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ABSTRACT Accurate segmentation and detection (instance segmentation) of white blood cells (WBCs)
from whole slide images remains a challenging task, as the WBCs vary widely in shapes, sizes, and
colors caused by different cell subtypes and various staining techniques. In this paper, we propose a
novel framework for end-to-end segmentation and detection of WBCs that are on multiple scales and
stained by different techniques. We name the framework the multi-scale and multi-staining WBC instance
segmentation network (MSS-WISN). The MSS-WISN consists of two parts: 1) a feature extraction network
for strengthening the feature expression and minimizing the impact of different staining techniques, and 2) a
feature fusion network for highlighting salient features and thereby eliminating the effect of scale variations.
To verify the effectiveness of the MSS-WISN, we build a new dataset containing 302 Magenta stained
images (collected by Tianjin Medical University) and 242 Wright stained images (from a public dataset).
Experiments show that the proposed framework outperforms other state-of-the-art methods in terms ofWBC
detection and WBC segmentation, achieving the highest F1-Score (0.901) and Dice (0.902).

INDEX TERMS White blood cells, instance segmentation, strengthened feature expression, highlighted
salient features.

I. INTRODUCTION
White blood cells (WBCs) plays a pivotal role in human
immune system, and the WBCs total count or each subtpye
count provides significant indicator for human health [1],
[2]. Neutrophils, lymphocytes, monocytes, eosinophils, and
basophils are the five subtypes of WBCs in the blood with
decreasing amounts in normal human bodies [3]. Each sub-
type has its physiological function. Thus, accurate classifi-
cation and segmentation of WBCs from whole slide images
are essential foundations for clinical examination [3], [4].
To accomplish these tasks, the whole slide images are usually
stained in preparation, which on one hand aids the cells
in showing their characteristics, but on the other hand, can
potentially hamper the effectiveness of image analysis due to
color and intensity variations of staining [5].
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Magenta and Wright staining are the two most commonly
used methods for WBC whole slide images [6]. The WBCs
stained by the two methods are presented in Fig. 1. The orig-
inal cell sizes in Wright stained images are larger than those
of Magenta stained. Note that there are only three subtypes
in the Magenta stained images: neutrophil (neu), lymphocyte
(lym), and monocyte (mon) since the other two subtypes have
lost their activity in this staining.

Manual detection, segmentation, and classification of
WBCs from a whole slide image are time-consuming,
laborious, subjective, and fallible, especially when the
WBCs have unclear texture or structure. Computer-aided
approaches thus emerged as new automatic solutions [7].
Deep learning-based methods have achieved state-of-the-art
performance in WBCs classification and segmentation [8].
But many challenges still exist. For example, segmentation
and classification are always performed independently since
ensembling the two procedures into a single framework
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FIGURE 1. Five subtypes of WBCs under Wright (a and b) and Magenta (c) staining, respectively. In (a) and (b), there are five subtypes of WBCs: neu, lym,
mon, bas and eo; while in (c), there are three subtypes of WBCs: neu, lym and mon.

requires an extra step to classify individual instances [9].
Moreover, the robustness of instance segmentation against
various cell sizes and staining techniques is difficult to
achieve [10].

To tackle the above-mentioned challenges, in this paper,
we propose a framework, named multi-scale and multi-
staining WBC instance segmentation network (MSS-WISN,
MSS for short), to realize simultaneous detection, segmen-
tation, and classification of WBCs from whole slide images.
MSS contains a feature extractionmodule and a feature fusion
module to address the problems caused by different staining
techniques and multiple scales respectively. We also establish
a dataset with 544 images and manually labeled them with
segmentation masks and classification subtypes.

