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ABSTRACT

This work presents a hybrid modeling approach to data-driven learning and representation of unknown
physical processes and closure parameterizations. These hybrid models are suitable for situations
where the mechanistic description of dynamics of some variables is unknown, but reasonably accurate
observational data can be obtained for the evolution of the state of the system. In this work, we
propose machine learning to account for missing physics and then data assimilation to correct the
prediction. In particular, we devise an effective methodology based on a recurrent neural network to
model the unknown dynamics. A long short-term memory (LSTM) based correction term is added
to the predictive model in order to take into account hidden physics. Since LSTM introduces a
black-box approach for the unknown part of the model, we investigate whether the proposed hybrid
neural-physical model can be further corrected through a sequential data assimilation step. We apply
this framework to the weakly nonlinear Lorenz model that displays quasiperiodic oscillations, the
highly nonlinear chaotic Lorenz model, and two-scale Lorenz model. The hybrid neural-physics
model yields accurate results for the weakly nonlinear Lorenz model with the predicted state close to
the true Lorenz model trajectory. For the highly nonlinear Lorenz model and the two-scale Lorenz
model, the hybrid neural-physics model deviates from the true state due to the accumulation of
prediction error from one time step to the next time step. The ensemble Kalman filter approach takes
into account the prediction error and updates the diverged prediction using available observations
in order to provide a more accurate state estimate for the highly nonlinear chaotic Lorenz model
and two-scale Lorenz system. The successful synergistic integration of neural network and data
assimilation for low-dimensional system shows the potential benefits of the proposed hybrid-neural
physics model for complex dynamical systems.
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1 Introduction

The advancement in high-performance computing has made numerical simulation of atmosphere and climate models on
computational grid consisting of O(107) cells, spaced O(10 km) - O(100 km) possible [1]. However, the geophysical
flows are governed by scales smaller than the mesh size of the climate models, and resolving these scales is essential for
accurate prediction. For example, the dynamical scales of boundary layer clouds are O(10 m) [2], and the submesoscale
dynamics of oceans have length scales of O(100 m) [3], and will remain unresolvable in the near future [4]. Therefore,
the physics in climate models is essentially incomplete and the dynamics of smaller scales in the atmosphere and oceans
must be represented through some parameterization schemes. Another example of an incomplete dynamical system is a
hybrid coupled model where the physical equations are replaced by empirical relations to achieve a large computational
speedup and greater stability. One example of a hybrid coupled model is the coupling of the statistical atmospheric
model with a fully nonlinear ocean general circulation model, where the wind stress is empirically estimated from the
ocean model variables [5].

The dynamics of the missing physics in geophysical flows is inherently nonlinear and replacing it with linear statistical
methods will not deliver accurate prediction for longer periods. The ‘universal approximator theorem’ [6] of the neural
network makes them an attractive choice for learning nonlinear dynamics in incomplete dynamical systems. Some of
the early use of the neural network for dynamical systems are turbulence control for drag reduction [7], prediction of
wind stress field from the ocean state in a hybrid coupled atmosphere-ocean model [8], modeling missing dynamics of
the Lorenz system [9, 10], and modeling parameterization in climate models [11]. All these early works have utilized
a simple feed-forward neural network with a single hidden layer. In the past decade, ‘deep learning’ has made rapid
progress in diverse areas such as speech translation [12], classification of images [13], and playing the game of Go [14].
These applications can require a neural network with a large number of layers, special types of convolutional layers,
and specialized architectures, such as generative adversarial networks [15] along with the vast amount of data for the
training. The machine learning (ML) methods can also be used to construct data-driven models of geophysical flows
from the extensive data collected from satellites, in-situ scientific measurements, and futuristic internet-of-things (IoT)
devices. Indeed, many researchers have explored the use of ML methods for earth science [1, 16–18].

One of the main challenges with ML includes the difficulty of incorporating existing domain knowledge and handling
of uncertainty [16, 19, 20]. The geophysical community utilizes the data assimilation (DA) framework to make use of
physical laws and has robust ways of handling uncertainty in all parts of the problem [21]. The DA framework is also
capable of handling sparse and irregularly distributed observations gathered through satellite measurements [22]. On
the other hand, DA has mainly been employed for state estimation, such as the initial state of the system for the weather
forecast. The forecast model can generally assumed to be perfect. However, the weather and climate models work on
grid size around 10 km upwards, but the processes such as turbulence, radiation, and precipitation can take place at a
scale around 1km or less. Hence, the parameterization scheme for these unresolved processes should take into account
the average impact at the model grid scale. The ML can be applied to discover accurate parameterization schemes using
the data from high resolution models [23–25]. The ML has also been utilized to replace the complete physical model of
chaotic systems [26, 27]. These data-driven models are computationally cheap and can be integrated within the DA
framework for state estimation and forecasting [28].

