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ABSTRACT
Public medical facilities that are closely related to the health of residents
have been recognised as one of the most crucial elements in sustainable
urban planning. For the sake of social equality of medical services
(especially for emergency medical conditions), the spatial distributions of
medical resources need to be accurately measured and continuously
optimized. This study presents an effective method to examine night
emergency hospital visit and analyse its spatiotemporal characteristics
using float car data (FCD). By extracting the hospital service areas, the
two-step floating catchment area (2SFCA) methodology was improved to
calculate hospital accessibility. Then, the balance between hospital
accessibility and population density was analysed. In addition, we
investigated the relationship between individual hospital choice
preferences and hospital level and analysed several factors that affect
individual choices. These results help us understand the special
requirements and need of emergency hospital travel in cities and identify
areas where medical resources are scarce. They can be used as guidance
for urban hospital planning and construction. And the approach of
hospital access behaviour investigation and the improved 2SFCA method
can also provide insights for other activity-based travel behaviour research.
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1. Introduction

Analysing the use and spatial allocation of medical facilities may provide guidance to the patients
in choosing their preferred hospital and may also reduce the time cost of hospital travel
(Barber et al. 2017). In particular, with respect to the shortage of medical resources during a public
health situation (e.g. the COVID-19 pandemic), the efficiency and equity of using public medical
resources are very important for residents to seek medical treatment. Whenever healthcare
resources are scarce, patients either incur long waits in local hospitals or travel to distant ones
for healthcare services (Jackson et al. 2002). In this case, patients cannot receive timely assistance,
which is not conducive to establishing a good hospital atmosphere or doctor-patient relationship
(Jones et al. 2008; Yang, Chen, and Wang 2020). The reasonable allocation of medical resources
is related to not only the quality of life of residents but also to the stability of society (Jia, Xierali,
and Wang 2015; Nakamura et al. 2017). In developing countries, especially in metropolitan areas,
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rapid urban growth vastly exceeds the capability of municipalities to provide basic infrastructure
and services for their citizens (Cohen 2006).

Public medical facilities have been recognised as one of the most crucial elements in sustainable
urban planning worldwide (Jin et al. 2019; Wang et al. 2019). To help city planners evaluate and
analyse the effectiveness of public facility configuration, many studies have been conducted to
delineate the service areas (Hu, Wang, and Xierali 2018; Jia, Wang, and Xierali 2017b), analyse
equity issues (Liu, Qin, and Xu 2019; Yin et al. 2018; Gong et al. 2021), investigate hospital bypass
behaviour (Yang et al. 2016), and help formulate hospital relocation plans (Wang et al. 2019). For
instance, Wang et al. (2019) conducted research to provide reasonable suggestions for the optimal
location of hospitals in Beijing, China, considering traffic congestion and hospital accessibility.
Previous studies have shown that the accessibility of medical service facilities—a measure of the resi-
dents’ opportunities to obtain medical services in a specific area—is regarded as a valid method for
evaluating medical service distribution in urban regions (Tao and Cheng 2019; Wang 2018, 2020).

Traditionally, the analysis of the spatial allocation of healthcare resources is mainly based on sta-
tic data, such as census data, hospital records, etc. (Jia, Wang, and Xierali 2017a; Jia, Xierali, and
Wang 2015; Kong et al. 2017; Tao et al. 2014). However, since these data sets are likely to involve
patients’ privacy information and the time span of these data sets is usually long (that is, the avail-
ability and timeliness of the data are poor), it is difficult to accurately investigate the medical behav-
iour of residents (Wang et al. 2020). With the advancement of sensor technologies, the availability
of float car data (FCD) has been widely studied (Liu et al. 2016; van Weerdenburg et al. 2019). FCD
data contain not only the location and time information but also the information about the origin
and destination of passengers. This can help us analyse the relationship between positions from the
perspective of spatial interaction, which can help in many related research fields, such as the analy-
sis of urban spatial structure (Gong, Lin, and Duan 2017; Zhong et al. 2014) and the exploration of
human activities (Liu et al. 2015; Mao, Ji, and Liu 2016). Using taxi data in Beijing, Kong et al.
(2017) extracted hospital trips from the perspective of spatial interaction and classified hospitals
in Beijing based on travel characteristics (e.g. travel distance and patient distribution). Taxi data
were used by Yang et al. (2016) to analyse hospital detour behaviour by constructing bypass indi-
cators. To provide suggestions for the rational allocation of urban hospital resources, Wang et al.
(2020) evaluated the rationality of the spatial distribution of medical resources in Beijing by calcu-
lating the accessibility of hospitals. Chen and Song (2014) investigated the travel modes of residents
in Shenzhen (a big city in China), and found that taxi travels account for 20–30% of the total travel
to general hospitals. According to a survey (Haynes et al. 2006), more than 80% of people choose to
drive (including private cars and taxis) to the hospital. While individual patient travel data are more
ideal (private car data), considering that the data is not available due to privacy issues, the taxi data-
set are used in our study as a proxy to estimate hospital visits.

Although previous studies have contributed important information in the domain of hospital
travel identification and accessibility of medical facilities, a research gap still remains. First, in
the process of identifying hospital travel, hospitals are usually identified based on point elements,
ignoring the area attributes of medical facilities (Wang et al. 2019; Wang et al. 2020), which can lead
to large errors in the identification results. Second, owing to the different scales of the supply areas,
the service radii provided by the supply areas are not the same. However, in previous studies, a
threshold was arbitrarily set as a hospital catchment area, without considering the spatial heterogen-
eity of the service range. This affects the accuracy of the calculation results. Third, previous studies
often used long-term static data (e.g. hospital records and census data) or all-day taxi travel data,
rather than focusing on hospital travel at night. This study aims to explore hospital travel at
night (emergency medical travel) for the following reasons. At night, only the emergency depart-
ment works in a hospital, therefore, due to the staff shortage, many non-urgent patients would
choose to go to the hospital during the daytime the next day. Thus, most cases received by the hos-
pital at night tend to be in an urgent condition. In this context, patients pay more attention to time
and distance when choosing hospitals, which brings greater challenges for the rationality of local
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medical resource allocation. In addition, during the day, the patient’s choice of hospital is affected
by many socio-economic factors, such as traffic conditions, hospital level, and hospitalisation cost.
Thus, compared with the travel patterns during the day, the exploration of hospital travel patterns at
night in cities can more accurately assess the rationality of the spatial distribution of medical
resources.

