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ABSTRACT

Multispectral imaging is an attractive sensing modality for small unmanned aerial vehicles (UAVs) in numerous
military and civilian applications such as reconnaissance, target detection, and precision agriculture. Cameras
based on patterned filters in the focal plane, such as conventional colour cameras, represent the most compact
architecture for spectral imaging, but image reconstruction becomes challenging at higher band counts. We
consider a camera configuration where six bandpass filters are arranged in a periodically repeating pattern in
the focal plane. In addition, a large unfiltered region permits conventional monochromatic video imaging that
can be used for situational awareness (SA), including estimating the camera motion and the 3D structure of the
ground surface. By platform movement, the filters are scanned over the scene, capturing an irregular pattern of
spectral samples of the ground surface. Through estimation of the camera trajectory and 3D scene structure,
it is still possible to assemble a spectral image by fusing all measurements in software. The repeated sampling
of bands enables spectral consistency testing, which can improve spectral integrity significantly. The result is a
truly multimodal camera sensor system able to produce a range of image products. Here, we investigate its appli-
cation in tactical reconnaissance by pushing towards on-board real-time spectral reconstruction based on visual
odometry (VO) and full 3D reconstruction of the scene. The results are compared with offline processing based
on estimates from visual simultaneous localisation and mapping (VSLAM) and indicate that the multimodal
sensing concept has a clear potential for use in tactical reconnaissance scenarios.
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1. INTRODUCTION

Small unmanned aerial vehicles (UAVs) have had a large impact on the accuracy and timeliness of tactical
surveillance, target acquisition and reconnaissance (STAR) brought on by developments in robotics, sensor
technology, machine learning and military tactics. A similar development is taking place in civilian applications
such as situational awareness (SA) for search and rescue (SAR) and disaster response. The primary sensor in
these applications is the visual camera, which produces imagery commonly used for target detection, localisation
and guidance, as well as terrain characterisation and mapping. By exploiting platform movement, visual imagery
may also sense the motion of the sensor itself as well as the 3D structure of the ground terrain.

It is generally beneficial to incorporate multiple sensor modalities in order to exploit the widest possible range
or target signatures. For a small UAV, weight, size and power limitations tend to dictate use of sensor payloads
whose imaging capability consists of only a daylight-based camera, at most in combination with a low-resolution
thermal camera. Another sensing modality of increasing interest is spectral imaging, which is particularly useful
for discriminating objects and surfaces with low visual contrast, and has a wide range of applications that include
tactical target detection, land use mapping and precision agriculture. Although hyper- and multispectral imaging
sensors for small UAVs exist, tactical systems often leave these out in favour of high-performance conventional
cameras.

We have previously presented a novel imaging concept following this multimodal approach based on six
bandpass filters arranged in a periodically repeating pattern.1,2 Cameras based on patterned filters in the focal
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Figure 1. Raw image frame (right part) and a multispectral “push broom” still image (left part) reconstructed from this
and preceding frames. The spectral filter strips are seen as a darker part in the image frame on the right. The unfiltered
part produces conventional video, which can be used for target detection as well as estimation of camera pose and 3D
scene structure. The multispectral image on the left is built up in “push broom” fashion by the platform movement.
In this example, a NIR band is mapped to the red colour channel to highlight natural vegetation. Spectra detected as
inconsistent or incomplete in the repeated sampling are marked in transparent yellow. The first (left-most) lines in the
push broom image are incomplete because the scanning has just started, and that area has not been covered by all sets of
filters. The top is incomplete since the camera is moving slightly upwards. There is an inherent offset in space and time
between the current video frame and the current line in the push broom image given by the width of the filter area and
the time it takes to scan all filters over the scene.

plane, such as conventional colour cameras, represent the most compact architecture for spectral imaging. In our
case, most of the focal plane is left unfiltered for high-resolution monochromatic video capture. In effect, a part
of the field of view (FOV) in the conventional video camera is converted to recording of imagery with moderate
spectral resolution. Platform movement enables us to scan the filters over the scene to capture irregular spectral
measurements of the ground surface. This enables sensing modalities associated with hyperspectral cameras,
but trades some performance for an extreme degree of compactness, essentially as a retrofit into an existing
camera. However, the filter-based approach presents significant challenges in spectral image reconstruction since
the different filter regions see different parts of the scene at a given instant, so that multiple recorded images
must be coregistered to obtain consistent spectra.