The DA and ML share a lot of similarities as both approaches use the data to learn about the system using inverse
methods [29–31] and the synergistic integration of the two is essential for learning improved models of the earth
system [32–36]. One way to integrate the DA and ML is to build a hybrid neural-dynamical model via variational
DA [9]. This approach involves replacing the missing dynamics of the dynamical system with the neural network,
and the parameters of the neural network were determined by the 4DVAR assimilation approach. The variational
DA methods are commonly used to estimate the initial condition or model parameters, and are also implemented on
operational weather and climate models [37–40]. Particularly, the backpropagation algorithm used to train the neural
network has a strong mathematical equivalence with the adjoint method for calculating gradients in variational DA [29],
and this parallelism was utilized to determine parameters of the neural network to build a hybrid neural-dynamical
model [9]. Recently, the sequential data assimilation technique was applied to estimate the full state of the system using
the truncated model (i.e., without accounting for unresolved processes), and then ML was utilized to learn the effect
of unresolved part [41]. The work by Brajard et al. [41] goes beyond high-resolution simulations and they develop
ML-based parameterization using direct data in the realistic scenario of sparse and noisy observations. The combination
of ML-based parameterization to the physical core produces a hybrid model [42]. The ML can be applied to learn the
closure term accounting for the effect of subgrid-scale processes and the hybrid model can be corrected using sequential
data assimilation in the online deployment phase [43–45]. Also, DA and ML can be applied iteratively to build a fully
data-driven model from sparse and noisy observations [46]. The fully data-driven model can then be used for state
estimation and forecasting.
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In this work, a hybrid modeling approach is presented with a data-driven representation for unknown physical processes
and sequential data assimilation to correct the modeling error to achieve accurate analysis for chaotic dynamical
systems. The paper is structured as follows. In Section 2, the baseline Lorenz model, the Lorenz model with incomplete
dynamics, and the two-scale Lorenz model with data-driven parameterization is presented along with the working of
long short-term memory (LSTM) neural network. Section 3 details the formulation of sequential data assimilation
problem and lists the deterministic ensemble Kalman filter (DEnKF) algorithm. Section 4 discusses the results of
numerical experiments. In particular, to test the proposed approach, we consider the following joint experiments: (i)
incomplete physics-based model with LSTM for missing physics, (ii) incomplete physics-based model with LSTM
for missing physics and DEnKF for data assimilation, and (iii) incomplete physics-based model and DEnKF for data
assimilation. Finally, the summary of this work and concluding remarks are provided in Section 5. Python codes for
this work are available on GitHub [47].

2 Hybrid neural-physics modeling

2.1 Lorenz model

We consider the following Lorenz system which is used as a simplified model for atmospheric convection [48]. The
nonlinear system of three ordinary differential equations is

dX

dt
= σ(Y −X), (1)

dY

dt
= X(ρ− Z)− Y, (2)

dZ

dt
= XY − βZ, (3)

where X,Y, Z are the state of the Lorenz system, and σ, ρ, β are the system’s parameter. In the above equations X is
proportional to the intensity of convection motion, Y is proportional to the temperature difference in the horizontal
direction, and Z is proportional to the distortion of the temperature profile in the vertical direction. In the vector
notation, the state of the Lorenz system can be defined as x = [X,Y, Z] and the Equations 1-3 can be written as

ẋ = f(t,x). (4)

The Lorenz system is integrated using the third-order Adams-Bashforth method [49] as follows

x(k+1) = x(k) +
∆t

12
[23f (k−1) − 16f (k−2) + 5f (k−3)], (5)

where f = [σ(Y −X), X(ρ−Z)−Y, XY −βZ], and ∆t is the time step size. The Lorenz system is very sensitive to
the initial condition as well as the choice of parameters. Based on the selection of the parameters, the Lorenz system can
exhibit either chaotic behavior or the transient chaotic behavior [50]. Following the previous study [9], we investigate
two cases here to evaluate the performance of the neural network in learning the chaotic dynamics. The first case
is called the weakly nonlinear case, with the parameters σ, ρ, and β set to 10, 28, and 8/3, respectively. The initial
condition for the weekly nonlinear case is [-9.42, -9.43, 28.3] for [X(0), Y (0), Z(0)] [51]. The Lorenz system displays
near-regular oscillations with a gradually increasing amplitude in the devised integration period for the weakly nonlinear
case. The initial condition for the highly nonlinear case is set to be [X(0), Y (0), Z(0)] equal to [22.8, 35.7, 114.9], and
the parameters σ, ρ, and β are set to 16.0, 120.1, and 4.0, respectively [52]. The dataset for training the neural network
is generated with these reference solutions and is regarded as the ‘true’ solution of the Lorenz equations. The Lorenz
attractor for the weakly and highly nonlinear case is shown in Figure 1.

Next, we assume that the complete dynamics of the Lorenz model is unknown. Specifically, we assume that the
evolution equation for the distortion of the temperature profile in the vertical direction, i.e., Z is not available and must
be approximated. The hybrid neural-physics Lorenz model composed of the physics-based equations for the known
dynamics and the neural network to approximate the unknown dynamics can be written as

dX

dt
= σ(Y −X), (6)

dY

dt
= X(ρ− Z)− Y, (7)

dZ

dt
= N (x(t), · · · ,x(t− l∆t)), (8)
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Figure 1: The attractor of the Lorenz system integrated from time t = 0 to 6 s with the time step ∆t = 1× 10−3 s for
the weakly nonlinear case (left) and the highly nonlinear case (right).

where l is the number of previous time steps used for the forecast of the variable Z at next time step, i.e., t+ ∆t.

In this study, we train the neural network using the teacher forcing method [53], which consists of using the ground
truth data as the label for each training example. We assume that the data for the unknown state of the system (i.e., Z
variable in the Lorenz system) is either coming from measurements or from high-fidelity numerical simulations. The
state derivative for the Z variable at the kth time step is computed using the forward-difference scheme as follows

dZ

dt
=
Z(k+1) − Z(k)

∆t
. (9)

Any type of machine learning model can be utilized to learn the relationship between the known and unknown dynamics.
Tang et al. [9] applied the feedforward neural network with a single hidden layer and five neurons to learn the missing
physics in the Lorenz model. They observed that the neural network can approximate the unknown dynamics reasonably
well for the weakly nonlinear case, but it fails for the highly nonlinear case. They proposed a better approach that makes
use of the variational data assimilation where the dynamical constraints can be imposed for learning the parameters
(i.e., weights and biases) of the neural network. Their proposed hybrid neural–dynamical variational data assimilation
procedure leads to a very good prediction with almost the same forecast skill as the original Lorenz model. However, for
the highly nonlinear case, the proposed method proposed a reasonable forecast only for few numerical experiments. This
might have been due to the difficulty with the deterministic optimization algorithms within the variational assimilation
in finding the global minima [54, 55]. Even if the global optimum is found, the data in the assimilation window might
be from one wing of the butterfly-shaped attractor, whereas the data in the forecast period lies on the second wing,
thereby resulting in the poor forecast. This can be mitigated by applying stochastic data assimilation approaches like
ensemble Kalman filter [55–57]. In this work, we revisit the problem of recovering missing physics in a dynamical
system using the same examples as investigated by Tang et al. [9] with the application of recurrent neural network
(RNN) integrated within the deterministic ensemble Kalman filter algorithm [58].

