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Abstract. I discuss pion and kaon condensation and the the properties of the

phases of QCD at finite isospin chemical potential μI and strangeness chemical

potential μS at zero temperature using three-flavor chiral perturbation theory.

Electromagnetic effects are included in the calculation of the phase diagram,

which implies that the charged meson condensed phases become superconduct-

ing phases of QCD with a massive photon via the Higgs mechanism. Without

electromagnetic effects, we show results for the light quark condensate and the

pion condensate as functions of μI at next-to-leading (NLO) order in the low-

energy expansion. The results are compared with recent lattice simulations and

by including the NLO corrections, one obtains very good agreement.

1 Introduction

In this talk, I would like to discuss various aspects of the phases of QCD at zero temperature,

but finite isospin and strangeness density. However, before I do that, I will briefly comment

on the QCD phase diagram as it is normally presented, namely in the μB–T plane. It is shown

in Fig. 1, borrowed from Ref. [1]. Few of the results for the phase diagram are rigorous in the

sense that they are obtained from first principles, rather they are obtained by model calcula-

tions. However, for asymptotically high temperatures and zero baryon chemical potential, we

know that QCD is in a quark-gluon plasma phase consisting of weakly interacting deconfined

quarks and gluons. Similarly, we know that at asymptotically high baryon density and zero

temperature, QCD is in the color-flavor locked phase arising from an attracting channel of

one-gluon exchange and the resulting instability of the Fermi surface. From lattice simula-

tions, we know that there is a cross-over transition for μB = 0 at a temperature of around

155 MeV. For low temperatures and large chemical potentials, the infamous sign problem,

prohibits the use of standard Monte Carlo techniques to study the properties of QCD. One

must therefore resort to low-energy models such as the NJL model and the quark-meson

model. Over the past two decades, a huge amount of work has been done to map out the

phase diagram.

The situation is even more complex than this since, instead of using a common quark

chemical potential for all quarks, one can introduce a separate chemical potential μ f for each

∗e-mail: andersen@tf.phys.ntnu.no

, 07003 (2022) https://doi.org/10.1051/epjconf/202227407003
t h

 Quark Confinement and the Hadron Spectrum

EPJ Web of Conferences 274
XV

1,∗

  © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



flavor. For three flavors, we use either μu, μd, and μs or the baryon chemical potential μB, the

isospin chemical potential μI , and strangeness chemical potential μS defined as

μB =
3

2
(μu + μd) , μI = μu − μd , μS =

1

2
(μu + μd − 2μs) . (1)

For μB = μS = 0 but nonzero μI , one can carry out Monte Carlo simulations using standard

techniques since the fermion determinant in this case is real and consequently there is no

sign problem. This opens up the possibility to study charged pion condensation on the lattice

and confront it with results from low-energy effective theories. In this talk, I will discuss

pion condensation for two and three flavors using chiral perturbation theory (χPT) as a low-

energy effective theory for QCD and show results for the light quark and pion condensates

as a function of μI with μB = μS = 0. The results will be compared to recent high-precision

lattice simulations [2–5]. I will also discuss the phase diagram and meson condensation

for three flavors in the μI–μS plane at zero temperature, with and without electromagnetic

interactions.

Figure 1. Phase diagram of QCD in the μB–T plane. Figure from Ref. [1].

In Fig. 2, we sketch the phase diagram of two-flavor QCD in the the μI–T plane. In the

lower left region, we have the hadronic phase where chiral symmetry is broken and quarks are

confined. As the temperature increases, one enters the quark-gluon plasma phase. Along the

μI-axis, there is a transition from the hadronic phase to a Bose-condensed phase of charged

pions. In this phase, the U(1)I3 symmetry is broken giving rise to a massless Goldstone

boson, which is a mixture of π+ and π−. For large isospin chemical and low temperature,

one expects that quarks are the relevant degrees of freedom rather than pions [6] . The Fermi

surface that exists when the interactions are turned off, is rendered unstable once they are

turned on, since they are attractive. The system is then described in terms of loosely bound

Cooper pairs instead of tightly bound pions. Since the symmetry breaking pattern is the same,

there is a cross-over transition rather than a true phase transition between the BEC and the

BCS phases [6].

