.080 0.254 0.920 0.065 0.128

QuadraticDiscriminantAnalysis Combined 0.079 0.235 0.760 0.065 0.268

QuadraticDiscriminantAnalysis TF 0.074 0.212 0.710 0.064 0.338

QuadraticDiscriminantAnalysis TF-IDF 0.067 0.186 0.623 0.055 0.361

DummyClassifier TF 0.061 0.059 0.058 0.062 0.880

DummyClassifier TF-IDF 0.061 0.059 0.058 0.062 0.880

DummyClassifier Bin-BOW 0.061 0.059 0.058 0.062 0.880

DummyClassifier BOW 0.061 0.059 0.058 0.062 0.880

DummyClassifier LIWC 0.061 0.059 0.058 0.062 0.880

LabelPropagation LIWC 0.024 0.006 0.005 0.600 0.934

LabelSpreading Bin-BOW 0.024 0.006 0.005 0.600 0.934

LabelPropagation Bin-BOW 0.024 0.006 0.005 0.600 0.934

LabelSpreading Combined 0.024 0.006 0.005 0.600 0.934

LabelPropagation Combined 0.024 0.006 0.005 0.600 0.934

LabelSpreading BOW 0.024 0.006 0.005 0.600 0.934

LabelPropagation BOW 0.024 0.006 0.005 0.600 0.934

LabelSpreading LIWC 0.024 0.006 0.005 0.600 0.934

DummyClassifier Combined 0.000 0.000 0.000 0.000 0.934

MultinomialNB TF 0.000 0.000 0.000 0.000 0.934

MultinomialNB TF-IDF 0.000 0.000 0.000 0.000 0.934

Table 2: Full table of VFP validation results
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
MLPClassifier Bin-BOW 0.957 0.956 0.956 0.958 0.955

Base LR BOW-BIN 0.956 0.956 0.956 0.956 0.955

LogisticRegression Bin-BOW 0.956 0.956 0.956 0.956 0.955

Base MLP BOW-BIN 0.955 0.933 0.927 0.964 0.944

RidgeClassifierCV TF-IDF 0.955 0.950 0.948 0.957 0.952

LogisticRegression BOW 0.950 0.903 0.889 0.969 0.929

Tuned LR BOW-BIN 0.950 0.954 0.956 0.949 0.952

RidgeClassifierCV TF 0.950 0.965 0.971 0.945 0.956

RidgeClassifierCV Bin-BOW 0.947 0.942 0.941 0.948 0.944

MLPClassifier BOW 0.946 0.942 0.941 0.949 0.944

Tuned SGD TF 0.946 0.953 0.957 0.944 0.948

Tuned Soft Voting Ensemble Mixed 0.944 0.963 0.971 0.938 0.952

SGDClassifier TF 0.944 0.919 0.912 0.953 0.933

PassiveAggressiveClassifier TF 0.942 0.958 0.964 0.937 0.948

LinearSVC TF-IDF 0.942 0.941 0.941 0.944 0.941

PassiveAggressiveClassifier TF-IDF 0.942 0.958 0.963 0.937 0.948

SGDClassifier TF-IDF 0.941 0.940 0.941 0.943 0.941

RidgeClassifier Combined 0.941 0.941 0.942 0.942 0.941

RidgeClassifier Bin-BOW 0.941 0.941 0.941 0.941 0.941

MLPClassifier TF-IDF 0.941 0.952 0.956 0.937 0.944

Base Soft Voting Ensemble Mixed 0.940 0.968 0.978 0.932 0.952

Tuned MLP BOW-BIN 0.940 0.951 0.956 0.937 0.944

CalibratedClassifierCV TF-IDF 0.938 0.928 0.926 0.943 0.933

MLPClassifier TF 0.938 0.962 0.971 0.930 0.948

Perceptron TF 0.937 0.939 0.941 0.938 0.937

LinearSVC Bin-BOW 0.934 0.933 0.934 0.935 0.933

CalibratedClassifierCV Bin-BOW 0.934 0.933 0.934 0.935 0.933

Base SGD TF 0.934 0.945 0.949 0.931 0.937

Perceptron BOW 0.934 0.934 0.934 0.934 0.933

SGDClassifier BOW 0.934 0.934 0.934 0.934 0.933

LinearSVC TF 0.934 0.933 0.934 0.936 0.933

NuSVC Bin-BOW 0.934 0.950 0.956 0.929 0.941

SGDClassifier Bin-BOW 0.932 0.961 0.971 0.924 0.944

RidgeClassifier TF-IDF 0.931 0.938 0.941 0.930 0.933

CalibratedClassifierCV TF 0.930 0.920 0.919 0.935 0.926

Perceptron TF-IDF 0.930 0.922 0.920 0.933 0.926

ExtraTreesClassifier TF-IDF 0.923 0.948 0.956 0.916 0.933
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Table 2 continued from previous page
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
Perceptron Bin-BOW 0.922 0.958 0.971 0.911 0.937