2.2 Two-scale Lorenz model

The two-scale Lorenz model is given by a following set of ordinary differential equations (ODEs):

dXn

dt
= −Xn−1(Xn−2 −Xn+1)−Xn + F − hc

b

nM∑
m=M(n−1)+1

Ym, (10)

dYm
dt

= −cbYm+1(Ym+2 − Ym−1)− cYm +
hc

b
Xb(m−1)/Mc+1, (11)
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where n = 1, . . . , N , m = 1, . . . ,MN , and b·c is the modulo operation. The X and Y variables are periodic, i.e.,
X1 = XN and Y1 = YMN . In the present study, the number of X variables is set at N = 8 and the number of Y
variables per X variables is set to M = 32. We also set the coupling constant between X and Y variables to h = 1, the
spatial-scale ratio to b = 10, and the temporal-scale ratio to c = 10. The forcing term is set at a large value of F = 20
to ensure chaotic behavior. These parameters are such that one model time unit (MTU) is approximately equivalent to
five atmospheric days [59]. Recently, this model with the same parameter settings was applied to test the feasibility of
generative adversarial networks to learn stochastic parameterization in multiscale systems [25].

The two-scale Lorenz model given by Equation 10 and Equation 11 is regarded as the truth model that must be simulated.
In weather and climate modeling, the governing equations of motion of the system are known. However, it is not
possible to resolve every small scale due to limited computational resources. Therefore, the effect of small scale
variables are typically parameterized as a function of resolved variables. A forecast model for the two-scale Lorenz
equations with the parameterization of the small Y scale variables on the resolved X variables can be written as

dX̃n

dt
= −X̃n−1(X̃n−2 − X̃n+1)− X̃n + F −Gn, (12)

where X̃n is the forecast estimate of Xn and Gi represent the effect of unresolved variables. The parameterization is
usually a function of the resolved variables, i.e., X̃ ∈ Rn, and can be written mathematically as

hc

b

nM∑
m=N(n−1)+1

Ym :≈ Gn = N(X̃), (13)

where N(·) is the nonlinear mapping for representing the effect of unresolved scales on resolved scale variables. This
mapping can be based on physical arguments or some prior information about subgrid scale processes. Alternatively,
data-driven models can be used to exploit the data generated from experimental measurements or high-fidelity numerical
simulations to learn the relation between resolved and unresolved scales. Indeed, in recent years, data-driven models
have been successfully applied for parameterizing subgrid scale processes in complex geophysical flows [23–25,44,60].
In the present study, we utilize the LSTM neural network to learn the subgrid scale parameterization of unresolved
scales. Once we have the ground truth data available for large scale X variables, we can compute the true subgrid scale
parameterization as follows

G(k)
n = −X(k)

n−1(X
(k)
n−2 −X

(k)
n+1)−X(k)

n + F −
(
X

(k+1)
n −X(k)

n

∆t

)
, (14)

where ∆t is the time step of integration of the forecast model. The ground truth data for training the neural network
is generated by temporally integrating the two-scale Lorenz system using the fourth-order Runge-Kutta (RK4) time
stepping scheme.

2.3 Long short-term memory neural network

In this work, we apply the long short-term memory (LSTM) neural network to predict the missing physics (i.e.,
incomplete dynamics) from the resolved physics of the dynamical system. The motivation behind applying LSTM is
due to its success in modeling high-dimensional spatio-temporal chaotic time series of physical systems [26, 27, 61, 62].
LSTM is a type of recurrent neural network (RNN) that can capture the long-term dependencies in the evolution of time
series data [63]. RNNs contain loops that allow them to persist information from one time step to another and can be
expressed as

h(t) = fh→h(o(t),h(t−1)), (15)

õ(t+1) = fh→o(h(t)), (16)

where h(t) ∈ Rdh is the hidden state at time t, o(t) ∈ Rdh is the input vector at time t, fh→h is the hidden to hidden
mapping, and fh→o is the hidden to output mapping. The output of the model is the forecast õ(t+1) at time step t+ 1.

One of the limitations of RNNs is vanishing (or exploding) gradient to capture the long-term dependencies. This stems
from the fact that the gradient is multiplied with the weight matrix repetitively during backpropagation through time
(BPTT). The LSTM mitigates the issue with vanishing (or exploding) gradient by employing the gating mechanism
that allows information to be forgotten. The equations that implicitly define the mapping from hidden state from the
previous time step (i.e., h(t−1)) and input vector at the current time step (i.e., o(t)) to the forecast hidden state (i.e.,
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Figure 2: Schematic of the unfolded long short-term memory (LSTM) neural network architecture. The LSTM uses the
gating mechanism that allows forgetting and storing of information in the processing of the hidden state. The L is used
to denote the LSTM cell.

h(t)) can be written as

g
(t)
f = σ(Wf [h(t−1),o(t)] + bf ), (17)

g
(t)
i = σ(Wi[h

(t−1),o(t)] + bi), (18)

c̃(t) = tanh(Wc[h
(t−1),o(t)] + bc), (19)

c(t) = g
(t)
f � c(t−1) + g

(t)
i � c̃(t), (20)

g(t)
o = σ(Wo[h(t−1),o(t)] + bo), (21)

h(t) = g(t)
o � tanh(c(t)), (22)

where g
(t)
f , g

(t)
i , g

(t)
o ∈ Rdh are the forget gate, input gate, and output gate, respectively. The o(t) ∈ Rdi is the input

vector at time t, h(t) ∈ Rdh is the hidden state, c(t) ∈ Rdh is the cell state, Wf , Wi, Wc, Wo ∈ Rdh×(dh+di)

are the weight matrices, and bf , bi, bc, bo ∈ Rdh are the bias vectors. The symbol � denotes the element-wise
multiplication, and σ is the sigmoid activation function. The weights and biases are optimized using the BPTT
algorithm [64]. The above set of equations are unfolded to capture the temporal dependencies in predicting future
state o(t+1) given o(t),o(t−1), · · · ,o(t−l). The l is referred to as the lookback which governs how much amount of the
old temporal information is needed to forecast the future state of the system accurately. An illustration of the gating
mechanism in the LSTM cell is given in Figure 2.

