
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Alakbar Mammadov

Building a prototype of web API
honeypot for Electric Vehicle
Charging Network operators

Master’s thesis in Information Security
Supervisor: Prof. Dr. Bernhard Hämmerli
Co-supervisor: Øyvind Anders Arntzen Toftegaard
December 2022

Alakbar Mammadov

Building a prototype of web API
honeypot for Electric Vehicle Charging
Network operators

Master’s thesis in Information Security
Supervisor: Prof. Dr. Bernhard Hämmerli
Co-supervisor: Øyvind Anders Arntzen Toftegaard
December 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Building a prototype of web API honeypot for
Electric Vehicle Charging Network operators

Alakbar Mammadov

CC-BY 2022/12/15

Abstract

Critical infrastructure is one of the main targets for malicious actors. Due to the
crucial dependencies of public services on electric power, all components of the
power generation and distribution process are of great interest to adversaries.
Electric power distribution infrastructure keeps developing and offering new ser-
vices to its users. The development process involves the addition of new automa-
tion mechanisms, software, and hardware components. These developments come
at the cost of the increased attack surface and new security challenges. Electric
Vehicle charging networks are not an exception. Their nature imposes a highly
automated operations model with minimum human supervision. Application Pro-
gramming Interfaces are often used to control and monitor electric charging sys-
tems. It is a software intermediary used for communication between decoupled
computer programs. An Application Programming Interface may become subject
to cyberattacks and proper threat intelligence is therefore important. This work
develops a prototype of a web Application Programming Interface honeypot, mim-
icking an operational Electric Vehicle Charging Network management system. The
study proposes a proof of concept prototype, deployed in the Amazon Web Ser-
vices cloud, using automation tools. The contribution of the research is an afford-
able and scalable web Application Programming Interface Honeypot system, that
can be used by small and middle-size Electric Vehicle Charging Network operators
to collect valuable threat intelligence. The honeypot is a first step towards under-
standing the attack patterns against charging networks in order to build effective
defense mechanisms.

iii

Acknowledgments

I would like to thank my supervisors Prof. Dr. Bernhard Hämmerli (Department
of Information Security and Communication Technology at NTNU) and Øyvind
Anders Arntzen Toftegaard (Senior Adviser for The Norwegian Energy Regulatory
Authority) for their support and assistance. Their deep knowledge and profes-
sionalism were the most important contributing factors to my work. Continuous
support during evening hours and weekends made their contribution exceptional
and inspiring.

I would like to thank Dr. Sebastian Obermeier and his team (penetration tester
"Team 1") of Lucerne University of Applied Sciences and Arts for their assistance
in a simulation of a cyberattack. Also, I would like to thank security professional
Orkhan Yolchuyev (penetration tester "Team 2") for his assistance in testing the
solution.

Finally, I would like to express my infinite gratitude to my wife Rosanna, and
son Aslan for their love, patience, and understanding during all of my studies.

Alakbar Mammadov, Norway, December 2022

v

Contents

Abstract . iii
Acknowledgments . v
Contents . vii
Figures . ix
Tables . xi
Code Listings . xiii
1 Introduction . 1

1.1 Problem description . 2
1.2 Motivation . 4
1.3 Scope of the work . 5
1.4 Research questions . 6

1.4.1 Question 1 . 6
1.4.2 Question 2 . 6
1.4.3 Question 3 . 6

1.5 Claimed contribution . 6
2 State of the art . 9

2.1 Special Publications . 9
2.2 Related work . 11

2.2.1 Honeypot systems . 11
2.2.2 Web API . 13
2.2.3 Web honeypot systems . 14

2.3 Interview with EVCN operator . 16
2.4 Relating state of the art to EVCN web API honeypot 17

3 Methodology . 21
3.1 Problem Statement . 21
3.2 Research Objectives . 21
3.3 Research design . 21
3.4 State of the art review . 22
3.5 Prototyping . 23

3.5.1 Prototype model . 23
3.5.2 Expected functionality . 24
3.5.3 Expected outcome . 24

4 Prototyping . 27
4.1 EVCN REST API structure . 27

vii

viii CoPCSE@NTNU: An NTNU Thesis Document Class

4.1.1 General architecture . 27
4.2 AWS architecture, core components . 28

4.2.1 AWS DynamoDB . 29
4.2.2 AWS IAM . 30
4.2.3 AWS Lambda . 31
4.2.4 AWS API Gateway . 32
4.2.5 AWS CloudWatch . 33
4.2.6 Automate the deployment of the API honeypot 33

4.3 Optional components . 34
4.3.1 Authentication and HTTP methods implementation 35
4.3.2 Mapping a custom domain name for the REST API 35
4.3.3 "Leaking" API settings to the Internet 35
4.3.4 AWS S3 . 36
4.3.5 Processing collected logs . 36
4.3.6 Parsing logs using Python application and storing the data

in JSON format . 37
4.3.7 Alternative way of parsing logs using AWS Custom Access

Logging . 39
4.3.8 Visualization of the collected data using Grafana and InfluxDB 39

5 Results . 41
5.1 Test deployment . 41
5.2 Data visualization . 42

6 Discussion . 47
6.1 Findings . 47

6.1.1 Advantages of the web API honeypot 49
6.1.2 Limitations of the web API honeypot 50

6.2 Answering questions . 50
6.2.1 Research question 1 . 50
6.2.2 Research question 2 . 50
6.2.3 Research question 3 . 51

7 Conclusion . 53
7.1 Study and achievements . 53
7.2 Future work . 54

Bibliography . 55
A API deployment automation . 61

A.1 install.sh . 61
A.2 logparser_batch.py . 61
A.3 logparser_realtime.py . 61
A.4 rollback.sh . 61
A.5 aws_policies folder . 61
A.6 cnDeleteFunction.py, cnGetFunction.py, cnPutFunction.py 62
A.7 db-var.env . 62
A.8 docker-compose.yml . 62

Figures

1.1 Global electric car stock . 2

2.1 EVCN communication diagram . 18

4.1 High-level architecture of the REST API honeypot 28
4.2 Flowchart . 29
4.3 Prototype API structure . 32
4.4 Elbrousgroup EVCN web-site . 36
4.5 "logparser.py" application workflow diagram 38

5.1 Team 1 IP addresses . 42
5.2 Team 1 statistics on HTTP methods . 43
5.3 Team 1 payload statistics . 44
5.4 Team 2 IP addresses . 44
5.5 Team 2 statistics on HTTP methods . 45

ix

Tables

2.1 Threat Categorization and Frequency Statistics[17] 12

3.1 Scientific databases search results . 22

xi

Code Listings

4.1 AWS CLI create DynamoDB table . 30
4.2 AWS CLI create IAM role and policy . 30
4.3 Python Lambda handler for PUT method 31

xiii

Chapter 1

Introduction

The importance of digital operations continues to increase with their advance to
traditionally offline or hybrid aspects of life. Services and utilities used in daily
life extended their reach to customers by adding an online interface to their busi-
nesses. Nowadays it is difficult to imagine any successful business having no pres-
ence online. Fully automated service became an operational necessity for many
sectors of modern business. Transportation as one of the crucial services utilized
daily is also influenced by this trend. A new generation of vehicles fully running
on electric energy introduced new routines due to the way they top up their "fuel
tanks".

Once an attractive concept and exotics rather than a practical tool, electric
vehicles (EVs) expanded dramatically, entering world markets and forcing manu-
facturers to rethink their vision of the future of mobility. In 2021 EV sales reached
almost 10 percent of global car sales. This rapid growth implies quick actions to
build a sufficient infrastructure for EV charging. Although they existed before, EV
charging solutions have never made it to nationwide or even regional networks
until the 21st century. In order to work their way to the mass market, challenges
like business justification and cost-effectiveness of EVs had to be answered and
paired with green initiatives advocating for lowering CO2 emissions. This has
never become the case before the last decade. Today humanity is witnessing a
different picture. Electric vehicles made their way to the mass market of passen-
ger cars and now are on the way up on the market of public transport and trucks.
These developments imply a new burst in the number of EVs on the roads and
growing demand for EV charging infrastructure. According to the last report by
the International Energy Agency [1], in 2021 the number of EVs worldwide in-
creased to 16.5 million. That is three times more than in 2018. Figure 1.1 depicts
a global electric car stock.

Tesla became one of the pioneering manufacturers in the world, offering EVs
and public charging solutions in one package from a single vendor. The rest of the
car manufacturers took rather a different approach, focusing on car production
and delegating the EV charging infrastructure development to other market play-
ers. Also, each region in the World decided to introduce its own standards for the

1

2 CoPCSE@NTNU: An NTNU Thesis Document Class

Figure 1.1: Global electric car stock[1]

charging interfaces. That led to some differences in physical charging interfaces
for cars produced in different regions.

During the last decade, global EV manufacturers acknowledged the counter-
productiveness of having different charging standards. To ensure functional and
operational safety and efficiency, they started drifting towards unified standards,
covering car batteries, onboard charging mechanisms, electric power specifica-
tions, and physical interfaces. Although the absolute consensus on charging stand-
ards and interfaces is yet to be achieved worldwide, some patterns and tendencies
to unification can be witnessed based on the geography of manufacturing. Auto-
makers strive to achieve common charging system architecture by implementing
international standards and security requirements. European Union Agency For
Network and Information Security published ”Mapping of OES security require-
ments to specific sectors” in 2017 [2]. The document is intended for operators
of essential services and provides a mapping of security requirements to sector-
specific information security standards.

1.1 Problem description

Scientific efforts in the area of EV charging opened new perspectives, offering busi-
ness opportunities. EVs previously seen as a challenge to power grids can become
a stabilizing resource with the implementation of well-thought smart technolo-
gies [3]. Adding more intelligence into the power grid and peripheral components
comes at the cost of increased demand for computational capabilities of electricity
networks and electric cars. The level of integration necessary for these types of
operations introduces new security risks and extends a potential attack surface

Chapter 1: Introduction 3

of the critical infrastructure. At the same time, the growing demand for mobility
and the existence of regional and global charging providers imply further integ-
ration of various charging, billing, banking, and identity providers, offering new
business opportunities and technological advances.

The complexity of modern digital solutions and heavy reliance on them due to
the necessity to maintain a highly automated operational model implies a secure
and reliable way of interconnection and data exchange between various players,
representing different industries. As in many other modern businesses, the uni-
fied means of digital integration and communication widely used in EV charging
networks include the Application Programming Interface (API) component [4],
linking remote endpoints and multi-vendor products in one single solution.

Due to the nature of the services provided, EV charging network (EVCN) oper-
ations imply software integration of the EVCN management system with remote
endpoints, billing systems, identity providers, and other third-party organizations.
APIs help to solve yet another challenge of integrating regional EVCNs into the
infrastructures of global EV charging providers. Global EVCNs do not own every
and each charger they operate. They provide umbrella services for vehicles trav-
eling internationally. For example, a Norwegian EV driver does not need a user
account for every EVCN he is going to use on his way from Norway to Italy. Global
EVCN operators use API integration and provide single sign-on and single-window
billing services.

API is comprised of protocols and definitions helping to integrate software
applications. It is an interface accepting requests from its users and acting accord-
ing to requests received. Users do not need to know the internals of the software
behind the API they query. For example, the EVCN back-end management sys-
tem can communicate with charger endpoints using (OCPP) protocol [5]. But
applications using the back-end management system as an intermediary do not
need to be OCPP-complaint and can communicate to an API using serialized sets
of instructions. The role of an API, in this case, is to receive requests and pro-
cess them according to the API specifications, in other words, "translate" them to
OCPP-compliant commands.

APIs follow a generic design that is specific to its type and operate based on
the pre-agreed sets of commands. Web APIs use a well-known and mature net-
work protocol Hypertext Transfer Protocol (HTTP) [6] as a transport. A consumer
has to be familiar with HTTP request and response mechanisms and the resource
structure of the API and this knowledge is enough for successful communication.
APIs differ by the level of their exposure to the open Internet. They can be open
to the public or partners, intended for internal use, or composite.

The fact that APIs became a central point of data exchange between various
mechanisms used in an EVCN also turned them into attractive targets for mali-
cious actors. Thus, understanding of techniques used by attackers is important for
building effective defense mechanisms.

The lack of threat intelligence data is a serious problem, negatively influen-

4 CoPCSE@NTNU: An NTNU Thesis Document Class

cing digital defense strategy. Collecting threat intelligence is not an obvious task
that can be solved by implementing generic solutions. Any given digital infrastruc-
ture has its own specifics and serves the core business. EV charging networks can
be seriously disrupted or damaged by successful attacks against their APIs. This
work is addressing the problem of collecting threat intelligence using a decoy API,
pretending to be a part of operational EVCN.

1.2 Motivation

Increased usage and high reliance on API solutions may attract more attention
from malicious actors. Depending on the level of exposure of an API to external
resources on the Internet, the risk of being penetrated by an adversary remains
quite high. The nature of API technology dictates that it is an interface with en-
abled remote access for various partners, internal and external to the organization.
Along with security mechanisms implemented to protect access, it is important to
have additional controls, strengthening the overall security level. To maintain un-
interruptible and secure operations and win customers it is necessary to build
an effective defense strategy based on a solid understanding of potential secur-
ity threats. Although it is not possible to predict the time and means of attacks
against digital infrastructure, continuously collected and analyzed threat intelli-
gence data can help to mitigate the effects of security breaches or even prevent
them.

