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Abstract—This paper presents communication-efficient ap-
proaches to federated learning for resource-constrained devices
with access to streaming data. In particular, we first propose a
partial-sharing-based framework for online federated learning,
called PSO-Fed, wherein clients update local models from a
stream of data and exchange tiny fractions of the model with
the server, reducing the communication overhead. In contrast to
classical federated learning approaches, the proposed strategy
provides clients who are not part of a global iteration with
the freedom to update local models whenever new data arrives.
Furthermore, by devising a client-side innovation check, we also
propose an event-triggered PSO-Fed (ETPSO-Fed) that further
reduces the computational burden of clients while enhancing
communication efficiency. We implement the abovementioned
frameworks in the context of kernel regression, where clients
perform local learning employing random Fourier features-based
kernel least mean squares. In addition, we examine the mean
and mean-square convergence of the proposed PSO-Fed. Finally,
we conduct experiments to determine the efficacy of the pro-
posed frameworks. Our results show that PSO-Fed and ETPSO-
Fed can compete with Online-Fed while requiring significantly
less communication overhead. Simulations demonstrate an 80%
reduction in PSO-Fed and an 84.5% reduction in ETPSO-
Fed communication overhead compared to Online-Fed. Notably,
the proposed partial-sharing-based online FL strategies show
good resilience against model-poisoning attacks without involving
additional mechanisms.

Index Terms—Online federated learning, communication-
efficiency, partial-sharing, set-membership filtering, kernel least
mean squares, random Fourier features, Byzantine attacks.

I. INTRODUCTION

In the modern age, geographically dispersed edge devices
have access to enormous data volumes. By performing model
training on this entire data, the end-user experience can be
enhanced in many tasks, such as regression, classification, and
clustering. The standard machine learning approaches require
edge devices to communicate their data to a centralized server
or cloud for further processing. However, privacy concerns
prevent edge devices from sharing their private data with
the cloud. This concern led to the development of a new
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distributed learning framework, namely, federated learning
(FL) [1]–[8], wherein edge devices connected to a server
collaboratively train a global shared model using locally stored
data without revealing it to others. The practical implemen-
tation of FL, however, poses many challenges. First, client
devices own an unbalanced amount of non-IID data [9]–[11].
Second, the training phase of the global shared model re-
quires a significant amount of communication overhead. Third,
there is uneven client participation due to battery, bandwidth,
memory, and computational constraints [12]–[14]. Lastly, the
possible presence of adversarial clients, i.e., malicious clients
trying to disrupt the learning and undermine model reliability,
poses security and privacy concerns [15], [16]. Throughout
this paper, our primary focus is on reducing communication
overhead.

The federated average (FedAvg) is among the most popular
methods for FL [17]. The FedAvg begins each global iteration
round by sharing its aggregated model, the global model, with
a fraction of all clients. Typically, the clients are selected
uniformly at random; however, other methods exist that can
enhance performance, see, e.g., [18]–[21]. Upon receiving
the aggregated server model, clients perform several local
learning iterations and then share the updated model parame-
ters with the server. The server then fuses the parameters of
the local model updates, yielding a new global model. The
above update-aggregation procedure is reiterated until conver-
gence, or when a predefined performance criterion is satisfied.
Although the training phase of FedAvg summarized above
intends to minimize the overall communication overhead, the
resulting model accuracy depends heavily on the number of
epochs executed by the clients [17], [22].

Modern machine learning models are typically quite large.
Consequently, the training phase in FL will involve numerous
iterations to finalize the globally shared model. Furthermore,
each global round constitutes model exchanges between par-
ticipating clients and the server, resulting in enormous commu-
nication overheads. A variety of solutions have been proposed
in the literature for reducing this communication overhead.
As an example, the work in [23] proposes a communication-
mitigated federated learning scheme that discards irrelevant
client updates by employing a model-alignment check. In
[24], several strategies are considered to reduce communi-
cation overhead in the uplink. The first one is a structured
update, where clients update the local model in a restricted
space parametrized with fewer variables. Another approach
is sketched update, wherein clients utilize 1-bit quantization,
random rotations, and subsampling to compress the entire
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locally updated model before sending it to the server. Despite
their benefits in cutting down the amount of communication,
sketch updates are resource-consuming and incur increased
complexity for clients. These aspects further contribute to
uneven client participation and limit their use in low-latency
applications. The structured communication reduction for fed-
erated learning (FedSCR) [25] discards insignificant client
updates for global learning when several model parameters
remain constant. Recently proposed SignSGD and its variants
[26] utilize sign-based gradient compressors to reduce the
computational and communication costs of FL.

The above FL approaches assume fixed data batches locally
stored at clients, which might be too restrictive in latency-
sensitive or dynamic environments [27], [28]. Instead, clients
could gain access to new data or even a continuous data
stream during the model-training phase [29], [30]. Recently, in
[31], online federated learning (Online-Fed) was discussed to
cope with such scenarios. In Online-Fed, clients perform real-
time and online learning, and the server combines received
model parameters shared by the clients. Additionally, the
asynchronous online federated learning framework (ASO-Fed)
presented in [13] considered model learning in a scenario of
uneven client participation and communication delays. Finally,
in [32], a communication-efficient online asynchronous FL
based on lossy compression was introduced; this approach,
however, is associated with the previously discussed chal-
lenges encountered with competitive sketched updates.

In contrast to sketch/compressed updates, this paper pro-
poses novel online FL strategies that involve less communica-
tion overhead and demand very little memory and computation
on the client side. We exploit partial-sharing communication
in tandem with online federated learning to develop a partial-
sharing-based online federated learning (PSO-Fed) strategy.
Clients adapt local models in the proposed PSO-Fed approach
using local data streams and share only a fraction of the
model updates with the server. Compared to Online-Fed, PSO-
Fed allows non-participating clients to update local models
whenever they acquire new data. This feature of PSO-Fed
can be beneficial for resource-constrained devices, includ-
ing straggler devices. To further cut down communication
costs, we introduce an event-triggered PSO-Fed (ETPSO-Fed)
wherein clients only perform local learning and model sharing
when the newly available input data has sufficient innovation.
Doing so further reduces the communication overhead and the
computational burden on clients. To demonstrate the efficacy
of the proposed FL schemes, we consider kernel regression
in an environment with unbalanced and non-IID data. For
this purpose, we update the local nonlinear regression model
using the random Fourier features-based kernel LMS (RFF-
KLMS) [33]–[35]. We carry out a detailed study on the
mean and mean-square convergence of the proposed PSO-Fed
strategy employing RFF-KLMS. Our numerical experiments
confirm that the PSO-Fed and ETPSO-Fed have comparable
performance with the Online-Fed while significantly reduc-
ing the overall communication cost. Furthermore, the pro-
posed partial-sharing-based FL strategies demonstrate good
resilience to model-poisoning attacks without additional robust
aggregation or adversarial detection mechanisms, as in [36],

[37].
This paper is organized as follows. Section II introduces the

basics of FL and online-Fed for kernel regression. Then, we
present communication-efficient online FL strategies, namely,
PSO-Fed and ETPSO-Fed, in Section III. Section IV provides
the detailed convergence analysis of the PSO-Fed. Results
from numerical experiments to validate the performance of
the proposed algorithms are presented in Section V. Finally,
concluding remarks for this work are presented in Section VI.