For the Lorenz system, the LSTM is trained to predict the state derivative Ż at the kth time step using the temporal
history of the full state of the system for l past consecutive states, i.e., {x(k),x(k−1), . . . ,x(k−l+1)}. Since we are
using the information of only l past temporally consecutive states as the input, the LSTM can capture dependencies
up to l previous time steps. The inspiration for exploiting the recent history of state variables to predict the state
derivative dZ/dt comes from Taken’s theorem [65] and several other studies on the use of RNNs for chaotic dynamical
systems [27, 66–68]. Once the LSTM is trained, it is used to iteratively predict the future state in an auto-regressive
manner. In this method, the initial condition for the first (l) time steps (equal to lookback) is provided. This information
is used to predict the forecast state at (l + 1)th time step. Then the state of the system from (2)− (l + 1) is used to
predict the forecast state at (l+ 2)th time step. This procedure is continued until the final time step. Since the inference
stage is different from the training with teacher forcing method, there will be an accumulation of modeling error in the
auto-regressive deployment of the trained LSTM network and this causes the deviation in the predicted trajectory of
the hybrid neural-physics model [69]. One of the remedies to avoid this discrepancy between training and inference
procedure is to adopt the training without teacher forcing [70]. In the training without teacher forcing method, the
prediction of the LSTM network is fed back into the input features for future prediction. Training the LSTM without
the teacher forcing method has been shown to improve the accuracy and robustness for chaotic attractor [70]. Another
method of error correction is through exploiting the online measurements within the sequential data assimilation
framework for attaining accurate forecast over a longer period for chaotic dynamical systems.

For the two-scale Lorenz model, the input of the LSTM network is the full state of the system for resolved X variables
for l past temporally consecutive states and the output is the subgrid scale parameterization at the kth time step.
Mathematically, the LSTM mapping for learning parameterizations in a two-scale Lorenz model can be represented as

{X(k),X(k−1), . . . ,X(k−l+1)} ∈ Rl×N → {G(k)} ∈ RN . (23)

where X is the resolved flow variables and G is true parameterization.
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3 Sequential data assimilation

Data assimilation (DA) is a technique to incorporate sparse and irregularly distributed noisy measurements with the
physical model of the system to achieve an accurate prediction of the state trajectory. DA is generally classified into two
categories: variational and sequential DA. In variational DA, all observations over a particular time window are utilized
to minimize the cost function with certain constraints to compute the model trajectory that best fits the observations.
The variational DA is particularly well suited for re-analyses problems to obtain the best possible state of the system at
some time t using observations before and after this time [71]. In sequential DA, the system’s state is evolved in time
using background information (i.e., the physical model) until observations become available. At this instant, an update
(correction) to the system’s state is determined and the solver is re-initialized with this analyzed state. This procedure is
continued until new observations get available, and so on. There is a rich literature on DA [72–74] and here we discuss
only sequential DA problem and then outline the algorithm procedure for the deterministic ensemble Kalman filter
(DEnKF).

We consider the dynamical system whose evolution can be represented as

x(k+1) = Mtk→tk+1
(x(k)) + w(k+1), (24)

where x(k) ∈ Rn is the state of the system at discrete time tk, and M : Rn → Rn is the nonlinear model operator
that defines the evolution of the system. The term w(k+1) denotes the model error that takes into account any type
of uncertainty in the model that can be attributed to boundary conditions, imperfect models, etc. Let z(k) ∈ Rm be
observations of the state vector obtained from sparse, noisy measurements and can be written as

z(k+1) = q(x(k+1)) + v(k+1), (25)

where q(·) is a nonlinear function that maps Rn → Rm, and v(k+1) ∈ Rm is the measurement noise. We assume that
the measurement noise is a white Gaussian noise with zero mean and the covariance matrix R(k+1), i.e., v(k+1) ∼
N (0,R(k+1)). Additionally, the noise vectors w(k+1) and v(k+1) are assumed to be uncorrelated to each other at all
time steps. The sequential DA can be considered as a problem of estimating the state x(k+1) of the system given the
observations up to time tk+1, i.e., z(1), . . . , z(k+1). When we utilize observations to estimate the state of the system,
we say that the data are assimilated into the model, and use the notation x̂(k+1) to denote an analyzed state estimate of
the system at time tk+1. When all the observations before (but not including) time tk+1 are applied for estimating the
state of the system, then we call it the forecast estimate and denote it as x(k+1)

f .

The ensemble Kalman filter (EnKF) [75] follows the Monte Carlo estimation method to approximate the covariance
matrix in the Kalman filter equations [76]. Inflation and covariance localization approaches have been often used in
the EnKF framework to mitigate small number of ensembles [77–80]. Instead of modeling the exact evolution of a
probability density function under nonlinear dynamics, ensemble methods maintain an empirical approximation to
the target distribution in the form of a set of ensemble members X̂(k)(i) for i = 1 . . . N . We begin by initializing the
state of the system for different ensemble members X̂(0)(i) drawn from the distribution N (x̂(0),P(0)), where x̂(0)

represents the best-known state estimate at time t0, and P(0) is the initial covariance error matrix.