We have previously demonstrated consistent spectral reconstruction with accurate filter alignment based on
offline visual simultaneous localisation and mapping (VSLAM) for pose and structure estimation and a locally
planar world assumption, where the repeated sampling lets us test consistency in each spectrum.3 Here, we
present results from a more advanced reconstruction chain to investigate tactical applicability of the imaging
concept with the following contributions:

1) Improved spectral reconstruction accuracy by taking the local 3D terrain structure into account.
2) A locally consistent online procedure adapted to the tactical scenario by reconstructing in sensor view.
3) An efficient GPU implementation based on OpenGL.

Fig. 1 shows an example result from the tactical pipeline. To the right, we see the current image used for
pose and structure estimation, as well as a demonstration of target detection using YOLOv4.4 For illustration,
we also see the six filter strips repeated four times. To the left, we see the result of spectral reconstruction over
several thousand frames represented as a push broom image in sensor perspective.

In the rest of this paper, we give a brief overview of the multimodal sensing system in Sec. 2, describe the
new tactical reconstruction method in Sec. 3, present experimental results in Sec. 4, and end with the conclusion
in Sec. 5.
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Figure 2. Left: Layout of the filter array. Centre: Transmission spectrum for the different bandpass filters. Right: The
UAV payload prototype. We are here only using the centre camera.

2. MULTIMODAL SENSING SYSTEM

The imaging concept considered here combines conventional 2D video imaging with repeated spectral sampling on
a single image sensor. The sensor is a regular camera with a specialised filter layout in the focal plane. Different
spectral bands are recorded in succession thanks to the platform movement, similar to push broom imaging
spectrometers commonly used for hyperspectral imaging (HSI). The resulting system enables efficient collection
of spectral and spatial imagery, essentially by making a compromise on spectral resolution and offloading much
of the image formation to software. This concept and the associated prototype system have been thoroughly
discussed in the previous papers,1,2 and a complete spectral reconstruction processing chain was presented in
Ref. 3. We will here give a quick review of the key points relevant to the tactical scenario, and refer to the
previous papers for details.

As shown in Fig. 2, left, six bandpass filters are arranged in a periodically repeating pattern. The repeated
spectral sampling provides multiple viewing angles for each band and enables spectral inconsistency (SIC) testing,
robustness to shadowing, and averaging to improve the signal-to-noise ratio (SNR). When scanning the camera
over the scene, we reconstruct a spectral image by coregistering filter image strips to form filter image mosaics.
For precise image alignment, taking image rotation, translation and parallax into account, we generally require
both known camera motion and scene structure, as well as an accurate camera calibration for modelling the
camera projection.

Small and lightweight UAVs naturally exhibit a jerky orientational motion which is difficult to compensate
for with a gimbal. Therefore, we want accurate camera pose estimates at every frame to align the filter strips
as precisely as possible. Fortunately, the conventional 2D video imagery is well suited to support motion and
structure estimation using image-based navigation methods. In Ref. 3, VSLAM with ORB-SLAM5,6 was used
for pose and structure estimation, and the scene structure was represented locally as a planar surface fitted to
the 3D point cloud from the VSLAM map. The spectral image was formed in a global world plane, resulting in
a planar alignment procedure represented by a homography transformation computed from the current camera
pose, the current terrain plane, the world plane and the camera calibration.

The multimodal concept is implemented in the multi-camera UAV payload prototype shown to the right in
Fig. 2. Each camera is based on a Sony IMX174 monochrome CMOS image sensor with 1920 × 1200 pixels.
We will only consider the centre camera when developing our tactical approach, and keep the adaptation to
multi-camera capture for future work. The system also contains a global navigation satellite system (GNSS)
receiver and a MEMS inertial measurement unit (IMU). The output of the sensor system is a stream of raw
images from each camera at a frame rate of 80 frames per second (FPS), the maximum rate for full camera
performance. This allows the FOV to move up to 800 pixels per second without coverage gaps (for 10 pixel wide
filters), enabling reasonable ranges of altitude, flight speed and ground resolution. The image data streams also
contain metadata such as timestamps, exposure times and gain settings, and are accompanied with GNSS data
at 10Hz and IMU data at 100Hz

3. SPECTRAL RECONSTRUCTION IN TACTICAL APPLICATIONS

The system presented in the previous section has several shortcomings with respect to tactical applications:
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1) The pose and structure estimation based on VSLAM is significantly slower than the frame rate and performs
global updates to the estimated variables when correcting for loop closures.