RidgeClassifier TF 0.921 0.942 0.949 0.915 0.929

SVC Bin-BOW 0.920 0.935 0.942 0.916 0.926

ExtraTreesClassifier BOW 0.920 0.936 0.942 0.915 0.926

RandomForestClassifier TF 0.920 0.936 0.941 0.915 0.926

RandomForestClassifier Combined 0.920 0.936 0.941 0.915 0.926

ExtraTreesClassifier TF 0.915 0.934 0.942 0.910 0.922

ExtraTreesClassifier Combined 0.914 0.934 0.941 0.908 0.922

PassiveAggressiveClassifier Bin-BOW 0.907 0.926 0.934 0.902 0.914

MultinomialNB BOW 0.906 0.948 0.963 0.894 0.922

ExtraTreesClassifier Bin-BOW 0.906 0.937 0.948 0.897 0.918

RandomForestClassifier TF-IDF 0.906 0.921 0.926 0.901 0.911

SVC TF-IDF 0.904 0.920 0.926 0.900 0.911

LogisticRegression TF 0.904 0.920 0.926 0.900 0.911

RandomForestClassifier Bin-BOW 0.903 0.925 0.934 0.897 0.911

LinearSVC BOW 0.902 0.870 0.860 0.915 0.888

CalibratedClassifierCV BOW 0.902 0.829 0.808 0.931 0.874

XGBClassifier Bin-BOW 0.902 0.898 0.897 0.903 0.900

NuSVC TF-IDF 0.902 0.914 0.919 0.898 0.907

MultinomialNB Bin-BOW 0.901 0.936 0.949 0.890 0.914

SVC TF 0.899 0.919 0.926 0.894 0.907

NuSVC TF 0.899 0.919 0.926 0.894 0.907

LogisticRegression TF-IDF 0.897 0.902 0.904 0.896 0.900

AdaBoostClassifier Bin-BOW 0.894 0.874 0.868 0.902 0.885

RandomForestClassifier BOW 0.892 0.900 0.904 0.889 0.896

RidgeClassifierCV Combined 0.886 0.872 0.868 0.892 0.881

AdaBoostClassifier TF 0.885 0.916 0.927 0.875 0.896

XGBClassifier TF-IDF 0.883 0.899 0.905 0.879 0.888

XGBClassifier Combined 0.883 0.899 0.905 0.879 0.888

XGBClassifier TF 0.882 0.893 0.898 0.880 0.885

PassiveAggressiveClassifier BOW 0.879 0.863 0.860 0.886 0.870

XGBClassifier BOW 0.876 0.886 0.890 0.874 0.878

AdaBoostClassifier BOW 0.873 0.885 0.890 0.870 0.877

NearestCentroid TF-IDF 0.866 0.822 0.809 0.884 0.852

NearestCentroid TF 0.866 0.832 0.824 0.879 0.855

AdaBoostClassifier Combined 0.865 0.888 0.897 0.859 0.874

AdaBoostClassifier TF-IDF 0.865 0.888 0.897 0.859 0.874

BernoulliNB TF-IDF 0.857 0.778 0.758 0.892 0.829

BernoulliNB TF 0.857 0.778 0.758 0.892 0.829

BernoulliNB Bin-BOW 0.857 0.778 0.758 0.892 0.829

BernoulliNB Combined 0.857 0.778 0.758 0.892 0.829

BernoulliNB BOW 0.857 0.778 0.758 0.892 0.829

NuSVC BOW 0.857 0.819 0.809 0.872 0.844

BaggingClassifier TF-IDF 0.855 0.831 0.824 0.864 0.844

BaggingClassifier BOW 0.855 0.797 0.780 0.876 0.833

BaggingClassifier TF 0.850 0.835 0.832 0.857 0.844

SVC BOW 0.849 0.777 0.758 0.880 0.826

BaggingClassifier Bin-BOW 0.845 0.822 0.817 0.855 0.837

MultinomialNB TF 0.843 0.935 0.971 0.817 0.874

NearestCentroid Bin-BOW 0.843 0.781 0.765 0.869 0.822

MultinomialNB TF-IDF 0.842 0.945 0.985 0.813 0.877

KNeighborsClassifier BOW 0.841 0.871 0.882 0.834 0.851

BaggingClassifier Combined 0.832 0.836 0.839 0.833 0.829

LabelSpreading TF 0.825 0.914 0.949 0.799 0.851

KNeighborsClassifier TF 0.822 0.928 0.971 0.792 0.855

LogisticRegression Combined 0.821 0.786 0.779 0.840 0.814

GaussianNB Bin-BOW 0.817 0.815 0.816 0.819 0.814

DecisionTreeClassifier TF-IDF 0.816 0.837 0.846 0.811 0.818

GaussianNB Combined 0.814 0.930 0.978 0.781 0.848

LabelSpreading TF-IDF 0.810 0.924 0.971 0.778 0.844

DecisionTreeClassifier BOW 0.809 0.814 0.816 0.808 0.807

KNeighborsClassifier TF-IDF 0.807 0.933 0.985 0.772 0.844

RidgeClassifierCV BOW 0.806 0.728 0.706 0.837 0.785

LinearDiscriminantAnalysis Bin-BOW 0.801 0.812 0.816 0.798 0.803

DecisionTreeClassifier Combined 0.798 0.832 0.846 0.789 0.803

RidgeClassifier BOW 0.781 0.705 0.683 0.810 0.762

DecisionTreeClassifier Bin-BOW 0.776 0.773 0.772 0.778 0.773

KNeighborsClassifier Bin-BOW 0.765 0.735 0.728 0.777 0.755

DecisionTreeClassifier TF 0.755 0.788 0.802 0.747 0.758

GaussianNB TF 0.748 0.732 0.729 0.756 0.744

LinearDiscriminantAnalysis TF 0.746 0.812 0.838 0.727 0.758

GaussianNB BOW 0.743 0.725 0.722 0.753 0.740

LogisticRegression LIWC 0.735 0.728 0.728 0.740 0.729

NearestCentroid BOW 0.734 0.528 0.486 0.857 0.699

GaussianNB TF-IDF 0.728 0.699 0.693 0.742 0.722

ExtraTreeClassifier TF-IDF 0.724 0.737 0.743 0.721 0.725

LinearDiscriminantAnalysis TF-IDF 0.720 0.787 0.816 0.701 0.729
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Table 2 continued from previous page
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
LinearDiscriminantAnalysis Combined 0.720 0.787 0.816 0.701 0.729