Aiming to solve the abovementioned problems, we have considered Shanghai, China as our case
study and attempted to provide a framework for exploring the accessibility of urban hospitals in this
region. First, combined with an online map, a visualisation method was adopted to draw the bound-
aries of the hospitals. Second, spatial data mining methods were used to identify hospital travel from
massive taxi trajectory data, while delineating the actual service areas of each hospital. To a certain
extent, this solved the problem of inconsistent service radii for different hospitals. Third, the spatio-
temporal information of the trajectory data is used to analyse the characteristics of hospital travel at
night and combine urban population data to calculate and evaluate the spatial accessibility of urban
medical resources.

It is worth noting that in metropolises, such as Shanghai, China, the large number of private
cars has increased the travel radius of the residents; corresponding to this, an increasing num-
ber of people choose to live in suburban and rural areas because of the growing suburbanisa-
tion process that provides better living environments. However, most hospitals are located in
the city centre, which intensifies the contradiction between medical demand and the shortage
of medical resources. Consequently, from the perspective of spatial interaction, exploring the
spatial and temporal characteristics of night-time hospital visits in big cities has important
theoretical and practical significance for understanding the status of medical resources. This
will also aid in the identification of areas that suffer from a lack of medical infrastructure
and the optimisation of the spatial layout of medical facilities. In addition, the approach we
developed to identify hospital travel and delineate hospital service areas (HSAs) can be applied
to other types of public facilities, such as parks and train stations. The findings of this study
can benefit urban hospital planning and management and help optimise the spatial allocation
of medical resources.

The remainder of this study proceeds as follows. Section 2 provides a summary of the progress of
the study. Section 3 introduces the study area, datasets, and methods used in this study (e.g. identifi-
cation of hospital travels and delineation of HSAs). Section 4 presents the details of the spatiotem-
poral patterns of emergency hospital travel, distribution of hospital accessibility, and evaluation of
rationality of medical resources. Section 5 presents a discussion, including the analysis of residents’
choice preferences and factors affecting the accessibility of urban hospitals; and Section 6 offers the
concluding remarks and future research directions.

2. Related work

The relationship between urban residents’ mobility patterns and urban spatial structure has always
been a focus of human geography research. The movement of crowds can reflect the characteristics
of the urban spatial structure. In turn, the spatial structure of the city also restricts and influences
the movement behaviour of its residents. The emergence of massive individual trajectory data pro-
vides new opportunities and challenges for examining human mobility. Medical treatment activities
are an important part of the lives of residents. Thus, analysing the temporal and spatial character-
istics of medical treatment activities can deeply explore the rationality of urban infrastructure con-
struction, which may provide important guidance for the optimisation of medical resources.
Meanwhile, spatial accessibility, as an effective indicator of rationality assessment, has been widely
studied by scholars in different fields. Consequently, this section reviews the research progress from
two aspects: applications of FCD to study and evaluate human activities and viable methods for
evaluating hospital accessibility.
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2.1. Analysis of human activities

The widespread use of global navigation satellite system (GNSS) devices makes it possible to gather
large volumes of individual trajectory data at a low cost (Cao et al. 2015; Neutens 2015; Ríos and
Muñoz 2017). Each trajectory is composed of a series of spatiotemporal sampling points. From a
macro point of view, the massive individual trajectory data contain the patterns and laws of
crowd movement (Liu et al. 2012; Liu et al. 2015), which provides a viable method for examining
the mobility of citizens. The analysis of trajectory data and knowledge discovery provides new
opportunities for solving urban traffic congestion (Kan et al. 2019; Wang et al. 2019), traffic pattern
detection (Wang, Lu, and Li 2020), traffic navigation (Park et al. 2020), and other social problems
(Zhang et al. 2015; Levy and Benenson 2015).

In addition, taxi travel accounts for a considerable share of urban traffic flow. Notably, parking
points are flexible, and passengers tend to leave the taxi as close to the destination as possible. Con-
sequently, the pick-up and drop-off points in the taxi trajectory data are important for identifying
the activities of citizens and play an important role in understanding the urban spatial structure and
human activity patterns (Zhang et al. 2015). For instance, Wang et al. (2019) used taxi trajectory
data to determine traffic congestion near a hospital and identify hospitals that need to be relocated
to ease urban traffic conditions. Gong et al. (2016) designed a research framework to infer the
activity types of taxi passengers. Huang et al. (2018) concentrated on inferring activities from indi-
vidual trajectory data by combining nearby points of interest (POIs).

At present, FCD data have made significant progress in the research of medical activities, such as
extracting medical activities (Wang et al. 2019; Gong et al. 2021), dividing the scope of medical
services (Jia, Shi, and Xierali 2019), etc. However, the existing research mainly treat hospitals as
point element data and extracts hospital trips by analysing the location relationship between the
pick-up/drop-off points and the hospital (Gong et al. 2021). For example, Kong et al. (2017) consider
the trips where the pick-up and drop-off points are within a 200-m buffer zone of the hospital as hos-
pital trips. Pan et al. (2018) used a buffer zone threshold of 50 m from the entrance of the hospital, and
used taxi trip data from Shenzhen to detect hospital trips. To date, few studies have fully considered
the spatial difference of the hospital boundary in the process of extracting hospital trips, which affects
the accuracy of the extraction results significantly. For instance, the Shanghai Ruijin Hospital covers
an area of 120,000 m2, while the Shanghai Xuhui District Central Hospital has an area of only 12,672
m2, as shown in Figure 1. For these two hospitals (having different ranges), if the same buffer zone is
set to extract hospital trips, many trips will be misidentified, thereby reducing the accuracy of the
results. This also leads to larger errors in the subsequent analysis results.

2.2. Methods for evaluating hospital accessibility

Accessibility is an important indicator for evaluating whether the service of public facilities is
reasonable (Panagiotopoulos and Kaliampakos 2018). It refers to the degree of interconnection
between a given point and all other points on the same surface (Hansen 1959; Ingram 1971). As
an important part of public service facilities, research on the accessibility of medical facilities has
received extensive attention and several major findings have been made. The main methods for
estimating hospital accessibility are the nearest distance (Ingram 1971), cumulative chance (Mitch-
ell and Town 1977; Wachs and Kumagai 1973), gravity (Hansen 1959), and two-step floating catch-
ment area (2SFCA) methods (Luo and Wang 2003). The 2SFCA model is the most commonly used
measurement of hospital spatial accessibility because it takes into account the population demands,
hospital resources, and travel costs calculated based on geographic distance or travel time (Cheng
et al. 2016). The original model can be expressed as follows:

Step 1. For each service supply location j (i.e. hospital j), all population locations (k) (i.e. demand
locations) within a threshold distance (d0) of hospital j are searched. The area within this distance
threshold (d0) is defined as the service catchment of hospital j. Then, the supply to-demand ratio Rj
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can be calculated according to the following formula:

Rj =
Sj∑

k[{dkj≤d0}Pk
(1)

where Sj is the service capacity of the supply location j, dkj is the distance from the demand
location (k) to the supply location j, and Pk is the population count at demand point k that lies
within a threshold distance (d0).

