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Abstract. Due to recent developments in object detection systems, and
the realistic threat of black-box adversarial attacks on object detector
models, we argue the need for a contextual understanding of the at-
tacks from the users’ perspective. Existing literature reviews either do
not provide complete and up-to-date summaries of such attacks or fo-
cus on the knowledge from the researchers’ perspective. In this research,
we conducted a systematic literature review to identify state-of-the-art
black-box attacks and extract the information to help users evaluate and
mitigate the risks. The literature review resulted in 29 black-box attack
methods. We analyzed each attack from the following main aspects: at-
tackers’ knowledge needed to perform the attack, attack consequences,
attack generalizability, and strategies to mitigate the attacks. Our results
demonstrate an emerging increase in highly generalizable attacks, which
now make up more than 50% of the landscape. We also reveal that more
than 50% of recent attacks remain untested against mitigation strategies.

Keywords: artificial intelligence · object detection · image classification
· adversarial attacks

1 Introduction

As Deep Neural Networks (DNNs) becomes more and more pertinent in im-
age recognition and object detection tasks, their robustness also becomes more
of a concern. Goodfellow et al. [14] have shown that the robustness of these
models is susceptible to adversarial attacks. Such vulnerabilities have motivated
researchers to develop adversarial attacks to exploit the object detection systems
and contribute to improving their robustness. White-box attacks that assume
knowledge about the target model continue to dominate the adversarial attack
landscape, but there is an increase in black-box attacks. Black-box attacks as-
sume no or very limited knowledge about the target model and are, therefore,
more realistic approaches to adversarial attacks [34]. We argue that the increase
in black-box attacks should be followed by a contextual understanding of the
attacks from a user perspective. We define a user as a person who wants to
know the risk and impact of adversarial attacks and how to defend against these
attacks without knowing specific attack implementation details. Therefore, this
paper omit the technical properties of the attacks for the traditional researcher
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perspective. Existing surveys and reviews of adversarial attacks on image clas-
sification and object detection, e.g., [6, 20], focus mostly on the information
needed by researchers and do not cover sufficient up-to-date black-box attacks.
Our research motivation is to summarize the state-of-the-art black-box attacks
targeting object detection models to help users evaluate and mitigate the risks.
We focus on answering the following research questions.

– RQ1: What does the attacker need to know about the target model?
– RQ2: How generalizable is the attack?
– RQ3: What are the consequences of the attack?
– RQ4: Which mitigation strategies have been tested against the attack?

We performed a systematic literature review on articles published between
2017 and 2021 to collect state-of-the-art black-box attacks. Through the system-
atic literature review and snowballing, we uncovered 29 state-of-the-art attack
methods, which we analyze and present in this paper. Our study benefits indus-
trial practitioners and scientists. The contributions of the study are twofold.

– We provide comprehensive and up-to-date consolidated knowledge about
black-box attacks targeting object detection models to help users to evaluate
the risks and choose effective mitigation solutions.

– We identify the trends and weaknesses of existing studies in this field, which
may inspire researchers’ future work.

The rest of the paper is organized as follows: Section 2 introduces the back-
ground. Section 3 presents the related work. Section 4 explains our research
methods, and Section 5 presents the results. We then discuss our results in Sec-
tion 6. Conclusions and future work are in Section 7.

2 Background

Object detection is the field of Artificial Intelligence (AI) that uses deep learning
to extract high-dimensional information from images and videos. An autonomous
car with camera sensors uses image processing to navigate the road and detect
obstacles.

2.1 Object Detection and Image Classification

Image classification is the task of classifying an input image by assigning it to a
specific label [42], while object detection is the task of localizing and classifying
distinct objects in an image or video. Current object detectors can be split into
two main categories: two-stage and one-stage detectors. Two-stage detectors con-
sist of two main parts. First, the detector uses a Region Proposal Network (RPN)
to calculate proposed regions for objects. The RPN uses a set of predefined an-
chor boxes uniformly placed over the image to calculate proposed regions before
outputting a predefined number of proposed bounding boxes with a correspond-
ing objectiveness score. The objectiveness score indicates whether the proposed
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region belongs to an object class or the background. These proposed regions sig-
nificantly reduce the computational complexity needed to localize and classify
an object. In the second stage, the proposed regions from the RPN are passed to
a high-quality image classifier to recognize objects. One-stage detectors aim to
improve the inference speed while still achieving acceptable accuracy. One-stage
detectors achieve this goal by removing the region proposal stage required by
the two-stage detectors. Instead, they run detection on a dense sampling of pre-
defined default boxes. The ability to skip the region proposal step significantly
decreases inference time and has led to the development of many one-stage de-
tectors, e.g., [30, 38].