ExtraTreeClassifier Combined 0.716 0.697 0.692 0.724 0.710

CalibratedClassifierCV Combined 0.710 0.637 0.617 0.738 0.695

ExtraTreeClassifier TF 0.703 0.694 0.692 0.707 0.699

MultinomialNB LIWC 0.694 0.750 0.772 0.678 0.695

ExtraTreeClassifier Bin-BOW 0.689 0.736 0.757 0.678 0.688

LinearDiscriminantAnalysis LIWC 0.686 0.589 0.568 0.737 0.673

RidgeClassifier LIWC 0.686 0.589 0.568 0.737 0.673

LinearSVC LIWC 0.679 0.740 0.778 0.671 0.669

CalibratedClassifierCV LIWC 0.676 0.630 0.618 0.695 0.669

NuSVC Combined 0.674 0.638 0.633 0.694 0.662

RidgeClassifierCV LIWC 0.672 0.562 0.538 0.732 0.662

ExtraTreeClassifier BOW 0.661 0.687 0.698 0.654 0.662

NuSVC LIWC 0.646 0.594 0.581 0.669 0.636

RandomForestClassifier LIWC 0.634 0.632 0.632 0.635 0.628

XGBClassifier LIWC 0.622 0.596 0.588 0.631 0.617

ExtraTreesClassifier LIWC 0.620 0.612 0.610 0.624 0.613

AdaBoostClassifier LIWC 0.614 0.609 0.612 0.622 0.610

KNeighborsClassifier Combined 0.609 0.647 0.661 0.598 0.602

KNeighborsClassifier LIWC 0.609 0.647 0.661 0.598 0.602

LinearDiscriminantAnalysis BOW 0.605 0.624 0.638 0.612 0.609

MultinomialNB Combined 0.588 0.847 0.993 0.534 0.558

MLPClassifier Combined 0.574 0.586 0.603 0.580 0.661

BernoulliNB LIWC 0.573 0.843 1.000 0.517 0.528

BaggingClassifier LIWC 0.571 0.533 0.522 0.585 0.569

DecisionTreeClassifier LIWC 0.566 0.582 0.588 0.562 0.561

DummyClassifier LIWC 0.561 0.836 1.000 0.506 0.506

DummyClassifier TF-IDF 0.561 0.836 1.000 0.506 0.506

DummyClassifier Combined 0.561 0.836 1.000 0.506 0.506

DummyClassifier BOW 0.561 0.836 1.000 0.506 0.506

DummyClassifier Bin-BOW 0.561 0.836 1.000 0.506 0.506

DummyClassifier TF 0.561 0.836 1.000 0.506 0.506

CategoricalNB TF-IDF 0.556 0.833 1.000 0.500 0.500

CategoricalNB TF 0.556 0.833 1.000 0.500 0.500

SGDClassifier LIWC 0.542 0.657 0.719 0.538 0.602

QuadraticDiscriminantAnalysis TF-IDF 0.535 0.529 0.531 0.542 0.532

LinearSVC Combined 0.533 0.613 0.646 0.511 0.636

ExtraTreeClassifier LIWC 0.519 0.515 0.516 0.523 0.513

QuadraticDiscriminantAnalysis TF 0.508 0.461 0.448 0.527 0.517

QuadraticDiscriminantAnalysis LIWC 0.507 0.586 0.650 0.509 0.506

MLPClassifier LIWC 0.489 0.567 0.615 0.476 0.577

Perceptron LIWC 0.488 0.471 0.489 0.538 0.561

NearestCentroid Combined 0.488 0.371 0.347 0.561 0.532

NearestCentroid LIWC 0.488 0.371 0.347 0.561 0.532

QuadraticDiscriminantAnalysis Combined 0.464 0.431 0.429 0.525 0.517

GaussianNB LIWC 0.441 0.302 0.281 0.617 0.532

QuadraticDiscriminantAnalysis BOW 0.429 0.366 0.352 0.471 0.501

QuadraticDiscriminantAnalysis Bin-BOW 0.422 0.372 0.373 0.500 0.476

SVC Combined 0.419 0.293 0.273 0.525 0.498

SGDClassifier Combined 0.417 0.505 0.556 0.434 0.580

SVC LIWC 0.416 0.321 0.310 0.525 0.502

Perceptron Combined 0.368 0.389 0.415 0.380 0.553

PassiveAggressiveClassifier LIWC 0.243 0.257 0.274 0.281 0.390

PassiveAggressiveClassifier Combined 0.239 0.257 0.274 0.261 0.383

LabelSpreading Combined 0.000 0.000 0.000 0.000 0.494

LabelSpreading Bin-BOW 0.000 0.000 0.000 0.000 0.494

LabelSpreading BOW 0.000 0.000 0.000 0.000 0.494

LabelSpreading LIWC 0.000 0.000 0.000 0.000 0.494

Table 3: Full table of SBB validation results
Model Feature Type f0.5 f2.0 Precision Recall Accuracy
LabelSpreading SSB 0.971 0.894 0.999 0.871 0.970

ExtraTreesClassifier SSB 0.970 0.894 0.999 0.871 0.969

RandomForestClassifier SSB 0.969 0.894 0.996 0.871 0.969

KNeighborsClassifier SSB 0.967 0.893 0.994 0.871 0.968

XGBClassifier SSB 0.964 0.893 0.990 0.871 0.968

MLPClassifier SSB 0.963 0.893 0.989 0.871 0.968

BaggingClassifier SSB 0.960 0.892 0.985 0.871 0.967

ExtraTreeClassifier SSB 0.960 0.892 0.985 0.871 0.967

DecisionTreeClassifier SSB 0.956 0.891 0.980 0.871 0.966

LogisticRegression SSB 0.954 0.888 0.978 0.868 0.964

SGDClassifier SSB 0.953 0.885 0.978 0.865 0.964

SVC SSB 0.952 0.867 0.984 0.842 0.960

LinearSVC SSB 0.951 0.884 0.976 0.864 0.963
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Table 3 continued from previous page
Model Feature Type f0.5 f2.0 Precision Recall Accuracy
RidgeClassifier SSB 0.937 0.861 0.966 0.838 0.955

LinearDiscriminantAnalysis SSB 0.937 0.863 0.964 0.841 0.955

RidgeClassifierCV SSB 0.936 0.850 0.969 0.825 0.953

Perceptron SSB 0.926 0.878 0.943 0.863 0.955

MultinomialNB SSB 0.903 0.767 0.960 0.730 0.929

PassiveAggressiveClassifier SSB 0.898 0.849 0.918 0.837 0.940

AdaBoostClassifier SSB 0.894 0.805 0.929 0.779 0.934

BernoulliNB SSB 0.836 0.792 0.852 0.778 0.916

GaussianNB SSB 0.826 0.801 0.834 0.793 0.914

CalibratedClassifierCV SSB 0.785 0.488 0.984 0.433 0.865

NearestCentroid SSB 0.753 0.763 0.750 0.767 0.885

QuadraticDiscriminantAnalysis SSB 0.424 0.746 0.370 1.000 0.599

DummyClassifier SSB 0.000 0.000 0.000 0.000 0.765
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Model Feature Type f0.5 f2.0 Recall Precision Accuracy
MLP TF-IDF 0.978 0.974 0.973 0.979 0.997
Tuned MLP TF IDF 0.977 0.976 0.975 0.978 0.997
Soft Voting Ensemble TF-IDF 0.977 0.977 0.978 0.977 0.997
Tuned Soft Voting Ensemble TF-IDF 0.976 0.978 0.979 0.976 0.997
Tuned SVM TF-IDF 0.976 0.978 0.979 0.976 0.997
CCCV TF-IDF 0.975 0.975 0.975 0.975 0.997
SVM TF-IDF 0.971 0.950 0.943 0.979 0.995