Step 2. For each demand location i (i.e. population location i), all the hospitals that can be used
(within a threshold distance d0) are searched, and all the supply to-demand ratios Rj to obtain the
accessibility of each demand location are summed up.

Ai =
∑

j[{dij≤d0}

Rj =
∑

j[{dij≤d0}

Sj∑
k[{dkj≤d0}Pk

(2)

However, the original 2SFCA technique adopts a strictly dichotomous model, ignoring spatial
resistance. For instance, for a hospital, locations within a travel threshold are equally accessible,
and locations beyond the threshold are equally inaccessible (Langford, Fry, and Higgs 2012).
Haynes et al. (2006) found that the time of hospital travel and the number of patient registrations
in medical institutions showed a distance-decay relationship. To model this effect, some scholars
have extended the 2SFCA algorithm by introducing a distance-decay function (Bauer et al. 2018;
Fransen et al. 2015; Gong et al. 2021; McGrail and Humphreys 2009; Tao, Cheng, and Liu 2020).
For example, Luo and Qi (2009) improved the 2SFCA algorithm by segmenting the distance

Figure 1. Example of two hospitals.
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between the supply and demand points and assigning weights to each distance segment. Delamater
(2013) explored the accessibility of primary healthcare in Michigan with the help of the kernel den-
sity 2SFCA (KD2SFCA). Dai (2010) used a continuous Gaussian function to analyse the accessibil-
ity of medical facilities and conducted a sensitivity analysis of the travel time of the watershed
threshold. Gong et al. (2021) used the frequency distribution of trips to redefine the decay weight
and calculated the accessibility of the hospital.

These extended methods provide important information for the distance decay in the accessibil-
ity calculation, which greatly promotes the development and popularisation of 2SFCA. However,
two issues need to be considered when using the 2SFCA model and its modified version to analyse
spatial accessibility effectively.

The first issue is the delineation of the catchment areas of the population. Catchment areas are
usually delineated by concentric circles within a given travel time or distance (Apparicio et al. 2008;
McGrail 2012), or within the closest administrative or geographic regions in the cluster area (Jamt-
sho, Corner, and Dewan 2015). Although the current methods of delimiting water catchment areas
are representative, there are still some limitations observed. Because the size of the catchment area
of a hospital is related to its type and scale, patients usually cross the state or county border for
treatment (Jia, Shi, and Xierali 2019). In addition, the population is unevenly distributed in the
geographical space. Consequently, it is unreasonable to use a circular area or administrative
boundary to delimit the service area of a hospital; additionally, it cannot represent the actual
distribution of patients.

The second issue is the use of the distance-decay function. In the existing literature, when using
the distance-decay function to calculate the weight of the service catchment area, the linear distance
between the supply and demand points is used instead of the trajectory distance, ignoring the actual
resistance (Luo 2014; Wan, Zou, and Sternberg 2012). Gong et al. (2021) used the actual travel time
in the decay function and improved the original algorithm to make it more realistic. However, they
did not consider the spatial differences in the influence of different levels of hospitals and adopted
the same decay weight for all hospitals. Consequently, considering these two problems, it is necess-
ary to adjust the existing 2SFCA algorithm to reduce the errors in the accessibility calculation pro-
cess and provide a more accurate method and technology to calculate and evaluate the accessibility
of public service facilities.

3. Materials and methods

This section details the process and main methods of data processing and analysis. First, the
research framework is described. Second, the study area and datasets are introduced. Then, a
method for identifying hospital travel from massive trajectory data is proposed. Finally, the acces-
sibility calculation model (2SFCA) is improved to calculate hospital accessibility in a better way.

3.1. Research framework

A flowchart of our study methodology is presented in Figure 2. It mainly includes three parts: data
processing, hospital trip detection, and urban hospital resource analysis.

(1) Data processing
The two datasets of taxi trajectory data and hospital data were required in our study. Owing to the
recording errors of the raw trajectory data, such as missing fields and drift points, it is necessary to
pre-process the trajectory data. Consequently, in this component, the processing of FCD data
includes data cleaning (i.e. deleting unnecessary fields and wrong track records) and identifying
the original and destination points of the trajectory to construct a taxi route. Then, AutoNavi
MAP (AMAP) was used to visualise and vectorise the hospital data and delineate the boundary
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to convert hospital point data into area data. In this part, AMAP is one of China’s three Internet
giants, providing powerful navigation services.

(2) Hospital trip detection
This is used to extract candidate trajectories from a large number of original trajectories, identify
night hospital trips through spatial statistics and filtering algorithms, and construct a hospital emer-
gency trip data set.

(3) Urban hospital resource analysis
First, descriptive statistical methods, correlation analysis, and spatial autocorrelation analysis were
adopted to analyse the spatial and temporal characteristics of medical travel. Second, the accessibil-
ity algorithm (2SFCA) was improved by delineating the HSA and extracting the trajectory distance,
using it to calculate hospital accessibility. Finally, combined with population data, the rationality of
the spatial distribution of urban medical resources was analysed.

3.2. Study area and data description

3.2.1. Study area
Shanghai is the centre of economic, financial, trade, and technological innovation, and is one of the
biggest cities in China, with a very high population density. Chongming District is a suburban
county in Shanghai that is far from the city centre. The taxis in this area are rarely accessible
due to the natural environment, resulting in its isolation from mainland Shanghai. According to

Figure 2. Methodology flowchart.
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the statistics of our FCD, less than 1% of the data is related to Chongming District. Therefore, in this
study, mainland Shanghai was selected as a case study (Figure 3). We evaluated the characteristics
and accessibility of urban medical resources and how planning processes can influence the
improvement of such accessibility.

In Shanghai, there are three main transport rings, namely the inner, middle, and outer rings
(Figure 3). The population of Shanghai is mainly distributed within the outer ring road, which is
the central area of the city, having high living expenses. With a significant increase in transportation
accessibility to distant areas in the city, more people now tend to live in the suburbs and rural areas
to pursue a better quality of life. However, most hospitals are located in the city centre, which inten-
sifies the contradiction between medical demand and the shortage of medical resources. Therefore,
from the perspective of spatial interaction, exploring the spatial and temporal characteristics of
medical resources in Shanghai has important theoretical and practical significance for understand-
ing the status of medical resources in an urban setting.