2.2 Threat Models

The threat model of an attack is based on what the adversary knows about the
target model, thus we can categorize the attacks into three threat models.White-
box attacks, e.g., FGSM [14], assume the adversary has complete knowledge of
the target model , which include the model’s internal structure, such as weights
and parameters of the target model, and knowledge of the output given an input.
In some cases, the adversary knows the training data distribution. This allows
the adversary to construct attack methods specific to the given model. Black-
box attacks, assume no internal information of the target model, but the ability
to observe the output for a given input. Usually, black-box attack methods are
constructed based on querying the target model [5, 8, 9]. Han Xu et al. [46] in-
troduce grey-box attacks as a hybrid of white-box attacks and black-box attacks,
where the attacker trains a generative model to create adversarial examples in
white-box setting. Then the target model is attacked in the black-box setting
with adversarial examples from the trained generative model.

3 Related Work

Bhambri et al. [6] performed a survey focusing on adversarial black-box attacks.
The paper aims to conduct a comparative study of both adversarial attacks and
defenses. Nineteen black-box attacks were compared on the number of queries,
success rate, and perturbation norm. The survey categorizes the attacks based on
gradient estimation, transferability, local search and combinatorics. Shilin Qiu
et al. [37] presents a comprehensive study of the research of adversarial attack
and defenses. The paper details white-box and black-box attack methods but
mainly focuses on defense strategies. Kong et al. [25] reviewed adversarial attack
literature in the different application fields of AI security. The fields include
images, texts and malicious code. The paper presents attack algorithms for the
different application domains and includes 13 attacks for the image domain, five
of which are black-box attacks. The survey further elaborates on defense methods
and how they affect the presented attacks. In order to help new researchers in
the field, the paper introduces and discusses the different datasets and tools
available. There are other surveys and articles, i.e., [1, 27, 46, 48], which discuss
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adversarial attacks and defenses. The common limitation of these studies are
the low number of included black-box attacks. In addition, the studies focus on
consolidating information from the researchers’ perspective.

4 Research Design and Implementation

We performed a Systematic Literature Review (SLR) and followed the SLR
guidelines proposed by Kitchenham and Charters [24]. After analyzing the terms
related to our research questions and their synonyms, we chose to use the search
query: Adversarial AND Attack AND (“Object detection” OR “Object detec-
tor”).

We chose oria.no, a search engine that covers many scientific databases,
including IEEE Xplore, Springer, ACM Digital library, and Scopus. To include
only recent literature and to reduce the scope, we used the advanced search
functionality in oria.no, and included only peer-reviewed and published scien-
tific papers from the last 5 years back from 2021. The identified articles were
filtered mainly based on their relevance to the research questions by reading
their abstract, introduction, and, in some cases, methodology. After filtering, we
identified 11 relevant primary studies. Then, we performed a snowballing search
following the process proposed by [45], with the exception that forward and back-
ward snowballing searches were limited to a single iteration each. The forward
snowballing was performed using Google Scholar. The snowballing identified 16
more papers, resulting in 27 primary studies.

5 Research Results

In this section, we present our answers to each research question. Attack names
preceded by asterisks (*) were not presented with a name in their corresponding
paper. Therefore, a descriptive name is given based on the attack method.

5.1 RQ1—Attacker’s Knowledge

How much information the attacker requires from the output labels varies across
the identified papers but can be split into three categories: Soft-labels refer
to the threat model where an attacker accesses the output probabilities P (y|x)
for y in the top k classes. Soft-labels also might include the label for each of
the output probabilities. For object detectors, information about the bounding
boxes indicates soft-labels. Hard-labels refer to a more restricted threat model
where an attacker only has access to a list of k ∈ Z+ output labels. Different
attacks make different assumptions about k. For k = 1, the attacker only has
access to the single predicted class. In the case of k > 1, the list of classes is
often ordered by decreasing probabilities but does not include the probabilities.
For object detectors, the hard-label category signifies no information about the
bounding boxes. Some attacks assume the target model outputs k = 1 or k > 1

oria.no
oria.no
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Table 1: Attacks grouped by attacker knowledge