The main contributions of our method are as follows:
1. We build a new dataset composed of 544 WBC images

with classification labels and masks: 302 Magenta stained
images with three subtypes containing 322 neutrophils,
175 lymphocytes, and 93 monocytes; 242 Wright stained
images with five subtypes containing 50 neutrophils, 52 lym-
phocytes, 48 monocytes, 53 basophils, and 39 eosinophils.
The Magenta stained images were self-collected by Tianjin
Medical University and the Wright stained images came
from Leukocyte Images for Segmentation and Classification
(LISC) [11] database.

2. We propose a new framework that realizes simultane-
ous detection, segmentation, and classification of WBCs on
the above-mentioned dataset. The framework can strengthen
feature expression and highlight salient features, which han-
dles the difficulties caused by different staining methods and
multi-scale sizes of WBCs.

The rest of this paper is organized as follows. In Section II,
we review the methods used for the detection, segmentation,
and classification for WBCs in recent years. Section III intro-
duces the proposed network for cell instance segmentation.

Section IV presents experimental results. Finally, Section V
concludes the whole work and discusses emerging trends in
WBC instance segmentation.

II. RELATED WORK
A. DETECTION AND SEGMENTATION OF CELLS AND
NUCLEI
Fruitful results have been reported on detection and segmen-
tation of cells and nuclei. Some traditional algorithms for
detection include: distance transform (DT) [12], morphology
operation [13], h-minima transform (HIT) [14], maximally
stable extremal region (MSER) detection [15] and so on.
For segmentation, clustering techniques were employed as
powerful tools [16]–[18]. On the other hand, there are plenty
of works investigating the image characteristic for segmen-
tation, for example, edge boundary [19], colour space [6],
[20], [21], and threshold [22]–[24] were separately stud-
ied. Zhang et al. [6] combined several traditional methods
including color space decomposition and k-means cluster-
ing for segmentation, which achieved satisfying accuracy.
Hannah et al. [25] developed the so-called soft covering
rough k-means clustering (HSCRKM) method for leukemia
and nucleus segmentation by combining the advantages of
a soft covering rough set and the rough k-means clustering.
Lu et al. [15] proposed a method based on accurate nucleus
detection which, however, was easy to be affected by impuri-
ties or unrelated substances.

Deep learning-based methods have been used to solve
specific challenges such as overlapping and blurred boundary
segmentation. Self-supervised learning methods and Con-
volutional Neural Networks (CNNs) [26] are frequently
involved. For example, in [27], a self-supervised learning
method based on the topological structure of leukocytes and
fuzzy boundary enhancement was used to segment WBCs.
Two CNN-based object detection methods, the SSD (Single
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FIGURE 2. The overall architecture of the proposed framework-MSS. The original whole slide WBC images stained by Magenta
or Wright are input into the network, followed by the extraction of the diverse features module, then the obtained feature
maps P2-P6 are fed into the detection module to implement multiple tasks: bounding box prediction, subtype classification,
and mask generation.

Shot Multibox Detector) and the YOLOv3 (You Only Look
Once), were utilized in [28] for detecting WBCs. In [29],
the authors successfully segmented the overlapped cervical
cells in Pap smear images by resorting to the Mask R-CNN.
However, none of the aforementionedmethods considered the
difficulties caused by multi-scale cells and different staining
ways.

B. CLASSIFICATION OF CELLS AND NUCLEI
Some methods to realize both segmentation and classifi-
cation have also come into being. In [30], a system was
proposed to automatically segment, count, and classify the
WBC of five types, but the segmentation accuracy on the
cell boundary was limited. In [31], the authors put forward a
machine-learning algorithm to detect and classify immature
leukocytes and used the traditional random forest algorithm
to classify immature WBCs based on morphological fea-
tures. In [32], a simple CNN was utilized to identify and
locate WBCs in Wright stained blood cell images. To resolve
the problems of intra-nucleus variation and segregation of
aggregated nucleus, in [33], a UNet-based architecture was
integrated with residual blocks, densely connected blocks,
and a fully convolutional layer in the encoder-decoder block,
achieving better classification than the UNet or the Mask
R-CNN. However, this method required two kinds of mask
representation, which raised the complexity of data prepro-
cessing.

