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Abstract

Due to increasing shares of renewable electricity sources in the grid, thermal power plants need to operate in a more flexible
manner in the future. This will involve more frequent startups, shutdowns, and load changes. A central part of a thermal
power plant analysed in this study is the coal-fired boiler. In a previous study, a first-principle model of a sub-critical coal-
fired boiler has been developed and validated with operational data from a Polish power plant. Based on this model, this
work aims to develop a computationally efficient and sufficiently accurate data-driven model that is easy to implement in new
software. A selection of multi-output algorithms was first compared using nonoptimised parameters, with very few adaptations
to the data set. Then, each algorithm had undergone three different optimisation routines to tune the hyper-parameters. The
results of the nonoptimised models were compared with the optimised ones, and then compared to the reference first-principle
model using the average Mean Absolute Percentage Error as a score. The methods used comprise six base learners and
three algorithms using ensemble methods. The optimisation routines were based on the Powell conjugate direction method,
Bayesian optimisation and evolutionary algorithm. All the data-driven models had shown a lower percentage error than the
first principle model, and optimisation had resulted in improved prediction capacity for every base learner, but not for ensemble
method-based algorithms.

1. Introduction
It is expected that thermal power plants will need to
operate more flexibly in the future due to the increased
share of renewable energy sources in the grid. This
will lead to more frequent startups, shutdowns and load
changes. In order to aid this transition, there is a need for
models that can describe the transient behavior of such
power plants. As a result of the thermal inertia of e.g.
boiler walls and heat exchanger surfaces, the boiler has
a large influence on the dynamic behavior of a power
plant. This unit is therefore an important part of a power
plant model, and the aim of this work is to develop a
computationally efficient and sufficiently accurate boiler
model that is easily implemented in new software.

In the literature, several examples of data-driven
modelling approaches applied to coal-fired power plants
are available. Based on operational data of around 60
variables in a brown coal-fired power plant, Smrekar
et al. developed two artificial neural network (ANN)
models [1]. The aim of the work was to examine the
feasibility of such models for coal-fired power plants.
In Chandrasekharan et al. [2], separate models for
the economizer, drum and superheater were developed
by using a statistical approach based on the response
surface methodology and design of experiments. The
data used for model development was collected from a
210 MW power plant over a 2-3 hour period. In Zhu
et al. [3], a local model network (LMN) was used to
model the boiler-turbine unit of a sub-critical coal-fired
power plant and applied as the prediction model in a
non-linear model predictive controller. The model was
validated with data from a 500 MW unit in China. With

emphasis on cyclic operation, Navarkar et al. [4] built
an ANN model of a coal-fired steam generator based
on 10 years of operational data from a power plant
in the USA. Manaf & Abbas [5] and Oko et al. [6]
both applied non-linear autoregressive with exogenous
input (NLARX) models to coal-fired power plants. In
the former, a complete power plant divided into six
sub-systems was modelled by using data from a 660 MW
power plant. In the latter, the NLARX model was used
to predict drum pressure and level in a sub-critical unit.
The data used for model development were generated
by a validated first-principle model. As indicated by the
literature review, a comparison of several different static
data-driven modelling approaches for a single coal-fired
boiler has not yet been presented. This knowledge gap
will be addressed by this work.

Using data-driven approaches has several advantages:

• It uses real data to make predictions. It makes a
change from the first-principle models paradigm that
simplifications must be made in order to be able to
perform computations;

• It is a very active field of research and there is a big
community of researchers developing and enhancing
the different methods;

• Once a model is trained, it is very fast, within
seconds, to get a prediction;

• The model can be updated by getting more data after
it is trained, so it can have a better predictive ability.

2. Methodology
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Measurements at different stages of a sub-critical
coal-fired boiler at a Polish power plant have been
performed, constituting the data set for this paper. The
same observations are computed using a first principle
model, which constitutes the reference data set. Different
regressors have been chosen to compare to the reference
model : Ordinary Least Square, Elastic Net, Support
Vector Machine, Stochastic Gradient Descent, Nearest
Neighbors, Decision Trees, Random Forest, AdaBoost
and XGBoost. The first six model structures are called
’base learners’ and the other are regressors based on
ensemble methods. The ensemble methods use several
weak learners to improve prediction capacity. These
regressors allow the use of hyper-parameters, i.e.
parameters independent from the observations, and the
value of these are usually to be determined. First, the
regressors are fit to the observations without prior hyper-
parameter optimisation. The Mean Absolute Percentage
Error (MAPE) of each model is kept for comparison.
Then, using different optimisation routines the same
methods are used combined with hyper-parameter
optimisation. As a result, for each algorithm, one
nonoptimised and three optimised models are created.