2) The spectral reconstruction method is slower than the frame rate, even with the simplistic planar world
approximation, and expects a globally consistent map and navigation. Overlapping areas are overwritten
by the newest measurements.

3) The resulting spectral image is represented in global map coordinates with a chosen metric resolution,
which is wasteful and cumbersome for spectral processing.

We seek to overcome these challenges and even increase the accuracy of spectral reconstruction by presenting a
locally consistent real-time method capable of taking the 3D structure of the scene into account.

3.1 Real-time pose and structure estimation

The relatively high frame rate makes it challenging to estimate camera poses in real-time. We alleviate this
problem by transitioning to more efficient pose estimation methods and incorporating IMU measurements.

The arguably simplest, most efficient and most direct way to incorporate IMU measurements for real-time
pose estimation is to combine them with GNSS measurements in an inertial navigation system (INS).7 The
resulting globally consistent navigation in absolute coordinates also allows the direct use of georeferenced digital
elevation models (DEMs) for structure estimation. Although this is a very robust approach, it is expected to
be less precise and consequently lead to less consistent image alignment than image-based approaches, which
directly observe camera motion with respect to the ground. Absolute inaccuracies will also cause the navigation
to be somewhat misaligned with the structure, potentially further aggravating consistent image alignment. In
addition, the DEM is likely to be outdated. Finally, the INS approach will severely depend on the availability
of both GNSS signals and georeferenced DEMs in the area of operation.

A very efficient image-based alternative is visual odometry (VO).8 Like VSLAM, it simultaneously estimates
pose and structure in a locally consistent map, but only within a limited horizon without support for loop
closure detection and global map correction. The approach is consequently highly efficient and locally precise
but also exposed to track loss and global drift in scale, position and orientation. The estimated local structure
is inherently well aligned with the navigation but typically sparse and with poor coverage in the fringes of the
FOV. VO can be combined with priors from IMU measurements to exhibit more robust, efficient and accurate
performance in certain situations.

Visual-inertial odometry (VIO)9 is VO tightly coupled with IMU measurements. Since the IMU can observe
both absolute scale and absolute horizontal orientation, VIO can give estimates with a globally consistent scale
and orientation with respect to the local tangent plane. This global consistency and added robustness in other-
wise challenging situations come at the expense of higher computational complexity. Furthermore, VIO is still
susceptible to drift in position and heading.

Although the structure recovered by VO and VIO is typically in the form of sparse points, a dense 3D surface
model may be computed from the point cloud, e.g. by first performing a 2D Delaunay triangulation over tracked
feature points in keyframes, and then back-project the triangulation to generate a 3D mesh.10,11 In applications
where the camera is always approximately nadir, the triangulation may be performed directly in the horizontal
plane.

Compared to VSLAM, the efficient solutions presented here come at the price of decreased local precision or
global accuracy. Since VO is similar to VIO but more efficient and more susceptible to global drift, we choose
to concentrate on INS and IMU-aided VO when developing our tactical approach, which will focus on local
consistency while depending less on global accuracy.

3.2 Push broom spectral image representation

A straightforward approach to avoid the problems with the global map-based image representation is to instead
form the spectral image in the sensor perspective as something equivalent to a traditional push broom image,
which is captured line-by-line by accumulating data from a single-lined camera. Although push broom images
are distorted by the camera motion, smooth motion ensures that local consistency is preserved, and the resulting
stream of spectral data at the original sensor resolution may be processed directly for tactical applications. This
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Figure 3. The emulated push broom imaging geometry. The filter area (green) in the current frame (orange) is projected
onto the ground surface and back into the current keyframe (purple), where the filter measurements are accumulated. The
resulting spectral bands are then projected back into the chosen push broom line in the current frame (red). The current
2D video area (blue) is also shown projected onto the surface for clarity, and the geometry has been slightly exaggerated.

is also the usual way spectral images are captured, and therefore has the additional benefit of fitting optimally
with existing processing pipelines in the spectral imaging community.