Cyberthreats can take many different forms and shapes. Sometimes it is pos-
sible to disrupt digital operations using very obvious and well-known technolo-
gies, not intended at all for malicious activities. Brokenwire is one example of such
an attack, capable of interrupting control communication between EV and char-
ger, and causing charging session to stop [7]. According to the team of security
professionals who discovered the vulnerability, the attack requires off-the-shelf ra-
dio hardware and minimal technical knowledge. In other cases, the sophistication
level of attacks is well beyond the level of technical expertise and capabilities of
an average cybercriminal. The attack against a power grid in eastern Ukraine is an
example of well prepared and thoroughly executed operation, causing a massive
power outage for hundreds of thousands of civilians. [8]

The motivation for building the web API honeypot is the attempt to develop
a better understanding of adversaries and their means of operations. The data
collected using honeypot systems and analyzed afterward is important for min-
imizing negative impact in case of security incidents or breaches. Honeypot sys-
tems mimic the behavior of real IT systems, attracting potential intruders to attack
them. Information about techniques and mechanisms used by offenders believing
that they attack a real digital system is priceless for security professionals invest-
igating them.

This work presents a decoy web API, mimicking one of the web APIs used in
EVCN management systems. Specifically, the presented API is an imposter for the

Chapter 1: Introduction 5

production Application Programming Interface managing endpoint EV charger
devices. Web API honeypot collects threat intelligence data about attacks conduc-
ted against a fictitious organization providing EV charging services. There is not
much publicly available information about research or investigations conducted
by real EVCN operators at the moment. Probably, businesses conducting similar
experimentation and research prefer to keep the results for themselves rather than
share the information with the general public and competitors.

1.3 Scope of the work

The scope of the work consists of three main parts. The first part provides an in-
sight into the problem by investigating previous work, and special publications,
and conducting an interview with the technical staff of one of the major EVCN
operators in Scandinavia. Previous work helps to gather necessary information
about existing research and developments, identifying missing parts. Special pub-
lications contribute to formulating an understanding of the current standards and
regulations. The interview aims to provide insight into the way EVCNs are cur-
rently organized and their usage of APIs. It helps to understand how the data
flow within EVCN digital infrastructure is organized.

The second part of the work is dedicated to designing and actual deployment
of the prototype of the web API honeypot solution in the AWS cloud. Some of the
AWS solutions, such as serverless Lambda functions ensure cost-effective archi-
tecture, utilizing resources on-demand, instead of allocating them permanently.
There is no need for specialized hardware or software to deploy the prototype.
It is enough to use a Free Tier 1-year AWS subscription in order to deploy the
solution and have it up and running for testing purposes.

Depending on the traffic and load, the AWS resource utilization will change
and has to be monitored and tweaked by the user himself. It is up to the users of the
API honeypot how they organize their databases and the level of data exposure to
the API. API resources, means of authentication, HTTP methods implemented and
other infrastructure-specific details are to be adapted for each specific scenario the
API honeypot is going to be used for. Although an example API honeypot setup
is presented in Chapter 4 "Prototyping", the main goal of this work is to provide
a general model or a prototype of the web API honeypot, rather than a full-scale
solution.

The final part of the scope is to show one of many options to process the data
collected through logs and organize them in a comprehensive way, enabling users
to analyze the collected data. Logs will be collected using the AWS CloudWatch
service and parsed using a custom application written for this study in Python
programming language. The application will output the parsed data in JavaScript
Object Notation (JSON) [9] format and write it to a local file and a database. JSON
is widely accepted as a common data format and data represented in JSON can
be used in almost any modern data analysis and visualization tool. This work will

6 CoPCSE@NTNU: An NTNU Thesis Document Class

use the InfluxDB database to store the sample data and the Grafana visualization
front-end tool to visualize it.

1.4 Research questions

To guide the research and organize it into an effective structure, the following
research questions are formulated.

1.4.1 Question 1

Is it advisable to build a web API honeypot for EV charging networks?

1.4.2 Question 2

How to build a web API honeypot solution in the AWS cloud with an on-demand
resource utilization design?

1.4.3 Question 3

To what degree the deployment of the web API honeypot can be automated?

1.5 Claimed contribution

Building an API from the systems development point of view is not a dramatically
difficult task for big companies with enough technical resources. But for middle-
size and especially small EVCNs, it is not as trivial as it looks. Small and middle-
size EVCNs might not have enough hardware resources and sufficient staffing to
build, operate and support an on-premise web API honeypot solution from scratch.
API can be built in a variety of ways, including the provisioning of server instances
and other components. That will imply unavoidable investment in software, hard-
ware, and a certain waste of resources when the solution is idling or not in use.
Also, it will require a certain level of expertise to set up and maintain underlying
services on the systems and network level. The main contribution of this work is
a web API honeypot solution built using cloud automation tools and mechanisms,
reducing setup and maintenance costs. There is no need for on-premise hardware
infrastructure, software licenses, or trained personnel to maintain the underlying
services, such as systems and networks, in order to spin up and run the web API
honeypot.

Another contribution of this work is a proposed model for security log pro-
cessing and extraction of the data of interest. Having a decoy API alone, produ-
cing tens or hundreds of thousands of security logs daily is not of much help for
security engineers. The manual processing and extraction of this amount of data
within a reasonable timeframe are not possible. This work proposes a model of
how to do it and how to organize and visualize extracted data.

Chapter 1: Introduction 7

This work will assist small and middle-size EVCN operators to build and op-
erate their own honeypot operation in the AWS cloud within minutes. The cost
of the solution will be negligible compared to the benefits it brings. The data col-
lected will help EVCN operators to understand their adversary, and identify the
source IP addresses, methods, techniques, level of technical sophistication, and
intensity of the attacks. The overall value of the research is important because
deploying and running a web API honeypot is a first step towards securing the
EVCN network.

This chapter described the problem and explained the motivation for the pro-
ject. Also, it set research questions and described the scope of the work. The next
chapter will provide detailed information on the literature review, special public-
ations, and the interview conducted on the topic.

Chapter 2

State of the art

This chapter provides information on the background and related work in the area.
The first section reviews special publications, concerning API security and stand-
ards. APIs are common communication mechanisms adopted worldwide. Certain
standards and regulations are of great importance to maintain a minimum re-
quired baseline in terms of API security. The second section reviews previous work
on web APIs and honeypot systems. API as a technology went through various
transformations in the last decade and there is a significant number of publica-
tions on the topic. The literature of interest is identified by the specific topics.
The literature review sheds light on honeypot systems as an important tool for
collecting threat intelligence data. The third section provides highlights from the
interview conducted with the team of technical engineers working for one of the
major EVCN operators in Scandinavia. The last subsection concludes the chapter
and shows how the state of the art is related to the project.

2.1 Special Publications

The Confidentiality, Integrity, and Availability triad (CIA) is a fundamental prin-
ciple of cybersecurity widely used since the 1980s. The National Institute of Stand-
ards and Technology (NIST) in its publication "Framework for Improving Critical
Infrastructure Cybersecurity" [10] proposes a set of activities based on the CIA
triad model to achieve a specific security outcome. Core framework functions are
the following ones - Identify, Protect, Detect, Respond and Recover. Each function
has categories and subcategories, providing detailed insight into specific technical
or management activities. The Detect function of the CIA triad includes categor-
ies such as Anomalies and Events, Security Continuous Monitoring, and Detection
Processes.

ISO/IEC 27005:2022 standard provides guidance on managing information
security risks[11]. It assists organizations to perform a security risk assessment
and treatment activities. The information security risk management process con-
sists of two main cycles - strategic and operational. On the strategic level the

9

10 CoPCSE@NTNU: An NTNU Thesis Document Class

assets, sources of risk, and threats are considered in the organization-wide con-
text. The operational cycle relies on the inputs from the strategic level and focuses
on risk assessment review and updates. To evaluate the risks, the criteria of risk
acceptance have to be determined, considering several influencing factors. Oper-
ational activities, processes, and supplier relationships are among those factors.
Considering the nature of APIs widely used for data communication over the In-
ternet, their usage influences the factors mentioned and consequentially the cri-
teria for overall risk assessment. Organizations need to analyze and understand
the level of exposure to certain risks in order to establish criteria for risk accept-
ance. Assessing the likelihood of risk scenarios and events is a crucial activity of
the risk assessment process. Threat intelligence could be one of the key factors
contributing to determining the likelihood criteria and overall risk assessment.

Another publication by the NIST is "Security Strategies for Microservices-based
Application Systems: SP 800-204" [12]. The publication covers APIs and API gate-
ways due to the increasing usage of APIs in a microservices architecture. API
gateways are described as the entry points for microservice applications, helping
to perform protocol translations, route incoming requests to the relevant down-
stream services and serve as the means of access to the back-end services. Since
the crucial role API gateways play in modern infrastructures, NIST recommends
equipping them with adequate infrastructure services such as authentication, ac-
cess control, service monitoring, attack detection and response, security logging,
and other necessary services. Security logging and monitoring data are emphas-
ized as a source of crucial security data, required for organizing adequate defense
against potential attacks. The publication suggests that security monitoring should
be implemented on the gateway and application levels to detect unexpected be-
havior. Input validation failures and attempts to feed unexpected parameters to
API are obvious signs of injection attacks and should be monitored for.

The "API technical and data standards" guidance by Central Digital and Data
Office UK provides general recommendations on designing, building, and oper-
ating APIs [13]. The publication provides recommendations on response data
formats, naming best practices, performance considerations, and other practical
points. Also, it emphasizes the importance of designing and hosting API securely.
Data and application-level security, auditing, and monitoring are noted as import-
ant components in API security.

"API security project" by The Open Web Application Security Project (OWASP)
focuses on strategies to defend against API security risks [14]. Among various
design issues found in modern APIs, the most notorious ones are related to broken
object-level authorization, broken user authentication, excessive data exposure,
lack of resource control, broken function-level authorization, various types of se-
curity misconfiguration, and insufficient logging and monitoring. Logging of ac-
cess data is an obvious security precaution. Access logs are a relatively easily col-
lected type of data, contributing to cybersecurity risk analysis. It is expected that
any production API has a sufficient level of security logging enabled.

Chapter 2: State of the art 11

The UK National Cyber Security Centre provides general guidance on the cy-
bersecurity design principles for critical national infrastructure [15]. Although the
guidance is not specific to API security, it covers 5 main principles, applicable in
order to design secure cybersystems. A deep understanding of a system design is
one of the main principles. It is followed by other recommendations such as mak-
ing compromise difficult, minimizing potential disruption, increasing chances of
quick detection of compromise, and reducing the impact of a compromise.

2.2 Related work

The next few sections will review the existing work on the topic.

2.2.1 Honeypot systems

Biedermann et al (2012) [16] conducted research on honeypot systems in the
cloud computing. The design proposes a solution for users of cloud computing
services, offering Infrastructure-as-a-Service (IaaS). When an attack against the
production system is detected by the honeypot controller system, the dynamic
honeypot architecture clones it into a new honeypot virtual machine (VM), ex-
cluding sensitive data. The attack is redirected from the production system to the
honeypot VM for further analysis without risking the production data. To avoid in-
terruption of the attack while creating a clone of the production system, the attack
is delayed and seamlessly transitioned to the honeypot VM after it is provisioned.
To save time and avoid suspicion, the honeypot VM is not booted from scratch but
live cloned instead, copying RAM. The file system is created from the snapshot of
the target VM storage, with the subsequent step of removal of the sensitive data.

The whole process of cloning and diverging the attacker to a honeypot node
takes a few seconds. The attacks are detected using events, triggering the honey-
pot controller to action - the number of new connections from the same source,
and content of the incoming and outgoing payload. The number of rules can be
extended and shaped for each infrastructure the dynamic honeypot solution is
used for. The authors explain that their goal is to prove the feasibility of the ap-
proach they offer, not the actual data collection. After the all necessary informa-
tion about the attack is collected and extracted, the attacker is banned from the
network and the honeypot VM is terminated. The research emphasizes the im-
portance of honeypot systems and how they can help to learn from attacks and
discover vulnerabilities and configuration flows.

Ryandy et al (2020) [17] research categories of threat information collected
from honeypots. In their attempt to analyze security threats, the authors invest-
igate network traffic and payload artifacts. The network traffic analysis is import-
ant to understand the adversary’s intentions and behaviors. The details such as
domain name, IP address, and their relationship can help with revealing histor-
ical information about them and calculation of reputation scoring. The correlation

12 CoPCSE@NTNU: An NTNU Thesis Document Class

analysis of such details is one of the key tasks for cybersecurity teams. Payload ar-
tifacts are responsible for executing a harmful activity to inflict damage on the
target. To investigate the payload, it is often necessary to use a sandbox or isol-
ated environment where malicious code can be safely executed and observed.
The information gathered from network traffic and payload analysis is attributed
to threat intelligence.

Threat intelligence paired with contextualized organizational threat analysis
represents valuable information, raising security awareness and contributing to
a better defense strategy. The research proposes a threat research framework XT-
Pot, consisting of four major stages - data collection, data processing, analysis,
and evaluation. The experiments conducted show that attackers spent most of
their time trying to log in and doing a network-level reconnaissance. Another
interesting observation is that the number of attacks is peaking during office hours
on workdays. Table 2.1 shows the table of threat categories compiled during the
experiment.

Table 2.1: Threat Categorization and Frequency Statistics[17]

Threat Category Total Threat Category Total
Bruteforce 397719 Download tools 667

Profiling hardware 13072 Covering track 371
Profiling system 10054 Removing previously used tools 314

Profiling Linux tools 4471 Security bypass 56
Execution of tools 3291 Setup/Modify env PATH 40

Profiling file system 2742 Leaving mark/Narcissism 28
Enumerating task/process 2615 Copy of file 25

Enumeration login user 2614 Linux tool execution 15
SSH account config 2614 Setup persistence on boot 8

Privilege modification 2614 Silent run of tools 4

The research concludes with the importance of threat intelligence for the iden-
tification and categorization of security threats.