The propagation of the state for each ensemble member over the time interval [tk, tk+1] can be written as

X
(k+1)
f (i) = Mtk→tk+1

(X̂(k)(i)) + w(k+1). (26)

The term w(k+1) accounting for model imperfections is usually assumed to be Gaussian noise. The prior state and the
covariance matrix are approximated using the sample mean and error covariance matrix P

(k+1)
f as follows

x
(k+1)
f =

1

N

N∑
i=1

X
(k+1)
f (i), (27)

A
(k+1)
f (i) = X

(k+1)
f (i)− x

(k+1)
f , (28)

P
(k+1)
f =

1

N − 1

N∑
i=1

A
(k+1)
f (i)(A

(k+1)
f (i))T, (29)

where the superscript T denotes the transpose, and A
(k+1)
f (i) is the anomalies between the forecast estimate for the

ith ensemble and the sample mean. Once the observations gets available at time tk+1, the forecast state estimate is
assimilated using the Kalman filter analysis equation as follows

x̂(k+1) = x
(k+1)
f + K(k+1)[z(k+1) − q(x

(k+1)
f )]. (30)
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In contrast to the ensemble Kalman filter algorithm, the DEnKF does not employ any perturbed observations. The
Kalman gain matrix is computed using its square root version (without storing or computing P

(k+1)
f explicitly) as

follows

K(k+1) =
A(k+1)

f (Q(k+1)A(k+1)
f )T

N − 1

[
(Q(k+1)A(k+1)

f )(Q(k+1)A(k+1)
f )T

N − 1

+ R(k+1)

]−1
, (31)

where Q ∈ Rm×n is the Jacobian of the observation operator (i.e., Qkl = ∂qk
∂xl

), and the matrix A(k+1)
f ∈ Rn×N is

concatenated as follows

A(k+1)
f = [A

(k+1)
f (1),A

(k+1)
f (2), . . . ,A

(k+1)
f (N)]. (32)

The anomalies for all ensemble members are then updated separately with half the Kalman gain as shown below

Â(k+1)(i) = A
(k+1)
f (i)− 1

2
K(k+1)Q(k+1)A

(k+1)
f (i). (33)

The state for all ensemble members is updated by adding ensemble anomalies to analysis state estimate and can be
written as

X̂(k+1)(i) = x̂(k+1) + λ · Â(k+1)(i), (34)

where λ is the inflation factor to account for modeling errors. The above ensembles are used as initial ensembles for the
next assimilation cycle and the procedure is continued.

4 Results and discussions

The general structure of the proposed hybrid neural-physics modeling approach is illustrated in Figure 3. We stress
here that for many physical systems the complete description for dynamics of the system is not available and the
missing physics for such systems can be modeled using machine learning tools. This provides us with the hybrid
neural-physics model. The forecast of the hybrid neural-physics model can be further corrected using the sparse and
noisy observations through data assimilation (specifically, we utilize the DEnKF algorithm). We consider a series of
numerical experiments: (i) incomplete physics-based model with LSTM for missing physics (without data assimilation),
(ii) incomplete physics-based model with LSTM for missing physics and DEnKF for data assimilation, and (iii)
incomplete physics-based model (without LSTM closure) and DEnKF for data assimilation. We emphasize that we
apply machine learning to improve the model of the system (e.g., see Figure 3). Data assimilation is then used in the
analysis step to improve the forecast of the system.

4.1 Lorenz model

4.1.1 Hybrid neural-physics model

The Lorenz model is integrated using the third-order Adams-Bashforth method with the time step ∆t = 1× 10−3 for
6000 time steps, i.e., t = 6. The LSTM network is trained using the data from time t = 0 to t = 3. For training the
LSTM network, we apply the lookback l = 6 meaning that the state of the system for six previous time steps is used
to predict the unknown dynamics (i.e., dZ/dt in our case) at the next time step. We use the full state of the system
[X,Y, Z] as the input features to the LSTM network. During the deployment of the trained LSTM network, the variable
Z at the next time step is calculated using Equation 5 with the predicted dZ/dt. Since the LSTM network is deployed
in an auto-regressive method, there is an accumulation of errors from one time step to another. The chaotic systems are
very sensitive to the initial condition and this makes the accurate forecast of chaotic systems difficult over a longer
period. Figure 4 displays the prediction of the Lorenz system using the true model and the hybrid neural-physics model
for the weakly and highly nonlinear case. The hybrid neural-physics model can predict the correct dynamics of the Z
variable and the predicted state trajectory is very close to the true state of the system. However, for the highly nonlinear
Lorenz system, the predicted state trajectory starts deviating from the true state trajectory at around t ≈ 1.5. The
largest Lyapunov exponent of the highly nonlinear Lorenz system is 2.33. Therefore, the time t ≈ 1.5 corresponds
to 3.5 Lyapunov time (Λ−11 , where Λ1 is the largest Lyapunov exponent of the Lorenz system). Even though the
hybrid neural-physics model can predict the switching between lobes, the predicted state trajectory is considerably
different from the true state trajectory for the highly nonlinear case. Therefore, the online data should be integrated
using sequential DA to achieve an accurate forecast by limiting the accumulation of prediction errors.
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Figure 3: The general structure of the proposed hybrid neural-physics modeling approach. Machine learning is
used to learn the missing dynamics or parameterization of unresolved processes and this provides us with the hybrid
neural-physics model. The hybrid neural-physical model can be further corrected through the data assimilation step
making use of sparse and noisy observations in the online deployment phase.
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Figure 4: The trajectory of the Lorenz system computed using the true physics-based model and the hybrid model
where the dZ/dt is approximated using the neural network for the weakly nonlinear case (left) and the highly nonlinear
case (right). Here, LSTM refers to forecast with the hybrid model.

4.1.2 Hybrid neural-physics model coupled with DA

Next, we show the performance of the DEnKF algorithm that uses the hybrid neural-physics model as the forward
model and compare it with only using the hybrid neural-physics model. Figure 5 shows the trajectory of the weakly
nonlinear Lorenz system where the observations are assimilated after every 50 time steps. The observations are obtained
by adding the Gaussian noise with the variance σ2

b = 1.0 and we assume that the full state is observable. We initialize
10 different ensemble members by adding the Gaussian noise with the variance σ2

0 = 1.0 to the true state of the system
at time t = 0. From Figure 5, we can notice that the prediction with the hybrid neural-physics model integrated within
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Figure 5: The trajectory of the weakly nonlinear Lorenz system computed using the true physics-based model, the
hybrid model where the dZ/dt is approximated using the neural network, and the assimilated results with the hybrid
model. The observation noise is drawn from N (0, 1), and are collected after every 50 time steps, i.e., the time interval
between two observations is 0.05. Here, LSTM refers to forecast with the hybrid model and LSTM-DEnKF refers to an
analysis state of the system.