We can emulate push broom imaging in the spectral reconstruction by accumulating all filter measurements
in the current sensor view and extract a chosen line. But reprojecting the filter mosaics to every new frame is
inefficient and will quickly accumulate resampling errors. Taking advantage of the smooth scanning motion, we
instead accumulate the measurements in periodic keyframes, which are made slightly larger than the original
image to account for motion across the scanning direction. For every new frame, we then 1) project the current
frame into the keyframe and add the filter measurements, 2) project the mosaics back from the keyframe to
a virtual single-lined push broom camera corresponding to the current frame and 3) append the push broom
line to the push broom image. Keyframes are periodically updated to the newest sensor view by projecting the
mosaics to the current frame. The push broom line is chosen as the first line after the last (left-most) filter strip
(see Fig. 3). The procedure is summed up in Fig. 4.

The key technique in this reconstruction procedure is the relative reprojection of images from projector
frames Fp onto the scene and back into observer frames Fo. In step 1) above, the current frame will act as the
projector, while the keyframe is the observer and in step 2) the roles are switched. In general, we can project
pixel coordinates up

i given in Fp to pixel coordinates uo
i given in Fo with

uo
i = πo

(
Top · π−1

p (up
i , z

p
i )
)

Top =

[
Rop toop

0T 1

]
∈ SE(3), (1)

where πo : R3 → Ωo is the geometric camera model for the observer camera, projecting 3D points xo ∈ R3 in
Fo onto pixels uo

i ∈ Ωo in the observer image, and π−1
p : Ωp × R+ → R3 is the inverse geometric camera model

for the projector camera, backprojecting pixels up
i with the corresponding depths zpi back to 3D points in the

projector frame. Top is the relative pose of the projector frame Fp given in the observer frame Fo and the
· operator represents the action of the pose on 3D points so that xo = Top · xp.

Using the perspective camera model with calibration matrices Ko and Kp, the corresponding homogeneous
reprojection is given by

ũo
i = Ko

[
Rop +

toope
⊤
z

zpi

]
K−1

p ũp
i = H

zp
i

opũ
p
i , (2)
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where ez is the unit vector in the z-direction and the resulting homography H
zp
i

op has to be computed for each
unique depth. If the scene is planar with plane equation Πp : apx + bpy + cpz + dp = 0 given in the projector
frame, we can find a common reprojection homography for all pixels on the plane:

ũo
i = Ko

[
Rop −

toopn
p⊤

dp

]
K−1

p ũp
i = HΠp

op ũ
p
i , (3)

where np = [ap, bp, cp]⊤ is the plane unit normal and −dp is the signed distance from the plane to the origin of
Fp.

Since the poses involved here are relative, we are less dependent on global accuracy, but still able to exploit
local precision for optimal alignment accuracy. In fact, as long as there is insignificant drift within the time it
takes to scan all filter sets over a point in the scene, there should not be any noticeable decrease in accuracy in
the presence of significant global drift, and the spectral images should look qualitatively the same. Even track
loss and re-initialisation should only result in a local and temporary reconstruction failure. Furthermore, the
reconstructed spectral image may be processed as a locally consistent push broom image, but later georectified
using INS data with good global accuracy, but poor local precision, a procedure commonly followed with ordinary
HSI data.12

Another interesting feature is that, since we accumulate filter mosaics in stable keyframes, there is no need
to reproject back into the original, tumultuous camera frames. We instead apply a kind of “digital stabilisation”
by reprojecting into virtual push broom cameras with a smoother motion, where only the keyframes are fixed.
The remaining frames are given a smooth trajectory on the pose manifold by interpolating along the Lie tangent
space vector between the fixed poses T0 and T1

Tα = T0 ⊕ α(T1 ⊖T0) = T0 Exp(αLog(T−1
0 T1)) α ∈ [0, 1], (4)

where we have borrowed the notation from Ref. 13. We also adjust the number of poses to interpolate in order
to avoid elongation or shortening distortions due to oversampling or undersampling lines with respect to the
motion. The number of interpolated poses are chosen so that the translation between them correspond to the
ground sample distance (GSD) across the scan direction. This results in push broom images with approximately
the same GSD in both directions. The GSD across the scan direction can be estimated as

dGSD ≈ z̄

fy
, (5)

where z̄ is the current average depth to the scene in meters and fy is the scale parameter in pixels for the
y-dimension in the camera calibration matrix.