Ng et al (2018) [18] provide an overview of specialized honeypot applica-
tions. Web server-based and client-based honeypots, worm detection, bot detec-
tion, honeytoken concept, anti-phishing honeypot, insider detection honeypot,
and advanced persistent threat honeypot systems are explained in detail. Cheh
et al (2021) [19] analyzed OpenAPI specifications for security design issues. The
authors acknowledge the complexity of modern web APIs and the challenges for
security analysis. They propose a semi-automatic approach for security analysis
and modeling of the OpenAPI specification. Another publication by Diaz-Rojas et
al (2021) [20] states that the majority of the reported threats against web APIs
are related to network traffic. The study proposes a wide variety of techniques and
methods that can be implemented on the design level to defend against known
web API threats.

Chapter 2: State of the art 13

2.2.2 Web API

Sohan et al (2015) [21] conducted a case study on the evolution of web API
technologies. The authors acknowledge the importance of web API as a crucial
interconnectivity mechanism, providing a cost-effective way of communication
between applications. This is achieved at the cost of building unavoidable de-
pendencies between interconnecting parties. Issues like backward compatibility,
interoperability challenges to evolving web APIs, and scrupulous documentation
can easily become a problem, if not addressed.

Wittern et al (2017) [22] conducted research on web API consumption and
challenges related to making calls to web APIs. The work acknowledges an in-
crease in the usage of web APIs and their significance in invoking third-party code.
The work focuses on two main research threads - web API specification curation
and static analysis of web API calls. In traditional APIs, the calling side down-
loads the local library and has great control over the code called. Web APIs do not
use specific libraries. Instead, they use generic web technologies such as HTTP
for transport and XML or JSON formats for data serialization. It is not known to
a client whether her call has a correct signature including request payload and
parameters until the actual call has been executed. Also, there are synchroniza-
tion issues of a web API call in a Software Development Kit (SDK) used with the
actual call. Finally, taking into account the remote nature of web services, all kinds
of quality of service issues are of concern.

Web APIs bring a significant level of flexibility for service integration and re-
lieve clients from the mandatory usage of certain software libraries. At the same
time, web APIs require well-documented instructions to create specific signatures.
Web APIs do not provide out-of-the-box instructions to the clients, describing their
interfaces. OpenAPI specification can be a part of the solution for automatically
creating, maintaining, and testing web API specifications. Otherwise, developers
on the client side need to have documentation, describing the structure of a web
API. The research emphasizes a problem in web APIs, lacking traditional compile-
time error checking. The solution proposed is a static checker, extracting the con-
tent of requests and analyzing them for consistency with published web API spe-
cifications.

Tello-Rodriguez et al (2020) [23] proposed a design guide for building web
APIs. The authors emphasize the importance of the usability of a web API in order
to ensure a positive developer experience, working on client applications consum-
ing the API. ISO/IEC 25010 is taken as a base to define usability, comprising ef-
fectiveness, efficiency, and satisfaction. The important characteristics of usability
are ease of use, intuitiveness, and less need for documentation browsing.

Wilde (2018) [24] published a work on web APIs, discussing the difference
between the usage of web resources by humans and the utilization of web APIs.
While humans interact with the web using client software such as internet browsers,
the APIs are utilized using programmatic tools and specific data structures such as
Extensible Markup Language (XML) [25], JSON, or Resource Description Frame-

14 CoPCSE@NTNU: An NTNU Thesis Document Class

work (RDF) [26]. Web APIs utilizing HTTP as a transport protocol can use a variety
of representation languages, data structures, and HTTP tools to interact with cli-
ents. Following predefined specifications to expose their services, web APIs relieve
their clients from the need to know their internals. Knowledge of the standards
and resource design of a specific web API is sufficient for its successful utilization.

2.2.3 Web honeypot systems

In his article on low-interaction honeypot systems, Watson (2015) [27] notes that
these systems evolved from very basic emulators to capable solutions, providing
valuable threat intelligence information. Low-interaction honeypots proved to be
useful in a number of scenarios, where cost and scalability are of importance.
Other factors, such as reduced operational risk, liability, and level of exposure
are just a few of many ones making low-interaction honeypot systems great and
useful tools.

Musch et al (2018) [28] conducted research on the automatic generation of
low-interaction web application honeypots (LIHPs). Although LIHP is a known
technique to mimic the behavior of a real web application, it is easily recogniz-
able by potential attackers using fingerprinting. The fingerprinting technique is
used to identify the type and version of a web server. The research proposes an
automatic honeypot generator called Chameleon. Chameleon communicates to
real web systems via network crawling of the public HTTP interface. Based on the
response, it builds response templates, imitating a web application.

The main advantage of the proposed system is to quickly build many LIHPs
with various web applications or different versions of the same application. It
provides an automated and highly scalable environment with as many LIHP in-
stances as required. Due to the lack of actual service behind response templates,
the computational resources involved in building a large number of imposter re-
sponses by Chameleon are negligible. The concept focuses on the pre-authentication
surface of the mimicked systems, trying to understand the types of systems chosen
for attacks and actual means of gaining access.

Chameleon divides operations into three phases. First, it probes a web resource
of interest with a web crawler and extracts the data. In the next phase, it parses the
extracted data, distinguishing static content from dynamic and processing them
differently. At the end of this phase response templates are generated, replacing
dynamic content with placeholder Chameleon’s syntax. The last phase is publish-
ing when the system responds to the requests of attackers. Choosing a matching
template for response in the publishing phase is the most challenging task be-
cause requests can be malformed or no suitable template found among generated
templates. To address the challenge, parts of HTTP requests were analyzed by
their significance with the following ranking list being produced in the order of
importance:

• HTTP method
• Path of the URL

Chapter 2: State of the art 15

• HTTP body(if PUT/POST) or query of the URL(otherwise)
• HTTP headers

The research is concluded with an average time of 18 minutes required for
the creation of an instance of honeypot and approximately 256 templates gener-
ated per Content Management System (CMS). The main problem of a honeypot
being recognized by using fingerprinting technique proved to be solved, due to
the similarity of templates generated with the real CMS systems.

Rist et al (2010) [29] conducted experimentation on a low-interaction web
honeypot Glastopf. The project proposes a web honeypot, emulating the behavior
of a web server in a way that is expected by intruders. One example is a Remote
File Inclusion vulnerability emulation. A response provided from a web server to
the attacker is sufficient to be recognized as valid. Another example is RFI Bot,
where a malicious file is executed on the web server, making the bot connect to
an Internet Relay Chat IRC network and listen to commands from the bot mas-
ter. Connecting many web servers in a botnet using this technique will cause an
orchestrated attack or Distributed Denial of Service (DDoS) attack against the
victims chosen.

The project also considers Local File Inclusion attacks by executing previously
injected code or obtaining security-critical information by running system files. To
attract potential attackers, the project relies on search engines and web crawlers
used by them. The solution is comprised of several sensors, linked via a Python
application called Central Database Daemon. The central database collects data
such as IP addresses, helping to identify and block attackers, and actual requests
sent via the web, revealing attack vectors and techniques. Glastopf honeypot is
equipped with a web interface, that visualizes statistics about attackers.

Chiapponi et al (2020) [30] present a platform to mimic an airline website,
luring Advanced Persistent Bots (APBs) and feeding them fake information. The
motivation behind the project is to combat the web crawling of airline web ap-
plications by third parties. The research aims to build a mock web application
emulating the behavior of a real airline web application, thus wasting resources
and investment of parties misusing it. The project acknowledges two main prob-
lems and tries to address them. The first problem is the continuous improvement
of bots and the ability of bot operators to modify them very rapidly. The second
problem is that data collected by bots is verified. In case of discovering fake in-
formation is fed to their bots, operators immediately remove them as disclosed
bots.

The experimentation part of the project involves a lot of tweaking to avoid the
detection of the honeypot by bots. The data fed to bots were altered randomly and
the research aimed to understand if these changes were recognized as something
abnormal by bot operators. The behavioral analysis showed that the payloads of
bot requests have a lot in common, such as the information about return flight
tickets, and the time window between request and departure. Also, it was dis-
covered that APBs crawling the web content send one or at most two requests per

16 CoPCSE@NTNU: An NTNU Thesis Document Class

day in order to avoid detection by anti-bot systems. The research concludes that
almost a third of the IP addresses were reused over time, probably indicating that
they were used by the same bot operator.

Idris et al (2021) [31] proposed a learning environment for API security called
Vulnerable Academic Information System (VAIS) based on the OWASP API Secur-
ity Risks. The authors designed a vulnerable web application or a sandbox to assist
researchers and penetration testers in their learning process. Soliman et al (2018)
[32] conducted research on web application API blind Denial of Service attacks.
The authors acknowledge that DoS attacks are difficult to detect and costly to de-
fend against. The research investigates a hybrid type of DoS technique - a blind
DoS attack. It benefits both from network and application-level attacks.

The usage of web APIs is increasing rapidly due to their flexibility and rel-
atively easy access by consumers. APIs are built on generic technologies such as
HTTP for transport and do not require costly integration into third-party infra-
structure or consumer-side applications. Standards and recommendations advise
on the importance of sufficient security logging and monitoring systems. Web APIs
rely on JSON or XML as common data formatting standards. Web APIs use HTTP
for the transport layer and information about HTTP methods and payload used
for requests issued by attackers is of interest to security teams.

One of the main challenges for web application honeypots is their relatively
easy recognition by attackers. Web application honeypots can be used for getting
the adversary resources bogged down or for revealing attack source information,
to block unwanted connections. Cloud services provide new technical capabilit-
ies for building and demolishing honeypot systems rapidly and on-demand, sav-
ing time and resources. Threat intelligence is vital for successful cyberdefense
strategies. Production systems following best design practices will simplify mat-
ters for legitimate consumers of an API. On the contrary, the lack of documenta-
tion for honeypot API should provoke malicious actors to try various techniques,
potentially revealing their methods.

2.3 Interview with EVCN operator

To strengthen the background information and learn more about commercial im-
plementations, a team of engineers responsible for operations at one of the ma-
jor EVCN operators was interviewed. The team confirmed that the EVCN utilizes
multiple web APIs for managing subscriptions, chargers, and other intermediary
devices. Web APIs are also used for the monitoring of the infrastructure. The par-
ticular EVCN has an operations center hosting a back-end management solution,
remotely interacting with users, partner networks, and the charging network via a
set of web APIs. The implemented web APIs enable remote operators to make all
possible changes on the devices, altering settings, resetting them, and switching
on and off chargers. According to the interlocutors, the communication from the
external world to the back-end management system is restricted to the following

Chapter 2: State of the art 17

set of APIs:

• EVCN customer portal API. This is a REST API enabling customers to manage
their subscriptions, and charging sessions, and monitor charging activities
and billing information.
• EVCN chargers API. This is an API used to manage charger devices operated

by the network.
• EVCN management portal API. This is REST API enabling EVCN operators to

manage charging sessions, and charging devices, monitor the health status
of the network and its segments, and perform administrative tasks and du-
ties.
• External partner network chargers API. This is an API used to communic-

ate with partner EVCNs and enable customers to use third-party partner
charging networks.
• External partner users API. This is an API used by external partner compan-

ies to enable their users to use the charging network.

Figure 2.1 shows the generalized communication scheme of the back-end
management system with other components, as it was described by the inter-
viewed EVCN technical team.

The interviewed team did not disclose any security-sensitive information re-
garding the infrastructure setup, security, and defense mechanisms implemented.
During the conversation, the engineers confirmed that the company among other
security counter-measures also relies on data collected using honeypot systems.
The threat intelligence data is gathered through a set of decoy applications mim-
icking the behavior of production systems. Also, the technical team confirmed that
having a web API honeypot system mimicking one or several components of a pro-
duction back-end solution built in the cloud would be an interesting addition to
the existing set of API honeypot systems in service.

2.4 Relating state of the art to EVCN web API honeypot

Standards and special publications contain a number of recommendations, em-
phasizing the importance of threat intelligence for developing effective cyberde-
fense strategies. CIA triad’s Detect function implies integration of comprehensive
security monitoring and anomalies detection mechanisms into digital infrastruc-
tures [10]. ISO/IEC 27005:2022 standard provides guidance on assessing of like-
lihood of risk scenarios and establishing criteria for risk acceptance [11]. "Security
Strategies for Microservices-based Application Systems: SP 800-204" by NIST cov-
ers APIs and API gateways as the entry points and recommends the implementa-
tion of security monitoring and anomaly detection solutions [12].

The "API technical and data standards" guidance by Central Digital and Data
Office UK emphasizes the importance of the security audit and monitoring activit-
ies [13]. OWASP’s "API Security Project" also focuses on the importance of secur-

18 CoPCSE@NTNU: An NTNU Thesis Document Class

Figure 2.1: EVCN communication diagram.

Chapter 2: State of the art 19

ity logging [14]. The UK National Cyber Security Centre recommends designing
critical national infrastructure in accordance with certain principles, minimizing
the impact of potential security breaches [15]. Threat intelligence gathered by
honeypot systems could be of great value, helping to understand the behavior of
potential intruders and ensure solid security design. Web API honeypot systems
employed by EVCN operators might become important contributors to collecting
threat intelligence and complying with the recommendations and guidances of
security standards .

The previous work section shows that the digital cloud is a flexible and cost-
effective way of building and operating honeypot systems [16]. Honeypot systems
are great contributors to the task of gathering threat intelligence [17]. Web API
honeypot systems provide valuable information helping to combat digital threats
[18], [19], [20]. Web API systems evolved into crucial interconnectivity mechan-
isms [21], relieving their consumers from using custom libraries. Once designed
properly web APIs make communication between business systems efficient and
reliable [22], [23], [24].