3.2.2. General information to float car data (FCD)
Taxis are an important mode of urban public transportation in Shanghai. The trajectory is a series
of chronological position records, which are collected from approximately 6000 GPS (global pos-
itional system)-equipped taxis, and the time range is from 1 June to 30 June 2018. In addition,
this information is recorded approximately every 10 s with a position accuracy of approximately
10 m, which is acceptable for research on hospital access behaviour. In the database, each record
has nine fields: taxi ID, day, time, speed, direction, longitude, latitude, vehicle status, and company.
Figure 4 illustrates the GPS trajectory of a taxi. Geographically, the raw GPS trajectories are a series
of discrete points. The blue line and point indicates that the taxi is occupied, and the grey line and
point represents the cruise status.

Although the data of 6000 GPS-equipped taxis used in this study is only a part of all the taxis in
Shanghai, the trajectory data is considered representative. This is mainly because the data is col-
lected by a technology company from several taxi companies, and its data collection is not limited
by regions. And all vehicles included in the data are not restricted by a specific area and can operate
freely across the city. We have counted the number of service districts for each vehicle as shown in
the Figure 5, the x-axis represents the number of districts per taxi travelled in a day, and the y-axis
represents the number of vehicles. The results show that the number of operating areas of most taxis
is mainly distributed in 7–12 districts (16 in total), which can further illustrate that the taxis selected

Figure 3. Study area of Shanghai.
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in this study are not restricted by specific areas and the dataset can serve as a good proxy in our
research.

3.2.3. Hospital data description
Hospital data (such as hospital name, type, location, and number of beds, etc.) were obtained from
the Shanghai Public Open Data System (https://data.sh.gov.cn/index.html) and OpenStreetMap
(https://download.geofabrik.de). In China, according to factors such as hospital size, technical
level, and equipment quantity, hospitals are classified into three levels: first, second, and third-
class hospitals. Among them, the medical level and service scope of the third-class hospitals are
much better than those of the second-class hospitals, with the most primary services being
offered in the first-class hospitals.

Figure 4. Trajectory of a taxi.

Figure 5. Number of service districts per taxi.
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In this study, we consider the spatial heterogeneity of the hospital and combined it with
spatial visualisation processing to convert hospital point attribute data to area attribute
data. The pre-processing of the hospital data is as follows: First, the point data of the hospital
are spatially superimposed with the AMAP through a coordinate transformation. Then,
through data vectorisation processing, point features are converted to area features data
(e.g. point to polygon). Finally, the areas of all hospitals are calculated, and some smaller hos-
pitals are excluded. These small hospitals are often private clinics. According to the require-
ments of the ‘Basic Standards for Medical Institutions’ promulgated by the National Health
Commission of the people’s Republic of China (http://www.nhc.gov.cn/), the construction
area of the clinic is not less than 40 m2, and the area of the treatment room is not less
than 10 m2. Thus, we discard these small hospitals (less than 50 m2) due to the irregular con-
struction and limited service scope.

In addition, we conducted a detailed investigation on the business hours of all selected hospitals
by manually checking the information on the official websites or by telephone consultations. Some
hospitals that do not operate at night, such as those private specialist hospitals, are also excluded.
Ultimately, we selected 239 medical facilities, of which 78 were third-class hospitals, 119 were
second-class hospitals, and 42 were first-class hospitals. It is worth mentioning that, to provide bet-
ter services to urban residents, some high-quality medical resources in Shanghai have established
multiple branches in other areas of the city. In this section, all branches are regarded as independent
hospitals.

3.3. Algorithm to identify hospital visit travels

By mapping the moving locations of a vehicle to the boundary of a hospital, hospital travel can be
easily discovered. However, because of the signal error of GPS devices and the prohibition of taxis
entering the hospitals, this direct approach cannot be applied to perfect matching. As such, this sec-
tion introduces an approach to identify hospital emergency travel from a large number of raw tra-
jectories. First, a travel trajectory dataset is constructed. Then, spatial interaction was adopted to
filter the candidate objects. A three-step approach was adopted, as follows:

Step 1. Construction of origin-destination (OD) trips:
To extract medical travel, we first construct an origin-destination (OD) matrix of trajectories.

The OD matrix is denoted by a vector from (xo, yo, to) → (xd, yd, td), where (x, y) represents the
geographical coordinates of an OD point, and t represents the sampling time. There were ∼4.65
million taxi trips between 1 June 2018 and 30 June 2018. In addition, affected by the positioning accu-
racy and data recording errors, the trajectory data may have an error of about 10 metres or even drift.
And combined with the speed limit requirements of the ‘Implementation Regulations of the Road
Traffic Safety Law of the People’s Republic of China’ (http://www.gov.cn/gongbao/content/2019/
content_5468932.htm), invalid trips such as driving distances less than 10m and speeds exceeding
130km/h are cleared. This setting is also consistent with the study of Wang et al. (2020).

Step 2. Determination of hospital boundary
Since most of the OD points are located on the road network around the hospital, in order to

accurately identify hospital travel activities, road width information should be considered in deter-
mining the boundary of the hospital. The process of determining the hospital boundary is shown in
Figure 6. First, we mapped the hospital data to the AMAP and expanded the boundary of the hos-
pital according to the road network around the hospital (i.e. Hospital_boundary2 in Figure 6).
Second, for the data that have a 10–20 m error due to unstable signals, and the actual destination
point are located within a walking distance from the OD points in common sense, we performed a
buffer processing on hospital_boundary2. According to previous studies, 50 metres is a reasonable
threshold from the pick-up or drop-off point to hospitals (Wang et al. 2020; Pan et al. 2018). Con-
sequently, the threshold of a 50-m buffer area form hospital_boundary2 is used as the boundary for
identifying the hospital trips in our research.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 117

http://www.nhc.gov.cn/
http://www.gov.cn/gongbao/content/2019/content_5468932.htm
http://www.gov.cn/gongbao/content/2019/content_5468932.htm


Step 3. Extraction of emergency hospital travels
In the process of filtering candidate trajectory datasets, it is necessary to pay attention to the

spatial and temporal characteristics of trajectories to reduce data interference. Notably, the follow-
ing spatiotemporal features are required: (1) Trips that take place at night, as most of the working
hours of experts in Shanghai hospitals are between 7:00 am and 5:30 pm (Pudong Headlines 2019);
therefore, only the emergency department of the hospital remains to work normal shifts after the
experts are off work. Considering the need to queue up in the hospital in advance, among other
reasons, the study time period was determined to be 0–6 am and 18–24 pm; (2) Travel where
the pick-up point or drop-off point is within the hospital boundary is considered a hospital visit
(Wang et al. 2019). However, for the trajectories with pick-up points within the hospital boundary,
the corresponding drop-off points are relatively random (e.g. shopping, entertainment, home,
work); thus, it cannot accurately show where the patients come from (e.g. patient distribution).
Consequently, in this step, trajectories with drop-off points within the boundary of the hospitals
are needed, and the time range is 0–6 am and 18–24 pm In addition, we filtered out unreasonable
travels comprising less than 500 m (i.e. too-short trips) (Gong et al. 2021) or more than 100 km (i.e.
the maximum radius of activity for residents) (Shi and Jiang 2017). These travels are usually caused
by operating errors or data transmission errors. In the end, there were approximately 120,000 emer-
gency medical trips taken between 1 June 2018 and 30 June 2018.