3.3 Spectral reconstruction with OpenGL

Upload raw image
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Update keyframe
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keyframe to new
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to filter mosaics

Update push broom
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Block
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Download push
broom block
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no
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Figure 4. Flowchart for the emulated push broom spectral reconstruction with OpenGL.

A very efficient way to execute the push broom reconstruction procedure in Sec. 3.2 is to exploit computer
graphics hardware to perform the reprojections in an extremely parallelised and optimised manner. Furthermore,
the computer graphics approach makes it straightforward to represent the scene as full 3D meshes.
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Figure 5. Left: The different pose estimates aligned to INS-data. Right: VO pose estimates and the local surface meshes
shown in separate colours.

Our implementation is based on the widely used OpenGL∗ computer graphics library, which should make it
compatible with most relevant computing platforms available for small UAVs. The reprojections in Eq. (2) are
performed over 3D meshes by following the projective texture mapping14 technique. The square, orange processing
steps in Fig. 4 run on the graphics processing unit (GPU) as consecutive shader programmes executing the related
image reprojection with additional processing pixel by pixel. The resulting push broom image contains the six
spectral bands averaged over all four sets, plus supplementary channels such as the SIC metric, the world position
of each pixel and the depth to the scene. To avoid unnecessarily expensive data transfer between the GPU and
the central processing unit (CPU), push broom images are collected as blocks of a chosen size, and downloaded
from the GPU when filled.

The projective texturing approach also allows taking shadowing into account by detecting surfaces not visible
to the projector, but this involves twice the number of shader executions to estimate depth maps for the projector
and will presumably not contribute significantly to the reconstruction when the camera is pointing almost nadir.
We have therefore ignored shadowing in this implementation. It is also worth noting that the images formed on
the GPU may be accessed directly by other processing algorithms running on the GPU.

4. EXPERIMENTS

The following experiments were carried out on about 33 k images on the East-West flight lines along the road in
the dataset presented in Ref. 3, captured by the UAV payload prototype introduced in Sec. 2. All experiments
were performed on a HP Z-book laptop running Ubuntu 18.06 with an Intel Xeon CPU @ 2.90GHz and an
NVIDIA Quadro M3000M GPU.

4.1 Real-time pose and structure estimation

Pose estimation using the INS approach was carried out on GNSS and IMU data with NAVLAB15 in real-time
mode. The corresponding structure was represented using a LIDAR-based DEM covering an area of about
1.5 km2 at a resolution of 25 cm. This resulted in a surface mesh with about 23M vertices at full size (this
surface mesh is used in Fig. 3).

VO was executed with SVO16,17 using the open source SVO Pro† implementation. The method processed the
dataset in real time using the rosbag playback feature in the robot operating system (ROS).18 100 of the about
33 k images were not successfully tracked. Their poses were instead estimated based on neighbouring camera
positions and angular IMU data. A sparse point cloud of up to a few hundred tracked 3D features were extracted
for each new VO keyframe and converted to a local 3D surface mesh using Delaunay triangulation.

For reference, we also use the VSLAM results from Ref. 3 based on ORB-SLAM,5,6 which processed the data
at about 15% of the frame rate. The full sparse point cloud map was converted to a global 3D surface mesh
using Delaunay triangulation in the horizontal plane with about 30 k vertices.

∗https://www.khronos.org/opengl/wiki/Main_Page
†https://github.com/uzh-rpg/rpg_svo_pro_open
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Figure 6. Push broom images in (NIR, G, B) for the different combinations of pose estimation methods and structure
representations. Incomplete or inconsistent spectra are flagged in transparent yellow. Sections a) to d) highlight interesting
areas referred to in the discussion.

Figure 5 left shows the resulting pose estimates from the different methods aligned with the INS results.
As expected, VO exhibits significant global drift compared to the other methods. Figure 5 right shows a 3D
visualisation of the VO poses and local surface meshes, where the different meshes are shown in separate colours.
Even though the VO pose estimates are drifting with respect to the global frame, local consistency with respect to
poses and structure close in time is very good, thanks to the windowed reprojection optimisation over keyframes
in SVO.