(a) Validation results - SCI - Hyperparameter optimisation
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
Base LR BOW-BIN 0.956 0.956 0.956 0.956 0.955
Base MLP BOW-BIN 0.955 0.933 0.927 0.964 0.944
Tuned LR BOW-BIN 0.950 0.954 0.956 0.949 0.952
Tuned SGD TF 0.946 0.953 0.957 0.944 0.948
Tuned Soft Voting Ensemble Mixed 0.944 0.963 0.971 0.938 0.952
Base Soft Voting Ensemble Mixed 0.940 0.968 0.978 0.932 0.952
Tuned MLP BOW-BIN 0.940 0.951 0.956 0.937 0.944
Base SGD TF 0.934 0.945 0.949 0.931 0.937

(b) Validation results - VFP - Hyperparameter optimisation
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
Tuned Soft Voting Ensemble SSB 0.970 0.894 0.871 0.998 0.969
Soft Voting Ensemble SSB 0.969 0.894 0.871 0.996 0.969
RF SSB 0.968 0.894 0.871 0.996 0.969
Tuned KNN SSB 0.968 0.894 0.871 0.996 0.969
Tuned RF SSB 0.967 0.893 0.871 0.995 0.969
KNN SSB 0.967 0.893 0.871 0.994 0.968
Tuned XGB SSB 0.966 0.893 0.871 0.992 0.968
XGB SSB 0.964 0.893 0.871 0.990 0.968

(c) Validation results - SBB - Hyperparameter optimisation

Table 4: Validation results from hyperparameter optimisation
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2 Test Results
There is an important note that needs to be made for the SCI test results. As SCI is
a "constructed" step in the process of predicting predators and was not needed to be
reported during the PAN-12 competition, it has resulted in some inconsistency in how
people present these results. This is partially the reason for having it in the appendix
since it is not a core part of the Thesis but important for others to check the work.

Not everyone adjusts their score for the predators removed by the prefilter. For the VFP
module, this is required to make the results comparable to other researchers; however,
since SCI is just a constructed task within another task, it is not as strict. However, to
make the results presented here convertible to a format where others can compare it to
their work, the data from the prefiltering is appended here.

The filter used removed conversations with less than 20 messages and conversations
with only a single participant. The resulting number of conversations are as stated below.

Unfiltered Test 155128
Filtered Test 28559
Predatory Conversations in Unfiltered Test 3737
Predatory Conversations in Filtered Test 1474

Table 5: Full table of SCI test results
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
SVC Bin-BOW 0.989 0.961 0.953 0.999 0.998

Tuned Soft Voting Ensemble TF-IDF 0.987 0.961 0.953 0.997 0.997

Soft Voting Ensemble TF-IDF 0.987 0.961 0.953 0.996 0.997

SGDClassifier TF-IDF 0.987 0.965 0.958 0.994 0.998

SVC TF 0.986 0.953 0.943 0.997 0.997

Tuned SVM TF-IDF 0.985 0.962 0.954 0.994 0.997

SVC TF-IDF 0.985 0.947 0.935 0.999 0.997

SGDClassifier TF 0.985 0.953 0.942 0.996 0.997

MLPClassifier TF-IDF 0.985 0.948 0.937 0.997 0.997

CalibratedClassifierCV TF-IDF 0.984 0.959 0.951 0.993 0.997

LinearSVC TF-IDF 0.984 0.954 0.944 0.994 0.997

CalibratedClassifierCV TF 0.984 0.958 0.949 0.993 0.997

Tuned MLP TF-IDF 0.984 0.950 0.939 0.996 0.997

LinearSVC TF 0.984 0.958 0.949 0.993 0.997

LogisticRegression Bin-BOW 0.984 0.948 0.936 0.996 0.997

MLPClassifier Bin-BOW 0.984 0.955 0.946 0.994 0.997

MLPClassifier TF 0.983 0.954 0.944 0.994 0.997

MLPClassifier BOW 0.983 0.953 0.944 0.994 0.997

LinearSVC Bin-BOW 0.982 0.954 0.944 0.992 0.997

CalibratedClassifierCV Bin-BOW 0.982 0.945 0.933 0.994 0.996

PassiveAggressiveClassifier TF-IDF 0.981 0.952 0.943 0.991 0.997

RidgeClassifier TF-IDF 0.979 0.922 0.904 0.999 0.995

RidgeClassifierCV TF-IDF 0.979 0.922 0.904 0.999 0.995

XGBClassifier Bin-BOW 0.975 0.939 0.928 0.988 0.996

RidgeClassifier TF 0.974 0.912 0.893 0.997 0.994

MLPClassifier Combined 0.974 0.943 0.933 0.984 0.996

RidgeClassifierCV TF 0.973 0.928 0.914 0.989 0.995

XGBClassifier Combined 0.973 0.940 0.929 0.984 0.996

XGBClassifier TF-IDF 0.972 0.929 0.916 0.988 0.995

RidgeClassifier Combined 0.972 0.919 0.903 0.990 0.995

XGBClassifier TF 0.971 0.921 0.905 0.989 0.995

SGDClassifier Bin-BOW 0.971 0.963 0.960 0.973 0.997

PassiveAggressiveClassifier TF 0.970 0.932 0.921 0.983 0.995

XGBClassifier BOW 0.969 0.936 0.926 0.981 0.995

Perceptron TF-IDF 0.966 0.935 0.925 0.976 0.995

PassiveAggressiveClassifier Bin-BOW 0.965 0.934 0.924 0.976 0.995

RidgeClassifierCV Bin-BOW 0.963 0.879 0.854 0.995 0.992

LogisticRegression TF-IDF 0.961 0.864 0.837 0.998 0.992

LogisticRegression BOW 0.960 0.930 0.920 0.971 0.994
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Table 5 continued from previous page
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
LogisticRegression TF 0.960 0.875 0.849 0.992 0.992