Attack Name Year Knowledge

NRDM [33] 2018 No-labels

DaST [51] 2020 Hard-labels and Soft-labels

HopSkipJumpAttack [9] 2020 Hard-labels

*Partial-retraining [36] 2020 Hard-labels

*Evolutionary Attack [13] 2019 Hard-labels

Label-Only Attack [20] 2018 Hard-labels

Opt-Attack [11] 2018 Hard-labels

Boundary Attack [8] 2017 Hard-labels

CMA-ES [19] 2021 Soft-labels

Simple Transparent Adversarial Examples [7] 2021 Soft-labels

*Discrete Cosine Transform Attack [26] 2021 Soft-labels

*Differential Evolution Attack [44] 2021 Soft-labels

BMI-FGSM [29] 2020 Soft-labels

*Transferable Universal Perturbation Attack [49] 2020 Soft-labels

Adv-watermark [23] 2020 Soft-labels

Evaporate Attack [43] 2020 Soft-labels

Daedalus [41] 2019 Soft-labels

One-Pixel-Attack [39] 2019 Soft-labels

Single Scratch attack [22] 2019 Soft-labels

GenAttack [2] 2019 Soft-labels

Universal perturbation attack [50] 2019 Soft-labels

Query-Limited Attack [20] 2018 Soft-labels

Partial-Info Attack [20] 2018 Soft-labels

Bandits [21] 2018 Soft-labels

Gradient Estimation Attacks [5] 2018 Soft-labels

R-AP [28] 2018 Soft-labels

ZOO [10] 2017 Soft-labels

LocSearchAdv [32] 2016 Soft-labels

*Substitute Attack [34] 2016 Soft-labels

labels. No-labels refer to the most restricted threat model, where an attacker
requires no access to the output of the target model.

Table 1 presents the attacks grouped by the required attacker knowledge. We
notice that more than 75% of the discussed attacks use the soft-labels approach.
Table 1 also illustrates that about 25% of the discussed attacks use hard-labels
as part of their method. We can also see that the number of hard-label attacks
has tripled from 2017 to 2020, which might indicate that hard-label attacks are
becoming more popular. The new trend might suggest that hard-label attacks
have room for improvement in the coming years and should be investigated
further. It is also worth noting DaST [51], which can be used in both a soft-
and hard-label scenario because the attack is customizable. This might be an
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indication of a new type of attack that can be modified based on the target model.
NRDM [33] requires no labels at all. These two attacks illustrate a possibility
in the landscape, as attacks can become more applicable to any target model
and more independent of the attacker’s knowledge.

5.2 RQ2—Attack Generalizability

The generalization of adversarial black-box attacks examines the number of dif-
ferent types of object detection models which are claimed to have been suc-
cessfully attacked. We have defined four categories of generalization and present
the results in Table 2. The categories are None, Low, High and Very High. The
presented attack is tested on and successful against either one, two, three to
five or six or more target models respectively. The term generalizability is only
determined based on the number of attacked target models, and do not include
datasets, model accuracy, attack hyperparameters and model hyperparameters.
It is important to note that the generalizability is derived from the number of
models claimed by the authors of the primary studies. Therefore an attack with
None may be generalizable, but the authors only includes experiments against
one target model.

Most of the attacks only target image classifiers, but the focus could be
on one-stage models, two-stage models, or a combination of both for object
detectors. An attack targeting both types of object detectors poses a significant
threat, as it generalizes to most model architectures. This aspect is captured
in the target architecture column in Table 2. Attacks targeting object detectors
are labeled with one-stage, two-stage, or both, while attacks targeting image
classifiers are labeled correspondingly.