Low-interaction honeypots are useful where cost and scalability are deciding
factors [27]. At the same time, in certain scenarios low-interaction honeypots are
capable of delivering valuable threat intelligence [28], [29], [31]. There is an-
other use for low-interaction honeypot systems, such as performing as imposter
applications and wasting resources of attackers [30].

This chapter provided information on general recommendations and stand-
ards. Also, it offered some insight into the previous work by reviewing the literat-
ure. The chapter is concluded with an interview with a technical team of one of
the main EVCN operators in the Scandinavian region. The next chapter describes
the methodology used to design the research and build the prototype.

Chapter 3

Methodology

3.1 Problem Statement

The following problem statement is formulated for the research:

EV charging networks use web API solutions for the management and
integration of physical infrastructure. Little knowledge is publicly available
about the degree such systems are targeted by cyberattackers.

3.2 Research Objectives

The following objectives will be achieved in order to solve the problem stated:

Main objective: Build a prototype of a low-interaction web API honeypot with a
security logging subsystem. The application has to mimic a web API of EVCN man-
agement system.

In order to achieve the main objective, the following sub-objectives have to be
addressed:

• Build a decoy EVCN web API to manage chargers.
• Make an attempt to fully automate the deployment of core components.
• As a proof of concept, make the solution available online, and log requests

issued by attackers.
• Organize the collected data related to attacks in JSON format and plot in

Grafana visualization solution.

3.3 Research design

The research is designed to identify and address the shortcomings of previous
work in the same area. Also, the work explores research questions, that previ-
ously have not been answered in detail. It is comprised of two main activities -
the background review and prototyping. The background review includes open
sources such as special publications, previous work, and an interview with an

21

22 CoPCSE@NTNU: An NTNU Thesis Document Class

EVCN operator advising on the management system used for the network. Based
on this, the work can be classified as one following the qualitative approach, con-
ducting exploratory research.

3.4 State of the art review

The State of the art review is comprised of three parts. Special publications de-
scribing standards and recommendations from internationally recognized author-
ities are placed in the first part. A literature review is a method employed to invest-
igate a previous work accomplished on the same problem. Academic papers are
to contribute to the task of avoiding unnecessary repetition of previous research
and help to identify research areas missed.

In order to identify techniques, tools, and approaches used in the previous
work on the same topic, a systematic literature review was conducted in the
second part of the State of the art review. General information on honeypot sys-
tems, usage of web APIs in honeypot systems, and previous efforts to build similar
platforms are the main objectives of the literature survey. To search for scientific
papers of interest, the search string "WEB AND API OR API Honeypot" was cre-
ated and used. The databases used are ACM digital library, SpringerLink, and IEEE
Xplore. Table 3.1 shows the number of hits returned by the databases used :

Table 3.1: Scientific databases search results

ACM Digital Library 64751 hits
IEEEXplore 2291 hits

SpringerLink 560 hits

Using exclusion parameters the total number of filtered papers was reduced
to 223. Then the method of grey literature review, examining the initial data in-
cluding title, year of publication, and abstract, helped to shortlist the number of
papers chosen for review to 39. In the last stage, a final list of 15 papers of interest
was compiled, excluding duplicates and less relevant ones. After selecting all the
necessary resources, papers were read and all relevant information concerning
method, process, phases, and techniques was extracted and reflected on in the
section "2.2 Related work".

The final third part of the background review contains information about an
interview with the EVCN operator. The interviewed technical team has provided
important information about commercial implementations of web APIs in modern
EVCNs. The interview confirmed some assumptions that were made previously,
based on the literature review and available public information.

Chapter 3: Methodology 23

3.5 Prototyping

The second method employed to address the main and underlying objectives is
prototyping. Prototyping is a technique widely used in scientific research in order
to build a proof of concept model. A prototype usually has limited functionality
compared to a final product, but it has to reflect the main design architecture and
meet the functionality requirements of a solution proposed[33]. Although it is not
expected to be a final product, the prototype built for this work will provide the
declared functionality of the web API honeypot. The next section explains in detail
the prototype model and proposed architecture.

3.5.1 Prototype model

The prototype will emulate one API out of five, described in section 2.3. Specific-
ally, it will emulate the behavior of API, connecting the EVCN back-end manage-
ment system to the management portal, used by operators. Operators manipulate
charger settings through the management portal using the REST API. The back-
end management system receives commands issued by operators and sends them
to the chargers using the OCPP protocol.

The rest of the APIs is not implemented in the prototype, as it is just a mat-
ter of increasing the number of APIs deployed and does not influence the core
functionality of the API honeypot. One of the goals of the project is to build an
API honeypot prototype, that is easy to rescale, deploy and operate. This goal is
achieved by employing cloud technologies with no upfront cost and on-demand
resource utilization. The low-level maintenance burden for modeling and build-
ing the prototype is another factor, influencing the architecture. Cloud providers
offer various solutions to help users with quick and low-cost deployments.

AWS cloud offers a concept of serverless applications, where no static re-
sources are allocated. The utilized resource pool is hidden behind the deployment
boundaries. The resources are used on demand so that users are billed based on
the actual utilization of the cloud resources. The API honeypot model for this work
is based on AWS services and aims to use AWS cloud-native components without
any third-party add-ons.

There are various categories of web APIs, with Representational State Transfer
(REST) [34] or Simple Object Access Protocol (SOAP) [35] protocols-based APIs
being the most widespread ones. A web API complying with the design principles
of the REST protocol is referred to as RESTful API. The protocol of choice for this
work is REST due to its current prevalence on the market and AWS native sup-
port. This work uses the terms "web API" and "REST API" interchangeably unless
specified otherwise.

Although the concepts of high and low-interaction honeypot systems have
been through many developments and changes in the last two decades, some gen-
eric characteristics still remain the same [27]. Considering the fact that attackers
will not interact with the operating system or underlying services, the proposed

24 CoPCSE@NTNU: An NTNU Thesis Document Class

API honeypot can be attributed to the family of low-interaction honeypot systems.

3.5.2 Expected functionality

The solution will receive web requests from the Internet and log request data
such as timestamp, HTTP method, body of the request, source IP address, and
Transmission Control Protocol (TCP) port information. This list can be extended
depending on the future needs of the API honeypot operators and the capabilities
of the logging components utilized. The AWS REST API gateway will be published
on the Internet and listen for incoming HTTP requests. When a request arrives,
the API gateway will accept it and trigger the back-end application.

Although there are a few HTTP methods that can be implemented in the REST
API [36], this work will implement the most common three of them - GET, PUT
and DELETE. HTTP GET method is used to request data and it is not able to modify
data. It can be used by legitimate users for fetching information from a web API
as well as by adversaries for the reconnaissance stage of attack against a web
API. The HTTP PUT method is used to create new or modify existing resources.
Attackers can use this method to manipulate the settings of EVCN devices, causing
service interruptions and instability. The HTTP DELETE method is used to delete
resources [37]. It can be used for wiping out objects behind web API and rendering
it useless.

The constant development of technologies implies platform-independent data
communication. Common data formats help to resolve differences between vari-
ous applications, participating in the data exchange. Data meant for further pro-
cessing or investigation needs to be formatted in a way that third parties are able
to computationally read and process it. The output data for this work is decided
to be in JSON format. After analyzing and processing logs, the JSON output will
enable data for further analysis and usage in most modern data storage and visu-
alization system.

3.5.3 Expected outcome

The expected outcome of the research is a prototype of the AWS cloud-based low-
interaction REST API honeypot. The solution proposed will help small and middle-
size EVCN operators to quickly build and re-scale their own honeypot application,
collecting threat intelligence data. The output datasets will provide important de-
tails about sources of attacks conducted, used methods, and a request body for
each issued request. Threat intelligence data can significantly improve the overall
security preparedness of EVCN operators against attacks. It will also contribute
to more systematic threat analysis and comprehensive statistics concerning the
security and availability of APIs.

This chapter discussed the problem statement and research objectives. It presen-
ted the methodology chosen for the research. The approaches used in conducting

Chapter 3: Methodology 25

interviews with EVCN operators, literature review and special publications re-
view were explained. Also, the prototype model and expected functionality were
explained. The next chapter proposes the general architecture and introduces a
prototype of the low-interaction REST API honeypot built in the AWS cloud.

Chapter 4

Prototyping

This chapter describes the setup of the REST API honeypot solution and all under-
lying services and components, required for its operation. The chapter walks users
through each component and explains its role and configuration details. This pro-
ject uses the AWS cloud as a building platform and utilizes Free Tier eligible com-
ponents for prototyping. The reason for choosing AWS as a building platform for
prototyping is its flexibility and offer of cost-free subscription if resources are used
within given limits. Users must read and understand AWS billing documentation
to avoid unexpected costs related to the deployment of the REST API honeypot.

4.1 EVCN REST API structure

Real-life EVCNs have various API resources covering charger and intermediary
devices, users, billing, monitoring, and other services. Compared to a prototype,
there would be a lot more objects and their attributes kept in the back-end data-
base, serving data to a production API. This project builds an operational REST
API with bare minimum functionality that can be easily extended to any scale. The
REST API honeypot structure proposed in this prototype has very few resources
and attributes. It serves the main purpose of the project, reflecting a functionality
of the REST API honeypot sufficient for the demonstration of the prototype.

4.1.1 General architecture

The general architecture of the REST API honeypot is comprised of several com-
ponents:

• API gateway accessible from the Internet
• Back-end database solution
• Logging component, registering all incoming requests and response data
• Log data parsing solution, searching through log files for the data of interest,

extracting it, representing in a JSON format, and writing to a database and
local file

27

28 CoPCSE@NTNU: An NTNU Thesis Document Class

Figure 4.1 depicts high-level API honeypot architecture and indicates its abstract
workflow.

Figure 4.1: High-level architecture of the REST API honeypot.

The proposed architecture can be implemented using various solutions and
technologies. However, the implementation using components having no integra-
tion is associated with problems. The following section proposes a model, solving
the integration issues and offering a cost-effective and straightforward solution
for building a low-interaction REST API honeypot in the AWS cloud.

4.2 AWS architecture, core components

This section presents the implementation of the proposed architecture in the AWS
cloud. The prerequisite for the project is an AWS cloud account [38]. A free AWS
cloud account is also can be used for testing purposes. After obtaining an AWS
cloud account the AWS command-line access was set and configured [39].

The flowchart of the AWS REST API honeypot is shown in Figure 4.2 and

Chapter 4: Prototyping 29

comprised of the following components:

• API Gateway - the front door of the application, providing access to the
back-end data, functionality, or business logic [40].
• Lambda function service - AWS service enabling users to run a code without

provisioning server instances [41]
• IAM Role and Policy/Permissions - web service maintaining authentication

and authorization over the AWS resources [42]
• Dynamo DB - AWS NoSQL database service [43]
• CloudWatch Logs - AWS monitoring and logging service [44]

Figure 4.2: Flowchart.

4.2.1 AWS DynamoDB

Before provisioning any resources and building a REST API honeypot the database
to store data was created. DynamoDB is a database of choice for the current work.
The database schema defined for the project is kept as simple as possible. The
first steps were to create a DynamoDB table, assign a name to it and specify the
partition key "id" with "String" being a value type. Alternatively, the DynamoDB
table can be created from the AWS command line using the Code listing 4.1:

30 CoPCSE@NTNU: An NTNU Thesis Document Class

Code listing 4.1: AWS CLI create DynamoDB table

Create a DynamoDB table, and assign its name "ChargingNetworkDB"
aws dynamodb create-table \
--table-name ChargingNetworkDB \
--attribute-definitions AttributeName=id,AttributeType=S \
--key-schema AttributeName=id,KeyType=HASH \
--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \

After the table was created the database was populated with sample data. Dy-
namoDB allows a user to create objects of various types - string, number, boolean,
binary, sets of strings, numbers or binaries, list, or map. For this project charger
objects with fictitious attributes and assigned string values were created. The ex-
ample settings for the charger object are shown below:

"id":"1"
"SN":"MD129F643H"
"Model":"c12a"
"Output":"22"
"City":"Korsa"
"Street":"Korsveien 3"
"PostCode":"19021"

During the setup of resources, all Amazon Resource Names (ARNs) were noted
down. ARNs are unique identifiers used to specify resources across the whole AWS.
The example DynamoDB ARN looks similar to the following one:

"arn:aws:dynamodb:us-east-1:ACCOUNTID:table/ChargingNetworkDB"

where ACCOUNTID is the ID of your AWS user account.

4.2.2 AWS IAM

The next step was to create a role and assign policies, enabling AWS resources to
interconnect. The "Trusted entity type" of the role was set to "AWS service" with
"Lambda" selected for "Use case". The role was configured to have the "AWSLambda-
BasicExecutionRole" Permissions Policy assigned. Also, an inline permission policy
allowing specific actions such as "GetItem" or "PutItem" were assigned to the same
role.

In some scenarios "All Resources" permission can be chosen, assuming that
the account is used only for experimentation and does not contain any production
resources. As an alternative to the AWS Web GUI management console, an AWS
IAM role and relevant policies can be created from the AWS command line using
the Code listing 4.2:

Chapter 4: Prototyping 31

Code listing 4.2: AWS CLI create IAM role and policy

Create IAM role and assume trust policy
aws iam create-role --role-name ChargingNetworkRole \
--assume-role-policy-document file://trust.json

Attach inline IAM policy to the role created
aws iam put-role-policy --role-name ChargingNetworkRole --policy-name \
ChargingNetworkInlinePolicy --policy-document \ file://inline_policy.json

Attach Lambda execution role policy
aws iam attach-role-policy --policy-arn \

arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole \
--role-name ChargingNetworkRole

The information about policy files trust.json and inline_policy.json used in the
commands above can be found in Appendix A.5.