C. MASK PREDICTION OF CELL AND NUCLEI
In addition to the segmentation and the classification, the
general instance segmentation involves predicting a mask for
each WBCs. There are two mainstream models: one-stage
models and two-stage models. The one-stage model has the
advantages of few parameters and economic training time,
but its accuracy is lower than the level of the two-stage
model [27], [34] since it, unlike the Region Proposal Network

(RPN)-basedmethods [35], does not filter out the background
and most negative samples. Mask R-CNN [27] is a popular
two-stage instance segmentation model and sparks numerous
variants, see examples in [29], [36], [37]. TheseMaskR-CNN
variants are aimed at improving the general performance of
instance segmentation by using specific characteristics of
images.

Multi-scale cell instance segmentation has been considered
in some of the above references. For example, in [38], a new
box-based cell instance segmentation method was proposed
using a keypoint graph to extract the bounding box for each
cell. The highest average precision reached 0.88. Different
staining techniques can result in distinctive feature repre-
sentations for the same cell. The feature difference should
be removed such that the original features of cells can be
exhibited. ResNeXt [39] realized the split and reorganization
of feature channels so that it could fuse feature maps from dif-
ferent subspaces, being an option for preserving the essential
features regardless of staining methods.

III. METHOD
In this section, we present the proposed MSS framework in
detail. In what follows, the overall architecture of MSS is
given in Section III-A. Then, all the involved modules, i.e.,
the Se-ResNeXt, the CFPN, and the detection network are
elaborated in Sections III-B, III-C, III-D respectively.

A. OVERALL ARCHITECTURE
The proposed framework consists of three parts: dataset con-
struction, diverse features extraction, and WBCs detection
and segmentation. The general flowchart is given in Fig. 2.
Firstly, we construct a dataset of WBCs whole slide images.
The details of the dataset can be seen in Section IV. Then,
we introduce a novel features extraction network, say, the
Se-ResNeXt, to extract diverse feature representations of the
WBCs. The resulting feature maps which are denoted by
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FIGURE 3. Detailed structure of diverse features extraction module.

s1, s2, s3, s4 in Fig. 2 contain the deep semantic and the
shallow information of the original images and are of multi-
scales. To integrate the high-level and low level features maps
s1, s2, s3, s4, a feature pyramid network (FPN) equipped
with attention modules–Convolution block attention modules
(CBAM)–is employed, which is called the CFPN. The details
of the Se-ResNeXt and the CFPN are separately elaborated in
Section III-B and Section III-C. At last, a WBCs detection
network is developed taking the obtained feature maps as
inputs, realizing three tasks simultaneously: bounding box
prediction, subtype classification, and mask generation.

B. SE-ResNeXt FOR STRENGTHENING FEATURE
REPRESENTATION OF GLOBAL FEATURES
To remedy the problem caused by different staining methods,
we introduce a new feature extraction network structure,
namely the SE-ResNeXt network, that combines the Squeeze
and Excitation (SE) module [40] and the ResNeXt [39]. It is
depicted in Fig. 3. SE-ResNeXt adopts a group-convolution
structure containing 32 convolutions of 3 × 3 dimensions to
capture diverse features of the original images. To strengthen
the feature expression, a channel attention mechanism is
employed. There are in total four SE-ResNeXt blocks, that
are SE-ResNeXt block a, a = 1, 2, 3, 4. In the a-th block,
the corresponding group-convolution outputs a set of feature
maps of 64 × 2a−1 channels. Then through the following
1 × 1 × (64 × 2a+1) convolution layer, the feature maps are
expanded by four times, yielding a collection of 64 × 2a+1-
channel feature maps.