2.1. Data from industrial boiler
The data from the industrial boiler comprise of 480
observations including 5 inputs and 7 outputs each taken
at a 1-minute interval. A sketch of the coal-fired boiler
considered in this work is shown in Figure 1.

Figure 1: Sub-critical coal-fired boiler considered in this work.
TAH stands for tubed air heater, ECO stands for economizer,
SH stands for superheater and PS stands for platen superheater.
Inputs and outputs, denoted by I and O, are described in Table 1.

The different variables are shown in Table 1. It is
important to note that, for this paper, the time is not
included in the set of inputs. The reason is that including
time in the inputs shifts the analysis into a time-series
analysis, and the target of this paper is to develop a
multi-output model solely dependent on the state of the

boiler. The time-series will be considered for future work.

Table 1: Monitored variables
Inputs Code Unit Bounds
Time None min [0, 480]
feedwater T I0 °C [225, 236]
Pressure in the steam drum I1 MPa [10, 11]
Fuel mass flow rate I2 kg/s [6, 8]
Air flow rate I3 kg/s [54, 65]
feedwater mass flow rate I4 t/s [0, 51]
Outputs
Flue gas T combustion chamber O0 °C [977, 1033]
Water T from ECO2 O1 °C [307, 319]
Steam T I-st stage SH outlet O2 °C [366, 387]
Steam T II-nd stage SH outlet O3 °C [479, 497]
Steam T III-rd stage SH outlet O4 °C [530, 544]
Steam T PS outlet O5 °C [448, 475]
Flue gas T after TAH1 O6 °C [154, 173]

First, the Pearson correlation is calculated for each input
variable. Given x1 and x2 two different variables in a data
set comprising of n observations, it is possible to calculate
the strength of association between these two variables by
computing the Pearson’s coefficient (Equation 1).

r =

∑n
i=1(x1i − x̄1)(x2i − x̄2)√∑
(x1i − x̄1)2

∑
(x2i − x̄2)2

(1)

For readability, the results of the correlation analysis are
displayed in a heatmap in Figure 2. The input names are
coded for visualisation purposes, and their code can be
retrieved from Table 1. The data-driven models usually
perform poorly when the data are not on the same scale,
thus it is needed to have a step of feature scaling, Géron
[7]. Standardisation offers a robust way of scaling the data
by transforming the entire data properties so they follow
an unknown distribution with X ∼ D(0, 1). The formula
used for standard scaling is given in Equation 2.

xi,scaled =
xi − µ

σ
(2)

with µ the mean of the observations and σ the associated
standard deviation.

To assess the performance of the models, it is common
to split the data set into a training set and a test set, Tan
et al. [8]. The reason behind this first split is to keep an
untouched data set. The test set is not used to train the
model, nor to perform hyper-parameter tuning. After the
model has been fit to the training set, it is rated using a
score function calculated on the test set.

2.2. Data-driven modelling techniques
The regressors used to get predictive models are
categorized into two groups: base learners and ensemble
methods. The main difference between a base learner and
one from ensemble method is that the ensemble method
uses several base learners to make predictions, whereas a
base learner is a single model. To assess the performance
of each model the Mean Absolute Percentage Error
(Equation 3) is computed. This choice of score function
is justified by the noisy behaviour of the observations.
The squared error metrics such as Mean Squared Error or
Root Mean Squared Error penalize outliers by squaring the
error, making them very sensitive to noise.

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (3)
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with yi the real value and ŷ the predicted value of the ith
observation.