II. PRELIMINARIES

In this section, we first review the problem of kernel
regression and present online FL for collaboratively training a
global shared model in the context of kernel regression. Next,
we briefly discuss the communication-efficient version of it
called Online-Fed [31].

A. Kernel Regression

In many real-life scenarios, such as time-series prediction,
channel equalization in communication systems, and regres-
sion, we frequently encounter nonlinear models whose input-
output relationships at time index n can be described as

yn = f(xn) + νn, (1)

where the input signal vector xn = [xn, xn−1, · · · , xn−L+1]
T,

yn is the desired output and νn is the observation noise. The
function f : RL → R is a continuous nonlinear function.
Linear estimation methods [38], [39] model these sophisticated
input-output relationships poorly. Kernel methods that operate
in reproducing kernel Hilbert space (RKHS) have been found
to be efficient in estimating the nonlinear relationships repre-
sented by the function f(·) [40]–[42].

When estimating the nonlinear function f(·) in (1), kernel
methods first transform the input regressor xn ∈ RL into
a high-dimensional feature space as φ(xn), in which the
inner products can be evaluated using kernels. A continuous,
symmetric, and positive-definite kernel function κ(·, ·) : RL×
RL → R, satisfies the following Mercer’s condition [42]:

κ(xi,xn) = φT(xi)φ(xn). (2)

Inner products in higher dimensional space can be obtained via
kernel function evaluation even without knowing the mapping
φ(·). A kernel is said to be a reproducing kernel if it satisfies
the reproducing property [42], namely,

κ(xi,xn) = 〈κ(·,xi), κ(·,xn)〉H, (3)

where H is the RKHS in which the reproducing kernel is
defined and 〈·, ·〉H denotes the corresponding inner product.
In (3), κ(·,xi) is a representer evaluation at xi. The focus of
this paper is exclusively on the Gaussian kernel, which is a
well-known Mercer kernel [42].

Given the data pairs {xi, yi}n−1i=1

⋃
{xn}, from the represen-

ter theorem [42], the estimate of yn (i.e., ŷn) can be expressed
as

ŷn =

n−1∑
i=1

αi κ(xi,xn). (4)
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The kernel least mean squares algorithm (KLMS) [33] esti-
mates the coefficients αis by solving the following optimiza-
tion problem:

min
α1,...,αn−1

E

(yn − n−1∑
i=1

αi κ(xi,xn)

)2
 . (5)

It can be seen from (5) that the dimensionality of the
model increases as time progresses (i.e., the number of kernel
evaluations required to obtain the system output increases with
n). The growing dimensionality problem can be addressed
with sparsification methods [40], [41]. These methods use the
coherence check criterion and novelty criterion to discard the
redundant input regressors. However, sparsification methods
are resource-intensive and unsuitable for decentralized learn-
ing due to the need to train and broadcast a dictionary every
time the underlying model changes.

It is possible to obtain a computationally efficient and
flexible solution for (5) using random Fourier features (RFF)
[34], [35], [43]–[46]. In the D-dimensional RFF space, a shift-
invariant kernel evaluation, i.e., κ(xi,xn) = κ(xi − xn),
can be approximated using inner product. As a consequence,
this approximation makes the estimation problem (5) a finite-
dimensional linear estimation problem. Furthermore, kernel
function evaluations are no longer needed. Suppose the map-
ping of xn into the D-dimensional RFF space is zn. It is then
possible to approximate the kernel evaluation by κ(xi,xn) ≈
zTi zn. Thus, the estimate ŷn in (4) can be approximated by

ŷn ≈
( n−1∑
i=1

αi zi

)T
zn = wTzn, (6)

where w =
n−1∑
i=1

αi zi, is the linear representation of the

function f(·) in D-dimensional RFF space. Various feature
functions such as cosine, exponential, and Gaussian functions
can be used to map xn into D-dimensional RFF space. The
cosine feature function computes zn as [34]:

zn = (D/2)−
1
2

[
cos(vT

1xn + b1), . . . , cos(v
T
Dxn + bD)

]T
,
(7)

where the vectors {vi}i=1:P are drawn from the probability
density function p(v) and phase terms bi ∈ U [0, 2π], for i =
1, . . . , D (here U(·) represents the uniform distribution). On
the other hand, using the exponential feature function, zn can
be obtained as [35]:

zn =
[
exp

(
− (vT

1xn + b1)
)
, . . . , exp

(
− (vT

Dxn + bD)
)]T

,
(8)

where {vi, bi} are the same as defined above. For the same D,
the cosine feature function exhibits better performance than
the exponential feature function but consumes more energy
resources. In RFF space, the estimation problem (5) takes the
following form:

wn = min
w

E
[
[(yn −wTzn)

2
]
. (9)

It is important to note that the usage of RFF avoids the need
for maintaining a global dictionary.

B. Online Federated Learning

We consider a scenario wherein K dispersed clients com-
municate with a server. At time instant n, each client k has
access to input signal xk,n and its associated desired output
yk,n, which are related by the following model:

yk,n = f(xk,n) + νk,n, (10)

where f(·) specifies a continuous nonlinear model to be
estimated, xk,n = [xk,n, xk,n−1, · · · , xk,n−L+1]

T and νk,n are
the data vector and the observation noise local to client k,
respectively. Here, the objective is to collaboratively estimate
f(·), utilizing locally stored data at clients without leaking it
to other clients. In particular, we want to solve the following
optimization problem:

min
w
J (w), where J (w) =

1

K

K∑
k=1

Jk(w). (11)

Here, Jk(w) is the local objective function of kth client, given
by

Jk(w) = E
[
|yk,n − ŷk,n|2

]
, (12)

with ŷk,n = wTzk,n, where the local model parameter vector
w ∈ RD, is a linear approximation of f(·) in a D-dimensional
RFF space, and the mapping of xk,n into the RFF space is
denoted by zk,n ∈ RD.

C. Online-Fed

To achieve energy efficiency, Online-Fed allows the server
to randomly select a subset of clients in every global iteration.
During the nth global iteration, the set of randomly chosen
client indices is denoted by Sn, where C = |Sn| is the
cardinality of Sn. All clients have equal chances of being
selected and the probability is pc = C

K . The server shares
the global model wn with the selected clients. Thereafter, the
selected clients ∀k ∈ Sn use a stochastic gradient descent rule
[47] for minimizing the local risk Jk(w) as follows:

wk,n+1 = wn + µ zk,n εk,n, (13)

where εk,n = yk,n − wT
nzk,n, and µ is a step size, control-

ling convergence rate and steady-state performance. Clients
communicate their updated models, obtained via (13), to the
server. By aggregating the local models received, the server
then produces the global model as

wn+1 =
1

C

∑
k∈Sn

wk,n+1. (14)

We notice that in the Online-Fed, as outlined above, there is
no benefit of letting clients perform local learning during the
periods when they are not contributing to the global update,
even if new data is acquired. In particular, as soon as the
server selects new clients, their most recent local model is
replaced with the global model, regardless of whether more
recent updates are made locally. As a result, performance
is hindered. Furthermore, there is still a significant amount
of communication within each global round. Our solution to
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this problem stems from the partial-sharing-based commu-
nication [48], [49], which is appealing for communication-
efficient distributed learning. In the following, we present
novel communication-efficient online FL strategies using the
concepts of partial-sharing. In contrast to sketch updates in
[32], the proposed Online FL strategies do not impose any
additional computational or memory demands on clients.