From Table 2, we observe a balanced distribution between high and low
generalizability. Both attack types show promising results, but the ones with
high generalizability might be more interesting to be studied further, as they
are successful across a broader range of object detectors. The number of highly
generalizable attacks has increased from 2019, as shown in Figure 1. From Ta-
ble 2, we also notice that R-AP [28] and NRDM [33] stand out. They are both
classified as very high, meaning they have been tested and exhibited promising
performance on six or more different models. Additionally, NRDM has been
tested against both image classifiers and object detectors, demonstrating notable
generalizability . It is also worth noting that [28] and [9] mention the possibil-
ity of combining R-AP and HopSkipJumpAttack, respectively, with other
adversarial attacks as areas for future work. This combination demonstrates a
potential to improve attacks through amalgamation, which is worth considering
in future research. Many of the discussed attacks have also been tested on real-
world APIs, which are listed in Table 3. From a user perspective, this illustrates
a potential area of focus and risks to consider in the future.
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Table 2: Attacks grouped by their level of generalizability

Attack Name Year Generalization Target Architecture

NRDM [33] 2018 Very High Image classifiers

R-AP [28] 2018 Very High Two-stage

CMA-ES [19] 2021 High One-stage and two-stage

*Differential Evolution Attack [44] 2021 High Image classifiers

Adv-watermark [23] 2020 High Image classifiers

Evaporate Attack [43] 2020 High One-stage and two-stage

HopSkipJumpAttack [9] 2020 High Image classifiers

*Partial-retraining [36] 2020 High Image classifiers

*Transferable Universal Perturbation Attack [49] 2020 High One-stage and two-stage

Daedalus [41] 2019 High One-stage

One-Pixel-Attack [39] 2019 High Image classifiers

Universal perturbation attack [50] 2019 High Image classifiers

Single Scratch attack [22] 2019 High Image classifiers

Bandits [21] 2018 High Image classifiers

Gradient Estimation Attacks [5] 2018 High Image classifiers

Boundary Attack [8] 2017 High Image classifiers

*Substitute Attack [34] 2016 High Image classifiers

*Discrete Cosine Transform Attack [26] 2021 Low Image classifiers

BMI-FGSM [29] 2020 Low Image classifiers

DaST [51] 2020 Low Image classifiers

*Evolutionary Attack [13] 2019 Low Image classifiers

GenAttack [2] 2019 Low Image classifiers

Opt-Attack [11] 2018 Low Image classifiers

Query-Limited Attack [20] 2018 Low Image classifiers

Partial-Info Attack [20] 2018 Low Image classifiers

Label-Only Attack [20] 2018 Low Image classifiers

LocSearchAdv [32] 2016 Low Image classifiers

Simple Transparent Adversarial Examples [7] 2021 None Image classifiers

ZOO [10] 2017 None Image classifiers

Table 3: Attacks against real-world APIs

Attack Name Year Real-World API

*Discrete Cosine Transform Attack [26] 2021 AWS Rekognition [4]

*Partial retraining [36] 2020 Google AutoML Vision [15]

Partial-Info Attack [20] 2018 Google Cloud Vision [16]

Gradient Estimation Attacks [5] 2018 Clarifai [12]

Boundary Attack [8] 2017 Clarifai [12]

*Substitute Attack [34] 2016 Amazon and Google Oracles [3, 16]
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Fig. 1: The ratio of generalization levels for each year

5.3 RQ3—Attack Consequences

Classification attack is divided into targeted and untargeted attacks. Targeted
attacks aim to misclassify a adversarial input image i′ of class c′, where the
the target model would have classified input image i in to class c. In other
words, the attacker wants to force the target model to predict a chosen class.
Untargeted attacks aim to misclassify an adversarial input image i′ in to any
class c′, where c′ ̸= c. Object detection attack can lead to object vanishing
and object population. An object vanishing attack aims to suppress all object
detection in a input image, while an object population attack aims to fabricate
false objects in a predicted image.

Table 4 shows the consequences of each attack. Untargeted attacks are the
most common, making up more than 75% of the discussed attacks. Even though
these attacks make up the majority and pose a significant threat, targeted at-
tacks might be more dangerous from a defender’s perspective. Targeted attacks
still make up about 65% of discussed attacks, and it is worth noting that most
image classification attacks provide both targeted and untargeted versions. This
trend suggests that attacks are not limited to a single purpose but can achieve
multiple goals. In the realm of object detection attacks, we have looked at five
attacks. Four of them exploit the object vanishing vulnerability, while only one
focuses on object population. CMA-ES [19] stands out because it combines
object detection and image classification attacks. CMA-ES is a very recently
developed attack that could hint at a change of focus in the landscape. Addi-
tionally, Daedalus [41] is the only attack that can execute object population.
Results in Table 4 also shows the emerging focus on attacks against object de-
tectors from 2018.