4.2.3 AWS Lambda

The next step was to deploy a set of Lambda functions, that process requests hit-
ting the API. It was decided to deploy three Lambda functions per REST API re-
source with one of them having working functionality and two functions return-
ing fake error messages and trying to lure an intruder to alter his attempt and try
again. The prototype used GET and DELETE methods as dummy ones and had the
PUT method actually implemented. Python 3.9 as a runtime and Boto3 AWS Soft-
ware Development Kit were used for Lambda functions. Boto3 is a well-known
SDK and widely used for managing AWS services [45].

The Lambda PUT function used for the prototype is shown in the Code listing
4.3:

Code listing 4.3: Python Lambda handler for PUT method

import boto3

def lambda_handler(value, context):
connector = boto3.resource(’dynamodb’)
db = connector.Table(’ChargingNetworkDB’)
api_resp = db.put_item(
Item={
"id": value[’id’],
"City": value[’City’],
"Model": value[’Model’],
"Output": value[’Output’],
"PostCode": value[’PostCode’],
"SN": value[’SN’],
"Street": value[’Street’]
}
)
return {
’statusCode’: api_resp[’ResponseMetadata’][’HTTPStatusCode’],
’API response’: ’Record ’ + value[’id’] + ’ added’

}

32 CoPCSE@NTNU: An NTNU Thesis Document Class

The information about Lambda GET and DELETE functions used for the pro-
ject can be found in Appendix A.6. To configure the AWS Lambda service, the
AWS Lambda functions with Python language runtime and appropriate permis-
sions were created. The default execution role was set to the role created in sec-
tion 4.2.2. After creating a new function, the placeholder code was replaced with
the corresponding Lambda functions code. After adding the code and creating test
events[46], functions were deployed.

Alternatively, Lambda functions can be created from the AWS command line.
Actual lambda functions have to be uploaded as separate files in compressed
format. The example code can be found in Appendix A.1, "install.sh" script.

4.2.4 AWS API Gateway

API Gateway is a central mechanism tying all the previous components together
and providing a single interface towards a customer, in this case - towards the
adversary. The example prototype API structure used in this project is shown in
Figure 4.3:

Figure 4.3: Prototype API structure.

The proposed prototype uses the AWS REST API with one single resource
"Chargers". After creating the "Chargers" resource in the AWS API Gateway con-
sole, the HTTP methods such as "GET", "PUT" and "DELETE" were created to
interact with the resource. The methods were configured with integration type
"Lambda Function" with corresponding Lambda functions created in section 4.2.3.
Also, the methods created had relevant permissions assigned to the corresponding
Lambda functions. Methods were configured with method requests and corres-
ponding URL Query String Parameters settings. For example, the "PUT" method
used the following mapping template in order to answer API calls:

Chapter 4: Prototyping 33

{
"id": "$input.params(’id’)",
"City": "$input.params(’City’)",
"Model": "$input.params(’Model’)",
"Street": "$input.params(’Street’)",
"SN": "$input.params(’SN’)",
"Output": "$input.params(’Output’)",
"PostCode": "$input.params(’PostCode’)"
}

GET and DELETE methods had the same settings, including integration type,
mapping template, and URL Query String Parameters. The only entry required
for GET and DELETE methods in the mapping template was the "id" parameter.
After configuring resources and methods, the API was ready to be deployed. It
was deployed from the API resources page. Once deployed, the API stage editor
produced the summary and "Invoke URL" for the API. The example invoke URL is
shown below:

"https://h6da3w6ume.execute-api.us-east-1.amazonaws.com/production".

The complete invoke URL for "/chargers" path is shown below:

"https://h6da3w6ume.execute-api.us-east-1.amazonaws.com/production/chargers"

4.2.5 AWS CloudWatch

To collect logs for further analysis, the AWS CloudWatch service was used. AWS
API Gateway service has integration with the AWS CloudWatch logging subsys-
tem, enabling users to collect and analyze logs. "Full Request and Response Logs"
was chosen as the verbosity level. Logs are organized in groups with a naming
standard corresponding to the service they are utilized for. This project used a cus-
tom log parsing application and exported logs to the AWS S3 storage service for
that matter. After exporting logs they were downloaded to Linux Ubuntu Desktop
22.04 virtual machine for further processing.

4.2.6 Automate the deployment of the API honeypot

The core of the REST API honeypot solution is comprised of the four main ele-
ments - IAM role and policies, DynamoDB table, Lambda functions, and API Gate-
way with resources and methods. The rest of the components described further
are not directly involved in the functioning of the API honeypot and are related
to the logging subsystem and further processing of collected data. Considering
that, the automation step of the project has focused on the four core elements
mentioned.

The automation was implemented in AWS CLI, version 2.3.6. The automation
solution "install.sh" presented in appendix section A.1 starts with the creation of

34 CoPCSE@NTNU: An NTNU Thesis Document Class

the DynamoDB table. In the next step, it employs the AWS CLI IAM module to
create a role and attach inline and Lambda execution policies. After setting up
roles and policies, Lambda functions are created. Lambda functions for the project
are Python scripts, implementing GET, PUT and DELETE methods using Python
3.9 AWS Boto3 library. To upload files containing functions to the Lambda service,
the files are compressed into a ZIP archive and then uploaded to the AWS Lambda
service. In the next step, the script sets Lambda functions up, configuring runtime
and linking the IAM role.

Once the DB table, IAM role, and Lambda functions are created and con-
figured, the "install.sh" script creates REST API. The API is configured with a re-
source and HTTP methods assigned to it. HTTP methods created need to be con-
figured with necessary links to the corresponding Lambda functions. Also, method
request and response, as well as integration request and response have to be con-
figured with relevant settings, adding request templates and response models.
This is done for all three HTTP methods created for each specific API resource.
Then Lambda functions’ permissions need to be configured to link them to the
specific source in the REST API. Once permissions are configured, the API has
to be deployed in order to accept requests and provide responses. The deploy-
ment step requires a stage name, that will be used at the last step of updating
stage with the enabled CloudWatch logging subsystem. The install.sh script starts
Docker containers with the Grafana data visualization application and InfluxDB
database engine. It also creates the AWS S3 service bucket used for log export
from the CloudWatch service and sets the access policy on the bucket.

There is a few important points for users of the automation tool "install.sh" to
be noted. It is assumed that the user of the tool is an advanced Linux user and
has a decent understanding of Linux shell scripting. The "install.sh" should not
be used against the AWS account containing any production or other important
resources. The best scenario for deployment of the REST API honeypot is under a
dedicated AWS account, isolated from all other resources. Usage without under-
standing what the tool is doing and using accounts other than intended for the
deployment of the REST API honeypot can destroy other existing resources if they
are linked to the same account. The tool is written just for demonstration purposes
to prove that the deployment of the proposed solution can be fully automated.

4.3 Optional components

This study provides a functional prototype, that is ready for deployment. Compon-
ents in the following sections concerning log parsing and storing extracted data
in a database, as well as data visualization, can be altered or replaced by a user
according to her needs and the specifics of the project the solution is used for.

Chapter 4: Prototyping 35

4.3.1 Authentication and HTTP methods implementation

After configuring HTTP methods, a user can choose to enable authentication in
the REST API Gateway for each method. Enabling API authentication is a straight-
forward process and requires a very little configuration in the AWS API Gateway
service. For each created method GET, PUT and DELETE, a user needs to enable
authentication by requesting an API key from the Method Request settings. The
next step is to create an actual API key and assign it to the Usage Plan created for
that purpose. The usage Plan feature also enables users to control the access lim-
its to the API. After configuring the API key, setting the Usage Plan, and enabling
authentication for each HTTP method, the API has to be redeployed to enable
authentication.

4.3.2 Mapping a custom domain name for the REST API

After deploying the AWS gateway and making sure that all the functionality works
as expected, the next step was a setup of a custom domain name for the API
honeypot. AWS generates random names for API gateways such as:

"https://h6da3w6ume.execute-api.us-east-1.amazonaws.com/production/chargers"

Usually, businesses do not use AWS-generated names and prefer to map APIs
to domains of their own. This project used the "elbrusgroup.net" domain name for
the REST API mapping and further activities. The domain name was registered us-
ing AWS "Route 53" service and belongs to the author of the project[47]. After a
domain name was registered, it was mapped to the REST API following AWS in-
structions "Setting up custom domain names for REST APIs" [48]. It is required
to use SSL certificates to establish a mapping. SSL certificate for the domain was
requested using AWS Certificate Manager [49]. The project used the hostname
of "api.elbrusgroup.net" to route API calls to an actual API gateway with stage
"Production" and no path specified. Effectively, the auto-generated API URL was
forwarded to the URL "api.elbrusgroup.net". Path parameter "chargers" was added
directly to the Uniform Resource Locator (URL), used to call the API, e.g.

"https://api.elbrusgroup.net/chargers".

4.3.3 "Leaking" API settings to the Internet

To attract potential attackers and make them aware of the API, it is necessary
to advertise it. It is out of the scope of this work how to prepare and execute a
deception operation to make attackers believe that the API honeypot represents
a real operational solution. Intruders probe the Internet all the time and soon or
later the API honeypot will be discovered by them. However, for demonstration
purposes to get some attackers to quickly realize that a new API is on the air,

36 CoPCSE@NTNU: An NTNU Thesis Document Class

this project published the API using a custom domain name and a website for
fictitious EVCN operator Elbrus Group. The website can be found following the
link "www.elbrusgroup.net". The last page of the fake EVCN with the REST API
honeypot URL is shown in Figure 4.4. This is a very naive illustration of how the
actual honeypot can be advertised or "leaked" to potential attackers.

Figure 4.4: Elbrousgroup EVCN web-site.

4.3.4 AWS S3

To export collected logs to AWS S3 service a bucket in the S3 storage with a linked
policy allowing export was created. The policy was applied on the permissions
page of the bucket. To make AWS accept the policy it was necessary to disable
Block Public access temporarily, add Bucket policy, save it and then enable back
Block public access. The S3 policy "s3-policy.json" can be found in Appendix A.5.
After the policy was created and applied, the logs were exported from AWS Cloud-
Watch to the AWS S3 bucket.

4.3.5 Processing collected logs

After the Linux Ubuntu Desktop 22.04 virtual machine was ready and it had ac-
cess to the S3 bucket with exported CloudWatch logs, the log files were synced
to the machine’s local storage from the S3 bucket. The log files ended up in a
folder structure with one root folder and sub-folders corresponding to each log
file. All log files in the sub-folders at the time of this writing were compressed in
GZIP format and had the default naming format "000000.gz". The next section

Chapter 4: Prototyping 37

provides an explanation of the log parsing process, implemented in the Python3
programming language.

4.3.6 Parsing logs using Python application and storing the data in
JSON format

After the log files were organized in the folder structure described above and
uncompressed, the data of interest were extracted. This work used the Python3
applications "logparser_batch.py" and "logparser_realtime.py" written to search
through the log file structure, find the log files, analyze their content and process
them depending on the HTTP method registered. The "logparser_batch.py" can
be found in Appendix A.2. Its functionality is to process logs in batch mode. The
"logparser_realtime.py" can be found in Appendix A.3. Its functionality is to pro-
cess logs in a continuous or near real-time mode. Besides the processing mode,
the functionality of both applications is the same. This work will refer to "log-
parser_batch.py" and "logparser_realtime.py" as "logparser.py", as they both have
the same functionality and can be used in post-processing or real-time scenarios
accordingly. There are three HTTP methods activated in this prototype - GET, DE-
LETE and PUT. It means only log files containing one of the three methods are
to be investigated. If none of the three methods is found in a log file, it will be
ignored by the application.

The application maintains the following workflow:

• main() - the main function is initialized first and requires a path to the
root folder of the log structure as an argument. The main function uses
the helper function file_reader() searching recursively through the folder
and sub-folders of the path provided and finding all compressed files and
uncompressing them. Then files are searched for the HTTP method logged.
If GET, PUT, or DELETE methods are found within the body of a log file, it
is passed to one of the following parser functions accordingly.

• delete_parser() - the first function out of three parser functions reading a
file passed to it by the main function. It reads through the content of a log
file and extracts the following values concerning a specific request - epoch
or timestamp of the request, source IP address, TCP port, HTTP method, the
body of the request, AWS unique request ID, resource path, and the status re-
turned by the API gateway. The function creates a dictionary corresponding
to each unique timestamp. The main dictionary contains a timestamp and
2 sub-dictionaries, containing the HTTP method used, source IP address,
source port, body or payload of the request, AWS API gateway request ID,
resource path, and status code returned by the API gateway. This output
structure with relevant elements is maintained in all three parser functions
for using it in the InfluxDB structure. Two sub-dictionaries are used as fields
and tags in the InfluxDB structure [50].
• get_parser() - the second function out of three parser functions. It reads

through the content of a log file and extracts the following values - epoch or

38 CoPCSE@NTNU: An NTNU Thesis Document Class

timestamp of the request, source IP address, TCP port, HTTP method, body
or payload of the request, and AWS unique request ID. The function creates
a dictionary corresponding to each unique timestamp. The main dictionary
contains a timestamp and 2 sub-dictionaries, containing the HTTP method
used, source IP address, source port, body or payload of the request, AWS
API gateway request ID.

Figure 4.5: "logparser.py" application workflow diagram.

• put_parser() - the last function out of three parser functions. It reads through
the content of a log file and extracts the following values - epoch or timestamp
of the request, source IP address, TCP port, HTTP method, the body of
the request, and AWS unique request ID. The function creates a diction-
ary corresponding to each unique timestamp. The main dictionary contains
a timestamp and 2 sub-dictionaries, containing the HTTP method used,
source IP address, source port, body or payload of the request, AWS API
gateway request ID.