III. PARTIAL-SHARING-BASED ONLINE FEDERATED
LEARNING STRATEGY (PSO-FED)

In the following, we propose a federated learning approach
that reduces the communication cost by sharing a subset of all
model parameters in each update-aggregation round. In every
communication round, selection matrices, known by clients
and the server, are used to keep track of the exchanged model
parameters.

In every global iteration n, a D × D diagonal selection
matrix Sk,n specifies the model parameters that will be ex-
changed between clients and the server. The principal diagonal
of Sk,n has M ones and D − M zeros. The positions of
ones in Sk,n specify which parameters to be exchanged.
The M model parameters can either be selected stochasti-
cally or sequentially as in [48]–[50]. In order to make the
implementation simple, our approach considers coordinated
and uncoordinated partial-sharing-based communication. The
coordinated partial-sharing scheme assigns each client the
same selection matrix (i.e., S1,0 = S2,0 = · · · = SK,0 = S0).
This means that participating clients will share the same
portion of the model at every global iteration. In contrast, the
uncoordinated partial-sharing scheme assigns random initial
selection matrices to clients (i.e., S1,0 6= S2,0 6= · · · 6= SK,0).
As a result, clients are not necessarily sharing the same
portion of the model with the server in each communication
round. A right circular shift operation on the main diagonal
elements of the current entry selection matrix Sk,n generates
the entry selection matrix for the next global iteration, i.e.,
diag{Sk,n+1} = circshift(diag{Sk,n}, τ), where the integer τ
indicates the number of positions. The diag{·} operator returns
a column vector that consists of the main diagonal elements
of its argument matrix. To keep track of the model parameters
being shared, every client must perform this right circular shift
operation on the main diagonal elements of the current entry
selection matrix. With this procedure, each model parameter
will be exchanged M times over D iterations. Thus, each
model parameter being exchanged between clients and the
server has a probability of pe = M

D .
The Online-Fed workflow can be expressed alternatively

using selection matrices as

wk,n+1 = wn + µ zk,n εk,n

= Sk,nwn + (ID − Sk,n)wn + µ zk,n εk,n,
(15a)

with

εk,n = yk,n −wT
nzk,n

= yk,n − (Sk,nwn + (ID − Sk,n)wn)
Tzk,n.

Algorithm 1: PSO-Fed. There are K clients with
learning rate µ, set of all clients is S, and τ is the
circular shift variable,

Initialization: Initial global and local models are w0

and wk,0, respectively. The dimension of RFF is D
and selection matrices for partial-sharing-based
communication are given by Sk,0, ∀k ∈ S,

For n = 1 to N
In every global iteration n, a random subset of clients
Sn (C clients out of K clients) is chosen by the
server. Then, the server communicates Sk,nwn with
the selected clients.

Client Local Update:

If k ∈ Sn
w′k,n = Sk,nwn + (ID − Sk,n)wk,n,

εk,n = yk,n − (w′k,n)
Tzk,n,

wk,n+1 = w′k,n + µ zk,n εk,n,

Else
εk,n = yk,n −wT

k,nzk,n,

wk,n+1 = wk,n + µ zk,n εk,n,

EndIf

Every client ∀k ∈ Sn communicates Sk,n+1wk,n+1 to
the server, where
diag{Sk,n+1} = circshift(diag{Sk,n}, τ).

Aggregation at the Server:
By aggregating the local updated models, the

server generated the global shared model as

wn+1 =
1

C

∑
k∈Sn

Sk,n+1wk,n+1 + (ID − Sk,n+1)wn.

EndFor

wn+1 =
1

C

∑
k∈Sn

wk,n+1

=
1

C

∑
k∈Sn

Sk,n+1wk,n+1 + (ID − Sk,n+1)wk,n+1.

(15b)

In the above, ID is an identity matrix of size D×D. Since in
PSO-Fed the server and clients only exchange small portions
of the entire models in each round, the remaining portions,
i.e., (ID − Sk,n)wn in (15a) and (ID − Sk,n+1)wk,n+1 in
(15b), are unknown. These unknown portions require attention
in the local updates and the subsequent aggregation. The best
solution is to allow clients and server to utilize their previous
model parameters instead of the unknown portions. Therefore,
in the proposed PSO-Fed:

• participating clients use (ID − Sk,n)wk,n in place of
(ID − Sk,n)wn, and

• the server uses (ID − Sk,n+1)wn in place of (ID −
Sk,n+1)wk,n+1.
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By communicating a portion of the model in each global iter-
ation, the proposed PSO-Fed achieves better communication-
efficiency over Online-Fed (since M is much smaller than D)
and the reduction in communication overhead is (D−MD )%
during every global iteration n. Aside from enabling efficient
communication between clients and the server, PSO-Fed also
enables greater control over the local learning. To this end,
PSO-Fed allows clients who do not participate in the global
iterations to perform local learning whenever they acquire new
data. It is worth noting that the participating clients perform
only partial-sharing-based information exchange when they do
not have access to new data. Algorithm 1 presents a summary
of the proposed PSO-Fed.

It is also important to note that, as mentioned above, state-
of-the-art approaches replace local models with the global
shared model whenever clients get a chance to contribute to
the global shared model update, which makes local updates fu-
tile during communication-dormant times. Additionally, state-
of-the-art techniques require a server-based attack detection
mechanism if a few clients with malicious intentions attempt
to poison the global shared model. However, model-poisoning
cannot spread as quickly with PSO-Fed as with conventional
FL strategies due to partial-sharing-based communication. As
a result, the proposed PSO-Fed is more robust to Byzantine
attacks without requiring additional mechanisms.

IV. PERFORMANCE ANALYSIS

Throughout this section, we examine the convergence be-
havior of the proposed PSO-Fed algorithm. In particular, we
want to study the impact of partial-sharing-based communica-
tion on the convergence behavior of the proposed PSO-Fed. As
a preliminary to the analysis, we define the following expanded
parameter vectors: global optimal extended model parameter
vector w?

e , extended estimated global model parameter vector
we,n, extended input data matrix Ze,n and extended observa-
tion noise vector νe,n as follows:

w?
e = 1K+1 ⊗w?,

we,n = col{wn,w1,n,w2,n, . . . ,wK,n},
Ze,n = blockdiag{0, z1,n, z2,n, . . . , zK,n},
νe,n = col

{
0, ν1,n, ν2,n, . . . , νK,n

}
,

(16)

where col{·} is the column-wise stacked and blockdiag{·}
is the block diagonalized operator. The symbol 1K+1 is a
(K + 1)-dimensional column vector, where each element has
the value one. These definitions lead us to write the global
expanded desired output vector and extended observation noise
vector as

ye,n = col{0, y1,n, y2,n, . . . , yK,n} = ZT
e,nw?

e + νe,n,

εe,n = col
{
0, ε1,n, ε2,n, . . . , εK,n

}
= ye,n − ZT

e,nAS,nwe,n,
(17)

with

AS,n =
ID 0 0 . . . 0

a1,nS1,n ID − a1,nS1,n 0 . . . 0
...