Perceptron Bin-BOW 0.958 0.943 0.938 0.963 0.995

Perceptron TF 0.953 0.930 0.923 0.961 0.994

RidgeClassifierCV Combined 0.951 0.845 0.815 0.992 0.990

LinearSVC BOW 0.947 0.934 0.930 0.951 0.994

AdaBoostClassifier TF-IDF 0.942 0.915 0.906 0.952 0.993

AdaBoostClassifier Combined 0.940 0.923 0.917 0.946 0.993

AdaBoostClassifier TF 0.940 0.918 0.910 0.948 0.993

AdaBoostClassifier BOW 0.935 0.903 0.893 0.947 0.992

SGDClassifier BOW 0.934 0.929 0.927 0.936 0.993

MultinomialNB Bin-BOW 0.934 0.873 0.854 0.957 0.991

AdaBoostClassifier Bin-BOW 0.929 0.907 0.900 0.936 0.992

PassiveAggressiveClassifier BOW 0.926 0.901 0.893 0.934 0.991

RidgeClassifier Bin-BOW 0.916 0.865 0.849 0.934 0.989

BaggingClassifier Combined 0.908 0.829 0.805 0.938 0.987

Perceptron BOW 0.907 0.916 0.919 0.904 0.991

CalibratedClassifierCV BOW 0.905 0.725 0.680 0.986 0.983

CalibratedClassifierCV Combined 0.903 0.737 0.694 0.976 0.983

BaggingClassifier TF-IDF 0.897 0.777 0.744 0.947 0.985

LinearSVC Combined 0.886 0.908 0.915 0.879 0.989

BaggingClassifier TF 0.881 0.748 0.712 0.936 0.983

BaggingClassifier BOW 0.874 0.790 0.765 0.906 0.984

XGBClassifier LIWC 0.869 0.766 0.737 0.910 0.983

BaggingClassifier Bin-BOW 0.847 0.794 0.778 0.866 0.982

RidgeClassifierCV BOW 0.843 0.734 0.704 0.886 0.980

KNeighborsClassifier BOW 0.840 0.667 0.624 0.919 0.978

CalibratedClassifierCV LIWC 0.836 0.626 0.577 0.941 0.976

LogisticRegression Combined 0.825 0.745 0.722 0.855 0.979

ExtraTreesClassifier Bin-BOW 0.824 0.539 0.483 1.000 0.973

MLPClassifier LIWC 0.818 0.826 0.828 0.816 0.982

RandomForestClassifier LIWC 0.815 0.584 0.533 0.939 0.974

BernoulliNB Combined 0.803 0.523 0.468 0.979 0.972

LogisticRegression LIWC 0.796 0.749 0.735 0.812 0.978

DecisionTreeClassifier Combined 0.789 0.818 0.828 0.781 0.979

ExtraTreesClassifier LIWC 0.785 0.526 0.474 0.940 0.971

RandomForestClassifier Combined 0.785 0.477 0.422 1.000 0.970

BernoulliNB BOW 0.783 0.482 0.427 0.989 0.970

BernoulliNB TF 0.783 0.482 0.427 0.989 0.970

BernoulliNB Bin-BOW 0.783 0.482 0.427 0.989 0.970

BernoulliNB TF-IDF 0.783 0.482 0.427 0.989 0.970

AdaBoostClassifier LIWC 0.782 0.728 0.712 0.801 0.976

BaggingClassifier LIWC 0.780 0.615 0.575 0.856 0.973

ExtraTreesClassifier BOW 0.776 0.464 0.409 1.000 0.970

RandomForestClassifier Bin-BOW 0.769 0.455 0.400 1.000 0.969

DecisionTreeClassifier TF-IDF 0.769 0.750 0.744 0.776 0.976

RandomForestClassifier BOW 0.766 0.450 0.396 1.000 0.969

DecisionTreeClassifier BOW 0.762 0.749 0.744 0.767 0.975

DecisionTreeClassifier Bin-BOW 0.759 0.753 0.752 0.761 0.975

SVC BOW 0.754 0.440 0.387 0.990 0.968

DecisionTreeClassifier TF 0.751 0.757 0.759 0.749 0.974

PassiveAggressiveClassifier Combined 0.750 0.625 0.592 0.803 0.972

KNeighborsClassifier Combined 0.740 0.657 0.634 0.772 0.971

KNeighborsClassifier LIWC 0.739 0.657 0.634 0.771 0.971

NearestCentroid TF-IDF 0.711 0.882 0.959 0.668 0.973

ExtraTreesClassifier Combined 0.699 0.367 0.317 1.000 0.965

SGDClassifier LIWC 0.682 0.709 0.718 0.674 0.968

SGDClassifier Combined 0.673 0.712 0.727 0.661 0.967

SVC LIWC 0.665 0.369 0.321 0.910 0.963

SVC Combined 0.661 0.364 0.317 0.909 0.963

LinearSVC LIWC 0.660 0.347 0.300 0.942 0.963

KNeighborsClassifier TF-IDF 0.656 0.853 0.948 0.609 0.966

RandomForestClassifier TF-IDF 0.655 0.322 0.275 1.000 0.963

ExtraTreesClassifier TF-IDF 0.651 0.318 0.271 1.000 0.962

RandomForestClassifier TF 0.650 0.317 0.271 1.000 0.962

RidgeClassifier BOW 0.638 0.691 0.710 0.622 0.963

MultinomialNB BOW 0.635 0.872 0.996 0.582 0.963

ExtraTreesClassifier TF 0.621 0.291 0.247 1.000 0.961

KNeighborsClassifier Bin-BOW 0.606 0.444 0.408 0.690 0.960

Perceptron LIWC 0.603 0.745 0.808 0.567 0.958

KNeighborsClassifier TF 0.581 0.817 0.944 0.530 0.954

NearestCentroid Bin-BOW 0.572 0.768 0.866 0.527 0.953

Perceptron Combined 0.568 0.744 0.829 0.526 0.953

RidgeClassifier LIWC 0.567 0.260 0.220 0.936 0.959

RidgeClassifierCV LIWC 0.559 0.253 0.214 0.935 0.959

DecisionTreeClassifier LIWC 0.548 0.576 0.586 0.539 0.953

NearestCentroid TF 0.470 0.764 0.965 0.417 0.928

ExtraTreeClassifier TF 0.458 0.440 0.434 0.465 0.945
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Table 5 continued from previous page
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
ExtraTreeClassifier TF-IDF 0.457 0.447 0.444 0.460 0.944