The group-convolution structure in each SE-ResNeXt gen-
erates a feature subspace of the original images, a sub-
space containing different levels of feature representations
from each other. Therefore, combining these diverse feature
representations through the SE-ResNeXt can enhance the

expression of the salient features of the WBCs which are
only slightly affected by the staining methods. As a result,
the accuracy of instance segmentation can be maintained
regardless of the staining methods.

Intuitively, some feature maps are perhaps more significant
and more correlated with the WBCs segmentation perfor-
mance than others. However, the classical ResNeXt, despite
the common merits of the group-convolution, uniformly allo-
cates the weights on the feature maps. Moreover, the input
featuremaps of eachResNeXt block, after being processed by
the group-convolution, lose the connection among different
channels to some extent. To reallocate the channel weights
and strengthen the connection, the SE module, an attention-
based structure, trained to generate attention weights for the
feature channels, is inserted at the end of the residual block
of each SE-ResNeXt block. The re-weighted feature maps are
then added to the clean feature maps, being the inputs to the
next SE-ResNeXt block. In this way, more nonlinearities are
included in the SE-ResNeXt to exhibit the complex correla-
tions among the channels with marginal extra parameters and
calculations.

In the a-th SE-ResNeXt block, the global average pooling
is performed on the input feature maps of the SE module to
obtain a set of 1 × 1 × (64 × 2a+1) vectors which contain
the global channel information. Then, the vectors are fed
into a convolution and nonlinear network which outputs the
weights of the input feature maps’ channels. Therefore, more
informative channels can be assigned larger weights with the
aid of the SE module.

C. CFPN FOR HIGHLIGHTING SALIENT FEATURES IN
MULTI-SCALE FEATURES
As can be seen in Fig. 1, the scales of WBCs vary a lot due to
different image resolutions and different staining ways. The
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FIGURE 4. The CBAM–detailed process from Pa+1 to Pa (a = 2, 3, 4).

cells in the Magenta stained whole slide images are relatively
smaller than those in Wright stained images. To solve the
problem of multi-scales, we use the FPN, a pyramid structure
that can build and aggregate high-level semantic feature maps
at all scales. But still, the FPN is incapable of putting adequate
attention to the primary objects in each specific scale. The
WBCs are smaller targets compared to the negative samples
such as red blood cells, and the count of the WBCs is also
less than that of the negative samples. As such, an imbal-
ance problem of the WBCs dataset exists. To achieve good
segmentation of the WBCs, we need to highlight the feature
expression of positive samples and blur the negative samples
on each given scale. Meanwhile, more attention should be
paid to the positive samples to reduce the impact of data
imbalance. The CBAM [41] which can integrate both the
channel and the spatial attention is introduced to solve the
aforementioned challenges.

The CFPN is depicted in Fig. 3. There are four layers
from the up to the bottom, whose corresponding feature
maps are denoted in descending order, as P5,P4,P3,P2. The
dimensions of channels of the feature maps s1, s2, s3, s4 are
unified as 256 through a 1 × 1 × 256 convolution layer.
The resulting feature maps thereby share the same channel
dimension with P2,P3,P4,P5. The feature map s4, after
convolution, flows directly into the CFPN structure as the
up layer features P5. In the a-th layer, the feature maps Pa+1
from the previous layer are upsampled to the same size as the
laterally-connected feature maps sa−1, and then fed into the
CBAM for attention-oriented operation, at last merged with
sa−1, obtainingPa. Themain process in each layer of CFPN is
illustrated by the zoom-in figure in Fig. 4. After being upsam-
pled, Pa is input into the CBAM module for sequentially
undergoing the channel attention operation and the spatial
attention operation. The channel attention aims at assigning
great weights to the channels that are highly related to the
salient features of the targets. On the other hand, the spatial
attention tends to assign great weights to the regions of the tar-
gets. The two attention mechanisms are presented as follows.