...
...

. . .
...

aK,nSK,n 0 0 . . . ID − aK,nSK,n

 ,
(18)

where ak,n takes the value 1 if the client k is chosen in the
current global iteration (i.e., k ∈ Sn) and zero otherwise.
Based on these definitions, the global recursion of PSO-Fed
can be expressed as follows:

we,n+1 = BS,n+1

(
AS,nwe,n + µ Ze,n εe,n

)
, (19)

where

BS,n+1 =
ID −

∑
k∈Sn

ak,n

C Sk,n+1
a1,n
C S1,n+1 . . .

aK,n

C SK,n+1

0 ID . . . 0
...

...
. . .

...
0 0 . . . ID

 ,
(20)

In the following, we investigate the mean and mean-square
convergence behavior of the proposed PSO-Fed described in
(19). To establish the conditions for the convergence of PSO-
Fed, we assume the following:
A1: The sequence of local input vectors, zk,n, is modeled
as a weakly stationary multivariate random sequence with
correlation matrix Rk = E[zk,nzTk,n].
A2: The observation noise νk,n is taken to be a white process,
independent of any other data.
A3: The selection matrices Sk,n are taken to be statistically
independent of any other data. Furthermore, Sk,n and Sl,m are
assumed independent, for all k 6= l and m 6= n.
A4: The higher-order terms of the learning rate µ can be
ignored for sufficiently small µ.

A. Mean Convergence Analysis

Denoting w̃e,n = w?
e − we,n, and recalling the fact that

w?
e = BS,n+1AS,nw?

e (from (18) and (20), one can see that
the row sum of AS,n and BS,n+1 is equals to 1, so we have
w?
e = AS,nw?

e and w?
e = BS,n+1w

?
e), then from (19), the

recursive expression for w̃e,n+1 is

w̃e,n+1 =BS,n+1

(
I− µZe,nZT

e,n

)
AS,nw̃e,n

− µBS,n+1Ze,nνe,n,
(21)

where I represents the identity matrix of appropriate size.
Theorem 1: Let A1-A3 hold true. Then, the condition for

the mean convergence of proposed PSO-Fed is

0 < µ <
2

max
∀k,i
{λi(Rk)}

, (22)

where λi(·) is the ith eigenvalue of matrix Rk.
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Proof: Taking the expectation of (21), and adopting A1−
A3, yields

E[w̃e,n+1] = BS

(
I− µRe

)
ASE[w̃e,n], (23)

where Re = blockdiag{0,R1,R2, . . . ,RK}, BS =
E[BS,n+1] and AS = E[AS,n]. In Appendix A, we evaluate
the quantities AS and BS and show that all entries in these
matrices are real, non-negative and their row sum is unity.
Thus, both of these matrices are right-stochastic matrices. As
a result, the spectral radius of these matrices is unity [51].
From (23), one can see that E

[
w̃e,n

]
converges if and only

if ‖BS

(
I − µRe

)
AS‖ < 1 for every n, where ‖ · ‖ is any

matrix norm. To obtain the mean convergence condition, we
employ the block maximum norm (i.e., ‖·‖b,∞) [52]. Since AS

and BS are right stochastic matrices, we have ‖AS]‖b,∞ = 1
and ‖BS‖b,∞ = 1. Hence, the convergence condition becomes
‖I − µRe‖b,∞ < 1, or, ∀k, i : |1 − µλi(Rk)| < 1, where
λi(·) is the ith eigenvalue of matrix Rk. Upon solving the
convergence condition above, we reach (22).

Under (22), the proposed PSO-Fed converges in mean and
is also asymptotically unbiased in the RFF space.

B. Mean-Square Convergence Analysis

Defining the weighted norm-square of w̃e,n as ‖w̃e,n‖2Σ =
w̃T
e,nΣw̃e,n, where Σ is an arbitrary positive semi-definite

matrix, then from (21), we have the following weighted
variance relation:

E[‖w̃e,n+1‖2Σ] = E[‖w̃e,n‖2Σ′ ] + µ2E[νT
e,nYΣ

n νe,n], (24)

where the cross terms become zero under the assumption A2.
The matrix Σ′ is given by

Σ′ = E
[
AT

S,n
(
I− µZe,nZT

e,n

)
BT

S,n+1

×ΣBS,n+1

(
I− µZe,nZT

e,n

)
AS,n

]
,

(25)

and

YΣ
n = ZT

e,nB
T
S,n+1ΣBS,n+1Ze,n. (26)

Using A3, and from the properties of block vectorization op-
erator bvec{·} and block Kronecker product [53], the relation
between σ = bvec{Σ} and σ′ = bvec{Σ′} can be obtained
as

σ′ = bvec
{
E
[
AT

S,n
(
I− µZe,nZT

e,n

)
BT

S,n+1

×ΣBS,n+1

(
I− µZe,nZT

e,n

)
AS,n

]}
= FTσ,

(27)

where

F = QBQA − µQB(I⊗b Re)QA − µQB(Re ⊗b I)QA,
(28)

with

QA = E[AS,n ⊗b AS,n],

QB = E[BS,n+1 ⊗b BS,n+1].
(29)

Under A4, the higher-order powers of µ are neglected in
(28). In the following, we proceed with this approximation. In

Appendix B, we evaluate the quantities QA and QB and show
that all entries in these matrices are real, non-negative and
their row sum is unity. This implies that both these matrices
are right-stochastic matrices. Hence, their spectral radius is
equal to one.

Next, we evaluate the second term in the RHS of (24). We
can write E[νT

e,nYΣ
n νe,n] = E[νT

e,nZT
e,nB

T
S,n+1ΣBS,n+1

Ze,nνe,n] = E
[
trace(νT

e,nZT
e,nB

T
S,n+1ΣBS,n+1Ze,nνe,n)

]
=

trace
(
E[νT

e,nZT
e,nB

T
S,n+1ΣBS,n+1Ze,nνe,n]

)
= trace

(
E[

BS,n+1Ze,nE[νT
e,nνe,n]Z

T
e,nB

T
S,n+1]Σ

)
(trace(·) represents

the trace of an argument matrix). Under A2, one can write

trace
(
E[BS,n+1Ze,nE[νT

e,nνe,n]Z
T
e,nB

T
S,n+1]Σ

)
= trace

(
E[BS,n+1ΦnBT

S,n+1]Σ
)
,

(30)

where Φn = Ze,nΛνZ
T
e,n, with Λν = E[νT

e,nνe,n] =
diag{0, σ2

ν,1, σ
2
ν,2, · · · , σ2

ν,K}, is a diagonal matrix. Using the
block Kronecker product properties, we finally have

trace
(
E[BS,n+1ΦnBT

S,n+1]Σ
)
= βTσ, (31)

where

β = bvec{E[BS,n+1ΦnBT
S,n+1]}

= QB βν ,
(32)

with βυ = bvec{E[Φn]} = bvec{E[Ze,nΛνZ
T
e,n)]}.