ExtraTreeClassifier Bin-BOW 0.454 0.487 0.499 0.444 0.942

NearestCentroid BOW 0.448 0.684 0.830 0.401 0.927

ExtraTreeClassifier Combined 0.431 0.449 0.455 0.426 0.940

PassiveAggressiveClassifier LIWC 0.422 0.698 0.893 0.373 0.917

ExtraTreeClassifier BOW 0.422 0.444 0.453 0.415 0.939

ExtraTreeClassifier LIWC 0.410 0.458 0.476 0.397 0.936

BernoulliNB LIWC 0.159 0.389 0.752 0.133 0.733

MultinomialNB Combined 0.153 0.339 0.571 0.129 0.780

MultinomialNB LIWC 0.128 0.368 0.979 0.105 0.570

NearestCentroid Combined 0.126 0.294 0.527 0.106 0.747

NearestCentroid LIWC 0.126 0.294 0.527 0.106 0.747

DummyClassifier TF 0.058 0.067 0.071 0.055 0.889

DummyClassifier Bin-BOW 0.058 0.067 0.071 0.055 0.889

DummyClassifier BOW 0.058 0.067 0.071 0.055 0.889

DummyClassifier TF-IDF 0.058 0.067 0.071 0.055 0.889

MultinomialNB TF 0.000 0.000 0.000 0.000 0.948

MultinomialNB TF-IDF 0.000 0.000 0.000 0.000 0.948

DummyClassifier Combined 0.000 0.000 0.000 0.000 0.948

DummyClassifier LIWC 0.000 0.000 0.000 0.000 0.948

Table 6: Full table of VFP test results
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
RidgeClassifierCV TF-IDF 0.947 0.848 0.819 0.986 1.000

SGDClassifier TF-IDF 0.946 0.844 0.815 0.986 1.000

MLPClassifier TF-IDF 0.946 0.844 0.815 0.986 1.000

MLPClassifier TF 0.946 0.844 0.815 0.986 1.000

PassiveAggressiveClassifier TF-IDF 0.945 0.860 0.835 0.977 1.000

Tuned Soft Voting Ensemble Multi-Feature 0.944 0.828 0.795 0.990 1.000

Base Soft Voting Ensemble Multi-Feature 0.944 0.837 0.807 0.986 1.000

LinearSVC TF-IDF 0.944 0.847 0.819 0.981 1.000

MLPClassifier BOW 0.941 0.818 0.783 0.990 1.000

MLPClassifier Bin-BOW 0.938 0.811 0.776 0.990 1.000

SGDClassifier TF 0.938 0.830 0.799 0.981 1.000

CalibratedClassifierCV TF-IDF 0.937 0.827 0.795 0.981 1.000

Tuned SGD TF 0.936 0.823 0.791 0.981 1.000

Base MLP Bin-BOW 0.936 0.804 0.768 0.990 1.000

LinearSVC TF 0.936 0.823 0.791 0.981 1.000

RidgeClassifierCV TF 0.936 0.833 0.803 0.976 1.000

RidgeClassifier Combined 0.935 0.839 0.811 0.972 1.000

RidgeClassifier TF-IDF 0.935 0.839 0.811 0.972 1.000

SGDClassifier Bin-BOW 0.933 0.835 0.807 0.972 1.000

PassiveAggressiveClassifier TF 0.933 0.835 0.807 0.972 1.000

Perceptron TF-IDF 0.932 0.842 0.815 0.967 1.000

Perceptron Bin-BOW 0.931 0.819 0.787 0.976 1.000

CalibratedClassifierCV TF 0.931 0.809 0.776 0.980 1.000

LogisticRegression Bin-BOW 0.931 0.809 0.776 0.980 1.000

Base LR Bin-BOW 0.931 0.800 0.764 0.985 1.000

Tuned LR Bin-BOW 0.931 0.800 0.764 0.985 1.000

RidgeClassifier TF 0.930 0.825 0.795 0.971 1.000

NuSVC Bin-BOW 0.930 0.806 0.772 0.980 1.000

Tuned MLP Bin-BOW 0.929 0.802 0.768 0.980 1.000

MultinomialNB Bin-BOW 0.928 0.847 0.823 0.959 1.000

MLPClassifier Combined 0.928 0.828 0.799 0.967 1.000

MultinomialNB BOW 0.927 0.844 0.819 0.959 1.000

SVC Bin-BOW 0.926 0.805 0.772 0.975 1.000

RidgeClassifier Bin-BOW 0.926 0.795 0.760 0.980 1.000

Perceptron TF 0.926 0.795 0.760 0.980 1.000

RidgeClassifierCV Bin-BOW 0.924 0.798 0.764 0.975 1.000

ExtraTreesClassifier TF 0.924 0.798 0.764 0.975 1.000

Base SGD TF 0.923 0.814 0.783 0.966 1.000

SVC TF-IDF 0.922 0.811 0.779 0.966 1.000

CalibratedClassifierCV Bin-BOW 0.920 0.798 0.764 0.970 1.000

AdaBoostClassifier Bin-BOW 0.920 0.814 0.783 0.961 1.000

LogisticRegression BOW 0.919 0.768 0.728 0.984 1.000

LinearSVC Bin-BOW 0.919 0.794 0.760 0.970 1.000

RandomForestClassifier Combined 0.918 0.800 0.768 0.965 1.000

NuSVC TF-IDF 0.918 0.800 0.768 0.965 1.000

ExtraTreesClassifier Bin-BOW 0.917 0.797 0.764 0.965 1.000

RandomForestClassifier Bin-BOW 0.915 0.800 0.768 0.961 1.000

ExtraTreesClassifier TF-IDF 0.914 0.806 0.776 0.956 1.000

SGDClassifier BOW 0.913 0.787 0.752 0.965 1.000

Perceptron BOW 0.913 0.787 0.752 0.965 1.000

SVC TF 0.910 0.796 0.764 0.956 1.000
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Model Feature Type f0.5 f2.0 Recall Precision Accuracy
RandomForestClassifier BOW 0.909 0.776 0.740 0.964 1.000