1) CHANNEL ATTENTION
To aggregate the channel information, the input feature
maps are compressed along the spatial dimensions separately
using the average-pooling and the max-pooling, attaining
two one-dimensional vectors. The vectors are then put into
a shared network which is composed of a hidden layer and a
multi-layer perceptron (MLP), to produce a set of weights for
the corresponding channels. Let F i represent the i-th channel
feature map, and φi be the produced weight, then the new i-th
channel feature map is derived as:

F̂ i = F i × φi. (1)

2) SPATIAL ATTENTION
The spatial attention module focuses on the inter-spatial rela-
tionship of the features. The average-pooling and the max-
pooling are also used for aggregating the spatial information
and generating twoHa×Wa×1 feature maps. By concatenat-
ing them along the channel dimension and putting the results
into a 7× 7 convolution and a nonlinear activation function,
the spatial weights of the feature maps are obtained. Denote
F̃ ij the i-th channel, j-th spatial position of the feature maps,
and ϑ ij the weight assigned to it. The weighted feature map
can be computed as follows:

F̃ ij = F̂ ij × ϑ
i
j . (2)

The evolution of a WBC through the operations of upsam-
pling and channel-spatial attention is given in Fig. 4. The
target is visually highlighted and the background is sup-
pressed. Comparing to sa−1, the features F̃ refined from Pa
contains more local information. Pixel-wisely adding sa−1
and F̃ yields Pa−1, the input feature maps to the next layer.
All the achieved feature maps P5,P4,P3,P2 are used for
classification and segmentation of the WBCs.

D. DETECTION NETWORK
The detection network consists of a Region Proposal Network
(RPN) [35] to generate a set of rectangular object proposals
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FIGURE 5. Detailed process of the detection network.

and three branches to refine the bounding box, classify the
WBCs, and segment theWBCs. The flowchart is presented in
Fig. 5. The feature maps P2,P3,P4,P5 and s4 enter the RPN
through a 3× 3× 512 convolution layer. We attach k region
proposals to each spatial location that the convolutions slide
by. Therefore, there are approximate W × H × k proposals
totally, where H and W are the height and width of the
feature maps. Each region proposal also called an anchor,
is associated with a scale and a ratio. In our setting, scales
4, 8, 16, 32, 64 and ratios 0.5, 1.0, 1.5, 2.0 are used, indicat-
ing a total of 20 (k = 20) anchors at each sliding location.
Then the feature maps with anchors are fed into two parallel
1 × 1 convolutions, the one with dimension 2k used for
classifying the proposals based on if they contain objects, and
the other one of dimension 4k used for regressing a bounding
box for each proposal. We assign a proposal positive if the
proposal has an IoU bigger than 0.5 with any ground-truth
box and negative otherwise. A bounding box is encoded with
4 parameters, which are the coordinate of the centroid, the
height, and the width. With these definitions, the 1× 1× 2k
convolutions combined with Softmax will output 2k scores
for the proposals on each sliding location, predicting the
proposals’ classification. On the other hand, the regression
layer outputs the parameters of k boxes. To train the RPN,
we employ the following loss [35]:

LRPN=
1
Ncls

∑
i

Lcls(pi, p∗i )+λ
1
Nreg

∑
i

p∗i Lreg(ti, t
∗
i ), (3)

where

Lcls(pi, p∗i ) = −(p
∗
i log pi + (1− p∗i ) log(1− pi)) (4)

is the proposal classification loss and

Lreg(ti, t∗i ) = smoothL1(ti − t∗i ) (5)

is the box regression loss; pi, p∗i represent the predicted label
probability (0.0 to 1.0) and the ground-truth label (0 or 1),
respectively; ti and t∗i denote the predicted box parameters

and the ground-truth box parameters; Ncls represents mini-
batch size; Nreg represents the number of anchor locations; λ
is a balancing parameter.