As the model should be a multi-output regressor, there
are actually 7 different MAPE per model. The error is
computed for the 7 outputs, and then averaged to produce
an average MAPE. Calculating the MAPE on the entire
training set is not robust enough, because the model only
sees one set of data, and there is no possibility to know
how the model would behave with other samples from
the same experiment. This is why the performance on the
training set is assessed by implementing cross-validation.
The cross-validation is performed along with K-fold
sampling. Given a data set with n observations, the
K-fold sampling method splits the data set randomly
into k subsets. k − 1 subsets are used for training the
model and one subset acts as a test set. This is repeated
until all the subsets acted once as a test set. Then, the
outcome of the cross-validation is the mean of the k
model scores. Performing cross-validation allows getting
a robust estimation of both the bias and the variance of a
model. The models will be fit to measurements of a real
power plant, and the reference to outperform is a data
set coming from the first principle model. The MAPE
of the reference model compared to the real data model
is 0.716%. All the hyper-parameter initial values are
displayed in Table 2. Except where specified, these values
are the values recommended by default by the different
libraries used. Sci-kit learn is used for every model except
XGBoost, which comes from the homonym library [9].

Table 2: Regressors’ Hyper-parameters initial values
Algorithm Hyper-parameter Value
Elastic Net λ 1

α 0.5
SVR Kernel RBF

σ 1
npredictors·var(X)

L2 penalty 1
ε 0.1

SGD Loss huber
iterations 10000
ϵ 0.1
η adaptative

KNN k 3
weights distance
data structure ball tree
sleaf 30
p 2

Decision Tree criterion absolute error
dmax ∅
ssmin 2
slmin 1
fmax npredictors

Random Forest N 100
criterion absolute error

AdaBoost N 50
η 1

XGBoost N 100
η 0.3
dmax 6
sb_s 1
cols 1
γ 0
cwmin 1
α 0
λ 1

2.2.1. Ordinary Least Square Regression

Given a set of n observations {xi, yi}ni=1, each
observation i comprises a column vector xi of p predictors
such as xi = [x0i, x1i, x2i, ..., xpi]

T and a response y.
The simplest form of linear regression assumes that y is a
function of xi such as

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi (4)

with εi accounting for the variations not explained by the
regression model (bias) and β a column vector of unknown
coefficients with the shape p×1. Finding these coefficients
consists of optimizing a score P . Using the Mean Squared
Error (MSE) as a score function, it is possible to estimate
the unknown coefficients β̂ using the matrix form of the
normal equation displayed in Equation 5, Goodfellow et
al. [10]

β̂ = (XTX)−1XT y (5)

with X =


x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
...

. . .
...

xp,1 xp,2 . . . xp,n


The normal equation is obtained by minimizing the MSE
in Equation 6

β̂ = argmin
β

1

2n
∥Y −Xβ∥2 (6)

It is one of the simplest regression techniques, but falls
short when the underlying data structure is complex, Zou
and Hastie [11].

2.2.2. Elastic Net Regularisation
The Elastic Net Regularisation is a combination of two
different regularisation techniques, the Least Absolute
Shrinkage and Selection Operator (LASSO) known as
L1 regularisation and the Tikhonov or L2 regularisation.
These regularisation methods add a penalty function to the
loss function in Equation 6. The penalty is based on the L1

and L2 norms. In Equation 7, it is possible to identify on
the right-hand side the first term as the cost function of the
Ordinary Least Square (OLS). The second term and the
third term represent respectively the L1 and L2 penalties.

β̂net = argmin
β

1

2n
∥Y −Xβ∥2 +

λα ∥β∥1 +
1

2
λ(1− α) ∥β∥2

(7)

where λ is a parameter controlling the strength of
regularisation, and α is strictly between 0 and 1. If α = 1,
the elastic net is the same as LASSO and as α tends toward
0, it gets closer to ridge regression. The Elastic Net is the
same as an Ordinary Least Squares when λ = 0.

2.2.3. Support Vector Regression
Support Vector Machine (SVM) was initially used for
classification, transforming a binary classification problem
into a convex optimisation. The main principle behind
SVM is to find a function f(x) within a maximum
deviation ε compared to the real response y. The function
should be as flat as possible. To illustrate this method,
f(x) is given linear, and can be written as in Equation 8,
Vapnik [12].

f(x) =< w, x > +b (8)
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with w a normal vector defining the hyperplane <
w, x >= b
For this case, the problem lies in minimizing the loss
function represented in Equation 9.

argmin
w

1

2
∥w∥2 (9)

with the following constraints to respect

C =

{
yi− < w, xi > −b ≤ ε

< w, xi > +b− yi ≤ ε
(10)