Chapter 4: Prototyping 39

• build_data_structure() - after parsing a file, the control is returned back to
the main function. The main function calls
build_data_structure() function to create a JSON data structure and ap-
pend all required entries to it. The resulting output for one single log file
processed is a list of JSON data containing a timestamp, fields dictionary,
tags dictionary, and measurement value. Every next file analysis by the ap-
plication results in a similar output appended to the list created.

• As a final step the main function writes the output in JSON format to a local
file "db.json", located in the same folder as "logparser.py" and to the database
specified via dbwriter() Python function. dbwriter() Python function takes
the final list created as input, creates a connection to the InfluxDB instance
specified, and writes data to the database.

Figure 4.5 shows the activity diagram reflecting the procedural flow of actions
of the Python3 application "logparser.py" and how log files with each method were
processed using the application. When the final output data structure was created
and written to a file or a database, the results were ready for visualization. The
output data can be investigated to register source IP addresses and their geoloca-
tions, the intensity of attacks based on the timestamps, the prevalence of specific
HTTP request methods over others, and the content of the payload of the requests
issued by attackers. These data points can be combined and correlated with spe-
cific events of interest. This work is not focusing on such events or correlations as
the conclusions drawn from the available data are out of the scope of this project.

4.3.7 Alternative way of parsing logs using AWS Custom Access Log-
ging

Alternatively, users can parse access logs using the Custom Access Logging feature
of AWS [51]. AWS defines variables and functions that the REST API can use with
AWS CloudWatch access logging. It is possible to output the data of interest in
a JSON format using log formatting templates offered by AWS. At the time of
this writing, the AWS Custom Access Logging was not sufficiently granular and
flexible for this project and it was decided to use a custom parser written in Python
programming language written for this project and described in section 4.3.6.

4.3.8 Visualization of the collected data using Grafana and InfluxDB

The data output in JSON format can be used in various ways for analysis and
visualization. Grafana is Open Source front-end solution for data visualization. It
represents data in tables, graphs, charts, and many other forms. For this project,
Grafana version 9.2.0 running in a Docker container was used. InfluxDB version
1.8.4 running in a Docker container was used as a database. The output of "log-
parser.py" application has been written to the InfluxDB and then visualized using
Grafana plots. Some sample plots demonstrating the data points are shown in the
next chapter.

40 CoPCSE@NTNU: An NTNU Thesis Document Class

This chapter explained the architecture and setup of the REST API honeypot
solution in the AWS cloud. Sections 4.2.1 up to 4.2.5 are necessary to follow in
order to build a core of the REST API honeypot solution with a logging subsystem.
Further sections are optional and it is up to the user how to process, parse and
organize data once the setup is completed and CloudWatch logs are collected. The
next chapter will present the results of the experimentation with the deployment
of the REST API honeypot prototype.

Chapter 5

Results

5.1 Test deployment

In order to test the functionality and prove that the REST API honeypot works
as expected, it was deployed in the AWS cloud using a Free Tier AWS account.
Immediately after deployment, the API honeypot was ready to catch attempts
made by potential attackers and in a few days, it showed traces of interaction in
the CloudWatch logging subsystem. The backend DynamoDB database contained
25 charger objects with attributes shown in section 4.2.1. The test deployment
used "All resources" permission for IAM inline policy attached to the IAM security
role created for the Lambda execution. IAM role and policy configuration reflected
the section 4.2.2.

As was described in section 4.2.3, three Python functions were defined to per-
form GET, PUT and DELETE HTTP methods. Test deployment included one REST
API resource "chargers" and three methods corresponding to GET, PUT and DE-
LETE Lambda functions. API Gateway configuration has been done according to
section 4.2.4. All four core elements of the REST API honeypot were deployed
and configured using AWS web graphical user interface. To test the automation
attempt made in section 4.2.5, the deployment was deleted and rebuilt using
"install.sh" script shown in Appendix A.1. The automated deployment has been
completed successfully with all the components being installed and configured as
expected.

After completing the deployment of core components, the test deployment
continued with the mapping of a custom domain name to the REST API. At this
point the REST API honeypot was published on the Internet, listening for incom-
ing requests. The prototype was online from 20.10.2022 to 23.11.2022, when it
was stopped and removed. In order to demonstrate the capability of the API hon-
eypot, two teams of penetration testers "Team 1" and "Team 2" were asked to make
an attempt on the published API. The logs were collected from the CloudWatch
logging subsystem and exported to the AWS S3 storage. To parse and further pro-
cess the data of interest, the data was downloaded from S3 buckets to a virtual

41

42 CoPCSE@NTNU: An NTNU Thesis Document Class

machine with Linux Ubuntu Desktop 22.04 operating system.

Section 4.3.6 describes the Python application "logparser.py" written for log
parsing and storing the data of interest in the JSON format. Collected logs were
processed using the "logparser.py" application and extracted data was sent in a
local "db.json" file and the InfluxDB instance in a Docker container. The test de-
ployment used a Grafana front-end solution for the data visualization, as it is
described in section 4.3.8. The next section contains some sample data visualized
using instances of InfluxDB and Grafana. The data caught was a mix of data ori-
ginating from attempts of "friendly" penetration testers and real attempts to access
the API honeypot by unknown adversaries. Although the deliverable for this pro-
ject is the REST API honeypot prototype and full data analysis is out of the scope
of the project, some data was visualized in Grafana plots and discussed below.

5.2 Data visualization

Figure 5.1 demonstrates the plot showing IP addresses attacking the API honey-
pot and the number of requests issued by "Team 1" against the API honeypot on
23.11.2022 between 18.55 and 19.32 CET. IP addresses are blurred out due to
privacy reasons.

Figure 5.1: Team 1 attacking IP addresses and the number of attempts.

Next Figure 5.2 demonstrates the second plot with statistics of HTTP methods
used by "Team 1" in the same period. The plot shows that the PUT method issued
by "Team 1" significantly prevails over the GET and DELETE methods in the given
period of time.

Chapter 5: Results 43

Figure 5.2: Team 1 statistics on HTTP methods.

The next plot shown in Figure 5.3 visualizes the statistics and content of the
payload issued by attackers for the same period of time. The right side of the plot
shows the payload of the requests issued. The next three plots demonstrate some
statistics for the traffic generated by "Team 2". The plot in Figure 5.4 demonstrates
the IP address attacking the API honeypot and the number of requests issued by
"Team 2" on 04.11.2022 between 17.41 and 17.44 CET. The IP address is blurred
out due to privacy reasons.

The last Figure 5.5 shows the plot with statistics of HTTP methods issued by
"Team 2". The plot shows that the GET method issued by "Team 2" prevails over the
PUT method in the given period of time. The plots above provide an example of
how the data extracted from logs can be used for statistics and threat intelligence.
The list of fields extracted and visualized can be easily extended enriching the
threat intelligence data. The overall results of the test deployment were satisfact-
ory and met the expectations. The test deployment of the API honeypot prototype
was running for the period of one month and demonstrated the expected stability
level.

This chapter presents the results achieved by the study. The next chapter dis-
cusses the results and provides an overview of the research questions and whether
they were answered.

44 CoPCSE@NTNU: An NTNU Thesis Document Class

Figure 5.3: Team 1 payload statistics.

Figure 5.4: Team 2 attacking IP addresses and the number of attempts.

Chapter 5: Results 45

Figure 5.5: Team 2 statistics on HTTP methods.

Chapter 6

Discussion

The study achieved the declared objectives and answered research questions. The
achievement of objectives is discussed in the next chapter. This chapter will cla-
rify how the research questions were answered, what was established by the study,
what are the findings, and the advantages, and weaknesses of the proposed solu-
tion.

6.1 Findings

After the deployment and configuration of the prototype, the API honeypot was
successfully published using a custom domain name. Also, a web-builder service
for creating websites was hired and a website for fictitious EVCN operator "Elbrus
Group" was created. The website also published the information about API.

Although naive, these actions were undertaken to provide more credibility
to the API honeypot in the view of potential intruders. Two weeks after setting
up a website and publishing web API information on it, some access attempts
were registered and logged. Obviously, an existing EVCN operator would have
an online presence with a website and other components, making published API
more credible.

The prototype proved that it is possible to deploy and start a web API hon-
eypot operation using the proposed prototype with a reasonable effort and low
investment for small and middle-size EVCN operators. It will let users focus on
their core activities instead of investing significant effort and financial resources
to build and support additional server and network infrastructure, developing API
with underlying log collection, parsing, and visualizing systems. The web API hon-
eypot can be used for collecting threat intelligence data as well as for distracting
adversaries from real production systems and wasting their effort and resources.

The prototype has implemented only three HTTP methods - GET, DELETE and
PUT. The list can be extended to cover the rest of the HTTP methods available in
the AWS REST API Gateway service. Also, only one resource "chargers" was used
for the prototype. The model should be enriched with any other resources covering

47

48 CoPCSE@NTNU: An NTNU Thesis Document Class

objects relevant to an operational EVCN such as "users", "subscriptions", "vehicles"
and others. [52] The deployment shell script "install.sh" provided in Appendix
A.1 and the batch mode and near real-time versions of the "logparser.py" Python
application provided in Appendix A.2 and A.3 can be easily extended to cover new
methods and resources.

Initially, there were fully operational Lambda functions and authentication
enabled for each HTTP method. But after some considerations, authentication
was disabled for the prototype. The prototype was deployed as a proof of concept
for a limited time, rather than with the intention to perform a full-blown honeypot
operation. To make the prototype catch requests from attackers immediately after
deployment and demonstrate the functionality, it was decided to make all calls by
intruders reach the API by removing authentication. The thinking behind it is that
authentication would significantly complicate intrusion for attackers and prolong
the time until they gain access to the prototype.

Also, the Lambda functions corresponding to GET and DELETE HTTP methods
initially were functional and could get and delete the objects requested from the
API. Later, it was decided to replace both with dummy handler functions return-
ing the following message with the relevant operation name instead of "X": "An
error occurred (ValidationException) when calling the X operation: One or more
parameter values are not valid!". GET calls are usually made to fetch some data
from the API and can be used for reconnaissance to build an understanding of the
victim API structure. Once the attacker believes that he knows enough about the
structure and design of the API, her next step would be the execution of PUT or
DELETE calls against the API trying to inflict damage or alter the data behind it.
In this case, if the GET call does not return any valuable information about objects
behind API, the attacker is expected to try finding a way around it by guessing the
correct parameters. Also, he most probably will make more attempts using PUT
and DELETE calls, guessing the REST API structure.

The techniques used to overcome this barrier are of interest to security profes-
sionals. For the full honeypot operation in order to make the web API honeypot
look like an operational API, the authentication should be enabled and API should
have more resources, objects, and HTTP methods implemented. At the same time,
the credentials should be either "leaked" to intruders or weak enough to not with-
stand brute-force attacks. Once intruders pass the authentication mechanism, the
API honeypot will collect their HTTP requests and analyze information about their
reconnaissance techniques. This information will help to build a pattern over the
actions and parameters they use, contributing to the development and implement-
ation of security countermeasures, and defending production APIs.

After using the API honeypot for a while its data post-processing architecture
became a limitation. It was developed further to a near real-time model with up
to 180 seconds of delay by making the log export and parsing process continuous.
The 180 seconds delay is caused by subsequent delays in AWS log generation and
export systems. The data visualization component Grafana has all the real-time

Chapter 6: Discussion 49

data processing tools embedded and engaging them has enabled a continuous
data stream from the InfluxDB to visualization plots. The information about the
near real-time data processing model of the application is presented in Appendix
A.3.

Considering the small size of the dataset collected by the prototype, first, it was
decided to store the data in a regular file and use it as inline input to the Infinity
plugin of the Grafana data visualization solution [53]. After some experimentation
with Grafana and Infinity plugin, the results were less sufficient than expected and
it was decided to use the InfluxDB database as a data storage.

6.1.1 Advantages of the web API honeypot

One of the main advantages of the proposed prototype is its scalability. The flex-
ibility of the proposed prototype significantly exceeds the potential of an average
small or middle-sized infrastructure in terms of deployment of API resources and
the number of requests it can process. The deployment can be easily enlarged
to tens, hundreds, or thousands of API resources with almost limitless transac-
tions and storage for database items. Hardware and network utilization limits of
the proposed API honeypot in the cloud are equal to the boundaries drawn by
the specific cloud provider. Usually, those boundaries are well-beyond beyond the
technical capabilities of the majority of on-premise infrastructures. This is espe-
cially relevant to small and middle-sized businesses, such as local and regional
EVCN operators. The ability to rescale the web API honeypot resources will help
to match and understand the resource-wise capabilities of adversaries and distin-
guish between them based on the scale of attacks.

Another main advantage of the web API honeypot is its modular nature. Core
components such as API Gateway, Lambda functions, and DynamoDB database
are decoupled from each other and have no dependency ties configuration and
resource-wise. Any component can be duplicated without interrupting the running
API honeypot operation, altered and swiftly attached to the solution preserving
the operational status.

Automation is a very important feature in modern computing and often be-
comes a deciding factor for using or declining digital solutions. The automation
potential of the proposed system is extremely high and not limited to one single
solution, e.g. command line. Cloud providers offer a rich toolset to automate op-
erations and deployment. AWS cloud is not an exception and constantly develops
and introduces new technical features, helping to take automation to a new level.
One example of an alternative to the AWS command line is the AWS CloudForm-
ation service [54]. Users can automate the deployment and management of AWS
resources using CloudFormation templates.