4.2 Tactical spectral image reconstruction

The proposed tactical push broom spectral image reconstruction presented in Sec. 3.2 was tested using the
OpenGL implementation introduced in Sec. 3.3 based on the pose and structure estimates from the previous
section. For reference, a planar structure representation for each pose and structure estimation approach was
established by fitting planes to the corresponding surface meshes. Figure 6 shows a comparison of the resulting
spectral push broom images for the different combinations of pose and structure methods. The spectral images
are visualised by mapping the (near-infrared 1 (NIR1), green (G), blue (B)) bands to the (red (R), G, B) channels
in the output image. Areas covered by fewer than four filter sets or exceeding a common SIC threshold are flagged
in transparent yellow.

In general, we see that all the push broom images have the same global structure, even though the global
pose estimates in Fig. 5 are significantly different. It is also clear that the local meshes computed by the VO
approach gives the worst structure coverage, aggravated by the fact that the actual scan direction is slightly
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Figure 7. Enlarged view of the push broom images for INS + DEM (left) and VO + local mesh (right) corresponding to
section b) in Fig. 6.

upwards (see Fig. 1), which also results in a high number of incomplete spectra in the upper part of all the push
broom images.

Sections a) and c) in Fig. 6 highlight areas with significant variations in depth due to buildings and trees. It
is clear from the change in consistent spectra and perceived sharpness that the full 3D structure representation
generally results in more accurate image reprojections for all methods compared to the planar representation,
and thereby a higher quality spectral reconstruction. In section c), the DEM seems to represent the structure of
the trees poorly, even seemingly representing trees that are not actually there. This results in worse reprojection
accuracy compared to the other mesh-based approaches, and demonstrates the benefits of using the images
themselves for estimating observed structure, even though the detail and accuracy may be lower. However, the
image-based methods are vulnerable to track loss and estimation failures, aptly demonstrated by the lack of data
for VO in parts of this section.

When it comes to the differences in pose estimation, the high number of inconsistent spectra for the INS
approach compared to the other pose estimation methods in the relative flat sections b) and d) suggests that
the local precision indeed is better for the image-based approaches. The differences in consistency between the
INS and VO approaches is clearly visible in the enlarged view of section b) in Fig. 7. Figure 8 demonstrates the
benefit of applying our stabilisation approach compared to using every original camera frame for constructing the
push broom image. The push broom image without stabilisation on the right is clearly elongated and distorted
by variations in camera orientation, while these effects have been largely removed in the stabilised push broom
on the left.

The OpenGL spectral reconstruction implementation processed full resolution images at about 3× the frame
rate for surface models with up to hundreds of thousands of vertices, and down to about 0.6× the frame rate for
the excessively large DEM mesh at about 23M vertices.

5. DISCUSSION AND CONCLUSIONS

We have presented a complete solution for accurate and efficient spectral reconstruction with a multimodal
camera concept adapted to tactical scenarios. The concept offers exploitation of spectral signatures using sensor
hardware that amounts, in principle, to a small modification of existing cameras. Reconstruction of spectral
imagery is offloaded to software. By introducing a spectral image representation that emulates traditional
push broom images, we retain sensor resolution, reduce dependence on global navigation accuracy and focus on
exploiting local consistency in efficient image-based pose and structure estimation methods, such as VO. Sample
results indicate that high quality spectral reconstruction is feasible even for real-time applications.

More work is still needed to explore to what degree this approach is applicable for more resource-constrained
computing platforms on-board small UAVs, and the achievable performance of multispectral target detection
in tactical situations. Future work also includes processing data from a multi-camera setup for a broader FOV
and more robust image-based pose and structure estimation. The outlook appears promising, since the current
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Figure 8. Reconstructed (R, G, B) push broom image based on VSLAM + global mesh with (left) and without (right)
our stabilisation approach.

implementation is highly parallel and easily expandable. Tight integration of GNSS data together with VO/VIO
for global consistency and georeferencing is another interesting direction of research.

In conclusion, the results demonstrate that a practically relevant performance can be achieved in practice, and
indicate that the multimodal sensing concept has a clear potential for use in tactical reconnaissance scenarios.
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