SVM for regression is shortened to SVR in this
study. SVR combined with feature transformation allows
modelling of complex data distribution. The underlying
idea is that if a data structure is not linear in its original
space, it might be linear in another space. The function
used to change the space is a kernel function. Its general
form is written

K(x, u) = ϕ(x) · ϕ(u) (11)

with x and u two independent vectors belonging to the
same space. In the result section, the Radial Basis
Function (RBF) is used as a kernel

KRBF(x, u) = e

(
− ∥x−u∥2

2σ2

)
(12)

σ is a free parameter called the length scale of the kernel.
Its value is

σ =
1

npredictors · var(X)
(13)

In addition, it is possible to add an elastic net
regularisation to the cost function. Smola and Schõlkopf
[13] made a tutorial about SVR, which details the full
scope of this method.

2.2.4. Stochastic Gradient Descent Regression
Stochastic Gradient Descent is initially an iterative method
used in optimisation to find an extremum. It inherits from
Batch Gradient Descent (BGD), with the main difference
that BGD computes the exact gradient of the loss function
based on every single observation. On the other side, SGD
uses an approximated gradient based on one point at a
time. Considering an arbitrary loss function J(θ), it often
takes the form of a sum which can be seen as

J(θ) =
1

n

n∑
i=1

fi(θ) (14)

θ is obtained by iteration

θ := θ − η▽fi(θ) (15)

with fi(θ) a prediction of the ith observation and η the
learning rate of the gradient descent. The parameter η
influences the distance between two steps, if it is too
large the algorithm might never find an optimal solution.
On the other hand, if the learning rate is too small, the
algorithm will be very slow to converge. A common
method is to use an adaptative learning rate which is set
high then decreases as the optimisation converges to a
minimum. SGD Regression uses this optimisation routine
to fit a linear regression. For instance, if the squared error
is used as a loss function, then performing a regression
with SGD-based regression is equivalent to an OLS. The
Huber loss (Equation 16) is a more robust loss function.

It penalizes less the outliers by being quadratic when the
error is smaller than ϵ and linear otherwise, Huber [14].

Jh(θ) =

{
1
2
(y − f(θ))2 for y − f(θ) ≤ ϵ

ϵ · (|(y − f(θ)| − 1
2
ϵ) for y − f(θ) > ϵ

(16)
This method is very suitable for large-scale applications,
but can be slower than BGD for convex functions with a
single minimum, Bottou and Bousquet [15].

2.2.5. Nearest Neighbors Regression
Nearest Neighbors is an algorithm dealing with both
classification and regression. The intuition behind this
algorithm is that if a group of observations is close to
each other, their responses should be close too. Given
a query point q, a k nearest neighbors search consists
of finding the k nearest observations to the query point.
In its naivest implementation, the euclidean distance is
computed using a brute force approach, meaning that the
distance is calculated for each pair of points in the entire
set of observations. It is then possible to generalize this
process to any distance using the Minkowski distance
(Equation 17)

Dmink(x1, x2) =

(
n∑

i=0

(|x1i − x2i|p
) 1

p

(17)

This is very efficient for a small number of observations,
but can reach life span calculation time very quickly as the
size of the data set gets bigger. Instead of computing the
proximity of every single pair of points with a brute force
approach, modifying the data structure before applying
a nearest neighbors search has led to more reasonable
results for higher dimensional or bigger data sets. One
of the data structures speeding up the nearest neighbors
search is the Kd-tree data structure. For n observations
with d dimensions, the ith coordinate is split using the
median value as a separator. It results in two partitions
of the observations, L1 and G1, respectively the values
lower and greater than the median. Then the process is
repeated for the coordinate i + 1 and iterates once for
each dimension. This process goes on until the leaves
of the Kd-tree contain a maximum of sleaf observations.
An improvement of the Kd-Tree is to use round-shaped
leaves instead of rectangles to create clusters. This is
called a ball tree data structure. Andrew Moore [16]
detailed how this data structure is created. As a result
of this new data structure, the nearest neighbors search
on the query point is compared only to a small subset of
observations, lying within the same leaf or surrounding
leaves. For regression, the label assigned to an observation
is based on the weighted mean of the labels of its nearest
neighbors, Pedregosa et al. [17]. The weights are inversely
proportional to the distance between the query point and
the neighbors. The determination of the optimal number
of neighbors k is made by comparing the error of KNN
models with different k values.