50 CoPCSE@NTNU: An NTNU Thesis Document Class

6.1.2 Limitations of the web API honeypot

The web API honeypot solution was deployed using both the AWS web console
and AWS CLI script "install.sh", shown in Appendix A.1. Although the AWS web
console is user-friendly and intuitive, there are a few drawbacks related to using
it. As with any GUI, its usage is time-consuming and not flexible. It is not possible
to automate user actions via the web console. So, the AWS command line could be
the preferable solution for deployment and operation. It means that a user needs
to familiarize herself with the AWS command line environment if automation is
of importance for the specific project.

Another limitation of the solution is its bond to AWS. It is not possible to easily
port the solution to other cloud service providers. Although the general architec-
ture can be preserved while deploying to other cloud providers, the components
and configuration will be different and specific to the provider of choice. Although,
the log parsing application "logparser.py" written for the project still can be reused
with minor alterations in the text parsing mechanisms.

6.2 Answering questions

6.2.1 Research question 1

Is it advisable to build a web API honeypot for the EV charging networks?
Question 1 was answered by studying existing work and interviewing an EVCN

operator. The conclusion drawn after the literature review is that honeypot sys-
tems in general are of great interest to researchers and businesses. Due to its
widespread usage, a web API is an attractive target for adversaries. The interview
with EVCN technical team led to the conclusion that a web API honeypot system
can be a useful tool, but it takes some effort and resources to build and maintain it
on-premise. It helps to collect threat intelligence data, contributing to a better un-
derstanding of an adversary and a more effective cyberdefense strategy. Based on
the literature review performed, no similar research on building a low-interaction
web API honeypot for EVCN operators in the AWS cloud was conducted before. It
was found advisable to build a web API honeypot for the EV charging networks.

6.2.2 Research question 2

How to build a web API honeypot solution in the AWS cloud with an on-demand
resource utilization design?

Considering the increasing usage of cloud services and automation tool-set
offered by modern cloud providers, it was decided to build the solution in the
AWS cloud. The study answered research question 2 by building a prototype of
web (REST) API in the AWS cloud. The prototype is fully functional and equipped
with a logging subsystem.

Chapter 6: Discussion 51

After analyzing the technical potential of the AWS cloud, it was decided to take
one step further and deploy a serverless REST API honeypot, using cloud-native
tools based on the on-demand resource utilization model. The proposed prototype
uses the AWS API Gateway service paired with the AWS Lambda service. Requests
sent to the API honeypot trigger Lambda functions, using an on-demand resource
utilization model instead of allocating the resources permanently. The proposed
design and the prototype provided in Chapter 4 answered research question 2.

6.2.3 Research question 3

To what degree the deployment of the web API honeypot can be automated?
Along with configuration through AWS web GUI, the research proposes auto-

mated deployment of core components using the "install.sh" deployment script
presented in Appendix A.1. Research question 3 was answered by creating the
script and making test deployments. Taking the "logparser.py" application from
the batch mode to the near real-time model was another successful step towards
automation. Assuming correct AWS user account configuration, the whole solu-
tion can be deployed by running one single script "install.sh". After deployment,
the solution can be run in batch or near real-time mode by running either "log-
parser_batch.py" or "logparser_realtime.py" applications accordingly.

This chapter discussed the findings, advantages, and limitations of the API
honeypot and explained whether the research questions were answered. The next
chapter provides the conclusion on the work conducted and proposes ideas for
future work.

Chapter 7

Conclusion

7.1 Study and achievements

The main objective of the study is to build a prototype of a low-interaction web API
honeypot with a security logging subsystem. The application has to mimic a web
API of EVCN management system. The main objective is based on the following
sub-objectives:

• Build a decoy EVCN web API to manage chargers.
• Make an attempt to fully automate the deployment of core components.
• As a proof of concept, make the solution available online, and log requests

issued by attackers.
• Organize the collected data related to attacks in JSON format and plot in

Grafana visualization solution.

The study aimed to achieve the main objective by addressing sub-objectives.
Building a decoy EVCN REST API to manage chargers was the first one to address.
The study reached an operational stage of the REST API honeypot prototype with
working functionality. The setup with a declared functionality is reflected in the
Chapter 4.

The second sub-objective aimed to automate the deployment of the core com-
ponents. Deployment of all core components was automated and tested. Shell
application for deployment is provided in Appendix A.1. The third sub-objective
was to prove the concept and make the solution available online, trying to log
requests and data issued by attackers. API honeypot was published online and
collected some logs about requests made, fulfilling the sub-objective. Finally, the
last sub-objective was to process the logs collected, organizing the data in a JSON
data structure and visualizing it in Grafana plots. The sub-objective was achieved
and the results of data visualization were demonstrated in the Chapter 5.

The study fulfilled the main objective by addressing the four sub-objectives.
The prototype proved to be a working solution with a proof of concept model.
Logs reflecting the activities of intruders were collected and parsed. The data of

53

54 CoPCSE@NTNU: An NTNU Thesis Document Class

interest such as timestamps, attack source IP addresses, HTTP methods, and pay-
load were extracted and organized in the InfluxDB database system. The data
then was visualized in several plots using the Grafana solution. In the final stage,
the web API honeypot was forked from batch mode, adding a near real-time ver-
sion. The information about the details of near real-time setup can be found in
Appendix A.3.

This work can be used by EVCN operators seeking to understand the adversary.
IP addresses extracted from the logs can be used to block attackers and compute
the geolocation of the attacking nodes using Golang, Python, or other program-
ming language modules. The timestamps reflecting the intensity of the attacks,
HTTP methods used and payload of the requests contain important information
helping to understand the technical capabilities of attackers and design counter-
measures to be taken for defense. The API honeypot is useful for researchers in-
terested in collecting and analyzing threat intelligence data from low-interaction
REST API honeypot systems. Also, the API honeypot can be used for distracting
attackers from the actual API resources of an organization and making them waste
time and resources trying to attack a decoy API. The solution is flexible and can be
adapted or repurposed with relatively minor tweaking. The REST API honeypot
built in the AWS cloud is innovative, as no similar solutions were found in the
previous work.

The objectives for future work are proposed in the following section.

7.2 Future work

The proposed web API honeypot prototype has only one "chargers" resource. It is
advisable to gather information about production APIs used by EVCN providers
and add relevant resources to the prototype. Also, the attributes for charger objects
in a production network would contain a lot more items and should be considered
for relevant extensions.

The API honeypot has only three HTTP methods implemented. Production im-
plementations should aim for the full implementation of all HTTP methods avail-
able in the AWS API Gateway service. Also, the study focused on the extraction
of certain fields from the API honeypot log files. AWS logging system provides
detailed request and response logs for API Gateway service and extraction of data
from additional fields can be beneficial for researchers. One example of the ex-
isting field that was not used in this work is the user agent field in the log file,
reflecting a user-side application used to access the API.

Bibliography

[1] International Energy Agency, ‘Global EV outlook 2022,’ 2022. [Online].
Available: https://iea.blob.core.windows.net/assets/ad8fb04c-
4f75-42fc-973a-6e54c8a4449a/GlobalElectricVehicleOutlook2022.
pdf.

[2] European Union Agency For Network and Information Security. ‘Mapping
of OES Security Requirements to Specific Sectors.’ (2017), [Online]. Avail-
able: https://www.enisa.europa.eu/publications/mapping-of-oes-
security-requirements-to-specific-sectors.

[3] International Organization for Standardization. ‘Road vehicles — vehicle
to grid communication interface.’ (2019), [Online]. Available: https://
www.iso.org/standard/69113.html.

[4] Redhat. ‘What is an API?’ (2022), [Online]. Available: https://www.redhat.
com/en/topics/api/what-are-application-programming-interfaces.

[5] Open Charge Alliance. ‘Open Charge Point Protocol 1.6.’ (2022), [Online].
Available: https://www.openchargealliance.org/.

[6] R. Fielding, U. Irvin, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach
and T. Berners-Lee. ‘Hypertext Transfer Protocol – HTTP/1.1.’ (1999), [On-
line]. Available: https://www.rfc-editor.org/rfc/rfc2616.html.

[7] S. Köhler, R. Baker, M. Strohmeier and I. Martinovic, Brokenwire : Wire-
less Disruption of CCS Electric Vehicle Charging, 2022. arXiv: 2202.02104
[cs.CR].

[8] P. Bock, J.-P. Hauet, R. Françoise and R. Foley, Ukrainian power grids cyber-
attack, 2017. [Online]. Available: https://www.isa.org/intech-home/
2017/march-april/features/ukrainian-power-grids-cyberattack.

[9] IETF. ‘The JavaScript Object Notation (JSON) Data Interchange Format.’
(2017), [Online]. Available: https://www.rfc-editor.org/rfc/rfc8259.

[10] NIST. ‘Framework for Improving Critical Infrastructure Cybersecurity.’ (2018),
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/cswp/nist.
cswp.04162018.pdf.

[11] International Organization for Standardization, ISO/IEC 27005:2022, 2022.
[Online]. Available: https://www.iso.org/obp/ui#iso:std:iso-iec:
27005:ed-4:v1:en.

55

https://iea.blob.core.windows.net/assets/ad8fb04c-4f75-42fc-973a-6e54c8a4449a/GlobalElectricVehicleOutlook2022.pdf
https://iea.blob.core.windows.net/assets/ad8fb04c-4f75-42fc-973a-6e54c8a4449a/GlobalElectricVehicleOutlook2022.pdf
https://iea.blob.core.windows.net/assets/ad8fb04c-4f75-42fc-973a-6e54c8a4449a/GlobalElectricVehicleOutlook2022.pdf
https://www.enisa.europa.eu/publications/mapping-of-oes-security-requirements-to-specific-sectors
https://www.enisa.europa.eu/publications/mapping-of-oes-security-requirements-to-specific-sectors
https://www.iso.org/standard/69113.html
https://www.iso.org/standard/69113.html
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.openchargealliance.org/
https://www.rfc-editor.org/rfc/rfc2616.html
https://arxiv.org/abs/2202.02104
https://arxiv.org/abs/2202.02104
https://www.isa.org/intech-home/2017/march-april/features/ukrainian-power-grids-cyberattack
https://www.isa.org/intech-home/2017/march-april/features/ukrainian-power-grids-cyberattack
https://www.rfc-editor.org/rfc/rfc8259
https://nvlpubs.nist.gov/nistpubs/cswp/nist.cswp.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/cswp/nist.cswp.04162018.pdf
https://www.iso.org/obp/ui#iso:std:iso-iec:27005:ed-4:v1:en
https://www.iso.org/obp/ui#iso:std:iso-iec:27005:ed-4:v1:en

56 CoPCSE@NTNU: An NTNU Thesis Document Class

[12] R. Chandramouli. ‘Security Strategies for Microservices-based Application
Systems.’ (2019), [Online]. Available: https://csrc.nist.gov/publications/
detail/sp/800-204/final.

[13] Central Digital Data Office. ‘API technical and data standards.’ (2018),
[Online]. Available: https://www.gov.uk/guidance/gds-api-technical-
and-data-standards.

[14] Open Web Application Security Project. ‘OWASP API Security Project.’ (2019),
[Online]. Available: https://owasp.org/www-project-api-security/.

[15] National Cyber Security Centre. ‘Cyber security design principles.’ (2022),
[Online]. Available: https://www.ncsc.gov.uk/collection/cyber-
security-design-principles/cyber-security-design-principles.

[16] S. Biedermann, M. Mink and S. Katzenbeisser, ‘Fast Dynamic Extracted
Honeypots in Cloud Computing,’ in Proceedings of the 2012 ACM Work-
shop on Cloud Computing Security Workshop, ser. CCSW ’12, New York,
NY, USA: Association for Computing Machinery, 2012, pp. 13–18, ISBN:
9781450316651. DOI: 10.1145/2381913.2381916. [Online]. Available:
https://doi.org/10.1145/2381913.2381916.

[17] Ryandy, C. Lim and K. E. Silaen, ‘XT-Pot: EXposing Threat Category of
Honeypot-Based Attacks,’ in Proceedings of the International Conference on
Engineering and Information Technology for Sustainable Industry, ser. ICON-
ETSI, New York, NY, USA: Association for Computing Machinery, 2020,
ISBN: 9781450387712. [Online]. Available: https://doi.org/10.1145/
3429789.3429868.

[18] Ng, Chee Keong and Pan, Lei and Xiang, Yang, ‘Specialized Honeypot Ap-
plications,’ in Honeypot Frameworks and Their Applications: A New Frame-
work. Springer Singapore, 2018, pp. 15–41, ISBN: 978-981-10-7739-5. [On-
line]. Available: https://doi.org/10.1007/978-981-10-7739-5_3.

[19] C. Cheh and B. Chen, ‘Analyzing OpenAPI Specifications for Security Design
Issues,’ in 2021 IEEE Secure Development Conference (SecDev), 2021, pp. 15–
22. DOI: 10.1109/SecDev51306.2021.00019.

[20] J. A. Díaz-Rojas, J. O. Ocharán-Hernández, J. C. Pérez-Arriaga and X. Limón,
‘Web API Security Vulnerabilities and Mitigation Mechanisms: A System-
atic Mapping Study,’ in 2021 9th International Conference in Software En-
gineering Research and Innovation (CONISOFT), 2021, pp. 207–218. DOI:
10.1109/CONISOFT52520.2021.00036.