5.4 RQ4—Mitigation Strategies

Table 5 contains a summary of all the mitigation strategies an attack is claimed
to have been tested against. The Vulnerable Mitigations column lists all tested
mitigation strategies where the attack is still able to reduce the overall accu-
racy of the system significantly. The definition of a significant drop in accuracy
is claimed by each paper. The Robust Mitigations column lists all mitigation
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Table 4: Attacks grouped by their consequences

Attack Name Year Target Architec-
ture

Consequenses

CMA-ES [19] 2021 One-stage and two-
stage

Vanishing, Targeted, and
Untargeted

Evaporate Attack [43] 2020 One-stage and two-
stage

Vanishing

*Transferable Universal Perturbation At-
tack [49]

2020 One-stage and two-
stage

Vanishing

R-AP [28] 2018 Two-stage Vanishing

Daedalus [41] 2019 One-stage Population

*Differential Evolution Attack [44] 2021 Image classifiers Targeted and Untargeted

BMI-FGSM [29] 2020 Image classifiers Targeted and Untargeted

DaST [51] 2020 Image classifiers Targeted and Untargeted

HopSkipJumpAttack [9] 2020 Image classifiers Targeted and Untargeted

One-Pixel-Attack [39] 2019 Image classifiers Targeted and Untargeted

Single Scratch attack [22] 2019 Image classifiers Targeted and Untargeted

Gradient Estimation Attacks [5] 2018 Image classifiers Targeted and Untargeted

Query-Limited Attack [20] 2018 Image classifiers Targeted and Untargeted

Partial-Info Attack [20] 2018 Image classifiers Targeted and Untargeted

Label-Only Attack [20] 2018 Image classifiers Targeted and Untargeted

Bandits [21] 2018 Image classifiers Targeted and Untargeted

Opt-Attack [11] 2018 Image classifiers Targeted and Untargeted

Boundary Attack [8] 2017 Image classifiers Targeted and Untargeted

ZOO [10] 2017 Image classifiers Targeted and Untargeted

LocSearchAdv [32] 2016 Image classifiers Targeted and Untargeted

*Discrete Cosine Transform Attack [26] 2021 Image classifiers Targeted

*Partial-retraining [36] 2020 Image classifiers Targeted

GenAttack [2] 2019 Image classifiers Targeted

Simple Transparent Adversarial Exam-
ples [7]

2021 Image classifiers Untargeted

Adv-watermark [23] 2020 Image classifiers Untargeted

*Evolutionary Attack [13] 2019 Image classifiers Untargeted

Universal perturbation attack [50] 2019 Image classifiers Untargeted

NRDM [33] 2018 Image classifiers Untargeted

*Substitute Attack [34] 2016 Image classifiers Untargeted

strategies where the attack cannot reduce the overall accuracy of the system sig-
nificantly. It is worth noting that None tested in the Robust Mitigations column
only means that the attack has not been tested on any mitigation strategy. It
does not mean that the attack is able to bypass all defense strategies. This also
applies to the Vulnerable Mitigations column. A cell with ”-” means that none
of the tested mitigation strategies applies to that column. A list of defenses in
the Vulnerable Mitigations column and ”-” in the Robust Mitigations column
means that none of the tested defenses successfully defended against the attack.
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From Table 5, we notice that more than half of the discussed attacks have not
been tested against any mitigation strategies. This illustrates that mitigation
strategies have not been given enough attention. We also notice that Adversar-
ial Training and Input Transformations repeat across different attacks in the
Vulnerable Mitigations column. The repetition indicates that no single mitiga-
tion strategy works for all attacks, and that most modern mitigation strategies
struggle to defend against the discussed attacks. It is worth noting that many
of the mitigation strategies listed are umbrella terms, covering multiple defense
implementations. For example, input transformations [18] cover multiple defense
mechanisms such as JPEG-compression, clipping and median filtering. Although
Figure 2 shows an increase in the number of mitigation strategies evaluated, we
can also see a large emerging ratio of untested attacks from 2018.