2.2.6. Decision Trees
A decision tree is initially a classification algorithm.
It splits the observations into different leaves, just like
Kd-tree. It comprises an initial node, including all the
observations, internal nodes splitting the observation
according to decision rules and leaf nodes, the final leaves
of the tree. The decision criteria to split a node for a
Decision Tree in the case of regression is usually the MSE,
but will be set to MAE for this paper. The observations
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are split such that the MSE within a leaf is minimized,
and simple models can be fit to the different leaves. This
partition continues until there is no possible point to split,
or a termination criterion is reached. Common parameters
to tune include dmax the maximum depth of the tree,
ssmin the minimum number of observations that a node
must contain to split, slmin the minimum number of
observations that a leaf must contain to be considered as
a leaf node and fmaxthe number of predictors to consider
for the best split. Note that the maximum depth of the
tree can be set to none, so that the tree expands until all
leaves are pure. The main advantage of this algorithm,
which is also its main drawback, is its simplicity. It
is very sensitive to the data structure, and adding few
observations can change drastically the structure of the
tree. Thus, this model is associated with high variance and
does not compare well to other more stable algorithms.

2.2.7. Random Forest
In 2001, Breiman [18] formally proposed an extension of
the Decision Tree algorithm. The intuition behind this
improvement is to use several subsets based on the original
database to create different decision trees and then average
their predictions. First, the observations are bagged N
times, creating N random samples with replacement and
N decision trees are fit to the different random samples.
Then the final prediction for an unknown observation x is
the average of the predictions of all the decision trees, such
as

R(x) =
1

N

N∑
i=1

Fi(x) (18)

where Fi is the output of the ith decision tree from the
Random Forest.

This method reduces readability and has a small increase
in the bias, but improves generalisation. Some hyper-
parameters are unique to the forest, but many are shared
between the trees and the forest. For instance, the number
of trees is unique to the forest, but the maximum depth
or the minimum samples split are parameters for the trees
inside the forest.

2.2.8. AdaBoost
Combining several weak learners into a strong learner is
called boosting, and the flagship of this method is the
Adaptative Boosting algorithm, AdaBoost. The AdaBoost
algorithm is very close to a random forest, but instead of
having a uniform average of the decision trees, AdaBoost
keeps weights associated with every single weak learner.
Initially, all the weights are equal, but after each iteration,
the weak learners with the worst performance get an
increased weight. As a result, the algorithm will focus
on minimizing the error on the weak learners with high
weights. AdaBoost for regression, called AdaBoost.R2 is
detailed by Drucker [19].

2.2.9. XGBoost
eXtra Gradient Boosting is one of the best
implementations of gradient boosted trees. It has
actually dominated machine-learning competition for
a long time, and is recognized as one of the most
accurate modeling methods. The main difference between
XGboost and the other gradient boosting techniques
lies in the optimisation of the algorithm structure. For
instance, it treats calculations of base learners in parallel.

Another example of improvement is to use the dmax

as a stopping criterion instead of a score to compute,
reducing the computation time. The hyper-parameters
related to XGBoost are N the number of trees; η the
learning rate or shrinkage factor to apply on the weights;
sb_s the proportion of observations to shuffle and use
from the training set, cols the fraction of predictors to use
within each tree (feature reduction), γ the minimum loss
reduction to split a leaf node, wcmin the minimum weight
instance a child must carry in order to exist, and α and λ
respectively the L1 and L2 regularisation factors. Other
enhancements have been implemented. See Chen and
Guestrin [9] for further details about Extreme Gradient
Boosting.

2.3. Optimisation methods
All the methods evoked in the last sections include
parameters independent from the data. These parameters
are called hyper-parameters, and the optimisation of these
values is still an active research topic. The naivest
approach to optimize them is the brute force approach.
Because it is not very realistic to do an exhaustive
brute force search, a greedy search can be performed on
manually specified values to narrow the search space. This
method is called the Grid Search approach, but it requires
to have an intuition about the parameters optimal values.
The most promising way to find the best parameters is to
use more complex optimisation methods. For this paper,
the cost function is the result of the cross validation on the
training set (Equation 19). It can be calculated given θ, an
unknown vector of hyper-parameters, and F (θ), a model
already fit to a data set.