the DEnKF algorithm matches almost exactly with the true trajectory of the weakly nonlinear Lorenz system. This
is to be expected as even the hybrid neural-physics model was able to predict the state trajectory close to the true
trajectory of the weakly nonlinear Lorenz system and ensemble Kalman filter approaches are robust for sparse and
noisy observations in improving the state estimation. In Figure 6, we compare the power spectral density for all three
states of the true model, hybrid neural-physics model, and the hybrid neural-physics model coupled with DEnKF. The
power spectral density (PSD) is calculated as the square of the absolute value of the discrete Fourier transform of the
time series of interest and can be written as

PSD = |û(ω)|2, (35)
where û(ω) is the Fourier transform of a time series. We observe some noise in the PSD for the Y variable, especially
at higher frequencies which can be attributed to the Gaussian noise of observations that are assimilated for the state
estimation in the DEnKF algorithm. We further increase the time interval at which the observations are assimilated to
100 time steps. As shown in Figure 7, the hybrid neural-physics model integrated into the DEnKF algorithm is able to
accurately estimate the full state of the weakly nonlinear Lorenz system from time t = 0 to t = 6 even with the large
time interval between two observations. The largest Lyapunov exponent for the weakly nonlinear Lorenz system is
0.86 and the system eventually becomes chaotic if we integrate it for a long time. To demonstrate the capability of the
proposed framework, we integrate the weakly nonlinear Lorenz system for a long lead time up to t = 30. The LSTM
network is trained using the true trajectory up to t = 15. From Figure 8, we can see that the LSTM model diverges
from the true trajectory after approximately 15 Lyapunov times. If we assimilate the observations through the DEnKF
algorithm, then the analysis state is close to the true state trajectory.

After a successful demonstration of the DEnKF algorithm with the hybrid neural-physics model for the weakly nonlinear
Lorenz system, we discuss the results for the highly nonlinear Lorenz system. Figure 9 depicts the state trajectory of the
highly nonlinear Lorenz system for the true model, hybrid neural-physics model, and the hybrid neural-physics model
coupled with the DEnKF. The observations for the highly nonlinear Lorenz system are contaminated using the Gaussian
noise with variance σ2

b = 5 and are assimilated after every 50 time steps. Even though the LSTM is trained for time
t = 0 to t = 3 the state predicted by the hybrid neural-physics model starts deviating from the true model trajectory at
around t ≈ 1.5. This is due to the accumulation of prediction error in the deployment of the trained LSTM network and
high sensitivity to the initial condition in the strongly nonlinear Lorenz system. When the hybrid neural-physics model
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Figure 6: Power spectra analysis of the weakly nonlinear Lorenz system computed using the true physics-based model,
the hybrid model where the dZ/dt is approximated using the neural network, and the assimilated results with the hybrid
model. The observation noise is drawn from N (0, 1), and are collected after every 50 time steps, i.e., the time interval
between two observations is 0.05. Here, LSTM refers to forecast with the hybrid model and LSTM-DEnKF refers to an
analysis state of the system.

is coupled with the DEnKF algorithm, the predicted state is accurate beyond the training period up to time t = 6. This
shows the success of the LSTM network to learn the mapping between resolved dynamics and the missing physics of
the Lorenz system and also testifies the functioning of sequential DA. Figure 10 shows the PSD for all three states of
the highly nonlinear Lorenz system for the true model, hybrid neural-physics model, and hybrid neural-physics model
coupled with DEnKF. We can observe that there is a mismatch in the distribution of PSD at lower frequencies for the
state predicted by the hybrid neural-physics model compared to the true model state trajectory. The PSD for the state
trajectory predicted with the hybrid neural-physics model coupled with DEnKF agrees very well with the PSD of the
true model state trajectory.

In the next set of numerical experiments, we study the effect of observation noise and the frequency of assimilation on
the prediction of the state of the highly nonlinear Lorenz system. Figure 11 shows the prediction of the state trajectory
of the highly nonlinear Lorenz system with observations assimilated after every 100 time steps. The observation noise
is taken to be from the Gaussian distribution with variance σ2

b = 5 and the number of ensembles is set at 10. We get a
very good prediction between the true state of the Lorenz system and the state predicted by the hybrid neural-physics
model integrated with the DEnKF. We further increase the observation noise to the Gaussian distribution with the
variance of σ2

b = 10 and assimilate observations every 50 time steps. We note here that the number of ensembles is kept
fixed at 10. As shown in Figure 12, there is a discrepancy between the analyzed state estimate of the Lorenz system
and the true state for the highly nonlinear case. This discrepancy can be due to the small number of ensembles in the
DEnKF algorithm. In the DEnKF algorithm, the error covariance matrix is approximated by computing the statistics of
all ensemble samples and ensemble size of 10 might not be enough for the large measurement noise. We repeat the
numerical experiment with the same set of parameters (i.e., the observation noise and the frequency of observations)
and increase the number of ensembles to 20. Figure 13 displays the analyzed state estimate using an ensemble of 20
members for the hybrid neural-physics model coupled with DEnKF. The analyzed state estimate is improved and there
is a very good agreement between the true state of the highly nonlinear Lorenz system and the analyzed state estimate
by the hybrid neural physics model coupled with DEnKF.