Utilizing all these results together, the recursion for the
weighted extended MSD of the proposed PSO-Fed can be
stated as

E[‖w̃e,n+1‖2bvec−1{σ}] = E[‖w̃e,n‖2bvec−1{FTσ}] + µ2βTσ,

(33)

where bvec−1{·} represents the reverse operation of block
vectorization.

Theorem 2: Let A1-A4 hold true and (33) represents the
dynamics of weighted extended MSD. Then, the proposed
PSO-Fed exhibits stable MSD under

0 < µ <
1

max
∀k,i
{λi(Rk)}

. (34)

Proof: Iterating the recursion (33), backwards down to
n = 0, we have

E[‖w̃e,n+1‖2bvec−1{σ}] = E[‖w̃e,0‖2bvec−1{(FT)n+1 σ}]

+ µ2 βT
(
I +

n∑
j=1

(FT)j
)
σ,

(35)

where w̃e,0 = w?
e − we,0. For the convergence of

E[‖w̃e,n‖2Σ] = E[‖w̃e,n‖2bvec−1{σ}], the spectral radius of F
must be less than one, i.e., ρ

(
F
)
< 1. From the properties of

block maximum norm, we can write

ρ
(
F
)

≤
∥∥QB

(
I− µ(I⊗b Re)− µ(Re ⊗b I)

)
QA

∥∥
b,∞

≤ ‖QB‖b,∞‖I− µ(I⊗b Re)− µ(Re ⊗b I)‖b,∞‖QA‖b,∞,
(36)

Since the matrices QA and QB are right stochastic,
their block maximum norm is unity, i.e., ‖QA‖b,∞ =
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‖QB‖b,∞ = 1. Therefore, the requirement for the convergence
of E[‖w̃e,n‖2Σ] is ‖I − µ(I ⊗b Re) − µ(Re ⊗b I)‖b,∞ < 1,
or, equivalently, |1 − µ(λi(Re) + λj(Re))| < 1, i, j =
1, 2, · · · , D(K + 1). Finally, the convergence condition be-
comes 0 < µ < 1

max
i=1,··· ,D(K+1)

λi(Re)
that proves (34).

C. Transient and Steady-State Mean Square Deviation

From (33), we can relate E[‖w̃e,n+1‖2bvec−1{σ}] and
E[‖w̃e,n‖2bvec−1{σ}] as

E[‖w̃e,n+1‖2bvec−1{σ}] = E[‖w̃e,n‖2bvec−1{σ}]

+ µ2βT(FT)n σ

− E
[
‖w̃e,0‖2bvec−1{(I−FT)(FT)nσ}

]
.

(37)

By selecting σ = bvec{blockdiag{ID,0, . . . ,0}}, the mean
square deviation of the global estimate at time index n: ζn =
E[‖w̃n‖2] = E[‖w̃e,n‖2bvec−1{σ}] can be obtained.

Under (34), letting n→∞ on both sides of (33), we obtain

lim
n→∞

E[‖w̃e,n‖2bvec−1{(I−FT)σ}] = µ2βTσ. (38)

By substituting σ = (I−FT)−1bvec{blockdiag{ID,0, . . . ,
0}} in (38), the steady-state MSD at the global server can be
obtained.

D. ETPSO-Fed

Client local models will hardly change if the newly arrived
data is not innovative (i.e., magnitude of the estimation error
at client k is less than the predefined threshold). Therefore,
updating the local client model and communicating the un-
changed model to the server would waste resources. Despite
reducing the communication cost between clients and the
server, PSO-Fed is agnostic to the innovation of the data
arriving at clients. So PSO-Fed forces participating clients
to update local models regardless of the benefits of such
updates, and then it communicates the updated model to
the server. In order to avoid unnecessary processing and
communication, it is essential to use data effectively, update
parameter estimates and communicate those only when it is
beneficial to do so. Below, we consider an FL approach,
based on the set-membership filtering (SMF) principles [54],
[55], that features data-dependent innovation-triggered updates
of parameter estimates at each device. This feature makes
naturally embedded selective communication possible among
devices and the server. That is, in our context, the selective
update feature of SMF algorithms not only reduces local
computational complexity for the devices but also provides
a systematic mechanism for further reduction of the commu-
nication overhead.

The proposed event-triggered PSO-Fed (ETPSO-Fed)
scheme implements the partial-sharing strategy and employs
the SM-NLMS algorithm [54] in the local adaptation step.
In particular, during a global iteration n, each participating
client updates the local model if and only if the magnitude
of the learning error εk,n is greater than a presumed bound γ.
Otherwise, clients do not need to update and communicate the

Algorithm 2: ETPSO-Fed. There are K clients with
learning rate µ, set of all clients is S, τ is the circular
shift variable, and error threshold γ.

Initialization: Initial global and local models are w0

and wk,0, respectively. The dimension of RFF is D
and selection matrices for partial-sharing-based
communication are given by Sk,0, ∀k ∈ S,

For n = 1 to N
In every global iteration n, a random subset of clients
Sn (C clients out of K clients) is chosen by the
server. Then, the server communicates Sk,nwn with
the selected clients.

Client Local Update:
If k ∈ Sn

w′k,n = (Sk,,nwn + (ID − Sk,n)wk,n,

εk,n = yk,n − (w′k,n)
Tzk,n,

If |εk,n| > γ

wk,n+1 = w′k,n + (1− γ

|εk,n|
) zk,n εk,n,

Else
wk,n+1 = w′k,n

EndIf
Else

εk,n = yk,n −wT
k,nzk,n,

If |εk,n| > γ

wk,n+1 = wk,n + (1− γ

|εk,n|
) zk,n εk,n,

Else
wk,n+1 = wk,n

EndIf
EndIf

Clients ∀k ∈ S ′n, i.e., the clients having |εk,n| > γ
(with C ′ = |S ′n| ≤ C), share Sk,n+1wk,n+1 with the
server, where
diag{Sk,n+1} = circshift(diag{Sk,n}, τ).

aggregation at the Server:
If C ′ > 0

wn+1 =
1

C ′

∑
k∈S′n

Sk,n+1wk,n+1 + (ID − Sk,n+1)wn,

Else
wn+1 = wn.