Having acquired the positive proposals–the regions of
interest (ROI)–the next stage is to in parallel predict the
bounding box, the classification of the WBCs, and the seg-
mentation for the WBCs within them. Before that, it is neces-
sary to extract the features from the ROIs. To this we apply the
RoIAlign method [27] which involves a series of operations
including sampling, bilinear interpolation, and max-pooling,
as a result, generating a set of ROI-feature maps with uniform
size. The details of the RoIAlign can be seen in [27]. The
ROI-feature maps are then mapped to two feature vectors
by fully connected layers, one for classifying the WBCs and
the other for predicting the bounding boxes. Besides this,
a third branch containing several layers of convolutions and
deconvolutions is introduced to generate masks for semantic
segmentation of the WBCs. The overall loss for these three
tasks is

L = Lcls + Lbox + Lmask, (6)

which is defined as identical to that given in [27].

IV. EXPERIMENTS
We conducted several experiments to illustrate the validity
of the proposed framework MSS. We start with the dataset
construction and the experimental settings and then present
comparative studies and ablation studies.

A. EXPERIMENT SETUP
1) DATASET
We construct a WBCs dataset by integrating a set
of 302 Magenta stained WBC images from Tianjin Medical
University and 242 Wright stained images from the public
dataset LISC. The images from the two categories have differ-
ent resolutions–Magenta stained images are 2592×1944 and
Wright stained images are 720 × 576. Most of the Magenta
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FIGURE 6. Dataset distribution. The portion of five subtypes of WBCs is
about 3 : 4 : 7 : 1 : 1 (mon:lym:neu:bas:eo). The ratio of the training,
validation, and testing is about 7 : 2 : 1.

FIGURE 7. ROC curve of the proposed method.

TABLE 1. Distribution of single and multi-cellular images in each stained
data.

stained images are multi-cellular while most of the Wright
stained images are single-cellular. When training the model,
212 magenta stained images and 175 wright stained images
are utilized, accounting for approximately 70% of the total
amount of the dataset. The details of the training data are
listed in Table 1 and Figure 6.

For the whole 544 images dataset, we make pixel-wise
boundary annotation and give each cell a class label with the
help of pathologists from Tianjin Medical University.

2) DATA PREPROCESSING
We firstly unify all the images with a fixed width of 1000,
altering their lengths according to their original size ratios.

Then, the images are padded into 1300×1000. Data augmen-
tation is implemented through random image flipping and
pixel value normalization.

3) METRICS
Instance segmentation includes a multi-class classification
task that requires to be evaluated with convincing met-
rics. Therefore, we adopted two metrics, the average preci-
sion (AP) and the average recall (AR), which are originally
proposed in [42] for accessing the classification of the COCO
multi-class dataset. AP is a significant metric to access the
overall precision of all classes. On the other hand, AR mainly
depicts the overall missing detection ratio [27]. The target is
assigned positive to a label if its IoU is overlapped more than
a threshold with the ground-truth. In the experiments, we pre-
set 10 thresholds (e.g., 0.50:0.05:0.95), under each of which
we access the corresponding average precision and average
recall over all classes. Then, we averaged the 10 precision
and recalls separately to obtain an averaged AP and AR. High
rates of such AP and AR imply an accurate classification and
pixel segmentation of an algorithm, and strong robustness
with a wide range of IoU thresholds. Besides, we withdraw
two independent APs calculated on 0.5 and 0.75 IoUs as
complementary to the averaged AP, which are broadly used
in research.

However, the AP and AR are exclusively focused on the
precision and recall performance, so the F1-score which com-
prehensively depicts both the two aspects is necessary for
evaluating a classification performance. The F1-score can be
obtained as

F1-score = 2×
AP · AR
AP+ AR

. (7)

To quantify the segmentation for the WBCs, we use the
Dice Similarity Coefficient (Dice) to calculate the overlap of
the predicted mask (pred) and ground-truth mask (true) as the
following equation

Dice = 2×
pred ∩ true
pred ∪ true

=
2TP

2TP+ FP+ FN
. (8)