[21] S. Sohan, C. Anslow and F. Maurer, ‘A Case Study of Web API Evolution,’ in
2015 IEEE World Congress on Services, 2015, pp. 245–252. DOI: 10.1109/
SERVICES.2015.43.

https://csrc.nist.gov/publications/detail/sp/800-204/final
https://csrc.nist.gov/publications/detail/sp/800-204/final
https://www.gov.uk/guidance/gds-api-technical-and-data-standards
https://www.gov.uk/guidance/gds-api-technical-and-data-standards
https://owasp.org/www-project-api-security/
https://www.ncsc.gov.uk/collection/cyber-security-design-principles/cyber-security-design-principles
https://www.ncsc.gov.uk/collection/cyber-security-design-principles/cyber-security-design-principles
https://doi.org/10.1145/2381913.2381916
https://doi.org/10.1145/2381913.2381916
https://doi.org/10.1145/3429789.3429868
https://doi.org/10.1145/3429789.3429868
https://doi.org/10.1007/978-981-10-7739-5_3
https://doi.org/10.1109/SecDev51306.2021.00019
https://doi.org/10.1109/CONISOFT52520.2021.00036
https://doi.org/10.1109/SERVICES.2015.43
https://doi.org/10.1109/SERVICES.2015.43

Bibliography 57

[22] E. Wittern, A. Ying, Y. Zheng, J. A. Laredo, J. Dolby, C. C. Young and A. A.
Slominski, ‘Opportunities in Software Engineering Research for Web API
Consumption,’ in Proceedings of the 1st International Workshop on API Usage
and Evolution, ser. WAPI ’17, IEEE Press, 2017, pp. 7–10, ISBN: 9781538628058S.

[23] M. Tello-Rodríguez, J. O. Ocharán-Hernández, J. C. Pérez-Arriaga, X. Limón
and Á. J. Sánchez-García, ‘A Design Guide for Usable Web APIs,’ Program-
ming and Computer Software, vol. 46, no. 8, pp. 584–593, Dec. 2020, ISSN:
1608-3261. DOI: 10.1134/S0361768820080241. [Online]. Available: https:
//doi.org/10.1134/S0361768820080241.

[24] E. Wilde, ‘Surfing the API Web: Web Concepts,’ in Companion Proceed-
ings of The Web Conference 2018, ser. WWW ’18, Republic and Canton of
Geneva, CHE: International World Wide Web Conferences Steering Com-
mittee, 2018, pp. 797–803, ISBN: 9781450356404. DOI: 10.1145/3184558.
3188743. [Online]. Available: https : / / doi . org / 10 . 1145 / 3184558 .
3188743.

[25] World Wide Web Consortium. ‘Extensible Markup Language (XML).’ (2008),
[Online]. Available: https : / / www . w3 . org / TR / REC - xml / REC - xml -
20081126.xml.

[26] World Wide Web Consortium. ‘RDF 1.1 Concepts and Abstract Syntax.’
(2014), [Online]. Available: https://www.w3.org/TR/rdf11-concepts/.

[27] D. Watson. ‘Low-interaction honeypots revisited.’ (2015), [Online]. Avail-
able: https://www.honeynet.org/2015/08/06/low- interaction-
honeypots-revisited/.

[28] M. Musch, M. Härterich and M. Johns, ‘Towards an Automatic Generation
of Low-Interaction Web Application Honeypots,’ in Proceedings of the 13th
International Conference on Availability, Reliability and Security, ser. ARES
2018, Hamburg, Germany: Association for Computing Machinery, 2018,
ISBN: 9781450364485. DOI: 10.1145/3230833.3230839. [Online]. Avail-
able: https://doi.org/10.1145/3230833.3230839.

[29] L. Rist, S. Vetsch, M. Koßin and M. Mauer. ‘A dynamic, low-interaction
web application honeypot.’ (2010), [Online]. Available: https://www.
honeynet.org/download/glastopf-a-dynamic-low-interaction-web-
application-honeypot/#.

[30] E. Chiapponi, O. Catakoglu, O. Thonnard and M. Dacier, ‘HoPLA: a Honey-
pot Platform to Lure Attackers,’ in CESAR 2020, Computer Electronics Secur-
ity Applications Rendez-vous, Deceptive security Conference, part of European
Cyber Week, 14-15 December, Rennes, France, EURECOM, Ed., 2020.

[31] M. Idris, I. Syarif and I. Winarno, ‘Development of Vulnerable Web Applic-
ation Based on OWASP API Security Risks,’ in 2021 International Electron-
ics Symposium (IES), 2021, pp. 190–194. DOI: 10.1109/IES53407.2021.
9593934.

https://doi.org/10.1134/S0361768820080241
https://doi.org/10.1134/S0361768820080241
https://doi.org/10.1134/S0361768820080241
https://doi.org/10.1145/3184558.3188743
https://doi.org/10.1145/3184558.3188743
https://doi.org/10.1145/3184558.3188743
https://doi.org/10.1145/3184558.3188743
https://www.w3.org/TR/REC-xml/REC-xml-20081126.xml
https://www.w3.org/TR/REC-xml/REC-xml-20081126.xml
https://www.w3.org/TR/rdf11-concepts/
https://www.honeynet.org/2015/08/06/low-interaction-honeypots-revisited/
https://www.honeynet.org/2015/08/06/low-interaction-honeypots-revisited/
https://doi.org/10.1145/3230833.3230839
https://doi.org/10.1145/3230833.3230839
https://www.honeynet.org/download/glastopf-a-dynamic-low-interaction-web-application-honeypot/#
https://www.honeynet.org/download/glastopf-a-dynamic-low-interaction-web-application-honeypot/#
https://www.honeynet.org/download/glastopf-a-dynamic-low-interaction-web-application-honeypot/#
https://doi.org/10.1109/IES53407.2021.9593934
https://doi.org/10.1109/IES53407.2021.9593934

58 CoPCSE@NTNU: An NTNU Thesis Document Class

[32] M. Soliman and M. A. Azer, ‘Web Application API Blind Denial of Ser-
vice Attacks,’ in 2018 14th International Computer Engineering Conference
(ICENCO), 2018, pp. 249–253. DOI: 10.1109/ICENCO.2018.8636115.

[33] B. Camburn, V. Viswanathan, J. Linsey, D. Anderson, D. Jensen, R. Craw-
ford, K. Otto and K. Wood, ‘Design prototyping methods: state of the art
in strategies, techniques, and guidelines,’ Design Science, vol. 3, e13, 2017.
DOI: 10.1017/dsj.2017.10.

[34] R. T. Fielding. ‘Architectural Styles and the Design of Network-based Soft-
ware Architectures.’ (2000), [Online]. Available: https://www.ics.uci.
edu/~fielding/pubs/dissertation/rest_arch_style.html.

[35] World Wide Web Consortium. ‘SOAP Version 1.2.’ (2007), [Online]. Avail-
able: https://www.w3.org/TR/soap/.

[36] Amazon Web Services. ‘Set up an HTTP method.’ (2022), [Online]. Avail-
able: https://docs.aws.amazon.com/apigateway/latest/developerguide/
api-gateway-method-settings-method-request.html#setup-method-
add-http-method.

[37] R. Fielding, M. Nottingham and J. Reschke. ‘RFC 9110 HTTP Semantics.’
(2022), [Online]. Available: https://www.rfc-editor.org/rfc/rfc9110.
html.

[38] Amazon Web Services. ‘How do I create and activate a new AWS account?’
(2022), [Online]. Available: https://aws.amazon.com/premiumsupport/
knowledge-center/create-and-activate-aws-account/.

[39] Amazon Web Services. ‘Configuring the AWS CLI.’ (2022), [Online]. Avail-
able: https://docs.aws.amazon.com/cli/latest/userguide/cli-
chap-configure.html.

[40] Amazon Web Services. ‘What is Amazon API Gateway?’ (2022), [Online].
Available: https://docs.aws.amazon.com/apigateway/latest/developerguide/
welcome.html.

[41] Amazon Web Services. ‘What is AWS Lambda?’ (2022), [Online]. Available:
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html.

[42] Amazon Web Services. ‘What is IAM?’ (2022), [Online]. Available: https:
//docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html.

[43] Amazon Web Services. ‘What is Amazon DynamoDB?’ (2022), [Online].
Available: https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/Introduction.html.

[44] Amazon Web Services. ‘What is Amazon CloudWatch?’ (2022), [Online].
Available: https://docs.aws.amazon.com/AmazonCloudWatch/latest/
monitoring/WhatIsCloudWatch.html.

[45] Amazon Web Services. ‘Boto3 documentation.’ (2022), [Online]. Available:
https://boto3.amazonaws.com/v1/documentation/api/latest/index.
html.

https://doi.org/10.1109/ICENCO.2018.8636115
https://doi.org/10.1017/dsj.2017.10
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.html
https://www.w3.org/TR/soap/
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-settings-method-request.html#setup-method-add-http-method
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-settings-method-request.html#setup-method-add-http-method
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-settings-method-request.html#setup-method-add-http-method
https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/rfc/rfc9110.html
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

Bibliography 59

[46] Amazon Web Services. ‘Testing Lambda functions in the console.’ (2022),
[Online]. Available: https://docs.aws.amazon.com/lambda/latest/dg/
testing-functions.html.

[47] Amazon Web Services. ‘Registering a new domain.’ (2022), [Online]. Avail-
able: https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/
domain-register.html.

[48] Amazon Web Services. ‘Setting up custom domain names for REST APIs.’
(2022), [Online]. Available: https://docs.aws.amazon.com/apigateway/
latest/developerguide/how-to-custom-domains.html.

[49] Amazon Web Services. ‘Issuing and managing certificates.’ (2022), [On-
line]. Available: https://docs.aws.amazon.com/acm/latest/userguide/
gs.html.

[50] Influxdata. ‘InfluxDB key concepts.’ (2015), [Online]. Available: https:
//docs.influxdata.com/influxdb/v1.8/concepts/key_concepts/.

[51] Amazon Web Services. ‘API Gateway mapping template and access log-
ging variable reference.’ (2022), [Online]. Available: https://docs.aws.
amazon.com/apigateway/latest/developerguide/api-gateway-mapping-
template-reference.html.

[52] eDRV. ‘Data Hierarchy.’ (2022), [Online]. Available: https://docs.edrv.
io/docs/data-hierarchy.

[53] Grafana. ‘Grafana visualization.’ (2022), [Online]. Available: https://
grafana.com/grafana/.

[54] Amazon Web Services. ‘AWS CloudFormation Documentation.’ (2022), [On-
line]. Available: https://docs.aws.amazon.com/cloudformation/index.
html.

https://docs.aws.amazon.com/lambda/latest/dg/testing-functions.html
https://docs.aws.amazon.com/lambda/latest/dg/testing-functions.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-custom-domains.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-custom-domains.html
https://docs.aws.amazon.com/acm/latest/userguide/gs.html
https://docs.aws.amazon.com/acm/latest/userguide/gs.html
https://docs.influxdata.com/influxdb/v1.8/concepts/key_concepts/
https://docs.influxdata.com/influxdb/v1.8/concepts/key_concepts/
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.edrv.io/docs/data-hierarchy
https://docs.edrv.io/docs/data-hierarchy
https://grafana.com/grafana/
https://grafana.com/grafana/
https://docs.aws.amazon.com/cloudformation/index.html
https://docs.aws.amazon.com/cloudformation/index.html

Appendix A

API deployment automation

The Github repository containing software and configuration files:

https://github.com/mamedxanli/webAPIHoneypot

The following sections describe all components in the repo.

A.1 install.sh

Install.sh script installs and configures the main components and some sub-components
of the web API honeypot:

A.2 logparser_batch.py

Python application for parsing logs and writing data to InfluxDB in a batch mode.
Can be scheduled to run via crontab.

A.3 logparser_realtime.py

Python application for parsing logs and writing data to InfluxDB in a near real-
time mode. Can be scheduled to run via crontab.

A.4 rollback.sh

Shell script to remove resources created by install.sh script

A.5 aws_policies folder

The folder contains all AWS-specific policies: trust.json, inline_policy_dynamodb.json,
s3-policy.json.

61

62 CoPCSE@NTNU: An NTNU Thesis Document Class

A.6 cnDeleteFunction.py, cnGetFunction.py, cnPutFunction.py

Python functions used in AWS Lambda service.

A.7 db-var.env

Environmental variables for InfluxDB

A.8 docker-compose.yml

Docker-compose setup file

	Abstract
	Acknowledgments
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Problem description
	Motivation
	Scope of the work
	Research questions
	Question 1
	Question 2
	Question 3

	Claimed contribution

	State of the art
	Special Publications
	Related work
	Honeypot systems
	Web API
	Web honeypot systems

	Interview with EVCN operator
	Relating state of the art to EVCN web API honeypot

	Methodology
	Problem Statement
	Research Objectives
	Research design
	State of the art review
	Prototyping
	Prototype model
	Expected functionality
	Expected outcome

	Prototyping
	EVCN REST API structure
	General architecture

	AWS architecture, core components
	AWS DynamoDB
	AWS IAM
	AWS Lambda
	AWS API Gateway
	AWS CloudWatch
	Automate the deployment of the API honeypot

	Optional components
	Authentication and HTTP methods implementation
	Mapping a custom domain name for the REST API
	"Leaking" API settings to the Internet
	AWS S3
	Processing collected logs
	Parsing logs using Python application and storing the data in JSON format
	Alternative way of parsing logs using AWS Custom Access Logging
	Visualization of the collected data using Grafana and InfluxDB

	Results
	Test deployment
	Data visualization

	Discussion
	Findings
	Advantages of the web API honeypot
	Limitations of the web API honeypot

	Answering questions
	Research question 1
	Research question 2
	Research question 3

	Conclusion
	Study and achievements
	Future work

	Bibliography
	API deployment automation
	install.sh
	logparser_batch.py
	logparser_realtime.py
	rollback.sh
	aws_policies folder
	cnDeleteFunction.py, cnGetFunction.py, cnPutFunction.py
	db-var.env
	docker-compose.yml