J(θ) =
1

k

k∑
i=1

1

n

n∑
i=1

∣∣∣∣yi − F k
i (θ)

yi

∣∣∣∣× 100 (19)

Three different optimisation techniques will be used and
compared on different data-driven models.

2.3.1. Powell Method
The Powell Method as stated by Powell in 1964 [20]
is a gradient-free optimisation method derived from the
conjugate direction method. It assumes that by combining
several one-dimensional optimisations, it is possible to
find the optimum of complex multidimensional functions,
The optimisation starts with an initial point x0 and a set
of N guess vectors either manually given or parallel to
each axis. A bi-directional search is performed along each
vector, and a search vector is created based on the result of
the search, which gives another search point. This process
goes on until a criterion is met. The implementation of the
Powell Method is made with SciPy [21].

2.3.2. Bayesian optimisation
The Bayesian optimisation comes from Bayesian
Statistics. In Bayesian statistics, the inference of a
model is a probabilistic approach based on a set of
prior/posterior beliefs about an event. Given the event of
fitting a group of observations X into a specific model,
the prior probability distribution P(θ) is the initial belief
about the distribution of the parameters θ. In the case of
linear regression, the event would be to have the right
distribution of β for X . After collecting new observations,
an updated probability distribution is made based on the
prior and the new observations: the posterior probability
distribution, P (θ|X)

P (θ|X) =
P (X|θ)P (θ)

P (X)
(20)
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with P (X|θ) the likelihood of X and P (X) the marginal
likelihood given by

P (X) =

∫
P (X|θ)P (θ)dθ (21)

The Bayesian optimisation method assumes that the
unknown function is generated with a Gaussian Process.
A Gaussian process is a stochastic process defined by its
mean µ(x) and its covariance k(x, x′).

µ(x) = E|f(x)|,
k(x, x′) = cov(x, x′)

(22)

such that

f(x) ∼ GP(µ(x), k(x, x′)) (23)

For a detailed explanation of how Gaussian Processes
work, see Rasmussen and Williams [22]. After generating
a prior over a Gaussian process, the posterior, also called
acquisition function, is generated. Three main acquisition
functions are mainly used in Bayesian optimisation; the
Probability of Improvement, the Expected improvement
and the Upper/Lower Confidence Bound. For this paper,
the Upper Confidence Bound (UCB) is used as the
acquisition function. Once the UCB function is evaluated,
the next points for optimisation are chosen where the value
of UCB is the highest, ie. where the uncertainty about
the function estimation is at its highest. In the result
section, 100 iterations were made with 5 initial random
guess points. A practical guide for Bayesian optimisation
has been written by Snoek et al. [23]. The Bayesian
optimisation is implemented using the bayes_opt library
[24].

2.3.3. Genetic Algorithm
The Genetic algorithm is a population-based metaheuristic
optimisation method mimicking biological evolution. A
first population p of chromosomes is randomly generated.
Each chromosome comprises ngenes genes. Each gene has
one random value attributed. The population comprises
nchr chromosomes. The cost function J(θ) is calculated
for each chromosome, and a fitness function guides the
evolution of the next population generation. The fitness
function is a positive gain function. In this paper, the
fitness function is the inverse of the cost function. To
generate the next population p + 1, nparents chromosomes
are coupled together, and as a result, a child chromosome
is created. Stronger chromosomes, with better fitness
scores, are more likely to mate. The child is made of genes
from the parents. This mating process is repeated until
the next population is full. However, to avoid losing the
best solutions in the mating process, kelit genes with the
best fitness function output will be kept in the population
p + 1. At last, random mutations can happen during the
process, changing spontaneously the value of one gene.
These mutations have a probability of pmutation to happen
for each chromosome. The implementation of the Genetic
Algorithm is made using PyGAD [25] and the values of
the hyper-parameters are displayed in Table 3.
A detailed review of the Genetic Algorithm has been made
by Katoch et al. [26].

3. Results and discussion
The first step before modeling is to perform the correlation
analysis of the predictors. As shown in Figure 2, the
feedwater temperature has a mild correlation coefficient
with all the other inputs. These coefficients lie within an
interval between [0.38,0.52]. However, the pressure in the

Table 3: Genetic Algorithm Parameters
Parameter Value
ngeneration 20
nparents 4
nchr 8
ngenes npredictors
kelit 1
pmutation 0.1

drum; the fuel mass flow rate; air flow rate and feedwater
mass flow rate are all highly correlated with each other
[0.94,1]. It can be a possible lead for future improvement,
because dropping highly correlated predictors within a
model is usually associated with a low bias drop but a
faster execution.