The Receiver Operating Characteristic (ROC) curve is used
to show the diagnostic ability of the proposed method for
WBCs classification. An ROC curve is constructed by plot-
ting the true positive rate (TPR) against the false positive rate
(FPR). The true positive rate (the Recall)is the proportion
of observations that were correctly predicted to be positive
out of all positive observations (TP/(TP+FN)), where TP
and FN denote pixel-wise true positive and false negative,
respectively. Similarly, the false positive rate is the proportion
of observations that are incorrectly predicted to be positive
out of all negative observations (FP/(TN+FP)). FP and TN
are pixel-wise false positive and true negative. Figure 7 shows
the ROC curve of the proposed method, where we can see the
optimal recall value is attained at 0.2 FPR. The curve implies
that most of WBCs are correctly recognized and only a few
regions are wrongly classified as WBCs.
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FIGURE 8. Comparison of different methods in detection results. Row (1)-(3) show the images with
Magenta staining, and every magnified image contains two WBCs. Row (4)-(5) show the images with Wright
staining. Column (1) shows the original images. Column (2) shows the ground-truth of the classification
and location of WBCs. Columns (3)-(6) show the detection results of FSAF, Cascade R-CNN, Faster R-CNN,
and MSS(ours), respectively.

TABLE 2. Comparison with different methods in instance segmentation performance.

B. COMPARISON WITH OTHER METHODS
We compare MSS to some state-of-the-art methods on the
same dataset. These methods include FSAF and SSD512
which are two one-stage detection methods, KG, and sev-
eral variants of Fast R-CNN such as Faster R-CNN, Cas-
cade R-CNN, Mask R-CNN, Mask R-CNN+PISA, Mask
R-CNN+GRoIE. The experiment results are shown in
Table 2 and Table 3, where we can see MSS achieves
the best scores in terms of all metrics except that it
performs lower than KG on AP(IoU=0.50). However,
AP(IoU=0.50:0.95) and AP(IoU=0.75) are more reliable
metrics than AP(IoU=0.50), thus it is still fair to say MSS

outperforms KG. On individual category detection, MSS
scores the highest in lym and mon detection while only
trivially lower than the highest ones in neu, bas, eo detection.

We also visualize the outputs of FSAF, Cascade R-CNN,
Faster R-CNN, KG, and MSS in Fig. 8 and Fig. 9. As can
be seen, FSAF fails to detect some small mon and neu cells;
R-CNN and Faster R-CNN both misclassify the mon cell
into the type of lym, and wrongly identify the new cell as
mon and lym respectively. As shown in Fig. 9, KG fails to
detect small cells in Magenta staining images (in rows (1),
(3), and (4)), especially when the small cells are adjacent
to others.
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FIGURE 9. Comparison with KG in instance segmentation results. The contours in red, orange, yellow,
and blue represent neu, lym, eo, and mon, respectively. Row (1)-(4) show the images with Magenta
staining. Row (5) shows the images with Wright staining. Object adhesion exists in the last three rows.
In the last row, the smaller one in the two adjacent objects is an impurity. Column (1) shows the original
images. Column (2) shows the ground truth of instance segmentation of WBCs. Columns (3)-(4) show the
instance segmentation results of KG and MSS(ours), respectively.

TABLE 3. Comparison of different detection methods on each individual
category.

We have also experimented 5-fold cross-validation, with
the results listed in Table 4 and 5. In each fold of cross-
validation, the ratios of training, validation, and testing
data are set as 7: 2: 1 approximately. As can be seen, the

5 groups of experiments are even in terms of the metrics AP
(IoU=0.50:0.95), AP (IoU=0.5), AP (IoU=0.75), AR, F1-
score, and Dice, indicating that the dataset we construct is
sufficient for describing the distribution of theWBCs features
and thus competent for training a qualified model.

C. ABLATION STUDY
In this part, we make ablation experiments to testify the
effectiveness of each module in our framework.