These findings illustrate the robustness of sequential DA in handling sparse and noisy observations to improve the
state estimate of the hybrid neural-physics model. The underestimation of the error covariance matrix can also be
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Figure 7: The trajectory of the weakly nonlinear Lorenz system computed using the true physics-based model, the
hybrid model where the dZ/dt is approximated using the neural network, and the assimilated results with the hybrid
model. The observation noise is drawn from N (0, 1), and are collected after every 100 time steps, i.e., the time interval
between two observations is 0.1. Here, LSTM refers to forecast with the hybrid model and LSTM-DEnKF refers to an
analysis state of the system.

handled using practical DA techniques like covariance inflation [81, 82] and covariance localization [83, 84]. These
techniques also prevent the filter divergence when the number of ensembles is less [85,86]. Indeed for high-dimensional
geophysical systems, increasing the number of ensembles will be computationally expensive and adaptive inflation
and localization techniques can be adopted [87–89]. The quantitative performance of all numerical experiments with
sequential data assimilation for the hybrid neural-physics Lorenz model is evaluated using the root mean squared error
(RMSE) defined as

RMSE =

√√√√ 1

n

1

nt

n∑
i=1

nt∑
k=1

(
xT
i (tk)− xP

i (tk)
)2
, (36)

where xTi is the true state of the system and xPi is the predicted state of the system. Table 1 reports the RMSE for all
numerical experiments carried out with a hybrid neural-physics model coupled with DA. We can notice that an increase
in the time between two observations leads to poor prediction for both weak and strongly nonlinear Lorenz systems. We
also observe that for the strongly nonlinear Lorenz system, the increase in observation noise deteriorates the prediction
for an ensemble of 10 members. When we increase the number of ensemble members to 20, the prediction is improved
and the RMSE is decreased.

4.2 Two-scale Lorenz 96 model

The ground truth data for learning the subgrid scale parameterization in a two-scale Lorenz system is generated by
temporally integrating the model using the fourth-order Runge-Kutta (RK4) time-stepping scheme with the time step
∆t = 0.001 MTU. The equilibrium initial condition for the slow variables is set as Xn = 0 for n ∈ 2, . . . , N and
X1 = 1.0. In a similar manner, the fast variables are assigned Y1 = 1.0 and Ym = 0 for m ∈ 2, . . . ,MN as an initial
condition. The initial transient period of 5 MTU is disregarded. The periodic boundary condition is applied for both
slow and fast variables in the two-scale Lorenz model. The output for the first 10 MTU is utilized for training and
the performance of the trained network is evaluated for the next 10 MTU. Since the training and forecast period are
different, there is no overlap between the train and test data. The trained LSTM network predicts the subgrid-scale
parameterization at kth time step, i.e., G(k) using the temporal history of resolved flow variables for six consecutive
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Figure 8: The trajectory of the weakly nonlinear Lorenz system for a long time computed using the true physics-based
model, the hybrid model where the dZ/dt is approximated using the neural network, and the assimilated results with
the hybrid model. The observation noise is drawn from N (0, 1), and are collected after every 100 time steps, i.e., the
time interval between two observations is 0.1. Here, LSTM refers to forecast with the hybrid model and LSTM-DEnKF
refers to an analysis state of the system.

Type σ2
b Ns N RMSE

Weak 1.0 50 10 0.169
Weak 1.0 100 10 0.233
Strong 5.0 50 10 2.417
Strong 5.0 100 10 4.804
Strong 10.0 50 10 15.385
Strong 10.0 50 20 6.889

Table 1: Quantitative assessment of different numerical experiments carried out with hybrid neural-physics model
coupled with DA. The root mean square error (RMSE) is computed using Equation (36). Here, σ2

b is the observation
noise, Ns is the number of time steps between two observations and N is the number of ensembles used in DEnKF
algorithm.

past time steps. We highlight here that we utilize the same time step for the forecast as the ground truth data generation.
However, one can also use the different time step size for the forecast period by using the forecast time step size in
Equation 14 to compute the parameterization term.

During the online deployment, we also use the DEnKF algorithm to improve the state prediction. The observation data
for the DEnKF algorithm are generated by adding the Gaussian noise with the variance σ2

b = 1.0 and the observations
are assimilated every 10 time steps, i.e., 0.01 MTU. We assume that 50% of the full state is observable and the
observation points correspond to X1, X3, X5, and X7. We initialize 10 different ensemble members by adding the
Gaussian noise with the variance σ2

0 = 1 × 10−2 to the true initial state of the system. We also apply an inflation
factor λ = 1.02 to account for modeling errors. Figure 14 displays the full-state trajectory of the slow variables in the
two-scale Lorenz system from 10 MTU to 20 MTU (forecast period) along with the difference between the true and
predicted state. The true state is calculated by solving both the evolution of slow and fast variables. We see that the
LSTM based parameterization provides accurate prediction only for approximately 1 MTU and then the prediction
has diverged from the true state of the two-scale Lorenz system. We also notice that the LSTM based subgrid scale
parameterization model coupled with DEnKF renders accurate state prediction for the entire period of the forecast. In
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Figure 9: The trajectory of the strongly nonlinear Lorenz system computed using the true physics-based model, the
hybrid model where the dZ/dt is approximated using the neural network, and the assimilated results with the hybrid
model. The observation noise is drawn from N (0, 5), and are collected after every 50 time steps, i.e., the time interval
between two observations is 0.05. Here, LSTM refers to forecast with the hybrid model and LSTM-DEnKF refers to an
analysis state of the system.

Figure 15, the trajectory of each slow variable is shown and we see that the LSTM-DEnKF framework can estimate
the state for all slow variables with very high accuracy. The temporal variation of the RMSE also suggests that the
sequential data assimilation aids in considerable improvement in the state prediction compared to employing only the
trained LSTM network.

We highlight here that it may be argued that the forecast of a free run and an analysis (corrected forecast from DEnKF)
of the system do not have access to the same information. Specifically, the LSTM-DEnKF model utilizes sparse
and noisy observations that are not available to the LSTM model. For a fair comparison, we repeat the numerical
experiments with the incomplete physics-based model (IPM) coupled with the DEnKF model. Figure 16 depicts the
full state trajectory of the slow variables in the two-scale Lorenz system from 10 MTU to 20 MTU along with the
difference between the true and predicted state. We can see that the analysis with the LSTM model is significantly
more accurate than the analysis with the IPM model. This result demonstrates that machine learning offers possibilities
of learning missing physics or model imperfections and the data assimilation prediction with such hybrid models is
superior compared to truncated models.