Figure 2: Pearson’s correlation coefficients heatmap

For this paper, all the inputs, with the exception of time,
are included in the models. Then the data set is split
into a training set and a test set containing respectively
70% and 30% of the observations. The data set is
randomly split into two subsets, therefore all the base
learners do not result in the same outcome if the split
happens in a different way. This is especially true for
ensemble methods, which add even more randomness
using bagging and other stochastic methods. However,
cross-validation and several runs of the algorithms ensure
that the results of this paper come with a minimized
variance. As mentioned in the Methodology section, the
reference model to outperform has a MAPE of 0.716%.
Nonoptimised values are used to assess ’default’ models.
Some minor adaptations have been made. For instance,
KNN uses the best K from the elbow method, and the
SGD regressor minimizes the Huber loss. Table 4 shows
the comparison of the average MAPE for the different
models mentioned in the Methodology section, the hyper-
parameter values associated with each model are in Table
2. Overall, every algorithm outperformed the reference
model, by 15% for the worst performing model and 57%
for the best performing model. The models do have a good
generalisation capacity on the test set, ie. the test error is
smaller than the training error. The two best algorithms
are issued from ensemble methods. It follows a pattern,
which is the more complex the algorithm is, the better the
model prediction capacity will be, except for AdaBoost.
Indeed very simple algorithms like OLS or Elastic Net
are the worst-performing, whereas XGBoost and Random
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Forest have the best prediction scores.

Table 4: Nonoptimised prediction models
Model Training MAPE Test MAPE
OLS .472 .429
Elastic Net .634 .609
SVR .391 .361
SGD .473 .437
K-nearest neighbors .340 .324
Decision Tree .393 .370
Random Forest .328 .310
AdaBoost .397 .390
XGBoost .349 .317

Then every model, with the exception of OLS, goes
through 3 different optimisation methods. The result of the
optimisation is shown in Table 5 and the hyper-parameters
values for the optimisation are shown in Table 6. In
general, there is a net improvement after optimisation of
the hyper-parameters. The best improvement was obtained
on the worst-performing model. After optimisation, the
worst-performing algorithm outperformed the reference
by 40% and the best by 58%. It is important to notice
that the strength of regularisation λ is set to 0 after
optimisation, so regularisation is not necessary on the
observations. Fine-tuning the parameters led to a net
improvement of the prediction capacity. However, the
Random Forest and the XGboost did not benefit from the
optimisation. These regressors are generally optimised
by default to general cases and it is possible that the
bounds of hyper-parameters need to be shrunk, especially
for XGBoost regularisation parameters. Out of eight
regressors, only two did not benefit from optimisation.
The Powell methods did not find the best solution in
any cases; Bayesian optimisation 4 solutions; and the
Genetic Algorithm 2. The results do not mean that
Bayesian optimisation is a better optimizer, only that
for this specific ’random state’, it found better solutions.
Another interesting finding is that the genetic algorithm
seems to prioritize solutions close to the given bounds of
the hyper-parameter values.

Figure 3: Univariate Time Serie representation of a Random
Forest prediction of the Steam Temperature at the platen
superheater outlet

These results can be criticized in several ways. Data-
driven approaches come with their unique drawbacks.
Compared to first-principle models, these algorithms are
usually considered as black-box functions. They differ
from the original ’laws’ and must be represented with

Table 5: Nonoptimised and optimised predictions’ MAPE on test
set. NO stands for Not optimised, PWL for Powell method, BO
for Bayesian Optimization and GA for Genetic Algorithm

Model NO PWL BO GA Maximum
gain

Elastic .634 .428 .428 .428 29.77
Net
SVR .361 .301 .300 .299 17.04
SGD .437 .905 .396 .401 9.38
K-nearest .324 .307 .319 .304 6.14
neighbors
Decision .370 .614 .327 .346 11.22
Tree
Random .310 .322 .315 .314 -1.51
Forest
AdaBoost .390 .374 .353 .361 9.41
XGBoost .317 .991 .565 .389 -22.75