3.4. Modified two-step floating catchment area (2SFCA) method for hospital accessibility

In the specific context of hospital accessibility, as stated earlier, it is reasonable to assume that hos-
pitals located nearby are more desirable and that the farther away a hospital is located, the less pre-
ferred it is. Consequently, we adopted the Gaussian-based 2SFCA of Dai (2010), which simply
requires that the demand population in Step 1 and the service provision-to-population ratios in
Step 2 are multiplied by a geographical weighting based on the Gaussian distance-decay function
[Eq. (1) and (2)]. This function produces a flat pass-band region with no spatial impedance, fol-
lowed by a smooth decay in the transition zone, in such a way that zero weighting is approximated
at the threshold distance. Thus, this function satisfies our assumptions.

Figure 6. Example of hospital boundaries. The blue area represents the real hospital boundary; red line represents the hospital
boundary, including the road width; and the blue line is the final virtual boundary of the hospital.
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Two issues of the original 2SFCA algorithm has been pointed out in Section 2.2, that is, the deli-
neation of the catchment areas of the population and the selection of distance parameters in the
distance-decay function. In order to solve these two issues, we mainly modify the algorithm
from the two aspects of dynamically delineating the catchment areas of the population and obtain-
ing the trajectory distance between the patient and the hospital. In Section 3.4.1, an approach for
delineating the HSAs is integrated into the Gaussian-based 2SFCA model to address the problem
of inaccurate catchment thresholds. In addition, we used the path planning data of the AMAP to
obtain the actual trajectory distance and then calculate the weight according to the distance-
decay function. In Section 3.4.2, HSAs and trajectory distances are embedded in the model to cal-
culate the accessibility of urban hospitals.

3.4.1. Adjustment of algorithm parameters
The population catchment areas of the hospital are also called HSAs, which portray hospital
choices by patients. The HSAs, an important spatial feature reflecting the attractiveness of a hos-
pital, is related to the type of hospital, distribution of patients, and existence of competitors.
Patients often cross state or county boundaries for hospital services. Consequently, considering
the spatial differences in population distribution, it is necessary to delineate the HSAs according
to the actual distribution of patients to solve the first issue (i.e. the delineation of the catchment
areas of the population). In general, the most widely used measures to describe the daily activity
space of an individual are standard circles, standard distances, ellipses, etc. (Yin et al. 2013; Zhou
and Fang 2017). However, due to the social-economic factors such as transportation and urban
functional areas, individuals do not play within a uniform radius around their homes equally in
all directions (Yin et al. 2013). What’s more, there are some problems with these methods, such as
the enlargement of the space scope and the difficulty of parameter determination, as shown in
Figure 7.

In order to solve these problems, the alpha-shape algorithm have been developed to extract the
data boundary from a set of unordered points (Figure 8(a)) (Asaeedi, Didehvar, and Mohades
2013). The algorithm has a simple structure and only needs one parameter, namely the radius α
of a circle. The principle of obtaining a reasonable contour of the point set is briefly described as
follows. For point set S, in order to obtain its reasonable contour, the algorithm adaptively selects
a parameter α to represent the radius of a circle. Next, any two points in S are traversed to dis-
tinguish whether they are in boundary or not. If the selected two points can form a circle with radius

Figure 7. Two ways to depict activity space: (a) standard circle; (b) standard distance ellipse.
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α and the circle contains no other points, the two points are considered to be a part of contour.
Obtain points on all edges of S in turn, until they form a closed loop, then the algorithm ends.
This method can effectively avoid the space expansion problem of the data boundary (Mu and
Liu 2011; Jiao, Fan, and Wang 2020).

However, owing to sampling point errors or some accidental factors, a small number of points
that are significantly different from other data objects thus often appear in the dataset, which are
called outliers, as shown in Figure 8. Geographically, it appears to exist in isolation or far from
the overall data object. These outliers have a significant influence on the boundary shape during
the boundary extraction process. Consequently, it is necessary to solve the problem of outliers in
the sampling point data before extracting the boundary.

The isolated forest (iForest) algorithm was adopted to solve this issue. Because it is based on
the ensemble idea, it has a linear time complexity with a low constant and low memory require-
ment (Liu, Ting, and Zhou 2008). There are two phases of anomaly detection using the iForest.
The first phase (training) builds isolation trees using the subsamples of the training set. The
second phase (testing) passes the test instances through isolation trees to obtain an anomaly
score for each instance. The main part of the iForest algorithm is as follows. iForest is similar
to a decision tree, which uses a tree structure to separate the instances. An iForest consists of
multiple isolation trees, namely iTree, which are created by randomly choosing attributes and
attribute values. The details of the procedure for creating the iTree algorithm can be found
in a study conducted by Liu, Ting, and Zhou (2008). Finally, by removing the outliers in the
sampling point data, the alpha-shape algorithm is further used to obtain the boundary, as
shown in Figure 8(b).

Algorithm: iForest (A,n,s)
Inputs: A-input data set, n-number of trees, s-size of sub sampling
Output: a set of n iTrees

Initialize Forest = []
Set height h of iTree = ceiling(log2

S)
For i = 1 to n do

A’ ← sample(A,s)
Forest←Forest iTree(A’,0, h)

Return Forest

For the acquisition of the trajectory distance (i.e. the second issue), the route planning data of
the AMAP are used. The AMAP route planning data were derived via the application

Figure 8. Polygon boundary based on the (a) original alpha algorithm and (b) alpha algorithm combined with iForest.
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programming interface (API) (https://lbs.amap.com/) and collected in June 2020. These data con-
tain indexes such as the length and time of different paths between two points. In this section, we
choose the shortest distance between the patient and the hospital as the trajectory distance
between the two points.