EndIf
EndFor

local model. In this way, the proposed ETPSO-Fed reduces the
communication requirements from clients to the server. The
recursive formulas for the ETPSO-Fed implementation are as
follows:

εk,n = yk,n − (Sk,nwn + (ID − Sk,n)wn)
Tzk,n,

wk,n+1 = (Sk,nwn + (ID − Sk,n)wn) + αk,nεk,nzk,n,
(39)
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where variable step size αk,n is optimal in the sense of
”principle of minimum disturbance”, and in the sense of
”optimal bounding spheroids” [54], and is given by

αk,n =

{
1− γ

|εk,n| , if |εk,n| > γ

0, otherwise.
(40)

Equation (40) is termed innovation check, i.e., only when
the prediction error magnitude of the current data pair with
the previous parameter estimate exceeds the error bound,
the data is considered innovative, and an update on the
parameter estimate is performed. Otherwise, αk,n = 0, and no
update is needed. Furthermore, non-participating clients can
also use SMF principles for local learning when they have
access to new data. Using innovation checks, those clients can
avoid unnecessary computational and communication burdens.
Therefore, by integrating the concepts of partial-sharing and
SMF, it is clear that ETPSO-Fed has the potential to achieve
higher communication savings than PSO-Fed by utilizing the
innovation check along with the partial-sharing-based com-
munication. Compared to Online-Fed and PSO-Fed, ETPSO-
Fed offers 2CD−(C+C′)M

2CD % and 2CM−(C+C′)M
2CM % reduction

in communication overhead during each global iteration n. In
general, the communication from clients to the server (i.e.,
uplink) is more resource-intensive than the communication
from the server to clients (i.e., downlink). Thus, it is important
to note that when only uplink communication is considered,
ETPSO-Fed further offers C−C′

C % reduction in communi-
cation overhead compared to PSO-Fed during each global
iteration n. Here C ′ denotes the number of clients fulfilling the
innovation check. The proposed ETPSO-Fed is summarized in
Algorithm 2.

V. EXPERIMENTAL RESULTS

Experiments are conducted in this section for evaluating the
performance of PSO-Fed and ETPSO-Fed. In all experiments,
we considered a scenario in which 100 clients are connected
to a server. Every client k has access to a synthetic non-IID
input signal xk,n and corresponding observed output yk,n that
are assumed to be related as

f(xk,n) =
√
x2k,1,n + sin2(π xk,4,n)

+
(
0.8− 0.5 exp(−x2k,2,n

)
xk,3,n + νk,n. (41)

At each client k, a first-order autoregressive (AR) model
was employed to produce the non-IID input signal xk,n:
xk,n = θk xk,n−1 +

√
1− θ2k uk,n, θk ∈ U(0.2, 0.9), where

uk,n ∈ N (µk, σ
2
uk
), with µk ∈ U(−0.2, 0.2) and σ2

uk
∈

U(0.2, 1.2). The observation noise νk,n was assumed to be
white Gaussian with a variance of σ2

νk
∈ U(0.005, 0.03). The

cosine feature function was used to map xk,n into the 200-
dimensional RFF space. Every simulated algorithm was set to
the same learning rate of 0.75. In every global iteration n,
a uniform random selection procedure was implemented by
the server for selecting C = |Sn| = 4 clients. We evaluated
the simulation performance by computing the average mean-
square-error (MSE) of the test data, i.e.,

Testing MSE =
1

Ntest
‖ytest − ZT

testwn‖22, (42)

where {Ztest,ytest} is the test data set (Ntest examples in total)
that contains possible examples of every client. To carry out
the task of kernel regression, we simulated the proposed PSO-
Fed for several sizes of the shared fraction of the model M .
We also simulated SignSGD (adopted to the aforementioned
online FL scenario) and Online-Fed for comparison purposes.
The resulting learning curves (i.e., testing MSE in dB vss
the global iteration index n), averaged over 500 independent
experiments, are presented in Figs. 1a-1b for both coordinated
and uncoordinated partial-sharing-based online FL schemes.
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Fig. 1. Learning curves of the proposed PSO-Fed: (a). Coordinated partial-
sharing scheme (b). Uncoordinated partial-sharing scheme.

Fig. 1 provides some interesting observations:

1) In comparison with Online-Fed, PSO-Fed offers com-
petitive results at a lower cost of communication. PSO-
Fed shows slower convergence with smaller values of
M (e.g., 1) than Online-Fed, but with a similar steady-
state MSE. As the M value increases (e.g., 5 and 40), its
convergence becomes faster. Overall, PSO-Fed shows a
similar convergence speed when M ≥ 40.

2) The communication cost of PSO-Fed is lower than
Online-Fed since M is much smaller than D. When
M = 40, PSO-Fed behaves just like Online-Fed but
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with a 80% reduction in communication overhead. We
note that the clients that do not contribute to the global
model update can perform local model updates when-
ever new data arrives. Subsequently, when those clients
communicate with the server, only a part of those recent
local updates are replaced with the aggregated server
model. More importantly, a client shares a different
portion of the local model with the server based on
the most recently acquired data. This partial-parameter-
sharing results in improved performance and reduced
communication load. It is worthwhile noting that the
proposed partial-sharing incurs no additional compu-
tational overhead, unlike the sketch updates presented
in [24]. In order to maintain partially-shared parameter
indices, a small amount of memory is required.

3) To perform local learning, PSO-Fed requires D+1 addi-
tional multiplication over SignSGD at each client. When
comes to communication costs, the SignSGD algorithm
needs to communicate C×2D bits to complete a global
iteration. For C = 4, the SignSGD communication cost
is 1600 bits. Whereas with 32-bit fixed-point represen-
tation, the proposed PSO-Fed requires to communicate
32 × C × 2M bits to complete a global iteration. For
M = 1 and 5, the communication costs are 256 bits and
1280 bits, respectively. We see that the proposed PSO-
Fed offers much better performance than the SignSGD
at lower communication costs. It is important to note
that the SignSGD performs better as the value of C
increases but also rises the communication costs. Ac-
cording to Sensoria sensors and Berkeley motes, the
energy consumption ratio for communication to that
for computation per bit ranges from 1000 to 10000
[56]. Furthermore, the communication efficiency of the
proposed PSO-Fed over SignSGD is more pronounced
under 16-bit fixed-point representation (which is suffi-
cient for implementing RFF-based KLMS algorithm on
chip [57]). In light of all this, PSO-Fed offers greater
energy-efficiency than SignSGD.

4) Finally, compared to an uncoordinated partial-sharing,
a coordinated partial-sharing-based online FL strategy
shows a better initial convergence when M is very
small (e.g., 1). In the coordinated partial-sharing-based
scheme, the server aggregates the same portion of entries
from the local model parameter vectors, thus preserving
the client’s interconnectedness. For large values of M ,
however, both schemes perform equally well (e.g., ≥ 5
in our experiment).