1) EXPLORATION IN CFPN STRUCTURE
In this part, we discuss the influence of different orders of
upsampling, channel attention, and spatial attention in each
CBAM. We allocate the operation of upsampling before,
after, and in the middle of the two attention operations, and
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FIGURE 10. Individual effect comparison of each module. The contours in red, orange, yellow, blue, and green represent
neu, lym, eo, mon, and bas, respectively. Rows (1)-(3) show the images with Magenta staining, and rows (4)-(5) show the
images with Wright staining. Column (1) shows the original images. Column (2) shows the ground truth of instance
segmentation of WBCs. Columns (3)-(6) show the instance segmentation results of Mask R-CNN, Mask R-CNN with
SE-ResNeXt, Mask R-CNN with CFPN, and MSS(ours), respectively.

TABLE 4. Results of cross validation evaluating by the metrics.

TABLE 5. Averaged results of cross validation on each category.

conduct three groups of experiments. The results are given
in Table 6, from which we can observe that the best score
is attained with the order of up-ch-sp. Putting upsampling
before attention may be beneficial to restoring the details in
the graphwhich the attention can use efficiently for producing

weights. Then, we switch the channel attention and spatial
attention, obtaining a new collection of results also given in
Table 6. At last, we arrange the two attentions in parallel
right after the upsampling, which leads to the last entry of
Table 6. It turns out that the attention operations in tandem
are better than in parallel, and the channel attention is better
before than after the spatial attention. The reason is not clear,
but a hypothesis is that the cascading effect through the two
attentions is stronger than the parallel effect in detaching the
feature maps of different WBCs in the feature space.

2) STRENGTHENED FEATURE EXPRESSION
To analyze the effect of SE-ResNeXt, we conduct three
groups of experiments with results shown in Fig. 10. Mask
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TABLE 6. Experiments on the concrete structure of CFPN.

TABLE 7. Ablations of SE-ResNeXt and CFPN for MSS.

R-CNN is the baseline of the proposed network. In the
Magenta staining condition (rows (1)-(3)),Mask R-CNN fails
to separate adjacent cells and tends to misclassify the lym and
themon. Replacing ResNet inMaskR-CNNwith the newSE-
ResNeXt, the feature expression is strengthened such that the
adjacent cells are accurately separated. But the classification
accuracy for small cells is still limited (for example see rows
(2) and (3)). The misclassification is resulted from the fact
that the network is insensitive tomulti-scale features. The sec-
ond row of Table 7 also tells us that introducing SE-ResNeXt
can make a better performance in terms of AP (IoU=0.50)
and AR.

3) HIGHLIGHTED SALIENT FEATURES
Combining the Mask R-CNN and the CFPN, the small cells
can be identified in the Magenta stained images (see row (1)-
(3) of Fig. 10). It is worth noting that some impurities having
similar size to WBCs are mistakenly detected, as shown in
row (5). But after using the SE-ResNeXt module, this mis-
take is corrected. As illustrated in Table 7, the CFPN+Mask
R-CNN also improves the segmentation results compared to
the baseline Mask R-CNN. It indicates that the CBAM is
functional in generating heavy weights for important chan-
nels and spatial regions. When both the SE-ResNeXt and the
CFPN are used, the network obtains the highest AP and AR
scores for instance segmentation. Overall, the MSS with each
component playing positive roles achieves the highest scores
compared to the state-of-the-art methods.

V. CONCLUSION
In this paper, we propose an instance segmentation network
named MSS to realize simultaneous detection, segmentation,
and classification of white blood cells from whole slide
images. MSS not only achieves satisfying performance in
both magenta and wright staining images but also solves
the problem of multi-scale cell detection. We elaborate the
explanations on the experimental results and ablation study,
demonstrating the feasibility of the proposed framework.

Our future work is to explore semi-supervised or weakly-
supervised methods to save the cost of manual annotating.
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