CalibratedClassifierCV BOW 0.909 0.750 0.709 0.978 1.000

XGBClassifier BOW 0.909 0.792 0.760 0.955 1.000

LogisticRegression TF-IDF 0.908 0.773 0.736 0.964 1.000

AdaBoostClassifier TF 0.906 0.795 0.764 0.951 1.000

XGBClassifier Bin-BOW 0.906 0.795 0.764 0.951 1.000

ExtraTreesClassifier Combined 0.904 0.798 0.768 0.947 1.000

RandomForestClassifier TF-IDF 0.904 0.798 0.768 0.947 1.000

ExtraTreesClassifier BOW 0.903 0.794 0.764 0.946 1.000

LinearSVC BOW 0.902 0.765 0.728 0.959 1.000

RandomForestClassifier TF 0.900 0.778 0.744 0.950 1.000

NuSVC TF 0.899 0.784 0.752 0.946 1.000

LogisticRegression TF 0.899 0.784 0.752 0.946 1.000

AdaBoostClassifier BOW 0.898 0.781 0.748 0.945 1.000

XGBClassifier TF 0.898 0.797 0.768 0.938 1.000

LogisticRegression Combined 0.895 0.757 0.721 0.953 1.000

XGBClassifier TF-IDF 0.895 0.790 0.760 0.937 1.000

XGBClassifier Combined 0.895 0.790 0.760 0.937 1.000

PassiveAggressiveClassifier BOW 0.892 0.799 0.772 0.929 1.000

PassiveAggressiveClassifier Bin-BOW 0.884 0.784 0.756 0.923 1.000

AdaBoostClassifier Combined 0.881 0.761 0.728 0.930 1.000

AdaBoostClassifier TF-IDF 0.881 0.761 0.728 0.930 1.000

MultinomialNB TF-IDF 0.880 0.855 0.847 0.888 1.000

NearestCentroid TF 0.879 0.742 0.705 0.937 1.000

MultinomialNB TF 0.878 0.851 0.843 0.888 1.000

BernoulliNB TF 0.878 0.685 0.638 0.970 1.000

BernoulliNB TF-IDF 0.878 0.685 0.638 0.970 1.000

BernoulliNB BOW 0.878 0.685 0.638 0.970 1.000

BernoulliNB Combined 0.878 0.685 0.638 0.970 1.000

BernoulliNB Bin-BOW 0.878 0.685 0.638 0.970 1.000

NearestCentroid TF-IDF 0.873 0.711 0.669 0.944 1.000

BaggingClassifier TF-IDF 0.872 0.740 0.705 0.927 1.000

BaggingClassifier Combined 0.871 0.737 0.701 0.927 1.000

BaggingClassifier TF 0.865 0.746 0.713 0.914 1.000

DecisionTreeClassifier TF 0.862 0.745 0.713 0.909 1.000

KNeighborsClassifier BOW 0.851 0.733 0.701 0.899 1.000

NearestCentroid Bin-BOW 0.849 0.673 0.630 0.930 1.000

RidgeClassifierCV Combined 0.847 0.770 0.748 0.876 1.000

DecisionTreeClassifier Combined 0.846 0.723 0.689 0.897 1.000

BaggingClassifier Bin-BOW 0.845 0.686 0.646 0.916 1.000

KNeighborsClassifier TF 0.845 0.831 0.827 0.850 1.000

NuSVC BOW 0.845 0.693 0.653 0.912 1.000

BaggingClassifier BOW 0.840 0.669 0.626 0.919 1.000

KNeighborsClassifier TF-IDF 0.840 0.836 0.835 0.841 1.000

DecisionTreeClassifier TF-IDF 0.830 0.700 0.665 0.885 1.000

SVC BOW 0.822 0.639 0.595 0.910 1.000

DecisionTreeClassifier BOW 0.802 0.708 0.681 0.840 1.000

DecisionTreeClassifier Bin-BOW 0.788 0.673 0.642 0.836 0.999

MultinomialNB LIWC 0.756 0.676 0.653 0.787 0.999

LogisticRegression LIWC 0.754 0.634 0.602 0.805 0.999

ExtraTreeClassifier TF-IDF 0.753 0.637 0.606 0.802 0.999

KNeighborsClassifier Bin-BOW 0.752 0.563 0.520 0.846 0.999

RidgeClassifierCV BOW 0.736 0.522 0.476 0.852 0.999

ExtraTreeClassifier BOW 0.723 0.593 0.559 0.780 0.999

ExtraTreeClassifier Bin-BOW 0.714 0.604 0.575 0.760 0.999

ExtraTreeClassifier TF 0.714 0.554 0.516 0.789 0.999

RandomForestClassifier LIWC 0.702 0.596 0.567 0.746 0.999

RidgeClassifier BOW 0.693 0.492 0.449 0.803 0.999

ExtraTreeClassifier Combined 0.693 0.616 0.595 0.723 0.999

CalibratedClassifierCV LIWC 0.691 0.470 0.425 0.818 0.999

RidgeClassifier LIWC 0.690 0.492 0.449 0.797 0.999

XGBClassifier LIWC 0.683 0.573 0.543 0.730 0.999

RidgeClassifierCV LIWC 0.682 0.477 0.433 0.797 0.999

AdaBoostClassifier LIWC 0.680 0.595 0.571 0.714 0.999

LinearSVC Combined 0.678 0.647 0.638 0.689 0.999

NearestCentroid BOW 0.677 0.421 0.374 0.848 0.999

BaggingClassifier LIWC 0.676 0.562 0.531 0.726 0.999

MLPClassifier LIWC 0.674 0.490 0.449 0.770 0.999

CalibratedClassifierCV Combined 0.672 0.450 0.406 0.805 0.999

LinearSVC LIWC 0.669 0.627 0.614 0.684 0.999

ExtraTreesClassifier LIWC 0.662 0.569 0.543 0.701 0.999

MultinomialNB Combined 0.658 0.795 0.854 0.622 0.999

ExtraTreeClassifier LIWC 0.628 0.556 0.535 0.657 0.999

KNeighborsClassifier Combined 0.619 0.535 0.512 0.653 0.999

KNeighborsClassifier LIWC 0.619 0.535 0.512 0.653 0.999

DecisionTreeClassifier LIWC 0.617 0.538 0.516 0.648 0.999

DummyClassifier Combined 0.610 0.779 0.858 0.569 0.999
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Table 6 continued from previous page
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
SGDClassifier Combined 0.610 0.779 0.858 0.569 0.999