Next, we simulated ETPSO-Fed to carry out the aforemen-
tioned kernel regression task for different values of M . The
error bound γ in ETPSO-Fed was set to 0.2 (selected through
a grid search ranging from 0 to 2 with an increment of 0.01)
and the remaining parameters were the same as in the above
experiment. The learning curves are shown in Figs. 2a-2b for
both partial-sharing-based ETPSO-Fed schemes. Fig. 2 shows
that the proposed ETPSO-Fed exhibits similar performance
as that of the PSO-Fed, i.e., same convergence speed and
steady-state testing MSE for all values of M . Furthermore, the
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Fig. 2. Learning curves of the proposed ETPSO-Fed: (a). Coordinated partial-
sharing. (b). Uncoordinated partial-sharing.

performance degradation is inversely proportional to the value
of M . It is important to note that the ETPSO-Fed achieves the
same performance as PSO-Fed with slightly lower communi-
cation load. When M = 40, ETPSO-Fed performs similarly
to Online-Fed and PSO-Fed, but with an average reduction of
84.5% and 21.25% in communication overhead, respectively.
Additionally, ETPSO-Fed reduces communication overhead
by 42.5% on average when only uplink communication is
considered, compared to PSO-Fed.

We next compared the communication cost in each global
iteration (in terms of number of bits) associated with each FL
strategy. For a fair comparison, all strategies were simulated to
achieve the same learning performance. We considered 32-bit
fixed-point representation to compute the communication costs
of Online-Fed, PSO-Fed, and ETPSO-Fed. The corresponding
curves (iteration index n vs. communication cost in number
of bits) are displayed in Fig. 3. The SignSGD-Fed exhibits the
same performance as that of Online-Fed when C = 100. For
C = 100, the communication cost of the Sign-SGD is 40000
bits. The communication costs of Online-Fed and proposed
PSO-Fed strategies are 51200 bits and 10240 bits, respectively.
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The PSO-Fed communication cost was computed at M = 40,
where it performs similarly to Online-Fed. Please note that the
communication load of ETPSO-Fed is lower than PSO-Fed
and varies in each global iteration as it employs an innovation
check during the local client learning.
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10
4

Fig. 3. Communication cost associated with the proposed FL strategies.

From Figs. 1, 2 and 3, we can see that the proposed
communication-efficient online FL strategies, such as PSO-Fed
and ETPSO-Fed, are able to achieve the same performance as
that of Online-Fed with very little communication costs. With
the help of an innovation check, ETPSO-Fed not only reduces
communication overhead, but it also reduces the computational
burden of clients.

As a last step, we carried out experiments to test how partial-
sharing-based FL strategies fare under malicious attacks, i.e.,
when a few clients were trying to disrupt or bias the learning
via model poisoning. We considered untargeted attack in
which the Byzantine clients send random model updates, i.e.,
when participating in global iterations, the Byzantine clients
share their contaminated local models with the server. For
this purpose, Byzantine clients inject random Gaussian noise
N (0, 1) into their local models. Firstly, we selected 10%
clients at random to act as Byzantines. Then, the proposed
PSO-Fed was simulated to perform the same kernel regression
task in the presence of Byzantine clients and the corresponding
learning curves for different values of M are presented in Fig.
4a for coordinated partial-sharing scheme and in Fig. 4d for
uncoordinated partial-sharing scheme. Furthermore, we also
plotted the variance of the noise used by the Byzantine vs.
steady-state testing MSE in Figs. 4b and 4e, and percentage
of Byzantine clients vs. steady-state testing MSE in Figs. 4c
and 4f.

From Fig. 4, it is evident that the proposed PSO-Fed is ro-
bust to model-poisoning attacks. The performance of PSO-Fed
deteriorates as the noise variance used by the Byzantine clients
or the percentage of Byzantine clients increases. However, the
performance degradation of PSO-Fed is in an acceptable range
due to partial-sharing-based communication between clients
and the server. By limiting model-poisoning to a small portion
of the model, partial-sharing-based communication can reduce
the speed at which model-poisoning spreads throughout the

network. Online-Fed, on the other hand, is highly sensitive
to the percentage of Byzantine clients or the variance of
noise used by Byzantine clients. In addition, uncoordinated
partial-sharing performs better than coordinated one in the
presence of Byzantines. Model-poisoning becomes easy when
all clients, including Byzantines, send the same entries of their
local models to the server. Due to this, uncoordinated partial-
sharing performed better than coordinated partial-sharing in
the presence of Byzantines. The proposed PSO-Fed exhibits
this robustness against model-poisoning attacks without requir-
ing additional adversarial detection mechanisms at the server.
Lastly, it is worth noting that the ETPSO-Fed also exhibits
similar performance to PSO-Fed under malicious attacks.

VI. CONCLUSIONS

This paper presented communication-efficient online feder-
ated learning strategies based on partial sharing of model pa-
rameters. In the basic partial-sharing online federated learning
(PSO-Fed) approach, participating clients exchange merely a
small portion of the entire model parameters with the server,
while the non-participating clients independently perform local
learning when accessing new data. As such, partial-sharing-
based communication offers clients more control over local
learning than standard methods. In addition, within the partial-
sharing framework, we also proposed an event-triggered
PSO-Fed (ETPSO-Fed) stemming from set-membership filter-
ing principles. Besides improving communication efficiency,
ETPSO-Fed reduces the computational burden of the clients
by adopting a client-side innovation check on the data. We
implemented strategies in the context of kernel regression and
provided a detailed study of the mean and mean-square con-
vergence of the PSO-Fed strategy. Simulation results showed
that both PSO-Fed and ETPSO-Fed are capable of maintaining
competitive performance while significantly reducing com-
munication costs over Online-Fed. In the conducted simula-
tions, we have observed an 80% reduction in PSO-Fed and
an 84% reduction in ETPSO-Fed communication overhead
compared to Online-Fed. Finally, we showed the proposed
partial-sharing-based online FL strategies to be robust against
model-poisoning with no additional mechanisms.

APPENDIX A
EVALUATION OF AS AND BS

At any given global iteration n, the probability of being
selected in each global iteration n is equal for all clients and
is given by pc = C

K . Additionally, the probability of being
communicated is the same for all model parameters at all
clients and is equals to pe = M

D . Using these probabilities
and from (18) and (20), we have

AS = E[AS,n]

=


ID 0 0 . . . 0

pcpeID (1− pcpe)ID 0 . . . 0
...

...
...

. . .
...

pcpeID 0 0 . . . (1− pcpe)ID

 ,
(43)
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Fig. 4. Performance of PSO-Fed in the presence of malicious attacks. Coordinated partial-sharing: (a). learning curves for 10% Byzantine clients and σ2
Byz = 1,

(b). σ2
Byz vs steady-state testing MSE for various values of M , (c). Percentage of Byzantine clients vs steady-state testing MSE for various values of M .

Uncoordinated partial-sharing: (d). Learning curves for 10% Byzantine clients and σ2
Byz = 1, (e). σ2

Byz vs steady-state testing MSE for various values of M ,
(f). Percentage of Byzantine clients vs steady-state testing MSE for various values of M .

and

BS = E[BS,n+1]

=


(1− pcpe)ID pcpe

C ID . . . pcpe
C ID

0 ID . . . 0
...

...
. . .

...
0 0 . . . ID

 . (44)

Subsequently, AS1D(K+1) = E[AS,n1D(K+1)] = 1D(K+1)

and BS1D(K+1) = E[BS,n1D(K+1)] = 1D(K+1), implying
the row sum of these matrices is unity.