3.4.2. Improved two-step floating catchment area (2SFCA) method
In the first step, for each service supply location hospital j, search all population locations k (i.e.
demand points) that lie within the service area catchment j (i.e. HSAs). Then, using the Gauss
equation to assign weight to the population number of each demand point, and summing up all
the weighted population as the potential demanders of the supply area (hospital j). Finally, the ser-
vice capacity (i.e. number of hospital beds) of supply area j was divided by the total number of
potential demanders to calculate the supply-demand ratio, Rj:

Rj =
Sj∑

k in HSAs G(dkj, d0)Pk
(3)

where Sj is the service capacity of the hospital j, and Pk is the population count at demand point k
that lies within service area catchment j (i.e. demand point k in HSAs). The Gridded Population of
the World version 4 from NASA (GPWv4, 1 km × 1 km spatial resolution) (https://sedac.ciesin.
columbia.edu/data/sets/browse) is adopted in this formula. G is the Gaussian distance-decay func-
tion, dkj is the trajectory distance between the two points obtained by the AMAP, and d0 is the
maximum trajectory distance between hospital j and all population locations. G is defined as fol-
lows:

G(dkj, d0) =
e−(1/2)×(dkj/d0)

2 − e−(1/2)

1− e−(1/2)
, if dkj ≤ d0

0 else

⎧⎨
⎩ (4)

In the second step, for each demand population location i, we found all hospitals whose HSAs
covered this demand point i, discounting each Ri using the Gaussian function (G), and summing
up all discounted Ri to obtain the spatial accessibility at demand population location i (i.e. Ai).
This is defined as follows:

Ai =
∑

j[{i in HSAsj}
G(dij, d0)Rj (5)

where j denotes all hospitals within the catchment of demand population location i, and all the
other notations are the same as in Eq. (1). The higher the accessibility score (Ai), the better
the accessibility of population location i has.

In this algorithm, step 1 measures the availability of service via a supply to-demand ratio at each
hospital j, while step 2 measures the cumulative opportunity reporting the total availability of this
weighted service at each population demand point i. The spatial accessibility calculated by the Gaus-
sian-based 2SFCA can be explained as the number of medical service facilities per capita in the
population unit.

4. Results

We used descriptive analysis and spatial autocorrelation analysis to reveal the spatial and temporal
characteristics of medical travel at night. Then, spatial analysis and visualisation methods were
adopted to analyse the spatial distribution characteristics of the accessibility of medical resources.
Finally, combined with population data, we estimated the rationality of the spatial distribution of
urban medical resources.
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4.1. Spatiotemporal characteristics of hospital trips

We discretized the study area into 1 km × 1 km grids, and then the number of pick-up points
(i.e. where patients came from) within each grid was counted to depict the geographic distribution
of a hospital’s patients. As shown in Figure 9, geographically, the grid unit with the largest number
of pick-up points is mainly captured in the central area of the city (i.e. the area within the rings),
which corresponds to low temporal and spatial impedance. In the areas outside the ring, there are
also a few street blocks showing a high density of pick-up points, such as the central areas of the
Songjiang and Fengxian districts.

Furthermore, travel volume, departure time, travel time consumption and distance are adopted
for quantitative analysis to help people better understand the patterns of hospital emergency travel
activities at night. The results for the trip departure times are shown in Figure 10(a). The y-axis
represents the trip departure times, and the x-axis represents the dates, where 2, 3, 9, 10, 16, 17,
23, and 24 are weekends and marked in red, and 16, 17, and 18 are traditional Chinese festival-dra-
gon boat festivals. Obviously, the heat map shows that the number of trips before midnight is sig-
nificantly higher than the one after midnight. The number of trips between 18:00 h and 24:00 h
remains at a stable high level, while the one after midnight shows a significant drop. After
5:00 h, this number tends to rise. In addition, the curve shown in Figure 10(b) implies that the
change of the number of trips presents a cyclical fluctuation, where the number of trips on week-
ends (especially on Sundays) and holidays is lower than that on weekdays.

For medical travel at night, travel time consumption and travel distance are very important indi-
cators for patients. The shorter the travel time/distance, the easier it is for patients to receive timely
treatment. Among them, the travel time consumption refers to the time spent to complete a trip,
and the travel distance refers to the road network distance travelled during a trip. A trajectory T
is a sequence of sample points, i.e. T = (p1, p2, p3,… ,pn),where pi is a sample point containing longi-
tude, latitude, time and other information, i.e. pi = (xi, yi, ti). The travel time consumption is
obtained by subtracting the time attribute between point p1 and point pn, i.e. tn-t1. And the length
of a trajectory T (travel distance) is the sum of the lengths of each adjacent pair of points (pi, pi+1),

i.e. Dis = ∑n−1

i=1

����������������������������
(xi − xi+1)

2 + (yi − yi+1)
2

√
.

The statistical results in terms of travel time are shown in the histogram in Figure 11(a),
where the travel time is mainly distributed between 500s and 1000s (approximately 8–17 min).

Figure 9. Heat map of pick-up locations.
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Overall, 75% of trips are less than 1500s (25 min). In addition, as shown in the histogram in
Figure 11(b), the travel distance is mainly distributed between 3 and 5 km. Overall, 75% of the
trips are within 10 km. From the perspective of spatial distribution, the patterns of travel distance
are consistent with the pattern of travel time, showing a ‘core-edge’ pattern. Low values are mainly
distributed in the area within the rings and some streets in the suburbs. However, compared with
the travel distance, the travel time consumption in the central areas within the rings is not
shortest. This outcome may be related to the traffic congestion and relatively old traffic facilities
in the central area.

4.2. Results of accessibility evaluation

The results of the hospital accessibility analysis showed a clear central structure (Figure 12(a)).
Areas with high accessibility are mainly distributed in the central area of the city (within the
outer ring), and the accessibility from the inner city to the outer area shows a decreasing trend.
In addition, accessibility to the urban periphery has large internal differences. Most districts and
towns in this area severely lack medical services, although there are a few towns or streets with
better medical facilities (represented by the small red area in Figure 12(a)).

Furthermore, to quantitatively describe the spatial distribution characteristics of hospital acces-
sibility, Moran’s I index, a classical global spatial autocorrelation index, is calculated in this section.
Moran’s I index was 0.97 (p <0.001). This result implies that hospital accessibility presented a strong
clustering intensity in space. In addition, the local indicators of spatial association (LISA) were
adopted to understand the relationship between adjacent space units and identify the hot and
cold spots in the study area. As shown in Figure 12(b), the high-high cluster presents an obvious
agglomeration pattern, which was mainly distributed within the outer ring of Shanghai and the
centre of the suburbs, accounting for 12% of the study area. The low-low cluster type occupied a
large area in the suburbs, accounting for 45% of the study area.