2 χPT at finite isospin chemical potential μI

We will be using chiral perturbation theory to describe the pion-condensed phase of QCD

at finite μI and zero temperature. χPT is a low-energy effective theory for QCD based on
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Figure 2. Phase diagram of QCD in the μI–T plane.

the (global) symmetries and degrees of freedom. It provides a correct model-independent

description as long as one is inside its domain of validity [7–9]. The effective Lagrangian

that describes the low-energy degrees of freedom of QCD (pions, kaons, eta) can be written

in a low-energy expansion,

L = L2 +L4 + ... , (2)

where the subscript denotes the order in the expansion. The expansion parameter can be

written as M
4π f with M being a relevant mass or momentum scale and f is the pion-decay

constant. The leading-order Lagrangian is the nonlinear sigma model, which for two flavors

reads

L2 =
1

4
f 2〈∇μΣ∇μΣ†〉 + 1

4
f 2〈χ†Σ + Σ†χ〉 , (3)

where 〈〉 means trace in flavor space and

Σ = ei φaτa
f , χ = 2B0diag(mu,md) , (4)

with φa being the Goldstone bosons fields, mu,d are the quark masses, and B0 is the related to

the tree level quark condensate in the vacuum via 〈ψ̄ψ〉 = − f 2B0. The covariant derivative is

∇μΣ ≡ ∂μΣ − i
[
vμ,Σ

]
, (5)

with vμ = δμ0(
1
3
μB1 + 1

2
μIτ3). Note that our results will be independent of μB since the unit

matrix 1 commutes with everything, this reflects that the mesons have zero baryon number.

The most general ansatz for the normalized ground state can after some simplifications

be written as [6]

Σα = 1 cosα + iτ2 sinα = eiατ2 =

(
cosα sinα
− sinα cosα

)
, (6)

which simply is a rotation in flavor space of the vacuum state 1 by an angle α. The leading-

order thermodynamic potential is

Ω0 = − f 2B0(mu + md) cosα − 1

2
f 2μ2I sin

2 α . (7)
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We see that there is a competition between the two terms in Eq. (7), the first term prefers

the vacuum state α = 0, while the second term prefers α = 1
2
π. The optimum is found by

balancing these two terms in the thermodynamic potential,

cosα =
m2
π,0

μ2I
, μ2I ≥ m2

π,0 , (8)

α = 0 , μ2I < m2
π,0 , (9)

where m2
π,0 = B0(mu + md) is the tree-level pion mass. Thus there is a phase transition from

the vacuum to a pion-condensed phase at a critical μI , μ
c
I = ±mπ,0. To determine the order

of the transition, one can construct a Ginzburg-Landau energy functional by expanding the

thermodynamic potential Ω0 around α = 0,

Ω0 = − f 2m2
π,0 +

1

2
f 2[m2

π,0 − μ2I ]α2 − 1

24
f 2

[
m2
π,0 − 4μ2I

]
α4 + O(α6) . (10)

We define a critical chemical isospin potential μc
I when the order-α2 term vanishes, i.e. μc

I =±mπ,0. Since the coefficient of the order-α4 term is positive for μI = μc
I , the transition is

second order. Note that all thermodynamic quantities are independent of μI for μ2I < m2
π,0

implying that e.g. the isospin density vanishes in the same region and not only for μI = 0.

This is an example of the Silver-Blaze property [10].

3 Phase diagram for three flavors

We next consider the phase diagram for three-flavor QCD at finite μI and μS including elec-

tromagnetic effects. If we couple χPT to dynamical photons, the Lagrangian contains a few

extra terms at leading order in the low-energy expansion [11],

L2 = −1

4
FμνFμν +

1

4
f 2〈∇μΣ∇μΣ†〉 + 1

4
f 2〈χ†Σ + Σ†χ〉 +C〈QΣQΣ†〉

+Lgf +Lghost , (11)

with χ = 2B0diag(mu,md,ms) and Σ = ei φaλa
f . The new term C〈QΣQΣ†〉 is responsible for the

tree-level mass splitting of the charged and neutral pions, and it also contributes to the tree-

level mass splitting between the charged and neutral kaons. The inclusion of electromagnetic

effects also implies that the phases with charged meson condensates are superconducting and

that the massless degree of freedom (the Goldstone boson) is eaten up by the photon which

becomes massive via the Higgs mechanism. The term vμ in the covariant derivative Eq. (5) is

replaced by

v0 = 1
3
(μB − μS )1 + 1

2
μK±λQ +

1

2
μK0λK , vi = 0 , (12)

where

μK± =
1

2
μI + μS , μK0 = −1

2
μI + μS , (13)

λQ = λ3 +
1√
3
λ8 , λK = −λ3 + 1√

3
λ8 . (14)

In analogy with the two-flavor case, we expect onset of charged kaon condensation when

μ2K± = m2
K± and neutral kaon condensation when μ2K0 = m2

K0 . The corresponding ansätze for
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the ground states are 1

Σβ = eiβλ5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos β 0 sin β
0 1 0

− sin β 0 cos β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Σγ = eiγλ7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0

0 cos γ sin γ
0 − sin γ cos γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (15)

The thermodynamic potential in the different phases can then be computed as functions of the

chemical potentials. For example, in the charged kaon condensed phase, the thermodynamic

potential is

Ω0 = − f 2B0(mu + ms) cosα − 1

2
f 2

[
μ2K± − Δm2

EM

]
sin2 α , (16)

where Δm2
EM =

2Ce2
f 2 is the splitting between the charged and neutral kaons due to electromag-

netism. It follows that the transition takes place exactly at μ2K± = m2
K± = B0(mu + md) +

2Ce2
f 2

as expected.