APPENDIX B
EVALUATION OF QA AND QB

We have

AS,n =


A1,1,n A1,2,n . . . A1,K+1,n

A2,1,n A2,2,n . . . A2,K+1,n

...
...

. . .
...

AK+1,1,n AK+1,2,n . . . AK+1,K+1,n

 ,
(45)

with

Ai,j,n =


ID, if i, j = 1

ai,nSi,n, if i = 2, . . . ,K + 1, j = 1

ID − ai,nSi,n, if (i = j) 6= 1

0, otherwise.
(46)

Then, QA is given by

E[AS,n ⊗b AS,n] =

E


A1,1,n ⊗b AS,n . . . A1,K+1,n ⊗b AS,n
A2,1,n ⊗b AS,n . . . A2,K+1,n ⊗b AS,n

...
. . .

...
AK+1,1,n ⊗b AS,n . . . AK+1,K+1,n ⊗b AS,n

 ,
(47)

with
E[Ai,j,n ⊗b AS,n]

= E


Ai,j,n ⊗A1,1,n . . . Ai,j,n ⊗A1,K+1,n

Ai,j,n ⊗A2,1,n . . . Ai,j,n ⊗A2,K+1,n

...
. . .

...
Ai,j,1 ⊗AK+1,1,n . . . Ai,j,n ⊗b AK+1,K+1,n

 ,
(48)

for i, j = 1, 2, . . .K + 1. To evaluate (48), we need to
calculate E[si,q,nsl,r,n]. During the nth global iteration, the
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probability of selecting two entries from the same client to
exchange with the server is given by (MD )(M−1D−1 ) = pe(

M−1
D−1 ).

In uncoordinated partial-sharing scheme, the probability for
selecting two entries from two different clients to exchange
with server is given by p2e. Consequently, for an uncoordinated
partial-sharing scheme, we have

E[si,q,nsl,r,n] =


pe if i = l and q = r

pe(
M−1
D−1 ) if i = l and q 6= r

p2e if i 6= l.

(49)

For coordinated partial-sharing scheme, we have

E[si,q,nsl,r,n] =

{
pe if i = l and q = r

pe(
M−1
D−1 ) if i = l and q 6= r.

(50)

Similarly, a special case of coordinated partial-sharing,
namely, periodic partial-sharing scheme communicates all the
local model parameters to the server efor very D

M iterations.
So, we have

E[si,q,nsl,r,n] = pe for ∀i, l, q, r. (51)

Using (51),E[Ai,j,n ⊗ Al,m,n] can be evaluated ∀i, j, l,m
as
E[Ai,j,n ⊗Al,m,n] =

ID2 if i, j = 1 and l,m = 1

pcpeID2 if i, j = 1

and l = 2, . . . ,K + 1,m = 1

pcpeID2 if i = 2, . . . ,K + 1, j = 1

and l,m = 1

(1− pcpe)ID2 if i, j = 1 and (l = m) 6= 1

(1− pcpe)ID2 if (i = j) 6= 1 and l,m = 1

pcpeID2 if (i = l) = 2, . . . ,K + 1

and (j = m) = 1

pcpeID2 if (i 6= l) = 2, . . . ,K + 1

and (j = m) = 1

0 if (i = l) = 2, . . . ,K + 1; j = 1

and (l = m) 6= 1

(pcpe − pcpe)ID2 if (i 6= l) = 2, . . . ,K + 1, j = 1

and (l = m) 6= 1

0 if (i = l) = 2 . . . ,K + 1;m = 1

and (i = j) 6= 1

(pcpe − pcpe)ID2 if (i 6= l) = 2, . . . ,K + 1,m = 1

and (i = j) 6= 1

(1− pcpe)ID2 if (i = j, l = m) 6= 1, and (i = l)

(1− 2pcpe + pcpe)ID2 if (i = j, l = m) 6= 1, and (i 6= l)

0 otherwise.
(52)

Similarly, we have

BS,n+1 =
B1,1,n+1 B1,2,n+1 . . . B1,K+1,n+1

B2,1,n+1 B2,2,n+1 . . . B2,K+1,n+1

...
...

. . .
...

BK+1,1,n+1 BK+1,2,n+1 . . . BK+1,K+1,n+1

 , (53)

with

Bi,j,n =


ID −

∑
k∈Sn

ak,n

C Sk,n if i, j = 1

aj,n
C Sj,n if i = 1, j = 2, . . . ,K + 1

ID if (i = j) 6= 1

0, otherwise.
(54)

Then, QA is given by

E[BS,n+1 ⊗b BS,n+1] =

E


B1,1,n+1 ⊗b BS,n+1 . . . B1,K+1,n+1 ⊗b BS,n+1

B2,1,n+1 ⊗b BS,n+1 . . . B2,K+1,n+1 ⊗b BS,n+1

...
. . .

...
BK+1,1,n+1 ⊗b BS,n+1 . . . BK+1,K+1,n+1 ⊗b BS,n+1

 ,
(55)

with

E[Bi,j,n+1 ⊗b BS,n+1] =

E


Bi,j,n+1 ⊗B1,1,n+1 . . . Bi,j,n ⊗B1,K+1,n+1

Bi,j,n+1 ⊗B2,1,n+1 . . . Bi,j,n ⊗B2,K+1,n+1

...
. . .

...
Bi,j,n+1 ⊗BK+1,1,n+1 . . . Bi,j,n ⊗b BK+1,K+1,n+1

 .
(56)

for i, j = 1, 2, . . .K +1. For periodic selection of clients and
model coefficients, we have E[ai,nal,n] = pc and E[Si,n+1 ⊗
Sl,n+1] = peID2 , for i, l = 1, 2, . . . ,K+1. We can then have

E[Bi,j,n+1 ⊗Al,m,n+1] =

(1− 2pe +
pe
pc
)ID2 if i, j = 1 and l,m = 1

(pcpeC − pe
C )ID2 if i, j = 1

and l = 1,m = 2, . . . ,K + 1

(pcpeC − pe
C )ID2 if i = 1, j = 2, . . . ,K + 1

and l,m = 1

(1− pcpe)ID2 if i, j = 1 and (l = m) 6= 1

(1− pcpe)ID2 if (i = j) 6= 1 and l,m = 1
pcpe
C2 ID2 if i = 1, j = 2, . . . ,K + 1

and l = 1,m = 2, . . . ,K + 1

(1− pe)ID2 if i, j = 1, and (l = m) 6= 1

(1− pe)ID2 if (i = j) 6= 1, and l,m = 1
pcpe
C ID2 if i = 1, j = 2, . . . ,K + 1

and (l = m) 6= 1
pcpe
C ID2 if (i = j) 6= 1

and l = 1,m = 2, . . . ,K + 1

ID2 if (i = j) 6= 1, and (l = m) 6= 1

0 otherwise.
(57)

Subsequently, QA1D2(K+1)2 = E[AS,n1D(K+1) ⊗bAS,n
1D(K+1)] = 1D2(K+1)2 and QB1D2(K+1)2 = E[BS,n
1D(K+1) ⊗b BS,n1D(K+1)] = 1D2(K+1)2 , implying the row
sum of these matrices is unity.
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