As discussed in Section 2.2, the tendency (i.e., the time derivative) is approximated by a finite-difference method in the
computation of subgrid scale parameterization. One of the important questions is the effect of this approximation on the
generalizability of the trained neural network. We investigate this effect by deploying the trained neural network in a
two-scale Lorenz 96 system with a different time step used during the deployment. A similar sensitivity study was also
conducted in Brajard et al. [41], where they analyzed the effect of time step on the linear superposition assumption
between the resolved and unresolved part of the model. Figure 17 shows the evolution of the RMSE for the two-scale
Lorenz 96 model with a different time step used in the prediction and for different observation noise. In Figure 17, the
∆tT denotes the time step used for generating the training data, and ∆tP is the time step used during prediction. For
example, the LSTM network is trained using the data generated with a time step of 0.001 MTU, and ∆tP = 2∆tT
means that the time step during the forecast stage is 0.002 MTU. For all numerical experiments with a two-scale Lorenz
96 system, the observations are assimilated every 10 prediction time steps ( i.e., ∆tP ). We can observe that the RMSE
is slightly increased for the LSTM based subgrid scale parameterization model with a different time step utilized during
prediction. We do not observe any unstable behavior with a different time step for prediction than the time step used
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Figure 10: Power spectra analysis of the strongly nonlinear Lorenz system computed using the true physics-based
model, the hybrid model where the dZ/dt is approximated using the neural network, and the assimilated results with the
hybrid model. The observation noise is drawn from N (0, 5), and are collected after every 50 time steps, i.e., the time
interval between two observations is 0.05. Here, LSTM refers to forecast with the hybrid model and LSTM-DEnKF
refers to an analysis state of the system.

for training. The RMSE for the LSTM-DEnKF model is higher when there is a difference between the prediction and
training time step. However, there is still a considerable improvement in the prediction compared to employing only
LSTM based subgrid scale parameterization. The numerical experiment with a large observation noise, i.e., σ2

b = 10.0
suggests that the framework is robust for high uncertainty in measurements.

5 Summary and conclusions

In this work, we investigated the use of a neural network to recover the missing physics (i.e., incomplete dynamics) in
dynamical systems. The hybrid neural-physics model composed of the physics-based model for the known dynamics
and neural network for the unknown dynamics is applied to the Lorenz system with different strengths of nonlinearity. In
the Lorenz system, the third equation was assumed to be missing and was approximated using the neural network. The
recurrent neural network capable of handling long and short term dependencies was utilized for learning the mapping
between known and unknown dynamics. Once the trained long short-term memory (LSTM) network is deployed in an
auto-regressive manner, there is an accumulation of prediction error from one time to another. The weakly nonlinear
Lorenz system exhibits near-regular oscillations with increasing amplitude and the hybrid neural-physics model is able
to produce an accurate forecast even in the presence of prediction error during the online deployment of the LSTM
network. The highly nonlinear Lorenz system being chaotic with extreme events is sensitive to the initial condition and
a small change in the initial condition can produce a very different output. We observe that the predicted state trajectory
of the hybrid neural-physics model starts deviating from the true trajectory after around 3.5 multiple of Lyapunov time
for the highly nonlinear Lorenz system.

To achieve an accurate prediction over a longer period, the sequential data assimilation based on the deterministic
ensemble Kalman filter (DEnKF) is applied. The hybrid neural-physics model coupled with DEnKF is able to predict
the state of the highly nonlinear Lorenz system close to the true state by utilizing sparse and noisy observations.
The analysis with the power spectral density (PSD) demonstrates that the hybrid neural-physics model integrated
with DEnKF can capture the power density at lower frequencies accurately compared with the true PSD. We also
illustrate the successful performance of the present framework for the two-scale Lorenz system where the subgrid scale

15



−50

0

50
X

−50

0

50

X

−100

0

100

Y

−100

0

100

Y
0 1 2 3 4 5 6

t

100

200

Z

0 1 2 3 4 5 6
t

100

200

Z

True LSTM LSTM-DEnKF Observations

Figure 11: The trajectory of the strongly nonlinear Lorenz system computed using the true physics-based model, the
hybrid model where the dZ/dt is approximated using the neural network, and the assimilated results with the hybrid
model. The observation noise is drawn from N (0, 5), and are collected after every 100 time steps, i.e., the time interval
between two observations is 0.1. Here, LSTM refers to forecast with the hybrid model and LSTM-DEnKF refers to an
analysis state of the system.

parameterization is learned through the LSTM network. During the forecast period, the DEnKF algorithm is utilized
to make use of sparse and noisy observations to improve the prediction. The DEnKF algorithm fail to give accurate
analysis if unresolved scales are not parameterized (i.e., incomplete physics-based model). Furthermore, we show that
the hybrid model forecast is not highly sensitive to the time step used for computing the subgrid-scale tendencies and
the framework is robust against high observational noise. Based on numerical experiments carried out in this work, the
methodology presented here seems promising for a continuous forecast of incomplete chaotic dynamical systems.

It may be argued that the success of this framework relies on the low-dimensionality of the Lorenz model. Even the
two-scale Lorenz model has many fewer dimensions than any complex geophysical system and a relatively simple
parameterization. Nevertheless, we foresee that the approach can be extended to high-dimensional complex systems
by considering advanced neural network architectures like convolutional LSTMs, generative adversarial networks
(GANs). The proposed method is modular enough that it is possible to plug any type of neural network and data
assimilation scheme independently. The lessons learned from this study will guide our future extension of this approach
to more complex chaotic systems whose dynamics is representative of geophysical flows. Moreover, a relevant possible
extension is to combine machine learning, data assimilation, and reduced order models toward accelerating digital
transformation and decision making processes in science, technology, and engineering workflows. To utilize the present
framework for real-time decision making, it is necessary to reduce the computational requirement of the forward model
significantly. Therefore, replacing the numerical discretization-based solver with the data-driven surrogate model will
be a future research direction.
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Figure 12: The trajectory of the strongly nonlinear Lorenz system computed using the true physics-based model, the
hybrid model where the dZ/dt is approximated using the neural network, and the assimilated results with the hybrid
model using an ensemble of 10 members. The observation noise is drawn from N (0, 10), and are collected after every
50 time steps, i.e., the time interval between two observations is 0.05. Here, LSTM refers to forecast with the hybrid
model and LSTM-DEnKF refers to an analysis state of the system.
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