For each value of (μI , μS ), we find the phase with the lowest value of Ω0 (or largest

pressure). This phase wins and we can map out the phase diagram in this manner. The

result is shown in the left panel of Fig. 3. The black lines are the transition lines without

electromagnetic interactions and the red lines are with electromagnetic interactions. The

former was first obtained by Kogut and Toublan [12] in the isospin limit. The phases with

charged meson condensation become Higgs phases upon including electromagnetic effects,

with a tree-level mass of the photon of mA = e f sinα. The transitions from the normal

phase to a meson-condensed phase is always second order with mean-field exponents in the

O(2) universality class. The transitions between the various condensed phases are always

first order and involve the competition between the order parameters of the different phases.

As we cross the transition lines, the order parameters as well as the isospin and strangeness

densities, nI and nS jump discontinuously. The small offset of the dashed vertical lines is

due to the mass difference between the charged and neutral kaons, which is both due to

ΔmEM � 0, and mu � md. These contributions, however, pull in opposite directions, as we see

in the phase diagram. The contribution due to the difference in quark masses adds to the mass

of the K0/K̄0 meson, which is why the black transition line between the kaon condensate is

to the left of the μI = 0 line, while the electromagnetic contribution adds to the mass of the

charged kaon, which is why the red line is between these two lines. The partition function

in the normal phase is independent of the two chemical potentials μI and μS , which again is

the Silver Blaze property [10]. In the right panels, we have zoomed in on the triple points.

Upper panel shows the intersection of the normal, neutral kaon condensed and charged kaon

condensed phases, while the lower shows the intersection of the normal, pion condensed, and

charged kaon condensed phases.

4 O(p4) calculation of thermodynamic potential

I will next sketch the NLO calculation of the thermodynamic potential. For simplicity I

consider two flavors in the isospin limit, mu = md = m. The thermodynamic potential can be

calculated in a low-energy expansion,

Ω = Ω0 + Ω1 + ..., (17)

1One could imagine multiple condensates in parts of the μI–μS plane, but that is ruled out by actual calculations.

The angles β and γ are the rotation angles of the quark condensate into a charged or neutral kaon condensate,

respectively.
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Figure 3. Left panel shows the phase diagram as predicted by χPT in the μI–μS -plane. In the right

panel, we have zoomed in on the triple points. See main text for details. Fig. from Ref. [13].

where Ωn is the order-O(p2n+2) contribution. The term Ω1 receives contributions from the

one-loop graphs of Lquadratic

2
and counterterms coming from Lstatic

4
. The relevant terms are

Lquadratic

2
= 1

2
(∂μφa)(∂

μφa) + μI cosα(φ1∂0φ2 − φ2∂0φ1)

− 1
2

[
(m2

π,0 cosα − μ2I cos2 α)φ2
1 + (m2

π,0 cosα − μ2I cos 2α)φ2
2

+(m2
π,0 cosα + μ

2
I sin

2 α)φ2
3

]
, (18)

Lstatic
4 = (l1 + l2)μ4I sin

4 α + l4m2
π,0μ

2
I cosα sin2 α + (l3 + l4)m4

π,0 cos
2 α + h1m4

π,0 ,

, (19)

where l1–l4 and h1 are bare couplings. They are related to the renormalized couplings lri and

hr
i via li = lri (Λ) +

γiΛ
−2ε

2(4π)2

[
1
ε
+ 1

]
and hi = hr

i (Λ) +
δiΛ

−2ε
2(4π)2

[
1
ε
+ 1

]
, where γi, δi are coefficients

and Λ is the renormalization scale in the MS scheme. Since δ1 = 0, h1 = hr
1 and does not run.