Table 6: Regressors’ Hyper-parameters optimised values. NO
stands for Not optimised, PWL for Powell method, BO for
Bayesian Optimization and GA for Genetic Algorithm

Model Param. Bounds PWL BO GA
Elastic λ [0;1] .01 .00 .00
Net α [0;1] .94 .00 .00
SVR σ [0;1] .74 .98 1.00

λ [0;10] 10.00 9.52 10.00
ε [0;5] 1e−2 1e−3 1e−3

SGD λ [0;10] 6.18 .00 .00
ηini [1e−7;2] 1.24 2 2
α [0;1] .69 1 .00
ε [0;1] .76 .36 1

KNN k [2;50] 4 5 2
sleaf [1;100] 99 26 1
p [1;5] 4 4 5

Decision dmax [2;50] 38 6 50
Tree ssmin [0;1[ .11 .00 .00

slmin [0;1[ .17 .00 .00
fmax ]0; 1] .71 1.00 1.00

Random N [10;500] 197 434 500
Forest dmax [2;50] 31 18 50

ssmin [0;1[ 1e−3 .00 .00
AdaBoost N [10;500] 207 126 10

η [1e−7;1.5] .55 2e−3 1e−7

XGBoost N [10;500] 210 494 500
η [1e−3;2] 1.98 1.61 2
dmax [2;50] 49 5 50
sb_s [1e−3;1] .36 .67 1
cols [1e−7;1] 1 .30 1
γ [1;1e4] 1e4 2666 1
cwmin [1;100] 62 57 1
α [0;100] 0 2 0
λ [0;100] 18 46 100

alternative forms. Another main issue is the bias-variance
trade-off. Models depend on the observations they are
trained on, and their capacity of generalisation is what
determines which algorithm is good. If a model strongly
captures the behaviour of a training set, it will probably
perform poorly to predict unknown observations. This
is a situation of low-bias/high-variance. Finding the
right optimum is a complicated task. Also, Data-driven
approaches are often stochastic by nature, and the score
associated with each model should be interpreted as one
value out of an unknown distribution of solutions. The
models are static, as opposed to time-series. It is possible
that taking away the time factor from the equation induces
a higher bias. Using multivariate time-series forecasting
methods is promising and some methods are already
selected for future work, such as SARIMAX, Neural
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Network, SVR and KNN with time. Regarding the
optimisation, the optimisation ran on a restricted number
of runs. Powell method did run until convergence was
met, but Bayesian Optimisation and Genetic algorithm
had limited iterations. It would be possible to change the
termination criterion so that the optimization runs until
there are no significant improvements on the loss function.
This method could give better results, but there is a trade-
off with the execution time. Figure 3 shows the plant
observations compared to the entire set of observations
predicted by a Random Forest. The observation from
the power plant in blue seems a lot like random noise,
and the model captured this noise. This is the most
extreme example from the predictions, but it depicts
probable overfitting. This could be confirmed/infirmed
by predicting a totally new data set from the powerplant.
The main solution to tackle the noise issue is to use time-
series. Indeed the time-series focus on trend, seasonality
and noise while static methods do not interpret noise.
If static regressors are used, applying filters on the
responses, especially low pass filters, might lead to a better
generalization. Filtering data is a ’risky’ process, because
some important information might be lost in the process.

4. Conclusions and further work
A first-principle model with high prediction capacity and
several data-driven models were compared to operational
data from a coal-fired boiler. At first, the data-
driven models were fit to the observation data with few
hyper-parameter adaptations. Then regressors were fit
to the data with optimised parameters using the same
algorithms. The optimizations of these parameters have
been performed with three different methods: Powell
Conjugate Direction, Bayesian Optimisation and Genetic
Algorithm. In general, the simpler models benefited more
from the optimisation than ensemble methods. Data-
Driven models outperformed the first principle model by at
least 15%. Random Forest and XGBoost yielded the best
results with a reduction of the error of 56% and 57% for
nonoptimised models. After optimization, Support Vector
Machine outperformed both with a 58% error reduction.
The high accuracy of this model needs to be confirmed
with other unknown observations, especially because the
models can capture the random noise for outputs. The
’static’ approach should then be compared to the dynamic
one with the use of time-series analysis. Finally, artificial
neural network structures should be added to the model
list for both static and dynamic approaches.
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