Fig. 2: The ratio of mitigation strategies each year

6 Discussion

The aim of our work is to summarize the state-of-the-art black-box attacks tar-
geting object detectors to help users evaluate and mitigate the risks. No related
work outlined in Section 3 takes the user’s perspective but rather explains black-
box attacks from a researcher’s perspective and focuses on explaining the attack
methods. For example, Kong et al. [25] and Bhambri et al. [6] provide categories
of black-box attacks, but the categorization is based on the attack method. Un-
derstanding a black-box attack method requires a high level of competence in a
user. Our study does not focus on the attack methods because they are not the
most relevant information for a user. The main focuses from a user perspective
are covered in our research questions. Results of RQ1 (Knowledge) can inform
a user of the attacks which can and cannot be executed on a system. Results of
RQ2 (Generalization) warns the user of which attacks have a large impact area
and could affect the system. Results of RQ3 (Consequences) give the user in-
sight into the attacks’ results. Results of RQ4 (Mitigation strategies) are highly
important to the user because they contain information that can help the user
implement relevant defenses to the system.
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Table 5: Attacks grouped by mitigation strategies they have been tested against

Attack Year Vulnerable Mitigations Robust Miti-
gations

*Differential Evolution Attack [44] 2021 Feature squeezing [47]
Input Transformations [18]

-

Adv-watermark [23] 2020 Adversarial Training [40]
Input Transformations [18]

-

HopSkipJumpAttack [9] 2020 Adversarial Distillation [35],
Region-based classification

Adversarial
Training [40]

*Partial-retraining [36] 2020 Adversarial Detection [17]
Adversarial Distillation [35]
Adversarial Training [40]
Feature squeezing [47]

-

GenAttack [2] 2019 Adversarial Training [40],
Input Transformations [18]

-

One-Pixel-Attack [39] 2019 - Adversarial De-
tection [17]

Daedalus [41] 2019 MagNet [31]
Minimize bounding box size

-

Single Scratch attack [22] 2019 Input Transformations (JPEG-
compression) [18]
Input Transformations (Clip-
ping) [18]

Input Trans-
formations
(Median Filter-
ing) [18]

Gradient Estimation Attacks [5] 2018 Adversarial Training [40] Rounded output
probabilities

NRDM [33] 2018 Input Transformations [18] -

Boundary Attack [8] 2017 Adversarial Distillation [35] -

ZOO [10] 2017 Adversarial Detection [17]
Adversarial Distillation [35]

Adversarial
Training [40]

LocSearchAdv [32] 2016 Adversarial Training [40] Query-access
prevention

*Substitute Attack [34] 2016 Adversarial Distillation [35]
Adversarial Training [40]

-

CMA-ES [19] 2021 None tested None tested

*Discrete Cosine Transform Attack
[26]

2021 None tested None tested

Simple Transparent Adversarial Ex-
amples [7]

2021 None tested None tested

DaST [51] 2020 None tested None tested

Evaporate Attack [43] 2020 None tested None tested

BMI-FGSM [29] 2020 None tested None tested

*Transferable Universal Perturba-
tion Attack [49]

2020 None tested None tested

*Evolutionary Attack [13] 2019 None tested None tested

Universal perturbation attack [50] 2019 None tested None tested

Bandits [21] 2018 None tested None tested

Label-Only Attack [20] 2018 None tested None tested

Opt-Attack [11] 2018 None tested None tested

R-AP [28] 2018 None tested None tested

Query-Limited Attack [20] 2018 None tested None tested

Partial-Info Attack [20] 2018 None tested None tested
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The results of the survey show that many modern adversarial attack studies
have not focused on testing mitigation strategies, as shown in Table 5. Eighty
percent of the discussed attacks against object detectors have not been tested
against any mitigation strategies. Our study shows that the generalizability of
recent attacks is increasing, which poses a more significant threat to the in-
dustry. No longer do the attacks focus on a single objective or target model,
but rather, they combine all these goals into broader attacks. This means that
modern attacks can bypass more defenses and achieve multiple attack objectives.

7 Conclusion and Future Work

We conducted a systematic literature review in order to summarize state-of-the-
art black-box attacks targeting object detection models to help users evaluate
and mitigate the risks. The literature review resulted in 29 unique black-box
attack methods from 27 papers. Our analyses summarized the status and trends
regarding attackers’ knowledge needed to perform the attack, consequences, gen-
eralizability, and current mitigation strategies for each attack. We acknowledge
that the SLR may have left out some papers due to missing search queries and
limited database coverage. One finding from our study is that mitigation strate-
gies should be comprehensively tested on the identified black-box attacks to find
out which defenses are robust and which could be improved. We plan to focus
on evaluating and improving different mitigation strategies as our future work.
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