This phenomenon might be caused by a hospital cluster in the central region, especially the cen-
tripetal distribution of high-level medical resources. Meanwhile, from the city centre to the periphery,
the accessibility of hospitals showed a gradual decrease, indicating that the distance between the
patients and the hospital cluster is a significant factor in restricting their hospital choice.

Figure 10. Temporal characteristics of hospital travel activities at night: (a) Departure time of a trip; (b) Number of trips.
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We also conducted a statistical analysis on the dispersion of different regions to intuitively
understand the variation in the spatial distribution of hospital accessibility. As shown in Figure 13,
the study area is divided into four sub-regions from the centre to the edge by the ring roads
(Outer Ring, Middle Ring and Inner Ring). By comparing the accessibility of the four regions, it
is found that the accessibility from the city centre to the edge shows a downward trend, and the

Figure 11. (a) Travel time consumption and (b) Travel distance characteristics of hospital travel activities at night.
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area within the inner ring is significantly higher than the other areas. In addition, the coefficient of
variation (CV) is adopted to quantitatively evaluate the spatial difference of accessibility. The CV is
a statistic, the ratio of standard deviation to mean value, which is used to measure the degree of
dispersion of a data set. A higher CV indicates a poorer balance and vice versa. After calculation,
the CVs of the four regions (i.e. the region within the Inner Ring, region between the Inner Ring
and Middle Ring, region between the Middle Ring and Outer Ring and region outside the Outer
Ring) are 0.42, 0.63, 0.74 and 0.87 respectively. This result implies that the balance of the two
regions within the Middle Ring road is generally better than that of the other two regions. For
regions with large CV, relevant departments should take corresponding intervention measures to
improve the equalisation level of internal medical services.

Figure 12. Spatial distribution of (a) hospital accessibility and (b) local correlation of accessibility.

Figure 13. The dispersion of hospital accessibility among different regions.
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4.3. Evaluation of rationality of medical resources

To better understand the equality of the accessibility of medical resources in residential areas, we
further examined the relationship between population density and hospital accessibility. The best
scenario is that areas with high population density should have high hospital accessibility and
vice versa.

The gridded population data from NASA (GPWv4, 1 km×1 km spatial resolution) (Warszawski
et al. 2017) and hospital accessibility calculated in our research were adopted to evaluate the ration-
ality of urban medical resources (Figures 14 and 15). First, Z-score standardisation was performed
on population density data and hospital accessibility data to convert them into normal distribution
data between −1 and 1. Second, we generated a Boolean variable. When the value was between −1
and 0, the grid was assigned a value of ‘low value’, and between 0 and 1, the grid was assigned a value
of ‘high value’. Finally, a spatial matching analysis was performed on the corresponding grid of
population and hospital accessibility data.

There are four situations for matching these two data: low hospital accessibility with low popu-
lation density, high hospital accessibility with high population density, high hospital accessibility
with low population density, and low hospital accessibility with high population density (Figure 15).
For each spatial unit, when high hospital accessibility was accompanied by low population density
or low hospital accessibility was accompanied by high population density, the distribution of medical
resources in this region was considered to be unequal, and vice versa.

The first type, low accessibility with low population density, accounted for 60% of the study area.
It was mainly located in the urban periphery, with a small population, accounting for 20.9% of the
population of Shanghai. The second type, high accessibility with high population density, accounted
for 14% of the study area. This area is densely populated and accounted for 54.2% of the total popu-
lation. It was mainly distributed in the areas within the outer ring line and was sparsely distributed
in the centre of the suburbs (such as the Songjiang District and the centre of Jiading District). The
third type, high accessibility along with a low population, was scattered around the periphery of the
city, accounting for 17% of the study area. The fourth type, low accessibility with high population,
was mainly distributed in the suburbs of cities, accounting for 9% of the study area. These areas are
densely populated, accounting for 16.3% of the total population; however, medical facilities were
extremely limited.

Figure 14. Population density of study area.
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Overall, the accessibility of medical facilities in Shanghai presents strong spatial differences. In
central urban areas having high hospital accessibility and high population density, the distribution
of medical facilities is more reasonable to meet the medical needs of the people. In the suburbs,
there are also some streets having a relatively reasonable distribution of medical facilities. In recent
years, Shanghai has promoted the development of urban-rural integration through the establish-
ment of secondary and tertiary hospitals and other forms to guide the diffusion of high-quality
medical resources to the suburbs. The medical resources in the suburbs are concentrated on densely
populated streets, which makes the allocation of medical facilities in this part relatively reasonable.
Notably, there are obvious unbalanced characteristics of medical facilities in the suburbs around the
city centre, that is, certain areas that have low hospital accessibility have a high population density.
The manufacturing industry in this area is being developed, which has attracted many new immi-
grants, leading to a relatively high population density. However, the transportation infrastructure in
the newly developed areas is still under construction, resulting in poor accessibility to medical
facilities.

5. Discussion and limitations

5.1. Hospital service radius and individual hospital preference

According to existing related research, the higher the hospital level, the more likely it is to attract
patients farther from the hospital (Jin et al. 2019). Wu, Gu, and Li (2017) concluded that the time
tolerance threshold for motor vehicles to visit third-class hospitals, second-class hospitals, and first-
class hospitals is 60, 30, and 10 min, respectively. To explore whether the service radius and time
tolerance threshold of night hospital travel are consistent with the above results, a statistical analysis
method is adopted to analyse the service radius in this section. The 75th percentile is a statistically
important point, which can represent the overall level of the sample data to a certain extent. Con-
sequently, the 75th percentile was used for the statistical analysis of sample data in many fields
(Gresenz, Rogowski, and Escarce 2004). In our study, the 75th percentile was used to analyse the
service radius of hospitals.

Figure 15. Balance evaluation between hospital accessibility and population density.
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According to Figure 3, 75% of hospital trips take less than 25 min. The travel time of the first-
class hospital was 24.2 min, second-class hospital was 22.3 min, and third-class hospital was the
lowest at 22.5 min (Table 1). The average speed of motor vehicles in Shanghai is 25 km/h (People’s
Daily Online 2017), and the 25-min distance of motor vehicles should be approximately 10.4 km,
which is consistent with the 75th percentile of hospital-home distance in this study (Table 1). This is
related to the fact that people tend to choose the hospital closest to their home in the case of emer-
gency hospital travel (Ulak et al. 2017), while during the day, they are willing to visit the hospitals
located far away if they have enough time.