DummyClassifier TF 0.610 0.779 0.858 0.569 0.999

DummyClassifier TF-IDF 0.610 0.779 0.858 0.569 0.999

DummyClassifier LIWC 0.610 0.779 0.858 0.569 0.999

BernoulliNB LIWC 0.610 0.779 0.858 0.569 0.999

SGDClassifier LIWC 0.610 0.779 0.858 0.569 0.999

DummyClassifier Bin-BOW 0.610 0.779 0.858 0.569 0.999

DummyClassifier BOW 0.610 0.779 0.858 0.569 0.999

NuSVC LIWC 0.607 0.339 0.295 0.824 0.999

NuSVC Combined 0.607 0.335 0.291 0.832 0.999

PassiveAggressiveClassifier LIWC 0.592 0.730 0.791 0.557 0.999

SVC Combined 0.460 0.249 0.216 0.639 0.999

NearestCentroid LIWC 0.454 0.295 0.264 0.554 0.999

NearestCentroid Combined 0.454 0.295 0.264 0.554 0.999

SVC LIWC 0.403 0.198 0.169 0.614 0.999

PassiveAggressiveClassifier Combined 0.132 0.052 0.043 0.268 0.999

Perceptron LIWC 0.122 0.034 0.028 0.875 0.999

Perceptron Combined 0.122 0.034 0.028 0.875 0.999

Table 7: Full table of SBB test result
Model Feature Type f0.5 f2.0 Recall Precision Accuracy
RandomForestClassifier SBB 0.952 0.833 0.799 1.000 1.000

DecisionTreeClassifier SBB 0.952 0.833 0.799 1.000 1.000

LabelSpreading SBB 0.952 0.833 0.799 1.000 1.000

ExtraTreesClassifier SBB 0.952 0.833 0.799 1.000 1.000

MLPClassifier SBB 0.952 0.833 0.799 1.000 1.000

XGBClassifier SBB 0.935 0.829 0.799 0.976 1.000

Tuned Soft Voting Ensemble SBB 0.935 0.829 0.799 0.976 1.000

Soft Voting Ensemble SBB 0.928 0.828 0.799 0.967 1.000

BaggingClassifier SBB 0.921 0.827 0.799 0.958 1.000

Tuned XGB SBB 0.911 0.825 0.799 0.944 1.000

Tuned RF SBB 0.911 0.825 0.799 0.944 1.000

KNeighborsClassifier SBB 0.839 0.809 0.799 0.849 1.000

Tuned KNN SBB 0.833 0.807 0.799 0.842 1.000

CalibratedClassifierCV SBB 0.709 0.424 0.374 0.913 0.999

LinearSVC SBB 0.666 0.750 0.783 0.642 0.999

LogisticRegression SBB 0.629 0.746 0.795 0.598 0.999

SVC SBB 0.624 0.731 0.776 0.595 0.999

SGDClassifier SBB 0.572 0.725 0.795 0.534 0.999

RidgeClassifierCV SBB 0.472 0.659 0.760 0.431 0.999

RidgeClassifier SBB 0.452 0.656 0.772 0.410 0.998

LinearDiscriminantAnalysis SBB 0.433 0.646 0.772 0.390 0.998

MultinomialNB SBB 0.376 0.560 0.669 0.339 0.998

Perceptron SBB 0.255 0.522 0.799 0.218 0.996

AdaBoostClassifier SBB 0.241 0.476 0.705 0.207 0.997

PassiveAggressiveClassifier SBB 0.165 0.406 0.791 0.138 0.994

BernoulliNB SBB 0.129 0.334 0.713 0.107 0.993

GaussianNB SBB 0.119 0.319 0.728 0.098 0.992

NearestCentroid SBB 0.072 0.221 0.705 0.059 0.987

QuadraticDiscriminantAnalysis SBB 0.015 0.057 0.917 0.012 0.913

DummyClassifier SBB 0.000 0.000 0.000 0.000 0.999

110



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Endre U
lberg

Endre Ulberg

"I can teach you to do that'': On the
analysis and prediction of sexual
grooming and predatory behaviour
against children in online chat
forums

Master’s thesis in Informatics
Supervisor: Björn Gamback
February 2022

M
as

te
r’s

 th
es

is


	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory
	Preprocessing
	Data Preprocessing
	Text Preprocessing
	Stop Words
	Lemmatisation
	Normalisation


	Text representations
	Bag-of-words
	Binary bag-of-words
	Term Frequency
	Term Frequency-Inverse Document Frequency
	N-grams
	MoodBook
	Linguistic Inquiry and Word Count

	Algorithms
	Supervised Learning
	Ensembles
	Hyperparameter tuning
	Grid Search
	Random Search
	Baysian search


	Evaluation Metrics
	Tools

	Related Work
	Topology and characteristics of the field
	Literary Review
	Structured Literary Review
	Search Strategy
	Review protocol
	Evaluation of the SLR

	Snowballing and reverse searching

	Sexual Predator Identification
	Early work
	PAN 12
	LCT and Chatcoder
	Early dectection
	Nature describing features
	Deep Learning

	State of the art

	Data
	Datasets
	Pan12
	Locard
	Twitch
	ChatCoder 2
	Acquisition of datasets

	Unobtained datasets
	MovieStarPlanet
	Surete du Quebec
	Perverted Justice

	Data preprocessing

	Architecture
	High-level description
	Two-Stage Classifiers
	Preprocessing
	Suspicious Conversation Identification
	Interlude
	Victim from predator
	Evaluation

	Social Behavioural Biometrics classifiers
	Features
	Classifier


	Sexual Predator Identification
	Experimental Plan
	Shared SPI experimental setup
	Two-stage classifiers
	Suspicious Conversations Identification
	Victim from Predator disclosure
	Other test performed

	Social Behavioural Biometrics classifier
	Generation of features
	Model selection

	Validation results
	Suspicious Conversations Identification
	Victim from Predator disclosure
	Social Behavioural Biometrics

	Hyperparameter tuning
	Suspicious Conversations Identification
	Victim from Predator
	Social Behavioural Biometrics classifiers

	Test results

	Evaluation and Discussion
	Evaluation
	Results analysis
	Per stage performance
	Proposed Solution

	Validation and test sets
	Features
	Algorithms
	Hyperparameter tuning
	Ensembles

	Social Behavioural Biometrics

	Discussion

	Conclusion and Future Work
	Contributions
	Future Work
	Automatic exploration of unknown datasources
	Prefilter settings
	Combining solutions from other researchers
	AutoML


	Bibliography
	Appendices
	Validation Results
	Test Results