Performing the Gaussian integral over the quantum fields φa in dimensionsal regularization

using Eq. (18), we obtain a divergent contribution to Ω1. The divergences are cancelled by

adding the quartic terms from Eq. (19) and renormalizing the couplings by replacing the bare
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couplings with the renormalized ones. The final result is

Ω0 + Ω1 = − f 2m2
π,0 cosα −

1

2
f 2μ2I sin

2 α

− 1

4(4π)2

⎡⎢⎢⎢⎢⎢⎣32 − l̄3 + 4l̄4 + log

⎛⎜⎜⎜⎜⎜⎝m2
π,0

m̃2
2

⎞⎟⎟⎟⎟⎟⎠ + 2 log

⎛⎜⎜⎜⎜⎜⎝m2
π,0

m2
3

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ m4

π,0 cos
2 α

− 1

(4π)2

⎡⎢⎢⎢⎢⎢⎣12 + l̄4 + log

⎛⎜⎜⎜⎜⎜⎝m2
π,0

m2
3

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ m2

π,0μ
2
I cosα sin2 α

− 1

4(4π)2

⎡⎢⎢⎢⎢⎢⎣1 + 2

3
l̄1 +

4

3
l̄2 + 2 log

⎛⎜⎜⎜⎜⎜⎝m2
π,0

m2
3

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ μ4I sin4 α

− 1

(4π)2
h̄1m4

π,0 + Vfin
1,π+ + Vfin

1,π− , (20)

where m̃2
2 = m2

π,0 cosα, m2
3 = m2

π,0 + μ
2
I sin

2 α, and Vfin
1,π+ + Vfin

1,π− are two complicated finite

terms that must be evaluated numerically. Finally, l̄i and h̄i are, up to a prefactor, equal to

lri and hr
i at the scale Λ = mπ,0. Using Eq. (20) one can show that the phase transition takes

place at μc
I = mπ, where the physical pion mass mπ now includes radiative corrections [8], see

Eq. (21) below. The parameters l̄i are determined by experiment and h̄1 estimated by model

calculations. The parameters m2
π,0 = 2B0m and f can be found by inverting the one-loop

relations using the experimental values for the pion mass and the pion decay constant,

m2
π = m2

π,0

⎡⎢⎢⎢⎢⎢⎣1 − m2
π,0

2(4π)2 f 2
l̄3

⎤⎥⎥⎥⎥⎥⎦ , f 2π = f 2
⎡⎢⎢⎢⎢⎢⎣1 + 2m2

π,0

(4π)2 f 2
l̄4

⎤⎥⎥⎥⎥⎥⎦ . (21)

5 Condensates

In order to obtain the light quark and pion condensates, we need to calculate the thermo-

dynamic potential Ω with sources m and j, where the latter is a pionic source. The former

has already been included in the calculations I have shown and it is also straightforward to

include a pionic source j in the calculations. For example, in the two-flavor expression for

the thermodynamic potential, one simply makes the replacements m cosα→ m cosα+ j sinα
and h̄1m4

π,0 = h̄1(2B0m)2 → h̄1[(2B0m)2 + (2B0 j)2] [14]. Once these replacements are made,

the condensates are given by

〈ψ̄ψ〉μI =
1

2

∂Ω

∂m
= − f 2B0 cosα + ... , 〈π+〉μI =

1

2

∂Ω

∂ j
= − f 2B0 sinα + ... , (22)

where I on the the right-hand side have written explicitly the tree-level contributions. The

subscript μI on the expectation values indicates that they depend on the isospin chemical

potential. Instead of plotting the condensates directly, we define the normalized deviations as

Σψ̄ψ = − 2m
m2
π f 2π

[
〈ψ̄ψ〉μI

− 〈ψ̄ψ〉 j=0
0

]
+ 1 , Σπ = − 2m

m2
π f 2π

〈π+〉μI
. (23)

At tree level, Eq. (22) shows the rotation of the quark condensate into a pion condensate.

Equivalently, from Eq. (23), the deviations at tree level satisfy Σψ̄ψ,tree+Σ
2
π,tree = 1. This inter-

pretation no longer holds beyond O(p2). In the left panel of Fig. 4, we show Σψ̄ψ as a function

of
μI
mπ

at leading order (red line) 2 and next-to-leading order for two flavors (blue line) and

2The leading order result is the same for two and three flavors.
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three flavor (green line). The data points are from lattice simulations of Ref. [2–5]. In the

right panel, we show Σπ in the same approximations. We note that the difference between

Σψ̄ψ in the various approximations is very small and they all agree very well with the lattice

data points. Regarding Σπ, we notice that it is nonzero for μI < mπ, which simply reflects

that the curves shown are for nonzero pion source, j = 0.00517054mπ The U(1)I3 -symmetry

is therefore broken explicitly for all values of μI . Comparing the various approximations

and lattice data, it is evident that including the O(p4) corrections results in a substantially

improved agreement between χPT and simulations. All the numerical results have been ob-

tained by using the same physical meson masses as well as fπ as in the lattice simulations.

This requires that we invert the relations Eq. (21) to obtain the values for the bare mass m and

the bare pion decay constant f using the experimental values of l̄i.

LO
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Figure 4. Σψ̄ψ (left panel) and Σπ (right panel) as functions of μI/mπ at zero temperature and finite

source j = 0.00517054mπ. Fig. taken from Ref. [14].
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