To understand the hospital choice preferences of people travelling at night, AMAP route plan-
ning data were analysed. By using the application programming interface (API), the nearest hospital
from the patient’s location was extracted and compared with the actual hospital selected by the
patient. The hospitals we chose in this part were all comprehensive hospitals, excluding some
specialised hospitals, such as psychiatric hospitals and maternal and child health hospitals. For
all hospital trips, if the level of the hospital closest to home was a first-class hospital, we called
the trip a first-class hospital trip; if the level of the nearest hospital was a second-class hospital,
we called the trip a second-class hospital trip; and if the level of the hospital closest to home was
a third-class hospital, we called it a third-class hospital trip. The difference between the nearest hos-
pital (i.e. source) and the actual selected hospital (i.e. target) is shown in Table 2 and Figure 15.

As shown in Table 2, among the patients who were close to the first-class hospitals, the rates of
choosing first-class, second-class, and third-class hospitals were 10.86%, 34.24%, and 54.90%,
respectively. Among the second-level hospital trips, the proportions of the first, second, and
third-class hospitals were 3.45%, 45.88%, and 50.68%, respectively. For the third-level hospital
trips, the proportions of the first, second, and third-class hospitals were 3.37%, 32.28%, and
64.35%, respectively. We used a visual graph to illustrate this result (Figure 16). Overall, people
tend to choose second-class and third-class hospitals for medical treatment at night. Among the
first-class trips, 89.14% of the trips go to higher-level hospitals. In the second-class hospital trips,
only 3.45% of the trips were associated with lower-level hospitals, 45.88% trips were made to the
corresponding second-class hospital, and 50.86% bypassed the second-class hospital and choose
a higher-level hospital for treatment. For the third-class hospital trips, most of them would choose
the nearest hospital for treatment, with a proportion of 64.35%, and 35.65% of the trips chose lower-
level hospitals. Consequently, in addition to distance/time, the factors affecting individual hospital
preferences for night hospital travel were also related to other factors. First, hospital characteristics
(e.g. hospital grade, reputation, service, and size) affect people’s preferences (Xue et al. 2007).
Second, higher-level hospitals have higher medical expenses (Zeng and Ma 2009); therefore,
some patients prefer lower-level hospitals with similar distances when their condition is not very
serious. Third, medical insurance also affects individual hospital preferences (Victoor et al.
2012). Fourth, transport accessibility and traffic jam risk are also vital factors influencing individual
hospital visits.

Table 1. Hospital service radius of different hospital levels.

first-class second-class third-class

Travel distance (km) 12.3 9.46 10.17
Travel time (min) 24.2 22.3 22.5

Table 2. Transfer matrix of different class of hospital trips.

Source

Target

first-class second-class third-class Total

first-class 10.86% 34.24% 54.90% 100%
second-class 3.45% 45.88% 50.68% 100%
third-class 3.37% 32.28% 64.35% 100%

128 W. JIAO ET AL.



5.2. Strengths and limitations

In this study, taxi trajectory data were used to identify emergency hospital travel and where patients
come from, thus, analysing the spatial–temporal characteristics of hospital travel and evaluating the
accessibility of hospitals. The developed approach can be extended to other applications (e.g. parks
and commercial centres) and applied to other cities. Overall, FCD data have great potential for
research in evaluating individual hospital activities. First, the volume of FCD data is considerably
large; thus, the information is much more representative, and the bias caused by the small sample
size is fairly small. Second, by utilising the FCD data, useful information can be extracted effectively
and efficiently, avoiding issues caused by data privacy. In addition, according to the time infor-
mation of the FCD trajectory data, the utilisation of hospital resources in different time periods
can be used to find and solve problems more effectively, for instance, analysing hospital travel
characteristics and resource utilisation in different time periods (e.g. weekdays and weekends,
peak and off-peak hours, day and night, etc.). However, it is very challenging to accurately identify
hospital travel based on FCD data and the boundary of the hospital, and it is difficult to verify the
identification results, especially in urban centres having high POI density.

There are still some limitations in our research. First, this study did not consider the travel
characteristics of some special hospitals (e.g. dental hospitals and psychiatric hospitals), which
have unique service radii and characteristics compared with general hospitals. Second, the FCD
data used were provided by a technology company in Shanghai. It neither includes all motor vehicle
data nor considers the impact of public transportation in Shanghai. As a result, our analysis results
can only be used to reveal the spatial travel characteristics of hospitals. More hospital evaluation
indicators cannot be extracted only through this study (for example, the hospital visits collected
by taxi cannot represent the whole visits data). Ideally, the accessibility of hospitals should be eval-
uated by comprehensively considering different transportation modes and even the conditions of
supply and demand points. Integrating multi-source big geo-data to explore hospital visits and
accessibility should be a direction for the future research.

6. Conclusion

Utilising FCD, this study proposes an approach to identify night emergency hospital travel and the
locations of the patient’s home. The boundary extraction algorithm is used to delineate HSAs, and
the 2SFCA algorithm is further improved to calculate and evaluate the spatial accessibility of medi-
cal facilities in Shanghai. The results indicate that 75% of the hospital travel was within 15 km. The
number of night hospital trips on weekends was less than that on weekdays, and the number of trips
before midnight was significantly higher than that after midnight. From the perspective of spatial

Figure 16. Visualisation of individual hospital preference. The source represents the class of the nearest hospital; target rep-
resents the class of the hospital actually selected.
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distribution, urban hospital accessibility presents a strong spatial difference, showing a ‘core-edge’
pattern. Areas with higher accessibility were mainly distributed in the city centre (within the outer
ring). From the inner city to the urban periphery, regional accessibility showed a downward trend,
and accessibility in the urban periphery had large internal differences. In addition, this study
explores the relationship between individual hospital preferences and the level of hospitals. The
findings imply that people tend to choose second and third-level hospitals for medical treatment
at night. These findings can provide direct inspiration for urban planning and related research.
For patients to obtain high-level medical services in a timely manner, it is necessary to strengthen
cooperation among tertiary, secondary, and primary hospitals. In addition, it is necessary to pay
attention to the traffic conditions near the hospital (e.g. congestion) and strengthen the improve-
ment of public transportation facilities near medical facilities. Nevertheless, the rationality of medi-
cal resource allocation is a complex social issue, and the use of medical resources is affected by many
factors (discussed in Section 5.2). Unlike traditional data (e.g. patient registrations), the FCD data
lacks detailed information about the travel destination; thus, it may be less effective in explaining
patients’ location of residence. Consequently, future studies involving traditional survey data and
various influencing factors must be considered to propose a comprehensive method for analysing
and evaluating the rationality of urban public facilities. In addition, hospital travel in multiple trans-
portation means should also be taken into consideration, which may be helpful to supplement the
results of this study.
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